• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include <trace/events/block.h>
129 
130 #include "blk.h"
131 #include "blk-mq.h"
132 #include "blk-mq-tag.h"
133 #include "blk-mq-sched.h"
134 #include "bfq-iosched.h"
135 #include "blk-stat.h"
136 #include "blk-wbt.h"
137 
138 #define BFQ_BFQQ_FNS(name)						\
139 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
140 {									\
141 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
142 }									\
143 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
144 {									\
145 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
146 }									\
147 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
148 {									\
149 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
150 }
151 
152 BFQ_BFQQ_FNS(just_created);
153 BFQ_BFQQ_FNS(busy);
154 BFQ_BFQQ_FNS(wait_request);
155 BFQ_BFQQ_FNS(non_blocking_wait_rq);
156 BFQ_BFQQ_FNS(fifo_expire);
157 BFQ_BFQQ_FNS(has_short_ttime);
158 BFQ_BFQQ_FNS(sync);
159 BFQ_BFQQ_FNS(IO_bound);
160 BFQ_BFQQ_FNS(in_large_burst);
161 BFQ_BFQQ_FNS(coop);
162 BFQ_BFQQ_FNS(split_coop);
163 BFQ_BFQQ_FNS(softrt_update);
164 #undef BFQ_BFQQ_FNS						\
165 
166 /* Expiration time of async (0) and sync (1) requests, in ns. */
167 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
168 
169 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
170 static const int bfq_back_max = 16 * 1024;
171 
172 /* Penalty of a backwards seek, in number of sectors. */
173 static const int bfq_back_penalty = 2;
174 
175 /* Idling period duration, in ns. */
176 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
177 
178 /* Minimum number of assigned budgets for which stats are safe to compute. */
179 static const int bfq_stats_min_budgets = 194;
180 
181 /* Default maximum budget values, in sectors and number of requests. */
182 static const int bfq_default_max_budget = 16 * 1024;
183 
184 /*
185  * When a sync request is dispatched, the queue that contains that
186  * request, and all the ancestor entities of that queue, are charged
187  * with the number of sectors of the request. In contrast, if the
188  * request is async, then the queue and its ancestor entities are
189  * charged with the number of sectors of the request, multiplied by
190  * the factor below. This throttles the bandwidth for async I/O,
191  * w.r.t. to sync I/O, and it is done to counter the tendency of async
192  * writes to steal I/O throughput to reads.
193  *
194  * The current value of this parameter is the result of a tuning with
195  * several hardware and software configurations. We tried to find the
196  * lowest value for which writes do not cause noticeable problems to
197  * reads. In fact, the lower this parameter, the stabler I/O control,
198  * in the following respect.  The lower this parameter is, the less
199  * the bandwidth enjoyed by a group decreases
200  * - when the group does writes, w.r.t. to when it does reads;
201  * - when other groups do reads, w.r.t. to when they do writes.
202  */
203 static const int bfq_async_charge_factor = 3;
204 
205 /* Default timeout values, in jiffies, approximating CFQ defaults. */
206 const int bfq_timeout = HZ / 8;
207 
208 /*
209  * Time limit for merging (see comments in bfq_setup_cooperator). Set
210  * to the slowest value that, in our tests, proved to be effective in
211  * removing false positives, while not causing true positives to miss
212  * queue merging.
213  *
214  * As can be deduced from the low time limit below, queue merging, if
215  * successful, happens at the very beginning of the I/O of the involved
216  * cooperating processes, as a consequence of the arrival of the very
217  * first requests from each cooperator.  After that, there is very
218  * little chance to find cooperators.
219  */
220 static const unsigned long bfq_merge_time_limit = HZ/10;
221 
222 static struct kmem_cache *bfq_pool;
223 
224 /* Below this threshold (in ns), we consider thinktime immediate. */
225 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
226 
227 /* hw_tag detection: parallel requests threshold and min samples needed. */
228 #define BFQ_HW_QUEUE_THRESHOLD	3
229 #define BFQ_HW_QUEUE_SAMPLES	32
230 
231 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
232 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
233 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
234 	(get_sdist(last_pos, rq) >			\
235 	 BFQQ_SEEK_THR &&				\
236 	 (!blk_queue_nonrot(bfqd->queue) ||		\
237 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
238 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
239 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
240 /*
241  * Sync random I/O is likely to be confused with soft real-time I/O,
242  * because it is characterized by limited throughput and apparently
243  * isochronous arrival pattern. To avoid false positives, queues
244  * containing only random (seeky) I/O are prevented from being tagged
245  * as soft real-time.
246  */
247 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
248 
249 /* Min number of samples required to perform peak-rate update */
250 #define BFQ_RATE_MIN_SAMPLES	32
251 /* Min observation time interval required to perform a peak-rate update (ns) */
252 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
253 /* Target observation time interval for a peak-rate update (ns) */
254 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
255 
256 /*
257  * Shift used for peak-rate fixed precision calculations.
258  * With
259  * - the current shift: 16 positions
260  * - the current type used to store rate: u32
261  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
262  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
263  * the range of rates that can be stored is
264  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
265  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
266  * [15, 65G] sectors/sec
267  * Which, assuming a sector size of 512B, corresponds to a range of
268  * [7.5K, 33T] B/sec
269  */
270 #define BFQ_RATE_SHIFT		16
271 
272 /*
273  * When configured for computing the duration of the weight-raising
274  * for interactive queues automatically (see the comments at the
275  * beginning of this file), BFQ does it using the following formula:
276  * duration = (ref_rate / r) * ref_wr_duration,
277  * where r is the peak rate of the device, and ref_rate and
278  * ref_wr_duration are two reference parameters.  In particular,
279  * ref_rate is the peak rate of the reference storage device (see
280  * below), and ref_wr_duration is about the maximum time needed, with
281  * BFQ and while reading two files in parallel, to load typical large
282  * applications on the reference device (see the comments on
283  * max_service_from_wr below, for more details on how ref_wr_duration
284  * is obtained).  In practice, the slower/faster the device at hand
285  * is, the more/less it takes to load applications with respect to the
286  * reference device.  Accordingly, the longer/shorter BFQ grants
287  * weight raising to interactive applications.
288  *
289  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
290  * depending on whether the device is rotational or non-rotational.
291  *
292  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
293  * are the reference values for a rotational device, whereas
294  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
295  * non-rotational device. The reference rates are not the actual peak
296  * rates of the devices used as a reference, but slightly lower
297  * values. The reason for using slightly lower values is that the
298  * peak-rate estimator tends to yield slightly lower values than the
299  * actual peak rate (it can yield the actual peak rate only if there
300  * is only one process doing I/O, and the process does sequential
301  * I/O).
302  *
303  * The reference peak rates are measured in sectors/usec, left-shifted
304  * by BFQ_RATE_SHIFT.
305  */
306 static int ref_rate[2] = {14000, 33000};
307 /*
308  * To improve readability, a conversion function is used to initialize
309  * the following array, which entails that the array can be
310  * initialized only in a function.
311  */
312 static int ref_wr_duration[2];
313 
314 /*
315  * BFQ uses the above-detailed, time-based weight-raising mechanism to
316  * privilege interactive tasks. This mechanism is vulnerable to the
317  * following false positives: I/O-bound applications that will go on
318  * doing I/O for much longer than the duration of weight
319  * raising. These applications have basically no benefit from being
320  * weight-raised at the beginning of their I/O. On the opposite end,
321  * while being weight-raised, these applications
322  * a) unjustly steal throughput to applications that may actually need
323  * low latency;
324  * b) make BFQ uselessly perform device idling; device idling results
325  * in loss of device throughput with most flash-based storage, and may
326  * increase latencies when used purposelessly.
327  *
328  * BFQ tries to reduce these problems, by adopting the following
329  * countermeasure. To introduce this countermeasure, we need first to
330  * finish explaining how the duration of weight-raising for
331  * interactive tasks is computed.
332  *
333  * For a bfq_queue deemed as interactive, the duration of weight
334  * raising is dynamically adjusted, as a function of the estimated
335  * peak rate of the device, so as to be equal to the time needed to
336  * execute the 'largest' interactive task we benchmarked so far. By
337  * largest task, we mean the task for which each involved process has
338  * to do more I/O than for any of the other tasks we benchmarked. This
339  * reference interactive task is the start-up of LibreOffice Writer,
340  * and in this task each process/bfq_queue needs to have at most ~110K
341  * sectors transferred.
342  *
343  * This last piece of information enables BFQ to reduce the actual
344  * duration of weight-raising for at least one class of I/O-bound
345  * applications: those doing sequential or quasi-sequential I/O. An
346  * example is file copy. In fact, once started, the main I/O-bound
347  * processes of these applications usually consume the above 110K
348  * sectors in much less time than the processes of an application that
349  * is starting, because these I/O-bound processes will greedily devote
350  * almost all their CPU cycles only to their target,
351  * throughput-friendly I/O operations. This is even more true if BFQ
352  * happens to be underestimating the device peak rate, and thus
353  * overestimating the duration of weight raising. But, according to
354  * our measurements, once transferred 110K sectors, these processes
355  * have no right to be weight-raised any longer.
356  *
357  * Basing on the last consideration, BFQ ends weight-raising for a
358  * bfq_queue if the latter happens to have received an amount of
359  * service at least equal to the following constant. The constant is
360  * set to slightly more than 110K, to have a minimum safety margin.
361  *
362  * This early ending of weight-raising reduces the amount of time
363  * during which interactive false positives cause the two problems
364  * described at the beginning of these comments.
365  */
366 static const unsigned long max_service_from_wr = 120000;
367 
368 /*
369  * Maximum time between the creation of two queues, for stable merge
370  * to be activated (in ms)
371  */
372 static const unsigned long bfq_activation_stable_merging = 600;
373 /*
374  * Minimum time to be waited before evaluating delayed stable merge (in ms)
375  */
376 static const unsigned long bfq_late_stable_merging = 600;
377 
378 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
379 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
380 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)381 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
382 {
383 	return bic->bfqq[is_sync];
384 }
385 
386 static void bfq_put_stable_ref(struct bfq_queue *bfqq);
387 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)388 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
389 {
390 	struct bfq_queue *old_bfqq = bic->bfqq[is_sync];
391 
392 	/* Clear bic pointer if bfqq is detached from this bic */
393 	if (old_bfqq && old_bfqq->bic == bic)
394 		old_bfqq->bic = NULL;
395 
396 	/*
397 	 * If bfqq != NULL, then a non-stable queue merge between
398 	 * bic->bfqq and bfqq is happening here. This causes troubles
399 	 * in the following case: bic->bfqq has also been scheduled
400 	 * for a possible stable merge with bic->stable_merge_bfqq,
401 	 * and bic->stable_merge_bfqq == bfqq happens to
402 	 * hold. Troubles occur because bfqq may then undergo a split,
403 	 * thereby becoming eligible for a stable merge. Yet, if
404 	 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
405 	 * would be stably merged with itself. To avoid this anomaly,
406 	 * we cancel the stable merge if
407 	 * bic->stable_merge_bfqq == bfqq.
408 	 */
409 	bic->bfqq[is_sync] = bfqq;
410 
411 	if (bfqq && bic->stable_merge_bfqq == bfqq) {
412 		/*
413 		 * Actually, these same instructions are executed also
414 		 * in bfq_setup_cooperator, in case of abort or actual
415 		 * execution of a stable merge. We could avoid
416 		 * repeating these instructions there too, but if we
417 		 * did so, we would nest even more complexity in this
418 		 * function.
419 		 */
420 		bfq_put_stable_ref(bic->stable_merge_bfqq);
421 
422 		bic->stable_merge_bfqq = NULL;
423 	}
424 }
425 
bic_to_bfqd(struct bfq_io_cq * bic)426 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
427 {
428 	return bic->icq.q->elevator->elevator_data;
429 }
430 
431 /**
432  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
433  * @icq: the iocontext queue.
434  */
icq_to_bic(struct io_cq * icq)435 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
436 {
437 	/* bic->icq is the first member, %NULL will convert to %NULL */
438 	return container_of(icq, struct bfq_io_cq, icq);
439 }
440 
441 /**
442  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
443  * @bfqd: the lookup key.
444  * @ioc: the io_context of the process doing I/O.
445  * @q: the request queue.
446  */
bfq_bic_lookup(struct bfq_data * bfqd,struct io_context * ioc,struct request_queue * q)447 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
448 					struct io_context *ioc,
449 					struct request_queue *q)
450 {
451 	if (ioc) {
452 		unsigned long flags;
453 		struct bfq_io_cq *icq;
454 
455 		spin_lock_irqsave(&q->queue_lock, flags);
456 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
457 		spin_unlock_irqrestore(&q->queue_lock, flags);
458 
459 		return icq;
460 	}
461 
462 	return NULL;
463 }
464 
465 /*
466  * Scheduler run of queue, if there are requests pending and no one in the
467  * driver that will restart queueing.
468  */
bfq_schedule_dispatch(struct bfq_data * bfqd)469 void bfq_schedule_dispatch(struct bfq_data *bfqd)
470 {
471 	lockdep_assert_held(&bfqd->lock);
472 
473 	if (bfqd->queued != 0) {
474 		bfq_log(bfqd, "schedule dispatch");
475 		blk_mq_run_hw_queues(bfqd->queue, true);
476 	}
477 }
478 
479 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
480 
481 #define bfq_sample_valid(samples)	((samples) > 80)
482 
483 /*
484  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
485  * We choose the request that is closer to the head right now.  Distance
486  * behind the head is penalized and only allowed to a certain extent.
487  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)488 static struct request *bfq_choose_req(struct bfq_data *bfqd,
489 				      struct request *rq1,
490 				      struct request *rq2,
491 				      sector_t last)
492 {
493 	sector_t s1, s2, d1 = 0, d2 = 0;
494 	unsigned long back_max;
495 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
496 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
497 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
498 
499 	if (!rq1 || rq1 == rq2)
500 		return rq2;
501 	if (!rq2)
502 		return rq1;
503 
504 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
505 		return rq1;
506 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
507 		return rq2;
508 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
509 		return rq1;
510 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
511 		return rq2;
512 
513 	s1 = blk_rq_pos(rq1);
514 	s2 = blk_rq_pos(rq2);
515 
516 	/*
517 	 * By definition, 1KiB is 2 sectors.
518 	 */
519 	back_max = bfqd->bfq_back_max * 2;
520 
521 	/*
522 	 * Strict one way elevator _except_ in the case where we allow
523 	 * short backward seeks which are biased as twice the cost of a
524 	 * similar forward seek.
525 	 */
526 	if (s1 >= last)
527 		d1 = s1 - last;
528 	else if (s1 + back_max >= last)
529 		d1 = (last - s1) * bfqd->bfq_back_penalty;
530 	else
531 		wrap |= BFQ_RQ1_WRAP;
532 
533 	if (s2 >= last)
534 		d2 = s2 - last;
535 	else if (s2 + back_max >= last)
536 		d2 = (last - s2) * bfqd->bfq_back_penalty;
537 	else
538 		wrap |= BFQ_RQ2_WRAP;
539 
540 	/* Found required data */
541 
542 	/*
543 	 * By doing switch() on the bit mask "wrap" we avoid having to
544 	 * check two variables for all permutations: --> faster!
545 	 */
546 	switch (wrap) {
547 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
548 		if (d1 < d2)
549 			return rq1;
550 		else if (d2 < d1)
551 			return rq2;
552 
553 		if (s1 >= s2)
554 			return rq1;
555 		else
556 			return rq2;
557 
558 	case BFQ_RQ2_WRAP:
559 		return rq1;
560 	case BFQ_RQ1_WRAP:
561 		return rq2;
562 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
563 	default:
564 		/*
565 		 * Since both rqs are wrapped,
566 		 * start with the one that's further behind head
567 		 * (--> only *one* back seek required),
568 		 * since back seek takes more time than forward.
569 		 */
570 		if (s1 <= s2)
571 			return rq1;
572 		else
573 			return rq2;
574 	}
575 }
576 
577 /*
578  * Async I/O can easily starve sync I/O (both sync reads and sync
579  * writes), by consuming all tags. Similarly, storms of sync writes,
580  * such as those that sync(2) may trigger, can starve sync reads.
581  * Limit depths of async I/O and sync writes so as to counter both
582  * problems.
583  */
bfq_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)584 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
585 {
586 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
587 
588 	if (op_is_sync(op) && !op_is_write(op))
589 		return;
590 
591 	data->shallow_depth =
592 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
593 
594 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
595 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
596 			data->shallow_depth);
597 }
598 
599 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)600 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
601 		     sector_t sector, struct rb_node **ret_parent,
602 		     struct rb_node ***rb_link)
603 {
604 	struct rb_node **p, *parent;
605 	struct bfq_queue *bfqq = NULL;
606 
607 	parent = NULL;
608 	p = &root->rb_node;
609 	while (*p) {
610 		struct rb_node **n;
611 
612 		parent = *p;
613 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
614 
615 		/*
616 		 * Sort strictly based on sector. Smallest to the left,
617 		 * largest to the right.
618 		 */
619 		if (sector > blk_rq_pos(bfqq->next_rq))
620 			n = &(*p)->rb_right;
621 		else if (sector < blk_rq_pos(bfqq->next_rq))
622 			n = &(*p)->rb_left;
623 		else
624 			break;
625 		p = n;
626 		bfqq = NULL;
627 	}
628 
629 	*ret_parent = parent;
630 	if (rb_link)
631 		*rb_link = p;
632 
633 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
634 		(unsigned long long)sector,
635 		bfqq ? bfqq->pid : 0);
636 
637 	return bfqq;
638 }
639 
bfq_too_late_for_merging(struct bfq_queue * bfqq)640 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
641 {
642 	return bfqq->service_from_backlogged > 0 &&
643 		time_is_before_jiffies(bfqq->first_IO_time +
644 				       bfq_merge_time_limit);
645 }
646 
647 /*
648  * The following function is not marked as __cold because it is
649  * actually cold, but for the same performance goal described in the
650  * comments on the likely() at the beginning of
651  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
652  * execution time for the case where this function is not invoked, we
653  * had to add an unlikely() in each involved if().
654  */
655 void __cold
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)656 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
657 {
658 	struct rb_node **p, *parent;
659 	struct bfq_queue *__bfqq;
660 
661 	if (bfqq->pos_root) {
662 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
663 		bfqq->pos_root = NULL;
664 	}
665 
666 	/* oom_bfqq does not participate in queue merging */
667 	if (bfqq == &bfqd->oom_bfqq)
668 		return;
669 
670 	/*
671 	 * bfqq cannot be merged any longer (see comments in
672 	 * bfq_setup_cooperator): no point in adding bfqq into the
673 	 * position tree.
674 	 */
675 	if (bfq_too_late_for_merging(bfqq))
676 		return;
677 
678 	if (bfq_class_idle(bfqq))
679 		return;
680 	if (!bfqq->next_rq)
681 		return;
682 
683 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
684 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
685 			blk_rq_pos(bfqq->next_rq), &parent, &p);
686 	if (!__bfqq) {
687 		rb_link_node(&bfqq->pos_node, parent, p);
688 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
689 	} else
690 		bfqq->pos_root = NULL;
691 }
692 
693 /*
694  * The following function returns false either if every active queue
695  * must receive the same share of the throughput (symmetric scenario),
696  * or, as a special case, if bfqq must receive a share of the
697  * throughput lower than or equal to the share that every other active
698  * queue must receive.  If bfqq does sync I/O, then these are the only
699  * two cases where bfqq happens to be guaranteed its share of the
700  * throughput even if I/O dispatching is not plugged when bfqq remains
701  * temporarily empty (for more details, see the comments in the
702  * function bfq_better_to_idle()). For this reason, the return value
703  * of this function is used to check whether I/O-dispatch plugging can
704  * be avoided.
705  *
706  * The above first case (symmetric scenario) occurs when:
707  * 1) all active queues have the same weight,
708  * 2) all active queues belong to the same I/O-priority class,
709  * 3) all active groups at the same level in the groups tree have the same
710  *    weight,
711  * 4) all active groups at the same level in the groups tree have the same
712  *    number of children.
713  *
714  * Unfortunately, keeping the necessary state for evaluating exactly
715  * the last two symmetry sub-conditions above would be quite complex
716  * and time consuming. Therefore this function evaluates, instead,
717  * only the following stronger three sub-conditions, for which it is
718  * much easier to maintain the needed state:
719  * 1) all active queues have the same weight,
720  * 2) all active queues belong to the same I/O-priority class,
721  * 3) there are no active groups.
722  * In particular, the last condition is always true if hierarchical
723  * support or the cgroups interface are not enabled, thus no state
724  * needs to be maintained in this case.
725  */
bfq_asymmetric_scenario(struct bfq_data * bfqd,struct bfq_queue * bfqq)726 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
727 				   struct bfq_queue *bfqq)
728 {
729 	bool smallest_weight = bfqq &&
730 		bfqq->weight_counter &&
731 		bfqq->weight_counter ==
732 		container_of(
733 			rb_first_cached(&bfqd->queue_weights_tree),
734 			struct bfq_weight_counter,
735 			weights_node);
736 
737 	/*
738 	 * For queue weights to differ, queue_weights_tree must contain
739 	 * at least two nodes.
740 	 */
741 	bool varied_queue_weights = !smallest_weight &&
742 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
743 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
744 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
745 
746 	bool multiple_classes_busy =
747 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
748 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
749 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
750 
751 	return varied_queue_weights || multiple_classes_busy
752 #ifdef CONFIG_BFQ_GROUP_IOSCHED
753 	       || bfqd->num_groups_with_pending_reqs > 0
754 #endif
755 		;
756 }
757 
758 /*
759  * If the weight-counter tree passed as input contains no counter for
760  * the weight of the input queue, then add that counter; otherwise just
761  * increment the existing counter.
762  *
763  * Note that weight-counter trees contain few nodes in mostly symmetric
764  * scenarios. For example, if all queues have the same weight, then the
765  * weight-counter tree for the queues may contain at most one node.
766  * This holds even if low_latency is on, because weight-raised queues
767  * are not inserted in the tree.
768  * In most scenarios, the rate at which nodes are created/destroyed
769  * should be low too.
770  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)771 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
772 			  struct rb_root_cached *root)
773 {
774 	struct bfq_entity *entity = &bfqq->entity;
775 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
776 	bool leftmost = true;
777 
778 	/*
779 	 * Do not insert if the queue is already associated with a
780 	 * counter, which happens if:
781 	 *   1) a request arrival has caused the queue to become both
782 	 *      non-weight-raised, and hence change its weight, and
783 	 *      backlogged; in this respect, each of the two events
784 	 *      causes an invocation of this function,
785 	 *   2) this is the invocation of this function caused by the
786 	 *      second event. This second invocation is actually useless,
787 	 *      and we handle this fact by exiting immediately. More
788 	 *      efficient or clearer solutions might possibly be adopted.
789 	 */
790 	if (bfqq->weight_counter)
791 		return;
792 
793 	while (*new) {
794 		struct bfq_weight_counter *__counter = container_of(*new,
795 						struct bfq_weight_counter,
796 						weights_node);
797 		parent = *new;
798 
799 		if (entity->weight == __counter->weight) {
800 			bfqq->weight_counter = __counter;
801 			goto inc_counter;
802 		}
803 		if (entity->weight < __counter->weight)
804 			new = &((*new)->rb_left);
805 		else {
806 			new = &((*new)->rb_right);
807 			leftmost = false;
808 		}
809 	}
810 
811 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
812 				       GFP_ATOMIC);
813 
814 	/*
815 	 * In the unlucky event of an allocation failure, we just
816 	 * exit. This will cause the weight of queue to not be
817 	 * considered in bfq_asymmetric_scenario, which, in its turn,
818 	 * causes the scenario to be deemed wrongly symmetric in case
819 	 * bfqq's weight would have been the only weight making the
820 	 * scenario asymmetric.  On the bright side, no unbalance will
821 	 * however occur when bfqq becomes inactive again (the
822 	 * invocation of this function is triggered by an activation
823 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
824 	 * if !bfqq->weight_counter.
825 	 */
826 	if (unlikely(!bfqq->weight_counter))
827 		return;
828 
829 	bfqq->weight_counter->weight = entity->weight;
830 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
831 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
832 				leftmost);
833 
834 inc_counter:
835 	bfqq->weight_counter->num_active++;
836 	bfqq->ref++;
837 }
838 
839 /*
840  * Decrement the weight counter associated with the queue, and, if the
841  * counter reaches 0, remove the counter from the tree.
842  * See the comments to the function bfq_weights_tree_add() for considerations
843  * about overhead.
844  */
__bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)845 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
846 			       struct bfq_queue *bfqq,
847 			       struct rb_root_cached *root)
848 {
849 	if (!bfqq->weight_counter)
850 		return;
851 
852 	bfqq->weight_counter->num_active--;
853 	if (bfqq->weight_counter->num_active > 0)
854 		goto reset_entity_pointer;
855 
856 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
857 	kfree(bfqq->weight_counter);
858 
859 reset_entity_pointer:
860 	bfqq->weight_counter = NULL;
861 	bfq_put_queue(bfqq);
862 }
863 
864 /*
865  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
866  * of active groups for each queue's inactive parent entity.
867  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq)868 void bfq_weights_tree_remove(struct bfq_data *bfqd,
869 			     struct bfq_queue *bfqq)
870 {
871 	struct bfq_entity *entity = bfqq->entity.parent;
872 
873 	for_each_entity(entity) {
874 		struct bfq_sched_data *sd = entity->my_sched_data;
875 
876 		if (sd->next_in_service || sd->in_service_entity) {
877 			/*
878 			 * entity is still active, because either
879 			 * next_in_service or in_service_entity is not
880 			 * NULL (see the comments on the definition of
881 			 * next_in_service for details on why
882 			 * in_service_entity must be checked too).
883 			 *
884 			 * As a consequence, its parent entities are
885 			 * active as well, and thus this loop must
886 			 * stop here.
887 			 */
888 			break;
889 		}
890 
891 		/*
892 		 * The decrement of num_groups_with_pending_reqs is
893 		 * not performed immediately upon the deactivation of
894 		 * entity, but it is delayed to when it also happens
895 		 * that the first leaf descendant bfqq of entity gets
896 		 * all its pending requests completed. The following
897 		 * instructions perform this delayed decrement, if
898 		 * needed. See the comments on
899 		 * num_groups_with_pending_reqs for details.
