• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/mm.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pfn.h>
32 #include <linux/types.h>
33 #include <linux/ctype.h>
34 #include <linux/highmem.h>
35 #include <linux/gfp.h>
36 #include <linux/scatterlist.h>
37 #include <linux/mem_encrypt.h>
38 #include <linux/set_memory.h>
39 #ifdef CONFIG_DEBUG_FS
40 #include <linux/debugfs.h>
41 #endif
42 #ifdef CONFIG_DMA_RESTRICTED_POOL
43 #include <linux/io.h>
44 #include <linux/of.h>
45 #include <linux/of_fdt.h>
46 #include <linux/of_reserved_mem.h>
47 #include <linux/slab.h>
48 #endif
49 
50 #include <asm/io.h>
51 #include <asm/dma.h>
52 
53 #include <linux/init.h>
54 #include <linux/memblock.h>
55 #include <linux/iommu-helper.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/swiotlb.h>
59 
60 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
61 
62 /*
63  * Minimum IO TLB size to bother booting with.  Systems with mainly
64  * 64bit capable cards will only lightly use the swiotlb.  If we can't
65  * allocate a contiguous 1MB, we're probably in trouble anyway.
66  */
67 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
68 
69 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
70 
71 enum swiotlb_force swiotlb_force;
72 
73 struct io_tlb_mem io_tlb_default_mem;
74 
75 /*
76  * Max segment that we can provide which (if pages are contingous) will
77  * not be bounced (unless SWIOTLB_FORCE is set).
78  */
79 static unsigned int max_segment;
80 
81 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
82 
83 static int __init
setup_io_tlb_npages(char * str)84 setup_io_tlb_npages(char *str)
85 {
86 	if (isdigit(*str)) {
87 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
88 		default_nslabs =
89 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
90 	}
91 	if (*str == ',')
92 		++str;
93 	if (!strcmp(str, "force"))
94 		swiotlb_force = SWIOTLB_FORCE;
95 	else if (!strcmp(str, "noforce"))
96 		swiotlb_force = SWIOTLB_NO_FORCE;
97 
98 	return 0;
99 }
100 early_param("swiotlb", setup_io_tlb_npages);
101 
swiotlb_max_segment(void)102 unsigned int swiotlb_max_segment(void)
103 {
104 	return io_tlb_default_mem.nslabs ? max_segment : 0;
105 }
106 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
107 
swiotlb_set_max_segment(unsigned int val)108 void swiotlb_set_max_segment(unsigned int val)
109 {
110 	if (swiotlb_force == SWIOTLB_FORCE)
111 		max_segment = 1;
112 	else
113 		max_segment = rounddown(val, PAGE_SIZE);
114 }
115 
swiotlb_size_or_default(void)116 unsigned long swiotlb_size_or_default(void)
117 {
118 	return default_nslabs << IO_TLB_SHIFT;
119 }
120 
swiotlb_adjust_size(unsigned long size)121 void __init swiotlb_adjust_size(unsigned long size)
122 {
123 	/*
124 	 * If swiotlb parameter has not been specified, give a chance to
125 	 * architectures such as those supporting memory encryption to
126 	 * adjust/expand SWIOTLB size for their use.
127 	 */
128 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
129 		return;
130 	size = ALIGN(size, IO_TLB_SIZE);
131 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
132 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
133 }
134 
swiotlb_print_info(void)135 void swiotlb_print_info(void)
136 {
137 	struct io_tlb_mem *mem = &io_tlb_default_mem;
138 
139 	if (!mem->nslabs) {
140 		pr_warn("No low mem\n");
141 		return;
142 	}
143 
144 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
145 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
146 }
147 
io_tlb_offset(unsigned long val)148 static inline unsigned long io_tlb_offset(unsigned long val)
149 {
150 	return val & (IO_TLB_SEGSIZE - 1);
151 }
152 
nr_slots(u64 val)153 static inline unsigned long nr_slots(u64 val)
154 {
155 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
156 }
157 
158 /*
159  * Early SWIOTLB allocation may be too early to allow an architecture to
160  * perform the desired operations.  This function allows the architecture to
161  * call SWIOTLB when the operations are possible.  It needs to be called
162  * before the SWIOTLB memory is used.
