1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
swap_type_to_swap_info(int type)101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 if (type >= MAX_SWAPFILES)
104 return NULL;
105
106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
swap_count(unsigned char ent)109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY 0x1
116 /*
117 * Reclaim the swap entry if there are no more mappings of the
118 * corresponding page
119 */
120 #define TTRS_UNMAPPED 0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL 0x4
123
124 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
127 {
128 swp_entry_t entry = swp_entry(si->type, offset);
129 struct page *page;
130 int ret = 0;
131
132 page = find_get_page(swap_address_space(entry), offset);
133 if (!page)
134 return 0;
135 /*
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
141 */
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
147 unlock_page(page);
148 }
149 put_page(page);
150 return ret;
151 }
152
first_se(struct swap_info_struct * sis)153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
next_se(struct swap_extent * se)159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
discard_swap(struct swap_info_struct * si)169 static int discard_swap(struct swap_info_struct *si)
170 {
171 struct swap_extent *se;
172 sector_t start_block;
173 sector_t nr_blocks;
174 int err = 0;
175
176 /* Do not discard the swap header page! */
177 se = first_se(si);
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 if (nr_blocks) {
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
183 if (err)
184 return err;
185 cond_resched();
186 }
187
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
194 if (err)
195 break;
196
197 cond_resched();
198 }
199 return err; /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 struct swap_extent *se;
206 struct rb_node *rb;
207
208 rb = sis->swap_extent_root.rb_node;
209 while (rb) {
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
212 rb = rb->rb_left;
213 else if (offset >= se->start_page + se->nr_pages)
214 rb = rb->rb_right;
215 else
216 return se;
217 }
218 /* It *must* be present */
219 BUG();
220 }
221
swap_page_sector(struct page * page)222 sector_t swap_page_sector(struct page *page)
223 {
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
226 sector_t sector;
227 pgoff_t offset;
228
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
238 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)239 static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244 while (nr_pages) {
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
248
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
253
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
258 break;
259
260 se = next_se(se);
261 }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
266
267 #define swap_entry_size(size) (size)
268 #else
269 #define SWAPFILE_CLUSTER 256
270
271 /*
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
274 */
275 #define swap_entry_size(size) 1
276 #endif
277 #define LATENCY_LIMIT 256
278
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 unsigned int flag)
281 {
282 info->flags = flag;
283 }
284
cluster_count(struct swap_cluster_info * info)285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 return info->data;
288 }
289
cluster_set_count(struct swap_cluster_info * info,unsigned int c)290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 unsigned int c)
292 {
293 info->data = c;
294 }
295
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
298 {
299 info->flags = f;
300 info->data = c;
301 }
302
cluster_next(struct swap_cluster_info * info)303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 return info->data;
306 }
307
cluster_set_next(struct swap_cluster_info * info,unsigned int n)308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 unsigned int n)
310 {
311 info->data = n;
312 }
313
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
316 {
317 info->flags = f;
318 info->data = n;
319 }
320
cluster_is_free(struct swap_cluster_info * info)321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 return info->flags & CLUSTER_FLAG_FREE;
324 }
325
cluster_is_null(struct swap_cluster_info * info)326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
cluster_set_null(struct swap_cluster_info * info)331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
334 info->data = 0;
335 }
336
cluster_is_huge(struct swap_cluster_info * info)337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
341 return false;
342 }
343
cluster_clear_huge(struct swap_cluster_info * info)344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
lock_cluster(struct swap_info_struct * si,unsigned long offset)349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
351 {
352 struct swap_cluster_info *ci;
353
354 ci = si->cluster_info;
355 if (ci) {
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
358 }
359 return ci;
360 }
361
unlock_cluster(struct swap_cluster_info * ci)362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 if (ci)
365 spin_unlock(&ci->lock);
366 }
367
368 /*
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
371 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 struct swap_info_struct *si, unsigned long offset)
374 {
375 struct swap_cluster_info *ci;
376
377 /* Try to use fine-grained SSD-style locking if available: */
378 ci = lock_cluster(si, offset);
379 /* Otherwise, fall back to traditional, coarse locking: */
380 if (!ci)
381 spin_lock(&si->lock);
382
383 return ci;
384 }
385
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
388 {
389 if (ci)
390 unlock_cluster(ci);
391 else
392 spin_unlock(&si->lock);
393 }
394
cluster_list_empty(struct swap_cluster_list * list)395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 return cluster_is_null(&list->head);
398 }
399
cluster_list_first(struct swap_cluster_list * list)400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 return cluster_next(&list->head);
403 }
404
cluster_list_init(struct swap_cluster_list * list)405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
409 }
410
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
413 unsigned int idx)
414 {
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
418 } else {
419 struct swap_cluster_info *ci_tail;
420 unsigned int tail = cluster_next(&list->tail);
421
422 /*
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
425 */
426 ci_tail = ci + tail;
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
429 spin_unlock(&ci_tail->lock);
430 cluster_set_next_flag(&list->tail, idx, 0);
431 }
432 }
433
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
436 {
437 unsigned int idx;
438
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
443 } else
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
446
447 return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 unsigned int idx)
453 {
454 /*
455 * If scan_swap_map_slots() can't find a free cluster, it will check
456 * si->swap_map directly. To make sure the discarding cluster isn't
457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 * It will be cleared after discard
459 */
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465 schedule_work(&si->discard_work);
466 }
467
__free_cluster(struct swap_info_struct * si,unsigned long idx)468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
479 */
swap_do_scheduled_discard(struct swap_info_struct * si)480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 struct swap_cluster_info *info, *ci;
483 unsigned int idx;
484
485 info = si->cluster_info;
486
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
489 spin_unlock(&si->lock);
490
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 SWAPFILE_CLUSTER);
493
494 spin_lock(&si->lock);
495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 __free_cluster(si, idx);
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
499 unlock_cluster(ci);
500 }
501 }
502
swap_discard_work(struct work_struct * work)503 static void swap_discard_work(struct work_struct *work)
504 {
505 struct swap_info_struct *si;
506
507 si = container_of(work, struct swap_info_struct, discard_work);
508
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
512 }
513
swap_users_ref_free(struct percpu_ref * ref)514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 struct swap_info_struct *si;
517
518 si = container_of(ref, struct swap_info_struct, users);
519 complete(&si->comp);
520 }
521
alloc_cluster(struct swap_info_struct * si,unsigned long idx)522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 struct swap_cluster_info *ci = si->cluster_info;
525
526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 cluster_list_del_first(&si->free_clusters, ci);
528 cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
free_cluster(struct swap_info_struct * si,unsigned long idx)531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 struct swap_cluster_info *ci = si->cluster_info + idx;
534
535 VM_BUG_ON(cluster_count(ci) != 0);
536 /*
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
539 * after discard.
540 */
541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 swap_cluster_schedule_discard(si, idx);
544 return;
545 }
546
547 __free_cluster(si, idx);
548 }
549
550 /*
551 * The cluster corresponding to page_nr will be used. The cluster will be
552 * removed from free cluster list and its usage counter will be increased.
553 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561 if (cluster_is_free(&cluster_info[idx]))
562 alloc_cluster(p, idx);
563
564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 cluster_set_count(&cluster_info[idx],
566 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570 * The cluster corresponding to page_nr decreases one usage. If the usage
571 * counter becomes 0, which means no page in the cluster is in using, we can
572 * optionally discard the cluster and add it to free cluster list.
573 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579 if (!cluster_info)
580 return;
581
582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 cluster_set_count(&cluster_info[idx],
584 cluster_count(&cluster_info[idx]) - 1);
585
586 if (cluster_count(&cluster_info[idx]) == 0)
587 free_cluster(p, idx);
588 }
589
590 /*
591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592 * cluster list. Avoiding such abuse to avoid list corruption.
593 */
594 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 unsigned long offset)
597 {
598 struct percpu_cluster *percpu_cluster;
599 bool conflict;
600
601 offset /= SWAPFILE_CLUSTER;
602 conflict = !cluster_list_empty(&si->free_clusters) &&
603 offset != cluster_list_first(&si->free_clusters) &&
604 cluster_is_free(&si->cluster_info[offset]);
605
606 if (!conflict)
607 return false;
608
609 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 cluster_set_null(&percpu_cluster->index);
611 return true;
612 }
613
614 /*
615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616 * might involve allocating a new cluster for current CPU too.
617 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 unsigned long *offset, unsigned long *scan_base)
620 {
621 struct percpu_cluster *cluster;
622 struct swap_cluster_info *ci;
623 unsigned long tmp, max;
624
625 new_cluster:
626 cluster = this_cpu_ptr(si->percpu_cluster);
627 if (cluster_is_null(&cluster->index)) {
628 if (!cluster_list_empty(&si->free_clusters)) {
629 cluster->index = si->free_clusters.head;
630 cluster->next = cluster_next(&cluster->index) *
631 SWAPFILE_CLUSTER;
632 } else if (!cluster_list_empty(&si->discard_clusters)) {
633 /*
634 * we don't have free cluster but have some clusters in
635 * discarding, do discard now and reclaim them, then
636 * reread cluster_next_cpu since we dropped si->lock
637 */
638 swap_do_scheduled_discard(si);
639 *scan_base = this_cpu_read(*si->cluster_next_cpu);
640 *offset = *scan_base;
641 goto new_cluster;
642 } else
643 return false;
644 }
645
646 /*
647 * Other CPUs can use our cluster if they can't find a free cluster,
648 * check if there is still free entry in the cluster
649 */
650 tmp = cluster->next;
651 max = min_t(unsigned long, si->max,
652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 if (tmp < max) {
654 ci = lock_cluster(si, tmp);
655 while (tmp < max) {
656 if (!si->swap_map[tmp])
657 break;
658 tmp++;
659 }
660 unlock_cluster(ci);
661 }
662 if (tmp >= max) {
663 cluster_set_null(&cluster->index);
664 goto new_cluster;
665 }
666 cluster->next = tmp + 1;
667 *offset = tmp;
668 *scan_base = tmp;
669 return true;
670 }
671
__del_from_avail_list(struct swap_info_struct * p)672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 int nid;
675
676 assert_spin_locked(&p->lock);
677 for_each_node(nid)
678 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680
del_from_avail_list(struct swap_info_struct * p)681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683 spin_lock(&swap_avail_lock);
684 __del_from_avail_list(p);
685 spin_unlock(&swap_avail_lock);
686 }
687
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689 unsigned int nr_entries)
690 {
691 unsigned int end = offset + nr_entries - 1;
692
693 if (offset == si->lowest_bit)
694 si->lowest_bit += nr_entries;
695 if (end == si->highest_bit)
696 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697 si->inuse_pages += nr_entries;
698 if (si->inuse_pages == si->pages) {
699 si->lowest_bit = si->max;
700 si->highest_bit = 0;
701 del_from_avail_list(si);
702 }
703 }
704
add_to_avail_list(struct swap_info_struct * p)705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707 int nid;
708
709 spin_lock(&swap_avail_lock);
710 for_each_node(nid) {
711 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713 }
714 spin_unlock(&swap_avail_lock);
715 }
716
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718 unsigned int nr_entries)
719 {
720 unsigned long begin = offset;
721 unsigned long end = offset + nr_entries - 1;
722 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723
724 if (offset < si->lowest_bit)
725 si->lowest_bit = offset;
726 if (end > si->highest_bit) {
727 bool was_full = !si->highest_bit;
728
729 WRITE_ONCE(si->highest_bit, end);
730 if (was_full && (si->flags & SWP_WRITEOK))
731 add_to_avail_list(si);
732 }
733 atomic_long_add(nr_entries, &nr_swap_pages);
734 si->inuse_pages -= nr_entries;
735 if (si->flags & SWP_BLKDEV)
736 swap_slot_free_notify =
737 si->bdev->bd_disk->fops->swap_slot_free_notify;
738 else
739 swap_slot_free_notify = NULL;
740 while (offset <= end) {
741 arch_swap_invalidate_page(si->type, offset);
742 frontswap_invalidate_page(si->type, offset);
743 if (swap_slot_free_notify)
744 swap_slot_free_notify(si->bdev, offset);
745 offset++;
746 }
747 clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749
set_cluster_next(struct swap_info_struct * si,unsigned long next)750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752 unsigned long prev;
753
754 if (!(si->flags & SWP_SOLIDSTATE)) {
755 si->cluster_next = next;
756 return;
757 }
758
759 prev = this_cpu_read(*si->cluster_next_cpu);
760 /*
761 * Cross the swap address space size aligned trunk, choose
762 * another trunk randomly to avoid lock contention on swap
763 * address space if possible.
764 */
765 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767 /* No free swap slots available */
768 if (si->highest_bit <= si->lowest_bit)
769 return;
770 next = si->lowest_bit +
771 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773 next = max_t(unsigned int, next, si->lowest_bit);
774 }
775 this_cpu_write(*si->cluster_next_cpu, next);
776 }
777
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])778 static int scan_swap_map_slots(struct swap_info_struct *si,
779 unsigned char usage, int nr,
780 swp_entry_t slots[])
781 {
782 struct swap_cluster_info *ci;
783 unsigned long offset;
784 unsigned long scan_base;
785 unsigned long last_in_cluster = 0;
786 int latency_ration = LATENCY_LIMIT;
787 int n_ret = 0;
788 bool scanned_many = false;
789
790 /*
791 * We try to cluster swap pages by allocating them sequentially
792 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
793 * way, however, we resort to first-free allocation, starting
794 * a new cluster. This prevents us from scattering swap pages
795 * all over the entire swap partition, so that we reduce
796 * overall disk seek times between swap pages. -- sct
797 * But we do now try to find an empty cluster. -Andrea
798 * And we let swap pages go all over an SSD partition. Hugh
799 */
800
801 si->flags += SWP_SCANNING;
802 /*
803 * Use percpu scan base for SSD to reduce lock contention on
804 * cluster and swap cache. For HDD, sequential access is more
805 * important.
