• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
swap_type_to_swap_info(int type)101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= MAX_SWAPFILES)
104 		return NULL;
105 
106 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108 
swap_count(unsigned char ent)109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
first_se(struct swap_info_struct * sis)153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
next_se(struct swap_extent * se)159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
discard_swap(struct swap_info_struct * si)169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
swap_page_sector(struct page * page)222 sector_t swap_page_sector(struct page *page)
223 {
224 	struct swap_info_struct *sis = page_swap_info(page);
225 	struct swap_extent *se;
226 	sector_t sector;
227 	pgoff_t offset;
228 
229 	offset = __page_file_index(page);
230 	se = offset_to_swap_extent(sis, offset);
231 	sector = se->start_block + (offset - se->start_page);
232 	return sector << (PAGE_SHIFT - 9);
233 }
234 
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)239 static void discard_swap_cluster(struct swap_info_struct *si,
240 				 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
243 
244 	while (nr_pages) {
245 		pgoff_t offset = start_page - se->start_page;
246 		sector_t start_block = se->start_block + offset;
247 		sector_t nr_blocks = se->nr_pages - offset;
248 
249 		if (nr_blocks > nr_pages)
250 			nr_blocks = nr_pages;
251 		start_page += nr_blocks;
252 		nr_pages -= nr_blocks;
253 
254 		start_block <<= PAGE_SHIFT - 9;
255 		nr_blocks <<= PAGE_SHIFT - 9;
256 		if (blkdev_issue_discard(si->bdev, start_block,
257 					nr_blocks, GFP_NOIO, 0))
258 			break;
259 
260 		se = next_se(se);
261 	}
262 }
263 
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
266 
267 #define swap_entry_size(size)	(size)
268 #else
269 #define SWAPFILE_CLUSTER	256
270 
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)	1
276 #endif
277 #define LATENCY_LIMIT		256
278 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 	unsigned int flag)
281 {
282 	info->flags = flag;
283 }
284 
cluster_count(struct swap_cluster_info * info)285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 	return info->data;
288 }
289 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 				     unsigned int c)
292 {
293 	info->data = c;
294 }
295 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 					 unsigned int c, unsigned int f)
298 {
299 	info->flags = f;
300 	info->data = c;
301 }
302 
cluster_next(struct swap_cluster_info * info)303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 	return info->data;
306 }
307 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 				    unsigned int n)
310 {
311 	info->data = n;
312 }
313 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 					 unsigned int n, unsigned int f)
316 {
317 	info->flags = f;
318 	info->data = n;
319 }
320 
cluster_is_free(struct swap_cluster_info * info)321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 	return info->flags & CLUSTER_FLAG_FREE;
324 }
325 
cluster_is_null(struct swap_cluster_info * info)326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330 
cluster_set_null(struct swap_cluster_info * info)331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 	info->flags = CLUSTER_FLAG_NEXT_NULL;
334 	info->data = 0;
335 }
336 
cluster_is_huge(struct swap_cluster_info * info)337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 	if (IS_ENABLED(CONFIG_THP_SWAP))
340 		return info->flags & CLUSTER_FLAG_HUGE;
341 	return false;
342 }
343 
cluster_clear_huge(struct swap_cluster_info * info)344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 	info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348 
lock_cluster(struct swap_info_struct * si,unsigned long offset)349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 						     unsigned long offset)
351 {
352 	struct swap_cluster_info *ci;
353 
354 	ci = si->cluster_info;
355 	if (ci) {
356 		ci += offset / SWAPFILE_CLUSTER;
357 		spin_lock(&ci->lock);
358 	}
359 	return ci;
360 }
361 
unlock_cluster(struct swap_cluster_info * ci)362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 	if (ci)
365 		spin_unlock(&ci->lock);
366 }
367 
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 		struct swap_info_struct *si, unsigned long offset)
374 {
375 	struct swap_cluster_info *ci;
376 
377 	/* Try to use fine-grained SSD-style locking if available: */
378 	ci = lock_cluster(si, offset);
379 	/* Otherwise, fall back to traditional, coarse locking: */
380 	if (!ci)
381 		spin_lock(&si->lock);
382 
383 	return ci;
384 }
385 
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 					       struct swap_cluster_info *ci)
388 {
389 	if (ci)
390 		unlock_cluster(ci);
391 	else
392 		spin_unlock(&si->lock);
393 }
394 
cluster_list_empty(struct swap_cluster_list * list)395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 	return cluster_is_null(&list->head);
398 }
399 
cluster_list_first(struct swap_cluster_list * list)400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 	return cluster_next(&list->head);
403 }
404 
cluster_list_init(struct swap_cluster_list * list)405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 	cluster_set_null(&list->head);
408 	cluster_set_null(&list->tail);
409 }
410 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 				  struct swap_cluster_info *ci,
413 				  unsigned int idx)
414 {
415 	if (cluster_list_empty(list)) {
416 		cluster_set_next_flag(&list->head, idx, 0);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	} else {
419 		struct swap_cluster_info *ci_tail;
420 		unsigned int tail = cluster_next(&list->tail);
421 
422 		/*
423 		 * Nested cluster lock, but both cluster locks are
424 		 * only acquired when we held swap_info_struct->lock
425 		 */
426 		ci_tail = ci + tail;
427 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 		cluster_set_next(ci_tail, idx);
429 		spin_unlock(&ci_tail->lock);
430 		cluster_set_next_flag(&list->tail, idx, 0);
431 	}
432 }
433 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 					   struct swap_cluster_info *ci)
436 {
437 	unsigned int idx;
438 
439 	idx = cluster_next(&list->head);
440 	if (cluster_next(&list->tail) == idx) {
441 		cluster_set_null(&list->head);
442 		cluster_set_null(&list->tail);
443 	} else
444 		cluster_set_next_flag(&list->head,
445 				      cluster_next(&ci[idx]), 0);
446 
447 	return idx;
448 }
449 
450 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 		unsigned int idx)
453 {
454 	/*
455 	 * If scan_swap_map_slots() can't find a free cluster, it will check
456 	 * si->swap_map directly. To make sure the discarding cluster isn't
457 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 	 * It will be cleared after discard
459 	 */
460 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462 
463 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464 
465 	schedule_work(&si->discard_work);
466 }
467 
__free_cluster(struct swap_info_struct * si,unsigned long idx)468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 	cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475 
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
swap_do_scheduled_discard(struct swap_info_struct * si)480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 	struct swap_cluster_info *info, *ci;
483 	unsigned int idx;
484 
485 	info = si->cluster_info;
486 
487 	while (!cluster_list_empty(&si->discard_clusters)) {
488 		idx = cluster_list_del_first(&si->discard_clusters, info);
489 		spin_unlock(&si->lock);
490 
491 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 				SWAPFILE_CLUSTER);
493 
494 		spin_lock(&si->lock);
495 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 		__free_cluster(si, idx);
497 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 				0, SWAPFILE_CLUSTER);
499 		unlock_cluster(ci);
500 	}
501 }
502 
swap_discard_work(struct work_struct * work)503 static void swap_discard_work(struct work_struct *work)
504 {
505 	struct swap_info_struct *si;
506 
507 	si = container_of(work, struct swap_info_struct, discard_work);
508 
509 	spin_lock(&si->lock);
510 	swap_do_scheduled_discard(si);
511 	spin_unlock(&si->lock);
512 }
513 
swap_users_ref_free(struct percpu_ref * ref)514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 	struct swap_info_struct *si;
517 
518 	si = container_of(ref, struct swap_info_struct, users);
519 	complete(&si->comp);
520 }
521 
alloc_cluster(struct swap_info_struct * si,unsigned long idx)522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 	struct swap_cluster_info *ci = si->cluster_info;
525 
526 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 	cluster_list_del_first(&si->free_clusters, ci);
528 	cluster_set_count_flag(ci + idx, 0, 0);
529 }
530 
free_cluster(struct swap_info_struct * si,unsigned long idx)531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info + idx;
534 
535 	VM_BUG_ON(cluster_count(ci) != 0);
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, idx);
544 		return;
545 	}
546 
547 	__free_cluster(si, idx);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 	if (cluster_is_free(&cluster_info[idx]))
562 		alloc_cluster(p, idx);
563 
564 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 	cluster_set_count(&cluster_info[idx],
566 		cluster_count(&cluster_info[idx]) + 1);
567 }
568 
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578 
579 	if (!cluster_info)
580 		return;
581 
582 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 	cluster_set_count(&cluster_info[idx],
584 		cluster_count(&cluster_info[idx]) - 1);
585 
586 	if (cluster_count(&cluster_info[idx]) == 0)
587 		free_cluster(p, idx);
588 }
589 
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 	unsigned long offset)
597 {
598 	struct percpu_cluster *percpu_cluster;
599 	bool conflict;
600 
601 	offset /= SWAPFILE_CLUSTER;
602 	conflict = !cluster_list_empty(&si->free_clusters) &&
603 		offset != cluster_list_first(&si->free_clusters) &&
604 		cluster_is_free(&si->cluster_info[offset]);
605 
606 	if (!conflict)
607 		return false;
608 
609 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 	cluster_set_null(&percpu_cluster->index);
611 	return true;
612 }
613 
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 	unsigned long *offset, unsigned long *scan_base)
620 {
621 	struct percpu_cluster *cluster;
622 	struct swap_cluster_info *ci;
623 	unsigned long tmp, max;
624 
625 new_cluster:
626 	cluster = this_cpu_ptr(si->percpu_cluster);
627 	if (cluster_is_null(&cluster->index)) {
628 		if (!cluster_list_empty(&si->free_clusters)) {
629 			cluster->index = si->free_clusters.head;
630 			cluster->next = cluster_next(&cluster->index) *
631 					SWAPFILE_CLUSTER;
632 		} else if (!cluster_list_empty(&si->discard_clusters)) {
633 			/*
634 			 * we don't have free cluster but have some clusters in
635 			 * discarding, do discard now and reclaim them, then
636 			 * reread cluster_next_cpu since we dropped si->lock
637 			 */
638 			swap_do_scheduled_discard(si);
639 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
640 			*offset = *scan_base;
641 			goto new_cluster;
642 		} else
643 			return false;
644 	}
645 
646 	/*
647 	 * Other CPUs can use our cluster if they can't find a free cluster,
648 	 * check if there is still free entry in the cluster
649 	 */
650 	tmp = cluster->next;
651 	max = min_t(unsigned long, si->max,
652 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 	if (tmp < max) {
654 		ci = lock_cluster(si, tmp);
655 		while (tmp < max) {
656 			if (!si->swap_map[tmp])
657 				break;
658 			tmp++;
659 		}
660 		unlock_cluster(ci);
661 	}
662 	if (tmp >= max) {
663 		cluster_set_null(&cluster->index);
664 		goto new_cluster;
665 	}
666 	cluster->next = tmp + 1;
667 	*offset = tmp;
668 	*scan_base = tmp;
669 	return true;
670 }
671 
__del_from_avail_list(struct swap_info_struct * p)672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 	int nid;
675 
676 	assert_spin_locked(&p->lock);
677 	for_each_node(nid)
678 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680 
del_from_avail_list(struct swap_info_struct * p)681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683 	spin_lock(&swap_avail_lock);
684 	__del_from_avail_list(p);
685 	spin_unlock(&swap_avail_lock);
686 }
687 
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689 			     unsigned int nr_entries)
690 {
691 	unsigned int end = offset + nr_entries - 1;
692 
693 	if (offset == si->lowest_bit)
694 		si->lowest_bit += nr_entries;
695 	if (end == si->highest_bit)
696 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697 	si->inuse_pages += nr_entries;
698 	if (si->inuse_pages == si->pages) {
699 		si->lowest_bit = si->max;
700 		si->highest_bit = 0;
701 		del_from_avail_list(si);
702 	}
703 }
704 
add_to_avail_list(struct swap_info_struct * p)705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707 	int nid;
708 
709 	spin_lock(&swap_avail_lock);
710 	for_each_node(nid) {
711 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713 	}
714 	spin_unlock(&swap_avail_lock);
715 }
716 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718 			    unsigned int nr_entries)
719 {
720 	unsigned long begin = offset;
721 	unsigned long end = offset + nr_entries - 1;
722 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723 
724 	if (offset < si->lowest_bit)
725 		si->lowest_bit = offset;
726 	if (end > si->highest_bit) {
727 		bool was_full = !si->highest_bit;
728 
729 		WRITE_ONCE(si->highest_bit, end);
730 		if (was_full && (si->flags & SWP_WRITEOK))
731 			add_to_avail_list(si);
732 	}
733 	atomic_long_add(nr_entries, &nr_swap_pages);
734 	si->inuse_pages -= nr_entries;
735 	if (si->flags & SWP_BLKDEV)
736 		swap_slot_free_notify =
737 			si->bdev->bd_disk->fops->swap_slot_free_notify;
738 	else
739 		swap_slot_free_notify = NULL;
740 	while (offset <= end) {
741 		arch_swap_invalidate_page(si->type, offset);
742 		frontswap_invalidate_page(si->type, offset);
743 		if (swap_slot_free_notify)
744 			swap_slot_free_notify(si->bdev, offset);
745 		offset++;
746 	}
747 	clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749 
set_cluster_next(struct swap_info_struct * si,unsigned long next)750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752 	unsigned long prev;
753 
754 	if (!(si->flags & SWP_SOLIDSTATE)) {
755 		si->cluster_next = next;
756 		return;
757 	}
758 
759 	prev = this_cpu_read(*si->cluster_next_cpu);
760 	/*
761 	 * Cross the swap address space size aligned trunk, choose
762 	 * another trunk randomly to avoid lock contention on swap
763 	 * address space if possible.