163  */
swiotlb_update_mem_attributes(void)164 void __init swiotlb_update_mem_attributes(void)
165 {
166 	struct io_tlb_mem *mem = &io_tlb_default_mem;
167 	void *vaddr;
168 	unsigned long bytes;
169 
170 	if (!mem->nslabs || mem->late_alloc)
171 		return;
172 	vaddr = phys_to_virt(mem->start);
173 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
174 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
175 	memset(vaddr, 0, bytes);
176 }
177 
swiotlb_init_io_tlb_mem(struct io_tlb_mem * mem,phys_addr_t start,unsigned long nslabs,bool late_alloc)178 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
179 				    unsigned long nslabs, bool late_alloc)
180 {
181 	void *vaddr = phys_to_virt(start);
182 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
183 
184 	mem->nslabs = nslabs;
185 	mem->start = start;
186 	mem->end = mem->start + bytes;
187 	mem->index = 0;
188 	mem->late_alloc = late_alloc;
189 
190 	if (swiotlb_force == SWIOTLB_FORCE)
191 		mem->force_bounce = true;
192 
193 	spin_lock_init(&mem->lock);
194 	for (i = 0; i < mem->nslabs; i++) {
195 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
196 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
197 		mem->slots[i].alloc_size = 0;
198 	}
199 	memset(vaddr, 0, bytes);
200 }
201 
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)202 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
203 {
204 	struct io_tlb_mem *mem = &io_tlb_default_mem;
205 	size_t alloc_size;
206 
207 	if (swiotlb_force == SWIOTLB_NO_FORCE)
208 		return 0;
209 
210 	/* protect against double initialization */
211 	if (WARN_ON_ONCE(mem->nslabs))
212 		return -ENOMEM;
213 
214 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
215 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
216 	if (!mem->slots)
217 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
218 		      __func__, alloc_size, PAGE_SIZE);
219 
220 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
221 
222 	if (verbose)
223 		swiotlb_print_info();
224 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
225 	return 0;
226 }
227 
228 /*
229  * Statically reserve bounce buffer space and initialize bounce buffer data
230  * structures for the software IO TLB used to implement the DMA API.
231  */
232 void  __init
swiotlb_init(int verbose)233 swiotlb_init(int verbose)
234 {
235 	size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
236 	void *tlb;
237 
238 	if (swiotlb_force == SWIOTLB_NO_FORCE)
239 		return;
240 
241 	/* Get IO TLB memory from the low pages */
242 	tlb = memblock_alloc_low(bytes, PAGE_SIZE);
243 	if (!tlb)
244 		goto fail;
245 	if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
246 		goto fail_free_mem;
247 	return;
248 
249 fail_free_mem:
250 	memblock_free_early(__pa(tlb), bytes);
251 fail:
252 	pr_warn("Cannot allocate buffer");
253 }
254 
255 /*
256  * Systems with larger DMA zones (those that don't support ISA) can
257  * initialize the swiotlb later using the slab allocator if needed.
258  * This should be just like above, but with some error catching.
259  */
260 int
swiotlb_late_init_with_default_size(size_t default_size)261 swiotlb_late_init_with_default_size(size_t default_size)
262 {
263 	unsigned long nslabs =
264 		ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
265 	unsigned long bytes;
266 	unsigned char *vstart = NULL;
267 	unsigned int order;
268 	int rc = 0;
269 
270 	if (swiotlb_force == SWIOTLB_NO_FORCE)
271 		return 0;
272 
273 	/*
274 	 * Get IO TLB memory from the low pages
275 	 */
276 	order = get_order(nslabs << IO_TLB_SHIFT);
277 	nslabs = SLABS_PER_PAGE << order;
278 	bytes = nslabs << IO_TLB_SHIFT;
279 
280 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
281 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
282 						  order);
283 		if (vstart)
284 			break;
285 		order--;
286 	}
287 
288 	if (!vstart)
289 		return -ENOMEM;
290 
291 	if (order != get_order(bytes)) {
292 		pr_warn("only able to allocate %ld MB\n",
293 			(PAGE_SIZE << order) >> 20);
294 		nslabs = SLABS_PER_PAGE << order;
295 	}
296 	rc = swiotlb_late_init_with_tbl(vstart, nslabs);
297 	if (rc)
298 		free_pages((unsigned long)vstart, order);
299 
300 	return rc;
301 }
302 
303 int
swiotlb_late_init_with_tbl(char * tlb,unsigned long nslabs)304 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
305 {
306 	struct io_tlb_mem *mem = &io_tlb_default_mem;
307 	unsigned long bytes = nslabs << IO_TLB_SHIFT;
308 
309 	if (swiotlb_force == SWIOTLB_NO_FORCE)
310 		return 0;
311 
312 	/* protect against double initialization */
313 	if (WARN_ON_ONCE(mem->nslabs))
314 		return -ENOMEM;
315 