806 */
807 if (si->flags & SWP_SOLIDSTATE)
808 scan_base = this_cpu_read(*si->cluster_next_cpu);
809 else
810 scan_base = si->cluster_next;
811 offset = scan_base;
812
813 /* SSD algorithm */
814 if (si->cluster_info) {
815 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816 goto scan;
817 } else if (unlikely(!si->cluster_nr--)) {
818 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819 si->cluster_nr = SWAPFILE_CLUSTER - 1;
820 goto checks;
821 }
822
823 spin_unlock(&si->lock);
824
825 /*
826 * If seek is expensive, start searching for new cluster from
827 * start of partition, to minimize the span of allocated swap.
828 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829 * case, just handled by scan_swap_map_try_ssd_cluster() above.
830 */
831 scan_base = offset = si->lowest_bit;
832 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833
834 /* Locate the first empty (unaligned) cluster */
835 for (; last_in_cluster <= si->highest_bit; offset++) {
836 if (si->swap_map[offset])
837 last_in_cluster = offset + SWAPFILE_CLUSTER;
838 else if (offset == last_in_cluster) {
839 spin_lock(&si->lock);
840 offset -= SWAPFILE_CLUSTER - 1;
841 si->cluster_next = offset;
842 si->cluster_nr = SWAPFILE_CLUSTER - 1;
843 goto checks;
844 }
845 if (unlikely(--latency_ration < 0)) {
846 cond_resched();
847 latency_ration = LATENCY_LIMIT;
848 }
849 }
850
851 offset = scan_base;
852 spin_lock(&si->lock);
853 si->cluster_nr = SWAPFILE_CLUSTER - 1;
854 }
855
856 checks:
857 if (si->cluster_info) {
858 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859 /* take a break if we already got some slots */
860 if (n_ret)
861 goto done;
862 if (!scan_swap_map_try_ssd_cluster(si, &offset,
863 &scan_base))
864 goto scan;
865 }
866 }
867 if (!(si->flags & SWP_WRITEOK))
868 goto no_page;
869 if (!si->highest_bit)
870 goto no_page;
871 if (offset > si->highest_bit)
872 scan_base = offset = si->lowest_bit;
873
874 ci = lock_cluster(si, offset);
875 /* reuse swap entry of cache-only swap if not busy. */
876 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877 int swap_was_freed;
878 unlock_cluster(ci);
879 spin_unlock(&si->lock);
880 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881 spin_lock(&si->lock);
882 /* entry was freed successfully, try to use this again */
883 if (swap_was_freed)
884 goto checks;
885 goto scan; /* check next one */
886 }
887
888 if (si->swap_map[offset]) {
889 unlock_cluster(ci);
890 if (!n_ret)
891 goto scan;
892 else
893 goto done;
894 }
895 WRITE_ONCE(si->swap_map[offset], usage);
896 inc_cluster_info_page(si, si->cluster_info, offset);
897 unlock_cluster(ci);
898
899 swap_range_alloc(si, offset, 1);
900 slots[n_ret++] = swp_entry(si->type, offset);
901
902 /* got enough slots or reach max slots? */
903 if ((n_ret == nr) || (offset >= si->highest_bit))
904 goto done;
905
906 /* search for next available slot */
907
908 /* time to take a break? */
909 if (unlikely(--latency_ration < 0)) {
910 if (n_ret)
911 goto done;
912 spin_unlock(&si->lock);
913 cond_resched();
914 spin_lock(&si->lock);
915 latency_ration = LATENCY_LIMIT;
916 }
917
918 /* try to get more slots in cluster */
919 if (si->cluster_info) {
920 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921 goto checks;
922 } else if (si->cluster_nr && !si->swap_map[++offset]) {
923 /* non-ssd case, still more slots in cluster? */
924 --si->cluster_nr;
925 goto checks;
926 }
927
928 /*
929 * Even if there's no free clusters available (fragmented),
930 * try to scan a little more quickly with lock held unless we
931 * have scanned too many slots already.
932 */
933 if (!scanned_many) {
934 unsigned long scan_limit;
935
936 if (offset < scan_base)
937 scan_limit = scan_base;
938 else
939 scan_limit = si->highest_bit;
940 for (; offset <= scan_limit && --latency_ration > 0;
941 offset++) {
942 if (!si->swap_map[offset])
943 goto checks;
944 }
945 }
946
947 done:
948 set_cluster_next(si, offset + 1);
949 si->flags -= SWP_SCANNING;
950 return n_ret;
951
952 scan:
953 spin_unlock(&si->lock);
954 while (++offset <= READ_ONCE(si->highest_bit)) {
955 if (data_race(!si->swap_map[offset])) {
956 spin_lock(&si->lock);
957 goto checks;
958 }
959 if (vm_swap_full() &&
960 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961 spin_lock(&si->lock);
962 goto checks;
963 }
964 if (unlikely(--latency_ration < 0)) {
965 cond_resched();
966 latency_ration = LATENCY_LIMIT;
967 scanned_many = true;
968 }
969 }
970 offset = si->lowest_bit;
971 while (offset < scan_base) {
972 if (data_race(!si->swap_map[offset])) {
973 spin_lock(&si->lock);
974 goto checks;
975 }
976 if (vm_swap_full() &&
977 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978 spin_lock(&si->lock);
979 goto checks;
980 }
981 if (unlikely(--latency_ration < 0)) {
982 cond_resched();
983 latency_ration = LATENCY_LIMIT;
984 scanned_many = true;
985 }
986 offset++;
987 }
988 spin_lock(&si->lock);
989
990 no_page:
991 si->flags -= SWP_SCANNING;
992 return n_ret;
993 }
994
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997 unsigned long idx;
998 struct swap_cluster_info *ci;
999 unsigned long offset;
1000
1001 /*
1002 * Should not even be attempting cluster allocations when huge
1003 * page swap is disabled. Warn and fail the allocation.
1004 */
1005 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006 VM_WARN_ON_ONCE(1);
1007 return 0;
1008 }
1009
1010 if (cluster_list_empty(&si->free_clusters))
1011 return 0;
1012
1013 idx = cluster_list_first(&si->free_clusters);
1014 offset = idx * SWAPFILE_CLUSTER;
1015 ci = lock_cluster(si, offset);
1016 alloc_cluster(si, idx);
1017 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018
1019 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020 unlock_cluster(ci);
1021 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022 *slot = swp_entry(si->type, offset);
1023
1024 return 1;
1025 }
1026
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029 unsigned long offset = idx * SWAPFILE_CLUSTER;
1030 struct swap_cluster_info *ci;
1031
1032 ci = lock_cluster(si, offset);
1033 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034 cluster_set_count_flag(ci, 0, 0);
1035 free_cluster(si, idx);
1036 unlock_cluster(ci);
1037 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042 unsigned long size = swap_entry_size(entry_size);
1043 struct swap_info_struct *si, *next;
1044 long avail_pgs;
1045 int n_ret = 0;
1046 int node;
1047
1048 /* Only single cluster request supported */
1049 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050
1051 spin_lock(&swap_avail_lock);
1052
1053 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054 if (avail_pgs <= 0) {
1055 spin_unlock(&swap_avail_lock);
1056 goto noswap;
1057 }
1058
1059 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060
1061 atomic_long_sub(n_goal * size, &nr_swap_pages);
1062
1063 start_over:
1064 node = numa_node_id();
1065 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066 /* requeue si to after same-priority siblings */
1067 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068 spin_unlock(&swap_avail_lock);
1069 spin_lock(&si->lock);
1070 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071 spin_lock(&swap_avail_lock);
1072 if (plist_node_empty(&si->avail_lists[node])) {
1073 spin_unlock(&si->lock);
1074 goto nextsi;
1075 }
1076 WARN(!si->highest_bit,
1077 "swap_info %d in list but !highest_bit\n",
1078 si->type);
1079 WARN(!(si->flags & SWP_WRITEOK),
1080 "swap_info %d in list but !SWP_WRITEOK\n",
1081 si->type);
1082 __del_from_avail_list(si);
1083 spin_unlock(&si->lock);
1084 goto nextsi;
1085 }
1086 if (size == SWAPFILE_CLUSTER) {
1087 if (si->flags & SWP_BLKDEV)
1088 n_ret = swap_alloc_cluster(si, swp_entries);
1089 } else
1090 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091 n_goal, swp_entries);
1092 spin_unlock(&si->lock);
1093 if (n_ret || size == SWAPFILE_CLUSTER)
1094 goto check_out;
1095 pr_debug("scan_swap_map of si %d failed to find offset\n",
1096 si->type);
1097 cond_resched();
1098
1099 spin_lock(&swap_avail_lock);
1100 nextsi:
1101 /*
1102 * if we got here, it's likely that si was almost full before,
1103 * and since scan_swap_map_slots() can drop the si->lock,
1104 * multiple callers probably all tried to get a page from the
1105 * same si and it filled up before we could get one; or, the si
1106 * filled up between us dropping swap_avail_lock and taking
1107 * si->lock. Since we dropped the swap_avail_lock, the
1108 * swap_avail_head list may have been modified; so if next is
1109 * still in the swap_avail_head list then try it, otherwise
1110 * start over if we have not gotten any slots.
1111 */
1112 if (plist_node_empty(&next->avail_lists[node]))
1113 goto start_over;
1114 }
1115
1116 spin_unlock(&swap_avail_lock);
1117
1118 check_out:
1119 if (n_ret < n_goal)
1120 atomic_long_add((long)(n_goal - n_ret) * size,
1121 &nr_swap_pages);
1122 noswap:
1123 return n_ret;
1124 }
1125
__swap_info_get(swp_entry_t entry)1126 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1127 {
1128 struct swap_info_struct *p;
1129 unsigned long offset;
1130
1131 if (!entry.val)
1132 goto out;
1133 p = swp_swap_info(entry);
1134 if (!p)
1135 goto bad_nofile;
1136 if (data_race(!(p->flags & SWP_USED)))
1137 goto bad_device;
1138 offset = swp_offset(entry);
1139 if (offset >= p->max)
1140 goto bad_offset;
1141 return p;
1142
1143 bad_offset:
1144 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1145 goto out;
1146 bad_device:
1147 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1148 goto out;
1149 bad_nofile:
1150 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1151 out:
1152 return NULL;
1153 }
1154
_swap_info_get(swp_entry_t entry)1155 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1156 {
1157 struct swap_info_struct *p;
1158
1159 p = __swap_info_get(entry);
1160 if (!p)
1161 goto out;
1162 if (data_race(!p->swap_map[swp_offset(entry)]))
1163 goto bad_free;
1164 return p;
1165
1166 bad_free:
1167 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1168 out:
1169 return NULL;
1170 }
1171
swap_info_get(swp_entry_t entry)1172 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1173 {
1174 struct swap_info_struct *p;
1175
1176 p = _swap_info_get(entry);
1177 if (p)
1178 spin_lock(&p->lock);
1179 return p;
1180 }
1181
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1182 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1183 struct swap_info_struct *q)
1184 {
1185 struct swap_info_struct *p;
1186
1187 p = _swap_info_get(entry);
1188
1189 if (p != q) {
1190 if (q != NULL)
1191 spin_unlock(&q->lock);
1192 if (p != NULL)
1193 spin_lock(&p->lock);
1194 }
1195 return p;
1196 }
1197
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1198 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1199 unsigned long offset,
1200 unsigned char usage)
1201 {
1202 unsigned char count;
1203 unsigned char has_cache;
1204
1205 count = p->swap_map[offset];
1206
1207 has_cache = count & SWAP_HAS_CACHE;
1208 count &= ~SWAP_HAS_CACHE;
1209
1210 if (usage == SWAP_HAS_CACHE) {
1211 VM_BUG_ON(!has_cache);
1212 has_cache = 0;
1213 } else if (count == SWAP_MAP_SHMEM) {
1214 /*
1215 * Or we could insist on shmem.c using a special
1216 * swap_shmem_free() and free_shmem_swap_and_cache()...
1217 */
1218 count = 0;
1219 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1220 if (count == COUNT_CONTINUED) {
1221 if (swap_count_continued(p, offset, count))
1222 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1223 else
1224 count = SWAP_MAP_MAX;
1225 } else
1226 count--;
1227 }
1228
1229 usage = count | has_cache;
1230 if (usage)
1231 WRITE_ONCE(p->swap_map[offset], usage);
1232 else
1233 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1234
1235 return usage;
1236 }
1237
1238 /*
1239 * Check whether swap entry is valid in the swap device. If so,
1240 * return pointer to swap_info_struct, and keep the swap entry valid
1241 * via preventing the swap device from being swapoff, until
1242 * put_swap_device() is called. Otherwise return NULL.
1243 *
1244 * Notice that swapoff or swapoff+swapon can still happen before the
1245 * percpu_ref_tryget_live() in get_swap_device() or after the
1246 * percpu_ref_put() in put_swap_device() if there isn't any other way
1247 * to prevent swapoff, such as page lock, page table lock, etc. The
1248 * caller must be prepared for that. For example, the following
1249 * situation is possible.