764 	 */
765 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767 		/* No free swap slots available */
768 		if (si->highest_bit <= si->lowest_bit)
769 			return;
770 		next = si->lowest_bit +
771 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773 		next = max_t(unsigned int, next, si->lowest_bit);
774 	}
775 	this_cpu_write(*si->cluster_next_cpu, next);
776 }
777 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])778 static int scan_swap_map_slots(struct swap_info_struct *si,
779 			       unsigned char usage, int nr,
780 			       swp_entry_t slots[])
781 {
782 	struct swap_cluster_info *ci;
783 	unsigned long offset;
784 	unsigned long scan_base;
785 	unsigned long last_in_cluster = 0;
786 	int latency_ration = LATENCY_LIMIT;
787 	int n_ret = 0;
788 	bool scanned_many = false;
789 
790 	/*
791 	 * We try to cluster swap pages by allocating them sequentially
792 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793 	 * way, however, we resort to first-free allocation, starting
794 	 * a new cluster.  This prevents us from scattering swap pages
795 	 * all over the entire swap partition, so that we reduce
796 	 * overall disk seek times between swap pages.  -- sct
797 	 * But we do now try to find an empty cluster.  -Andrea
798 	 * And we let swap pages go all over an SSD partition.  Hugh
799 	 */
800 
801 	si->flags += SWP_SCANNING;
802 	/*
803 	 * Use percpu scan base for SSD to reduce lock contention on
804 	 * cluster and swap cache.  For HDD, sequential access is more
805 	 * important.
806 	 */
807 	if (si->flags & SWP_SOLIDSTATE)
808 		scan_base = this_cpu_read(*si->cluster_next_cpu);
809 	else
810 		scan_base = si->cluster_next;
811 	offset = scan_base;
812 
813 	/* SSD algorithm */
814 	if (si->cluster_info) {
815 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816 			goto scan;
817 	} else if (unlikely(!si->cluster_nr--)) {
818 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
820 			goto checks;
821 		}
822 
823 		spin_unlock(&si->lock);
824 
825 		/*
826 		 * If seek is expensive, start searching for new cluster from
827 		 * start of partition, to minimize the span of allocated swap.
828 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
830 		 */
831 		scan_base = offset = si->lowest_bit;
832 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833 
834 		/* Locate the first empty (unaligned) cluster */
835 		for (; last_in_cluster <= si->highest_bit; offset++) {
836 			if (si->swap_map[offset])
837 				last_in_cluster = offset + SWAPFILE_CLUSTER;
838 			else if (offset == last_in_cluster) {
839 				spin_lock(&si->lock);
840 				offset -= SWAPFILE_CLUSTER - 1;
841 				si->cluster_next = offset;
842 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
843 				goto checks;
844 			}
845 			if (unlikely(--latency_ration < 0)) {
846 				cond_resched();
847 				latency_ration = LATENCY_LIMIT;
848 			}
849 		}
850 
851 		offset = scan_base;
852 		spin_lock(&si->lock);
853 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
854 	}
855 
856 checks:
857 	if (si->cluster_info) {
858 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859 		/* take a break if we already got some slots */
860 			if (n_ret)
861 				goto done;
862 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
863 							&scan_base))
864 				goto scan;
865 		}
866 	}
867 	if (!(si->flags & SWP_WRITEOK))
868 		goto no_page;
869 	if (!si->highest_bit)
870 		goto no_page;
871 	if (offset > si->highest_bit)
872 		scan_base = offset = si->lowest_bit;
873 
874 	ci = lock_cluster(si, offset);
875 	/* reuse swap entry of cache-only swap if not busy. */
876 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877 		int swap_was_freed;
878 		unlock_cluster(ci);
879 		spin_unlock(&si->lock);
880 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881 		spin_lock(&si->lock);
882 		/* entry was freed successfully, try to use this again */
883 		if (swap_was_freed)
884 			goto checks;
885 		goto scan; /* check next one */
886 	}
887 
888 	if (si->swap_map[offset]) {
889 		unlock_cluster(ci);
890 		if (!n_ret)
891 			goto scan;
892 		else
893 			goto done;
894 	}
895 	WRITE_ONCE(si->swap_map[offset], usage);
896 	inc_cluster_info_page(si, si->cluster_info, offset);
897 	unlock_cluster(ci);
898 
899 	swap_range_alloc(si, offset, 1);
900 	slots[n_ret++] = swp_entry(si->type, offset);
901 
902 	/* got enough slots or reach max slots? */
903 	if ((n_ret == nr) || (offset >= si->highest_bit))
904 		goto done;
905 
906 	/* search for next available slot */
907 
908 	/* time to take a break? */
909 	if (unlikely(--latency_ration < 0)) {
910 		if (n_ret)
911 			goto done;
912 		spin_unlock(&si->lock);
913 		cond_resched();
914 		spin_lock(&si->lock);
915 		latency_ration = LATENCY_LIMIT;
916 	}
917 
918 	/* try to get more slots in cluster */
919 	if (si->cluster_info) {
920 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921 			goto checks;
922 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
923 		/* non-ssd case, still more slots in cluster? */
924 		--si->cluster_nr;
925 		goto checks;
926 	}
927 
928 	/*
929 	 * Even if there's no free clusters available (fragmented),
930 	 * try to scan a little more quickly with lock held unless we
931 	 * have scanned too many slots already.
932 	 */
933 	if (!scanned_many) {
934 		unsigned long scan_limit;
935 
936 		if (offset < scan_base)
937 			scan_limit = scan_base;
938 		else
939 			scan_limit = si->highest_bit;
940 		for (; offset <= scan_limit && --latency_ration > 0;
941 		     offset++) {
942 			if (!si->swap_map[offset])
943 				goto checks;
944 		}
945 	}
946 
947 done:
948 	set_cluster_next(si, offset + 1);
949 	si->flags -= SWP_SCANNING;
950 	return n_ret;
951 
952 scan:
953 	spin_unlock(&si->lock);
954 	while (++offset <= READ_ONCE(si->highest_bit)) {
955 		if (data_race(!si->swap_map[offset])) {
956 			spin_lock(&si->lock);
957 			goto checks;
958 		}
959 		if (vm_swap_full() &&
960 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961 			spin_lock(&si->lock);
962 			goto checks;
963 		}
964 		if (unlikely(--latency_ration < 0)) {
965 			cond_resched();
966 			latency_ration = LATENCY_LIMIT;
967 			scanned_many = true;
968 		}
969 	}
970 	offset = si->lowest_bit;
971 	while (offset < scan_base) {
972 		if (data_race(!si->swap_map[offset])) {
973 			spin_lock(&si->lock);
974 			goto checks;
975 		}
976 		if (vm_swap_full() &&
977 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978 			spin_lock(&si->lock);
979 			goto checks;
980 		}
981 		if (unlikely(--latency_ration < 0)) {
982 			cond_resched();
983 			latency_ration = LATENCY_LIMIT;
984 			scanned_many = true;
985 		}
986 		offset++;
987 	}
988 	spin_lock(&si->lock);
989 
990 no_page:
991 	si->flags -= SWP_SCANNING;
992 	return n_ret;
993 }
994 
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997 	unsigned long idx;
998 	struct swap_cluster_info *ci;
999 	unsigned long offset;
1000 
1001 	/*
1002 	 * Should not even be attempting cluster allocations when huge
1003 	 * page swap is disabled.  Warn and fail the allocation.
1004 	 */
1005 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006 		VM_WARN_ON_ONCE(1);
1007 		return 0;
1008 	}
1009 
1010 	if (cluster_list_empty(&si->free_clusters))
1011 		return 0;
1012 
1013 	idx = cluster_list_first(&si->free_clusters);
1014 	offset = idx * SWAPFILE_CLUSTER;
1015 	ci = lock_cluster(si, offset);
1016 	alloc_cluster(si, idx);
1017 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018 
1019 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020 	unlock_cluster(ci);
1021 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022 	*slot = swp_entry(si->type, offset);
1023 
1024 	return 1;
1025 }
1026 
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1030 	struct swap_cluster_info *ci;
1031 
1032 	ci = lock_cluster(si, offset);
1033 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034 	cluster_set_count_flag(ci, 0, 0);
1035 	free_cluster(si, idx);
1036 	unlock_cluster(ci);
1037 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042 	unsigned long size = swap_entry_size(entry_size);
1043 	struct swap_info_struct *si, *next;
1044 	long avail_pgs;
1045 	int n_ret = 0;
1046 	int node;
1047 
1048 	/* Only single cluster request supported */
1049 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050 
1051 	spin_lock(&swap_avail_lock);
1052 
1053 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054 	if (avail_pgs <= 0) {
1055 		spin_unlock(&swap_avail_lock);
1056 		goto noswap;
1057 	}
1058 
1059 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060 
1061 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1062 
1063 start_over:
1064 	node = numa_node_id();
1065 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066 		/* requeue si to after same-priority siblings */
1067 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068 		spin_unlock(&swap_avail_lock);
1069 		spin_lock(&si->lock);
1070 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071 			spin_lock(&swap_avail_lock);
1072 			if (plist_node_empty(&si->avail_lists[node])) {
1073 				spin_unlock(&si->lock);
1074 				goto nextsi;
1075 			}
1076 			WARN(!si->highest_bit,
1077 			     "swap_info %d in list but !highest_bit\n",
1078 			     si->type);
1079 			WARN(!(si->flags & SWP_WRITEOK),
1080 			     "swap_info %d in list but !SWP_WRITEOK\n",
1081 			     si->type);
1082 			__del_from_avail_list(si);
1083 			spin_unlock(&si->lock);
1084 			goto nextsi;
1085 		}
1086 		if (size == SWAPFILE_CLUSTER) {
1087 			if (si->flags & SWP_BLKDEV)
1088 				n_ret = swap_alloc_cluster(si, swp_entries);
1089 		} else
1090 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091 						    n_goal, swp_entries);
1092 		spin_unlock(&si->lock);
1093 		if (n_ret || size == SWAPFILE_CLUSTER)
1094 			goto check_out;
1095 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1096 			si->type);
1097 		cond_resched();
1098 
1099 		spin_lock(&swap_avail_lock);
1100 nextsi:
1101 		/*
1102 		 * if we got here, it's likely that si was almost full before,
1103 		 * and since scan_swap_map_slots() can drop the si->lock,
1104 		 * multiple callers probably all tried to get a page from the
1105 		 * same si and it filled up before we could get one; or, the si
1106 		 * filled up between us dropping swap_avail_lock and taking
1107 		 * si->lock. Since we dropped the swap_avail_lock, the
1108 		 * swap_avail_head list may have been modified; so if next is
1109 		 * still in the swap_avail_head list then try it, otherwise
1110 		 * start over if we have not gotten any slots.
1111 		 */
1112 		if (plist_node_empty(&next->avail_lists[node]))
1113 			goto start_over;
1114 	}
1115 
1116 	spin_unlock(&swap_avail_lock);
1117 
1118 check_out:
1119 	if (n_ret < n_goal)
1120 		atomic_long_add((long)(n_goal - n_ret) * size,
1121 				&nr_swap_pages);
1122 noswap:
1123 	return n_ret;
1124 }
1125 
__swap_info_get(swp_entry_t entry)1126 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1127 {
1128 	struct swap_info_struct *p;
1129 	unsigned long offset;
1130 
1131 	if (!entry.val)
1132 		goto out;
1133 	p = swp_swap_info(entry);
1134 	if (!p)
1135 		goto bad_nofile;
1136 	if (data_race(!(p->flags & SWP_USED)))
1137 		goto bad_device;
1138 	offset = swp_offset(entry);
1139 	if (offset >= p->max)
1140 		goto bad_offset;
1141 	return p;
1142 
1143 bad_offset:
1144 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1145 	goto out;
1146 bad_device:
1147 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1148 	goto out;
1149 bad_nofile:
1150 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1151 out:
1152 	return NULL;
1153 }
1154 
_swap_info_get(swp_entry_t entry)1155 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1156 {
1157 	struct swap_info_struct *p;
1158 
1159 	p = __swap_info_get(entry);
1160 	if (!p)
1161 		goto out;
1162 	if (data_race(!p->swap_map[swp_offset(entry)]))
1163 		goto bad_free;
1164 	return p;
1165 
1166 bad_free:
1167 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1168 out:
1169 	return NULL;
1170 }
1171 
swap_info_get(swp_entry_t entry)1172 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1173 {
1174 	struct swap_info_struct *p;
1175 
1176 	p = _swap_info_get(entry);
1177 	if (p)
1178 		spin_lock(&p->lock);
1179 	return p;
1180 }
1181 
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1182 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1183 					struct swap_info_struct *q)
1184 {
1185 	struct swap_info_struct *p;
1186 
1187 	p = _swap_info_get(entry);
1188 
1189 	if (p != q) {
1190 		if (q != NULL)
1191 			spin_unlock(&q->lock);
1192 		if (p != NULL)
1193 			spin_lock(&p->lock);
1194 	}
1195 	return p;
1196 }
1197 
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1198 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1199 					      unsigned long offset,
1200 					      unsigned char usage)
1201 {
1202 	unsigned char count;
1203 	unsigned char has_cache;
1204 
1205 	count = p->swap_map[offset];
1206 
1207 	has_cache = count & SWAP_HAS_CACHE;
1208 	count &= ~SWAP_HAS_CACHE;
1209 
1210 	if (usage == SWAP_HAS_CACHE) {
1211 		VM_BUG_ON(!has_cache);
1212 		has_cache = 0;
1213 	} else if (count == SWAP_MAP_SHMEM) {
1214 		/*
1215 		 * Or we could insist on shmem.c using a special
1216 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1217 		 */
1218 		count = 0;
1219 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1220 		if (count == COUNT_CONTINUED) {
1221 			if (swap_count_continued(p, offset, count))
1222 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1223 			else
1224 				count = SWAP_MAP_MAX;
1225 		} else
1226 			count--;
1227 	}
1228 
1229 	usage = count | has_cache;
1230 	if (usage)
1231 		WRITE_ONCE(p->swap_map[offset], usage);
1232 	else
1233 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1234 
1235 	return usage;
1236 }
1237 
1238 /*
1239  * Check whether swap entry is valid in the swap device.  If so,
1240  * return pointer to swap_info_struct, and keep the swap entry valid
1241  * via preventing the swap device from being swapoff, until
1242  * put_swap_device() is called.  Otherwise return NULL.