316 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
317 		get_order(array_size(sizeof(*mem->slots), nslabs)));
318 	if (!mem->slots)
319 		return -ENOMEM;
320 
321 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
322 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
323 
324 	swiotlb_print_info();
325 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
326 	return 0;
327 }
328 
swiotlb_exit(void)329 void __init swiotlb_exit(void)
330 {
331 	struct io_tlb_mem *mem = &io_tlb_default_mem;
332 	unsigned long tbl_vaddr;
333 	size_t tbl_size, slots_size;
334 
335 	if (!mem->nslabs)
336 		return;
337 
338 	pr_info("tearing down default memory pool\n");
339 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
340 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
341 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
342 
343 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
344 	if (mem->late_alloc) {
345 		free_pages(tbl_vaddr, get_order(tbl_size));
346 		free_pages((unsigned long)mem->slots, get_order(slots_size));
347 	} else {
348 		memblock_free_late(mem->start, tbl_size);
349 		memblock_free_late(__pa(mem->slots), slots_size);
350 	}
351 
352 	memset(mem, 0, sizeof(*mem));
353 }
354 
355 /*
356  * Return the offset into a iotlb slot required to keep the device happy.
357  */
swiotlb_align_offset(struct device * dev,u64 addr)358 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
359 {
360 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
361 }
362 
363 /*
364  * Bounce: copy the swiotlb buffer from or back to the original dma location
365  */
swiotlb_bounce(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)366 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
367 			   enum dma_data_direction dir)
368 {
369 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
370 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
371 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
372 	size_t alloc_size = mem->slots[index].alloc_size;
373 	unsigned long pfn = PFN_DOWN(orig_addr);
374 	unsigned char *vaddr = phys_to_virt(tlb_addr);
375 	unsigned int tlb_offset, orig_addr_offset;
376 
377 	if (orig_addr == INVALID_PHYS_ADDR)
378 		return;
379 
380 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
381 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
382 	if (tlb_offset < orig_addr_offset) {
383 		dev_WARN_ONCE(dev, 1,
384 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
385 			orig_addr_offset, tlb_offset);
386 		return;
387 	}
388 
389 	tlb_offset -= orig_addr_offset;
390 	if (tlb_offset > alloc_size) {
391 		dev_WARN_ONCE(dev, 1,
392 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
393 			alloc_size, size, tlb_offset);
394 		return;
395 	}
396 
397 	orig_addr += tlb_offset;
398 	alloc_size -= tlb_offset;
399 
400 	if (size > alloc_size) {
401 		dev_WARN_ONCE(dev, 1,
402 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
403 			alloc_size, size);
404 		size = alloc_size;
405 	}
406 
407 	if (PageHighMem(pfn_to_page(pfn))) {
408 		/* The buffer does not have a mapping.  Map it in and copy */
409 		unsigned int offset = orig_addr & ~PAGE_MASK;
410 		char *buffer;
411 		unsigned int sz = 0;
412 		unsigned long flags;
413 
414 		while (size) {
415 			sz = min_t(size_t, PAGE_SIZE - offset, size);
416 
417 			local_irq_save(flags);
418 			buffer = kmap_atomic(pfn_to_page(pfn));
419 			if (dir == DMA_TO_DEVICE)
420 				memcpy(vaddr, buffer + offset, sz);
421 			else
422 				memcpy(buffer + offset, vaddr, sz);
423 			kunmap_atomic(buffer);
424 			local_irq_restore(flags);
425 
426 			size -= sz;
427 			pfn++;
428 			vaddr += sz;
429 			offset = 0;
430 		}
431 	} else if (dir == DMA_TO_DEVICE) {
432 		memcpy(vaddr, phys_to_virt(orig_addr), size);
433 	} else {
434 		memcpy(phys_to_virt(orig_addr), vaddr, size);
435 	}
436 }
437 
slot_addr(phys_addr_t start,phys_addr_t idx)438 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
439 {
440 	return start + (idx << IO_TLB_SHIFT);
441 }
442 
443 /*
444  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
445  */
get_max_slots(unsigned long boundary_mask)446 static inline unsigned long get_max_slots(unsigned long boundary_mask)
447 {
448 	if (boundary_mask == ~0UL)
449 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
450 	return nr_slots(boundary_mask + 1);
451 }
452 
wrap_index(struct io_tlb_mem * mem,unsigned int index)453 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
454 {
455 	if (index >= mem->nslabs)
456 		return 0;
457 	return index;
458 }
459 
460 /*
461  * Find a suitable number of IO TLB entries size that will fit this request and
462  * allocate a buffer from that IO TLB pool.