1250 *
1251 * CPU1 CPU2
1252 * do_swap_page()
1253 * ... swapoff+swapon
1254 * __read_swap_cache_async()
1255 * swapcache_prepare()
1256 * __swap_duplicate()
1257 * // check swap_map
1258 * // verify PTE not changed
1259 *
1260 * In __swap_duplicate(), the swap_map need to be checked before
1261 * changing partly because the specified swap entry may be for another
1262 * swap device which has been swapoff. And in do_swap_page(), after
1263 * the page is read from the swap device, the PTE is verified not
1264 * changed with the page table locked to check whether the swap device
1265 * has been swapoff or swapoff+swapon.
1266 */
get_swap_device(swp_entry_t entry)1267 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1268 {
1269 struct swap_info_struct *si;
1270 unsigned long offset;
1271
1272 if (!entry.val)
1273 goto out;
1274 si = swp_swap_info(entry);
1275 if (!si)
1276 goto bad_nofile;
1277 if (!percpu_ref_tryget_live(&si->users))
1278 goto out;
1279 /*
1280 * Guarantee the si->users are checked before accessing other
1281 * fields of swap_info_struct.
1282 *
1283 * Paired with the spin_unlock() after setup_swap_info() in
1284 * enable_swap_info().
1285 */
1286 smp_rmb();
1287 offset = swp_offset(entry);
1288 if (offset >= si->max)
1289 goto put_out;
1290
1291 return si;
1292 bad_nofile:
1293 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1294 out:
1295 return NULL;
1296 put_out:
1297 percpu_ref_put(&si->users);
1298 return NULL;
1299 }
1300
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1301 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1302 swp_entry_t entry)
1303 {
1304 struct swap_cluster_info *ci;
1305 unsigned long offset = swp_offset(entry);
1306 unsigned char usage;
1307
1308 ci = lock_cluster_or_swap_info(p, offset);
1309 usage = __swap_entry_free_locked(p, offset, 1);
1310 unlock_cluster_or_swap_info(p, ci);
1311 if (!usage)
1312 free_swap_slot(entry);
1313
1314 return usage;
1315 }
1316
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1317 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1318 {
1319 struct swap_cluster_info *ci;
1320 unsigned long offset = swp_offset(entry);
1321 unsigned char count;
1322
1323 ci = lock_cluster(p, offset);
1324 count = p->swap_map[offset];
1325 VM_BUG_ON(count != SWAP_HAS_CACHE);
1326 p->swap_map[offset] = 0;
1327 dec_cluster_info_page(p, p->cluster_info, offset);
1328 unlock_cluster(ci);
1329
1330 mem_cgroup_uncharge_swap(entry, 1);
1331 swap_range_free(p, offset, 1);
1332 }
1333
1334 /*
1335 * Caller has made sure that the swap device corresponding to entry
1336 * is still around or has not been recycled.
1337 */
swap_free(swp_entry_t entry)1338 void swap_free(swp_entry_t entry)
1339 {
1340 struct swap_info_struct *p;
1341
1342 p = _swap_info_get(entry);
1343 if (p)
1344 __swap_entry_free(p, entry);
1345 }
1346
1347 /*
1348 * Called after dropping swapcache to decrease refcnt to swap entries.
1349 */
put_swap_page(struct page * page,swp_entry_t entry)1350 void put_swap_page(struct page *page, swp_entry_t entry)
1351 {
1352 unsigned long offset = swp_offset(entry);
1353 unsigned long idx = offset / SWAPFILE_CLUSTER;
1354 struct swap_cluster_info *ci;
1355 struct swap_info_struct *si;
1356 unsigned char *map;
1357 unsigned int i, free_entries = 0;
1358 unsigned char val;
1359 int size = swap_entry_size(thp_nr_pages(page));
1360
1361 si = _swap_info_get(entry);
1362 if (!si)
1363 return;
1364
1365 ci = lock_cluster_or_swap_info(si, offset);
1366 if (size == SWAPFILE_CLUSTER) {
1367 VM_BUG_ON(!cluster_is_huge(ci));
1368 map = si->swap_map + offset;
1369 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1370 val = map[i];
1371 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1372 if (val == SWAP_HAS_CACHE)
1373 free_entries++;
1374 }
1375 cluster_clear_huge(ci);
1376 if (free_entries == SWAPFILE_CLUSTER) {
1377 unlock_cluster_or_swap_info(si, ci);
1378 spin_lock(&si->lock);
1379 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1380 swap_free_cluster(si, idx);
1381 spin_unlock(&si->lock);
1382 return;
1383 }
1384 }
1385 for (i = 0; i < size; i++, entry.val++) {
1386 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1387 unlock_cluster_or_swap_info(si, ci);
1388 free_swap_slot(entry);
1389 if (i == size - 1)
1390 return;
1391 lock_cluster_or_swap_info(si, offset);
1392 }
1393 }
1394 unlock_cluster_or_swap_info(si, ci);
1395 }
1396
1397 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1398 int split_swap_cluster(swp_entry_t entry)
1399 {
1400 struct swap_info_struct *si;
1401 struct swap_cluster_info *ci;
1402 unsigned long offset = swp_offset(entry);
1403
1404 si = _swap_info_get(entry);
1405 if (!si)
1406 return -EBUSY;
1407 ci = lock_cluster(si, offset);
1408 cluster_clear_huge(ci);
1409 unlock_cluster(ci);
1410 return 0;
1411 }
1412 #endif
1413
swp_entry_cmp(const void * ent1,const void * ent2)1414 static int swp_entry_cmp(const void *ent1, const void *ent2)
1415 {
1416 const swp_entry_t *e1 = ent1, *e2 = ent2;
1417
1418 return (int)swp_type(*e1) - (int)swp_type(*e2);
1419 }
1420
swapcache_free_entries(swp_entry_t * entries,int n)1421 void swapcache_free_entries(swp_entry_t *entries, int n)
1422 {
1423 struct swap_info_struct *p, *prev;
1424 int i;
1425
1426 if (n <= 0)
1427 return;
1428
1429 prev = NULL;
1430 p = NULL;
1431
1432 /*
1433 * Sort swap entries by swap device, so each lock is only taken once.
1434 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1435 * so low that it isn't necessary to optimize further.
1436 */
1437 if (nr_swapfiles > 1)
1438 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1439 for (i = 0; i < n; ++i) {
1440 p = swap_info_get_cont(entries[i], prev);
1441 if (p)
1442 swap_entry_free(p, entries[i]);
1443 prev = p;
1444 }
1445 if (p)
1446 spin_unlock(&p->lock);
1447 }
1448
1449 /*
1450 * How many references to page are currently swapped out?
1451 * This does not give an exact answer when swap count is continued,
1452 * but does include the high COUNT_CONTINUED flag to allow for that.
1453 */
page_swapcount(struct page * page)1454 int page_swapcount(struct page *page)
1455 {
1456 int count = 0;
1457 struct swap_info_struct *p;
1458 struct swap_cluster_info *ci;
1459 swp_entry_t entry;
1460 unsigned long offset;
1461
1462 entry.val = page_private(page);
1463 p = _swap_info_get(entry);
1464 if (p) {
1465 offset = swp_offset(entry);
1466 ci = lock_cluster_or_swap_info(p, offset);
1467 count = swap_count(p->swap_map[offset]);
1468 unlock_cluster_or_swap_info(p, ci);
1469 }
1470 return count;
1471 }
1472
__swap_count(swp_entry_t entry)1473 int __swap_count(swp_entry_t entry)
1474 {
1475 struct swap_info_struct *si;
1476 pgoff_t offset = swp_offset(entry);
1477 int count = 0;
1478
1479 si = get_swap_device(entry);
1480 if (si) {
1481 count = swap_count(si->swap_map[offset]);
1482 put_swap_device(si);
1483 }
1484 return count;
1485 }
1486
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1487 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1488 {
1489 int count = 0;
1490 pgoff_t offset = swp_offset(entry);
1491 struct swap_cluster_info *ci;
1492
1493 ci = lock_cluster_or_swap_info(si, offset);
1494 count = swap_count(si->swap_map[offset]);
1495 unlock_cluster_or_swap_info(si, ci);
1496 return count;
1497 }
1498
1499 /*
1500 * How many references to @entry are currently swapped out?
1501 * This does not give an exact answer when swap count is continued,
1502 * but does include the high COUNT_CONTINUED flag to allow for that.
1503 */
__swp_swapcount(swp_entry_t entry)1504 int __swp_swapcount(swp_entry_t entry)
1505 {
1506 int count = 0;
1507 struct swap_info_struct *si;
1508
1509 si = get_swap_device(entry);
1510 if (si) {
1511 count = swap_swapcount(si, entry);
1512 put_swap_device(si);
1513 }
1514 return count;
1515 }
1516
1517 /*
1518 * How many references to @entry are currently swapped out?
1519 * This considers COUNT_CONTINUED so it returns exact answer.
1520 */
swp_swapcount(swp_entry_t entry)1521 int swp_swapcount(swp_entry_t entry)
1522 {
1523 int count, tmp_count, n;
1524 struct swap_info_struct *p;
1525 struct swap_cluster_info *ci;
1526 struct page *page;
1527 pgoff_t offset;
1528 unsigned char *map;
1529
1530 p = _swap_info_get(entry);
1531 if (!p)
1532 return 0;
1533
1534 offset = swp_offset(entry);
1535
1536 ci = lock_cluster_or_swap_info(p, offset);
1537
1538 count = swap_count(p->swap_map[offset]);
1539 if (!(count & COUNT_CONTINUED))
1540 goto out;
1541
1542 count &= ~COUNT_CONTINUED;
1543 n = SWAP_MAP_MAX + 1;
1544
1545 page = vmalloc_to_page(p->swap_map + offset);
1546 offset &= ~PAGE_MASK;
1547 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1548
1549 do {
1550 page = list_next_entry(page, lru);
1551 map = kmap_atomic(page);
1552 tmp_count = map[offset];
1553 kunmap_atomic(map);
1554
1555 count += (tmp_count & ~COUNT_CONTINUED) * n;
1556 n *= (SWAP_CONT_MAX + 1);
1557 } while (tmp_count & COUNT_CONTINUED);
1558 out:
1559 unlock_cluster_or_swap_info(p, ci);
1560 return count;
1561 }
1562
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1563 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1564 swp_entry_t entry)
1565 {
1566 struct swap_cluster_info *ci;
1567 unsigned char *map = si->swap_map;
1568 unsigned long roffset = swp_offset(entry);
1569 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1570 int i;
1571 bool ret = false;
1572
1573 ci = lock_cluster_or_swap_info(si, offset);
1574 if (!ci || !cluster_is_huge(ci)) {
1575 if (swap_count(map[roffset]))
1576 ret = true;
1577 goto unlock_out;
1578 }
1579 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1580 if (swap_count(map[offset + i])) {
1581 ret = true;
1582 break;
1583 }
1584 }
1585 unlock_out:
1586 unlock_cluster_or_swap_info(si, ci);
1587 return ret;
1588 }
1589
page_swapped(struct page * page)1590 static bool page_swapped(struct page *page)
1591 {
1592 swp_entry_t entry;
1593 struct swap_info_struct *si;
1594
1595 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1596 return page_swapcount(page) != 0;
1597
1598 page = compound_head(page);
1599 entry.val = page_private(page);
1600 si = _swap_info_get(entry);
1601 if (si)
1602 return swap_page_trans_huge_swapped(si, entry);
1603 return false;
1604 }
1605
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1606 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1607 int *total_swapcount)
1608 {
1609 int i, map_swapcount, _total_mapcount, _total_swapcount;
1610 unsigned long offset = 0;
1611 struct swap_info_struct *si;
1612 struct swap_cluster_info *ci = NULL;
1613 unsigned char *map = NULL;
1614 int mapcount, swapcount = 0;
1615
1616 /* hugetlbfs shouldn't call it */
1617 VM_BUG_ON_PAGE(PageHuge(page), page);
1618
1619 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1620 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1621 if (PageSwapCache(page))
1622 swapcount = page_swapcount(page);
1623 if (total_swapcount)
1624 *total_swapcount = swapcount;
1625 return mapcount + swapcount;
1626 }
1627
1628 page = compound_head(page);
1629
1630 _total_mapcount = _total_swapcount = map_swapcount = 0;
1631 if (PageSwapCache(page)) {
1632 swp_entry_t entry;
1633
1634 entry.val = page_private(page);
1635 si = _swap_info_get(entry);
1636 if (si) {
1637 map = si->swap_map;
1638 offset = swp_offset(entry);
1639 }
1640 }
1641 if (map)
1642 ci = lock_cluster(si, offset);
1643 for (i = 0; i < HPAGE_PMD_NR; i++) {
1644 mapcount = atomic_read(&page[i]._mapcount) + 1;
1645 _total_mapcount += mapcount;
1646 if (map) {
1647 swapcount = swap_count(map[offset + i]);
1648 _total_swapcount += swapcount;
1649 }
1650 map_swapcount = max(map_swapcount, mapcount + swapcount);
1651 }
1652 unlock_cluster(ci);
1653 if (PageDoubleMap(page)) {
1654 map_swapcount -= 1;
1655 _total_mapcount -= HPAGE_PMD_NR;
1656 }
1657 mapcount = compound_mapcount(page);
1658 map_swapcount += mapcount;
1659 _total_mapcount += mapcount;
1660 if (total_mapcount)
1661 *total_mapcount = _total_mapcount;
1662 if (total_swapcount)
1663 *total_swapcount = _total_swapcount;
1664
1665 return map_swapcount;
1666 }
1667
1668 /*
1669 * We can write to an anon page without COW if there are no other references
1670 * to it. And as a side-effect, free up its swap: because the old content
1671 * on disk will never be read, and seeking back there to write new content
1672 * later would only waste time away from clustering.