900 		 */
901 		if (entity->in_groups_with_pending_reqs) {
902 			entity->in_groups_with_pending_reqs = false;
903 			bfqd->num_groups_with_pending_reqs--;
904 		}
905 	}
906 
907 	/*
908 	 * Next function is invoked last, because it causes bfqq to be
909 	 * freed if the following holds: bfqq is not in service and
910 	 * has no dispatched request. DO NOT use bfqq after the next
911 	 * function invocation.
912 	 */
913 	__bfq_weights_tree_remove(bfqd, bfqq,
914 				  &bfqd->queue_weights_tree);
915 }
916 
917 /*
918  * Return expired entry, or NULL to just start from scratch in rbtree.
919  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)920 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
921 				      struct request *last)
922 {
923 	struct request *rq;
924 
925 	if (bfq_bfqq_fifo_expire(bfqq))
926 		return NULL;
927 
928 	bfq_mark_bfqq_fifo_expire(bfqq);
929 
930 	rq = rq_entry_fifo(bfqq->fifo.next);
931 
932 	if (rq == last || ktime_get_ns() < rq->fifo_time)
933 		return NULL;
934 
935 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
936 	return rq;
937 }
938 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)939 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
940 					struct bfq_queue *bfqq,
941 					struct request *last)
942 {
943 	struct rb_node *rbnext = rb_next(&last->rb_node);
944 	struct rb_node *rbprev = rb_prev(&last->rb_node);
945 	struct request *next, *prev = NULL;
946 
947 	/* Follow expired path, else get first next available. */
948 	next = bfq_check_fifo(bfqq, last);
949 	if (next)
950 		return next;
951 
952 	if (rbprev)
953 		prev = rb_entry_rq(rbprev);
954 
955 	if (rbnext)
956 		next = rb_entry_rq(rbnext);
957 	else {
958 		rbnext = rb_first(&bfqq->sort_list);
959 		if (rbnext && rbnext != &last->rb_node)
960 			next = rb_entry_rq(rbnext);
961 	}
962 
963 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
964 }
965 
966 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)967 static unsigned long bfq_serv_to_charge(struct request *rq,
968 					struct bfq_queue *bfqq)
969 {
970 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
971 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
972 		return blk_rq_sectors(rq);
973 
974 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
975 }
976 
977 /**
978  * bfq_updated_next_req - update the queue after a new next_rq selection.
979  * @bfqd: the device data the queue belongs to.
980  * @bfqq: the queue to update.
981  *
982  * If the first request of a queue changes we make sure that the queue
983  * has enough budget to serve at least its first request (if the
984  * request has grown).  We do this because if the queue has not enough
985  * budget for its first request, it has to go through two dispatch
986  * rounds to actually get it dispatched.
987  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)988 static void bfq_updated_next_req(struct bfq_data *bfqd,
989 				 struct bfq_queue *bfqq)
990 {
991 	struct bfq_entity *entity = &bfqq->entity;
992 	struct request *next_rq = bfqq->next_rq;
993 	unsigned long new_budget;
994 
995 	if (!next_rq)
996 		return;
997 
998 	if (bfqq == bfqd->in_service_queue)
999 		/*
1000 		 * In order not to break guarantees, budgets cannot be
1001 		 * changed after an entity has been selected.
1002 		 */
1003 		return;
1004 
1005 	new_budget = max_t(unsigned long,
1006 			   max_t(unsigned long, bfqq->max_budget,
1007 				 bfq_serv_to_charge(next_rq, bfqq)),
1008 			   entity->service);
1009 	if (entity->budget != new_budget) {
1010 		entity->budget = new_budget;
1011 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
1012 					 new_budget);
1013 		bfq_requeue_bfqq(bfqd, bfqq, false);
1014 	}
1015 }
1016 
bfq_wr_duration(struct bfq_data * bfqd)1017 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
1018 {
1019 	u64 dur;
1020 
1021 	if (bfqd->bfq_wr_max_time > 0)
1022 		return bfqd->bfq_wr_max_time;
1023 
1024 	dur = bfqd->rate_dur_prod;
1025 	do_div(dur, bfqd->peak_rate);
1026 
1027 	/*
1028 	 * Limit duration between 3 and 25 seconds. The upper limit
1029 	 * has been conservatively set after the following worst case:
1030 	 * on a QEMU/KVM virtual machine
1031 	 * - running in a slow PC
1032 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1033 	 * - serving a heavy I/O workload, such as the sequential reading
1034 	 *   of several files
1035 	 * mplayer took 23 seconds to start, if constantly weight-raised.
1036 	 *
1037 	 * As for higher values than that accommodating the above bad
1038 	 * scenario, tests show that higher values would often yield
1039 	 * the opposite of the desired result, i.e., would worsen
1040 	 * responsiveness by allowing non-interactive applications to
1041 	 * preserve weight raising for too long.
1042 	 *
1043 	 * On the other end, lower values than 3 seconds make it
1044 	 * difficult for most interactive tasks to complete their jobs
1045 	 * before weight-raising finishes.
1046 	 */
1047 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1048 }
1049 
1050 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)1051 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1052 					  struct bfq_data *bfqd)
1053 {
1054 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1055 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1056 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1057 }
1058 
1059 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)1060 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1061 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1062 {
1063 	unsigned int old_wr_coeff = 1;
1064 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1065 
1066 	if (bic->saved_has_short_ttime)
1067 		bfq_mark_bfqq_has_short_ttime(bfqq);
1068 	else
1069 		bfq_clear_bfqq_has_short_ttime(bfqq);
1070 
1071 	if (bic->saved_IO_bound)
1072 		bfq_mark_bfqq_IO_bound(bfqq);
1073 	else
1074 		bfq_clear_bfqq_IO_bound(bfqq);
1075 
1076 	bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1077 	bfqq->inject_limit = bic->saved_inject_limit;
1078 	bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1079 
1080 	bfqq->entity.new_weight = bic->saved_weight;
1081 	bfqq->ttime = bic->saved_ttime;
1082 	bfqq->io_start_time = bic->saved_io_start_time;
1083 	bfqq->tot_idle_time = bic->saved_tot_idle_time;
1084 	/*
1085 	 * Restore weight coefficient only if low_latency is on
1086 	 */
1087 	if (bfqd->low_latency) {
1088 		old_wr_coeff = bfqq->wr_coeff;
1089 		bfqq->wr_coeff = bic->saved_wr_coeff;
1090 	}
1091 	bfqq->service_from_wr = bic->saved_service_from_wr;
1092 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1093 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1094 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1095 
1096 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1097 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1098 				   bfqq->wr_cur_max_time))) {
1099 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1100 		    !bfq_bfqq_in_large_burst(bfqq) &&
1101 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1102 					     bfq_wr_duration(bfqd))) {
1103 			switch_back_to_interactive_wr(bfqq, bfqd);
1104 		} else {
1105 			bfqq->wr_coeff = 1;
1106 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1107 				     "resume state: switching off wr");
1108 		}
1109 	}
1110 
1111 	/* make sure weight will be updated, however we got here */
1112 	bfqq->entity.prio_changed = 1;
1113 
1114 	if (likely(!busy))
1115 		return;
1116 
1117 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1118 		bfqd->wr_busy_queues++;
1119 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1120 		bfqd->wr_busy_queues--;
1121 }
1122 
bfqq_process_refs(struct bfq_queue * bfqq)1123 static int bfqq_process_refs(struct bfq_queue *bfqq)
1124 {
1125 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1126 		(bfqq->weight_counter != NULL) - bfqq->stable_ref;
1127 }
1128 
1129 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1130 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1131 {
1132 	struct bfq_queue *item;
1133 	struct hlist_node *n;
1134 
1135 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1136 		hlist_del_init(&item->burst_list_node);
1137 
1138 	/*
1139 	 * Start the creation of a new burst list only if there is no
1140 	 * active queue. See comments on the conditional invocation of
1141 	 * bfq_handle_burst().
1142 	 */
1143 	if (bfq_tot_busy_queues(bfqd) == 0) {
1144 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1145 		bfqd->burst_size = 1;
1146 	} else
1147 		bfqd->burst_size = 0;
1148 
1149 	bfqd->burst_parent_entity = bfqq->entity.parent;
1150 }
1151 
1152 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1153 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1154 {
1155 	/* Increment burst size to take into account also bfqq */
1156 	bfqd->burst_size++;
1157 
1158 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1159 		struct bfq_queue *pos, *bfqq_item;
1160 		struct hlist_node *n;
1161 
1162 		/*
1163 		 * Enough queues have been activated shortly after each
1164 		 * other to consider this burst as large.
1165 		 */
1166 		bfqd->large_burst = true;
1167 
1168 		/*
1169 		 * We can now mark all queues in the burst list as
1170 		 * belonging to a large burst.
1171 		 */
1172 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1173 				     burst_list_node)
1174 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1175 		bfq_mark_bfqq_in_large_burst(bfqq);
1176 
1177 		/*
1178 		 * From now on, and until the current burst finishes, any
1179 		 * new queue being activated shortly after the last queue
1180 		 * was inserted in the burst can be immediately marked as
1181 		 * belonging to a large burst. So the burst list is not
1182 		 * needed any more. Remove it.
1183 		 */
1184 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1185 					  burst_list_node)
1186 			hlist_del_init(&pos->burst_list_node);
1187 	} else /*
1188 		* Burst not yet large: add bfqq to the burst list. Do
1189 		* not increment the ref counter for bfqq, because bfqq
1190 		* is removed from the burst list before freeing bfqq
1191 		* in put_queue.
1192 		*/
1193 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1194 }
1195 
1196 /*
1197  * If many queues belonging to the same group happen to be created
1198  * shortly after each other, then the processes associated with these
1199  * queues have typically a common goal. In particular, bursts of queue
1200  * creations are usually caused by services or applications that spawn
1201  * many parallel threads/processes. Examples are systemd during boot,
1202  * or git grep. To help these processes get their job done as soon as
1203  * possible, it is usually better to not grant either weight-raising
1204  * or device idling to their queues, unless these queues must be
1205  * protected from the I/O flowing through other active queues.
1206  *
1207  * In this comment we describe, firstly, the reasons why this fact
1208  * holds, and, secondly, the next function, which implements the main
1209  * steps needed to properly mark these queues so that they can then be
1210  * treated in a different way.
1211  *
1212  * The above services or applications benefit mostly from a high
1213  * throughput: the quicker the requests of the activated queues are
1214  * cumulatively served, the sooner the target job of these queues gets
1215  * completed. As a consequence, weight-raising any of these queues,
1216  * which also implies idling the device for it, is almost always
1217  * counterproductive, unless there are other active queues to isolate
1218  * these new queues from. If there no other active queues, then
1219  * weight-raising these new queues just lowers throughput in most
1220  * cases.
1221  *
1222  * On the other hand, a burst of queue creations may be caused also by
1223  * the start of an application that does not consist of a lot of
1224  * parallel I/O-bound threads. In fact, with a complex application,
1225  * several short processes may need to be executed to start-up the
1226  * application. In this respect, to start an application as quickly as
1227  * possible, the best thing to do is in any case to privilege the I/O
1228  * related to the application with respect to all other
1229  * I/O. Therefore, the best strategy to start as quickly as possible
1230  * an application that causes a burst of queue creations is to
1231  * weight-raise all the queues created during the burst. This is the
1232  * exact opposite of the best strategy for the other type of bursts.
1233  *
1234  * In the end, to take the best action for each of the two cases, the
1235  * two types of bursts need to be distinguished. Fortunately, this
1236  * seems relatively easy, by looking at the sizes of the bursts. In
1237  * particular, we found a threshold such that only bursts with a
1238  * larger size than that threshold are apparently caused by
1239  * services or commands such as systemd or git grep. For brevity,
1240  * hereafter we call just 'large' these bursts. BFQ *does not*
1241  * weight-raise queues whose creation occurs in a large burst. In
1242  * addition, for each of these queues BFQ performs or does not perform
1243  * idling depending on which choice boosts the throughput more. The
1244  * exact choice depends on the device and request pattern at
1245  * hand.
1246  *
1247  * Unfortunately, false positives may occur while an interactive task
1248  * is starting (e.g., an application is being started). The
1249  * consequence is that the queues associated with the task do not
1250  * enjoy weight raising as expected. Fortunately these false positives
1251  * are very rare. They typically occur if some service happens to
1252  * start doing I/O exactly when the interactive task starts.
1253  *
1254  * Turning back to the next function, it is invoked only if there are
1255  * no active queues (apart from active queues that would belong to the
1256  * same, possible burst bfqq would belong to), and it implements all
1257  * the steps needed to detect the occurrence of a large burst and to
1258  * properly mark all the queues belonging to it (so that they can then
1259  * be treated in a different way). This goal is achieved by
1260  * maintaining a "burst list" that holds, temporarily, the queues that
1261  * belong to the burst in progress. The list is then used to mark
1262  * these queues as belonging to a large burst if the burst does become
1263  * large. The main steps are the following.
1264  *
1265  * . when the very first queue is created, the queue is inserted into the
1266  *   list (as it could be the first queue in a possible burst)
1267  *
1268  * . if the current burst has not yet become large, and a queue Q that does
1269  *   not yet belong to the burst is activated shortly after the last time
1270  *   at which a new queue entered the burst list, then the function appends
1271  *   Q to the burst list
1272  *
1273  * . if, as a consequence of the previous step, the burst size reaches
1274  *   the large-burst threshold, then
1275  *
1276  *     . all the queues in the burst list are marked as belonging to a
1277  *       large burst
1278  *
1279  *     . the burst list is deleted; in fact, the burst list already served
1280  *       its purpose (keeping temporarily track of the queues in a burst,
1281  *       so as to be able to mark them as belonging to a large burst in the
1282  *       previous sub-step), and now is not needed any more
1283  *
1284  *     . the device enters a large-burst mode
1285  *
1286  * . if a queue Q that does not belong to the burst is created while
1287  *   the device is in large-burst mode and shortly after the last time
1288  *   at which a queue either entered the burst list or was marked as
1289  *   belonging to the current large burst, then Q is immediately marked
1290  *   as belonging to a large burst.
1291  *
1292  * . if a queue Q that does not belong to the burst is created a while
1293  *   later, i.e., not shortly after, than the last time at which a queue
1294  *   either entered the burst list or was marked as belonging to the
1295  *   current large burst, then the current burst is deemed as finished and:
1296  *
1297  *        . the large-burst mode is reset if set
1298  *
1299  *        . the burst list is emptied
1300  *
1301  *        . Q is inserted in the burst list, as Q may be the first queue
1302  *          in a possible new burst (then the burst list contains just Q
1303  *          after this step).
1304  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1305 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1306 {
1307 	/*
1308 	 * If bfqq is already in the burst list or is part of a large
1309 	 * burst, or finally has just been split, then there is
1310 	 * nothing else to do.
1311 	 */
1312 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1313 	    bfq_bfqq_in_large_burst(bfqq) ||
1314 	    time_is_after_eq_jiffies(bfqq->split_time +
1315 				     msecs_to_jiffies(10)))
1316 		return;
1317 
1318 	/*
1319 	 * If bfqq's creation happens late enough, or bfqq belongs to
1320 	 * a different group than the burst group, then the current
1321 	 * burst is finished, and related data structures must be
1322 	 * reset.
1323 	 *
1324 	 * In this respect, consider the special case where bfqq is
1325 	 * the very first queue created after BFQ is selected for this
1326 	 * device. In this case, last_ins_in_burst and
1327 	 * burst_parent_entity are not yet significant when we get
1328 	 * here. But it is easy to verify that, whether or not the
1329 	 * following condition is true, bfqq will end up being
1330 	 * inserted into the burst list. In particular the list will
1331 	 * happen to contain only bfqq. And this is exactly what has
1332 	 * to happen, as bfqq may be the first queue of the first
1333 	 * burst.
1334 	 */
1335 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1336 	    bfqd->bfq_burst_interval) ||
1337 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1338 		bfqd->large_burst = false;
1339 		bfq_reset_burst_list(bfqd, bfqq);
1340 		goto end;
1341 	}
1342 
1343 	/*
1344 	 * If we get here, then bfqq is being activated shortly after the
1345 	 * last queue. So, if the current burst is also large, we can mark
1346 	 * bfqq as belonging to this large burst immediately.
1347 	 */
1348 	if (bfqd->large_burst) {
1349 		bfq_mark_bfqq_in_large_burst(bfqq);
1350 		goto end;
1351 	}
1352 
1353 	/*
1354 	 * If we get here, then a large-burst state has not yet been
1355 	 * reached, but bfqq is being activated shortly after the last
1356 	 * queue. Then we add bfqq to the burst.
1357 	 */
1358 	bfq_add_to_burst(bfqd, bfqq);
1359 end:
1360 	/*
1361 	 * At this point, bfqq either has been added to the current
1362 	 * burst or has caused the current burst to terminate and a
1363 	 * possible new burst to start. In particular, in the second
1364 	 * case, bfqq has become the first queue in the possible new
1365 	 * burst.  In both cases last_ins_in_burst needs to be moved
1366 	 * forward.
1367 	 */
1368 	bfqd->last_ins_in_burst = jiffies;
1369 }
1370 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1371 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1372 {
1373 	struct bfq_entity *entity = &bfqq->entity;
1374 
1375 	return entity->budget - entity->service;
1376 }
1377 
1378 /*
1379  * If enough samples have been computed, return the current max budget
1380  * stored in bfqd, which is dynamically updated according to the
1381  * estimated disk peak rate; otherwise return the default max budget
1382  */
bfq_max_budget(struct bfq_data * bfqd)1383 static int bfq_max_budget(struct bfq_data *bfqd)
1384 {
1385 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1386 		return bfq_default_max_budget;
1387 	else
1388 		return bfqd->bfq_max_budget;
1389 }
1390 
1391 /*
1392  * Return min budget, which is a fraction of the current or default
1393  * max budget (trying with 1/32)
1394  */
bfq_min_budget(struct bfq_data * bfqd)1395 static int bfq_min_budget(struct bfq_data *bfqd)
1396 {
1397 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1398 		return bfq_default_max_budget / 32;
1399 	else
1400 		return bfqd->bfq_max_budget / 32;
1401 }
1402 
1403 /*
1404  * The next function, invoked after the input queue bfqq switches from
1405  * idle to busy, updates the budget of bfqq. The function also tells
1406  * whether the in-service queue should be expired, by returning
1407  * true. The purpose of expiring the in-service queue is to give bfqq
1408  * the chance to possibly preempt the in-service queue, and the reason
1409  * for preempting the in-service queue is to achieve one of the two
1410  * goals below.
1411  *
1412  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1413  * expired because it has remained idle. In particular, bfqq may have
1414  * expired for one of the following two reasons:
1415  *
1416  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1417  *   and did not make it to issue a new request before its last
1418  *   request was served;
1419  *
1420  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1421  *   a new request before the expiration of the idling-time.
1422  *
1423  * Even if bfqq has expired for one of the above reasons, the process
1424  * associated with the queue may be however issuing requests greedily,
1425  * and thus be sensitive to the bandwidth it receives (bfqq may have
1426  * remained idle for other reasons: CPU high load, bfqq not enjoying
1427  * idling, I/O throttling somewhere in the path from the process to
1428  * the I/O scheduler, ...). But if, after every expiration for one of
1429  * the above two reasons, bfqq has to wait for the service of at least
1430  * one full budget of another queue before being served again, then
1431  * bfqq is likely to get a much lower bandwidth or resource time than
1432  * its reserved ones. To address this issue, two countermeasures need
1433  * to be taken.
1434  *
1435  * First, the budget and the timestamps of bfqq need to be updated in
1436  * a special way on bfqq reactivation: they need to be updated as if
1437  * bfqq did not remain idle and did not expire. In fact, if they are
1438  * computed as if bfqq expired and remained idle until reactivation,
1439  * then the process associated with bfqq is treated as if, instead of
1440  * being greedy, it stopped issuing requests when bfqq remained idle,
1441  * and restarts issuing requests only on this reactivation. In other
1442  * words, the scheduler does not help the process recover the "service
1443  * hole" between bfqq expiration and reactivation. As a consequence,
1444  * the process receives a lower bandwidth than its reserved one. In
1445  * contrast, to recover this hole, the budget must be updated as if
1446  * bfqq was not expired at all before this reactivation, i.e., it must
1447  * be set to the value of the remaining budget when bfqq was
1448  * expired. Along the same line, timestamps need to be assigned the
1449  * value they had the last time bfqq was selected for service, i.e.,
1450  * before last expiration. Thus timestamps need to be back-shifted
1451  * with respect to their normal computation (see [1] for more details
1452  * on this tricky aspect).
1453  *
1454  * Secondly, to allow the process to recover the hole, the in-service
1455  * queue must be expired too, to give bfqq the chance to preempt it
1456  * immediately. In fact, if bfqq has to wait for a full budget of the
1457  * in-service queue to be completed, then it may become impossible to
1458  * let the process recover the hole, even if the back-shifted
1459  * timestamps of bfqq are lower than those of the in-service queue. If
1460  * this happens for most or all of the holes, then the process may not
1461  * receive its reserved bandwidth. In this respect, it is worth noting
1462  * that, being the service of outstanding requests unpreemptible, a
1463  * little fraction of the holes may however be unrecoverable, thereby
1464  * causing a little loss of bandwidth.
1465  *
1466  * The last important point is detecting whether bfqq does need this
1467  * bandwidth recovery. In this respect, the next function deems the
1468  * process associated with bfqq greedy, and thus allows it to recover
1469  * the hole, if: 1) the process is waiting for the arrival of a new
1470  * request (which implies that bfqq expired for one of the above two
1471  * reasons), and 2) such a request has arrived soon. The first
1472  * condition is controlled through the flag non_blocking_wait_rq,
1473  * while the second through the flag arrived_in_time. If both
1474  * conditions hold, then the function computes the budget in the
1475  * above-described special way, and signals that the in-service queue
1476  * should be expired. Timestamp back-shifting is done later in
1477  * __bfq_activate_entity.
1478  *
1479  * 2. Reduce latency. Even if timestamps are not backshifted to let
1480  * the process associated with bfqq recover a service hole, bfqq may
1481  * however happen to have, after being (re)activated, a lower finish
1482  * timestamp than the in-service queue.	 That is, the next budget of
1483  * bfqq may have to be completed before the one of the in-service
1484  * queue. If this is the case, then preempting the in-service queue
1485  * allows this goal to be achieved, apart from the unpreemptible,
1486  * outstanding requests mentioned above.
1487  *
1488  * Unfortunately, regardless of which of the above two goals one wants
1489  * to achieve, service trees need first to be updated to know whether
1490  * the in-service queue must be preempted. To have service trees
1491  * correctly updated, the in-service queue must be expired and
1492  * rescheduled, and bfqq must be scheduled too. This is one of the
1493  * most costly operations (in future versions, the scheduling
1494  * mechanism may be re-designed in such a way to make it possible to
1495  * know whether preemption is needed without needing to update service
1496  * trees). In addition, queue preemptions almost always cause random
1497  * I/O, which may in turn cause loss of throughput. Finally, there may
1498  * even be no in-service queue when the next function is invoked (so,
1499  * no queue to compare timestamps with). Because of these facts, the
1500  * next function adopts the following simple scheme to avoid costly
1501  * operations, too frequent preemptions and too many dependencies on
1502  * the state of the scheduler: it requests the expiration of the
1503  * in-service queue (unconditionally) only for queues that need to
1504  * recover a hole. Then it delegates to other parts of the code the
1505  * responsibility of handling the above case 2.
1506  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time)1507 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1508 						struct bfq_queue *bfqq,
1509 						bool arrived_in_time)
1510 {
1511 	struct bfq_entity *entity = &bfqq->entity;
1512 
1513 	/*
1514 	 * In the next compound condition, we check also whether there
1515 	 * is some budget left, because otherwise there is no point in
1516 	 * trying to go on serving bfqq with this same budget: bfqq
1517 	 * would be expired immediately after being selected for
1518 	 * service. This would only cause useless overhead.
1519 	 */
1520 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1521 	    bfq_bfqq_budget_left(bfqq) > 0) {
1522 		/*
1523 		 * We do not clear the flag non_blocking_wait_rq here, as
1524 		 * the latter is used in bfq_activate_bfqq to signal
1525 		 * that timestamps need to be back-shifted (and is
1526 		 * cleared right after).
1527 		 */
1528 
1529 		/*
1530 		 * In next assignment we rely on that either
1531 		 * entity->service or entity->budget are not updated
1532 		 * on expiration if bfqq is empty (see
1533 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1534 		 * remain unchanged after such an expiration, and the
1535 		 * following statement therefore assigns to
1536 		 * entity->budget the remaining budget on such an
1537 		 * expiration.
1538 		 */
1539 		entity->budget = min_t(unsigned long,
1540 				       bfq_bfqq_budget_left(bfqq),
1541 				       bfqq->max_budget);
1542 
1543 		/*
1544 		 * At this point, we have used entity->service to get
1545 		 * the budget left (needed for updating
1546 		 * entity->budget). Thus we finally can, and have to,
1547 		 * reset entity->service. The latter must be reset
1548 		 * because bfqq would otherwise be charged again for
1549 		 * the service it has received during its previous
1550 		 * service slot(s).
1551 		 */
1552 		entity->service = 0;
1553 
1554 		return true;
1555 	}
1556 
1557 	/*
1558 	 * We can finally complete expiration, by setting service to 0.
1559 	 */
1560 	entity->service = 0;
1561 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1562 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1563 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1564 	return false;
1565 }
1566 
1567 /*
1568  * Return the farthest past time instant according to jiffies
1569  * macros.
1570  */
bfq_smallest_from_now(void)1571 static unsigned long bfq_smallest_from_now(void)
1572 {
1573 	return jiffies - MAX_JIFFY_OFFSET;
1574 }
1575 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1576 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1577 					     struct bfq_queue *bfqq,
1578 					     unsigned int old_wr_coeff,
1579 					     bool wr_or_deserves_wr,
1580 					     bool interactive,
1581 					     bool in_burst,
1582 					     bool soft_rt)
1583 {
1584 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1585 		/* start a weight-raising period */
1586 		if (interactive) {
1587 			bfqq->service_from_wr = 0;
1588 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1589 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1590 		} else {
1591 			/*
1592 			 * No interactive weight raising in progress
1593 			 * here: assign minus infinity to
1594 			 * wr_start_at_switch_to_srt, to make sure
1595 			 * that, at the end of the soft-real-time
1596 			 * weight raising periods that is starting
1597 			 * now, no interactive weight-raising period
1598 			 * may be wrongly considered as still in
1599 			 * progress (and thus actually started by
1600 			 * mistake).