463  */
swiotlb_find_slots(struct device * dev,phys_addr_t orig_addr,size_t alloc_size,unsigned int alloc_align_mask)464 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
465 			      size_t alloc_size, unsigned int alloc_align_mask)
466 {
467 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
468 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
469 	dma_addr_t tbl_dma_addr =
470 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
471 	unsigned long max_slots = get_max_slots(boundary_mask);
472 	unsigned int iotlb_align_mask =
473 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
474 	unsigned int nslots = nr_slots(alloc_size), stride;
475 	unsigned int index, wrap, count = 0, i;
476 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
477 	unsigned long flags;
478 
479 	BUG_ON(!nslots);
480 
481 	/*
482 	 * For mappings with an alignment requirement don't bother looping to
483 	 * unaligned slots once we found an aligned one.  For allocations of
484 	 * PAGE_SIZE or larger only look for page aligned allocations.
485 	 */
486 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
487 	if (alloc_size >= PAGE_SIZE)
488 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
489 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
490 
491 	spin_lock_irqsave(&mem->lock, flags);
492 	if (unlikely(nslots > mem->nslabs - mem->used))
493 		goto not_found;
494 
495 	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
496 	do {
497 		if (orig_addr &&
498 		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
499 			    (orig_addr & iotlb_align_mask)) {
500 			index = wrap_index(mem, index + 1);
501 			continue;
502 		}
503 
504 		/*
505 		 * If we find a slot that indicates we have 'nslots' number of
506 		 * contiguous buffers, we allocate the buffers from that slot
507 		 * and mark the entries as '0' indicating unavailable.
508 		 */
509 		if (!iommu_is_span_boundary(index, nslots,
510 					    nr_slots(tbl_dma_addr),
511 					    max_slots)) {
512 			if (mem->slots[index].list >= nslots)
513 				goto found;
514 		}
515 		index = wrap_index(mem, index + stride);
516 	} while (index != wrap);
517 
518 not_found:
519 	spin_unlock_irqrestore(&mem->lock, flags);
520 	return -1;
521 
522 found:
523 	for (i = index; i < index + nslots; i++) {
524 		mem->slots[i].list = 0;
525 		mem->slots[i].alloc_size =
526 			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
527 	}
528 	for (i = index - 1;
529 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
530 	     mem->slots[i].list; i--)
531 		mem->slots[i].list = ++count;
532 
533 	/*
534 	 * Update the indices to avoid searching in the next round.
535 	 */
536 	if (index + nslots < mem->nslabs)
537 		mem->index = index + nslots;
538 	else
539 		mem->index = 0;
540 	mem->used += nslots;
541 
542 	spin_unlock_irqrestore(&mem->lock, flags);
543 	return index;
544 }
545 
swiotlb_tbl_map_single(struct device * dev,phys_addr_t orig_addr,size_t mapping_size,size_t alloc_size,unsigned int alloc_align_mask,enum dma_data_direction dir,unsigned long attrs)546 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
547 		size_t mapping_size, size_t alloc_size,
548 		unsigned int alloc_align_mask, enum dma_data_direction dir,
549 		unsigned long attrs)
550 {
551 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
552 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
553 	unsigned int i;
554 	int index;
555 	phys_addr_t tlb_addr;
556 
557 	if (!mem || !mem->nslabs)
558 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
559 
560 	if (mem_encrypt_active())
561 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
562 
563 	if (mapping_size > alloc_size) {
564 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
565 			      mapping_size, alloc_size);
566 		return (phys_addr_t)DMA_MAPPING_ERROR;
567 	}
568 
569 	index = swiotlb_find_slots(dev, orig_addr,
570 				   alloc_size + offset, alloc_align_mask);
571 	if (index == -1) {
572 		if (!(attrs & DMA_ATTR_NO_WARN))
573 			dev_warn_ratelimited(dev,
574 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
575 				 alloc_size, mem->nslabs, mem->used);
576 		return (phys_addr_t)DMA_MAPPING_ERROR;
577 	}
578 
579 	/*
580 	 * Save away the mapping from the original address to the DMA address.