1243  *
1244  * Notice that swapoff or swapoff+swapon can still happen before the
1245  * percpu_ref_tryget_live() in get_swap_device() or after the
1246  * percpu_ref_put() in put_swap_device() if there isn't any other way
1247  * to prevent swapoff, such as page lock, page table lock, etc.  The
1248  * caller must be prepared for that.  For example, the following
1249  * situation is possible.
1250  *
1251  *   CPU1				CPU2
1252  *   do_swap_page()
1253  *     ...				swapoff+swapon
1254  *     __read_swap_cache_async()
1255  *       swapcache_prepare()
1256  *         __swap_duplicate()
1257  *           // check swap_map
1258  *     // verify PTE not changed
1259  *
1260  * In __swap_duplicate(), the swap_map need to be checked before
1261  * changing partly because the specified swap entry may be for another
1262  * swap device which has been swapoff.  And in do_swap_page(), after
1263  * the page is read from the swap device, the PTE is verified not
1264  * changed with the page table locked to check whether the swap device
1265  * has been swapoff or swapoff+swapon.
1266  */
get_swap_device(swp_entry_t entry)1267 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268 {
1269 	struct swap_info_struct *si;
1270 	unsigned long offset;
1271 
1272 	if (!entry.val)
1273 		goto out;
1274 	si = swp_swap_info(entry);
1275 	if (!si)
1276 		goto bad_nofile;
1277 	if (!percpu_ref_tryget_live(&si->users))
1278 		goto out;
1279 	/*
1280 	 * Guarantee the si->users are checked before accessing other
1281 	 * fields of swap_info_struct.
1282 	 *
1283 	 * Paired with the spin_unlock() after setup_swap_info() in
1284 	 * enable_swap_info().
1285 	 */
1286 	smp_rmb();
1287 	offset = swp_offset(entry);
1288 	if (offset >= si->max)
1289 		goto put_out;
1290 
1291 	return si;
1292 bad_nofile:
1293 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294 out:
1295 	return NULL;
1296 put_out:
1297 	percpu_ref_put(&si->users);
1298 	return NULL;
1299 }
1300 
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1301 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1302 				       swp_entry_t entry)
1303 {
1304 	struct swap_cluster_info *ci;
1305 	unsigned long offset = swp_offset(entry);
1306 	unsigned char usage;
1307 
1308 	ci = lock_cluster_or_swap_info(p, offset);
1309 	usage = __swap_entry_free_locked(p, offset, 1);
1310 	unlock_cluster_or_swap_info(p, ci);
1311 	if (!usage)
1312 		free_swap_slot(entry);
1313 
1314 	return usage;
1315 }
1316 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1317 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1318 {
1319 	struct swap_cluster_info *ci;
1320 	unsigned long offset = swp_offset(entry);
1321 	unsigned char count;
1322 
1323 	ci = lock_cluster(p, offset);
1324 	count = p->swap_map[offset];
1325 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1326 	p->swap_map[offset] = 0;
1327 	dec_cluster_info_page(p, p->cluster_info, offset);
1328 	unlock_cluster(ci);
1329 
1330 	mem_cgroup_uncharge_swap(entry, 1);
1331 	swap_range_free(p, offset, 1);
1332 }
1333 
1334 /*
1335  * Caller has made sure that the swap device corresponding to entry
1336  * is still around or has not been recycled.
1337  */
swap_free(swp_entry_t entry)1338 void swap_free(swp_entry_t entry)
1339 {
1340 	struct swap_info_struct *p;
1341 
1342 	p = _swap_info_get(entry);
1343 	if (p)
1344 		__swap_entry_free(p, entry);
1345 }
1346 
1347 /*
1348  * Called after dropping swapcache to decrease refcnt to swap entries.
1349  */
put_swap_page(struct page * page,swp_entry_t entry)1350 void put_swap_page(struct page *page, swp_entry_t entry)
1351 {
1352 	unsigned long offset = swp_offset(entry);
1353 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1354 	struct swap_cluster_info *ci;
1355 	struct swap_info_struct *si;
1356 	unsigned char *map;
1357 	unsigned int i, free_entries = 0;
1358 	unsigned char val;
1359 	int size = swap_entry_size(thp_nr_pages(page));
1360 
1361 	si = _swap_info_get(entry);
1362 	if (!si)
1363 		return;
1364 
1365 	ci = lock_cluster_or_swap_info(si, offset);
1366 	if (size == SWAPFILE_CLUSTER) {
1367 		VM_BUG_ON(!cluster_is_huge(ci));
1368 		map = si->swap_map + offset;
1369 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1370 			val = map[i];
1371 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1372 			if (val == SWAP_HAS_CACHE)
1373 				free_entries++;
1374 		}
1375 		cluster_clear_huge(ci);
1376 		if (free_entries == SWAPFILE_CLUSTER) {
1377 			unlock_cluster_or_swap_info(si, ci);
1378 			spin_lock(&si->lock);
1379 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1380 			swap_free_cluster(si, idx);
1381 			spin_unlock(&si->lock);
1382 			return;
1383 		}
1384 	}
1385 	for (i = 0; i < size; i++, entry.val++) {
1386 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1387 			unlock_cluster_or_swap_info(si, ci);
1388 			free_swap_slot(entry);
1389 			if (i == size - 1)
1390 				return;
1391 			lock_cluster_or_swap_info(si, offset);
1392 		}
1393 	}
1394 	unlock_cluster_or_swap_info(si, ci);
1395 }
1396 
1397 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1398 int split_swap_cluster(swp_entry_t entry)
1399 {
1400 	struct swap_info_struct *si;
1401 	struct swap_cluster_info *ci;
1402 	unsigned long offset = swp_offset(entry);
1403 
1404 	si = _swap_info_get(entry);
1405 	if (!si)
1406 		return -EBUSY;
1407 	ci = lock_cluster(si, offset);
1408 	cluster_clear_huge(ci);
1409 	unlock_cluster(ci);
1410 	return 0;
1411 }
1412 #endif
1413 
swp_entry_cmp(const void * ent1,const void * ent2)1414 static int swp_entry_cmp(const void *ent1, const void *ent2)
1415 {
1416 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1417 
1418 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1419 }
1420 
swapcache_free_entries(swp_entry_t * entries,int n)1421 void swapcache_free_entries(swp_entry_t *entries, int n)
1422 {
1423 	struct swap_info_struct *p, *prev;
1424 	int i;
1425 
1426 	if (n <= 0)
1427 		return;
1428 
1429 	prev = NULL;
1430 	p = NULL;
1431 
1432 	/*
1433 	 * Sort swap entries by swap device, so each lock is only taken once.
1434 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1435 	 * so low that it isn't necessary to optimize further.
1436 	 */
1437 	if (nr_swapfiles > 1)
1438 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1439 	for (i = 0; i < n; ++i) {
1440 		p = swap_info_get_cont(entries[i], prev);
1441 		if (p)
1442 			swap_entry_free(p, entries[i]);
1443 		prev = p;
1444 	}
1445 	if (p)
1446 		spin_unlock(&p->lock);
1447 }
1448 
1449 /*
1450  * How many references to page are currently swapped out?
1451  * This does not give an exact answer when swap count is continued,
1452  * but does include the high COUNT_CONTINUED flag to allow for that.
1453  */
page_swapcount(struct page * page)1454 int page_swapcount(struct page *page)
1455 {
1456 	int count = 0;
1457 	struct swap_info_struct *p;
1458 	struct swap_cluster_info *ci;
1459 	swp_entry_t entry;
1460 	unsigned long offset;
1461 
1462 	entry.val = page_private(page);
1463 	p = _swap_info_get(entry);
1464 	if (p) {
1465 		offset = swp_offset(entry);
1466 		ci = lock_cluster_or_swap_info(p, offset);
1467 		count = swap_count(p->swap_map[offset]);
1468 		unlock_cluster_or_swap_info(p, ci);
1469 	}
1470 	return count;
1471 }
1472 
__swap_count(swp_entry_t entry)1473 int __swap_count(swp_entry_t entry)
1474 {
1475 	struct swap_info_struct *si;
1476 	pgoff_t offset = swp_offset(entry);
1477 	int count = 0;
1478 
1479 	si = get_swap_device(entry);
1480 	if (si) {
1481 		count = swap_count(si->swap_map[offset]);
1482 		put_swap_device(si);
1483 	}
1484 	return count;
1485 }
1486 
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1487 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1488 {
1489 	int count = 0;
1490 	pgoff_t offset = swp_offset(entry);
1491 	struct swap_cluster_info *ci;
1492 
1493 	ci = lock_cluster_or_swap_info(si, offset);
1494 	count = swap_count(si->swap_map[offset]);
1495 	unlock_cluster_or_swap_info(si, ci);
1496 	return count;
1497 }
1498 
1499 /*
1500  * How many references to @entry are currently swapped out?
1501  * This does not give an exact answer when swap count is continued,
1502  * but does include the high COUNT_CONTINUED flag to allow for that.
1503  */
__swp_swapcount(swp_entry_t entry)1504 int __swp_swapcount(swp_entry_t entry)
1505 {
1506 	int count = 0;
1507 	struct swap_info_struct *si;
1508 
1509 	si = get_swap_device(entry);
1510 	if (si) {
1511 		count = swap_swapcount(si, entry);
1512 		put_swap_device(si);
1513 	}
1514 	return count;
1515 }
1516 
1517 /*
1518  * How many references to @entry are currently swapped out?
1519  * This considers COUNT_CONTINUED so it returns exact answer.
1520  */
swp_swapcount(swp_entry_t entry)1521 int swp_swapcount(swp_entry_t entry)
1522 {
1523 	int count, tmp_count, n;
1524 	struct swap_info_struct *p;
1525 	struct swap_cluster_info *ci;
1526 	struct page *page;
1527 	pgoff_t offset;
1528 	unsigned char *map;
1529 
1530 	p = _swap_info_get(entry);
1531 	if (!p)
1532 		return 0;
1533 
1534 	offset = swp_offset(entry);
1535 
1536 	ci = lock_cluster_or_swap_info(p, offset);
1537 
1538 	count = swap_count(p->swap_map[offset]);
1539 	if (!(count & COUNT_CONTINUED))
1540 		goto out;
1541 
1542 	count &= ~COUNT_CONTINUED;
1543 	n = SWAP_MAP_MAX + 1;
1544 
1545 	page = vmalloc_to_page(p->swap_map + offset);
1546 	offset &= ~PAGE_MASK;
1547 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1548 
1549 	do {
1550 		page = list_next_entry(page, lru);
1551 		map = kmap_atomic(page);
1552 		tmp_count = map[offset];
1553 		kunmap_atomic(map);
1554 
1555 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1556 		n *= (SWAP_CONT_MAX + 1);
1557 	} while (tmp_count & COUNT_CONTINUED);
1558 out:
1559 	unlock_cluster_or_swap_info(p, ci);
1560 	return count;
1561 }
1562 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1563 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1564 					 swp_entry_t entry)
1565 {
1566 	struct swap_cluster_info *ci;
1567 	unsigned char *map = si->swap_map;
1568 	unsigned long roffset = swp_offset(entry);
1569 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1570 	int i;
1571 	bool ret = false;
1572 
1573 	ci = lock_cluster_or_swap_info(si, offset);
1574 	if (!ci || !cluster_is_huge(ci)) {
1575 		if (swap_count(map[roffset]))
1576 			ret = true;
1577 		goto unlock_out;
1578 	}
1579 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1580 		if (swap_count(map[offset + i])) {
1581 			ret = true;
1582 			break;
1583 		}
1584 	}
1585 unlock_out:
1586 	unlock_cluster_or_swap_info(si, ci);
1587 	return ret;
1588 }
1589 
page_swapped(struct page * page)1590 static bool page_swapped(struct page *page)
1591 {
1592 	swp_entry_t entry;
1593 	struct swap_info_struct *si;
1594 
1595 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1596 		return page_swapcount(page) != 0;
1597 
1598 	page = compound_head(page);
1599 	entry.val = page_private(page);
1600 	si = _swap_info_get(entry);
1601 	if (si)
1602 		return swap_page_trans_huge_swapped(si, entry);
1603 	return false;
1604 }
1605 
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1606 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1607 					 int *total_swapcount)
1608 {
1609 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1610 	unsigned long offset = 0;
1611 	struct swap_info_struct *si;
1612 	struct swap_cluster_info *ci = NULL;
1613 	unsigned char *map = NULL;
1614 	int mapcount, swapcount = 0;
1615 
1616 	/* hugetlbfs shouldn't call it */
1617 	VM_BUG_ON_PAGE(PageHuge(page), page);
1618 
1619 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1620 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1621 		if (PageSwapCache(page))
1622 			swapcount = page_swapcount(page);
1623 		if (total_swapcount)
1624 			*total_swapcount = swapcount;
1625 		return mapcount + swapcount;
1626 	}
1627 
1628 	page = compound_head(page);
1629 
1630 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1631 	if (PageSwapCache(page)) {
1632 		swp_entry_t entry;
1633 
1634 		entry.val = page_private(page);
1635 		si = _swap_info_get(entry);
1636 		if (si) {
1637 			map = si->swap_map;
1638 			offset = swp_offset(entry);
1639 		}
1640 	}
1641 	if (map)
1642 		ci = lock_cluster(si, offset);
1643 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1644 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1645 		_total_mapcount += mapcount;
1646 		if (map) {
1647 			swapcount = swap_count(map[offset + i]);
1648 			_total_swapcount += swapcount;
1649 		}
1650 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1651 	}
1652 	unlock_cluster(ci);
1653 	if (PageDoubleMap(page)) {
1654 		map_swapcount -= 1;
1655 		_total_mapcount -= HPAGE_PMD_NR;
1656 	}
1657 	mapcount = compound_mapcount(page);
1658 	map_swapcount += mapcount;
1659 	_total_mapcount += mapcount;
1660 	if (total_mapcount)
1661 		*total_mapcount = _total_mapcount;
1662 	if (total_swapcount)
1663 		*total_swapcount = _total_swapcount;
1664 
1665 	return map_swapcount;
1666 }
1667 
1668 /*
1669  * We can write to an anon page without COW if there are no other references
1670  * to it.  And as a side-effect, free up its swap: because the old content
1671  * on disk will never be read, and seeking back there to write new content
1672  * later would only waste time away from clustering.