1601 			 */
1602 			bfqq->wr_start_at_switch_to_srt =
1603 				bfq_smallest_from_now();
1604 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1605 				BFQ_SOFTRT_WEIGHT_FACTOR;
1606 			bfqq->wr_cur_max_time =
1607 				bfqd->bfq_wr_rt_max_time;
1608 		}
1609 
1610 		/*
1611 		 * If needed, further reduce budget to make sure it is
1612 		 * close to bfqq's backlog, so as to reduce the
1613 		 * scheduling-error component due to a too large
1614 		 * budget. Do not care about throughput consequences,
1615 		 * but only about latency. Finally, do not assign a
1616 		 * too small budget either, to avoid increasing
1617 		 * latency by causing too frequent expirations.
1618 		 */
1619 		bfqq->entity.budget = min_t(unsigned long,
1620 					    bfqq->entity.budget,
1621 					    2 * bfq_min_budget(bfqd));
1622 	} else if (old_wr_coeff > 1) {
1623 		if (interactive) { /* update wr coeff and duration */
1624 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1625 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1626 		} else if (in_burst)
1627 			bfqq->wr_coeff = 1;
1628 		else if (soft_rt) {
1629 			/*
1630 			 * The application is now or still meeting the
1631 			 * requirements for being deemed soft rt.  We
1632 			 * can then correctly and safely (re)charge
1633 			 * the weight-raising duration for the
1634 			 * application with the weight-raising
1635 			 * duration for soft rt applications.
1636 			 *
1637 			 * In particular, doing this recharge now, i.e.,
1638 			 * before the weight-raising period for the
1639 			 * application finishes, reduces the probability
1640 			 * of the following negative scenario:
1641 			 * 1) the weight of a soft rt application is
1642 			 *    raised at startup (as for any newly
1643 			 *    created application),
1644 			 * 2) since the application is not interactive,
1645 			 *    at a certain time weight-raising is
1646 			 *    stopped for the application,
1647 			 * 3) at that time the application happens to
1648 			 *    still have pending requests, and hence
1649 			 *    is destined to not have a chance to be
1650 			 *    deemed soft rt before these requests are
1651 			 *    completed (see the comments to the
1652 			 *    function bfq_bfqq_softrt_next_start()
1653 			 *    for details on soft rt detection),
1654 			 * 4) these pending requests experience a high
1655 			 *    latency because the application is not
1656 			 *    weight-raised while they are pending.
1657 			 */
1658 			if (bfqq->wr_cur_max_time !=
1659 				bfqd->bfq_wr_rt_max_time) {
1660 				bfqq->wr_start_at_switch_to_srt =
1661 					bfqq->last_wr_start_finish;
1662 
1663 				bfqq->wr_cur_max_time =
1664 					bfqd->bfq_wr_rt_max_time;
1665 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1666 					BFQ_SOFTRT_WEIGHT_FACTOR;
1667 			}
1668 			bfqq->last_wr_start_finish = jiffies;
1669 		}
1670 	}
1671 }
1672 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1673 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1674 					struct bfq_queue *bfqq)
1675 {
1676 	return bfqq->dispatched == 0 &&
1677 		time_is_before_jiffies(
1678 			bfqq->budget_timeout +
1679 			bfqd->bfq_wr_min_idle_time);
1680 }
1681 
1682 
1683 /*
1684  * Return true if bfqq is in a higher priority class, or has a higher
1685  * weight than the in-service queue.
1686  */
bfq_bfqq_higher_class_or_weight(struct bfq_queue * bfqq,struct bfq_queue * in_serv_bfqq)1687 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1688 					    struct bfq_queue *in_serv_bfqq)
1689 {
1690 	int bfqq_weight, in_serv_weight;
1691 
1692 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1693 		return true;
1694 
1695 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1696 		bfqq_weight = bfqq->entity.weight;
1697 		in_serv_weight = in_serv_bfqq->entity.weight;
1698 	} else {
1699 		if (bfqq->entity.parent)
1700 			bfqq_weight = bfqq->entity.parent->weight;
1701 		else
1702 			bfqq_weight = bfqq->entity.weight;
1703 		if (in_serv_bfqq->entity.parent)
1704 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1705 		else
1706 			in_serv_weight = in_serv_bfqq->entity.weight;
1707 	}
1708 
1709 	return bfqq_weight > in_serv_weight;
1710 }
1711 
1712 static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1713 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1714 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1715 					     struct bfq_queue *bfqq,
1716 					     int old_wr_coeff,
1717 					     struct request *rq,
1718 					     bool *interactive)
1719 {
1720 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1721 		bfqq_wants_to_preempt,
1722 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1723 		/*
1724 		 * See the comments on
1725 		 * bfq_bfqq_update_budg_for_activation for
1726 		 * details on the usage of the next variable.
1727 		 */
1728 		arrived_in_time =  ktime_get_ns() <=
1729 			bfqq->ttime.last_end_request +
1730 			bfqd->bfq_slice_idle * 3;
1731 
1732 
1733 	/*
1734 	 * bfqq deserves to be weight-raised if:
1735 	 * - it is sync,
1736 	 * - it does not belong to a large burst,
1737 	 * - it has been idle for enough time or is soft real-time,
1738 	 * - is linked to a bfq_io_cq (it is not shared in any sense),
1739 	 * - has a default weight (otherwise we assume the user wanted
1740 	 *   to control its weight explicitly)
1741 	 */
1742 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1743 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1744 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1745 		!in_burst &&
1746 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1747 		bfqq->dispatched == 0 &&
1748 		bfqq->entity.new_weight == 40;
1749 	*interactive = !in_burst && idle_for_long_time &&
1750 		bfqq->entity.new_weight == 40;
1751 	/*
1752 	 * Merged bfq_queues are kept out of weight-raising
1753 	 * (low-latency) mechanisms. The reason is that these queues
1754 	 * are usually created for non-interactive and
1755 	 * non-soft-real-time tasks. Yet this is not the case for
1756 	 * stably-merged queues. These queues are merged just because
1757 	 * they are created shortly after each other. So they may
1758 	 * easily serve the I/O of an interactive or soft-real time
1759 	 * application, if the application happens to spawn multiple
1760 	 * processes. So let also stably-merged queued enjoy weight
1761 	 * raising.
1762 	 */
1763 	wr_or_deserves_wr = bfqd->low_latency &&
1764 		(bfqq->wr_coeff > 1 ||
1765 		 (bfq_bfqq_sync(bfqq) &&
1766 		  (bfqq->bic || RQ_BIC(rq)->stably_merged) &&
1767 		   (*interactive || soft_rt)));
1768 
1769 	/*
1770 	 * Using the last flag, update budget and check whether bfqq
1771 	 * may want to preempt the in-service queue.
1772 	 */
1773 	bfqq_wants_to_preempt =
1774 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1775 						    arrived_in_time);
1776 
1777 	/*
1778 	 * If bfqq happened to be activated in a burst, but has been
1779 	 * idle for much more than an interactive queue, then we
1780 	 * assume that, in the overall I/O initiated in the burst, the
1781 	 * I/O associated with bfqq is finished. So bfqq does not need
1782 	 * to be treated as a queue belonging to a burst
1783 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1784 	 * if set, and remove bfqq from the burst list if it's
1785 	 * there. We do not decrement burst_size, because the fact
1786 	 * that bfqq does not need to belong to the burst list any
1787 	 * more does not invalidate the fact that bfqq was created in
1788 	 * a burst.
1789 	 */
1790 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1791 	    idle_for_long_time &&
1792 	    time_is_before_jiffies(
1793 		    bfqq->budget_timeout +
1794 		    msecs_to_jiffies(10000))) {
1795 		hlist_del_init(&bfqq->burst_list_node);
1796 		bfq_clear_bfqq_in_large_burst(bfqq);
1797 	}
1798 
1799 	bfq_clear_bfqq_just_created(bfqq);
1800 
1801 	if (bfqd->low_latency) {
1802 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1803 			/* wraparound */
1804 			bfqq->split_time =
1805 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1806 
1807 		if (time_is_before_jiffies(bfqq->split_time +
1808 					   bfqd->bfq_wr_min_idle_time)) {
1809 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1810 							 old_wr_coeff,
1811 							 wr_or_deserves_wr,
1812 							 *interactive,
1813 							 in_burst,
1814 							 soft_rt);
1815 
1816 			if (old_wr_coeff != bfqq->wr_coeff)
1817 				bfqq->entity.prio_changed = 1;
1818 		}
1819 	}
1820 
1821 	bfqq->last_idle_bklogged = jiffies;
1822 	bfqq->service_from_backlogged = 0;
1823 	bfq_clear_bfqq_softrt_update(bfqq);
1824 
1825 	bfq_add_bfqq_busy(bfqd, bfqq);
1826 
1827 	/*
1828 	 * Expire in-service queue if preemption may be needed for
1829 	 * guarantees or throughput. As for guarantees, we care
1830 	 * explicitly about two cases. The first is that bfqq has to
1831 	 * recover a service hole, as explained in the comments on
1832 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1833 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1834 	 * carry time-critical I/O, then bfqq's bandwidth is less
1835 	 * important than that of queues that carry time-critical I/O.
1836 	 * So, as a further constraint, we consider this case only if
1837 	 * bfqq is at least as weight-raised, i.e., at least as time
1838 	 * critical, as the in-service queue.
1839 	 *
1840 	 * The second case is that bfqq is in a higher priority class,
1841 	 * or has a higher weight than the in-service queue. If this
1842 	 * condition does not hold, we don't care because, even if
1843 	 * bfqq does not start to be served immediately, the resulting
1844 	 * delay for bfqq's I/O is however lower or much lower than
1845 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1846 	 *
1847 	 * In both cases, preemption is needed only if, according to
1848 	 * the timestamps of both bfqq and of the in-service queue,
1849 	 * bfqq actually is the next queue to serve. So, to reduce
1850 	 * useless preemptions, the return value of
1851 	 * next_queue_may_preempt() is considered in the next compound
1852 	 * condition too. Yet next_queue_may_preempt() just checks a
1853 	 * simple, necessary condition for bfqq to be the next queue
1854 	 * to serve. In fact, to evaluate a sufficient condition, the
1855 	 * timestamps of the in-service queue would need to be
1856 	 * updated, and this operation is quite costly (see the
1857 	 * comments on bfq_bfqq_update_budg_for_activation()).
1858 	 *
1859 	 * As for throughput, we ask bfq_better_to_idle() whether we
1860 	 * still need to plug I/O dispatching. If bfq_better_to_idle()
1861 	 * says no, then plugging is not needed any longer, either to
1862 	 * boost throughput or to perserve service guarantees. Then
1863 	 * the best option is to stop plugging I/O, as not doing so
1864 	 * would certainly lower throughput. We may end up in this
1865 	 * case if: (1) upon a dispatch attempt, we detected that it
1866 	 * was better to plug I/O dispatch, and to wait for a new
1867 	 * request to arrive for the currently in-service queue, but
1868 	 * (2) this switch of bfqq to busy changes the scenario.
1869 	 */
1870 	if (bfqd->in_service_queue &&
1871 	    ((bfqq_wants_to_preempt &&
1872 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1873 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1874 	     !bfq_better_to_idle(bfqd->in_service_queue)) &&
1875 	    next_queue_may_preempt(bfqd))
1876 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1877 				false, BFQQE_PREEMPTED);
1878 }
1879 
bfq_reset_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)1880 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1881 				   struct bfq_queue *bfqq)
1882 {
1883 	/* invalidate baseline total service time */
1884 	bfqq->last_serv_time_ns = 0;
1885 
1886 	/*
1887 	 * Reset pointer in case we are waiting for
1888 	 * some request completion.
1889 	 */
1890 	bfqd->waited_rq = NULL;
1891 
1892 	/*
1893 	 * If bfqq has a short think time, then start by setting the
1894 	 * inject limit to 0 prudentially, because the service time of
1895 	 * an injected I/O request may be higher than the think time
1896 	 * of bfqq, and therefore, if one request was injected when
1897 	 * bfqq remains empty, this injected request might delay the
1898 	 * service of the next I/O request for bfqq significantly. In
1899 	 * case bfqq can actually tolerate some injection, then the
1900 	 * adaptive update will however raise the limit soon. This
1901 	 * lucky circumstance holds exactly because bfqq has a short
1902 	 * think time, and thus, after remaining empty, is likely to
1903 	 * get new I/O enqueued---and then completed---before being
1904 	 * expired. This is the very pattern that gives the
1905 	 * limit-update algorithm the chance to measure the effect of
1906 	 * injection on request service times, and then to update the
1907 	 * limit accordingly.
1908 	 *
1909 	 * However, in the following special case, the inject limit is
1910 	 * left to 1 even if the think time is short: bfqq's I/O is
1911 	 * synchronized with that of some other queue, i.e., bfqq may
1912 	 * receive new I/O only after the I/O of the other queue is
1913 	 * completed. Keeping the inject limit to 1 allows the
1914 	 * blocking I/O to be served while bfqq is in service. And
1915 	 * this is very convenient both for bfqq and for overall
1916 	 * throughput, as explained in detail in the comments in
1917 	 * bfq_update_has_short_ttime().
1918 	 *
1919 	 * On the opposite end, if bfqq has a long think time, then
1920 	 * start directly by 1, because:
1921 	 * a) on the bright side, keeping at most one request in
1922 	 * service in the drive is unlikely to cause any harm to the
1923 	 * latency of bfqq's requests, as the service time of a single
1924 	 * request is likely to be lower than the think time of bfqq;
1925 	 * b) on the downside, after becoming empty, bfqq is likely to
1926 	 * expire before getting its next request. With this request
1927 	 * arrival pattern, it is very hard to sample total service
1928 	 * times and update the inject limit accordingly (see comments
1929 	 * on bfq_update_inject_limit()). So the limit is likely to be
1930 	 * never, or at least seldom, updated.  As a consequence, by
1931 	 * setting the limit to 1, we avoid that no injection ever
1932 	 * occurs with bfqq. On the downside, this proactive step
1933 	 * further reduces chances to actually compute the baseline
1934 	 * total service time. Thus it reduces chances to execute the
1935 	 * limit-update algorithm and possibly raise the limit to more
1936 	 * than 1.
1937 	 */
1938 	if (bfq_bfqq_has_short_ttime(bfqq))
1939 		bfqq->inject_limit = 0;
1940 	else
1941 		bfqq->inject_limit = 1;
1942 
1943 	bfqq->decrease_time_jif = jiffies;
1944 }
1945 
bfq_update_io_intensity(struct bfq_queue * bfqq,u64 now_ns)1946 static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1947 {
1948 	u64 tot_io_time = now_ns - bfqq->io_start_time;
1949 
1950 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
1951 		bfqq->tot_idle_time +=
1952 			now_ns - bfqq->ttime.last_end_request;
1953 
1954 	if (unlikely(bfq_bfqq_just_created(bfqq)))
1955 		return;
1956 
1957 	/*
1958 	 * Must be busy for at least about 80% of the time to be
1959 	 * considered I/O bound.
1960 	 */
1961 	if (bfqq->tot_idle_time * 5 > tot_io_time)
1962 		bfq_clear_bfqq_IO_bound(bfqq);
1963 	else
1964 		bfq_mark_bfqq_IO_bound(bfqq);
1965 
1966 	/*
1967 	 * Keep an observation window of at most 200 ms in the past
1968 	 * from now.
1969 	 */
1970 	if (tot_io_time > 200 * NSEC_PER_MSEC) {
1971 		bfqq->io_start_time = now_ns - (tot_io_time>>1);
1972 		bfqq->tot_idle_time >>= 1;
1973 	}
1974 }
1975 
1976 /*
1977  * Detect whether bfqq's I/O seems synchronized with that of some
1978  * other queue, i.e., whether bfqq, after remaining empty, happens to
1979  * receive new I/O only right after some I/O request of the other
1980  * queue has been completed. We call waker queue the other queue, and
1981  * we assume, for simplicity, that bfqq may have at most one waker
1982  * queue.
1983  *
1984  * A remarkable throughput boost can be reached by unconditionally
1985  * injecting the I/O of the waker queue, every time a new
1986  * bfq_dispatch_request happens to be invoked while I/O is being
1987  * plugged for bfqq.  In addition to boosting throughput, this
1988  * unblocks bfqq's I/O, thereby improving bandwidth and latency for
1989  * bfqq. Note that these same results may be achieved with the general
1990  * injection mechanism, but less effectively. For details on this
1991  * aspect, see the comments on the choice of the queue for injection
1992  * in bfq_select_queue().
1993  *
1994  * Turning back to the detection of a waker queue, a queue Q is deemed
1995  * as a waker queue for bfqq if, for three consecutive times, bfqq
1996  * happens to become non empty right after a request of Q has been
1997  * completed. In this respect, even if bfqq is empty, we do not check
1998  * for a waker if it still has some in-flight I/O. In fact, in this
1999  * case bfqq is actually still being served by the drive, and may
2000  * receive new I/O on the completion of some of the in-flight
2001  * requests. In particular, on the first time, Q is tentatively set as
2002  * a candidate waker queue, while on the third consecutive time that Q
2003  * is detected, the field waker_bfqq is set to Q, to confirm that Q is
2004  * a waker queue for bfqq. These detection steps are performed only if
2005  * bfqq has a long think time, so as to make it more likely that
2006  * bfqq's I/O is actually being blocked by a synchronization. This
2007  * last filter, plus the above three-times requirement, make false
2008  * positives less likely.
2009  *
2010  * NOTE
2011  *
2012  * The sooner a waker queue is detected, the sooner throughput can be
2013  * boosted by injecting I/O from the waker queue. Fortunately,
2014  * detection is likely to be actually fast, for the following
2015  * reasons. While blocked by synchronization, bfqq has a long think
2016  * time. This implies that bfqq's inject limit is at least equal to 1
2017  * (see the comments in bfq_update_inject_limit()). So, thanks to
2018  * injection, the waker queue is likely to be served during the very
2019  * first I/O-plugging time interval for bfqq. This triggers the first
2020  * step of the detection mechanism. Thanks again to injection, the
2021  * candidate waker queue is then likely to be confirmed no later than
2022  * during the next I/O-plugging interval for bfqq.
2023  *
2024  * ISSUE
2025  *
2026  * On queue merging all waker information is lost.
2027  */
bfq_check_waker(struct bfq_data * bfqd,struct bfq_queue * bfqq,u64 now_ns)2028 static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2029 			    u64 now_ns)
2030 {
2031 	if (!bfqd->last_completed_rq_bfqq ||
2032 	    bfqd->last_completed_rq_bfqq == bfqq ||
2033 	    bfq_bfqq_has_short_ttime(bfqq) ||
2034 	    now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC)
2035 		return;
2036 
2037 	if (bfqd->last_completed_rq_bfqq !=
2038 	    bfqq->tentative_waker_bfqq) {
2039 		/*
2040 		 * First synchronization detected with a
2041 		 * candidate waker queue, or with a different
2042 		 * candidate waker queue from the current one.
2043 		 */
2044 		bfqq->tentative_waker_bfqq =
2045 			bfqd->last_completed_rq_bfqq;
2046 		bfqq->num_waker_detections = 1;
2047 	} else /* Same tentative waker queue detected again */
2048 		bfqq->num_waker_detections++;
2049 
2050 	if (bfqq->num_waker_detections == 3) {
2051 		bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2052 		bfqq->tentative_waker_bfqq = NULL;
2053 
2054 		/*
2055 		 * If the waker queue disappears, then
2056 		 * bfqq->waker_bfqq must be reset. To
2057 		 * this goal, we maintain in each
2058 		 * waker queue a list, woken_list, of
2059 		 * all the queues that reference the
2060 		 * waker queue through their
2061 		 * waker_bfqq pointer. When the waker
2062 		 * queue exits, the waker_bfqq pointer
2063 		 * of all the queues in the woken_list
2064 		 * is reset.
2065 		 *
2066 		 * In addition, if bfqq is already in
2067 		 * the woken_list of a waker queue,
2068 		 * then, before being inserted into
2069 		 * the woken_list of a new waker
2070 		 * queue, bfqq must be removed from
2071 		 * the woken_list of the old waker
2072 		 * queue.
2073 		 */
2074 		if (!hlist_unhashed(&bfqq->woken_list_node))
2075 			hlist_del_init(&bfqq->woken_list_node);
2076 		hlist_add_head(&bfqq->woken_list_node,
2077 			       &bfqd->last_completed_rq_bfqq->woken_list);
2078 	}
2079 }
2080 
bfq_add_request(struct request * rq)2081 static void bfq_add_request(struct request *rq)
2082 {
2083 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2084 	struct bfq_data *bfqd = bfqq->bfqd;
2085 	struct request *next_rq, *prev;
2086 	unsigned int old_wr_coeff = bfqq->wr_coeff;
2087 	bool interactive = false;
2088 	u64 now_ns = ktime_get_ns();
2089 
2090 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2091 	bfqq->queued[rq_is_sync(rq)]++;
2092 	bfqd->queued++;
2093 
2094 	if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) {
2095 		bfq_check_waker(bfqd, bfqq, now_ns);
2096 
2097 		/*
2098 		 * Periodically reset inject limit, to make sure that
2099 		 * the latter eventually drops in case workload
2100 		 * changes, see step (3) in the comments on
2101 		 * bfq_update_inject_limit().
2102 		 */
2103 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2104 					     msecs_to_jiffies(1000)))
2105 			bfq_reset_inject_limit(bfqd, bfqq);
2106 
2107 		/*
2108 		 * The following conditions must hold to setup a new
2109 		 * sampling of total service time, and then a new
2110 		 * update of the inject limit:
2111 		 * - bfqq is in service, because the total service
2112 		 *   time is evaluated only for the I/O requests of
2113 		 *   the queues in service;
2114 		 * - this is the right occasion to compute or to
2115 		 *   lower the baseline total service time, because
2116 		 *   there are actually no requests in the drive,
2117 		 *   or
2118 		 *   the baseline total service time is available, and
2119 		 *   this is the right occasion to compute the other
2120 		 *   quantity needed to update the inject limit, i.e.,
2121 		 *   the total service time caused by the amount of
2122 		 *   injection allowed by the current value of the
2123 		 *   limit. It is the right occasion because injection
2124 		 *   has actually been performed during the service
2125 		 *   hole, and there are still in-flight requests,
2126 		 *   which are very likely to be exactly the injected
2127 		 *   requests, or part of them;
2128 		 * - the minimum interval for sampling the total
2129 		 *   service time and updating the inject limit has
2130 		 *   elapsed.
2131 		 */
2132 		if (bfqq == bfqd->in_service_queue &&
2133 		    (bfqd->rq_in_driver == 0 ||
2134 		     (bfqq->last_serv_time_ns > 0 &&
2135 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2136 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2137 					      msecs_to_jiffies(10))) {
2138 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2139 			/*
2140 			 * Start the state machine for measuring the
2141 			 * total service time of rq: setting
2142 			 * wait_dispatch will cause bfqd->waited_rq to
2143 			 * be set when rq will be dispatched.
2144 			 */
2145 			bfqd->wait_dispatch = true;
2146 			/*
2147 			 * If there is no I/O in service in the drive,
2148 			 * then possible injection occurred before the
2149 			 * arrival of rq will not affect the total
2150 			 * service time of rq. So the injection limit
2151 			 * must not be updated as a function of such
2152 			 * total service time, unless new injection
2153 			 * occurs before rq is completed. To have the
2154 			 * injection limit updated only in the latter
2155 			 * case, reset rqs_injected here (rqs_injected
2156 			 * will be set in case injection is performed
2157 			 * on bfqq before rq is completed).
2158 			 */
2159 			if (bfqd->rq_in_driver == 0)
2160 				bfqd->rqs_injected = false;
2161 		}
2162 	}
2163 
2164 	if (bfq_bfqq_sync(bfqq))
2165 		bfq_update_io_intensity(bfqq, now_ns);
2166 
2167 	elv_rb_add(&bfqq->sort_list, rq);
2168 
2169 	/*
2170 	 * Check if this request is a better next-serve candidate.
2171 	 */
2172 	prev = bfqq->next_rq;
2173 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2174 	bfqq->next_rq = next_rq;
2175 
2176 	/*
2177 	 * Adjust priority tree position, if next_rq changes.
2178 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2179 	 */
2180 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2181 		bfq_pos_tree_add_move(bfqd, bfqq);
2182 
2183 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2184 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2185 						 rq, &interactive);
2186 	else {
2187 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2188 		    time_is_before_jiffies(
2189 				bfqq->last_wr_start_finish +
2190 				bfqd->bfq_wr_min_inter_arr_async)) {
2191 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2192 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2193 
2194 			bfqd->wr_busy_queues++;
2195 			bfqq->entity.prio_changed = 1;
2196 		}
2197 		if (prev != bfqq->next_rq)
2198 			bfq_updated_next_req(bfqd, bfqq);
2199 	}
2200 
2201 	/*
2202 	 * Assign jiffies to last_wr_start_finish in the following
2203 	 * cases:
2204 	 *
2205 	 * . if bfqq is not going to be weight-raised, because, for
2206 	 *   non weight-raised queues, last_wr_start_finish stores the
2207 	 *   arrival time of the last request; as of now, this piece
2208 	 *   of information is used only for deciding whether to
2209 	 *   weight-raise async queues
2210 	 *
2211 	 * . if bfqq is not weight-raised, because, if bfqq is now
2212 	 *   switching to weight-raised, then last_wr_start_finish
2213 	 *   stores the time when weight-raising starts
2214 	 *
2215 	 * . if bfqq is interactive, because, regardless of whether
2216 	 *   bfqq is currently weight-raised, the weight-raising
2217 	 *   period must start or restart (this case is considered
2218 	 *   separately because it is not detected by the above
2219 	 *   conditions, if bfqq is already weight-raised)
2220 	 *
2221 	 * last_wr_start_finish has to be updated also if bfqq is soft
2222 	 * real-time, because the weight-raising period is constantly
2223 	 * restarted on idle-to-busy transitions for these queues, but
2224 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2225 	 * needed.