1673 *
1674 * NOTE: total_map_swapcount should not be relied upon by the caller if
1675 * reuse_swap_page() returns false, but it may be always overwritten
1676 * (see the other implementation for CONFIG_SWAP=n).
1677 */
reuse_swap_page(struct page * page,int * total_map_swapcount)1678 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1679 {
1680 int count, total_mapcount, total_swapcount;
1681
1682 VM_BUG_ON_PAGE(!PageLocked(page), page);
1683 if (unlikely(PageKsm(page)))
1684 return false;
1685 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1686 &total_swapcount);
1687 if (total_map_swapcount)
1688 *total_map_swapcount = total_mapcount + total_swapcount;
1689 if (count == 1 && PageSwapCache(page) &&
1690 (likely(!PageTransCompound(page)) ||
1691 /* The remaining swap count will be freed soon */
1692 total_swapcount == page_swapcount(page))) {
1693 if (!PageWriteback(page)) {
1694 page = compound_head(page);
1695 delete_from_swap_cache(page);
1696 SetPageDirty(page);
1697 } else {
1698 swp_entry_t entry;
1699 struct swap_info_struct *p;
1700
1701 entry.val = page_private(page);
1702 p = swap_info_get(entry);
1703 if (p->flags & SWP_STABLE_WRITES) {
1704 spin_unlock(&p->lock);
1705 return false;
1706 }
1707 spin_unlock(&p->lock);
1708 }
1709 }
1710
1711 return count <= 1;
1712 }
1713
1714 /*
1715 * If swap is getting full, or if there are no more mappings of this page,
1716 * then try_to_free_swap is called to free its swap space.
1717 */
try_to_free_swap(struct page * page)1718 int try_to_free_swap(struct page *page)
1719 {
1720 VM_BUG_ON_PAGE(!PageLocked(page), page);
1721
1722 if (!PageSwapCache(page))
1723 return 0;
1724 if (PageWriteback(page))
1725 return 0;
1726 if (page_swapped(page))
1727 return 0;
1728
1729 /*
1730 * Once hibernation has begun to create its image of memory,
1731 * there's a danger that one of the calls to try_to_free_swap()
1732 * - most probably a call from __try_to_reclaim_swap() while
1733 * hibernation is allocating its own swap pages for the image,
1734 * but conceivably even a call from memory reclaim - will free
1735 * the swap from a page which has already been recorded in the
1736 * image as a clean swapcache page, and then reuse its swap for
1737 * another page of the image. On waking from hibernation, the
1738 * original page might be freed under memory pressure, then
1739 * later read back in from swap, now with the wrong data.
1740 *
1741 * Hibernation suspends storage while it is writing the image
1742 * to disk so check that here.
1743 */
1744 if (pm_suspended_storage())
1745 return 0;
1746
1747 page = compound_head(page);
1748 delete_from_swap_cache(page);
1749 SetPageDirty(page);
1750 return 1;
1751 }
1752
1753 /*
1754 * Free the swap entry like above, but also try to
1755 * free the page cache entry if it is the last user.
1756 */
free_swap_and_cache(swp_entry_t entry)1757 int free_swap_and_cache(swp_entry_t entry)
1758 {
1759 struct swap_info_struct *p;
1760 unsigned char count;
1761
1762 if (non_swap_entry(entry))
1763 return 1;
1764
1765 p = _swap_info_get(entry);
1766 if (p) {
1767 count = __swap_entry_free(p, entry);
1768 if (count == SWAP_HAS_CACHE &&
1769 !swap_page_trans_huge_swapped(p, entry))
1770 __try_to_reclaim_swap(p, swp_offset(entry),
1771 TTRS_UNMAPPED | TTRS_FULL);
1772 }
1773 return p != NULL;
1774 }
1775
1776 #ifdef CONFIG_HIBERNATION
1777
get_swap_page_of_type(int type)1778 swp_entry_t get_swap_page_of_type(int type)
1779 {
1780 struct swap_info_struct *si = swap_type_to_swap_info(type);
1781 swp_entry_t entry = {0};
1782
1783 if (!si)
1784 goto fail;
1785
1786 /* This is called for allocating swap entry, not cache */
1787 spin_lock(&si->lock);
1788 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1789 atomic_long_dec(&nr_swap_pages);
1790 spin_unlock(&si->lock);
1791 fail:
1792 return entry;
1793 }
1794
1795 /*
1796 * Find the swap type that corresponds to given device (if any).
1797 *
1798 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1799 * from 0, in which the swap header is expected to be located.
1800 *
1801 * This is needed for the suspend to disk (aka swsusp).
1802 */
swap_type_of(dev_t device,sector_t offset)1803 int swap_type_of(dev_t device, sector_t offset)
1804 {
1805 int type;
1806
1807 if (!device)
1808 return -1;
1809
1810 spin_lock(&swap_lock);
1811 for (type = 0; type < nr_swapfiles; type++) {
1812 struct swap_info_struct *sis = swap_info[type];
1813
1814 if (!(sis->flags & SWP_WRITEOK))
1815 continue;
1816
1817 if (device == sis->bdev->bd_dev) {
1818 struct swap_extent *se = first_se(sis);
1819
1820 if (se->start_block == offset) {
1821 spin_unlock(&swap_lock);
1822 return type;
1823 }
1824 }
1825 }
1826 spin_unlock(&swap_lock);
1827 return -ENODEV;
1828 }
1829
find_first_swap(dev_t * device)1830 int find_first_swap(dev_t *device)
1831 {
1832 int type;
1833
1834 spin_lock(&swap_lock);
1835 for (type = 0; type < nr_swapfiles; type++) {
1836 struct swap_info_struct *sis = swap_info[type];
1837
1838 if (!(sis->flags & SWP_WRITEOK))
1839 continue;
1840 *device = sis->bdev->bd_dev;
1841 spin_unlock(&swap_lock);
1842 return type;
1843 }
1844 spin_unlock(&swap_lock);
1845 return -ENODEV;
1846 }
1847
1848 /*
1849 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1850 * corresponding to given index in swap_info (swap type).
1851 */
swapdev_block(int type,pgoff_t offset)1852 sector_t swapdev_block(int type, pgoff_t offset)
1853 {
1854 struct swap_info_struct *si = swap_type_to_swap_info(type);
1855 struct swap_extent *se;
1856
1857 if (!si || !(si->flags & SWP_WRITEOK))
1858 return 0;
1859 se = offset_to_swap_extent(si, offset);
1860 return se->start_block + (offset - se->start_page);
1861 }
1862
1863 /*
1864 * Return either the total number of swap pages of given type, or the number
1865 * of free pages of that type (depending on @free)
1866 *
1867 * This is needed for software suspend
1868 */
count_swap_pages(int type,int free)1869 unsigned int count_swap_pages(int type, int free)
1870 {
1871 unsigned int n = 0;
1872
1873 spin_lock(&swap_lock);
1874 if ((unsigned int)type < nr_swapfiles) {
1875 struct swap_info_struct *sis = swap_info[type];
1876
1877 spin_lock(&sis->lock);
1878 if (sis->flags & SWP_WRITEOK) {
1879 n = sis->pages;
1880 if (free)
1881 n -= sis->inuse_pages;
1882 }
1883 spin_unlock(&sis->lock);
1884 }
1885 spin_unlock(&swap_lock);
1886 return n;
1887 }
1888 #endif /* CONFIG_HIBERNATION */
1889
pte_same_as_swp(pte_t pte,pte_t swp_pte)1890 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1891 {
1892 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1893 }
1894
1895 /*
1896 * No need to decide whether this PTE shares the swap entry with others,
1897 * just let do_wp_page work it out if a write is requested later - to
1898 * force COW, vm_page_prot omits write permission from any private vma.
1899 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1900 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1901 unsigned long addr, swp_entry_t entry, struct page *page)
1902 {
1903 struct page *swapcache;
1904 spinlock_t *ptl;
1905 pte_t *pte;
1906 int ret = 1;
1907
1908 swapcache = page;
1909 page = ksm_might_need_to_copy(page, vma, addr);
1910 if (unlikely(!page))
1911 return -ENOMEM;
1912
1913 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1914 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1915 ret = 0;
1916 goto out;
1917 }
1918
1919 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1920 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1921 get_page(page);
1922 set_pte_at(vma->vm_mm, addr, pte,
1923 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1924 if (page == swapcache) {
1925 page_add_anon_rmap(page, vma, addr, false);
1926 } else { /* ksm created a completely new copy */
1927 page_add_new_anon_rmap(page, vma, addr, false);
1928 lru_cache_add_inactive_or_unevictable(page, vma);
1929 }
1930 swap_free(entry);
1931 out:
1932 pte_unmap_unlock(pte, ptl);
1933 if (page != swapcache) {
1934 unlock_page(page);
1935 put_page(page);
1936 }
1937 return ret;
1938 }
1939
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1940 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1941 unsigned long addr, unsigned long end,
1942 unsigned int type, bool frontswap,
1943 unsigned long *fs_pages_to_unuse)
1944 {
1945 struct page *page;
1946 swp_entry_t entry;
1947 pte_t *pte;
1948 struct swap_info_struct *si;
1949 unsigned long offset;
1950 int ret = 0;
1951 volatile unsigned char *swap_map;
1952
1953 si = swap_info[type];
1954 pte = pte_offset_map(pmd, addr);
1955 do {
1956 if (!is_swap_pte(*pte))
1957 continue;
1958
1959 entry = pte_to_swp_entry(*pte);
1960 if (swp_type(entry) != type)
1961 continue;
1962
1963 offset = swp_offset(entry);
1964 if (frontswap && !frontswap_test(si, offset))
1965 continue;
1966
1967 pte_unmap(pte);
1968 swap_map = &si->swap_map[offset];
1969 page = lookup_swap_cache(entry, vma, addr);
1970 if (!page) {
1971 struct vm_fault vmf = {
1972 .vma = vma,
1973 .address = addr,
1974 .pmd = pmd,
1975 };
1976
1977 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1978 &vmf);
1979 }
1980 if (!page) {
1981 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1982 goto try_next;
1983 return -ENOMEM;
1984 }
1985
1986 lock_page(page);
1987 wait_on_page_writeback(page);
1988 ret = unuse_pte(vma, pmd, addr, entry, page);
1989 if (ret < 0) {
1990 unlock_page(page);
1991 put_page(page);
1992 goto out;
1993 }
1994
1995 try_to_free_swap(page);
1996 unlock_page(page);
1997 put_page(page);
1998
1999 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2000 ret = FRONTSWAP_PAGES_UNUSED;
2001 goto out;
2002 }
2003 try_next:
2004 pte = pte_offset_map(pmd, addr);
2005 } while (pte++, addr += PAGE_SIZE, addr != end);
2006 pte_unmap(pte - 1);
2007
2008 ret = 0;
2009 out:
2010 return ret;
2011 }
2012
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2013 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2014 unsigned long addr, unsigned long end,
2015 unsigned int type, bool frontswap,
2016 unsigned long *fs_pages_to_unuse)
2017 {
2018 pmd_t *pmd;
2019 unsigned long next;
2020 int ret;
2021
2022 pmd = pmd_offset(pud, addr);
2023 do {
2024 cond_resched();
2025 next = pmd_addr_end(addr, end);
2026 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2027 continue;
2028 ret = unuse_pte_range(vma, pmd, addr, next, type,
2029 frontswap, fs_pages_to_unuse);
2030 if (ret)
2031 return ret;
2032 } while (pmd++, addr = next, addr != end);
2033 return 0;
2034 }
2035
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2036 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2037 unsigned long addr, unsigned long end,
2038 unsigned int type, bool frontswap,
2039 unsigned long *fs_pages_to_unuse)
2040 {
2041 pud_t *pud;
2042 unsigned long next;
2043 int ret;
2044
2045 pud = pud_offset(p4d, addr);
2046 do {
2047 next = pud_addr_end(addr, end);
2048 if (pud_none_or_clear_bad(pud))
2049 continue;
2050 ret = unuse_pmd_range(vma, pud, addr, next, type,
2051 frontswap, fs_pages_to_unuse);
2052 if (ret)
2053 return ret;
2054 } while (pud++, addr = next, addr != end);
2055 return 0;
2056 }
2057
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2058 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2059 unsigned long addr, unsigned long end,
2060 unsigned int type, bool frontswap,
2061 unsigned long *fs_pages_to_unuse)
2062 {
2063 p4d_t *p4d;
2064 unsigned long next;
2065 int ret;
2066
2067 p4d = p4d_offset(pgd, addr);
2068 do {
2069 next = p4d_addr_end(addr, end);
2070 if (p4d_none_or_clear_bad(p4d))
2071 continue;
2072 ret = unuse_pud_range(vma, p4d, addr, next, type,
2073 frontswap, fs_pages_to_unuse);
2074 if (ret)
2075 return ret;
2076 } while (p4d++, addr = next, addr != end);
2077 return 0;
2078 }
2079
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2080 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2081 bool frontswap, unsigned long *fs_pages_to_unuse)
2082 {
2083 pgd_t *pgd;
2084 unsigned long addr, end, next;
2085 int ret;
2086
2087 addr = vma->vm_start;
2088 end = vma->vm_end;
2089
2090 pgd = pgd_offset(vma->vm_mm, addr);
2091 do {
2092 next = pgd_addr_end(addr, end);
2093 if (pgd_none_or_clear_bad(pgd))
2094 continue;
2095 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2096 frontswap, fs_pages_to_unuse);
2097 if (ret)
2098 return ret;
2099 } while (pgd++, addr = next, addr != end);
2100 return 0;
2101 }
2102
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2103 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2104 bool frontswap, unsigned long *fs_pages_to_unuse)
2105 {
2106 struct vm_area_struct *vma;
2107 int ret = 0;
2108
2109 mmap_read_lock(mm);
2110 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2111 if (vma->anon_vma) {
2112 ret = unuse_vma(vma, type, frontswap,
2113 fs_pages_to_unuse);
2114 if (ret)
2115 break;
2116 }
2117 cond_resched();
2118 }
2119 mmap_read_unlock(mm);
2120 return ret;
2121 }
2122
2123 /*
2124 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2125 * from current position to next entry still in use. Return 0
2126 * if there are no inuse entries after prev till end of the map.