1673  *
1674  * NOTE: total_map_swapcount should not be relied upon by the caller if
1675  * reuse_swap_page() returns false, but it may be always overwritten
1676  * (see the other implementation for CONFIG_SWAP=n).
1677  */
reuse_swap_page(struct page * page,int * total_map_swapcount)1678 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1679 {
1680 	int count, total_mapcount, total_swapcount;
1681 
1682 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1683 	if (unlikely(PageKsm(page)))
1684 		return false;
1685 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1686 					      &total_swapcount);
1687 	if (total_map_swapcount)
1688 		*total_map_swapcount = total_mapcount + total_swapcount;
1689 	if (count == 1 && PageSwapCache(page) &&
1690 	    (likely(!PageTransCompound(page)) ||
1691 	     /* The remaining swap count will be freed soon */
1692 	     total_swapcount == page_swapcount(page))) {
1693 		if (!PageWriteback(page)) {
1694 			page = compound_head(page);
1695 			delete_from_swap_cache(page);
1696 			SetPageDirty(page);
1697 		} else {
1698 			swp_entry_t entry;
1699 			struct swap_info_struct *p;
1700 
1701 			entry.val = page_private(page);
1702 			p = swap_info_get(entry);
1703 			if (p->flags & SWP_STABLE_WRITES) {
1704 				spin_unlock(&p->lock);
1705 				return false;
1706 			}
1707 			spin_unlock(&p->lock);
1708 		}
1709 	}
1710 
1711 	return count <= 1;
1712 }
1713 
1714 /*
1715  * If swap is getting full, or if there are no more mappings of this page,
1716  * then try_to_free_swap is called to free its swap space.
1717  */
try_to_free_swap(struct page * page)1718 int try_to_free_swap(struct page *page)
1719 {
1720 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1721 
1722 	if (!PageSwapCache(page))
1723 		return 0;
1724 	if (PageWriteback(page))
1725 		return 0;
1726 	if (page_swapped(page))
1727 		return 0;
1728 
1729 	/*
1730 	 * Once hibernation has begun to create its image of memory,
1731 	 * there's a danger that one of the calls to try_to_free_swap()
1732 	 * - most probably a call from __try_to_reclaim_swap() while
1733 	 * hibernation is allocating its own swap pages for the image,
1734 	 * but conceivably even a call from memory reclaim - will free
1735 	 * the swap from a page which has already been recorded in the
1736 	 * image as a clean swapcache page, and then reuse its swap for
1737 	 * another page of the image.  On waking from hibernation, the
1738 	 * original page might be freed under memory pressure, then
1739 	 * later read back in from swap, now with the wrong data.
1740 	 *
1741 	 * Hibernation suspends storage while it is writing the image
1742 	 * to disk so check that here.
1743 	 */
1744 	if (pm_suspended_storage())
1745 		return 0;
1746 
1747 	page = compound_head(page);
1748 	delete_from_swap_cache(page);
1749 	SetPageDirty(page);
1750 	return 1;
1751 }
1752 
1753 /*
1754  * Free the swap entry like above, but also try to
1755  * free the page cache entry if it is the last user.
1756  */
free_swap_and_cache(swp_entry_t entry)1757 int free_swap_and_cache(swp_entry_t entry)
1758 {
1759 	struct swap_info_struct *p;
1760 	unsigned char count;
1761 
1762 	if (non_swap_entry(entry))
1763 		return 1;
1764 
1765 	p = _swap_info_get(entry);
1766 	if (p) {
1767 		count = __swap_entry_free(p, entry);
1768 		if (count == SWAP_HAS_CACHE &&
1769 		    !swap_page_trans_huge_swapped(p, entry))
1770 			__try_to_reclaim_swap(p, swp_offset(entry),
1771 					      TTRS_UNMAPPED | TTRS_FULL);
1772 	}
1773 	return p != NULL;
1774 }
1775 
1776 #ifdef CONFIG_HIBERNATION
1777 
get_swap_page_of_type(int type)1778 swp_entry_t get_swap_page_of_type(int type)
1779 {
1780 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1781 	swp_entry_t entry = {0};
1782 
1783 	if (!si)
1784 		goto fail;
1785 
1786 	/* This is called for allocating swap entry, not cache */
1787 	spin_lock(&si->lock);
1788 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1789 		atomic_long_dec(&nr_swap_pages);
1790 	spin_unlock(&si->lock);
1791 fail:
1792 	return entry;
1793 }
1794 
1795 /*
1796  * Find the swap type that corresponds to given device (if any).
1797  *
1798  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1799  * from 0, in which the swap header is expected to be located.
1800  *
1801  * This is needed for the suspend to disk (aka swsusp).
1802  */
swap_type_of(dev_t device,sector_t offset)1803 int swap_type_of(dev_t device, sector_t offset)
1804 {
1805 	int type;
1806 
1807 	if (!device)
1808 		return -1;
1809 
1810 	spin_lock(&swap_lock);
1811 	for (type = 0; type < nr_swapfiles; type++) {
1812 		struct swap_info_struct *sis = swap_info[type];
1813 
1814 		if (!(sis->flags & SWP_WRITEOK))
1815 			continue;
1816 
1817 		if (device == sis->bdev->bd_dev) {
1818 			struct swap_extent *se = first_se(sis);
1819 
1820 			if (se->start_block == offset) {
1821 				spin_unlock(&swap_lock);
1822 				return type;
1823 			}
1824 		}
1825 	}
1826 	spin_unlock(&swap_lock);
1827 	return -ENODEV;
1828 }
1829 
find_first_swap(dev_t * device)1830 int find_first_swap(dev_t *device)
1831 {
1832 	int type;
1833 
1834 	spin_lock(&swap_lock);
1835 	for (type = 0; type < nr_swapfiles; type++) {
1836 		struct swap_info_struct *sis = swap_info[type];
1837 
1838 		if (!(sis->flags & SWP_WRITEOK))
1839 			continue;
1840 		*device = sis->bdev->bd_dev;
1841 		spin_unlock(&swap_lock);
1842 		return type;
1843 	}
1844 	spin_unlock(&swap_lock);
1845 	return -ENODEV;
1846 }
1847 
1848 /*
1849  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1850  * corresponding to given index in swap_info (swap type).
1851  */
swapdev_block(int type,pgoff_t offset)1852 sector_t swapdev_block(int type, pgoff_t offset)
1853 {
1854 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1855 	struct swap_extent *se;
1856 
1857 	if (!si || !(si->flags & SWP_WRITEOK))
1858 		return 0;
1859 	se = offset_to_swap_extent(si, offset);
1860 	return se->start_block + (offset - se->start_page);
1861 }
1862 
1863 /*
1864  * Return either the total number of swap pages of given type, or the number
1865  * of free pages of that type (depending on @free)
1866  *
1867  * This is needed for software suspend
1868  */
count_swap_pages(int type,int free)1869 unsigned int count_swap_pages(int type, int free)
1870 {
1871 	unsigned int n = 0;
1872 
1873 	spin_lock(&swap_lock);
1874 	if ((unsigned int)type < nr_swapfiles) {
1875 		struct swap_info_struct *sis = swap_info[type];
1876 
1877 		spin_lock(&sis->lock);
1878 		if (sis->flags & SWP_WRITEOK) {
1879 			n = sis->pages;
1880 			if (free)
1881 				n -= sis->inuse_pages;
1882 		}
1883 		spin_unlock(&sis->lock);
1884 	}
1885 	spin_unlock(&swap_lock);
1886 	return n;
1887 }
1888 #endif /* CONFIG_HIBERNATION */
1889 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1890 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1891 {
1892 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1893 }
1894 
1895 /*
1896  * No need to decide whether this PTE shares the swap entry with others,
1897  * just let do_wp_page work it out if a write is requested later - to
1898  * force COW, vm_page_prot omits write permission from any private vma.
1899  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1900 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1901 		unsigned long addr, swp_entry_t entry, struct page *page)
1902 {
1903 	struct page *swapcache;
1904 	spinlock_t *ptl;
1905 	pte_t *pte;
1906 	int ret = 1;
1907 
1908 	swapcache = page;
1909 	page = ksm_might_need_to_copy(page, vma, addr);
1910 	if (unlikely(!page))
1911 		return -ENOMEM;
1912 
1913 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1914 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1915 		ret = 0;
1916 		goto out;
1917 	}
1918 
1919 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1920 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1921 	get_page(page);
1922 	set_pte_at(vma->vm_mm, addr, pte,
1923 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1924 	if (page == swapcache) {
1925 		page_add_anon_rmap(page, vma, addr, false);
1926 	} else { /* ksm created a completely new copy */
1927 		page_add_new_anon_rmap(page, vma, addr, false);
1928 		lru_cache_add_inactive_or_unevictable(page, vma);
1929 	}
1930 	swap_free(entry);
1931 out:
1932 	pte_unmap_unlock(pte, ptl);
1933 	if (page != swapcache) {
1934 		unlock_page(page);
1935 		put_page(page);
1936 	}
1937 	return ret;
1938 }
1939 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1940 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1941 			unsigned long addr, unsigned long end,
1942 			unsigned int type, bool frontswap,
1943 			unsigned long *fs_pages_to_unuse)
1944 {
1945 	struct page *page;
1946 	swp_entry_t entry;
1947 	pte_t *pte;
1948 	struct swap_info_struct *si;
1949 	unsigned long offset;
1950 	int ret = 0;
1951 	volatile unsigned char *swap_map;
1952 
1953 	si = swap_info[type];
1954 	pte = pte_offset_map(pmd, addr);
1955 	do {
1956 		if (!is_swap_pte(*pte))
1957 			continue;
1958 
1959 		entry = pte_to_swp_entry(*pte);
1960 		if (swp_type(entry) != type)
1961 			continue;
1962 
1963 		offset = swp_offset(entry);
1964 		if (frontswap && !frontswap_test(si, offset))
1965 			continue;
1966 
1967 		pte_unmap(pte);
1968 		swap_map = &si->swap_map[offset];
1969 		page = lookup_swap_cache(entry, vma, addr);
1970 		if (!page) {
1971 			struct vm_fault vmf = {
1972 				.vma = vma,
1973 				.address = addr,
1974 				.pmd = pmd,
1975 			};
1976 
1977 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1978 						&vmf);
1979 		}
1980 		if (!page) {
1981 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1982 				goto try_next;
1983 			return -ENOMEM;
1984 		}
1985 
1986 		lock_page(page);
1987 		wait_on_page_writeback(page);
1988 		ret = unuse_pte(vma, pmd, addr, entry, page);
1989 		if (ret < 0) {
1990 			unlock_page(page);
1991 			put_page(page);
1992 			goto out;
1993 		}
1994 
1995 		try_to_free_swap(page);
1996 		unlock_page(page);
1997 		put_page(page);
1998 
1999 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2000 			ret = FRONTSWAP_PAGES_UNUSED;
2001 			goto out;
2002 		}
2003 try_next:
2004 		pte = pte_offset_map(pmd, addr);
2005 	} while (pte++, addr += PAGE_SIZE, addr != end);
2006 	pte_unmap(pte - 1);
2007 
2008 	ret = 0;
2009 out:
2010 	return ret;
2011 }
2012 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2013 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2014 				unsigned long addr, unsigned long end,
2015 				unsigned int type, bool frontswap,
2016 				unsigned long *fs_pages_to_unuse)
2017 {
2018 	pmd_t *pmd;
2019 	unsigned long next;
2020 	int ret;
2021 
2022 	pmd = pmd_offset(pud, addr);
2023 	do {
2024 		cond_resched();
2025 		next = pmd_addr_end(addr, end);
2026 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2027 			continue;
2028 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2029 				      frontswap, fs_pages_to_unuse);
2030 		if (ret)
2031 			return ret;
2032 	} while (pmd++, addr = next, addr != end);
2033 	return 0;
2034 }
2035 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2036 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2037 				unsigned long addr, unsigned long end,
2038 				unsigned int type, bool frontswap,
2039 				unsigned long *fs_pages_to_unuse)
2040 {
2041 	pud_t *pud;
2042 	unsigned long next;
2043 	int ret;
2044 
2045 	pud = pud_offset(p4d, addr);
2046 	do {
2047 		next = pud_addr_end(addr, end);
2048 		if (pud_none_or_clear_bad(pud))
2049 			continue;
2050 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2051 				      frontswap, fs_pages_to_unuse);
2052 		if (ret)
2053 			return ret;
2054 	} while (pud++, addr = next, addr != end);
2055 	return 0;
2056 }
2057 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2058 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2059 				unsigned long addr, unsigned long end,
2060 				unsigned int type, bool frontswap,
2061 				unsigned long *fs_pages_to_unuse)
2062 {
2063 	p4d_t *p4d;
2064 	unsigned long next;
2065 	int ret;
2066 
2067 	p4d = p4d_offset(pgd, addr);
2068 	do {
2069 		next = p4d_addr_end(addr, end);
2070 		if (p4d_none_or_clear_bad(p4d))
2071 			continue;
2072 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2073 				      frontswap, fs_pages_to_unuse);
2074 		if (ret)
2075 			return ret;
2076 	} while (p4d++, addr = next, addr != end);
2077 	return 0;
2078 }
2079 
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2080 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2081 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2082 {
2083 	pgd_t *pgd;
2084 	unsigned long addr, end, next;
2085 	int ret;
2086 
2087 	addr = vma->vm_start;
2088 	end = vma->vm_end;
2089 
2090 	pgd = pgd_offset(vma->vm_mm, addr);
2091 	do {
2092 		next = pgd_addr_end(addr, end);
2093 		if (pgd_none_or_clear_bad(pgd))
2094 			continue;
2095 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2096 				      frontswap, fs_pages_to_unuse);
2097 		if (ret)
2098 			return ret;
2099 	} while (pgd++, addr = next, addr != end);
2100 	return 0;
2101 }
2102 
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2103 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2104 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2105 {
2106 	struct vm_area_struct *vma;
2107 	int ret = 0;
2108 
2109 	mmap_read_lock(mm);
2110 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2111 		if (vma->anon_vma) {
2112 			ret = unuse_vma(vma, type, frontswap,
2113 					fs_pages_to_unuse);
2114 			if (ret)
2115 				break;
2116 		}
2117 		cond_resched();
2118 	}
2119 	mmap_read_unlock(mm);
2120 	return ret;
2121 }
2122 
2123 /*
2124  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2125  * from current position to next entry still in use. Return 0
2126  * if there are no inuse entries after prev till end of the map.