2226 	 */
2227 	if (bfqd->low_latency &&
2228 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2229 		bfqq->last_wr_start_finish = jiffies;
2230 }
2231 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)2232 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2233 					  struct bio *bio,
2234 					  struct request_queue *q)
2235 {
2236 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2237 
2238 
2239 	if (bfqq)
2240 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2241 
2242 	return NULL;
2243 }
2244 
get_sdist(sector_t last_pos,struct request * rq)2245 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2246 {
2247 	if (last_pos)
2248 		return abs(blk_rq_pos(rq) - last_pos);
2249 
2250 	return 0;
2251 }
2252 
2253 #if 0 /* Still not clear if we can do without next two functions */
2254 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2255 {
2256 	struct bfq_data *bfqd = q->elevator->elevator_data;
2257 
2258 	bfqd->rq_in_driver++;
2259 }
2260 
2261 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2262 {
2263 	struct bfq_data *bfqd = q->elevator->elevator_data;
2264 
2265 	bfqd->rq_in_driver--;
2266 }
2267 #endif
2268 
bfq_remove_request(struct request_queue * q,struct request * rq)2269 static void bfq_remove_request(struct request_queue *q,
2270 			       struct request *rq)
2271 {
2272 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2273 	struct bfq_data *bfqd = bfqq->bfqd;
2274 	const int sync = rq_is_sync(rq);
2275 
2276 	if (bfqq->next_rq == rq) {
2277 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2278 		bfq_updated_next_req(bfqd, bfqq);
2279 	}
2280 
2281 	if (rq->queuelist.prev != &rq->queuelist)
2282 		list_del_init(&rq->queuelist);
2283 	bfqq->queued[sync]--;
2284 	bfqd->queued--;
2285 	elv_rb_del(&bfqq->sort_list, rq);
2286 
2287 	elv_rqhash_del(q, rq);
2288 	if (q->last_merge == rq)
2289 		q->last_merge = NULL;
2290 
2291 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2292 		bfqq->next_rq = NULL;
2293 
2294 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2295 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2296 			/*
2297 			 * bfqq emptied. In normal operation, when
2298 			 * bfqq is empty, bfqq->entity.service and
2299 			 * bfqq->entity.budget must contain,
2300 			 * respectively, the service received and the
2301 			 * budget used last time bfqq emptied. These
2302 			 * facts do not hold in this case, as at least
2303 			 * this last removal occurred while bfqq is
2304 			 * not in service. To avoid inconsistencies,
2305 			 * reset both bfqq->entity.service and
2306 			 * bfqq->entity.budget, if bfqq has still a
2307 			 * process that may issue I/O requests to it.
2308 			 */
2309 			bfqq->entity.budget = bfqq->entity.service = 0;
2310 		}
2311 
2312 		/*
2313 		 * Remove queue from request-position tree as it is empty.
2314 		 */
2315 		if (bfqq->pos_root) {
2316 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2317 			bfqq->pos_root = NULL;
2318 		}
2319 	} else {
2320 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2321 		if (unlikely(!bfqd->nonrot_with_queueing))
2322 			bfq_pos_tree_add_move(bfqd, bfqq);
2323 	}
2324 
2325 	if (rq->cmd_flags & REQ_META)
2326 		bfqq->meta_pending--;
2327 
2328 }
2329 
bfq_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2330 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2331 		unsigned int nr_segs)
2332 {
2333 	struct bfq_data *bfqd = q->elevator->elevator_data;
2334 	struct request *free = NULL;
2335 	/*
2336 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2337 	 * store its return value for later use, to avoid nesting
2338 	 * queue_lock inside the bfqd->lock. We assume that the bic
2339 	 * returned by bfq_bic_lookup does not go away before
2340 	 * bfqd->lock is taken.
2341 	 */
2342 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2343 	bool ret;
2344 
2345 	spin_lock_irq(&bfqd->lock);
2346 
2347 	if (bic) {
2348 		/*
2349 		 * Make sure cgroup info is uptodate for current process before
2350 		 * considering the merge.
2351 		 */
2352 		bfq_bic_update_cgroup(bic, bio);
2353 
2354 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2355 	} else {
2356 		bfqd->bio_bfqq = NULL;
2357 	}
2358 	bfqd->bio_bic = bic;
2359 
2360 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2361 
2362 	spin_unlock_irq(&bfqd->lock);
2363 	if (free)
2364 		blk_mq_free_request(free);
2365 
2366 	return ret;
2367 }
2368 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)2369 static int bfq_request_merge(struct request_queue *q, struct request **req,
2370 			     struct bio *bio)
2371 {
2372 	struct bfq_data *bfqd = q->elevator->elevator_data;
2373 	struct request *__rq;
2374 
2375 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2376 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2377 		*req = __rq;
2378 
2379 		if (blk_discard_mergable(__rq))
2380 			return ELEVATOR_DISCARD_MERGE;
2381 		return ELEVATOR_FRONT_MERGE;
2382 	}
2383 
2384 	return ELEVATOR_NO_MERGE;
2385 }
2386 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)2387 static void bfq_request_merged(struct request_queue *q, struct request *req,
2388 			       enum elv_merge type)
2389 {
2390 	if (type == ELEVATOR_FRONT_MERGE &&
2391 	    rb_prev(&req->rb_node) &&
2392 	    blk_rq_pos(req) <
2393 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2394 				    struct request, rb_node))) {
2395 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2396 		struct bfq_data *bfqd;
2397 		struct request *prev, *next_rq;
2398 
2399 		if (!bfqq)
2400 			return;
2401 
2402 		bfqd = bfqq->bfqd;
2403 
2404 		/* Reposition request in its sort_list */
2405 		elv_rb_del(&bfqq->sort_list, req);
2406 		elv_rb_add(&bfqq->sort_list, req);
2407 
2408 		/* Choose next request to be served for bfqq */
2409 		prev = bfqq->next_rq;
2410 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2411 					 bfqd->last_position);
2412 		bfqq->next_rq = next_rq;
2413 		/*
2414 		 * If next_rq changes, update both the queue's budget to
2415 		 * fit the new request and the queue's position in its
2416 		 * rq_pos_tree.
2417 		 */
2418 		if (prev != bfqq->next_rq) {
2419 			bfq_updated_next_req(bfqd, bfqq);
2420 			/*
2421 			 * See comments on bfq_pos_tree_add_move() for
2422 			 * the unlikely().
2423 			 */
2424 			if (unlikely(!bfqd->nonrot_with_queueing))
2425 				bfq_pos_tree_add_move(bfqd, bfqq);
2426 		}
2427 	}
2428 }
2429 
2430 /*
2431  * This function is called to notify the scheduler that the requests
2432  * rq and 'next' have been merged, with 'next' going away.  BFQ
2433  * exploits this hook to address the following issue: if 'next' has a
2434  * fifo_time lower that rq, then the fifo_time of rq must be set to
2435  * the value of 'next', to not forget the greater age of 'next'.
2436  *
2437  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2438  * on that rq is picked from the hash table q->elevator->hash, which,
2439  * in its turn, is filled only with I/O requests present in
2440  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2441  * the function that fills this hash table (elv_rqhash_add) is called
2442  * only by bfq_insert_request.
2443  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)2444 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2445 				struct request *next)
2446 {
2447 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2448 		*next_bfqq = RQ_BFQQ(next);
2449 
2450 	if (!bfqq)
2451 		goto remove;
2452 
2453 	/*
2454 	 * If next and rq belong to the same bfq_queue and next is older
2455 	 * than rq, then reposition rq in the fifo (by substituting next
2456 	 * with rq). Otherwise, if next and rq belong to different
2457 	 * bfq_queues, never reposition rq: in fact, we would have to
2458 	 * reposition it with respect to next's position in its own fifo,
2459 	 * which would most certainly be too expensive with respect to
2460 	 * the benefits.
2461 	 */
2462 	if (bfqq == next_bfqq &&
2463 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2464 	    next->fifo_time < rq->fifo_time) {
2465 		list_del_init(&rq->queuelist);
2466 		list_replace_init(&next->queuelist, &rq->queuelist);
2467 		rq->fifo_time = next->fifo_time;
2468 	}
2469 
2470 	if (bfqq->next_rq == next)
2471 		bfqq->next_rq = rq;
2472 
2473 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2474 remove:
2475 	/* Merged request may be in the IO scheduler. Remove it. */
2476 	if (!RB_EMPTY_NODE(&next->rb_node)) {
2477 		bfq_remove_request(next->q, next);
2478 		if (next_bfqq)
2479 			bfqg_stats_update_io_remove(bfqq_group(next_bfqq),
2480 						    next->cmd_flags);
2481 	}
2482 }
2483 
2484 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)2485 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2486 {
2487 	/*
2488 	 * If bfqq has been enjoying interactive weight-raising, then
2489 	 * reset soft_rt_next_start. We do it for the following
2490 	 * reason. bfqq may have been conveying the I/O needed to load
2491 	 * a soft real-time application. Such an application actually
2492 	 * exhibits a soft real-time I/O pattern after it finishes
2493 	 * loading, and finally starts doing its job. But, if bfqq has
2494 	 * been receiving a lot of bandwidth so far (likely to happen
2495 	 * on a fast device), then soft_rt_next_start now contains a
2496 	 * high value that. So, without this reset, bfqq would be
2497 	 * prevented from being possibly considered as soft_rt for a
2498 	 * very long time.
2499 	 */
2500 
2501 	if (bfqq->wr_cur_max_time !=
2502 	    bfqq->bfqd->bfq_wr_rt_max_time)
2503 		bfqq->soft_rt_next_start = jiffies;
2504 
2505 	if (bfq_bfqq_busy(bfqq))
2506 		bfqq->bfqd->wr_busy_queues--;
2507 	bfqq->wr_coeff = 1;
2508 	bfqq->wr_cur_max_time = 0;
2509 	bfqq->last_wr_start_finish = jiffies;
2510 	/*
2511 	 * Trigger a weight change on the next invocation of
2512 	 * __bfq_entity_update_weight_prio.
2513 	 */
2514 	bfqq->entity.prio_changed = 1;
2515 }
2516 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2517 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2518 			     struct bfq_group *bfqg)
2519 {
2520 	int i, j;
2521 
2522 	for (i = 0; i < 2; i++)
2523 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
2524 			if (bfqg->async_bfqq[i][j])
2525 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2526 	if (bfqg->async_idle_bfqq)
2527 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2528 }
2529 
bfq_end_wr(struct bfq_data * bfqd)2530 static void bfq_end_wr(struct bfq_data *bfqd)
2531 {
2532 	struct bfq_queue *bfqq;
2533 
2534 	spin_lock_irq(&bfqd->lock);
2535 
2536 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2537 		bfq_bfqq_end_wr(bfqq);
2538 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2539 		bfq_bfqq_end_wr(bfqq);
2540 	bfq_end_wr_async(bfqd);
2541 
2542 	spin_unlock_irq(&bfqd->lock);
2543 }
2544 
bfq_io_struct_pos(void * io_struct,bool request)2545 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2546 {
2547 	if (request)
2548 		return blk_rq_pos(io_struct);
2549 	else
2550 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2551 }
2552 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2553 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2554 				  sector_t sector)
2555 {
2556 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2557 	       BFQQ_CLOSE_THR;
2558 }
2559 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2560 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2561 					 struct bfq_queue *bfqq,
2562 					 sector_t sector)
2563 {
2564 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2565 	struct rb_node *parent, *node;
2566 	struct bfq_queue *__bfqq;
2567 
2568 	if (RB_EMPTY_ROOT(root))
2569 		return NULL;
2570 
2571 	/*
2572 	 * First, if we find a request starting at the end of the last
2573 	 * request, choose it.
2574 	 */
2575 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2576 	if (__bfqq)
2577 		return __bfqq;
2578 
2579 	/*
2580 	 * If the exact sector wasn't found, the parent of the NULL leaf
2581 	 * will contain the closest sector (rq_pos_tree sorted by
2582 	 * next_request position).
2583 	 */
2584 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2585 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2586 		return __bfqq;
2587 
2588 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2589 		node = rb_next(&__bfqq->pos_node);
2590 	else
2591 		node = rb_prev(&__bfqq->pos_node);
2592 	if (!node)
2593 		return NULL;
2594 
2595 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2596 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2597 		return __bfqq;
2598 
2599 	return NULL;
2600 }
2601 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2602 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2603 						   struct bfq_queue *cur_bfqq,
2604 						   sector_t sector)
2605 {
2606 	struct bfq_queue *bfqq;
2607 
2608 	/*
2609 	 * We shall notice if some of the queues are cooperating,
2610 	 * e.g., working closely on the same area of the device. In
2611 	 * that case, we can group them together and: 1) don't waste
2612 	 * time idling, and 2) serve the union of their requests in
2613 	 * the best possible order for throughput.
2614 	 */
2615 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2616 	if (!bfqq || bfqq == cur_bfqq)
2617 		return NULL;
2618 
2619 	return bfqq;
2620 }
2621 
2622 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2623 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2624 {
2625 	int process_refs, new_process_refs;
2626 	struct bfq_queue *__bfqq;
2627 
2628 	/*
2629 	 * If there are no process references on the new_bfqq, then it is
2630 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2631 	 * may have dropped their last reference (not just their last process
2632 	 * reference).
2633 	 */
2634 	if (!bfqq_process_refs(new_bfqq))
2635 		return NULL;
2636 
2637 	/* Avoid a circular list and skip interim queue merges. */
2638 	while ((__bfqq = new_bfqq->new_bfqq)) {
2639 		if (__bfqq == bfqq)
2640 			return NULL;
2641 		new_bfqq = __bfqq;
2642 	}
2643 
2644 	process_refs = bfqq_process_refs(bfqq);
2645 	new_process_refs = bfqq_process_refs(new_bfqq);
2646 	/*
2647 	 * If the process for the bfqq has gone away, there is no
2648 	 * sense in merging the queues.
2649 	 */
2650 	if (process_refs == 0 || new_process_refs == 0)
2651 		return NULL;
2652 
2653 	/*
2654 	 * Make sure merged queues belong to the same parent. Parents could
2655 	 * have changed since the time we decided the two queues are suitable
2656 	 * for merging.
2657 	 */
2658 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2659 		return NULL;
2660 
2661 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2662 		new_bfqq->pid);
2663 
2664 	/*
2665 	 * Merging is just a redirection: the requests of the process
2666 	 * owning one of the two queues are redirected to the other queue.
2667 	 * The latter queue, in its turn, is set as shared if this is the
2668 	 * first time that the requests of some process are redirected to
2669 	 * it.
2670 	 *
2671 	 * We redirect bfqq to new_bfqq and not the opposite, because
2672 	 * we are in the context of the process owning bfqq, thus we
2673 	 * have the io_cq of this process. So we can immediately
2674 	 * configure this io_cq to redirect the requests of the
2675 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2676 	 * not available any more (new_bfqq->bic == NULL).
2677 	 *
2678 	 * Anyway, even in case new_bfqq coincides with the in-service
2679 	 * queue, redirecting requests the in-service queue is the
2680 	 * best option, as we feed the in-service queue with new
2681 	 * requests close to the last request served and, by doing so,
2682 	 * are likely to increase the throughput.
2683 	 */
2684 	bfqq->new_bfqq = new_bfqq;
2685 	/*
2686 	 * The above assignment schedules the following redirections:
2687 	 * each time some I/O for bfqq arrives, the process that
2688 	 * generated that I/O is disassociated from bfqq and
2689 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2690 	 * in advance, adding the number of processes that are
2691 	 * expected to be associated with new_bfqq as they happen to
2692 	 * issue I/O.
2693 	 */
2694 	new_bfqq->ref += process_refs;
2695 	return new_bfqq;
2696 }
2697 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2698 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2699 					struct bfq_queue *new_bfqq)
2700 {
2701 	if (bfq_too_late_for_merging(new_bfqq))
2702 		return false;
2703 
2704 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2705 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2706 		return false;
2707 
2708 	/*
2709 	 * If either of the queues has already been detected as seeky,
2710 	 * then merging it with the other queue is unlikely to lead to
2711 	 * sequential I/O.
2712 	 */
2713 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2714 		return false;
2715 
2716 	/*
2717 	 * Interleaved I/O is known to be done by (some) applications
2718 	 * only for reads, so it does not make sense to merge async
2719 	 * queues.
2720 	 */
2721 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2722 		return false;
2723 
2724 	return true;
2725 }
2726 
2727 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2728 					     struct bfq_queue *bfqq);
2729 
2730 /*
2731  * Attempt to schedule a merge of bfqq with the currently in-service
2732  * queue or with a close queue among the scheduled queues.  Return
2733  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2734  * structure otherwise.
2735  *
2736  * The OOM queue is not allowed to participate to cooperation: in fact, since
2737  * the requests temporarily redirected to the OOM queue could be redirected
2738  * again to dedicated queues at any time, the state needed to correctly
2739  * handle merging with the OOM queue would be quite complex and expensive
2740  * to maintain. Besides, in such a critical condition as an out of memory,
2741  * the benefits of queue merging may be little relevant, or even negligible.
2742  *
2743  * WARNING: queue merging may impair fairness among non-weight raised
2744  * queues, for at least two reasons: 1) the original weight of a
2745  * merged queue may change during the merged state, 2) even being the
2746  * weight the same, a merged queue may be bloated with many more
2747  * requests than the ones produced by its originally-associated
2748  * process.
2749  */
2750 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request,struct bfq_io_cq * bic)2751 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2752 		     void *io_struct, bool request, struct bfq_io_cq *bic)
2753 {
2754 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2755 
2756 	/* if a merge has already been setup, then proceed with that first */
2757 	if (bfqq->new_bfqq)
2758 		return bfqq->new_bfqq;
2759 
2760 	/*
2761 	 * Check delayed stable merge for rotational or non-queueing
2762 	 * devs. For this branch to be executed, bfqq must not be
2763 	 * currently merged with some other queue (i.e., bfqq->bic
2764 	 * must be non null). If we considered also merged queues,
2765 	 * then we should also check whether bfqq has already been
2766 	 * merged with bic->stable_merge_bfqq. But this would be
2767 	 * costly and complicated.
2768 	 */
2769 	if (unlikely(!bfqd->nonrot_with_queueing)) {
2770 		/*
2771 		 * Make sure also that bfqq is sync, because
2772 		 * bic->stable_merge_bfqq may point to some queue (for
2773 		 * stable merging) also if bic is associated with a
2774 		 * sync queue, but this bfqq is async
2775 		 */
2776 		if (bfq_bfqq_sync(bfqq) && bic->stable_merge_bfqq &&
2777 		    !bfq_bfqq_just_created(bfqq) &&
2778 		    time_is_before_jiffies(bfqq->split_time +
2779 					  msecs_to_jiffies(bfq_late_stable_merging)) &&
2780 		    time_is_before_jiffies(bfqq->creation_time +
2781 					   msecs_to_jiffies(bfq_late_stable_merging))) {
2782 			struct bfq_queue *stable_merge_bfqq =
2783 				bic->stable_merge_bfqq;
2784 			int proc_ref = min(bfqq_process_refs(bfqq),
2785 					   bfqq_process_refs(stable_merge_bfqq));
2786 
2787 			/* deschedule stable merge, because done or aborted here */
2788 			bfq_put_stable_ref(stable_merge_bfqq);
2789 
2790 			bic->stable_merge_bfqq = NULL;
2791 
2792 			if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2793 			    proc_ref > 0) {
2794 				/* next function will take at least one ref */
2795 				struct bfq_queue *new_bfqq =
2796 					bfq_setup_merge(bfqq, stable_merge_bfqq);
2797 
2798 				if (new_bfqq) {
2799 					bic->stably_merged = true;
2800 					if (new_bfqq->bic)
2801 						new_bfqq->bic->stably_merged =
2802 									true;
2803 				}
2804 				return new_bfqq;
2805 			} else
2806 				return NULL;
2807 		}
2808 	}
2809 
2810 	/*
2811 	 * Do not perform queue merging if the device is non
2812 	 * rotational and performs internal queueing. In fact, such a
2813 	 * device reaches a high speed through internal parallelism
2814 	 * and pipelining. This means that, to reach a high
2815 	 * throughput, it must have many requests enqueued at the same
2816 	 * time. But, in this configuration, the internal scheduling
2817 	 * algorithm of the device does exactly the job of queue
2818 	 * merging: it reorders requests so as to obtain as much as
2819 	 * possible a sequential I/O pattern. As a consequence, with
2820 	 * the workload generated by processes doing interleaved I/O,
2821 	 * the throughput reached by the device is likely to be the
2822 	 * same, with and without queue merging.
2823 	 *
2824 	 * Disabling merging also provides a remarkable benefit in
2825 	 * terms of throughput. Merging tends to make many workloads
2826 	 * artificially more uneven, because of shared queues
2827 	 * remaining non empty for incomparably more time than
2828 	 * non-merged queues. This may accentuate workload
2829 	 * asymmetries. For example, if one of the queues in a set of
2830 	 * merged queues has a higher weight than a normal queue, then
2831 	 * the shared queue may inherit such a high weight and, by
2832 	 * staying almost always active, may force BFQ to perform I/O
2833 	 * plugging most of the time. This evidently makes it harder
2834 	 * for BFQ to let the device reach a high throughput.
2835 	 *
2836 	 * Finally, the likely() macro below is not used because one
2837 	 * of the two branches is more likely than the other, but to
2838 	 * have the code path after the following if() executed as
2839 	 * fast as possible for the case of a non rotational device
2840 	 * with queueing. We want it because this is the fastest kind
2841 	 * of device. On the opposite end, the likely() may lengthen
2842 	 * the execution time of BFQ for the case of slower devices
2843 	 * (rotational or at least without queueing). But in this case
2844 	 * the execution time of BFQ matters very little, if not at
2845 	 * all.
2846 	 */
2847 	if (likely(bfqd->nonrot_with_queueing))
2848 		return NULL;
2849 
2850 	/*
2851 	 * Prevent bfqq from being merged if it has been created too
2852 	 * long ago. The idea is that true cooperating processes, and
2853 	 * thus their associated bfq_queues, are supposed to be
2854 	 * created shortly after each other. This is the case, e.g.,
2855 	 * for KVM/QEMU and dump I/O threads. Basing on this
2856 	 * assumption, the following filtering greatly reduces the
2857 	 * probability that two non-cooperating processes, which just
2858 	 * happen to do close I/O for some short time interval, have
2859 	 * their queues merged by mistake.
2860 	 */
2861 	if (bfq_too_late_for_merging(bfqq))
2862 		return NULL;
2863 
2864 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2865 		return NULL;
2866 
2867 	/* If there is only one backlogged queue, don't search. */
2868 	if (bfq_tot_busy_queues(bfqd) == 1)
2869 		return NULL;
2870 
2871 	in_service_bfqq = bfqd->in_service_queue;
2872 
2873 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2874 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2875 	    bfq_rq_close_to_sector(io_struct, request,
2876 				   bfqd->in_serv_last_pos) &&
2877 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2878 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2879 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2880 		if (new_bfqq)
2881 			return new_bfqq;
2882 	}
2883 	/*
2884 	 * Check whether there is a cooperator among currently scheduled
2885 	 * queues. The only thing we need is that the bio/request is not
2886 	 * NULL, as we need it to establish whether a cooperator exists.
2887 	 */
2888 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2889 			bfq_io_struct_pos(io_struct, request));
2890 
2891 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2892 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2893 		return bfq_setup_merge(bfqq, new_bfqq);
2894 
2895 	return NULL;
2896 }
2897 
bfq_bfqq_save_state(struct bfq_queue * bfqq)2898 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2899 {
2900 	struct bfq_io_cq *bic = bfqq->bic;
2901 
2902 	/*
2903 	 * If !bfqq->bic, the queue is already shared or its requests
2904 	 * have already been redirected to a shared queue; both idle window
2905 	 * and weight raising state have already been saved. Do nothing.
2906 	 */
2907 	if (!bic)
2908 		return;
2909 
2910 	bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2911 	bic->saved_inject_limit = bfqq->inject_limit;
2912 	bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2913 
2914 	bic->saved_weight = bfqq->entity.orig_weight;
2915 	bic->saved_ttime = bfqq->ttime;
2916 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2917 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2918 	bic->saved_io_start_time = bfqq->io_start_time;
2919 	bic->saved_tot_idle_time = bfqq->tot_idle_time;
2920 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2921 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2922 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2923 		     !bfq_bfqq_in_large_burst(bfqq) &&
2924 		     bfqq->bfqd->low_latency)) {
2925 		/*
2926 		 * bfqq being merged right after being created: bfqq
2927 		 * would have deserved interactive weight raising, but
2928 		 * did not make it to be set in a weight-raised state,
2929 		 * because of this early merge.	Store directly the
2930 		 * weight-raising state that would have been assigned
2931 		 * to bfqq, so that to avoid that bfqq unjustly fails
2932 		 * to enjoy weight raising if split soon.
2933 		 */
2934 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2935 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2936 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2937 		bic->saved_last_wr_start_finish = jiffies;
2938 	} else {
2939 		bic->saved_wr_coeff = bfqq->wr_coeff;
2940 		bic->saved_wr_start_at_switch_to_srt =
2941 			bfqq->wr_start_at_switch_to_srt;
2942 		bic->saved_service_from_wr = bfqq->service_from_wr;
2943 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2944 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2945 	}
2946 }
2947 
2948 
2949 static void
bfq_reassign_last_bfqq(struct bfq_queue * cur_bfqq,struct bfq_queue * new_bfqq)2950 bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
2951 {
2952 	if (cur_bfqq->entity.parent &&
2953 	    cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
2954 		cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
2955 	else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
2956 		cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
2957 }
2958 
bfq_release_process_ref(struct bfq_data * bfqd,struct bfq_queue * bfqq)2959 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2960 {
2961 	/*
2962 	 * To prevent bfqq's service guarantees from being violated,
2963 	 * bfqq may be left busy, i.e., queued for service, even if
2964 	 * empty (see comments in __bfq_bfqq_expire() for
2965 	 * details). But, if no process will send requests to bfqq any
2966 	 * longer, then there is no point in keeping bfqq queued for
2967 	 * service. In addition, keeping bfqq queued for service, but
2968 	 * with no process ref any longer, may have caused bfqq to be
2969 	 * freed when dequeued from service. But this is assumed to
2970 	 * never happen.