581 	 * This is needed when we sync the memory.  Then we sync the buffer if
582 	 * needed.
583 	 */
584 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
585 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
586 	tlb_addr = slot_addr(mem->start, index) + offset;
587 	/*
588 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
589 	 * to the tlb buffer, if we knew for sure the device will
590 	 * overwirte the entire current content. But we don't. Thus
591 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
592 	 * kernel memory) to user-space.
593 	 */
594 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
595 	return tlb_addr;
596 }
597 
swiotlb_release_slots(struct device * dev,phys_addr_t tlb_addr)598 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
599 {
600 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
601 	unsigned long flags;
602 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
603 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
604 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
605 	int count, i;
606 
607 	/*
608 	 * Return the buffer to the free list by setting the corresponding
609 	 * entries to indicate the number of contiguous entries available.
610 	 * While returning the entries to the free list, we merge the entries
611 	 * with slots below and above the pool being returned.
612 	 */
613 	spin_lock_irqsave(&mem->lock, flags);
614 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
615 		count = mem->slots[index + nslots].list;
616 	else
617 		count = 0;
618 
619 	/*
620 	 * Step 1: return the slots to the free list, merging the slots with
621 	 * superceeding slots
622 	 */
623 	for (i = index + nslots - 1; i >= index; i--) {
624 		mem->slots[i].list = ++count;
625 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
626 		mem->slots[i].alloc_size = 0;
627 	}
628 
629 	/*
630 	 * Step 2: merge the returned slots with the preceding slots, if
631 	 * available (non zero)
632 	 */
633 	for (i = index - 1;
634 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
635 	     i--)
636 		mem->slots[i].list = ++count;
637 	mem->used -= nslots;
638 	spin_unlock_irqrestore(&mem->lock, flags);
639 }
640 
641 /*
642  * tlb_addr is the physical address of the bounce buffer to unmap.
643  */
swiotlb_tbl_unmap_single(struct device * dev,phys_addr_t tlb_addr,size_t mapping_size,enum dma_data_direction dir,unsigned long attrs)644 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
645 			      size_t mapping_size, enum dma_data_direction dir,
646 			      unsigned long attrs)
647 {
648 	/*
649 	 * First, sync the memory before unmapping the entry
650 	 */
651 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
652 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
653 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
654 
655 	swiotlb_release_slots(dev, tlb_addr);
656 }
657 
swiotlb_sync_single_for_device(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)658 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
659 		size_t size, enum dma_data_direction dir)
660 {
661 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
662 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
663 	else
664 		BUG_ON(dir != DMA_FROM_DEVICE);
665 }
666 
swiotlb_sync_single_for_cpu(struct device * dev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)667 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
668 		size_t size, enum dma_data_direction dir)
669 {
670 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
671 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
672 	else
673 		BUG_ON(dir != DMA_TO_DEVICE);
674 }
675 
676 /*
677  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
678  * to the device copy the data into it as well.
679  */
swiotlb_map(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)680 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
681 		enum dma_data_direction dir, unsigned long attrs)
682 {
683 	phys_addr_t swiotlb_addr;
684 	dma_addr_t dma_addr;
685 
686 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
687 			      swiotlb_force);
688 
689 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
690 			attrs);
691 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
692 		return DMA_MAPPING_ERROR;
693 
694 	/* Ensure that the address returned is DMA'ble */
695 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
696 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
697 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
698 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
699 		dev_WARN_ONCE(dev, 1,
700 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
701 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
702 		return DMA_MAPPING_ERROR;
703 	}
704 
705 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
706 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
707 	return dma_addr;
708 }
709 
swiotlb_max_mapping_size(struct device * dev)710 size_t swiotlb_max_mapping_size(struct device *dev)
711 {
712 	int min_align_mask = dma_get_min_align_mask(dev);
713 	int min_align = 0;
714 
715 	/*
716 	 * swiotlb_find_slots() skips slots according to
717 	 * min align mask. This affects max mapping size.
718 	 * Take it into acount here.