2127  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2128 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2129 					unsigned int prev, bool frontswap)
2130 {
2131 	unsigned int i;
2132 	unsigned char count;
2133 
2134 	/*
2135 	 * No need for swap_lock here: we're just looking
2136 	 * for whether an entry is in use, not modifying it; false
2137 	 * hits are okay, and sys_swapoff() has already prevented new
2138 	 * allocations from this area (while holding swap_lock).
2139 	 */
2140 	for (i = prev + 1; i < si->max; i++) {
2141 		count = READ_ONCE(si->swap_map[i]);
2142 		if (count && swap_count(count) != SWAP_MAP_BAD)
2143 			if (!frontswap || frontswap_test(si, i))
2144 				break;
2145 		if ((i % LATENCY_LIMIT) == 0)
2146 			cond_resched();
2147 	}
2148 
2149 	if (i == si->max)
2150 		i = 0;
2151 
2152 	return i;
2153 }
2154 
2155 /*
2156  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2157  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2158  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2159 int try_to_unuse(unsigned int type, bool frontswap,
2160 		 unsigned long pages_to_unuse)
2161 {
2162 	struct mm_struct *prev_mm;
2163 	struct mm_struct *mm;
2164 	struct list_head *p;
2165 	int retval = 0;
2166 	struct swap_info_struct *si = swap_info[type];
2167 	struct page *page;
2168 	swp_entry_t entry;
2169 	unsigned int i;
2170 
2171 	if (!READ_ONCE(si->inuse_pages))
2172 		return 0;
2173 
2174 	if (!frontswap)
2175 		pages_to_unuse = 0;
2176 
2177 retry:
2178 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2179 	if (retval)
2180 		goto out;
2181 
2182 	prev_mm = &init_mm;
2183 	mmget(prev_mm);
2184 
2185 	spin_lock(&mmlist_lock);
2186 	p = &init_mm.mmlist;
2187 	while (READ_ONCE(si->inuse_pages) &&
2188 	       !signal_pending(current) &&
2189 	       (p = p->next) != &init_mm.mmlist) {
2190 
2191 		mm = list_entry(p, struct mm_struct, mmlist);
2192 		if (!mmget_not_zero(mm))
2193 			continue;
2194 		spin_unlock(&mmlist_lock);
2195 		mmput(prev_mm);
2196 		prev_mm = mm;
2197 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2198 
2199 		if (retval) {
2200 			mmput(prev_mm);
2201 			goto out;
2202 		}
2203 
2204 		/*
2205 		 * Make sure that we aren't completely killing
2206 		 * interactive performance.
2207 		 */
2208 		cond_resched();
2209 		spin_lock(&mmlist_lock);
2210 	}
2211 	spin_unlock(&mmlist_lock);
2212 
2213 	mmput(prev_mm);
2214 
2215 	i = 0;
2216 	while (READ_ONCE(si->inuse_pages) &&
2217 	       !signal_pending(current) &&
2218 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2219 
2220 		entry = swp_entry(type, i);
2221 		page = find_get_page(swap_address_space(entry), i);
2222 		if (!page)
2223 			continue;
2224 
2225 		/*
2226 		 * It is conceivable that a racing task removed this page from
2227 		 * swap cache just before we acquired the page lock. The page
2228 		 * might even be back in swap cache on another swap area. But
2229 		 * that is okay, try_to_free_swap() only removes stale pages.
2230 		 */
2231 		lock_page(page);
2232 		wait_on_page_writeback(page);
2233 		try_to_free_swap(page);
2234 		unlock_page(page);
2235 		put_page(page);
2236 
2237 		/*
2238 		 * For frontswap, we just need to unuse pages_to_unuse, if
2239 		 * it was specified. Need not check frontswap again here as
2240 		 * we already zeroed out pages_to_unuse if not frontswap.
2241 		 */
2242 		if (pages_to_unuse && --pages_to_unuse == 0)
2243 			goto out;
2244 	}
2245 
2246 	/*
2247 	 * Lets check again to see if there are still swap entries in the map.
2248 	 * If yes, we would need to do retry the unuse logic again.
2249 	 * Under global memory pressure, swap entries can be reinserted back
2250 	 * into process space after the mmlist loop above passes over them.
2251 	 *
2252 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2253 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2254 	 * at its own independent pace; and even shmem_writepage() could have
2255 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2256 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2257 	 */
2258 	if (READ_ONCE(si->inuse_pages)) {
2259 		if (!signal_pending(current))
2260 			goto retry;
2261 		retval = -EINTR;
2262 	}
2263 out:
2264 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2265 }
2266 
2267 /*
2268  * After a successful try_to_unuse, if no swap is now in use, we know
2269  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2270  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2271  * added to the mmlist just after page_duplicate - before would be racy.
2272  */
drain_mmlist(void)2273 static void drain_mmlist(void)
2274 {
2275 	struct list_head *p, *next;
2276 	unsigned int type;
2277 
2278 	for (type = 0; type < nr_swapfiles; type++)
2279 		if (swap_info[type]->inuse_pages)
2280 			return;
2281 	spin_lock(&mmlist_lock);
2282 	list_for_each_safe(p, next, &init_mm.mmlist)
2283 		list_del_init(p);
2284 	spin_unlock(&mmlist_lock);
2285 }
2286 
2287 /*
2288  * Free all of a swapdev's extent information
2289  */
destroy_swap_extents(struct swap_info_struct * sis)2290 static void destroy_swap_extents(struct swap_info_struct *sis)
2291 {
2292 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2293 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2294 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2295 
2296 		rb_erase(rb, &sis->swap_extent_root);
2297 		kfree(se);
2298 	}
2299 
2300 	if (sis->flags & SWP_ACTIVATED) {
2301 		struct file *swap_file = sis->swap_file;
2302 		struct address_space *mapping = swap_file->f_mapping;
2303 
2304 		sis->flags &= ~SWP_ACTIVATED;
2305 		if (mapping->a_ops->swap_deactivate)
2306 			mapping->a_ops->swap_deactivate(swap_file);
2307 	}
2308 }
2309 
2310 /*
2311  * Add a block range (and the corresponding page range) into this swapdev's
2312  * extent tree.
2313  *
2314  * This function rather assumes that it is called in ascending page order.
2315  */
2316 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2317 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2318 		unsigned long nr_pages, sector_t start_block)
2319 {
2320 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2321 	struct swap_extent *se;
2322 	struct swap_extent *new_se;
2323 
2324 	/*
2325 	 * place the new node at the right most since the
2326 	 * function is called in ascending page order.
2327 	 */
2328 	while (*link) {
2329 		parent = *link;
2330 		link = &parent->rb_right;
2331 	}
2332 
2333 	if (parent) {
2334 		se = rb_entry(parent, struct swap_extent, rb_node);
2335 		BUG_ON(se->start_page + se->nr_pages != start_page);
2336 		if (se->start_block + se->nr_pages == start_block) {
2337 			/* Merge it */
2338 			se->nr_pages += nr_pages;
2339 			return 0;
2340 		}
2341 	}
2342 
2343 	/* No merge, insert a new extent. */
2344 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2345 	if (new_se == NULL)
2346 		return -ENOMEM;
2347 	new_se->start_page = start_page;
2348 	new_se->nr_pages = nr_pages;
2349 	new_se->start_block = start_block;
2350 
2351 	rb_link_node(&new_se->rb_node, parent, link);
2352 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2353 	return 1;
2354 }
2355 EXPORT_SYMBOL_GPL(add_swap_extent);
2356 
2357 /*
2358  * A `swap extent' is a simple thing which maps a contiguous range of pages
2359  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2360  * is built at swapon time and is then used at swap_writepage/swap_readpage
2361  * time for locating where on disk a page belongs.
2362  *
2363  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2364  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2365  * swap files identically.
2366  *
2367  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2368  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2369  * swapfiles are handled *identically* after swapon time.
2370  *
2371  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2372  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2373  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2374  * requirements, they are simply tossed out - we will never use those blocks
2375  * for swapping.
2376  *
2377  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2378  * prevents users from writing to the swap device, which will corrupt memory.
2379  *
2380  * The amount of disk space which a single swap extent represents varies.
2381  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2382  * extents in the list.  To avoid much list walking, we cache the previous
2383  * search location in `curr_swap_extent', and start new searches from there.
2384  * This is extremely effective.  The average number of iterations in
2385  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2386  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2387 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2388 {
2389 	struct file *swap_file = sis->swap_file;
2390 	struct address_space *mapping = swap_file->f_mapping;
2391 	struct inode *inode = mapping->host;
2392 	int ret;
2393 
2394 	if (S_ISBLK(inode->i_mode)) {
2395 		ret = add_swap_extent(sis, 0, sis->max, 0);
2396 		*span = sis->pages;
2397 		return ret;
2398 	}
2399 
2400 	if (mapping->a_ops->swap_activate) {
2401 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2402 		if (ret >= 0)
2403 			sis->flags |= SWP_ACTIVATED;
2404 		if (!ret) {
2405 			sis->flags |= SWP_FS_OPS;
2406 			ret = add_swap_extent(sis, 0, sis->max, 0);
2407 			*span = sis->pages;
2408 		}
2409 		return ret;
2410 	}
2411 
2412 	return generic_swapfile_activate(sis, swap_file, span);
2413 }
2414 
swap_node(struct swap_info_struct * p)2415 static int swap_node(struct swap_info_struct *p)
2416 {
2417 	struct block_device *bdev;
2418 
2419 	if (p->bdev)
2420 		bdev = p->bdev;
2421 	else
2422 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2423 
2424 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2425 }
2426 
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2427 static void setup_swap_info(struct swap_info_struct *p, int prio,
2428 			    unsigned char *swap_map,
2429 			    struct swap_cluster_info *cluster_info)
2430 {
2431 	int i;
2432 
2433 	if (prio >= 0)
2434 		p->prio = prio;
2435 	else
2436 		p->prio = --least_priority;
2437 	/*
2438 	 * the plist prio is negated because plist ordering is
2439 	 * low-to-high, while swap ordering is high-to-low
2440 	 */
2441 	p->list.prio = -p->prio;
2442 	for_each_node(i) {
2443 		if (p->prio >= 0)
2444 			p->avail_lists[i].prio = -p->prio;
2445 		else {
2446 			if (swap_node(p) == i)
2447 				p->avail_lists[i].prio = 1;
2448 			else
2449 				p->avail_lists[i].prio = -p->prio;
2450 		}
2451 	}
2452 	p->swap_map = swap_map;
2453 	p->cluster_info = cluster_info;
2454 }
2455 
_enable_swap_info(struct swap_info_struct * p)2456 static void _enable_swap_info(struct swap_info_struct *p)
2457 {
2458 	p->flags |= SWP_WRITEOK;
2459 	atomic_long_add(p->pages, &nr_swap_pages);
2460 	total_swap_pages += p->pages;
2461 
2462 	assert_spin_locked(&swap_lock);
2463 	/*
2464 	 * both lists are plists, and thus priority ordered.
2465 	 * swap_active_head needs to be priority ordered for swapoff(),
2466 	 * which on removal of any swap_info_struct with an auto-assigned
2467 	 * (i.e. negative) priority increments the auto-assigned priority
2468 	 * of any lower-priority swap_info_structs.
2469 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2470 	 * which allocates swap pages from the highest available priority
2471 	 * swap_info_struct.
2472 	 */
2473 	plist_add(&p->list, &swap_active_head);
2474 	add_to_avail_list(p);
2475 }
2476 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2477 static void enable_swap_info(struct swap_info_struct *p, int prio,
2478 				unsigned char *swap_map,
2479 				struct swap_cluster_info *cluster_info,
2480 				unsigned long *frontswap_map)
2481 {
2482 	frontswap_init(p->type, frontswap_map);
2483 	spin_lock(&swap_lock);
2484 	spin_lock(&p->lock);
2485 	setup_swap_info(p, prio, swap_map, cluster_info);
2486 	spin_unlock(&p->lock);
2487 	spin_unlock(&swap_lock);
2488 	/*
2489 	 * Finished initializing swap device, now it's safe to reference it.