2971 	 */
2972 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2973 	    bfqq != bfqd->in_service_queue)
2974 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2975 
2976 	bfq_reassign_last_bfqq(bfqq, NULL);
2977 
2978 	bfq_put_queue(bfqq);
2979 }
2980 
2981 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2982 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2983 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2984 {
2985 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2986 		(unsigned long)new_bfqq->pid);
2987 	/* Save weight raising and idle window of the merged queues */
2988 	bfq_bfqq_save_state(bfqq);
2989 	bfq_bfqq_save_state(new_bfqq);
2990 	if (bfq_bfqq_IO_bound(bfqq))
2991 		bfq_mark_bfqq_IO_bound(new_bfqq);
2992 	bfq_clear_bfqq_IO_bound(bfqq);
2993 
2994 	/*
2995 	 * The processes associated with bfqq are cooperators of the
2996 	 * processes associated with new_bfqq. So, if bfqq has a
2997 	 * waker, then assume that all these processes will be happy
2998 	 * to let bfqq's waker freely inject I/O when they have no
2999 	 * I/O.
3000 	 */
3001 	if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
3002 	    bfqq->waker_bfqq != new_bfqq) {
3003 		new_bfqq->waker_bfqq = bfqq->waker_bfqq;
3004 		new_bfqq->tentative_waker_bfqq = NULL;
3005 
3006 		/*
3007 		 * If the waker queue disappears, then
3008 		 * new_bfqq->waker_bfqq must be reset. So insert
3009 		 * new_bfqq into the woken_list of the waker. See
3010 		 * bfq_check_waker for details.
3011 		 */
3012 		hlist_add_head(&new_bfqq->woken_list_node,
3013 			       &new_bfqq->waker_bfqq->woken_list);
3014 
3015 	}
3016 
3017 	/*
3018 	 * If bfqq is weight-raised, then let new_bfqq inherit
3019 	 * weight-raising. To reduce false positives, neglect the case
3020 	 * where bfqq has just been created, but has not yet made it
3021 	 * to be weight-raised (which may happen because EQM may merge
3022 	 * bfqq even before bfq_add_request is executed for the first
3023 	 * time for bfqq). Handling this case would however be very
3024 	 * easy, thanks to the flag just_created.
3025 	 */
3026 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
3027 		new_bfqq->wr_coeff = bfqq->wr_coeff;
3028 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
3029 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
3030 		new_bfqq->wr_start_at_switch_to_srt =
3031 			bfqq->wr_start_at_switch_to_srt;
3032 		if (bfq_bfqq_busy(new_bfqq))
3033 			bfqd->wr_busy_queues++;
3034 		new_bfqq->entity.prio_changed = 1;
3035 	}
3036 
3037 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
3038 		bfqq->wr_coeff = 1;
3039 		bfqq->entity.prio_changed = 1;
3040 		if (bfq_bfqq_busy(bfqq))
3041 			bfqd->wr_busy_queues--;
3042 	}
3043 
3044 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
3045 		     bfqd->wr_busy_queues);
3046 
3047 	/*
3048 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
3049 	 */
3050 	bic_set_bfqq(bic, new_bfqq, true);
3051 	bfq_mark_bfqq_coop(new_bfqq);
3052 	/*
3053 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
3054 	 * set new_bfqq->bic to NULL. bfqq either:
3055 	 * - does not belong to any bic any more, and hence bfqq->bic must
3056 	 *   be set to NULL, or
3057 	 * - is a queue whose owning bics have already been redirected to a
3058 	 *   different queue, hence the queue is destined to not belong to
3059 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
3060 	 *   assignment causes no harm).
3061 	 */
3062 	new_bfqq->bic = NULL;
3063 	/*
3064 	 * If the queue is shared, the pid is the pid of one of the associated
3065 	 * processes. Which pid depends on the exact sequence of merge events
3066 	 * the queue underwent. So printing such a pid is useless and confusing
3067 	 * because it reports a random pid between those of the associated
3068 	 * processes.
3069 	 * We mark such a queue with a pid -1, and then print SHARED instead of
3070 	 * a pid in logging messages.
3071 	 */
3072 	new_bfqq->pid = -1;
3073 	bfqq->bic = NULL;
3074 
3075 	bfq_reassign_last_bfqq(bfqq, new_bfqq);
3076 
3077 	bfq_release_process_ref(bfqd, bfqq);
3078 }
3079 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)3080 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3081 				struct bio *bio)
3082 {
3083 	struct bfq_data *bfqd = q->elevator->elevator_data;
3084 	bool is_sync = op_is_sync(bio->bi_opf);
3085 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
3086 
3087 	/*
3088 	 * Disallow merge of a sync bio into an async request.
3089 	 */
3090 	if (is_sync && !rq_is_sync(rq))
3091 		return false;
3092 
3093 	/*
3094 	 * Lookup the bfqq that this bio will be queued with. Allow
3095 	 * merge only if rq is queued there.
3096 	 */
3097 	if (!bfqq)
3098 		return false;
3099 
3100 	/*
3101 	 * We take advantage of this function to perform an early merge
3102 	 * of the queues of possible cooperating processes.
3103 	 */
3104 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
3105 	if (new_bfqq) {
3106 		/*
3107 		 * bic still points to bfqq, then it has not yet been
3108 		 * redirected to some other bfq_queue, and a queue
3109 		 * merge between bfqq and new_bfqq can be safely
3110 		 * fulfilled, i.e., bic can be redirected to new_bfqq
3111 		 * and bfqq can be put.
3112 		 */
3113 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3114 				new_bfqq);
3115 		/*
3116 		 * If we get here, bio will be queued into new_queue,
3117 		 * so use new_bfqq to decide whether bio and rq can be
3118 		 * merged.
3119 		 */
3120 		bfqq = new_bfqq;
3121 
3122 		/*
3123 		 * Change also bqfd->bio_bfqq, as
3124 		 * bfqd->bio_bic now points to new_bfqq, and
3125 		 * this function may be invoked again (and then may
3126 		 * use again bqfd->bio_bfqq).
3127 		 */
3128 		bfqd->bio_bfqq = bfqq;
3129 	}
3130 
3131 	return bfqq == RQ_BFQQ(rq);
3132 }
3133 
3134 /*
3135  * Set the maximum time for the in-service queue to consume its
3136  * budget. This prevents seeky processes from lowering the throughput.
3137  * In practice, a time-slice service scheme is used with seeky
3138  * processes.
3139  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)3140 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3141 				   struct bfq_queue *bfqq)
3142 {
3143 	unsigned int timeout_coeff;
3144 
3145 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3146 		timeout_coeff = 1;
3147 	else
3148 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3149 
3150 	bfqd->last_budget_start = ktime_get();
3151 
3152 	bfqq->budget_timeout = jiffies +
3153 		bfqd->bfq_timeout * timeout_coeff;
3154 }
3155 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)3156 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3157 				       struct bfq_queue *bfqq)
3158 {
3159 	if (bfqq) {
3160 		bfq_clear_bfqq_fifo_expire(bfqq);
3161 
3162 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3163 
3164 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3165 		    bfqq->wr_coeff > 1 &&
3166 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3167 		    time_is_before_jiffies(bfqq->budget_timeout)) {
3168 			/*
3169 			 * For soft real-time queues, move the start
3170 			 * of the weight-raising period forward by the
3171 			 * time the queue has not received any
3172 			 * service. Otherwise, a relatively long
3173 			 * service delay is likely to cause the
3174 			 * weight-raising period of the queue to end,
3175 			 * because of the short duration of the
3176 			 * weight-raising period of a soft real-time
3177 			 * queue.  It is worth noting that this move
3178 			 * is not so dangerous for the other queues,
3179 			 * because soft real-time queues are not
3180 			 * greedy.
3181 			 *
3182 			 * To not add a further variable, we use the
3183 			 * overloaded field budget_timeout to
3184 			 * determine for how long the queue has not
3185 			 * received service, i.e., how much time has
3186 			 * elapsed since the queue expired. However,
3187 			 * this is a little imprecise, because
3188 			 * budget_timeout is set to jiffies if bfqq
3189 			 * not only expires, but also remains with no
3190 			 * request.
3191 			 */
3192 			if (time_after(bfqq->budget_timeout,
3193 				       bfqq->last_wr_start_finish))
3194 				bfqq->last_wr_start_finish +=
3195 					jiffies - bfqq->budget_timeout;
3196 			else
3197 				bfqq->last_wr_start_finish = jiffies;
3198 		}
3199 
3200 		bfq_set_budget_timeout(bfqd, bfqq);
3201 		bfq_log_bfqq(bfqd, bfqq,
3202 			     "set_in_service_queue, cur-budget = %d",
3203 			     bfqq->entity.budget);
3204 	}
3205 
3206 	bfqd->in_service_queue = bfqq;
3207 	bfqd->in_serv_last_pos = 0;
3208 }
3209 
3210 /*
3211  * Get and set a new queue for service.
3212  */
bfq_set_in_service_queue(struct bfq_data * bfqd)3213 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3214 {
3215 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3216 
3217 	__bfq_set_in_service_queue(bfqd, bfqq);
3218 	return bfqq;
3219 }
3220 
bfq_arm_slice_timer(struct bfq_data * bfqd)3221 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3222 {
3223 	struct bfq_queue *bfqq = bfqd->in_service_queue;
3224 	u32 sl;
3225 
3226 	bfq_mark_bfqq_wait_request(bfqq);
3227 
3228 	/*
3229 	 * We don't want to idle for seeks, but we do want to allow
3230 	 * fair distribution of slice time for a process doing back-to-back
3231 	 * seeks. So allow a little bit of time for him to submit a new rq.
3232 	 */
3233 	sl = bfqd->bfq_slice_idle;
3234 	/*
3235 	 * Unless the queue is being weight-raised or the scenario is
3236 	 * asymmetric, grant only minimum idle time if the queue
3237 	 * is seeky. A long idling is preserved for a weight-raised
3238 	 * queue, or, more in general, in an asymmetric scenario,
3239 	 * because a long idling is needed for guaranteeing to a queue
3240 	 * its reserved share of the throughput (in particular, it is
3241 	 * needed if the queue has a higher weight than some other
3242 	 * queue).
3243 	 */
3244 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3245 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3246 		sl = min_t(u64, sl, BFQ_MIN_TT);
3247 	else if (bfqq->wr_coeff > 1)
3248 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3249 
3250 	bfqd->last_idling_start = ktime_get();
3251 	bfqd->last_idling_start_jiffies = jiffies;
3252 
3253 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3254 		      HRTIMER_MODE_REL);
3255 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3256 }
3257 
3258 /*
3259  * In autotuning mode, max_budget is dynamically recomputed as the
3260  * amount of sectors transferred in timeout at the estimated peak
3261  * rate. This enables BFQ to utilize a full timeslice with a full
3262  * budget, even if the in-service queue is served at peak rate. And
3263  * this maximises throughput with sequential workloads.
3264  */
bfq_calc_max_budget(struct bfq_data * bfqd)3265 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3266 {
3267 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3268 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3269 }
3270 
3271 /*
3272  * Update parameters related to throughput and responsiveness, as a
3273  * function of the estimated peak rate. See comments on
3274  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3275  */
update_thr_responsiveness_params(struct bfq_data * bfqd)3276 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3277 {
3278 	if (bfqd->bfq_user_max_budget == 0) {
3279 		bfqd->bfq_max_budget =
3280 			bfq_calc_max_budget(bfqd);
3281 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3282 	}
3283 }
3284 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)3285 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3286 				       struct request *rq)
3287 {
3288 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3289 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3290 		bfqd->peak_rate_samples = 1;
3291 		bfqd->sequential_samples = 0;
3292 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3293 			blk_rq_sectors(rq);
3294 	} else /* no new rq dispatched, just reset the number of samples */
3295 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3296 
3297 	bfq_log(bfqd,
3298 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3299 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3300 		bfqd->tot_sectors_dispatched);
3301 }
3302 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)3303 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3304 {
3305 	u32 rate, weight, divisor;
3306 
3307 	/*
3308 	 * For the convergence property to hold (see comments on
3309 	 * bfq_update_peak_rate()) and for the assessment to be
3310 	 * reliable, a minimum number of samples must be present, and
3311 	 * a minimum amount of time must have elapsed. If not so, do
3312 	 * not compute new rate. Just reset parameters, to get ready
3313 	 * for a new evaluation attempt.
3314 	 */
3315 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3316 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3317 		goto reset_computation;
3318 
3319 	/*
3320 	 * If a new request completion has occurred after last
3321 	 * dispatch, then, to approximate the rate at which requests
3322 	 * have been served by the device, it is more precise to
3323 	 * extend the observation interval to the last completion.
3324 	 */
3325 	bfqd->delta_from_first =
3326 		max_t(u64, bfqd->delta_from_first,
3327 		      bfqd->last_completion - bfqd->first_dispatch);
3328 
3329 	/*
3330 	 * Rate computed in sects/usec, and not sects/nsec, for
3331 	 * precision issues.
3332 	 */
3333 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3334 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3335 
3336 	/*
3337 	 * Peak rate not updated if:
3338 	 * - the percentage of sequential dispatches is below 3/4 of the
3339 	 *   total, and rate is below the current estimated peak rate
3340 	 * - rate is unreasonably high (> 20M sectors/sec)
3341 	 */
3342 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3343 	     rate <= bfqd->peak_rate) ||
3344 		rate > 20<<BFQ_RATE_SHIFT)
3345 		goto reset_computation;
3346 
3347 	/*
3348 	 * We have to update the peak rate, at last! To this purpose,
3349 	 * we use a low-pass filter. We compute the smoothing constant
3350 	 * of the filter as a function of the 'weight' of the new
3351 	 * measured rate.
3352 	 *
3353 	 * As can be seen in next formulas, we define this weight as a
3354 	 * quantity proportional to how sequential the workload is,
3355 	 * and to how long the observation time interval is.
3356 	 *
3357 	 * The weight runs from 0 to 8. The maximum value of the
3358 	 * weight, 8, yields the minimum value for the smoothing
3359 	 * constant. At this minimum value for the smoothing constant,
3360 	 * the measured rate contributes for half of the next value of
3361 	 * the estimated peak rate.
3362 	 *
3363 	 * So, the first step is to compute the weight as a function
3364 	 * of how sequential the workload is. Note that the weight
3365 	 * cannot reach 9, because bfqd->sequential_samples cannot
3366 	 * become equal to bfqd->peak_rate_samples, which, in its
3367 	 * turn, holds true because bfqd->sequential_samples is not
3368 	 * incremented for the first sample.
3369 	 */
3370 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3371 
3372 	/*
3373 	 * Second step: further refine the weight as a function of the
3374 	 * duration of the observation interval.
3375 	 */
3376 	weight = min_t(u32, 8,
3377 		       div_u64(weight * bfqd->delta_from_first,
3378 			       BFQ_RATE_REF_INTERVAL));
3379 
3380 	/*
3381 	 * Divisor ranging from 10, for minimum weight, to 2, for
3382 	 * maximum weight.
3383 	 */
3384 	divisor = 10 - weight;
3385 
3386 	/*
3387 	 * Finally, update peak rate:
3388 	 *
3389 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3390 	 */
3391 	bfqd->peak_rate *= divisor-1;
3392 	bfqd->peak_rate /= divisor;
3393 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3394 
3395 	bfqd->peak_rate += rate;
3396 
3397 	/*
3398 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3399 	 * the minimum representable values reported in the comments
3400 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3401 	 * divisions by zero where bfqd->peak_rate is used as a
3402 	 * divisor.
3403 	 */
3404 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3405 
3406 	update_thr_responsiveness_params(bfqd);
3407 
3408 reset_computation:
3409 	bfq_reset_rate_computation(bfqd, rq);
3410 }
3411 
3412 /*
3413  * Update the read/write peak rate (the main quantity used for
3414  * auto-tuning, see update_thr_responsiveness_params()).
3415  *
3416  * It is not trivial to estimate the peak rate (correctly): because of
3417  * the presence of sw and hw queues between the scheduler and the
3418  * device components that finally serve I/O requests, it is hard to
3419  * say exactly when a given dispatched request is served inside the
3420  * device, and for how long. As a consequence, it is hard to know
3421  * precisely at what rate a given set of requests is actually served
3422  * by the device.
3423  *
3424  * On the opposite end, the dispatch time of any request is trivially
3425  * available, and, from this piece of information, the "dispatch rate"
3426  * of requests can be immediately computed. So, the idea in the next
3427  * function is to use what is known, namely request dispatch times
3428  * (plus, when useful, request completion times), to estimate what is
3429  * unknown, namely in-device request service rate.
3430  *
3431  * The main issue is that, because of the above facts, the rate at
3432  * which a certain set of requests is dispatched over a certain time
3433  * interval can vary greatly with respect to the rate at which the
3434  * same requests are then served. But, since the size of any
3435  * intermediate queue is limited, and the service scheme is lossless
3436  * (no request is silently dropped), the following obvious convergence
3437  * property holds: the number of requests dispatched MUST become
3438  * closer and closer to the number of requests completed as the
3439  * observation interval grows. This is the key property used in
3440  * the next function to estimate the peak service rate as a function
3441  * of the observed dispatch rate. The function assumes to be invoked
3442  * on every request dispatch.
3443  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)3444 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3445 {
3446 	u64 now_ns = ktime_get_ns();
3447 
3448 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3449 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3450 			bfqd->peak_rate_samples);
3451 		bfq_reset_rate_computation(bfqd, rq);
3452 		goto update_last_values; /* will add one sample */
3453 	}
3454 
3455 	/*
3456 	 * Device idle for very long: the observation interval lasting
3457 	 * up to this dispatch cannot be a valid observation interval
3458 	 * for computing a new peak rate (similarly to the late-
3459 	 * completion event in bfq_completed_request()). Go to
3460 	 * update_rate_and_reset to have the following three steps
3461 	 * taken:
3462 	 * - close the observation interval at the last (previous)
3463 	 *   request dispatch or completion
3464 	 * - compute rate, if possible, for that observation interval
3465 	 * - start a new observation interval with this dispatch
3466 	 */
3467 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3468 	    bfqd->rq_in_driver == 0)
3469 		goto update_rate_and_reset;
3470 
3471 	/* Update sampling information */
3472 	bfqd->peak_rate_samples++;
3473 
3474 	if ((bfqd->rq_in_driver > 0 ||
3475 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3476 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3477 		bfqd->sequential_samples++;
3478 
3479 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3480 
3481 	/* Reset max observed rq size every 32 dispatches */
3482 	if (likely(bfqd->peak_rate_samples % 32))
3483 		bfqd->last_rq_max_size =
3484 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3485 	else
3486 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3487 
3488 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3489 
3490 	/* Target observation interval not yet reached, go on sampling */
3491 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3492 		goto update_last_values;
3493 
3494 update_rate_and_reset:
3495 	bfq_update_rate_reset(bfqd, rq);
3496 update_last_values:
3497 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3498 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3499 		bfqd->in_serv_last_pos = bfqd->last_position;
3500 	bfqd->last_dispatch = now_ns;
3501 }
3502 
3503 /*
3504  * Remove request from internal lists.
3505  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)3506 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3507 {
3508 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3509 
3510 	/*
3511 	 * For consistency, the next instruction should have been
3512 	 * executed after removing the request from the queue and
3513 	 * dispatching it.  We execute instead this instruction before
3514 	 * bfq_remove_request() (and hence introduce a temporary
3515 	 * inconsistency), for efficiency.  In fact, should this
3516 	 * dispatch occur for a non in-service bfqq, this anticipated
3517 	 * increment prevents two counters related to bfqq->dispatched
3518 	 * from risking to be, first, uselessly decremented, and then
3519 	 * incremented again when the (new) value of bfqq->dispatched
3520 	 * happens to be taken into account.
3521 	 */
3522 	bfqq->dispatched++;
3523 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3524 
3525 	bfq_remove_request(q, rq);
3526 }
3527 
3528 /*
3529  * There is a case where idling does not have to be performed for
3530  * throughput concerns, but to preserve the throughput share of
3531  * the process associated with bfqq.
3532  *
3533  * To introduce this case, we can note that allowing the drive
3534  * to enqueue more than one request at a time, and hence
3535  * delegating de facto final scheduling decisions to the
3536  * drive's internal scheduler, entails loss of control on the
3537  * actual request service order. In particular, the critical
3538  * situation is when requests from different processes happen
3539  * to be present, at the same time, in the internal queue(s)
3540  * of the drive. In such a situation, the drive, by deciding
3541  * the service order of the internally-queued requests, does
3542  * determine also the actual throughput distribution among
3543  * these processes. But the drive typically has no notion or
3544  * concern about per-process throughput distribution, and
3545  * makes its decisions only on a per-request basis. Therefore,
3546  * the service distribution enforced by the drive's internal
3547  * scheduler is likely to coincide with the desired throughput
3548  * distribution only in a completely symmetric, or favorably
3549  * skewed scenario where:
3550  * (i-a) each of these processes must get the same throughput as
3551  *	 the others,
3552  * (i-b) in case (i-a) does not hold, it holds that the process
3553  *       associated with bfqq must receive a lower or equal
3554  *	 throughput than any of the other processes;
3555  * (ii)  the I/O of each process has the same properties, in
3556  *       terms of locality (sequential or random), direction
3557  *       (reads or writes), request sizes, greediness
3558  *       (from I/O-bound to sporadic), and so on;
3559 
3560  * In fact, in such a scenario, the drive tends to treat the requests
3561  * of each process in about the same way as the requests of the
3562  * others, and thus to provide each of these processes with about the
3563  * same throughput.  This is exactly the desired throughput
3564  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3565  * even more convenient distribution for (the process associated with)
3566  * bfqq.
3567  *
3568  * In contrast, in any asymmetric or unfavorable scenario, device
3569  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3570  * that bfqq receives its assigned fraction of the device throughput
3571  * (see [1] for details).
3572  *
3573  * The problem is that idling may significantly reduce throughput with
3574  * certain combinations of types of I/O and devices. An important
3575  * example is sync random I/O on flash storage with command
3576  * queueing. So, unless bfqq falls in cases where idling also boosts
3577  * throughput, it is important to check conditions (i-a), i(-b) and
3578  * (ii) accurately, so as to avoid idling when not strictly needed for
3579  * service guarantees.
3580  *
3581  * Unfortunately, it is extremely difficult to thoroughly check
3582  * condition (ii). And, in case there are active groups, it becomes
3583  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3584  * if there are active groups, then, for conditions (i-a) or (i-b) to
3585  * become false 'indirectly', it is enough that an active group
3586  * contains more active processes or sub-groups than some other active
3587  * group. More precisely, for conditions (i-a) or (i-b) to become
3588  * false because of such a group, it is not even necessary that the
3589  * group is (still) active: it is sufficient that, even if the group
3590  * has become inactive, some of its descendant processes still have
3591  * some request already dispatched but still waiting for
3592  * completion. In fact, requests have still to be guaranteed their
3593  * share of the throughput even after being dispatched. In this
3594  * respect, it is easy to show that, if a group frequently becomes
3595  * inactive while still having in-flight requests, and if, when this
3596  * happens, the group is not considered in the calculation of whether
3597  * the scenario is asymmetric, then the group may fail to be
3598  * guaranteed its fair share of the throughput (basically because
3599  * idling may not be performed for the descendant processes of the
3600  * group, but it had to be).  We address this issue with the following
3601  * bi-modal behavior, implemented in the function
3602  * bfq_asymmetric_scenario().
3603  *
3604  * If there are groups with requests waiting for completion
3605  * (as commented above, some of these groups may even be
3606  * already inactive), then the scenario is tagged as
3607  * asymmetric, conservatively, without checking any of the
3608  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3609  * This behavior matches also the fact that groups are created
3610  * exactly if controlling I/O is a primary concern (to
3611  * preserve bandwidth and latency guarantees).
3612  *
3613  * On the opposite end, if there are no groups with requests waiting
3614  * for completion, then only conditions (i-a) and (i-b) are actually
3615  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3616  * idling is not performed, regardless of whether condition (ii)
3617  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3618  * hold, then idling is allowed, and the device tends to be prevented
3619  * from queueing many requests, possibly of several processes. Since
3620  * there are no groups with requests waiting for completion, then, to
3621  * control conditions (i-a) and (i-b) it is enough to check just
3622  * whether all the queues with requests waiting for completion also
3623  * have the same weight.
3624  *
3625  * Not checking condition (ii) evidently exposes bfqq to the
3626  * risk of getting less throughput than its fair share.
3627  * However, for queues with the same weight, a further
3628  * mechanism, preemption, mitigates or even eliminates this
3629  * problem. And it does so without consequences on overall
3630  * throughput. This mechanism and its benefits are explained
3631  * in the next three paragraphs.
3632  *
3633  * Even if a queue, say Q, is expired when it remains idle, Q
3634  * can still preempt the new in-service queue if the next
3635  * request of Q arrives soon (see the comments on
3636  * bfq_bfqq_update_budg_for_activation). If all queues and
3637  * groups have the same weight, this form of preemption,
3638  * combined with the hole-recovery heuristic described in the
3639  * comments on function bfq_bfqq_update_budg_for_activation,
3640  * are enough to preserve a correct bandwidth distribution in
3641  * the mid term, even without idling. In fact, even if not
3642  * idling allows the internal queues of the device to contain
3643  * many requests, and thus to reorder requests, we can rather
3644  * safely assume that the internal scheduler still preserves a
3645  * minimum of mid-term fairness.
3646  *
3647  * More precisely, this preemption-based, idleless approach
3648  * provides fairness in terms of IOPS, and not sectors per
3649  * second. This can be seen with a simple example. Suppose
3650  * that there are two queues with the same weight, but that
3651  * the first queue receives requests of 8 sectors, while the
3652  * second queue receives requests of 1024 sectors. In
3653  * addition, suppose that each of the two queues contains at
3654  * most one request at a time, which implies that each queue
3655  * always remains idle after it is served. Finally, after
3656  * remaining idle, each queue receives very quickly a new
3657  * request. It follows that the two queues are served
3658  * alternatively, preempting each other if needed. This
3659  * implies that, although both queues have the same weight,
3660  * the queue with large requests receives a service that is
3661  * 1024/8 times as high as the service received by the other
3662  * queue.
3663  *
3664  * The motivation for using preemption instead of idling (for
3665  * queues with the same weight) is that, by not idling,
3666  * service guarantees are preserved (completely or at least in
3667  * part) without minimally sacrificing throughput. And, if
3668  * there is no active group, then the primary expectation for
3669  * this device is probably a high throughput.