2127 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2128 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2129 unsigned int prev, bool frontswap)
2130 {
2131 unsigned int i;
2132 unsigned char count;
2133
2134 /*
2135 * No need for swap_lock here: we're just looking
2136 * for whether an entry is in use, not modifying it; false
2137 * hits are okay, and sys_swapoff() has already prevented new
2138 * allocations from this area (while holding swap_lock).
2139 */
2140 for (i = prev + 1; i < si->max; i++) {
2141 count = READ_ONCE(si->swap_map[i]);
2142 if (count && swap_count(count) != SWAP_MAP_BAD)
2143 if (!frontswap || frontswap_test(si, i))
2144 break;
2145 if ((i % LATENCY_LIMIT) == 0)
2146 cond_resched();
2147 }
2148
2149 if (i == si->max)
2150 i = 0;
2151
2152 return i;
2153 }
2154
2155 /*
2156 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2157 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2158 */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2159 int try_to_unuse(unsigned int type, bool frontswap,
2160 unsigned long pages_to_unuse)
2161 {
2162 struct mm_struct *prev_mm;
2163 struct mm_struct *mm;
2164 struct list_head *p;
2165 int retval = 0;
2166 struct swap_info_struct *si = swap_info[type];
2167 struct page *page;
2168 swp_entry_t entry;
2169 unsigned int i;
2170
2171 if (!READ_ONCE(si->inuse_pages))
2172 return 0;
2173
2174 if (!frontswap)
2175 pages_to_unuse = 0;
2176
2177 retry:
2178 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2179 if (retval)
2180 goto out;
2181
2182 prev_mm = &init_mm;
2183 mmget(prev_mm);
2184
2185 spin_lock(&mmlist_lock);
2186 p = &init_mm.mmlist;
2187 while (READ_ONCE(si->inuse_pages) &&
2188 !signal_pending(current) &&
2189 (p = p->next) != &init_mm.mmlist) {
2190
2191 mm = list_entry(p, struct mm_struct, mmlist);
2192 if (!mmget_not_zero(mm))
2193 continue;
2194 spin_unlock(&mmlist_lock);
2195 mmput(prev_mm);
2196 prev_mm = mm;
2197 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2198
2199 if (retval) {
2200 mmput(prev_mm);
2201 goto out;
2202 }
2203
2204 /*
2205 * Make sure that we aren't completely killing
2206 * interactive performance.
2207 */
2208 cond_resched();
2209 spin_lock(&mmlist_lock);
2210 }
2211 spin_unlock(&mmlist_lock);
2212
2213 mmput(prev_mm);
2214
2215 i = 0;
2216 while (READ_ONCE(si->inuse_pages) &&
2217 !signal_pending(current) &&
2218 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2219
2220 entry = swp_entry(type, i);
2221 page = find_get_page(swap_address_space(entry), i);
2222 if (!page)
2223 continue;
2224
2225 /*
2226 * It is conceivable that a racing task removed this page from
2227 * swap cache just before we acquired the page lock. The page
2228 * might even be back in swap cache on another swap area. But
2229 * that is okay, try_to_free_swap() only removes stale pages.
2230 */
2231 lock_page(page);
2232 wait_on_page_writeback(page);
2233 try_to_free_swap(page);
2234 unlock_page(page);
2235 put_page(page);
2236
2237 /*
2238 * For frontswap, we just need to unuse pages_to_unuse, if
2239 * it was specified. Need not check frontswap again here as
2240 * we already zeroed out pages_to_unuse if not frontswap.
2241 */
2242 if (pages_to_unuse && --pages_to_unuse == 0)
2243 goto out;
2244 }
2245
2246 /*
2247 * Lets check again to see if there are still swap entries in the map.
2248 * If yes, we would need to do retry the unuse logic again.
2249 * Under global memory pressure, swap entries can be reinserted back
2250 * into process space after the mmlist loop above passes over them.
2251 *
2252 * Limit the number of retries? No: when mmget_not_zero() above fails,
2253 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2254 * at its own independent pace; and even shmem_writepage() could have
2255 * been preempted after get_swap_page(), temporarily hiding that swap.
2256 * It's easy and robust (though cpu-intensive) just to keep retrying.
2257 */
2258 if (READ_ONCE(si->inuse_pages)) {
2259 if (!signal_pending(current))
2260 goto retry;
2261 retval = -EINTR;
2262 }
2263 out:
2264 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2265 }
2266
2267 /*
2268 * After a successful try_to_unuse, if no swap is now in use, we know
2269 * we can empty the mmlist. swap_lock must be held on entry and exit.
2270 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2271 * added to the mmlist just after page_duplicate - before would be racy.
2272 */
drain_mmlist(void)2273 static void drain_mmlist(void)
2274 {
2275 struct list_head *p, *next;
2276 unsigned int type;
2277
2278 for (type = 0; type < nr_swapfiles; type++)
2279 if (swap_info[type]->inuse_pages)
2280 return;
2281 spin_lock(&mmlist_lock);
2282 list_for_each_safe(p, next, &init_mm.mmlist)
2283 list_del_init(p);
2284 spin_unlock(&mmlist_lock);
2285 }
2286
2287 /*
2288 * Free all of a swapdev's extent information
2289 */
destroy_swap_extents(struct swap_info_struct * sis)2290 static void destroy_swap_extents(struct swap_info_struct *sis)
2291 {
2292 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2293 struct rb_node *rb = sis->swap_extent_root.rb_node;
2294 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2295
2296 rb_erase(rb, &sis->swap_extent_root);
2297 kfree(se);
2298 }
2299
2300 if (sis->flags & SWP_ACTIVATED) {
2301 struct file *swap_file = sis->swap_file;
2302 struct address_space *mapping = swap_file->f_mapping;
2303
2304 sis->flags &= ~SWP_ACTIVATED;
2305 if (mapping->a_ops->swap_deactivate)
2306 mapping->a_ops->swap_deactivate(swap_file);
2307 }
2308 }
2309
2310 /*
2311 * Add a block range (and the corresponding page range) into this swapdev's
2312 * extent tree.
2313 *
2314 * This function rather assumes that it is called in ascending page order.
2315 */
2316 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2317 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2318 unsigned long nr_pages, sector_t start_block)
2319 {
2320 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2321 struct swap_extent *se;
2322 struct swap_extent *new_se;
2323
2324 /*
2325 * place the new node at the right most since the
2326 * function is called in ascending page order.
2327 */
2328 while (*link) {
2329 parent = *link;
2330 link = &parent->rb_right;
2331 }
2332
2333 if (parent) {
2334 se = rb_entry(parent, struct swap_extent, rb_node);
2335 BUG_ON(se->start_page + se->nr_pages != start_page);
2336 if (se->start_block + se->nr_pages == start_block) {
2337 /* Merge it */
2338 se->nr_pages += nr_pages;
2339 return 0;
2340 }
2341 }
2342
2343 /* No merge, insert a new extent. */
2344 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2345 if (new_se == NULL)
2346 return -ENOMEM;
2347 new_se->start_page = start_page;
2348 new_se->nr_pages = nr_pages;
2349 new_se->start_block = start_block;
2350
2351 rb_link_node(&new_se->rb_node, parent, link);
2352 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2353 return 1;
2354 }
2355 EXPORT_SYMBOL_GPL(add_swap_extent);
2356
2357 /*
2358 * A `swap extent' is a simple thing which maps a contiguous range of pages
2359 * onto a contiguous range of disk blocks. An ordered list of swap extents
2360 * is built at swapon time and is then used at swap_writepage/swap_readpage
2361 * time for locating where on disk a page belongs.
2362 *
2363 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2364 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2365 * swap files identically.
2366 *
2367 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2368 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2369 * swapfiles are handled *identically* after swapon time.
2370 *
2371 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2372 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2373 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2374 * requirements, they are simply tossed out - we will never use those blocks
2375 * for swapping.
2376 *
2377 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2378 * prevents users from writing to the swap device, which will corrupt memory.
2379 *
2380 * The amount of disk space which a single swap extent represents varies.
2381 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2382 * extents in the list. To avoid much list walking, we cache the previous
2383 * search location in `curr_swap_extent', and start new searches from there.
2384 * This is extremely effective. The average number of iterations in
2385 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2386 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2387 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2388 {
2389 struct file *swap_file = sis->swap_file;
2390 struct address_space *mapping = swap_file->f_mapping;
2391 struct inode *inode = mapping->host;
2392 int ret;
2393
2394 if (S_ISBLK(inode->i_mode)) {
2395 ret = add_swap_extent(sis, 0, sis->max, 0);
2396 *span = sis->pages;
2397 return ret;
2398 }
2399
2400 if (mapping->a_ops->swap_activate) {
2401 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2402 if (ret >= 0)
2403 sis->flags |= SWP_ACTIVATED;
2404 if (!ret) {
2405 sis->flags |= SWP_FS_OPS;
2406 ret = add_swap_extent(sis, 0, sis->max, 0);
2407 *span = sis->pages;
2408 }
2409 return ret;
2410 }
2411
2412 return generic_swapfile_activate(sis, swap_file, span);
2413 }
2414
swap_node(struct swap_info_struct * p)2415 static int swap_node(struct swap_info_struct *p)
2416 {
2417 struct block_device *bdev;
2418
2419 if (p->bdev)
2420 bdev = p->bdev;
2421 else
2422 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2423
2424 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2425 }
2426
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2427 static void setup_swap_info(struct swap_info_struct *p, int prio,
2428 unsigned char *swap_map,
2429 struct swap_cluster_info *cluster_info)
2430 {
2431 int i;
2432
2433 if (prio >= 0)
2434 p->prio = prio;
2435 else
2436 p->prio = --least_priority;
2437 /*
2438 * the plist prio is negated because plist ordering is
2439 * low-to-high, while swap ordering is high-to-low
2440 */
2441 p->list.prio = -p->prio;
2442 for_each_node(i) {
2443 if (p->prio >= 0)
2444 p->avail_lists[i].prio = -p->prio;
2445 else {
2446 if (swap_node(p) == i)
2447 p->avail_lists[i].prio = 1;
2448 else
2449 p->avail_lists[i].prio = -p->prio;
2450 }
2451 }
2452 p->swap_map = swap_map;
2453 p->cluster_info = cluster_info;
2454 }
2455
_enable_swap_info(struct swap_info_struct * p)2456 static void _enable_swap_info(struct swap_info_struct *p)
2457 {
2458 p->flags |= SWP_WRITEOK;
2459 atomic_long_add(p->pages, &nr_swap_pages);
2460 total_swap_pages += p->pages;
2461
2462 assert_spin_locked(&swap_lock);
2463 /*
2464 * both lists are plists, and thus priority ordered.
2465 * swap_active_head needs to be priority ordered for swapoff(),
2466 * which on removal of any swap_info_struct with an auto-assigned
2467 * (i.e. negative) priority increments the auto-assigned priority
2468 * of any lower-priority swap_info_structs.
2469 * swap_avail_head needs to be priority ordered for get_swap_page(),
2470 * which allocates swap pages from the highest available priority
2471 * swap_info_struct.
2472 */
2473 plist_add(&p->list, &swap_active_head);
2474 add_to_avail_list(p);
2475 }
2476
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2477 static void enable_swap_info(struct swap_info_struct *p, int prio,
2478 unsigned char *swap_map,
2479 struct swap_cluster_info *cluster_info,
2480 unsigned long *frontswap_map)
2481 {
2482 frontswap_init(p->type, frontswap_map);
2483 spin_lock(&swap_lock);
2484 spin_lock(&p->lock);
2485 setup_swap_info(p, prio, swap_map, cluster_info);
2486 spin_unlock(&p->lock);
2487 spin_unlock(&swap_lock);
2488 /*
2489 * Finished initializing swap device, now it's safe to reference it.