2490 	 */
2491 	percpu_ref_resurrect(&p->users);
2492 	spin_lock(&swap_lock);
2493 	spin_lock(&p->lock);
2494 	_enable_swap_info(p);
2495 	spin_unlock(&p->lock);
2496 	spin_unlock(&swap_lock);
2497 }
2498 
reinsert_swap_info(struct swap_info_struct * p)2499 static void reinsert_swap_info(struct swap_info_struct *p)
2500 {
2501 	spin_lock(&swap_lock);
2502 	spin_lock(&p->lock);
2503 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2504 	_enable_swap_info(p);
2505 	spin_unlock(&p->lock);
2506 	spin_unlock(&swap_lock);
2507 }
2508 
has_usable_swap(void)2509 bool has_usable_swap(void)
2510 {
2511 	bool ret = true;
2512 
2513 	spin_lock(&swap_lock);
2514 	if (plist_head_empty(&swap_active_head))
2515 		ret = false;
2516 	spin_unlock(&swap_lock);
2517 	return ret;
2518 }
2519 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2520 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2521 {
2522 	struct swap_info_struct *p = NULL;
2523 	unsigned char *swap_map;
2524 	struct swap_cluster_info *cluster_info;
2525 	unsigned long *frontswap_map;
2526 	struct file *swap_file, *victim;
2527 	struct address_space *mapping;
2528 	struct inode *inode;
2529 	struct filename *pathname;
2530 	int err, found = 0;
2531 	unsigned int old_block_size;
2532 
2533 	if (!capable(CAP_SYS_ADMIN))
2534 		return -EPERM;
2535 
2536 	BUG_ON(!current->mm);
2537 
2538 	pathname = getname(specialfile);
2539 	if (IS_ERR(pathname))
2540 		return PTR_ERR(pathname);
2541 
2542 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2543 	err = PTR_ERR(victim);
2544 	if (IS_ERR(victim))
2545 		goto out;
2546 
2547 	mapping = victim->f_mapping;
2548 	spin_lock(&swap_lock);
2549 	plist_for_each_entry(p, &swap_active_head, list) {
2550 		if (p->flags & SWP_WRITEOK) {
2551 			if (p->swap_file->f_mapping == mapping) {
2552 				found = 1;
2553 				break;
2554 			}
2555 		}
2556 	}
2557 	if (!found) {
2558 		err = -EINVAL;
2559 		spin_unlock(&swap_lock);
2560 		goto out_dput;
2561 	}
2562 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2563 		vm_unacct_memory(p->pages);
2564 	else {
2565 		err = -ENOMEM;
2566 		spin_unlock(&swap_lock);
2567 		goto out_dput;
2568 	}
2569 	spin_lock(&p->lock);
2570 	del_from_avail_list(p);
2571 	if (p->prio < 0) {
2572 		struct swap_info_struct *si = p;
2573 		int nid;
2574 
2575 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2576 			si->prio++;
2577 			si->list.prio--;
2578 			for_each_node(nid) {
2579 				if (si->avail_lists[nid].prio != 1)
2580 					si->avail_lists[nid].prio--;
2581 			}
2582 		}
2583 		least_priority++;
2584 	}
2585 	plist_del(&p->list, &swap_active_head);
2586 	atomic_long_sub(p->pages, &nr_swap_pages);
2587 	total_swap_pages -= p->pages;
2588 	p->flags &= ~SWP_WRITEOK;
2589 	spin_unlock(&p->lock);
2590 	spin_unlock(&swap_lock);
2591 
2592 	disable_swap_slots_cache_lock();
2593 
2594 	set_current_oom_origin();
2595 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2596 	clear_current_oom_origin();
2597 
2598 	if (err) {
2599 		/* re-insert swap space back into swap_list */
2600 		reinsert_swap_info(p);
2601 		reenable_swap_slots_cache_unlock();
2602 		goto out_dput;
2603 	}
2604 
2605 	reenable_swap_slots_cache_unlock();
2606 
2607 	/*
2608 	 * Wait for swap operations protected by get/put_swap_device()
2609 	 * to complete.
2610 	 *
2611 	 * We need synchronize_rcu() here to protect the accessing to
2612 	 * the swap cache data structure.
2613 	 */
2614 	percpu_ref_kill(&p->users);
2615 	synchronize_rcu();
2616 	wait_for_completion(&p->comp);
2617 
2618 	flush_work(&p->discard_work);
2619 
2620 	destroy_swap_extents(p);
2621 	if (p->flags & SWP_CONTINUED)
2622 		free_swap_count_continuations(p);
2623 
2624 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2625 		atomic_dec(&nr_rotate_swap);
2626 
2627 	mutex_lock(&swapon_mutex);
2628 	spin_lock(&swap_lock);
2629 	spin_lock(&p->lock);
2630 	drain_mmlist();
2631 
2632 	/* wait for anyone still in scan_swap_map_slots */
2633 	p->highest_bit = 0;		/* cuts scans short */
2634 	while (p->flags >= SWP_SCANNING) {
2635 		spin_unlock(&p->lock);
2636 		spin_unlock(&swap_lock);
2637 		schedule_timeout_uninterruptible(1);
2638 		spin_lock(&swap_lock);
2639 		spin_lock(&p->lock);
2640 	}
2641 
2642 	swap_file = p->swap_file;
2643 	old_block_size = p->old_block_size;
2644 	p->swap_file = NULL;
2645 	p->max = 0;
2646 	swap_map = p->swap_map;
2647 	p->swap_map = NULL;
2648 	cluster_info = p->cluster_info;
2649 	p->cluster_info = NULL;
2650 	frontswap_map = frontswap_map_get(p);
2651 	spin_unlock(&p->lock);
2652 	spin_unlock(&swap_lock);
2653 	arch_swap_invalidate_area(p->type);
2654 	frontswap_invalidate_area(p->type);
2655 	frontswap_map_set(p, NULL);
2656 	mutex_unlock(&swapon_mutex);
2657 	free_percpu(p->percpu_cluster);
2658 	p->percpu_cluster = NULL;
2659 	free_percpu(p->cluster_next_cpu);
2660 	p->cluster_next_cpu = NULL;
2661 	vfree(swap_map);
2662 	kvfree(cluster_info);
2663 	kvfree(frontswap_map);
2664 	/* Destroy swap account information */
2665 	swap_cgroup_swapoff(p->type);
2666 	exit_swap_address_space(p->type);
2667 
2668 	inode = mapping->host;
2669 	if (S_ISBLK(inode->i_mode)) {
2670 		struct block_device *bdev = I_BDEV(inode);
2671 
2672 		set_blocksize(bdev, old_block_size);
2673 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2674 	}
2675 
2676 	inode_lock(inode);
2677 	inode->i_flags &= ~S_SWAPFILE;
2678 	inode_unlock(inode);
2679 	filp_close(swap_file, NULL);
2680 
2681 	/*
2682 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2683 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2684 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2685 	 */
2686 	spin_lock(&swap_lock);
2687 	p->flags = 0;
2688 	spin_unlock(&swap_lock);
2689 
2690 	err = 0;
2691 	atomic_inc(&proc_poll_event);
2692 	wake_up_interruptible(&proc_poll_wait);
2693 
2694 out_dput:
2695 	filp_close(victim, NULL);
2696 out:
2697 	putname(pathname);
2698 	return err;
2699 }
2700 
2701 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2702 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2703 {
2704 	struct seq_file *seq = file->private_data;
2705 
2706 	poll_wait(file, &proc_poll_wait, wait);
2707 
2708 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2709 		seq->poll_event = atomic_read(&proc_poll_event);
2710 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2711 	}
2712 
2713 	return EPOLLIN | EPOLLRDNORM;
2714 }
2715 
2716 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2717 static void *swap_start(struct seq_file *swap, loff_t *pos)
2718 {
2719 	struct swap_info_struct *si;
2720 	int type;
2721 	loff_t l = *pos;
2722 
2723 	mutex_lock(&swapon_mutex);
2724 
2725 	if (!l)
2726 		return SEQ_START_TOKEN;
2727 
2728 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2729 		if (!(si->flags & SWP_USED) || !si->swap_map)
2730 			continue;
2731 		if (!--l)
2732 			return si;
2733 	}
2734 
2735 	return NULL;
2736 }
2737 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2738 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739 {
2740 	struct swap_info_struct *si = v;
2741 	int type;
2742 
2743 	if (v == SEQ_START_TOKEN)
2744 		type = 0;
2745 	else
2746 		type = si->type + 1;
2747 
2748 	++(*pos);
2749 	for (; (si = swap_type_to_swap_info(type)); type++) {
2750 		if (!(si->flags & SWP_USED) || !si->swap_map)
2751 			continue;
2752 		return si;
2753 	}
2754 
2755 	return NULL;
2756 }
2757 
swap_stop(struct seq_file * swap,void * v)2758 static void swap_stop(struct seq_file *swap, void *v)
2759 {
2760 	mutex_unlock(&swapon_mutex);
2761 }
2762 
swap_show(struct seq_file * swap,void * v)2763 static int swap_show(struct seq_file *swap, void *v)
2764 {
2765 	struct swap_info_struct *si = v;
2766 	struct file *file;
2767 	int len;
2768 	unsigned int bytes, inuse;
2769 
2770 	if (si == SEQ_START_TOKEN) {
2771 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2772 		return 0;
2773 	}
2774 
2775 	bytes = si->pages << (PAGE_SHIFT - 10);
2776 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2777 
2778 	file = si->swap_file;
2779 	len = seq_file_path(swap, file, " \t\n\\");
2780 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2781 			len < 40 ? 40 - len : 1, " ",
2782 			S_ISBLK(file_inode(file)->i_mode) ?
2783 				"partition" : "file\t",
2784 			bytes, bytes < 10000000 ? "\t" : "",
2785 			inuse, inuse < 10000000 ? "\t" : "",
2786 			si->prio);
2787 	return 0;
2788 }
2789 
2790 static const struct seq_operations swaps_op = {
2791 	.start =	swap_start,
2792 	.next =		swap_next,
2793 	.stop =		swap_stop,
2794 	.show =		swap_show
2795 };
2796 
swaps_open(struct inode * inode,struct file * file)2797 static int swaps_open(struct inode *inode, struct file *file)
2798 {
2799 	struct seq_file *seq;
2800 	int ret;
2801 
2802 	ret = seq_open(file, &swaps_op);
2803 	if (ret)
2804 		return ret;
2805 
2806 	seq = file->private_data;
2807 	seq->poll_event = atomic_read(&proc_poll_event);
2808 	return 0;
2809 }
2810 
2811 static const struct proc_ops swaps_proc_ops = {
2812 	.proc_flags	= PROC_ENTRY_PERMANENT,
2813 	.proc_open	= swaps_open,
2814 	.proc_read	= seq_read,
2815 	.proc_lseek	= seq_lseek,
2816 	.proc_release	= seq_release,
2817 	.proc_poll	= swaps_poll,
2818 };
2819 
procswaps_init(void)2820 static int __init procswaps_init(void)
2821 {
2822 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2823 	return 0;
2824 }
2825 __initcall(procswaps_init);
2826 #endif /* CONFIG_PROC_FS */
2827 
2828 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2829 static int __init max_swapfiles_check(void)
2830 {
2831 	MAX_SWAPFILES_CHECK();
2832 	return 0;
2833 }
2834 late_initcall(max_swapfiles_check);
2835 #endif
2836 
alloc_swap_info(void)2837 static struct swap_info_struct *alloc_swap_info(void)
2838 {
2839 	struct swap_info_struct *p;
2840 	struct swap_info_struct *defer = NULL;
2841 	unsigned int type;
2842 	int i;
2843 
2844 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2845 	if (!p)
2846 		return ERR_PTR(-ENOMEM);
2847 
2848 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2849 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2850 		kvfree(p);
2851 		return ERR_PTR(-ENOMEM);
2852 	}
2853 
2854 	spin_lock(&swap_lock);
2855 	for (type = 0; type < nr_swapfiles; type++) {
2856 		if (!(swap_info[type]->flags & SWP_USED))
2857 			break;
2858 	}
2859 	if (type >= MAX_SWAPFILES) {
2860 		spin_unlock(&swap_lock);
2861 		percpu_ref_exit(&p->users);
2862 		kvfree(p);
2863 		return ERR_PTR(-EPERM);
2864 	}
2865 	if (type >= nr_swapfiles) {
2866 		p->type = type;
2867 		/*
2868 		 * Publish the swap_info_struct after initializing it.
2869 		 * Note that kvzalloc() above zeroes all its fields.
2870 		 */
2871 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2872 		nr_swapfiles++;
2873 	} else {
2874 		defer = p;
2875 		p = swap_info[type];
2876 		/*
2877 		 * Do not memset this entry: a racing procfs swap_next()
2878 		 * would be relying on p->type to remain valid.
2879 		 */
2880 	}
2881 	p->swap_extent_root = RB_ROOT;
2882 	plist_node_init(&p->list, 0);
2883 	for_each_node(i)
2884 		plist_node_init(&p->avail_lists[i], 0);
2885 	p->flags = SWP_USED;
2886 	spin_unlock(&swap_lock);
2887 	if (defer) {
2888 		percpu_ref_exit(&defer->users);
2889 		kvfree(defer);
2890 	}
2891 	spin_lock_init(&p->lock);
2892 	spin_lock_init(&p->cont_lock);
2893 	init_completion(&p->comp);
2894 
2895 	return p;
2896 }
2897 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2898 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2899 {
2900 	int error;
2901 
2902 	if (S_ISBLK(inode->i_mode)) {
2903 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2904 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2905 		if (IS_ERR(p->bdev)) {
2906 			error = PTR_ERR(p->bdev);
2907 			p->bdev = NULL;
2908 			return error;
2909 		}
2910 		p->old_block_size = block_size(p->bdev);
2911 		error = set_blocksize(p->bdev, PAGE_SIZE);
2912 		if (error < 0)
2913 			return error;
2914 		/*
2915 		 * Zoned block devices contain zones that have a sequential
2916 		 * write only restriction.  Hence zoned block devices are not
2917 		 * suitable for swapping.  Disallow them here.
2918 		 */
2919 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2920 			return -EINVAL;
2921 		p->flags |= SWP_BLKDEV;
2922 	} else if (S_ISREG(inode->i_mode)) {
2923 		p->bdev = inode->i_sb->s_bdev;
2924 	}
2925 
2926 	return 0;
2927 }
2928 
2929 
2930 /*
2931  * Find out how many pages are allowed for a single swap device. There
2932  * are two limiting factors:
2933  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2934  * 2) the number of bits in the swap pte, as defined by the different
2935  * architectures.
2936  *
2937  * In order to find the largest possible bit mask, a swap entry with
2938  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2939  * decoded to a swp_entry_t again, and finally the swap offset is
2940  * extracted.
2941  *
2942  * This will mask all the bits from the initial ~0UL mask that can't
2943  * be encoded in either the swp_entry_t or the architecture definition
2944  * of a swap pte.