3670  *
3671  * We are now left only with explaining the two sub-conditions in the
3672  * additional compound condition that is checked below for deciding
3673  * whether the scenario is asymmetric. To explain the first
3674  * sub-condition, we need to add that the function
3675  * bfq_asymmetric_scenario checks the weights of only
3676  * non-weight-raised queues, for efficiency reasons (see comments on
3677  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3678  * is checked explicitly here. More precisely, the compound condition
3679  * below takes into account also the fact that, even if bfqq is being
3680  * weight-raised, the scenario is still symmetric if all queues with
3681  * requests waiting for completion happen to be
3682  * weight-raised. Actually, we should be even more precise here, and
3683  * differentiate between interactive weight raising and soft real-time
3684  * weight raising.
3685  *
3686  * The second sub-condition checked in the compound condition is
3687  * whether there is a fair amount of already in-flight I/O not
3688  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3689  * following reason. The drive may decide to serve in-flight
3690  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3691  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3692  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3693  * basically uncontrolled amount of I/O from other queues may be
3694  * dispatched too, possibly causing the service of bfqq's I/O to be
3695  * delayed even longer in the drive. This problem gets more and more
3696  * serious as the speed and the queue depth of the drive grow,
3697  * because, as these two quantities grow, the probability to find no
3698  * queue busy but many requests in flight grows too. By contrast,
3699  * plugging I/O dispatching minimizes the delay induced by already
3700  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3701  * lose because of this delay.
3702  *
3703  * As a side note, it is worth considering that the above
3704  * device-idling countermeasures may however fail in the following
3705  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3706  * in a time period during which all symmetry sub-conditions hold, and
3707  * therefore the device is allowed to enqueue many requests, but at
3708  * some later point in time some sub-condition stops to hold, then it
3709  * may become impossible to make requests be served in the desired
3710  * order until all the requests already queued in the device have been
3711  * served. The last sub-condition commented above somewhat mitigates
3712  * this problem for weight-raised queues.
3713  *
3714  * However, as an additional mitigation for this problem, we preserve
3715  * plugging for a special symmetric case that may suddenly turn into
3716  * asymmetric: the case where only bfqq is busy. In this case, not
3717  * expiring bfqq does not cause any harm to any other queues in terms
3718  * of service guarantees. In contrast, it avoids the following unlucky
3719  * sequence of events: (1) bfqq is expired, (2) a new queue with a
3720  * lower weight than bfqq becomes busy (or more queues), (3) the new
3721  * queue is served until a new request arrives for bfqq, (4) when bfqq
3722  * is finally served, there are so many requests of the new queue in
3723  * the drive that the pending requests for bfqq take a lot of time to
3724  * be served. In particular, event (2) may case even already
3725  * dispatched requests of bfqq to be delayed, inside the drive. So, to
3726  * avoid this series of events, the scenario is preventively declared
3727  * as asymmetric also if bfqq is the only busy queues
3728  */
idling_needed_for_service_guarantees(struct bfq_data * bfqd,struct bfq_queue * bfqq)3729 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3730 						 struct bfq_queue *bfqq)
3731 {
3732 	int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3733 
3734 	/* No point in idling for bfqq if it won't get requests any longer */
3735 	if (unlikely(!bfqq_process_refs(bfqq)))
3736 		return false;
3737 
3738 	return (bfqq->wr_coeff > 1 &&
3739 		(bfqd->wr_busy_queues <
3740 		 tot_busy_queues ||
3741 		 bfqd->rq_in_driver >=
3742 		 bfqq->dispatched + 4)) ||
3743 		bfq_asymmetric_scenario(bfqd, bfqq) ||
3744 		tot_busy_queues == 1;
3745 }
3746 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3747 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3748 			      enum bfqq_expiration reason)
3749 {
3750 	/*
3751 	 * If this bfqq is shared between multiple processes, check
3752 	 * to make sure that those processes are still issuing I/Os
3753 	 * within the mean seek distance. If not, it may be time to
3754 	 * break the queues apart again.
3755 	 */
3756 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3757 		bfq_mark_bfqq_split_coop(bfqq);
3758 
3759 	/*
3760 	 * Consider queues with a higher finish virtual time than
3761 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3762 	 * true, then bfqq's bandwidth would be violated if an
3763 	 * uncontrolled amount of I/O from these queues were
3764 	 * dispatched while bfqq is waiting for its new I/O to
3765 	 * arrive. This is exactly what may happen if this is a forced
3766 	 * expiration caused by a preemption attempt, and if bfqq is
3767 	 * not re-scheduled. To prevent this from happening, re-queue
3768 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3769 	 * empty. By doing so, bfqq is granted to be served before the
3770 	 * above queues (provided that bfqq is of course eligible).
3771 	 */
3772 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3773 	    !(reason == BFQQE_PREEMPTED &&
3774 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3775 		if (bfqq->dispatched == 0)
3776 			/*
3777 			 * Overloading budget_timeout field to store
3778 			 * the time at which the queue remains with no
3779 			 * backlog and no outstanding request; used by
3780 			 * the weight-raising mechanism.
3781 			 */
3782 			bfqq->budget_timeout = jiffies;
3783 
3784 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3785 	} else {
3786 		bfq_requeue_bfqq(bfqd, bfqq, true);
3787 		/*
3788 		 * Resort priority tree of potential close cooperators.
3789 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3790 		 */
3791 		if (unlikely(!bfqd->nonrot_with_queueing &&
3792 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3793 			bfq_pos_tree_add_move(bfqd, bfqq);
3794 	}
3795 
3796 	/*
3797 	 * All in-service entities must have been properly deactivated
3798 	 * or requeued before executing the next function, which
3799 	 * resets all in-service entities as no more in service. This
3800 	 * may cause bfqq to be freed. If this happens, the next
3801 	 * function returns true.
3802 	 */
3803 	return __bfq_bfqd_reset_in_service(bfqd);
3804 }
3805 
3806 /**
3807  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3808  * @bfqd: device data.
3809  * @bfqq: queue to update.
3810  * @reason: reason for expiration.
3811  *
3812  * Handle the feedback on @bfqq budget at queue expiration.
3813  * See the body for detailed comments.
3814  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3815 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3816 				     struct bfq_queue *bfqq,
3817 				     enum bfqq_expiration reason)
3818 {
3819 	struct request *next_rq;
3820 	int budget, min_budget;
3821 
3822 	min_budget = bfq_min_budget(bfqd);
3823 
3824 	if (bfqq->wr_coeff == 1)
3825 		budget = bfqq->max_budget;
3826 	else /*
3827 	      * Use a constant, low budget for weight-raised queues,
3828 	      * to help achieve a low latency. Keep it slightly higher
3829 	      * than the minimum possible budget, to cause a little
3830 	      * bit fewer expirations.
3831 	      */
3832 		budget = 2 * min_budget;
3833 
3834 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3835 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3836 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3837 		budget, bfq_min_budget(bfqd));
3838 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3839 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3840 
3841 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3842 		switch (reason) {
3843 		/*
3844 		 * Caveat: in all the following cases we trade latency
3845 		 * for throughput.
3846 		 */
3847 		case BFQQE_TOO_IDLE:
3848 			/*
3849 			 * This is the only case where we may reduce
3850 			 * the budget: if there is no request of the
3851 			 * process still waiting for completion, then
3852 			 * we assume (tentatively) that the timer has
3853 			 * expired because the batch of requests of
3854 			 * the process could have been served with a
3855 			 * smaller budget.  Hence, betting that
3856 			 * process will behave in the same way when it
3857 			 * becomes backlogged again, we reduce its
3858 			 * next budget.  As long as we guess right,
3859 			 * this budget cut reduces the latency
3860 			 * experienced by the process.
3861 			 *
3862 			 * However, if there are still outstanding
3863 			 * requests, then the process may have not yet
3864 			 * issued its next request just because it is
3865 			 * still waiting for the completion of some of
3866 			 * the still outstanding ones.  So in this
3867 			 * subcase we do not reduce its budget, on the
3868 			 * contrary we increase it to possibly boost
3869 			 * the throughput, as discussed in the
3870 			 * comments to the BUDGET_TIMEOUT case.
3871 			 */
3872 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3873 				budget = min(budget * 2, bfqd->bfq_max_budget);
3874 			else {
3875 				if (budget > 5 * min_budget)
3876 					budget -= 4 * min_budget;
3877 				else
3878 					budget = min_budget;
3879 			}
3880 			break;
3881 		case BFQQE_BUDGET_TIMEOUT:
3882 			/*
3883 			 * We double the budget here because it gives
3884 			 * the chance to boost the throughput if this
3885 			 * is not a seeky process (and has bumped into
3886 			 * this timeout because of, e.g., ZBR).
3887 			 */
3888 			budget = min(budget * 2, bfqd->bfq_max_budget);
3889 			break;
3890 		case BFQQE_BUDGET_EXHAUSTED:
3891 			/*
3892 			 * The process still has backlog, and did not
3893 			 * let either the budget timeout or the disk
3894 			 * idling timeout expire. Hence it is not
3895 			 * seeky, has a short thinktime and may be
3896 			 * happy with a higher budget too. So
3897 			 * definitely increase the budget of this good
3898 			 * candidate to boost the disk throughput.
3899 			 */
3900 			budget = min(budget * 4, bfqd->bfq_max_budget);
3901 			break;
3902 		case BFQQE_NO_MORE_REQUESTS:
3903 			/*
3904 			 * For queues that expire for this reason, it
3905 			 * is particularly important to keep the
3906 			 * budget close to the actual service they
3907 			 * need. Doing so reduces the timestamp
3908 			 * misalignment problem described in the
3909 			 * comments in the body of
3910 			 * __bfq_activate_entity. In fact, suppose
3911 			 * that a queue systematically expires for
3912 			 * BFQQE_NO_MORE_REQUESTS and presents a
3913 			 * new request in time to enjoy timestamp
3914 			 * back-shifting. The larger the budget of the
3915 			 * queue is with respect to the service the
3916 			 * queue actually requests in each service
3917 			 * slot, the more times the queue can be
3918 			 * reactivated with the same virtual finish
3919 			 * time. It follows that, even if this finish
3920 			 * time is pushed to the system virtual time
3921 			 * to reduce the consequent timestamp
3922 			 * misalignment, the queue unjustly enjoys for
3923 			 * many re-activations a lower finish time
3924 			 * than all newly activated queues.
3925 			 *
3926 			 * The service needed by bfqq is measured
3927 			 * quite precisely by bfqq->entity.service.
3928 			 * Since bfqq does not enjoy device idling,
3929 			 * bfqq->entity.service is equal to the number
3930 			 * of sectors that the process associated with
3931 			 * bfqq requested to read/write before waiting
3932 			 * for request completions, or blocking for
3933 			 * other reasons.
3934 			 */
3935 			budget = max_t(int, bfqq->entity.service, min_budget);
3936 			break;
3937 		default:
3938 			return;
3939 		}
3940 	} else if (!bfq_bfqq_sync(bfqq)) {
3941 		/*
3942 		 * Async queues get always the maximum possible
3943 		 * budget, as for them we do not care about latency
3944 		 * (in addition, their ability to dispatch is limited
3945 		 * by the charging factor).
3946 		 */
3947 		budget = bfqd->bfq_max_budget;
3948 	}
3949 
3950 	bfqq->max_budget = budget;
3951 
3952 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3953 	    !bfqd->bfq_user_max_budget)
3954 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3955 
3956 	/*
3957 	 * If there is still backlog, then assign a new budget, making
3958 	 * sure that it is large enough for the next request.  Since
3959 	 * the finish time of bfqq must be kept in sync with the
3960 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3961 	 * update.
3962 	 *
3963 	 * If there is no backlog, then no need to update the budget;
3964 	 * it will be updated on the arrival of a new request.
3965 	 */
3966 	next_rq = bfqq->next_rq;
3967 	if (next_rq)
3968 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3969 					    bfq_serv_to_charge(next_rq, bfqq));
3970 
3971 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3972 			next_rq ? blk_rq_sectors(next_rq) : 0,
3973 			bfqq->entity.budget);
3974 }
3975 
3976 /*
3977  * Return true if the process associated with bfqq is "slow". The slow
3978  * flag is used, in addition to the budget timeout, to reduce the
3979  * amount of service provided to seeky processes, and thus reduce
3980  * their chances to lower the throughput. More details in the comments
3981  * on the function bfq_bfqq_expire().
3982  *
3983  * An important observation is in order: as discussed in the comments
3984  * on the function bfq_update_peak_rate(), with devices with internal
3985  * queues, it is hard if ever possible to know when and for how long
3986  * an I/O request is processed by the device (apart from the trivial
3987  * I/O pattern where a new request is dispatched only after the
3988  * previous one has been completed). This makes it hard to evaluate
3989  * the real rate at which the I/O requests of each bfq_queue are
3990  * served.  In fact, for an I/O scheduler like BFQ, serving a
3991  * bfq_queue means just dispatching its requests during its service
3992  * slot (i.e., until the budget of the queue is exhausted, or the
3993  * queue remains idle, or, finally, a timeout fires). But, during the
3994  * service slot of a bfq_queue, around 100 ms at most, the device may
3995  * be even still processing requests of bfq_queues served in previous
3996  * service slots. On the opposite end, the requests of the in-service
3997  * bfq_queue may be completed after the service slot of the queue
3998  * finishes.
3999  *
4000  * Anyway, unless more sophisticated solutions are used
4001  * (where possible), the sum of the sizes of the requests dispatched
4002  * during the service slot of a bfq_queue is probably the only
4003  * approximation available for the service received by the bfq_queue
4004  * during its service slot. And this sum is the quantity used in this
4005  * function to evaluate the I/O speed of a process.
4006  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)4007 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4008 				 bool compensate, enum bfqq_expiration reason,
4009 				 unsigned long *delta_ms)
4010 {
4011 	ktime_t delta_ktime;
4012 	u32 delta_usecs;
4013 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
4014 
4015 	if (!bfq_bfqq_sync(bfqq))
4016 		return false;
4017 
4018 	if (compensate)
4019 		delta_ktime = bfqd->last_idling_start;
4020 	else
4021 		delta_ktime = ktime_get();
4022 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
4023 	delta_usecs = ktime_to_us(delta_ktime);
4024 
4025 	/* don't use too short time intervals */
4026 	if (delta_usecs < 1000) {
4027 		if (blk_queue_nonrot(bfqd->queue))
4028 			 /*
4029 			  * give same worst-case guarantees as idling
4030 			  * for seeky
4031 			  */
4032 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
4033 		else /* charge at least one seek */
4034 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
4035 
4036 		return slow;
4037 	}
4038 
4039 	*delta_ms = delta_usecs / USEC_PER_MSEC;
4040 
4041 	/*
4042 	 * Use only long (> 20ms) intervals to filter out excessive
4043 	 * spikes in service rate estimation.
4044 	 */
4045 	if (delta_usecs > 20000) {
4046 		/*
4047 		 * Caveat for rotational devices: processes doing I/O
4048 		 * in the slower disk zones tend to be slow(er) even
4049 		 * if not seeky. In this respect, the estimated peak
4050 		 * rate is likely to be an average over the disk
4051 		 * surface. Accordingly, to not be too harsh with
4052 		 * unlucky processes, a process is deemed slow only if
4053 		 * its rate has been lower than half of the estimated
4054 		 * peak rate.
4055 		 */
4056 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
4057 	}
4058 
4059 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
4060 
4061 	return slow;
4062 }
4063 
4064 /*
4065  * To be deemed as soft real-time, an application must meet two
4066  * requirements. First, the application must not require an average
4067  * bandwidth higher than the approximate bandwidth required to playback or
4068  * record a compressed high-definition video.
4069  * The next function is invoked on the completion of the last request of a
4070  * batch, to compute the next-start time instant, soft_rt_next_start, such
4071  * that, if the next request of the application does not arrive before
4072  * soft_rt_next_start, then the above requirement on the bandwidth is met.
4073  *
4074  * The second requirement is that the request pattern of the application is
4075  * isochronous, i.e., that, after issuing a request or a batch of requests,
4076  * the application stops issuing new requests until all its pending requests
4077  * have been completed. After that, the application may issue a new batch,
4078  * and so on.
4079  * For this reason the next function is invoked to compute
4080  * soft_rt_next_start only for applications that meet this requirement,
4081  * whereas soft_rt_next_start is set to infinity for applications that do
4082  * not.
4083  *
4084  * Unfortunately, even a greedy (i.e., I/O-bound) application may
4085  * happen to meet, occasionally or systematically, both the above
4086  * bandwidth and isochrony requirements. This may happen at least in
4087  * the following circumstances. First, if the CPU load is high. The
4088  * application may stop issuing requests while the CPUs are busy
4089  * serving other processes, then restart, then stop again for a while,
4090  * and so on. The other circumstances are related to the storage
4091  * device: the storage device is highly loaded or reaches a low-enough
4092  * throughput with the I/O of the application (e.g., because the I/O
4093  * is random and/or the device is slow). In all these cases, the
4094  * I/O of the application may be simply slowed down enough to meet
4095  * the bandwidth and isochrony requirements. To reduce the probability
4096  * that greedy applications are deemed as soft real-time in these
4097  * corner cases, a further rule is used in the computation of
4098  * soft_rt_next_start: the return value of this function is forced to
4099  * be higher than the maximum between the following two quantities.
4100  *
4101  * (a) Current time plus: (1) the maximum time for which the arrival
4102  *     of a request is waited for when a sync queue becomes idle,
4103  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4104  *     postpone for a moment the reason for adding a few extra
4105  *     jiffies; we get back to it after next item (b).  Lower-bounding
4106  *     the return value of this function with the current time plus
4107  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
4108  *     because the latter issue their next request as soon as possible
4109  *     after the last one has been completed. In contrast, a soft
4110  *     real-time application spends some time processing data, after a
4111  *     batch of its requests has been completed.
4112  *
4113  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4114  *     above, greedy applications may happen to meet both the
4115  *     bandwidth and isochrony requirements under heavy CPU or
4116  *     storage-device load. In more detail, in these scenarios, these
4117  *     applications happen, only for limited time periods, to do I/O
4118  *     slowly enough to meet all the requirements described so far,
4119  *     including the filtering in above item (a). These slow-speed
4120  *     time intervals are usually interspersed between other time
4121  *     intervals during which these applications do I/O at a very high
4122  *     speed. Fortunately, exactly because of the high speed of the
4123  *     I/O in the high-speed intervals, the values returned by this
4124  *     function happen to be so high, near the end of any such
4125  *     high-speed interval, to be likely to fall *after* the end of
4126  *     the low-speed time interval that follows. These high values are
4127  *     stored in bfqq->soft_rt_next_start after each invocation of
4128  *     this function. As a consequence, if the last value of
4129  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
4130  *     next value that this function may return, then, from the very
4131  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
4132  *     likely to be constantly kept so high that any I/O request
4133  *     issued during the low-speed interval is considered as arriving
4134  *     to soon for the application to be deemed as soft
4135  *     real-time. Then, in the high-speed interval that follows, the
4136  *     application will not be deemed as soft real-time, just because
4137  *     it will do I/O at a high speed. And so on.
4138  *
4139  * Getting back to the filtering in item (a), in the following two
4140  * cases this filtering might be easily passed by a greedy
4141  * application, if the reference quantity was just
4142  * bfqd->bfq_slice_idle:
4143  * 1) HZ is so low that the duration of a jiffy is comparable to or
4144  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4145  *    devices with HZ=100. The time granularity may be so coarse
4146  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
4147  *    is rather lower than the exact value.
4148  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4149  *    for a while, then suddenly 'jump' by several units to recover the lost
4150  *    increments. This seems to happen, e.g., inside virtual machines.
4151  * To address this issue, in the filtering in (a) we do not use as a
4152  * reference time interval just bfqd->bfq_slice_idle, but
4153  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4154  * minimum number of jiffies for which the filter seems to be quite
4155  * precise also in embedded systems and KVM/QEMU virtual machines.
4156  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)4157 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4158 						struct bfq_queue *bfqq)
4159 {
4160 	return max3(bfqq->soft_rt_next_start,
4161 		    bfqq->last_idle_bklogged +
4162 		    HZ * bfqq->service_from_backlogged /
4163 		    bfqd->bfq_wr_max_softrt_rate,
4164 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
4165 }
4166 
4167 /**
4168  * bfq_bfqq_expire - expire a queue.
4169  * @bfqd: device owning the queue.
4170  * @bfqq: the queue to expire.
4171  * @compensate: if true, compensate for the time spent idling.
4172  * @reason: the reason causing the expiration.
4173  *
4174  * If the process associated with bfqq does slow I/O (e.g., because it
4175  * issues random requests), we charge bfqq with the time it has been
4176  * in service instead of the service it has received (see
4177  * bfq_bfqq_charge_time for details on how this goal is achieved). As
4178  * a consequence, bfqq will typically get higher timestamps upon
4179  * reactivation, and hence it will be rescheduled as if it had
4180  * received more service than what it has actually received. In the
4181  * end, bfqq receives less service in proportion to how slowly its
4182  * associated process consumes its budgets (and hence how seriously it
4183  * tends to lower the throughput). In addition, this time-charging
4184  * strategy guarantees time fairness among slow processes. In
4185  * contrast, if the process associated with bfqq is not slow, we
4186  * charge bfqq exactly with the service it has received.
4187  *
4188  * Charging time to the first type of queues and the exact service to
4189  * the other has the effect of using the WF2Q+ policy to schedule the
4190  * former on a timeslice basis, without violating service domain
4191  * guarantees among the latter.
4192  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)4193 void bfq_bfqq_expire(struct bfq_data *bfqd,
4194 		     struct bfq_queue *bfqq,
4195 		     bool compensate,
4196 		     enum bfqq_expiration reason)
4197 {
4198 	bool slow;
4199 	unsigned long delta = 0;
4200 	struct bfq_entity *entity = &bfqq->entity;
4201 
4202 	/*
4203 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
4204 	 */
4205 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
4206 
4207 	/*
4208 	 * As above explained, charge slow (typically seeky) and
4209 	 * timed-out queues with the time and not the service
4210 	 * received, to favor sequential workloads.
4211 	 *
4212 	 * Processes doing I/O in the slower disk zones will tend to
4213 	 * be slow(er) even if not seeky. Therefore, since the
4214 	 * estimated peak rate is actually an average over the disk
4215 	 * surface, these processes may timeout just for bad luck. To
4216 	 * avoid punishing them, do not charge time to processes that
4217 	 * succeeded in consuming at least 2/3 of their budget. This
4218 	 * allows BFQ to preserve enough elasticity to still perform
4219 	 * bandwidth, and not time, distribution with little unlucky
4220 	 * or quasi-sequential processes.
4221 	 */
4222 	if (bfqq->wr_coeff == 1 &&
4223 	    (slow ||
4224 	     (reason == BFQQE_BUDGET_TIMEOUT &&
4225 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
4226 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
4227 
4228 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
4229 		bfqq->last_wr_start_finish = jiffies;
4230 
4231 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4232 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
4233 		/*
4234 		 * If we get here, and there are no outstanding
4235 		 * requests, then the request pattern is isochronous
4236 		 * (see the comments on the function
4237 		 * bfq_bfqq_softrt_next_start()). Therefore we can
4238 		 * compute soft_rt_next_start.
4239 		 *
4240 		 * If, instead, the queue still has outstanding
4241 		 * requests, then we have to wait for the completion
4242 		 * of all the outstanding requests to discover whether
4243 		 * the request pattern is actually isochronous.
4244 		 */
4245 		if (bfqq->dispatched == 0)
4246 			bfqq->soft_rt_next_start =
4247 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4248 		else if (bfqq->dispatched > 0) {
4249 			/*
4250 			 * Schedule an update of soft_rt_next_start to when
4251 			 * the task may be discovered to be isochronous.
4252 			 */
4253 			bfq_mark_bfqq_softrt_update(bfqq);
4254 		}
4255 	}
4256 
4257 	bfq_log_bfqq(bfqd, bfqq,
4258 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4259 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4260 
4261 	/*
4262 	 * bfqq expired, so no total service time needs to be computed
4263 	 * any longer: reset state machine for measuring total service
4264 	 * times.
4265 	 */
4266 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4267 	bfqd->waited_rq = NULL;
4268 
4269 	/*
4270 	 * Increase, decrease or leave budget unchanged according to
4271 	 * reason.
4272 	 */
4273 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4274 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4275 		/* bfqq is gone, no more actions on it */
4276 		return;
4277 
4278 	/* mark bfqq as waiting a request only if a bic still points to it */
4279 	if (!bfq_bfqq_busy(bfqq) &&
4280 	    reason != BFQQE_BUDGET_TIMEOUT &&
4281 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4282 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4283 		/*
4284 		 * Not setting service to 0, because, if the next rq
4285 		 * arrives in time, the queue will go on receiving
4286 		 * service with this same budget (as if it never expired)
4287 		 */
4288 	} else
4289 		entity->service = 0;
4290 
4291 	/*
4292 	 * Reset the received-service counter for every parent entity.
4293 	 * Differently from what happens with bfqq->entity.service,
4294 	 * the resetting of this counter never needs to be postponed
4295 	 * for parent entities. In fact, in case bfqq may have a
4296 	 * chance to go on being served using the last, partially
4297 	 * consumed budget, bfqq->entity.service needs to be kept,
4298 	 * because if bfqq then actually goes on being served using
4299 	 * the same budget, the last value of bfqq->entity.service is
4300 	 * needed to properly decrement bfqq->entity.budget by the
4301 	 * portion already consumed. In contrast, it is not necessary
4302 	 * to keep entity->service for parent entities too, because
4303 	 * the bubble up of the new value of bfqq->entity.budget will
4304 	 * make sure that the budgets of parent entities are correct,
4305 	 * even in case bfqq and thus parent entities go on receiving
4306 	 * service with the same budget.
4307 	 */
4308 	entity = entity->parent;
4309 	for_each_entity(entity)
4310 		entity->service = 0;
4311 }
4312 
4313 /*
4314  * Budget timeout is not implemented through a dedicated timer, but
4315  * just checked on request arrivals and completions, as well as on
4316  * idle timer expirations.
4317  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)4318 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4319 {
4320 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4321 }
4322 
4323 /*
4324  * If we expire a queue that is actively waiting (i.e., with the
4325  * device idled) for the arrival of a new request, then we may incur
4326  * the timestamp misalignment problem described in the body of the
4327  * function __bfq_activate_entity. Hence we return true only if this
4328  * condition does not hold, or if the queue is slow enough to deserve
4329  * only to be kicked off for preserving a high throughput.