2490 */
2491 percpu_ref_resurrect(&p->users);
2492 spin_lock(&swap_lock);
2493 spin_lock(&p->lock);
2494 _enable_swap_info(p);
2495 spin_unlock(&p->lock);
2496 spin_unlock(&swap_lock);
2497 }
2498
reinsert_swap_info(struct swap_info_struct * p)2499 static void reinsert_swap_info(struct swap_info_struct *p)
2500 {
2501 spin_lock(&swap_lock);
2502 spin_lock(&p->lock);
2503 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2504 _enable_swap_info(p);
2505 spin_unlock(&p->lock);
2506 spin_unlock(&swap_lock);
2507 }
2508
has_usable_swap(void)2509 bool has_usable_swap(void)
2510 {
2511 bool ret = true;
2512
2513 spin_lock(&swap_lock);
2514 if (plist_head_empty(&swap_active_head))
2515 ret = false;
2516 spin_unlock(&swap_lock);
2517 return ret;
2518 }
2519
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2520 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2521 {
2522 struct swap_info_struct *p = NULL;
2523 unsigned char *swap_map;
2524 struct swap_cluster_info *cluster_info;
2525 unsigned long *frontswap_map;
2526 struct file *swap_file, *victim;
2527 struct address_space *mapping;
2528 struct inode *inode;
2529 struct filename *pathname;
2530 int err, found = 0;
2531 unsigned int old_block_size;
2532
2533 if (!capable(CAP_SYS_ADMIN))
2534 return -EPERM;
2535
2536 BUG_ON(!current->mm);
2537
2538 pathname = getname(specialfile);
2539 if (IS_ERR(pathname))
2540 return PTR_ERR(pathname);
2541
2542 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2543 err = PTR_ERR(victim);
2544 if (IS_ERR(victim))
2545 goto out;
2546
2547 mapping = victim->f_mapping;
2548 spin_lock(&swap_lock);
2549 plist_for_each_entry(p, &swap_active_head, list) {
2550 if (p->flags & SWP_WRITEOK) {
2551 if (p->swap_file->f_mapping == mapping) {
2552 found = 1;
2553 break;
2554 }
2555 }
2556 }
2557 if (!found) {
2558 err = -EINVAL;
2559 spin_unlock(&swap_lock);
2560 goto out_dput;
2561 }
2562 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2563 vm_unacct_memory(p->pages);
2564 else {
2565 err = -ENOMEM;
2566 spin_unlock(&swap_lock);
2567 goto out_dput;
2568 }
2569 spin_lock(&p->lock);
2570 del_from_avail_list(p);
2571 if (p->prio < 0) {
2572 struct swap_info_struct *si = p;
2573 int nid;
2574
2575 plist_for_each_entry_continue(si, &swap_active_head, list) {
2576 si->prio++;
2577 si->list.prio--;
2578 for_each_node(nid) {
2579 if (si->avail_lists[nid].prio != 1)
2580 si->avail_lists[nid].prio--;
2581 }
2582 }
2583 least_priority++;
2584 }
2585 plist_del(&p->list, &swap_active_head);
2586 atomic_long_sub(p->pages, &nr_swap_pages);
2587 total_swap_pages -= p->pages;
2588 p->flags &= ~SWP_WRITEOK;
2589 spin_unlock(&p->lock);
2590 spin_unlock(&swap_lock);
2591
2592 disable_swap_slots_cache_lock();
2593
2594 set_current_oom_origin();
2595 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2596 clear_current_oom_origin();
2597
2598 if (err) {
2599 /* re-insert swap space back into swap_list */
2600 reinsert_swap_info(p);
2601 reenable_swap_slots_cache_unlock();
2602 goto out_dput;
2603 }
2604
2605 reenable_swap_slots_cache_unlock();
2606
2607 /*
2608 * Wait for swap operations protected by get/put_swap_device()
2609 * to complete.
2610 *
2611 * We need synchronize_rcu() here to protect the accessing to
2612 * the swap cache data structure.
2613 */
2614 percpu_ref_kill(&p->users);
2615 synchronize_rcu();
2616 wait_for_completion(&p->comp);
2617
2618 flush_work(&p->discard_work);
2619
2620 destroy_swap_extents(p);
2621 if (p->flags & SWP_CONTINUED)
2622 free_swap_count_continuations(p);
2623
2624 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2625 atomic_dec(&nr_rotate_swap);
2626
2627 mutex_lock(&swapon_mutex);
2628 spin_lock(&swap_lock);
2629 spin_lock(&p->lock);
2630 drain_mmlist();
2631
2632 /* wait for anyone still in scan_swap_map_slots */
2633 p->highest_bit = 0; /* cuts scans short */
2634 while (p->flags >= SWP_SCANNING) {
2635 spin_unlock(&p->lock);
2636 spin_unlock(&swap_lock);
2637 schedule_timeout_uninterruptible(1);
2638 spin_lock(&swap_lock);
2639 spin_lock(&p->lock);
2640 }
2641
2642 swap_file = p->swap_file;
2643 old_block_size = p->old_block_size;
2644 p->swap_file = NULL;
2645 p->max = 0;
2646 swap_map = p->swap_map;
2647 p->swap_map = NULL;
2648 cluster_info = p->cluster_info;
2649 p->cluster_info = NULL;
2650 frontswap_map = frontswap_map_get(p);
2651 spin_unlock(&p->lock);
2652 spin_unlock(&swap_lock);
2653 arch_swap_invalidate_area(p->type);
2654 frontswap_invalidate_area(p->type);
2655 frontswap_map_set(p, NULL);
2656 mutex_unlock(&swapon_mutex);
2657 free_percpu(p->percpu_cluster);
2658 p->percpu_cluster = NULL;
2659 free_percpu(p->cluster_next_cpu);
2660 p->cluster_next_cpu = NULL;
2661 vfree(swap_map);
2662 kvfree(cluster_info);
2663 kvfree(frontswap_map);
2664 /* Destroy swap account information */
2665 swap_cgroup_swapoff(p->type);
2666 exit_swap_address_space(p->type);
2667
2668 inode = mapping->host;
2669 if (S_ISBLK(inode->i_mode)) {
2670 struct block_device *bdev = I_BDEV(inode);
2671
2672 set_blocksize(bdev, old_block_size);
2673 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2674 }
2675
2676 inode_lock(inode);
2677 inode->i_flags &= ~S_SWAPFILE;
2678 inode_unlock(inode);
2679 filp_close(swap_file, NULL);
2680
2681 /*
2682 * Clear the SWP_USED flag after all resources are freed so that swapon
2683 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2684 * not hold p->lock after we cleared its SWP_WRITEOK.
2685 */
2686 spin_lock(&swap_lock);
2687 p->flags = 0;
2688 spin_unlock(&swap_lock);
2689
2690 err = 0;
2691 atomic_inc(&proc_poll_event);
2692 wake_up_interruptible(&proc_poll_wait);
2693
2694 out_dput:
2695 filp_close(victim, NULL);
2696 out:
2697 putname(pathname);
2698 return err;
2699 }
2700
2701 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2702 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2703 {
2704 struct seq_file *seq = file->private_data;
2705
2706 poll_wait(file, &proc_poll_wait, wait);
2707
2708 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2709 seq->poll_event = atomic_read(&proc_poll_event);
2710 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2711 }
2712
2713 return EPOLLIN | EPOLLRDNORM;
2714 }
2715
2716 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2717 static void *swap_start(struct seq_file *swap, loff_t *pos)
2718 {
2719 struct swap_info_struct *si;
2720 int type;
2721 loff_t l = *pos;
2722
2723 mutex_lock(&swapon_mutex);
2724
2725 if (!l)
2726 return SEQ_START_TOKEN;
2727
2728 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2729 if (!(si->flags & SWP_USED) || !si->swap_map)
2730 continue;
2731 if (!--l)
2732 return si;
2733 }
2734
2735 return NULL;
2736 }
2737
swap_next(struct seq_file * swap,void * v,loff_t * pos)2738 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739 {
2740 struct swap_info_struct *si = v;
2741 int type;
2742
2743 if (v == SEQ_START_TOKEN)
2744 type = 0;
2745 else
2746 type = si->type + 1;
2747
2748 ++(*pos);
2749 for (; (si = swap_type_to_swap_info(type)); type++) {
2750 if (!(si->flags & SWP_USED) || !si->swap_map)
2751 continue;
2752 return si;
2753 }
2754
2755 return NULL;
2756 }
2757
swap_stop(struct seq_file * swap,void * v)2758 static void swap_stop(struct seq_file *swap, void *v)
2759 {
2760 mutex_unlock(&swapon_mutex);
2761 }
2762
swap_show(struct seq_file * swap,void * v)2763 static int swap_show(struct seq_file *swap, void *v)
2764 {
2765 struct swap_info_struct *si = v;
2766 struct file *file;
2767 int len;
2768 unsigned int bytes, inuse;
2769
2770 if (si == SEQ_START_TOKEN) {
2771 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2772 return 0;
2773 }
2774
2775 bytes = si->pages << (PAGE_SHIFT - 10);
2776 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2777
2778 file = si->swap_file;
2779 len = seq_file_path(swap, file, " \t\n\\");
2780 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2781 len < 40 ? 40 - len : 1, " ",
2782 S_ISBLK(file_inode(file)->i_mode) ?
2783 "partition" : "file\t",
2784 bytes, bytes < 10000000 ? "\t" : "",
2785 inuse, inuse < 10000000 ? "\t" : "",
2786 si->prio);
2787 return 0;
2788 }
2789
2790 static const struct seq_operations swaps_op = {
2791 .start = swap_start,
2792 .next = swap_next,
2793 .stop = swap_stop,
2794 .show = swap_show
2795 };
2796
swaps_open(struct inode * inode,struct file * file)2797 static int swaps_open(struct inode *inode, struct file *file)
2798 {
2799 struct seq_file *seq;
2800 int ret;
2801
2802 ret = seq_open(file, &swaps_op);
2803 if (ret)
2804 return ret;
2805
2806 seq = file->private_data;
2807 seq->poll_event = atomic_read(&proc_poll_event);
2808 return 0;
2809 }
2810
2811 static const struct proc_ops swaps_proc_ops = {
2812 .proc_flags = PROC_ENTRY_PERMANENT,
2813 .proc_open = swaps_open,
2814 .proc_read = seq_read,
2815 .proc_lseek = seq_lseek,
2816 .proc_release = seq_release,
2817 .proc_poll = swaps_poll,
2818 };
2819
procswaps_init(void)2820 static int __init procswaps_init(void)
2821 {
2822 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2823 return 0;
2824 }
2825 __initcall(procswaps_init);
2826 #endif /* CONFIG_PROC_FS */
2827
2828 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2829 static int __init max_swapfiles_check(void)
2830 {
2831 MAX_SWAPFILES_CHECK();
2832 return 0;
2833 }
2834 late_initcall(max_swapfiles_check);
2835 #endif
2836
alloc_swap_info(void)2837 static struct swap_info_struct *alloc_swap_info(void)
2838 {
2839 struct swap_info_struct *p;
2840 struct swap_info_struct *defer = NULL;
2841 unsigned int type;
2842 int i;
2843
2844 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2845 if (!p)
2846 return ERR_PTR(-ENOMEM);
2847
2848 if (percpu_ref_init(&p->users, swap_users_ref_free,
2849 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2850 kvfree(p);
2851 return ERR_PTR(-ENOMEM);
2852 }
2853
2854 spin_lock(&swap_lock);
2855 for (type = 0; type < nr_swapfiles; type++) {
2856 if (!(swap_info[type]->flags & SWP_USED))
2857 break;
2858 }
2859 if (type >= MAX_SWAPFILES) {
2860 spin_unlock(&swap_lock);
2861 percpu_ref_exit(&p->users);
2862 kvfree(p);
2863 return ERR_PTR(-EPERM);
2864 }
2865 if (type >= nr_swapfiles) {
2866 p->type = type;
2867 /*
2868 * Publish the swap_info_struct after initializing it.
2869 * Note that kvzalloc() above zeroes all its fields.
2870 */
2871 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2872 nr_swapfiles++;
2873 } else {
2874 defer = p;
2875 p = swap_info[type];
2876 /*
2877 * Do not memset this entry: a racing procfs swap_next()
2878 * would be relying on p->type to remain valid.
2879 */
2880 }
2881 p->swap_extent_root = RB_ROOT;
2882 plist_node_init(&p->list, 0);
2883 for_each_node(i)
2884 plist_node_init(&p->avail_lists[i], 0);
2885 p->flags = SWP_USED;
2886 spin_unlock(&swap_lock);
2887 if (defer) {
2888 percpu_ref_exit(&defer->users);
2889 kvfree(defer);
2890 }
2891 spin_lock_init(&p->lock);
2892 spin_lock_init(&p->cont_lock);
2893 init_completion(&p->comp);
2894
2895 return p;
2896 }
2897
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2898 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2899 {
2900 int error;
2901
2902 if (S_ISBLK(inode->i_mode)) {
2903 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2904 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2905 if (IS_ERR(p->bdev)) {
2906 error = PTR_ERR(p->bdev);
2907 p->bdev = NULL;
2908 return error;
2909 }
2910 p->old_block_size = block_size(p->bdev);
2911 error = set_blocksize(p->bdev, PAGE_SIZE);
2912 if (error < 0)
2913 return error;
2914 /*
2915 * Zoned block devices contain zones that have a sequential
2916 * write only restriction. Hence zoned block devices are not
2917 * suitable for swapping. Disallow them here.
2918 */
2919 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2920 return -EINVAL;
2921 p->flags |= SWP_BLKDEV;
2922 } else if (S_ISREG(inode->i_mode)) {
2923 p->bdev = inode->i_sb->s_bdev;
2924 }
2925
2926 return 0;
2927 }
2928
2929
2930 /*
2931 * Find out how many pages are allowed for a single swap device. There
2932 * are two limiting factors:
2933 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2934 * 2) the number of bits in the swap pte, as defined by the different
2935 * architectures.
2936 *
2937 * In order to find the largest possible bit mask, a swap entry with
2938 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2939 * decoded to a swp_entry_t again, and finally the swap offset is
2940 * extracted.
2941 *
2942 * This will mask all the bits from the initial ~0UL mask that can't
2943 * be encoded in either the swp_entry_t or the architecture definition
2944 * of a swap pte.