2945  */
generic_max_swapfile_size(void)2946 unsigned long generic_max_swapfile_size(void)
2947 {
2948 	return swp_offset(pte_to_swp_entry(
2949 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2950 }
2951 
2952 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2953 __weak unsigned long max_swapfile_size(void)
2954 {
2955 	return generic_max_swapfile_size();
2956 }
2957 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2958 static unsigned long read_swap_header(struct swap_info_struct *p,
2959 					union swap_header *swap_header,
2960 					struct inode *inode)
2961 {
2962 	int i;
2963 	unsigned long maxpages;
2964 	unsigned long swapfilepages;
2965 	unsigned long last_page;
2966 
2967 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2968 		pr_err("Unable to find swap-space signature\n");
2969 		return 0;
2970 	}
2971 
2972 	/* swap partition endianness hack... */
2973 	if (swab32(swap_header->info.version) == 1) {
2974 		swab32s(&swap_header->info.version);
2975 		swab32s(&swap_header->info.last_page);
2976 		swab32s(&swap_header->info.nr_badpages);
2977 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2978 			return 0;
2979 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2980 			swab32s(&swap_header->info.badpages[i]);
2981 	}
2982 	/* Check the swap header's sub-version */
2983 	if (swap_header->info.version != 1) {
2984 		pr_warn("Unable to handle swap header version %d\n",
2985 			swap_header->info.version);
2986 		return 0;
2987 	}
2988 
2989 	p->lowest_bit  = 1;
2990 	p->cluster_next = 1;
2991 	p->cluster_nr = 0;
2992 
2993 	maxpages = max_swapfile_size();
2994 	last_page = swap_header->info.last_page;
2995 	if (!last_page) {
2996 		pr_warn("Empty swap-file\n");
2997 		return 0;
2998 	}
2999 	if (last_page > maxpages) {
3000 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3001 			maxpages << (PAGE_SHIFT - 10),
3002 			last_page << (PAGE_SHIFT - 10));
3003 	}
3004 	if (maxpages > last_page) {
3005 		maxpages = last_page + 1;
3006 		/* p->max is an unsigned int: don't overflow it */
3007 		if ((unsigned int)maxpages == 0)
3008 			maxpages = UINT_MAX;
3009 	}
3010 	p->highest_bit = maxpages - 1;
3011 
3012 	if (!maxpages)
3013 		return 0;
3014 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3015 	if (swapfilepages && maxpages > swapfilepages) {
3016 		pr_warn("Swap area shorter than signature indicates\n");
3017 		return 0;
3018 	}
3019 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3020 		return 0;
3021 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3022 		return 0;
3023 
3024 	return maxpages;
3025 }
3026 
3027 #define SWAP_CLUSTER_INFO_COLS						\
3028 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3029 #define SWAP_CLUSTER_SPACE_COLS						\
3030 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3031 #define SWAP_CLUSTER_COLS						\
3032 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3033 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3034 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3035 					union swap_header *swap_header,
3036 					unsigned char *swap_map,
3037 					struct swap_cluster_info *cluster_info,
3038 					unsigned long maxpages,
3039 					sector_t *span)
3040 {
3041 	unsigned int j, k;
3042 	unsigned int nr_good_pages;
3043 	int nr_extents;
3044 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3045 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3046 	unsigned long i, idx;
3047 
3048 	nr_good_pages = maxpages - 1;	/* omit header page */
3049 
3050 	cluster_list_init(&p->free_clusters);
3051 	cluster_list_init(&p->discard_clusters);
3052 
3053 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3054 		unsigned int page_nr = swap_header->info.badpages[i];
3055 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3056 			return -EINVAL;
3057 		if (page_nr < maxpages) {
3058 			swap_map[page_nr] = SWAP_MAP_BAD;
3059 			nr_good_pages--;
3060 			/*
3061 			 * Haven't marked the cluster free yet, no list
3062 			 * operation involved
3063 			 */
3064 			inc_cluster_info_page(p, cluster_info, page_nr);
3065 		}
3066 	}
3067 
3068 	/* Haven't marked the cluster free yet, no list operation involved */
3069 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3070 		inc_cluster_info_page(p, cluster_info, i);
3071 
3072 	if (nr_good_pages) {
3073 		swap_map[0] = SWAP_MAP_BAD;
3074 		/*
3075 		 * Not mark the cluster free yet, no list
3076 		 * operation involved
3077 		 */
3078 		inc_cluster_info_page(p, cluster_info, 0);
3079 		p->max = maxpages;
3080 		p->pages = nr_good_pages;
3081 		nr_extents = setup_swap_extents(p, span);
3082 		if (nr_extents < 0)
3083 			return nr_extents;
3084 		nr_good_pages = p->pages;
3085 	}
3086 	if (!nr_good_pages) {
3087 		pr_warn("Empty swap-file\n");
3088 		return -EINVAL;
3089 	}
3090 
3091 	if (!cluster_info)
3092 		return nr_extents;
3093 
3094 
3095 	/*
3096 	 * Reduce false cache line sharing between cluster_info and
3097 	 * sharing same address space.
3098 	 */
3099 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3100 		j = (k + col) % SWAP_CLUSTER_COLS;
3101 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3102 			idx = i * SWAP_CLUSTER_COLS + j;
3103 			if (idx >= nr_clusters)
3104 				continue;
3105 			if (cluster_count(&cluster_info[idx]))
3106 				continue;
3107 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3108 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3109 					      idx);
3110 		}
3111 	}
3112 	return nr_extents;
3113 }
3114 
3115 /*
3116  * Helper to sys_swapon determining if a given swap
3117  * backing device queue supports DISCARD operations.
3118  */
swap_discardable(struct swap_info_struct * si)3119 static bool swap_discardable(struct swap_info_struct *si)
3120 {
3121 	struct request_queue *q = bdev_get_queue(si->bdev);
3122 
3123 	if (!q || !blk_queue_discard(q))
3124 		return false;
3125 
3126 	return true;
3127 }
3128 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3129 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3130 {
3131 	struct swap_info_struct *p;
3132 	struct filename *name;
3133 	struct file *swap_file = NULL;
3134 	struct address_space *mapping;
3135 	struct dentry *dentry;
3136 	int prio;
3137 	int error;
3138 	union swap_header *swap_header;
3139 	int nr_extents;
3140 	sector_t span;
3141 	unsigned long maxpages;
3142 	unsigned char *swap_map = NULL;
3143 	struct swap_cluster_info *cluster_info = NULL;
3144 	unsigned long *frontswap_map = NULL;
3145 	struct page *page = NULL;
3146 	struct inode *inode = NULL;
3147 	bool inced_nr_rotate_swap = false;
3148 
3149 	if (swap_flags & ~SWAP_FLAGS_VALID)
3150 		return -EINVAL;
3151 
3152 	if (!capable(CAP_SYS_ADMIN))
3153 		return -EPERM;
3154 
3155 	if (!swap_avail_heads)
3156 		return -ENOMEM;
3157 
3158 	p = alloc_swap_info();
3159 	if (IS_ERR(p))
3160 		return PTR_ERR(p);
3161 
3162 	INIT_WORK(&p->discard_work, swap_discard_work);
3163 
3164 	name = getname(specialfile);
3165 	if (IS_ERR(name)) {
3166 		error = PTR_ERR(name);
3167 		name = NULL;
3168 		goto bad_swap;
3169 	}
3170 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3171 	if (IS_ERR(swap_file)) {
3172 		error = PTR_ERR(swap_file);
3173 		swap_file = NULL;
3174 		goto bad_swap;
3175 	}
3176 
3177 	p->swap_file = swap_file;
3178 	mapping = swap_file->f_mapping;
3179 	dentry = swap_file->f_path.dentry;
3180 	inode = mapping->host;
3181 
3182 	error = claim_swapfile(p, inode);
3183 	if (unlikely(error))
3184 		goto bad_swap;
3185 
3186 	inode_lock(inode);
3187 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3188 		error = -ENOENT;
3189 		goto bad_swap_unlock_inode;
3190 	}
3191 	if (IS_SWAPFILE(inode)) {
3192 		error = -EBUSY;
3193 		goto bad_swap_unlock_inode;
3194 	}
3195 
3196 	/*
3197 	 * Read the swap header.
3198 	 */
3199 	if (!mapping->a_ops->readpage) {
3200 		error = -EINVAL;
3201 		goto bad_swap_unlock_inode;
3202 	}
3203 	page = read_mapping_page(mapping, 0, swap_file);
3204 	if (IS_ERR(page)) {
3205 		error = PTR_ERR(page);
3206 		goto bad_swap_unlock_inode;
3207 	}
3208 	swap_header = kmap(page);
3209 
3210 	maxpages = read_swap_header(p, swap_header, inode);
3211 	if (unlikely(!maxpages)) {
3212 		error = -EINVAL;
3213 		goto bad_swap_unlock_inode;
3214 	}
3215 
3216 	/* OK, set up the swap map and apply the bad block list */
3217 	swap_map = vzalloc(maxpages);
3218 	if (!swap_map) {
3219 		error = -ENOMEM;
3220 		goto bad_swap_unlock_inode;
3221 	}
3222 
3223 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3224 		p->flags |= SWP_STABLE_WRITES;
3225 
3226 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3227 		p->flags |= SWP_SYNCHRONOUS_IO;
3228 
3229 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3230 		int cpu;
3231 		unsigned long ci, nr_cluster;
3232 
3233 		p->flags |= SWP_SOLIDSTATE;
3234 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3235 		if (!p->cluster_next_cpu) {
3236 			error = -ENOMEM;
3237 			goto bad_swap_unlock_inode;
3238 		}
3239 		/*
3240 		 * select a random position to start with to help wear leveling
3241 		 * SSD
3242 		 */
3243 		for_each_possible_cpu(cpu) {
3244 			per_cpu(*p->cluster_next_cpu, cpu) =
3245 				1 + prandom_u32_max(p->highest_bit);
3246 		}
3247 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3248 
3249 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3250 					GFP_KERNEL);
3251 		if (!cluster_info) {
3252 			error = -ENOMEM;
3253 			goto bad_swap_unlock_inode;
3254 		}
3255 
3256 		for (ci = 0; ci < nr_cluster; ci++)
3257 			spin_lock_init(&((cluster_info + ci)->lock));
3258 
3259 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3260 		if (!p->percpu_cluster) {
3261 			error = -ENOMEM;
3262 			goto bad_swap_unlock_inode;
3263 		}
3264 		for_each_possible_cpu(cpu) {
3265 			struct percpu_cluster *cluster;
3266 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3267 			cluster_set_null(&cluster->index);
3268 		}
3269 	} else {
3270 		atomic_inc(&nr_rotate_swap);
3271 		inced_nr_rotate_swap = true;
3272 	}
3273 
3274 	error = swap_cgroup_swapon(p->type, maxpages);
3275 	if (error)
3276 		goto bad_swap_unlock_inode;
3277 
3278 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3279 		cluster_info, maxpages, &span);
3280 	if (unlikely(nr_extents < 0)) {
3281 		error = nr_extents;
3282 		goto bad_swap_unlock_inode;
3283 	}
3284 	/* frontswap enabled? set up bit-per-page map for frontswap */
3285 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3286 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3287 					 sizeof(long),
3288 					 GFP_KERNEL);
3289 
3290 	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3291 		/*
3292 		 * When discard is enabled for swap with no particular
3293 		 * policy flagged, we set all swap discard flags here in
3294 		 * order to sustain backward compatibility with older
3295 		 * swapon(8) releases.
3296 		 */
3297 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3298 			     SWP_PAGE_DISCARD);
3299 
3300 		/*
3301 		 * By flagging sys_swapon, a sysadmin can tell us to
3302 		 * either do single-time area discards only, or to just
3303 		 * perform discards for released swap page-clusters.
3304 		 * Now it's time to adjust the p->flags accordingly.
3305 		 */
3306 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3307 			p->flags &= ~SWP_PAGE_DISCARD;
3308 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3309 			p->flags &= ~SWP_AREA_DISCARD;
3310 
3311 		/* issue a swapon-time discard if it's still required */
3312 		if (p->flags & SWP_AREA_DISCARD) {
3313 			int err = discard_swap(p);
3314 			if (unlikely(err))
3315 				pr_err("swapon: discard_swap(%p): %d\n",
3316 					p, err);
3317 		}
3318 	}
3319 
3320 	error = init_swap_address_space(p->type, maxpages);
3321 	if (error)
3322 		goto bad_swap_unlock_inode;
3323 
3324 	/*
3325 	 * Flush any pending IO and dirty mappings before we start using this
3326 	 * swap device.
3327 	 */
3328 	inode->i_flags |= S_SWAPFILE;
3329 	error = inode_drain_writes(inode);
3330 	if (error) {
3331 		inode->i_flags &= ~S_SWAPFILE;
3332 		goto free_swap_address_space;
3333 	}
3334 
3335 	mutex_lock(&swapon_mutex);
3336 	prio = -1;
3337 	if (swap_flags & SWAP_FLAG_PREFER)
3338 		prio =
3339 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3340 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3341 
3342 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3343 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3344 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3345 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3346 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3347 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3348 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3349 		(frontswap_map) ? "FS" : "");
3350 
3351 	mutex_unlock(&swapon_mutex);
3352 	atomic_inc(&proc_poll_event);
3353 	wake_up_interruptible(&proc_poll_wait);
3354 
3355 	error = 0;
3356 	goto out;
3357 free_swap_address_space:
3358 	exit_swap_address_space(p->type);
3359 bad_swap_unlock_inode:
3360 	inode_unlock(inode);
3361 bad_swap:
3362 	free_percpu(p->percpu_cluster);
3363 	p->percpu_cluster = NULL;
3364 	free_percpu(p->cluster_next_cpu);
3365 	p->cluster_next_cpu = NULL;
3366 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3367 		set_blocksize(p->bdev, p->old_block_size);
3368 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3369 	}
3370 	inode = NULL;
3371 	destroy_swap_extents(p);
3372 	swap_cgroup_swapoff(p->type);
3373 	spin_lock(&swap_lock);
3374 	p->swap_file = NULL;
3375 	p->flags = 0;
3376 	spin_unlock(&swap_lock);
3377 	vfree(swap_map);
3378 	kvfree(cluster_info);
3379 	kvfree(frontswap_map);
3380 	if (inced_nr_rotate_swap)
3381 		atomic_dec(&nr_rotate_swap);
3382 	if (swap_file)
3383 		filp_close(swap_file, NULL);
3384 out:
3385 	if (page && !IS_ERR(page)) {
3386 		kunmap(page);
3387 		put_page(page);
3388 	}
3389 	if (name)
3390 		putname(name);
3391 	if (inode)
3392 		inode_unlock(inode);
3393 	if (!error)
3394 		enable_swap_slots_cache();
3395 	return error;
3396 }
3397 
si_swapinfo(struct sysinfo * val)3398 void si_swapinfo(struct sysinfo *val)
3399 {
3400 	unsigned int type;
3401 	unsigned long nr_to_be_unused = 0;
3402 
3403 	spin_lock(&swap_lock);
3404 	for (type = 0; type < nr_swapfiles; type++) {
3405 		struct swap_info_struct *si = swap_info[type];
3406 
3407 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3408 			nr_to_be_unused += si->inuse_pages;
3409 	}
3410 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3411 	val->totalswap = total_swap_pages + nr_to_be_unused;
3412 	spin_unlock(&swap_lock);
3413 }
3414 EXPORT_SYMBOL_NS_GPL(si_swapinfo, MINIDUMP);
3415 
3416 /*
3417  * Verify that a swap entry is valid and increment its swap map count.