4330  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)4331 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4332 {
4333 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4334 		"may_budget_timeout: wait_request %d left %d timeout %d",
4335 		bfq_bfqq_wait_request(bfqq),
4336 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4337 		bfq_bfqq_budget_timeout(bfqq));
4338 
4339 	return (!bfq_bfqq_wait_request(bfqq) ||
4340 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4341 		&&
4342 		bfq_bfqq_budget_timeout(bfqq);
4343 }
4344 
idling_boosts_thr_without_issues(struct bfq_data * bfqd,struct bfq_queue * bfqq)4345 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4346 					     struct bfq_queue *bfqq)
4347 {
4348 	bool rot_without_queueing =
4349 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4350 		bfqq_sequential_and_IO_bound,
4351 		idling_boosts_thr;
4352 
4353 	/* No point in idling for bfqq if it won't get requests any longer */
4354 	if (unlikely(!bfqq_process_refs(bfqq)))
4355 		return false;
4356 
4357 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4358 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4359 
4360 	/*
4361 	 * The next variable takes into account the cases where idling
4362 	 * boosts the throughput.
4363 	 *
4364 	 * The value of the variable is computed considering, first, that
4365 	 * idling is virtually always beneficial for the throughput if:
4366 	 * (a) the device is not NCQ-capable and rotational, or
4367 	 * (b) regardless of the presence of NCQ, the device is rotational and
4368 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4369 	 * (c) regardless of whether it is rotational, the device is
4370 	 *     not NCQ-capable and the request pattern for bfqq is
4371 	 *     I/O-bound and sequential.
4372 	 *
4373 	 * Secondly, and in contrast to the above item (b), idling an
4374 	 * NCQ-capable flash-based device would not boost the
4375 	 * throughput even with sequential I/O; rather it would lower
4376 	 * the throughput in proportion to how fast the device
4377 	 * is. Accordingly, the next variable is true if any of the
4378 	 * above conditions (a), (b) or (c) is true, and, in
4379 	 * particular, happens to be false if bfqd is an NCQ-capable
4380 	 * flash-based device.
4381 	 */
4382 	idling_boosts_thr = rot_without_queueing ||
4383 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4384 		 bfqq_sequential_and_IO_bound);
4385 
4386 	/*
4387 	 * The return value of this function is equal to that of
4388 	 * idling_boosts_thr, unless a special case holds. In this
4389 	 * special case, described below, idling may cause problems to
4390 	 * weight-raised queues.
4391 	 *
4392 	 * When the request pool is saturated (e.g., in the presence
4393 	 * of write hogs), if the processes associated with
4394 	 * non-weight-raised queues ask for requests at a lower rate,
4395 	 * then processes associated with weight-raised queues have a
4396 	 * higher probability to get a request from the pool
4397 	 * immediately (or at least soon) when they need one. Thus
4398 	 * they have a higher probability to actually get a fraction
4399 	 * of the device throughput proportional to their high
4400 	 * weight. This is especially true with NCQ-capable drives,
4401 	 * which enqueue several requests in advance, and further
4402 	 * reorder internally-queued requests.
4403 	 *
4404 	 * For this reason, we force to false the return value if
4405 	 * there are weight-raised busy queues. In this case, and if
4406 	 * bfqq is not weight-raised, this guarantees that the device
4407 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4408 	 * then idling will be guaranteed by another variable, see
4409 	 * below). Combined with the timestamping rules of BFQ (see
4410 	 * [1] for details), this behavior causes bfqq, and hence any
4411 	 * sync non-weight-raised queue, to get a lower number of
4412 	 * requests served, and thus to ask for a lower number of
4413 	 * requests from the request pool, before the busy
4414 	 * weight-raised queues get served again. This often mitigates
4415 	 * starvation problems in the presence of heavy write
4416 	 * workloads and NCQ, thereby guaranteeing a higher
4417 	 * application and system responsiveness in these hostile
4418 	 * scenarios.
4419 	 */
4420 	return idling_boosts_thr &&
4421 		bfqd->wr_busy_queues == 0;
4422 }
4423 
4424 /*
4425  * For a queue that becomes empty, device idling is allowed only if
4426  * this function returns true for that queue. As a consequence, since
4427  * device idling plays a critical role for both throughput boosting
4428  * and service guarantees, the return value of this function plays a
4429  * critical role as well.
4430  *
4431  * In a nutshell, this function returns true only if idling is
4432  * beneficial for throughput or, even if detrimental for throughput,
4433  * idling is however necessary to preserve service guarantees (low
4434  * latency, desired throughput distribution, ...). In particular, on
4435  * NCQ-capable devices, this function tries to return false, so as to
4436  * help keep the drives' internal queues full, whenever this helps the
4437  * device boost the throughput without causing any service-guarantee
4438  * issue.
4439  *
4440  * Most of the issues taken into account to get the return value of
4441  * this function are not trivial. We discuss these issues in the two
4442  * functions providing the main pieces of information needed by this
4443  * function.
4444  */
bfq_better_to_idle(struct bfq_queue * bfqq)4445 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4446 {
4447 	struct bfq_data *bfqd = bfqq->bfqd;
4448 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4449 
4450 	/* No point in idling for bfqq if it won't get requests any longer */
4451 	if (unlikely(!bfqq_process_refs(bfqq)))
4452 		return false;
4453 
4454 	if (unlikely(bfqd->strict_guarantees))
4455 		return true;
4456 
4457 	/*
4458 	 * Idling is performed only if slice_idle > 0. In addition, we
4459 	 * do not idle if
4460 	 * (a) bfqq is async
4461 	 * (b) bfqq is in the idle io prio class: in this case we do
4462 	 * not idle because we want to minimize the bandwidth that
4463 	 * queues in this class can steal to higher-priority queues
4464 	 */
4465 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4466 	   bfq_class_idle(bfqq))
4467 		return false;
4468 
4469 	idling_boosts_thr_with_no_issue =
4470 		idling_boosts_thr_without_issues(bfqd, bfqq);
4471 
4472 	idling_needed_for_service_guar =
4473 		idling_needed_for_service_guarantees(bfqd, bfqq);
4474 
4475 	/*
4476 	 * We have now the two components we need to compute the
4477 	 * return value of the function, which is true only if idling
4478 	 * either boosts the throughput (without issues), or is
4479 	 * necessary to preserve service guarantees.
4480 	 */
4481 	return idling_boosts_thr_with_no_issue ||
4482 		idling_needed_for_service_guar;
4483 }
4484 
4485 /*
4486  * If the in-service queue is empty but the function bfq_better_to_idle
4487  * returns true, then:
4488  * 1) the queue must remain in service and cannot be expired, and
4489  * 2) the device must be idled to wait for the possible arrival of a new
4490  *    request for the queue.
4491  * See the comments on the function bfq_better_to_idle for the reasons
4492  * why performing device idling is the best choice to boost the throughput
4493  * and preserve service guarantees when bfq_better_to_idle itself
4494  * returns true.
4495  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)4496 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4497 {
4498 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4499 }
4500 
4501 /*
4502  * This function chooses the queue from which to pick the next extra
4503  * I/O request to inject, if it finds a compatible queue. See the
4504  * comments on bfq_update_inject_limit() for details on the injection
4505  * mechanism, and for the definitions of the quantities mentioned
4506  * below.
4507  */
4508 static struct bfq_queue *
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)4509 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4510 {
4511 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4512 	unsigned int limit = in_serv_bfqq->inject_limit;
4513 	/*
4514 	 * If
4515 	 * - bfqq is not weight-raised and therefore does not carry
4516 	 *   time-critical I/O,
4517 	 * or
4518 	 * - regardless of whether bfqq is weight-raised, bfqq has
4519 	 *   however a long think time, during which it can absorb the
4520 	 *   effect of an appropriate number of extra I/O requests
4521 	 *   from other queues (see bfq_update_inject_limit for
4522 	 *   details on the computation of this number);
4523 	 * then injection can be performed without restrictions.
4524 	 */
4525 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4526 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4527 
4528 	/*
4529 	 * If
4530 	 * - the baseline total service time could not be sampled yet,
4531 	 *   so the inject limit happens to be still 0, and
4532 	 * - a lot of time has elapsed since the plugging of I/O
4533 	 *   dispatching started, so drive speed is being wasted
4534 	 *   significantly;
4535 	 * then temporarily raise inject limit to one request.
4536 	 */
4537 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4538 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4539 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4540 				      bfqd->bfq_slice_idle)
4541 		)
4542 		limit = 1;
4543 
4544 	if (bfqd->rq_in_driver >= limit)
4545 		return NULL;
4546 
4547 	/*
4548 	 * Linear search of the source queue for injection; but, with
4549 	 * a high probability, very few steps are needed to find a
4550 	 * candidate queue, i.e., a queue with enough budget left for
4551 	 * its next request. In fact:
4552 	 * - BFQ dynamically updates the budget of every queue so as
4553 	 *   to accommodate the expected backlog of the queue;
4554 	 * - if a queue gets all its requests dispatched as injected
4555 	 *   service, then the queue is removed from the active list
4556 	 *   (and re-added only if it gets new requests, but then it
4557 	 *   is assigned again enough budget for its new backlog).
4558 	 */
4559 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4560 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4561 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4562 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4563 		    bfq_bfqq_budget_left(bfqq)) {
4564 			/*
4565 			 * Allow for only one large in-flight request
4566 			 * on non-rotational devices, for the
4567 			 * following reason. On non-rotationl drives,
4568 			 * large requests take much longer than
4569 			 * smaller requests to be served. In addition,
4570 			 * the drive prefers to serve large requests
4571 			 * w.r.t. to small ones, if it can choose. So,
4572 			 * having more than one large requests queued
4573 			 * in the drive may easily make the next first
4574 			 * request of the in-service queue wait for so
4575 			 * long to break bfqq's service guarantees. On
4576 			 * the bright side, large requests let the
4577 			 * drive reach a very high throughput, even if
4578 			 * there is only one in-flight large request
4579 			 * at a time.
4580 			 */
4581 			if (blk_queue_nonrot(bfqd->queue) &&
4582 			    blk_rq_sectors(bfqq->next_rq) >=
4583 			    BFQQ_SECT_THR_NONROT)
4584 				limit = min_t(unsigned int, 1, limit);
4585 			else
4586 				limit = in_serv_bfqq->inject_limit;
4587 
4588 			if (bfqd->rq_in_driver < limit) {
4589 				bfqd->rqs_injected = true;
4590 				return bfqq;
4591 			}
4592 		}
4593 
4594 	return NULL;
4595 }
4596 
4597 /*
4598  * Select a queue for service.  If we have a current queue in service,
4599  * check whether to continue servicing it, or retrieve and set a new one.
4600  */
bfq_select_queue(struct bfq_data * bfqd)4601 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4602 {
4603 	struct bfq_queue *bfqq;
4604 	struct request *next_rq;
4605 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4606 
4607 	bfqq = bfqd->in_service_queue;
4608 	if (!bfqq)
4609 		goto new_queue;
4610 
4611 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4612 
4613 	/*
4614 	 * Do not expire bfqq for budget timeout if bfqq may be about
4615 	 * to enjoy device idling. The reason why, in this case, we
4616 	 * prevent bfqq from expiring is the same as in the comments
4617 	 * on the case where bfq_bfqq_must_idle() returns true, in
4618 	 * bfq_completed_request().
4619 	 */
4620 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4621 	    !bfq_bfqq_must_idle(bfqq))
4622 		goto expire;
4623 
4624 check_queue:
4625 	/*
4626 	 * This loop is rarely executed more than once. Even when it
4627 	 * happens, it is much more convenient to re-execute this loop
4628 	 * than to return NULL and trigger a new dispatch to get a
4629 	 * request served.
4630 	 */
4631 	next_rq = bfqq->next_rq;
4632 	/*
4633 	 * If bfqq has requests queued and it has enough budget left to
4634 	 * serve them, keep the queue, otherwise expire it.
4635 	 */
4636 	if (next_rq) {
4637 		if (bfq_serv_to_charge(next_rq, bfqq) >
4638 			bfq_bfqq_budget_left(bfqq)) {
4639 			/*
4640 			 * Expire the queue for budget exhaustion,
4641 			 * which makes sure that the next budget is
4642 			 * enough to serve the next request, even if
4643 			 * it comes from the fifo expired path.
4644 			 */
4645 			reason = BFQQE_BUDGET_EXHAUSTED;
4646 			goto expire;
4647 		} else {
4648 			/*
4649 			 * The idle timer may be pending because we may
4650 			 * not disable disk idling even when a new request
4651 			 * arrives.
4652 			 */
4653 			if (bfq_bfqq_wait_request(bfqq)) {
4654 				/*
4655 				 * If we get here: 1) at least a new request
4656 				 * has arrived but we have not disabled the
4657 				 * timer because the request was too small,
4658 				 * 2) then the block layer has unplugged
4659 				 * the device, causing the dispatch to be
4660 				 * invoked.
4661 				 *
4662 				 * Since the device is unplugged, now the
4663 				 * requests are probably large enough to
4664 				 * provide a reasonable throughput.
4665 				 * So we disable idling.
4666 				 */
4667 				bfq_clear_bfqq_wait_request(bfqq);
4668 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4669 			}
4670 			goto keep_queue;
4671 		}
4672 	}
4673 
4674 	/*
4675 	 * No requests pending. However, if the in-service queue is idling
4676 	 * for a new request, or has requests waiting for a completion and
4677 	 * may idle after their completion, then keep it anyway.
4678 	 *
4679 	 * Yet, inject service from other queues if it boosts
4680 	 * throughput and is possible.
4681 	 */
4682 	if (bfq_bfqq_wait_request(bfqq) ||
4683 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4684 		struct bfq_queue *async_bfqq =
4685 			bfqq->bic && bfqq->bic->bfqq[0] &&
4686 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4687 			bfqq->bic->bfqq[0]->next_rq ?
4688 			bfqq->bic->bfqq[0] : NULL;
4689 		struct bfq_queue *blocked_bfqq =
4690 			!hlist_empty(&bfqq->woken_list) ?
4691 			container_of(bfqq->woken_list.first,
4692 				     struct bfq_queue,
4693 				     woken_list_node)
4694 			: NULL;
4695 
4696 		/*
4697 		 * The next four mutually-exclusive ifs decide
4698 		 * whether to try injection, and choose the queue to
4699 		 * pick an I/O request from.
4700 		 *
4701 		 * The first if checks whether the process associated
4702 		 * with bfqq has also async I/O pending. If so, it
4703 		 * injects such I/O unconditionally. Injecting async
4704 		 * I/O from the same process can cause no harm to the
4705 		 * process. On the contrary, it can only increase
4706 		 * bandwidth and reduce latency for the process.
4707 		 *
4708 		 * The second if checks whether there happens to be a
4709 		 * non-empty waker queue for bfqq, i.e., a queue whose
4710 		 * I/O needs to be completed for bfqq to receive new
4711 		 * I/O. This happens, e.g., if bfqq is associated with
4712 		 * a process that does some sync. A sync generates
4713 		 * extra blocking I/O, which must be completed before
4714 		 * the process associated with bfqq can go on with its
4715 		 * I/O. If the I/O of the waker queue is not served,
4716 		 * then bfqq remains empty, and no I/O is dispatched,
4717 		 * until the idle timeout fires for bfqq. This is
4718 		 * likely to result in lower bandwidth and higher
4719 		 * latencies for bfqq, and in a severe loss of total
4720 		 * throughput. The best action to take is therefore to
4721 		 * serve the waker queue as soon as possible. So do it
4722 		 * (without relying on the third alternative below for
4723 		 * eventually serving waker_bfqq's I/O; see the last
4724 		 * paragraph for further details). This systematic
4725 		 * injection of I/O from the waker queue does not
4726 		 * cause any delay to bfqq's I/O. On the contrary,
4727 		 * next bfqq's I/O is brought forward dramatically,
4728 		 * for it is not blocked for milliseconds.
4729 		 *
4730 		 * The third if checks whether there is a queue woken
4731 		 * by bfqq, and currently with pending I/O. Such a
4732 		 * woken queue does not steal bandwidth from bfqq,
4733 		 * because it remains soon without I/O if bfqq is not
4734 		 * served. So there is virtually no risk of loss of
4735 		 * bandwidth for bfqq if this woken queue has I/O
4736 		 * dispatched while bfqq is waiting for new I/O.
4737 		 *
4738 		 * The fourth if checks whether bfqq is a queue for
4739 		 * which it is better to avoid injection. It is so if
4740 		 * bfqq delivers more throughput when served without
4741 		 * any further I/O from other queues in the middle, or
4742 		 * if the service times of bfqq's I/O requests both
4743 		 * count more than overall throughput, and may be
4744 		 * easily increased by injection (this happens if bfqq
4745 		 * has a short think time). If none of these
4746 		 * conditions holds, then a candidate queue for
4747 		 * injection is looked for through
4748 		 * bfq_choose_bfqq_for_injection(). Note that the
4749 		 * latter may return NULL (for example if the inject
4750 		 * limit for bfqq is currently 0).
4751 		 *
4752 		 * NOTE: motivation for the second alternative
4753 		 *
4754 		 * Thanks to the way the inject limit is updated in
4755 		 * bfq_update_has_short_ttime(), it is rather likely
4756 		 * that, if I/O is being plugged for bfqq and the
4757 		 * waker queue has pending I/O requests that are
4758 		 * blocking bfqq's I/O, then the fourth alternative
4759 		 * above lets the waker queue get served before the
4760 		 * I/O-plugging timeout fires. So one may deem the
4761 		 * second alternative superfluous. It is not, because
4762 		 * the fourth alternative may be way less effective in
4763 		 * case of a synchronization. For two main
4764 		 * reasons. First, throughput may be low because the
4765 		 * inject limit may be too low to guarantee the same
4766 		 * amount of injected I/O, from the waker queue or
4767 		 * other queues, that the second alternative
4768 		 * guarantees (the second alternative unconditionally
4769 		 * injects a pending I/O request of the waker queue
4770 		 * for each bfq_dispatch_request()). Second, with the
4771 		 * fourth alternative, the duration of the plugging,
4772 		 * i.e., the time before bfqq finally receives new I/O,
4773 		 * may not be minimized, because the waker queue may
4774 		 * happen to be served only after other queues.
4775 		 */
4776 		if (async_bfqq &&
4777 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4778 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4779 		    bfq_bfqq_budget_left(async_bfqq))
4780 			bfqq = bfqq->bic->bfqq[0];
4781 		else if (bfqq->waker_bfqq &&
4782 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4783 			   bfqq->waker_bfqq->next_rq &&
4784 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4785 					      bfqq->waker_bfqq) <=
4786 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4787 			)
4788 			bfqq = bfqq->waker_bfqq;
4789 		else if (blocked_bfqq &&
4790 			   bfq_bfqq_busy(blocked_bfqq) &&
4791 			   blocked_bfqq->next_rq &&
4792 			   bfq_serv_to_charge(blocked_bfqq->next_rq,
4793 					      blocked_bfqq) <=
4794 			   bfq_bfqq_budget_left(blocked_bfqq)
4795 			)
4796 			bfqq = blocked_bfqq;
4797 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4798 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4799 			  !bfq_bfqq_has_short_ttime(bfqq)))
4800 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4801 		else
4802 			bfqq = NULL;
4803 
4804 		goto keep_queue;
4805 	}
4806 
4807 	reason = BFQQE_NO_MORE_REQUESTS;
4808 expire:
4809 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4810 new_queue:
4811 	bfqq = bfq_set_in_service_queue(bfqd);
4812 	if (bfqq) {
4813 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4814 		goto check_queue;
4815 	}
4816 keep_queue:
4817 	if (bfqq)
4818 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4819 	else
4820 		bfq_log(bfqd, "select_queue: no queue returned");
4821 
4822 	return bfqq;
4823 }
4824 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)4825 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4826 {
4827 	struct bfq_entity *entity = &bfqq->entity;
4828 
4829 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4830 		bfq_log_bfqq(bfqd, bfqq,
4831 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4832 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4833 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4834 			bfqq->wr_coeff,
4835 			bfqq->entity.weight, bfqq->entity.orig_weight);
4836 
4837 		if (entity->prio_changed)
4838 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4839 
4840 		/*
4841 		 * If the queue was activated in a burst, or too much
4842 		 * time has elapsed from the beginning of this
4843 		 * weight-raising period, then end weight raising.
4844 		 */
4845 		if (bfq_bfqq_in_large_burst(bfqq))
4846 			bfq_bfqq_end_wr(bfqq);
4847 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4848 						bfqq->wr_cur_max_time)) {
4849 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4850 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4851 					       bfq_wr_duration(bfqd))) {
4852 				/*
4853 				 * Either in interactive weight
4854 				 * raising, or in soft_rt weight
4855 				 * raising with the
4856 				 * interactive-weight-raising period
4857 				 * elapsed (so no switch back to
4858 				 * interactive weight raising).
4859 				 */
4860 				bfq_bfqq_end_wr(bfqq);
4861 			} else { /*
4862 				  * soft_rt finishing while still in
4863 				  * interactive period, switch back to
4864 				  * interactive weight raising
4865 				  */
4866 				switch_back_to_interactive_wr(bfqq, bfqd);
4867 				bfqq->entity.prio_changed = 1;
4868 			}
4869 		}
4870 		if (bfqq->wr_coeff > 1 &&
4871 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4872 		    bfqq->service_from_wr > max_service_from_wr) {
4873 			/* see comments on max_service_from_wr */
4874 			bfq_bfqq_end_wr(bfqq);
4875 		}
4876 	}
4877 	/*
4878 	 * To improve latency (for this or other queues), immediately
4879 	 * update weight both if it must be raised and if it must be
4880 	 * lowered. Since, entity may be on some active tree here, and
4881 	 * might have a pending change of its ioprio class, invoke
4882 	 * next function with the last parameter unset (see the
4883 	 * comments on the function).
4884 	 */
4885 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4886 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4887 						entity, false);
4888 }
4889 
4890 /*
4891  * Dispatch next request from bfqq.
4892  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4893 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4894 						 struct bfq_queue *bfqq)
4895 {
4896 	struct request *rq = bfqq->next_rq;
4897 	unsigned long service_to_charge;
4898 
4899 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4900 
4901 	bfq_bfqq_served(bfqq, service_to_charge);
4902 
4903 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4904 		bfqd->wait_dispatch = false;
4905 		bfqd->waited_rq = rq;
4906 	}
4907 
4908 	bfq_dispatch_remove(bfqd->queue, rq);
4909 
4910 	if (bfqq != bfqd->in_service_queue)
4911 		goto return_rq;
4912 
4913 	/*
4914 	 * If weight raising has to terminate for bfqq, then next
4915 	 * function causes an immediate update of bfqq's weight,
4916 	 * without waiting for next activation. As a consequence, on
4917 	 * expiration, bfqq will be timestamped as if has never been
4918 	 * weight-raised during this service slot, even if it has
4919 	 * received part or even most of the service as a
4920 	 * weight-raised queue. This inflates bfqq's timestamps, which
4921 	 * is beneficial, as bfqq is then more willing to leave the
4922 	 * device immediately to possible other weight-raised queues.
4923 	 */
4924 	bfq_update_wr_data(bfqd, bfqq);
4925 
4926 	/*
4927 	 * Expire bfqq, pretending that its budget expired, if bfqq
4928 	 * belongs to CLASS_IDLE and other queues are waiting for
4929 	 * service.
4930 	 */
4931 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4932 		goto return_rq;
4933 
4934 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4935 
4936 return_rq:
4937 	return rq;
4938 }
4939 
bfq_has_work(struct blk_mq_hw_ctx * hctx)4940 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4941 {
4942 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4943 
4944 	/*
4945 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4946 	 * most a call to dispatch for nothing
4947 	 */
4948 	return !list_empty_careful(&bfqd->dispatch) ||
4949 		bfq_tot_busy_queues(bfqd) > 0;
4950 }
4951 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4952 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4953 {
4954 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4955 	struct request *rq = NULL;
4956 	struct bfq_queue *bfqq = NULL;
4957 
4958 	if (!list_empty(&bfqd->dispatch)) {
4959 		rq = list_first_entry(&bfqd->dispatch, struct request,
4960 				      queuelist);
4961 		list_del_init(&rq->queuelist);
4962 
4963 		bfqq = RQ_BFQQ(rq);
4964 
4965 		if (bfqq) {
4966 			/*
4967 			 * Increment counters here, because this
4968 			 * dispatch does not follow the standard
4969 			 * dispatch flow (where counters are
4970 			 * incremented)
4971 			 */
4972 			bfqq->dispatched++;
4973 
4974 			goto inc_in_driver_start_rq;
4975 		}
4976 
4977 		/*
4978 		 * We exploit the bfq_finish_requeue_request hook to
4979 		 * decrement rq_in_driver, but
4980 		 * bfq_finish_requeue_request will not be invoked on
4981 		 * this request. So, to avoid unbalance, just start
4982 		 * this request, without incrementing rq_in_driver. As
4983 		 * a negative consequence, rq_in_driver is deceptively
4984 		 * lower than it should be while this request is in
4985 		 * service. This may cause bfq_schedule_dispatch to be
4986 		 * invoked uselessly.
4987 		 *
4988 		 * As for implementing an exact solution, the
4989 		 * bfq_finish_requeue_request hook, if defined, is
4990 		 * probably invoked also on this request. So, by
4991 		 * exploiting this hook, we could 1) increment
4992 		 * rq_in_driver here, and 2) decrement it in
4993 		 * bfq_finish_requeue_request. Such a solution would
4994 		 * let the value of the counter be always accurate,
4995 		 * but it would entail using an extra interface
4996 		 * function. This cost seems higher than the benefit,
4997 		 * being the frequency of non-elevator-private
4998 		 * requests very low.
4999 		 */
5000 		goto start_rq;
5001 	}
5002 
5003 	bfq_log(bfqd, "dispatch requests: %d busy queues",
5004 		bfq_tot_busy_queues(bfqd));
5005 
5006 	if (bfq_tot_busy_queues(bfqd) == 0)
5007 		goto exit;
5008 
5009 	/*
5010 	 * Force device to serve one request at a time if
5011 	 * strict_guarantees is true. Forcing this service scheme is
5012 	 * currently the ONLY way to guarantee that the request
5013 	 * service order enforced by the scheduler is respected by a
5014 	 * queueing device. Otherwise the device is free even to make
5015 	 * some unlucky request wait for as long as the device
5016 	 * wishes.
5017 	 *
5018 	 * Of course, serving one request at a time may cause loss of
5019 	 * throughput.