2945 */
generic_max_swapfile_size(void)2946 unsigned long generic_max_swapfile_size(void)
2947 {
2948 return swp_offset(pte_to_swp_entry(
2949 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2950 }
2951
2952 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2953 __weak unsigned long max_swapfile_size(void)
2954 {
2955 return generic_max_swapfile_size();
2956 }
2957
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2958 static unsigned long read_swap_header(struct swap_info_struct *p,
2959 union swap_header *swap_header,
2960 struct inode *inode)
2961 {
2962 int i;
2963 unsigned long maxpages;
2964 unsigned long swapfilepages;
2965 unsigned long last_page;
2966
2967 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2968 pr_err("Unable to find swap-space signature\n");
2969 return 0;
2970 }
2971
2972 /* swap partition endianness hack... */
2973 if (swab32(swap_header->info.version) == 1) {
2974 swab32s(&swap_header->info.version);
2975 swab32s(&swap_header->info.last_page);
2976 swab32s(&swap_header->info.nr_badpages);
2977 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2978 return 0;
2979 for (i = 0; i < swap_header->info.nr_badpages; i++)
2980 swab32s(&swap_header->info.badpages[i]);
2981 }
2982 /* Check the swap header's sub-version */
2983 if (swap_header->info.version != 1) {
2984 pr_warn("Unable to handle swap header version %d\n",
2985 swap_header->info.version);
2986 return 0;
2987 }
2988
2989 p->lowest_bit = 1;
2990 p->cluster_next = 1;
2991 p->cluster_nr = 0;
2992
2993 maxpages = max_swapfile_size();
2994 last_page = swap_header->info.last_page;
2995 if (!last_page) {
2996 pr_warn("Empty swap-file\n");
2997 return 0;
2998 }
2999 if (last_page > maxpages) {
3000 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3001 maxpages << (PAGE_SHIFT - 10),
3002 last_page << (PAGE_SHIFT - 10));
3003 }
3004 if (maxpages > last_page) {
3005 maxpages = last_page + 1;
3006 /* p->max is an unsigned int: don't overflow it */
3007 if ((unsigned int)maxpages == 0)
3008 maxpages = UINT_MAX;
3009 }
3010 p->highest_bit = maxpages - 1;
3011
3012 if (!maxpages)
3013 return 0;
3014 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3015 if (swapfilepages && maxpages > swapfilepages) {
3016 pr_warn("Swap area shorter than signature indicates\n");
3017 return 0;
3018 }
3019 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3020 return 0;
3021 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3022 return 0;
3023
3024 return maxpages;
3025 }
3026
3027 #define SWAP_CLUSTER_INFO_COLS \
3028 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3029 #define SWAP_CLUSTER_SPACE_COLS \
3030 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3031 #define SWAP_CLUSTER_COLS \
3032 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3033
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3034 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3035 union swap_header *swap_header,
3036 unsigned char *swap_map,
3037 struct swap_cluster_info *cluster_info,
3038 unsigned long maxpages,
3039 sector_t *span)
3040 {
3041 unsigned int j, k;
3042 unsigned int nr_good_pages;
3043 int nr_extents;
3044 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3045 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3046 unsigned long i, idx;
3047
3048 nr_good_pages = maxpages - 1; /* omit header page */
3049
3050 cluster_list_init(&p->free_clusters);
3051 cluster_list_init(&p->discard_clusters);
3052
3053 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3054 unsigned int page_nr = swap_header->info.badpages[i];
3055 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3056 return -EINVAL;
3057 if (page_nr < maxpages) {
3058 swap_map[page_nr] = SWAP_MAP_BAD;
3059 nr_good_pages--;
3060 /*
3061 * Haven't marked the cluster free yet, no list
3062 * operation involved
3063 */
3064 inc_cluster_info_page(p, cluster_info, page_nr);
3065 }
3066 }
3067
3068 /* Haven't marked the cluster free yet, no list operation involved */
3069 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3070 inc_cluster_info_page(p, cluster_info, i);
3071
3072 if (nr_good_pages) {
3073 swap_map[0] = SWAP_MAP_BAD;
3074 /*
3075 * Not mark the cluster free yet, no list
3076 * operation involved
3077 */
3078 inc_cluster_info_page(p, cluster_info, 0);
3079 p->max = maxpages;
3080 p->pages = nr_good_pages;
3081 nr_extents = setup_swap_extents(p, span);
3082 if (nr_extents < 0)
3083 return nr_extents;
3084 nr_good_pages = p->pages;
3085 }
3086 if (!nr_good_pages) {
3087 pr_warn("Empty swap-file\n");
3088 return -EINVAL;
3089 }
3090
3091 if (!cluster_info)
3092 return nr_extents;
3093
3094
3095 /*
3096 * Reduce false cache line sharing between cluster_info and
3097 * sharing same address space.
3098 */
3099 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3100 j = (k + col) % SWAP_CLUSTER_COLS;
3101 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3102 idx = i * SWAP_CLUSTER_COLS + j;
3103 if (idx >= nr_clusters)
3104 continue;
3105 if (cluster_count(&cluster_info[idx]))
3106 continue;
3107 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3108 cluster_list_add_tail(&p->free_clusters, cluster_info,
3109 idx);
3110 }
3111 }
3112 return nr_extents;
3113 }
3114
3115 /*
3116 * Helper to sys_swapon determining if a given swap
3117 * backing device queue supports DISCARD operations.
3118 */
swap_discardable(struct swap_info_struct * si)3119 static bool swap_discardable(struct swap_info_struct *si)
3120 {
3121 struct request_queue *q = bdev_get_queue(si->bdev);
3122
3123 if (!q || !blk_queue_discard(q))
3124 return false;
3125
3126 return true;
3127 }
3128
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3129 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3130 {
3131 struct swap_info_struct *p;
3132 struct filename *name;
3133 struct file *swap_file = NULL;
3134 struct address_space *mapping;
3135 struct dentry *dentry;
3136 int prio;
3137 int error;
3138 union swap_header *swap_header;
3139 int nr_extents;
3140 sector_t span;
3141 unsigned long maxpages;
3142 unsigned char *swap_map = NULL;
3143 struct swap_cluster_info *cluster_info = NULL;
3144 unsigned long *frontswap_map = NULL;
3145 struct page *page = NULL;
3146 struct inode *inode = NULL;
3147 bool inced_nr_rotate_swap = false;
3148
3149 if (swap_flags & ~SWAP_FLAGS_VALID)
3150 return -EINVAL;
3151
3152 if (!capable(CAP_SYS_ADMIN))
3153 return -EPERM;
3154
3155 if (!swap_avail_heads)
3156 return -ENOMEM;
3157
3158 p = alloc_swap_info();
3159 if (IS_ERR(p))
3160 return PTR_ERR(p);
3161
3162 INIT_WORK(&p->discard_work, swap_discard_work);
3163
3164 name = getname(specialfile);
3165 if (IS_ERR(name)) {
3166 error = PTR_ERR(name);
3167 name = NULL;
3168 goto bad_swap;
3169 }
3170 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3171 if (IS_ERR(swap_file)) {
3172 error = PTR_ERR(swap_file);
3173 swap_file = NULL;
3174 goto bad_swap;
3175 }
3176
3177 p->swap_file = swap_file;
3178 mapping = swap_file->f_mapping;
3179 dentry = swap_file->f_path.dentry;
3180 inode = mapping->host;
3181
3182 error = claim_swapfile(p, inode);
3183 if (unlikely(error))
3184 goto bad_swap;
3185
3186 inode_lock(inode);
3187 if (d_unlinked(dentry) || cant_mount(dentry)) {
3188 error = -ENOENT;
3189 goto bad_swap_unlock_inode;
3190 }
3191 if (IS_SWAPFILE(inode)) {
3192 error = -EBUSY;
3193 goto bad_swap_unlock_inode;
3194 }
3195
3196 /*
3197 * Read the swap header.
3198 */
3199 if (!mapping->a_ops->readpage) {
3200 error = -EINVAL;
3201 goto bad_swap_unlock_inode;
3202 }
3203 page = read_mapping_page(mapping, 0, swap_file);
3204 if (IS_ERR(page)) {
3205 error = PTR_ERR(page);
3206 goto bad_swap_unlock_inode;
3207 }
3208 swap_header = kmap(page);
3209
3210 maxpages = read_swap_header(p, swap_header, inode);
3211 if (unlikely(!maxpages)) {
3212 error = -EINVAL;
3213 goto bad_swap_unlock_inode;
3214 }
3215
3216 /* OK, set up the swap map and apply the bad block list */
3217 swap_map = vzalloc(maxpages);
3218 if (!swap_map) {
3219 error = -ENOMEM;
3220 goto bad_swap_unlock_inode;
3221 }
3222
3223 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3224 p->flags |= SWP_STABLE_WRITES;
3225
3226 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3227 p->flags |= SWP_SYNCHRONOUS_IO;
3228
3229 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3230 int cpu;
3231 unsigned long ci, nr_cluster;
3232
3233 p->flags |= SWP_SOLIDSTATE;
3234 p->cluster_next_cpu = alloc_percpu(unsigned int);
3235 if (!p->cluster_next_cpu) {
3236 error = -ENOMEM;
3237 goto bad_swap_unlock_inode;
3238 }
3239 /*
3240 * select a random position to start with to help wear leveling
3241 * SSD
3242 */
3243 for_each_possible_cpu(cpu) {
3244 per_cpu(*p->cluster_next_cpu, cpu) =
3245 1 + prandom_u32_max(p->highest_bit);
3246 }
3247 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3248
3249 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3250 GFP_KERNEL);
3251 if (!cluster_info) {
3252 error = -ENOMEM;
3253 goto bad_swap_unlock_inode;
3254 }
3255
3256 for (ci = 0; ci < nr_cluster; ci++)
3257 spin_lock_init(&((cluster_info + ci)->lock));
3258
3259 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3260 if (!p->percpu_cluster) {
3261 error = -ENOMEM;
3262 goto bad_swap_unlock_inode;
3263 }
3264 for_each_possible_cpu(cpu) {
3265 struct percpu_cluster *cluster;
3266 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3267 cluster_set_null(&cluster->index);
3268 }
3269 } else {
3270 atomic_inc(&nr_rotate_swap);
3271 inced_nr_rotate_swap = true;
3272 }
3273
3274 error = swap_cgroup_swapon(p->type, maxpages);
3275 if (error)
3276 goto bad_swap_unlock_inode;
3277
3278 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3279 cluster_info, maxpages, &span);
3280 if (unlikely(nr_extents < 0)) {
3281 error = nr_extents;
3282 goto bad_swap_unlock_inode;
3283 }
3284 /* frontswap enabled? set up bit-per-page map for frontswap */
3285 if (IS_ENABLED(CONFIG_FRONTSWAP))
3286 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3287 sizeof(long),
3288 GFP_KERNEL);
3289
3290 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3291 /*
3292 * When discard is enabled for swap with no particular
3293 * policy flagged, we set all swap discard flags here in
3294 * order to sustain backward compatibility with older
3295 * swapon(8) releases.
3296 */
3297 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3298 SWP_PAGE_DISCARD);
3299
3300 /*
3301 * By flagging sys_swapon, a sysadmin can tell us to
3302 * either do single-time area discards only, or to just
3303 * perform discards for released swap page-clusters.
3304 * Now it's time to adjust the p->flags accordingly.
3305 */
3306 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3307 p->flags &= ~SWP_PAGE_DISCARD;
3308 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3309 p->flags &= ~SWP_AREA_DISCARD;
3310
3311 /* issue a swapon-time discard if it's still required */
3312 if (p->flags & SWP_AREA_DISCARD) {
3313 int err = discard_swap(p);
3314 if (unlikely(err))
3315 pr_err("swapon: discard_swap(%p): %d\n",
3316 p, err);
3317 }
3318 }
3319
3320 error = init_swap_address_space(p->type, maxpages);
3321 if (error)
3322 goto bad_swap_unlock_inode;
3323
3324 /*
3325 * Flush any pending IO and dirty mappings before we start using this
3326 * swap device.
3327 */
3328 inode->i_flags |= S_SWAPFILE;
3329 error = inode_drain_writes(inode);
3330 if (error) {
3331 inode->i_flags &= ~S_SWAPFILE;
3332 goto free_swap_address_space;
3333 }
3334
3335 mutex_lock(&swapon_mutex);
3336 prio = -1;
3337 if (swap_flags & SWAP_FLAG_PREFER)
3338 prio =
3339 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3340 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3341
3342 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3343 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3344 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3345 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3346 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3347 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3348 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3349 (frontswap_map) ? "FS" : "");
3350
3351 mutex_unlock(&swapon_mutex);
3352 atomic_inc(&proc_poll_event);
3353 wake_up_interruptible(&proc_poll_wait);
3354
3355 error = 0;
3356 goto out;
3357 free_swap_address_space:
3358 exit_swap_address_space(p->type);
3359 bad_swap_unlock_inode:
3360 inode_unlock(inode);
3361 bad_swap:
3362 free_percpu(p->percpu_cluster);
3363 p->percpu_cluster = NULL;
3364 free_percpu(p->cluster_next_cpu);
3365 p->cluster_next_cpu = NULL;
3366 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3367 set_blocksize(p->bdev, p->old_block_size);
3368 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3369 }
3370 inode = NULL;
3371 destroy_swap_extents(p);
3372 swap_cgroup_swapoff(p->type);
3373 spin_lock(&swap_lock);
3374 p->swap_file = NULL;
3375 p->flags = 0;
3376 spin_unlock(&swap_lock);
3377 vfree(swap_map);
3378 kvfree(cluster_info);
3379 kvfree(frontswap_map);
3380 if (inced_nr_rotate_swap)
3381 atomic_dec(&nr_rotate_swap);
3382 if (swap_file)
3383 filp_close(swap_file, NULL);
3384 out:
3385 if (page && !IS_ERR(page)) {
3386 kunmap(page);
3387 put_page(page);
3388 }
3389 if (name)
3390 putname(name);
3391 if (inode)
3392 inode_unlock(inode);
3393 if (!error)
3394 enable_swap_slots_cache();
3395 return error;
3396 }
3397
si_swapinfo(struct sysinfo * val)3398 void si_swapinfo(struct sysinfo *val)
3399 {
3400 unsigned int type;
3401 unsigned long nr_to_be_unused = 0;
3402
3403 spin_lock(&swap_lock);
3404 for (type = 0; type < nr_swapfiles; type++) {
3405 struct swap_info_struct *si = swap_info[type];
3406
3407 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3408 nr_to_be_unused += si->inuse_pages;
3409 }
3410 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3411 val->totalswap = total_swap_pages + nr_to_be_unused;
3412 spin_unlock(&swap_lock);
3413 }
3414 EXPORT_SYMBOL_NS_GPL(si_swapinfo, MINIDUMP);
3415
3416 /*
3417 * Verify that a swap entry is valid and increment its swap map count.