719 	 */
720 	if (min_align_mask)
721 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
722 
723 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
724 }
725 
is_swiotlb_active(struct device * dev)726 bool is_swiotlb_active(struct device *dev)
727 {
728 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
729 
730 	return mem && mem->nslabs;
731 }
732 EXPORT_SYMBOL_GPL(is_swiotlb_active);
733 
734 #ifdef CONFIG_DEBUG_FS
735 static struct dentry *debugfs_dir;
736 
swiotlb_create_debugfs_files(struct io_tlb_mem * mem)737 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
738 {
739 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
740 	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
741 }
742 
swiotlb_create_default_debugfs(void)743 static int __init swiotlb_create_default_debugfs(void)
744 {
745 	struct io_tlb_mem *mem = &io_tlb_default_mem;
746 
747 	debugfs_dir = debugfs_create_dir("swiotlb", NULL);
748 	if (mem->nslabs) {
749 		mem->debugfs = debugfs_dir;
750 		swiotlb_create_debugfs_files(mem);
751 	}
752 	return 0;
753 }
754 
755 late_initcall(swiotlb_create_default_debugfs);
756 
757 #endif
758 
759 #ifdef CONFIG_DMA_RESTRICTED_POOL
760 
761 #ifdef CONFIG_DEBUG_FS
rmem_swiotlb_debugfs_init(struct reserved_mem * rmem)762 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
763 {
764 	struct io_tlb_mem *mem = rmem->priv;
765 
766 	mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
767 	swiotlb_create_debugfs_files(mem);
768 }
769 #else
rmem_swiotlb_debugfs_init(struct reserved_mem * rmem)770 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
771 {
772 }
773 #endif
774 
swiotlb_alloc(struct device * dev,size_t size)775 struct page *swiotlb_alloc(struct device *dev, size_t size)
776 {
777 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
778 	phys_addr_t tlb_addr;
779 	int index;
780 
781 	if (!mem)
782 		return NULL;
783 
784 	index = swiotlb_find_slots(dev, 0, size, 0);
785 	if (index == -1)
786 		return NULL;
787 
788 	tlb_addr = slot_addr(mem->start, index);
789 
790 	return pfn_to_page(PFN_DOWN(tlb_addr));
791 }
792 
swiotlb_free(struct device * dev,struct page * page,size_t size)793 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
794 {
795 	phys_addr_t tlb_addr = page_to_phys(page);
796 
797 	if (!is_swiotlb_buffer(dev, tlb_addr))
798 		return false;
799 
800 	swiotlb_release_slots(dev, tlb_addr);
801 
802 	return true;
803 }
804 
rmem_swiotlb_device_init(struct reserved_mem * rmem,struct device * dev)805 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
806 				    struct device *dev)
807 {
808 	struct io_tlb_mem *mem = rmem->priv;
809 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
810 
811 	/*
812 	 * Since multiple devices can share the same pool, the private data,
813 	 * io_tlb_mem struct, will be initialized by the first device attached
814 	 * to it.
815 	 */
816 	if (!mem) {
817 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
818 		if (!mem)
819 			return -ENOMEM;
820 
821 		mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
822 				     GFP_KERNEL);
823 		if (!mem->slots) {
824 			kfree(mem);
825 			return -ENOMEM;
826 		}
827 
828 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
829 				     rmem->size >> PAGE_SHIFT);
830 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
831 		mem->force_bounce = true;
832 		mem->for_alloc = true;
833 
834 		rmem->priv = mem;
835 
836 		rmem_swiotlb_debugfs_init(rmem);
837 	}
838 
839 	dev->dma_io_tlb_mem = mem;
840 
841 	return 0;
842 }
843 
rmem_swiotlb_device_release(struct reserved_mem * rmem,struct device * dev)844 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
845 					struct device *dev)
846 {
847 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
848 }
849 
850 static const struct reserved_mem_ops rmem_swiotlb_ops = {
851 	.device_init = rmem_swiotlb_device_init,
852 	.device_release = rmem_swiotlb_device_release,
853 };
854 
rmem_swiotlb_setup(struct reserved_mem * rmem)855 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
856 {
857 	unsigned long node = rmem->fdt_node;
858 
859 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
860 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
861 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
862 	    of_get_flat_dt_prop(node, "no-map", NULL))
863 		return -EINVAL;
864 
865 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
866 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
867 		return -EINVAL;
868 	}
869 
870 	rmem->ops = &rmem_swiotlb_ops;
871 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
872 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
873 	return 0;
874 }
875 
876 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
877 #endif /* CONFIG_DMA_RESTRICTED_POOL */
878