3418  *
3419  * Returns error code in following case.
3420  * - success -> 0
3421  * - swp_entry is invalid -> EINVAL
3422  * - swp_entry is migration entry -> EINVAL
3423  * - swap-cache reference is requested but there is already one. -> EEXIST
3424  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3425  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3426  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3427 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3428 {
3429 	struct swap_info_struct *p;
3430 	struct swap_cluster_info *ci;
3431 	unsigned long offset;
3432 	unsigned char count;
3433 	unsigned char has_cache;
3434 	int err;
3435 
3436 	p = get_swap_device(entry);
3437 	if (!p)
3438 		return -EINVAL;
3439 
3440 	offset = swp_offset(entry);
3441 	ci = lock_cluster_or_swap_info(p, offset);
3442 
3443 	count = p->swap_map[offset];
3444 
3445 	/*
3446 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3447 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3448 	 */
3449 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3450 		err = -ENOENT;
3451 		goto unlock_out;
3452 	}
3453 
3454 	has_cache = count & SWAP_HAS_CACHE;
3455 	count &= ~SWAP_HAS_CACHE;
3456 	err = 0;
3457 
3458 	if (usage == SWAP_HAS_CACHE) {
3459 
3460 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3461 		if (!has_cache && count)
3462 			has_cache = SWAP_HAS_CACHE;
3463 		else if (has_cache)		/* someone else added cache */
3464 			err = -EEXIST;
3465 		else				/* no users remaining */
3466 			err = -ENOENT;
3467 
3468 	} else if (count || has_cache) {
3469 
3470 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3471 			count += usage;
3472 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3473 			err = -EINVAL;
3474 		else if (swap_count_continued(p, offset, count))
3475 			count = COUNT_CONTINUED;
3476 		else
3477 			err = -ENOMEM;
3478 	} else
3479 		err = -ENOENT;			/* unused swap entry */
3480 
3481 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3482 
3483 unlock_out:
3484 	unlock_cluster_or_swap_info(p, ci);
3485 	if (p)
3486 		put_swap_device(p);
3487 	return err;
3488 }
3489 
3490 /*
3491  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3492  * (in which case its reference count is never incremented).
3493  */
swap_shmem_alloc(swp_entry_t entry)3494 void swap_shmem_alloc(swp_entry_t entry)
3495 {
3496 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3497 }
3498 
3499 /*
3500  * Increase reference count of swap entry by 1.
3501  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3502  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3503  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3504  * might occur if a page table entry has got corrupted.
3505  */
swap_duplicate(swp_entry_t entry)3506 int swap_duplicate(swp_entry_t entry)
3507 {
3508 	int err = 0;
3509 
3510 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3511 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3512 	return err;
3513 }
3514 
3515 /*
3516  * @entry: swap entry for which we allocate swap cache.
3517  *
3518  * Called when allocating swap cache for existing swap entry,
3519  * This can return error codes. Returns 0 at success.
3520  * -EEXIST means there is a swap cache.
3521  * Note: return code is different from swap_duplicate().
3522  */
swapcache_prepare(swp_entry_t entry)3523 int swapcache_prepare(swp_entry_t entry)
3524 {
3525 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3526 }
3527 
swp_swap_info(swp_entry_t entry)3528 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3529 {
3530 	return swap_type_to_swap_info(swp_type(entry));
3531 }
3532 
page_swap_info(struct page * page)3533 struct swap_info_struct *page_swap_info(struct page *page)
3534 {
3535 	swp_entry_t entry = { .val = page_private(page) };
3536 	return swp_swap_info(entry);
3537 }
3538 
3539 /*
3540  * out-of-line __page_file_ methods to avoid include hell.
3541  */
__page_file_mapping(struct page * page)3542 struct address_space *__page_file_mapping(struct page *page)
3543 {
3544 	return page_swap_info(page)->swap_file->f_mapping;
3545 }
3546 EXPORT_SYMBOL_GPL(__page_file_mapping);
3547 
__page_file_index(struct page * page)3548 pgoff_t __page_file_index(struct page *page)
3549 {
3550 	swp_entry_t swap = { .val = page_private(page) };
3551 	return swp_offset(swap);
3552 }
3553 EXPORT_SYMBOL_GPL(__page_file_index);
3554 
3555 /*
3556  * add_swap_count_continuation - called when a swap count is duplicated
3557  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3558  * page of the original vmalloc'ed swap_map, to hold the continuation count
3559  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3560  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3561  *
3562  * These continuation pages are seldom referenced: the common paths all work
3563  * on the original swap_map, only referring to a continuation page when the
3564  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3565  *
3566  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3567  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3568  * can be called after dropping locks.
3569  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3570 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3571 {
3572 	struct swap_info_struct *si;
3573 	struct swap_cluster_info *ci;
3574 	struct page *head;
3575 	struct page *page;
3576 	struct page *list_page;
3577 	pgoff_t offset;
3578 	unsigned char count;
3579 	int ret = 0;
3580 
3581 	/*
3582 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3583 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3584 	 */
3585 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3586 
3587 	si = get_swap_device(entry);
3588 	if (!si) {
3589 		/*
3590 		 * An acceptable race has occurred since the failing
3591 		 * __swap_duplicate(): the swap device may be swapoff
3592 		 */
3593 		goto outer;
3594 	}
3595 	spin_lock(&si->lock);
3596 
3597 	offset = swp_offset(entry);
3598 
3599 	ci = lock_cluster(si, offset);
3600 
3601 	count = swap_count(si->swap_map[offset]);
3602 
3603 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3604 		/*
3605 		 * The higher the swap count, the more likely it is that tasks
3606 		 * will race to add swap count continuation: we need to avoid
3607 		 * over-provisioning.
3608 		 */
3609 		goto out;
3610 	}
3611 
3612 	if (!page) {
3613 		ret = -ENOMEM;
3614 		goto out;
3615 	}
3616 
3617 	/*
3618 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3619 	 * no architecture is using highmem pages for kernel page tables: so it
3620 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3621 	 */
3622 	head = vmalloc_to_page(si->swap_map + offset);
3623 	offset &= ~PAGE_MASK;
3624 
3625 	spin_lock(&si->cont_lock);
3626 	/*
3627 	 * Page allocation does not initialize the page's lru field,
3628 	 * but it does always reset its private field.
3629 	 */
3630 	if (!page_private(head)) {
3631 		BUG_ON(count & COUNT_CONTINUED);
3632 		INIT_LIST_HEAD(&head->lru);
3633 		set_page_private(head, SWP_CONTINUED);
3634 		si->flags |= SWP_CONTINUED;
3635 	}
3636 
3637 	list_for_each_entry(list_page, &head->lru, lru) {
3638 		unsigned char *map;
3639 
3640 		/*
3641 		 * If the previous map said no continuation, but we've found
3642 		 * a continuation page, free our allocation and use this one.
3643 		 */
3644 		if (!(count & COUNT_CONTINUED))
3645 			goto out_unlock_cont;
3646 
3647 		map = kmap_atomic(list_page) + offset;
3648 		count = *map;
3649 		kunmap_atomic(map);
3650 
3651 		/*
3652 		 * If this continuation count now has some space in it,
3653 		 * free our allocation and use this one.
3654 		 */
3655 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3656 			goto out_unlock_cont;
3657 	}
3658 
3659 	list_add_tail(&page->lru, &head->lru);
3660 	page = NULL;			/* now it's attached, don't free it */
3661 out_unlock_cont:
3662 	spin_unlock(&si->cont_lock);
3663 out:
3664 	unlock_cluster(ci);
3665 	spin_unlock(&si->lock);
3666 	put_swap_device(si);
3667 outer:
3668 	if (page)
3669 		__free_page(page);
3670 	return ret;
3671 }
3672 
3673 /*
3674  * swap_count_continued - when the original swap_map count is incremented
3675  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3676  * into, carry if so, or else fail until a new continuation page is allocated;
3677  * when the original swap_map count is decremented from 0 with continuation,
3678  * borrow from the continuation and report whether it still holds more.
3679  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3680  * lock.
3681  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3682 static bool swap_count_continued(struct swap_info_struct *si,
3683 				 pgoff_t offset, unsigned char count)
3684 {
3685 	struct page *head;
3686 	struct page *page;
3687 	unsigned char *map;
3688 	bool ret;
3689 
3690 	head = vmalloc_to_page(si->swap_map + offset);
3691 	if (page_private(head) != SWP_CONTINUED) {
3692 		BUG_ON(count & COUNT_CONTINUED);
3693 		return false;		/* need to add count continuation */
3694 	}
3695 
3696 	spin_lock(&si->cont_lock);
3697 	offset &= ~PAGE_MASK;
3698 	page = list_next_entry(head, lru);
3699 	map = kmap_atomic(page) + offset;
3700 
3701 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3702 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3703 
3704 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3705 		/*
3706 		 * Think of how you add 1 to 999
3707 		 */
3708 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3709 			kunmap_atomic(map);
3710 			page = list_next_entry(page, lru);
3711 			BUG_ON(page == head);
3712 			map = kmap_atomic(page) + offset;
3713 		}
3714 		if (*map == SWAP_CONT_MAX) {
3715 			kunmap_atomic(map);
3716 			page = list_next_entry(page, lru);
3717 			if (page == head) {
3718 				ret = false;	/* add count continuation */
3719 				goto out;
3720 			}
3721 			map = kmap_atomic(page) + offset;
3722 init_map:		*map = 0;		/* we didn't zero the page */
3723 		}
3724 		*map += 1;
3725 		kunmap_atomic(map);
3726 		while ((page = list_prev_entry(page, lru)) != head) {
3727 			map = kmap_atomic(page) + offset;
3728 			*map = COUNT_CONTINUED;
3729 			kunmap_atomic(map);
3730 		}
3731 		ret = true;			/* incremented */
3732 
3733 	} else {				/* decrementing */
3734 		/*
3735 		 * Think of how you subtract 1 from 1000
3736 		 */
3737 		BUG_ON(count != COUNT_CONTINUED);
3738 		while (*map == COUNT_CONTINUED) {
3739 			kunmap_atomic(map);
3740 			page = list_next_entry(page, lru);
3741 			BUG_ON(page == head);
3742 			map = kmap_atomic(page) + offset;
3743 		}
3744 		BUG_ON(*map == 0);
3745 		*map -= 1;
3746 		if (*map == 0)
3747 			count = 0;
3748 		kunmap_atomic(map);
3749 		while ((page = list_prev_entry(page, lru)) != head) {
3750 			map = kmap_atomic(page) + offset;
3751 			*map = SWAP_CONT_MAX | count;
3752 			count = COUNT_CONTINUED;
3753 			kunmap_atomic(map);
3754 		}
3755 		ret = count == COUNT_CONTINUED;
3756 	}
3757 out:
3758 	spin_unlock(&si->cont_lock);
3759 	return ret;
3760 }
3761 
3762 /*
3763  * free_swap_count_continuations - swapoff free all the continuation pages
3764  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3765  */
free_swap_count_continuations(struct swap_info_struct * si)3766 static void free_swap_count_continuations(struct swap_info_struct *si)
3767 {
3768 	pgoff_t offset;
3769 
3770 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3771 		struct page *head;
3772 		head = vmalloc_to_page(si->swap_map + offset);
3773 		if (page_private(head)) {
3774 			struct page *page, *next;
3775 
3776 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3777 				list_del(&page->lru);
3778 				__free_page(page);
3779 			}
3780 		}
3781 	}
3782 }
3783 
3784 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3785 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3786 {
3787 	struct swap_info_struct *si, *next;
3788 	int nid = page_to_nid(page);
3789 
3790 	if (!(gfp_mask & __GFP_IO))
3791 		return;
3792 
3793 	if (!blk_cgroup_congested())
3794 		return;
3795 
3796 	/*
3797 	 * We've already scheduled a throttle, avoid taking the global swap
3798 	 * lock.
3799 	 */
3800 	if (current->throttle_queue)
3801 		return;
3802 
3803 	spin_lock(&swap_avail_lock);
3804 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3805 				  avail_lists[nid]) {
3806 		if (si->bdev) {
3807 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3808 			break;
3809 		}
3810 	}
3811 	spin_unlock(&swap_avail_lock);
3812 }
3813 #endif
3814 
swapfile_init(void)3815 static int __init swapfile_init(void)
3816 {
3817 	int nid;
3818 
3819 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3820 					 GFP_KERNEL);
3821 	if (!swap_avail_heads) {
3822 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3823 		return -ENOMEM;
3824 	}
3825 
3826 	for_each_node(nid)
3827 		plist_head_init(&swap_avail_heads[nid]);
3828 
3829 	return 0;
3830 }
3831 subsys_initcall(swapfile_init);
3832