3418 *
3419 * Returns error code in following case.
3420 * - success -> 0
3421 * - swp_entry is invalid -> EINVAL
3422 * - swp_entry is migration entry -> EINVAL
3423 * - swap-cache reference is requested but there is already one. -> EEXIST
3424 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3425 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3426 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3427 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3428 {
3429 struct swap_info_struct *p;
3430 struct swap_cluster_info *ci;
3431 unsigned long offset;
3432 unsigned char count;
3433 unsigned char has_cache;
3434 int err;
3435
3436 p = get_swap_device(entry);
3437 if (!p)
3438 return -EINVAL;
3439
3440 offset = swp_offset(entry);
3441 ci = lock_cluster_or_swap_info(p, offset);
3442
3443 count = p->swap_map[offset];
3444
3445 /*
3446 * swapin_readahead() doesn't check if a swap entry is valid, so the
3447 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3448 */
3449 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3450 err = -ENOENT;
3451 goto unlock_out;
3452 }
3453
3454 has_cache = count & SWAP_HAS_CACHE;
3455 count &= ~SWAP_HAS_CACHE;
3456 err = 0;
3457
3458 if (usage == SWAP_HAS_CACHE) {
3459
3460 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3461 if (!has_cache && count)
3462 has_cache = SWAP_HAS_CACHE;
3463 else if (has_cache) /* someone else added cache */
3464 err = -EEXIST;
3465 else /* no users remaining */
3466 err = -ENOENT;
3467
3468 } else if (count || has_cache) {
3469
3470 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3471 count += usage;
3472 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3473 err = -EINVAL;
3474 else if (swap_count_continued(p, offset, count))
3475 count = COUNT_CONTINUED;
3476 else
3477 err = -ENOMEM;
3478 } else
3479 err = -ENOENT; /* unused swap entry */
3480
3481 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3482
3483 unlock_out:
3484 unlock_cluster_or_swap_info(p, ci);
3485 if (p)
3486 put_swap_device(p);
3487 return err;
3488 }
3489
3490 /*
3491 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3492 * (in which case its reference count is never incremented).
3493 */
swap_shmem_alloc(swp_entry_t entry)3494 void swap_shmem_alloc(swp_entry_t entry)
3495 {
3496 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3497 }
3498
3499 /*
3500 * Increase reference count of swap entry by 1.
3501 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3502 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3503 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3504 * might occur if a page table entry has got corrupted.
3505 */
swap_duplicate(swp_entry_t entry)3506 int swap_duplicate(swp_entry_t entry)
3507 {
3508 int err = 0;
3509
3510 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3511 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3512 return err;
3513 }
3514
3515 /*
3516 * @entry: swap entry for which we allocate swap cache.
3517 *
3518 * Called when allocating swap cache for existing swap entry,
3519 * This can return error codes. Returns 0 at success.
3520 * -EEXIST means there is a swap cache.
3521 * Note: return code is different from swap_duplicate().
3522 */
swapcache_prepare(swp_entry_t entry)3523 int swapcache_prepare(swp_entry_t entry)
3524 {
3525 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3526 }
3527
swp_swap_info(swp_entry_t entry)3528 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3529 {
3530 return swap_type_to_swap_info(swp_type(entry));
3531 }
3532
page_swap_info(struct page * page)3533 struct swap_info_struct *page_swap_info(struct page *page)
3534 {
3535 swp_entry_t entry = { .val = page_private(page) };
3536 return swp_swap_info(entry);
3537 }
3538
3539 /*
3540 * out-of-line __page_file_ methods to avoid include hell.
3541 */
__page_file_mapping(struct page * page)3542 struct address_space *__page_file_mapping(struct page *page)
3543 {
3544 return page_swap_info(page)->swap_file->f_mapping;
3545 }
3546 EXPORT_SYMBOL_GPL(__page_file_mapping);
3547
__page_file_index(struct page * page)3548 pgoff_t __page_file_index(struct page *page)
3549 {
3550 swp_entry_t swap = { .val = page_private(page) };
3551 return swp_offset(swap);
3552 }
3553 EXPORT_SYMBOL_GPL(__page_file_index);
3554
3555 /*
3556 * add_swap_count_continuation - called when a swap count is duplicated
3557 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3558 * page of the original vmalloc'ed swap_map, to hold the continuation count
3559 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3560 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3561 *
3562 * These continuation pages are seldom referenced: the common paths all work
3563 * on the original swap_map, only referring to a continuation page when the
3564 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3565 *
3566 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3567 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3568 * can be called after dropping locks.
3569 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3570 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3571 {
3572 struct swap_info_struct *si;
3573 struct swap_cluster_info *ci;
3574 struct page *head;
3575 struct page *page;
3576 struct page *list_page;
3577 pgoff_t offset;
3578 unsigned char count;
3579 int ret = 0;
3580
3581 /*
3582 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3583 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3584 */
3585 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3586
3587 si = get_swap_device(entry);
3588 if (!si) {
3589 /*
3590 * An acceptable race has occurred since the failing
3591 * __swap_duplicate(): the swap device may be swapoff
3592 */
3593 goto outer;
3594 }
3595 spin_lock(&si->lock);
3596
3597 offset = swp_offset(entry);
3598
3599 ci = lock_cluster(si, offset);
3600
3601 count = swap_count(si->swap_map[offset]);
3602
3603 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3604 /*
3605 * The higher the swap count, the more likely it is that tasks
3606 * will race to add swap count continuation: we need to avoid
3607 * over-provisioning.
3608 */
3609 goto out;
3610 }
3611
3612 if (!page) {
3613 ret = -ENOMEM;
3614 goto out;
3615 }
3616
3617 /*
3618 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3619 * no architecture is using highmem pages for kernel page tables: so it
3620 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3621 */
3622 head = vmalloc_to_page(si->swap_map + offset);
3623 offset &= ~PAGE_MASK;
3624
3625 spin_lock(&si->cont_lock);
3626 /*
3627 * Page allocation does not initialize the page's lru field,
3628 * but it does always reset its private field.
3629 */
3630 if (!page_private(head)) {
3631 BUG_ON(count & COUNT_CONTINUED);
3632 INIT_LIST_HEAD(&head->lru);
3633 set_page_private(head, SWP_CONTINUED);
3634 si->flags |= SWP_CONTINUED;
3635 }
3636
3637 list_for_each_entry(list_page, &head->lru, lru) {
3638 unsigned char *map;
3639
3640 /*
3641 * If the previous map said no continuation, but we've found
3642 * a continuation page, free our allocation and use this one.
3643 */
3644 if (!(count & COUNT_CONTINUED))
3645 goto out_unlock_cont;
3646
3647 map = kmap_atomic(list_page) + offset;
3648 count = *map;
3649 kunmap_atomic(map);
3650
3651 /*
3652 * If this continuation count now has some space in it,
3653 * free our allocation and use this one.
3654 */
3655 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3656 goto out_unlock_cont;
3657 }
3658
3659 list_add_tail(&page->lru, &head->lru);
3660 page = NULL; /* now it's attached, don't free it */
3661 out_unlock_cont:
3662 spin_unlock(&si->cont_lock);
3663 out:
3664 unlock_cluster(ci);
3665 spin_unlock(&si->lock);
3666 put_swap_device(si);
3667 outer:
3668 if (page)
3669 __free_page(page);
3670 return ret;
3671 }
3672
3673 /*
3674 * swap_count_continued - when the original swap_map count is incremented
3675 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3676 * into, carry if so, or else fail until a new continuation page is allocated;
3677 * when the original swap_map count is decremented from 0 with continuation,
3678 * borrow from the continuation and report whether it still holds more.
3679 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3680 * lock.
3681 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3682 static bool swap_count_continued(struct swap_info_struct *si,
3683 pgoff_t offset, unsigned char count)
3684 {
3685 struct page *head;
3686 struct page *page;
3687 unsigned char *map;
3688 bool ret;
3689
3690 head = vmalloc_to_page(si->swap_map + offset);
3691 if (page_private(head) != SWP_CONTINUED) {
3692 BUG_ON(count & COUNT_CONTINUED);
3693 return false; /* need to add count continuation */
3694 }
3695
3696 spin_lock(&si->cont_lock);
3697 offset &= ~PAGE_MASK;
3698 page = list_next_entry(head, lru);
3699 map = kmap_atomic(page) + offset;
3700
3701 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3702 goto init_map; /* jump over SWAP_CONT_MAX checks */
3703
3704 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3705 /*
3706 * Think of how you add 1 to 999
3707 */
3708 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3709 kunmap_atomic(map);
3710 page = list_next_entry(page, lru);
3711 BUG_ON(page == head);
3712 map = kmap_atomic(page) + offset;
3713 }
3714 if (*map == SWAP_CONT_MAX) {
3715 kunmap_atomic(map);
3716 page = list_next_entry(page, lru);
3717 if (page == head) {
3718 ret = false; /* add count continuation */
3719 goto out;
3720 }
3721 map = kmap_atomic(page) + offset;
3722 init_map: *map = 0; /* we didn't zero the page */
3723 }
3724 *map += 1;
3725 kunmap_atomic(map);
3726 while ((page = list_prev_entry(page, lru)) != head) {
3727 map = kmap_atomic(page) + offset;
3728 *map = COUNT_CONTINUED;
3729 kunmap_atomic(map);
3730 }
3731 ret = true; /* incremented */
3732
3733 } else { /* decrementing */
3734 /*
3735 * Think of how you subtract 1 from 1000
3736 */
3737 BUG_ON(count != COUNT_CONTINUED);
3738 while (*map == COUNT_CONTINUED) {
3739 kunmap_atomic(map);
3740 page = list_next_entry(page, lru);
3741 BUG_ON(page == head);
3742 map = kmap_atomic(page) + offset;
3743 }
3744 BUG_ON(*map == 0);
3745 *map -= 1;
3746 if (*map == 0)
3747 count = 0;
3748 kunmap_atomic(map);
3749 while ((page = list_prev_entry(page, lru)) != head) {
3750 map = kmap_atomic(page) + offset;
3751 *map = SWAP_CONT_MAX | count;
3752 count = COUNT_CONTINUED;
3753 kunmap_atomic(map);
3754 }
3755 ret = count == COUNT_CONTINUED;
3756 }
3757 out:
3758 spin_unlock(&si->cont_lock);
3759 return ret;
3760 }
3761
3762 /*
3763 * free_swap_count_continuations - swapoff free all the continuation pages
3764 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3765 */
free_swap_count_continuations(struct swap_info_struct * si)3766 static void free_swap_count_continuations(struct swap_info_struct *si)
3767 {
3768 pgoff_t offset;
3769
3770 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3771 struct page *head;
3772 head = vmalloc_to_page(si->swap_map + offset);
3773 if (page_private(head)) {
3774 struct page *page, *next;
3775
3776 list_for_each_entry_safe(page, next, &head->lru, lru) {
3777 list_del(&page->lru);
3778 __free_page(page);
3779 }
3780 }
3781 }
3782 }
3783
3784 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3785 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3786 {
3787 struct swap_info_struct *si, *next;
3788 int nid = page_to_nid(page);
3789
3790 if (!(gfp_mask & __GFP_IO))
3791 return;
3792
3793 if (!blk_cgroup_congested())
3794 return;
3795
3796 /*
3797 * We've already scheduled a throttle, avoid taking the global swap
3798 * lock.
3799 */
3800 if (current->throttle_queue)
3801 return;
3802
3803 spin_lock(&swap_avail_lock);
3804 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3805 avail_lists[nid]) {
3806 if (si->bdev) {
3807 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3808 break;
3809 }
3810 }
3811 spin_unlock(&swap_avail_lock);
3812 }
3813 #endif
3814
swapfile_init(void)3815 static int __init swapfile_init(void)
3816 {
3817 int nid;
3818
3819 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3820 GFP_KERNEL);
3821 if (!swap_avail_heads) {
3822 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3823 return -ENOMEM;
3824 }
3825
3826 for_each_node(nid)
3827 plist_head_init(&swap_avail_heads[nid]);
3828
3829 return 0;
3830 }
3831 subsys_initcall(swapfile_init);
3832