5020 	 */
5021 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
5022 		goto exit;
5023 
5024 	bfqq = bfq_select_queue(bfqd);
5025 	if (!bfqq)
5026 		goto exit;
5027 
5028 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
5029 
5030 	if (rq) {
5031 inc_in_driver_start_rq:
5032 		bfqd->rq_in_driver++;
5033 start_rq:
5034 		rq->rq_flags |= RQF_STARTED;
5035 	}
5036 exit:
5037 	return rq;
5038 }
5039 
5040 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)5041 static void bfq_update_dispatch_stats(struct request_queue *q,
5042 				      struct request *rq,
5043 				      struct bfq_queue *in_serv_queue,
5044 				      bool idle_timer_disabled)
5045 {
5046 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
5047 
5048 	if (!idle_timer_disabled && !bfqq)
5049 		return;
5050 
5051 	/*
5052 	 * rq and bfqq are guaranteed to exist until this function
5053 	 * ends, for the following reasons. First, rq can be
5054 	 * dispatched to the device, and then can be completed and
5055 	 * freed, only after this function ends. Second, rq cannot be
5056 	 * merged (and thus freed because of a merge) any longer,
5057 	 * because it has already started. Thus rq cannot be freed
5058 	 * before this function ends, and, since rq has a reference to
5059 	 * bfqq, the same guarantee holds for bfqq too.
5060 	 *
5061 	 * In addition, the following queue lock guarantees that
5062 	 * bfqq_group(bfqq) exists as well.
5063 	 */
5064 	spin_lock_irq(&q->queue_lock);
5065 	if (idle_timer_disabled)
5066 		/*
5067 		 * Since the idle timer has been disabled,
5068 		 * in_serv_queue contained some request when
5069 		 * __bfq_dispatch_request was invoked above, which
5070 		 * implies that rq was picked exactly from
5071 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
5072 		 * therefore guaranteed to exist because of the above
5073 		 * arguments.
5074 		 */
5075 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
5076 	if (bfqq) {
5077 		struct bfq_group *bfqg = bfqq_group(bfqq);
5078 
5079 		bfqg_stats_update_avg_queue_size(bfqg);
5080 		bfqg_stats_set_start_empty_time(bfqg);
5081 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5082 	}
5083 	spin_unlock_irq(&q->queue_lock);
5084 }
5085 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)5086 static inline void bfq_update_dispatch_stats(struct request_queue *q,
5087 					     struct request *rq,
5088 					     struct bfq_queue *in_serv_queue,
5089 					     bool idle_timer_disabled) {}
5090 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5091 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)5092 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5093 {
5094 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5095 	struct request *rq;
5096 	struct bfq_queue *in_serv_queue;
5097 	bool waiting_rq, idle_timer_disabled = false;
5098 
5099 	spin_lock_irq(&bfqd->lock);
5100 
5101 	in_serv_queue = bfqd->in_service_queue;
5102 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5103 
5104 	rq = __bfq_dispatch_request(hctx);
5105 	if (in_serv_queue == bfqd->in_service_queue) {
5106 		idle_timer_disabled =
5107 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5108 	}
5109 
5110 	spin_unlock_irq(&bfqd->lock);
5111 	bfq_update_dispatch_stats(hctx->queue, rq,
5112 			idle_timer_disabled ? in_serv_queue : NULL,
5113 				idle_timer_disabled);
5114 
5115 	return rq;
5116 }
5117 
5118 /*
5119  * Task holds one reference to the queue, dropped when task exits.  Each rq
5120  * in-flight on this queue also holds a reference, dropped when rq is freed.
5121  *
5122  * Scheduler lock must be held here. Recall not to use bfqq after calling
5123  * this function on it.
5124  */
bfq_put_queue(struct bfq_queue * bfqq)5125 void bfq_put_queue(struct bfq_queue *bfqq)
5126 {
5127 	struct bfq_queue *item;
5128 	struct hlist_node *n;
5129 	struct bfq_group *bfqg = bfqq_group(bfqq);
5130 
5131 	if (bfqq->bfqd)
5132 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5133 			     bfqq, bfqq->ref);
5134 
5135 	bfqq->ref--;
5136 	if (bfqq->ref)
5137 		return;
5138 
5139 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
5140 		hlist_del_init(&bfqq->burst_list_node);
5141 		/*
5142 		 * Decrement also burst size after the removal, if the
5143 		 * process associated with bfqq is exiting, and thus
5144 		 * does not contribute to the burst any longer. This
5145 		 * decrement helps filter out false positives of large
5146 		 * bursts, when some short-lived process (often due to
5147 		 * the execution of commands by some service) happens
5148 		 * to start and exit while a complex application is
5149 		 * starting, and thus spawning several processes that
5150 		 * do I/O (and that *must not* be treated as a large
5151 		 * burst, see comments on bfq_handle_burst).
5152 		 *
5153 		 * In particular, the decrement is performed only if:
5154 		 * 1) bfqq is not a merged queue, because, if it is,
5155 		 * then this free of bfqq is not triggered by the exit
5156 		 * of the process bfqq is associated with, but exactly
5157 		 * by the fact that bfqq has just been merged.
5158 		 * 2) burst_size is greater than 0, to handle
5159 		 * unbalanced decrements. Unbalanced decrements may
5160 		 * happen in te following case: bfqq is inserted into
5161 		 * the current burst list--without incrementing
5162 		 * bust_size--because of a split, but the current
5163 		 * burst list is not the burst list bfqq belonged to
5164 		 * (see comments on the case of a split in
5165 		 * bfq_set_request).
5166 		 */
5167 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5168 			bfqq->bfqd->burst_size--;
5169 	}
5170 
5171 	/*
5172 	 * bfqq does not exist any longer, so it cannot be woken by
5173 	 * any other queue, and cannot wake any other queue. Then bfqq
5174 	 * must be removed from the woken list of its possible waker
5175 	 * queue, and all queues in the woken list of bfqq must stop
5176 	 * having a waker queue. Strictly speaking, these updates
5177 	 * should be performed when bfqq remains with no I/O source
5178 	 * attached to it, which happens before bfqq gets freed. In
5179 	 * particular, this happens when the last process associated
5180 	 * with bfqq exits or gets associated with a different
5181 	 * queue. However, both events lead to bfqq being freed soon,
5182 	 * and dangling references would come out only after bfqq gets
5183 	 * freed. So these updates are done here, as a simple and safe
5184 	 * way to handle all cases.
5185 	 */
5186 	/* remove bfqq from woken list */
5187 	if (!hlist_unhashed(&bfqq->woken_list_node))
5188 		hlist_del_init(&bfqq->woken_list_node);
5189 
5190 	/* reset waker for all queues in woken list */
5191 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5192 				  woken_list_node) {
5193 		item->waker_bfqq = NULL;
5194 		hlist_del_init(&item->woken_list_node);
5195 	}
5196 
5197 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5198 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
5199 
5200 	WARN_ON_ONCE(!list_empty(&bfqq->fifo));
5201 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&bfqq->sort_list));
5202 	WARN_ON_ONCE(bfqq->dispatched);
5203 
5204 	kmem_cache_free(bfq_pool, bfqq);
5205 	bfqg_and_blkg_put(bfqg);
5206 }
5207 
bfq_put_stable_ref(struct bfq_queue * bfqq)5208 static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5209 {
5210 	bfqq->stable_ref--;
5211 	bfq_put_queue(bfqq);
5212 }
5213 
bfq_put_cooperator(struct bfq_queue * bfqq)5214 void bfq_put_cooperator(struct bfq_queue *bfqq)
5215 {
5216 	struct bfq_queue *__bfqq, *next;
5217 
5218 	/*
5219 	 * If this queue was scheduled to merge with another queue, be
5220 	 * sure to drop the reference taken on that queue (and others in
5221 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5222 	 */
5223 	__bfqq = bfqq->new_bfqq;
5224 	while (__bfqq) {
5225 		if (__bfqq == bfqq)
5226 			break;
5227 		next = __bfqq->new_bfqq;
5228 		bfq_put_queue(__bfqq);
5229 		__bfqq = next;
5230 	}
5231 }
5232 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)5233 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5234 {
5235 	if (bfqq == bfqd->in_service_queue) {
5236 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
5237 		bfq_schedule_dispatch(bfqd);
5238 	}
5239 
5240 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5241 
5242 	bfq_put_cooperator(bfqq);
5243 
5244 	bfq_release_process_ref(bfqd, bfqq);
5245 }
5246 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)5247 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5248 {
5249 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5250 	struct bfq_data *bfqd;
5251 
5252 	if (bfqq)
5253 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5254 
5255 	if (bfqq && bfqd) {
5256 		unsigned long flags;
5257 
5258 		spin_lock_irqsave(&bfqd->lock, flags);
5259 		bic_set_bfqq(bic, NULL, is_sync);
5260 		bfq_exit_bfqq(bfqd, bfqq);
5261 		spin_unlock_irqrestore(&bfqd->lock, flags);
5262 	}
5263 }
5264 
bfq_exit_icq(struct io_cq * icq)5265 static void bfq_exit_icq(struct io_cq *icq)
5266 {
5267 	struct bfq_io_cq *bic = icq_to_bic(icq);
5268 
5269 	if (bic->stable_merge_bfqq) {
5270 		struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5271 
5272 		/*
5273 		 * bfqd is NULL if scheduler already exited, and in
5274 		 * that case this is the last time bfqq is accessed.
5275 		 */
5276 		if (bfqd) {
5277 			unsigned long flags;
5278 
5279 			spin_lock_irqsave(&bfqd->lock, flags);
5280 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5281 			spin_unlock_irqrestore(&bfqd->lock, flags);
5282 		} else {
5283 			bfq_put_stable_ref(bic->stable_merge_bfqq);
5284 		}
5285 	}
5286 
5287 	bfq_exit_icq_bfqq(bic, true);
5288 	bfq_exit_icq_bfqq(bic, false);
5289 }
5290 
5291 /*
5292  * Update the entity prio values; note that the new values will not
5293  * be used until the next (re)activation.
5294  */
5295 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)5296 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5297 {
5298 	struct task_struct *tsk = current;
5299 	int ioprio_class;
5300 	struct bfq_data *bfqd = bfqq->bfqd;
5301 
5302 	if (!bfqd)
5303 		return;
5304 
5305 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5306 	switch (ioprio_class) {
5307 	default:
5308 		pr_err("bdi %s: bfq: bad prio class %d\n",
5309 			bdi_dev_name(bfqq->bfqd->queue->disk->bdi),
5310 			ioprio_class);
5311 		fallthrough;
5312 	case IOPRIO_CLASS_NONE:
5313 		/*
5314 		 * No prio set, inherit CPU scheduling settings.
5315 		 */
5316 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5317 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5318 		break;
5319 	case IOPRIO_CLASS_RT:
5320 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5321 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5322 		break;
5323 	case IOPRIO_CLASS_BE:
5324 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5325 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5326 		break;
5327 	case IOPRIO_CLASS_IDLE:
5328 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5329 		bfqq->new_ioprio = 7;
5330 		break;
5331 	}
5332 
5333 	if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) {
5334 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5335 			bfqq->new_ioprio);
5336 		bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1;
5337 	}
5338 
5339 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5340 	bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5341 		     bfqq->new_ioprio, bfqq->entity.new_weight);
5342 	bfqq->entity.prio_changed = 1;
5343 }
5344 
5345 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5346 				       struct bio *bio, bool is_sync,
5347 				       struct bfq_io_cq *bic,
5348 				       bool respawn);
5349 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)5350 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5351 {
5352 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5353 	struct bfq_queue *bfqq;
5354 	int ioprio = bic->icq.ioc->ioprio;
5355 
5356 	/*
5357 	 * This condition may trigger on a newly created bic, be sure to
5358 	 * drop the lock before returning.
5359 	 */
5360 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5361 		return;
5362 
5363 	bic->ioprio = ioprio;
5364 
5365 	bfqq = bic_to_bfqq(bic, false);
5366 	if (bfqq) {
5367 		struct bfq_queue *old_bfqq = bfqq;
5368 
5369 		bfqq = bfq_get_queue(bfqd, bio, false, bic, true);
5370 		bic_set_bfqq(bic, bfqq, false);
5371 		bfq_release_process_ref(bfqd, old_bfqq);
5372 	}
5373 
5374 	bfqq = bic_to_bfqq(bic, true);
5375 	if (bfqq)
5376 		bfq_set_next_ioprio_data(bfqq, bic);
5377 }
5378 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)5379 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5380 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5381 {
5382 	u64 now_ns = ktime_get_ns();
5383 
5384 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5385 	INIT_LIST_HEAD(&bfqq->fifo);
5386 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5387 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5388 	INIT_HLIST_HEAD(&bfqq->woken_list);
5389 
5390 	bfqq->ref = 0;
5391 	bfqq->bfqd = bfqd;
5392 
5393 	if (bic)
5394 		bfq_set_next_ioprio_data(bfqq, bic);
5395 
5396 	if (is_sync) {
5397 		/*
5398 		 * No need to mark as has_short_ttime if in
5399 		 * idle_class, because no device idling is performed
5400 		 * for queues in idle class
5401 		 */
5402 		if (!bfq_class_idle(bfqq))
5403 			/* tentatively mark as has_short_ttime */
5404 			bfq_mark_bfqq_has_short_ttime(bfqq);
5405 		bfq_mark_bfqq_sync(bfqq);
5406 		bfq_mark_bfqq_just_created(bfqq);
5407 	} else
5408 		bfq_clear_bfqq_sync(bfqq);
5409 
5410 	/* set end request to minus infinity from now */
5411 	bfqq->ttime.last_end_request = now_ns + 1;
5412 
5413 	bfqq->creation_time = jiffies;
5414 
5415 	bfqq->io_start_time = now_ns;
5416 
5417 	bfq_mark_bfqq_IO_bound(bfqq);
5418 
5419 	bfqq->pid = pid;
5420 
5421 	/* Tentative initial value to trade off between thr and lat */
5422 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5423 	bfqq->budget_timeout = bfq_smallest_from_now();
5424 
5425 	bfqq->wr_coeff = 1;
5426 	bfqq->last_wr_start_finish = jiffies;
5427 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5428 	bfqq->split_time = bfq_smallest_from_now();
5429 
5430 	/*
5431 	 * To not forget the possibly high bandwidth consumed by a
5432 	 * process/queue in the recent past,
5433 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5434 	 * to the current value of bfqq->soft_rt_next_start (see
5435 	 * comments on bfq_bfqq_softrt_next_start).  Set
5436 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5437 	 * no bandwidth so far.
5438 	 */
5439 	bfqq->soft_rt_next_start = jiffies;
5440 
5441 	/* first request is almost certainly seeky */
5442 	bfqq->seek_history = 1;
5443 }
5444 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)5445 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5446 					       struct bfq_group *bfqg,
5447 					       int ioprio_class, int ioprio)
5448 {
5449 	switch (ioprio_class) {
5450 	case IOPRIO_CLASS_RT:
5451 		return &bfqg->async_bfqq[0][ioprio];
5452 	case IOPRIO_CLASS_NONE:
5453 		ioprio = IOPRIO_BE_NORM;
5454 		fallthrough;
5455 	case IOPRIO_CLASS_BE:
5456 		return &bfqg->async_bfqq[1][ioprio];
5457 	case IOPRIO_CLASS_IDLE:
5458 		return &bfqg->async_idle_bfqq;
5459 	default:
5460 		return NULL;
5461 	}
5462 }
5463 
5464 static struct bfq_queue *
bfq_do_early_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,struct bfq_queue * last_bfqq_created)5465 bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5466 			  struct bfq_io_cq *bic,
5467 			  struct bfq_queue *last_bfqq_created)
5468 {
5469 	struct bfq_queue *new_bfqq =
5470 		bfq_setup_merge(bfqq, last_bfqq_created);
5471 
5472 	if (!new_bfqq)
5473 		return bfqq;
5474 
5475 	if (new_bfqq->bic)
5476 		new_bfqq->bic->stably_merged = true;
5477 	bic->stably_merged = true;
5478 
5479 	/*
5480 	 * Reusing merge functions. This implies that
5481 	 * bfqq->bic must be set too, for
5482 	 * bfq_merge_bfqqs to correctly save bfqq's
5483 	 * state before killing it.
5484 	 */
5485 	bfqq->bic = bic;
5486 	bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5487 
5488 	return new_bfqq;
5489 }
5490 
5491 /*
5492  * Many throughput-sensitive workloads are made of several parallel
5493  * I/O flows, with all flows generated by the same application, or
5494  * more generically by the same task (e.g., system boot). The most
5495  * counterproductive action with these workloads is plugging I/O
5496  * dispatch when one of the bfq_queues associated with these flows
5497  * remains temporarily empty.
5498  *
5499  * To avoid this plugging, BFQ has been using a burst-handling
5500  * mechanism for years now. This mechanism has proven effective for
5501  * throughput, and not detrimental for service guarantees. The
5502  * following function pushes this mechanism a little bit further,
5503  * basing on the following two facts.
5504  *
5505  * First, all the I/O flows of a the same application or task
5506  * contribute to the execution/completion of that common application
5507  * or task. So the performance figures that matter are total
5508  * throughput of the flows and task-wide I/O latency.  In particular,
5509  * these flows do not need to be protected from each other, in terms
5510  * of individual bandwidth or latency.
5511  *
5512  * Second, the above fact holds regardless of the number of flows.
5513  *
5514  * Putting these two facts together, this commits merges stably the
5515  * bfq_queues associated with these I/O flows, i.e., with the
5516  * processes that generate these IO/ flows, regardless of how many the
5517  * involved processes are.
5518  *
5519  * To decide whether a set of bfq_queues is actually associated with
5520  * the I/O flows of a common application or task, and to merge these
5521  * queues stably, this function operates as follows: given a bfq_queue,
5522  * say Q2, currently being created, and the last bfq_queue, say Q1,
5523  * created before Q2, Q2 is merged stably with Q1 if
5524  * - very little time has elapsed since when Q1 was created
5525  * - Q2 has the same ioprio as Q1
5526  * - Q2 belongs to the same group as Q1
5527  *
5528  * Merging bfq_queues also reduces scheduling overhead. A fio test
5529  * with ten random readers on /dev/nullb shows a throughput boost of
5530  * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5531  * the total per-request processing time, the above throughput boost
5532  * implies that BFQ's overhead is reduced by more than 50%.
5533  *
5534  * This new mechanism most certainly obsoletes the current
5535  * burst-handling heuristics. We keep those heuristics for the moment.
5536  */
bfq_do_or_sched_stable_merge(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5537 static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5538 						      struct bfq_queue *bfqq,
5539 						      struct bfq_io_cq *bic)
5540 {
5541 	struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5542 		&bfqq->entity.parent->last_bfqq_created :
5543 		&bfqd->last_bfqq_created;
5544 
5545 	struct bfq_queue *last_bfqq_created = *source_bfqq;
5546 
5547 	/*
5548 	 * If last_bfqq_created has not been set yet, then init it. If
5549 	 * it has been set already, but too long ago, then move it
5550 	 * forward to bfqq. Finally, move also if bfqq belongs to a
5551 	 * different group than last_bfqq_created, or if bfqq has a
5552 	 * different ioprio or ioprio_class. If none of these
5553 	 * conditions holds true, then try an early stable merge or
5554 	 * schedule a delayed stable merge.
5555 	 *
5556 	 * A delayed merge is scheduled (instead of performing an
5557 	 * early merge), in case bfqq might soon prove to be more
5558 	 * throughput-beneficial if not merged. Currently this is
5559 	 * possible only if bfqd is rotational with no queueing. For
5560 	 * such a drive, not merging bfqq is better for throughput if
5561 	 * bfqq happens to contain sequential I/O. So, we wait a
5562 	 * little bit for enough I/O to flow through bfqq. After that,
5563 	 * if such an I/O is sequential, then the merge is
5564 	 * canceled. Otherwise the merge is finally performed.
5565 	 */
5566 	if (!last_bfqq_created ||
5567 	    time_before(last_bfqq_created->creation_time +
5568 			msecs_to_jiffies(bfq_activation_stable_merging),
5569 			bfqq->creation_time) ||
5570 		bfqq->entity.parent != last_bfqq_created->entity.parent ||
5571 		bfqq->ioprio != last_bfqq_created->ioprio ||
5572 		bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5573 		*source_bfqq = bfqq;
5574 	else if (time_after_eq(last_bfqq_created->creation_time +
5575 				 bfqd->bfq_burst_interval,
5576 				 bfqq->creation_time)) {
5577 		if (likely(bfqd->nonrot_with_queueing))
5578 			/*
5579 			 * With this type of drive, leaving
5580 			 * bfqq alone may provide no
5581 			 * throughput benefits compared with
5582 			 * merging bfqq. So merge bfqq now.
5583 			 */
5584 			bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5585 							 bic,
5586 							 last_bfqq_created);
5587 		else { /* schedule tentative stable merge */
5588 			/*
5589 			 * get reference on last_bfqq_created,
5590 			 * to prevent it from being freed,
5591 			 * until we decide whether to merge
5592 			 */
5593 			last_bfqq_created->ref++;
5594 			/*
5595 			 * need to keep track of stable refs, to
5596 			 * compute process refs correctly
5597 			 */
5598 			last_bfqq_created->stable_ref++;
5599 			/*
5600 			 * Record the bfqq to merge to.
5601 			 */
5602 			bic->stable_merge_bfqq = last_bfqq_created;
5603 		}
5604 	}
5605 
5606 	return bfqq;
5607 }
5608 
5609 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic,bool respawn)5610 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5611 				       struct bio *bio, bool is_sync,
5612 				       struct bfq_io_cq *bic,
5613 				       bool respawn)
5614 {
5615 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5616 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5617 	struct bfq_queue **async_bfqq = NULL;
5618 	struct bfq_queue *bfqq;
5619 	struct bfq_group *bfqg;
5620 
5621 	bfqg = bfq_bio_bfqg(bfqd, bio);
5622 	if (!is_sync) {
5623 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5624 						  ioprio);
5625 		bfqq = *async_bfqq;
5626 		if (bfqq)
5627 			goto out;
5628 	}
5629 
5630 	bfqq = kmem_cache_alloc_node(bfq_pool,
5631 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5632 				     bfqd->queue->node);
5633 
5634 	if (bfqq) {
5635 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5636 			      is_sync);
5637 		bfq_init_entity(&bfqq->entity, bfqg);
5638 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5639 	} else {
5640 		bfqq = &bfqd->oom_bfqq;
5641 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5642 		goto out;
5643 	}
5644 
5645 	/*
5646 	 * Pin the queue now that it's allocated, scheduler exit will
5647 	 * prune it.
5648 	 */
5649 	if (async_bfqq) {
5650 		bfqq->ref++; /*
5651 			      * Extra group reference, w.r.t. sync
5652 			      * queue. This extra reference is removed
5653 			      * only if bfqq->bfqg disappears, to
5654 			      * guarantee that this queue is not freed
5655 			      * until its group goes away.
5656 			      */
5657 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5658 			     bfqq, bfqq->ref);
5659 		*async_bfqq = bfqq;
5660 	}
5661 
5662 out:
5663 	bfqq->ref++; /* get a process reference to this queue */
5664 
5665 	if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5666 		bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5667 	return bfqq;
5668 }
5669 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)5670 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5671 				    struct bfq_queue *bfqq)
5672 {
5673 	struct bfq_ttime *ttime = &bfqq->ttime;
5674 	u64 elapsed;
5675 
5676 	/*
5677 	 * We are really interested in how long it takes for the queue to
5678 	 * become busy when there is no outstanding IO for this queue. So
5679 	 * ignore cases when the bfq queue has already IO queued.
5680 	 */
5681 	if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5682 		return;
5683 	elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5684 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5685 
5686 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
5687 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5688 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5689 				     ttime->ttime_samples);
5690 }
5691 
5692 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5693 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5694 		       struct request *rq)
5695 {
5696 	bfqq->seek_history <<= 1;
5697 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5698 
5699 	if (bfqq->wr_coeff > 1 &&
5700 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5701 	    BFQQ_TOTALLY_SEEKY(bfqq)) {
5702 		if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5703 					   bfq_wr_duration(bfqd))) {
5704 			/*
5705 			 * In soft_rt weight raising with the
5706 			 * interactive-weight-raising period
5707 			 * elapsed (so no switch back to
5708 			 * interactive weight raising).
5709 			 */
5710 			bfq_bfqq_end_wr(bfqq);
5711 		} else { /*
5712 			  * stopping soft_rt weight raising
5713 			  * while still in interactive period,
5714 			  * switch back to interactive weight
5715 			  * raising
5716 			  */
5717 			switch_back_to_interactive_wr(bfqq, bfqd);
5718 			bfqq->entity.prio_changed = 1;
5719 		}
5720 	}
5721 }
5722 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5723 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5724 				       struct bfq_queue *bfqq,
5725 				       struct bfq_io_cq *bic)
5726 {
5727 	bool has_short_ttime = true, state_changed;
5728 
5729 	/*
5730 	 * No need to update has_short_ttime if bfqq is async or in
5731 	 * idle io prio class, or if bfq_slice_idle is zero, because
5732 	 * no device idling is performed for bfqq in this case.
5733 	 */
5734 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5735 	    bfqd->bfq_slice_idle == 0)
5736 		return;
5737 
5738 	/* Idle window just restored, statistics are meaningless. */
5739 	if (time_is_after_eq_jiffies(bfqq->split_time +
5740 				     bfqd->bfq_wr_min_idle_time))
5741 		return;
5742 
5743 	/* Think time is infinite if no process is linked to
5744 	 * bfqq. Otherwise check average think time to decide whether
5745 	 * to mark as has_short_ttime. To this goal, compare average
5746 	 * think time with half the I/O-plugging timeout.
5747 	 */
5748 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5749 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5750 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
5751 		has_short_ttime = false;
5752 
5753 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5754 
5755 	if (has_short_ttime)
5756 		bfq_mark_bfqq_has_short_ttime(bfqq);
5757 	else
5758 		bfq_clear_bfqq_has_short_ttime(bfqq);
5759 
5760 	/*
5761 	 * Until the base value for the total service time gets
5762 	 * finally computed for bfqq, the inject limit does depend on
5763 	 * the think-time state (short|long). In particular, the limit
5764 	 * is 0 or 1 if the think time is deemed, respectively, as
5765 	 * short or long (details in the comments in
5766 	 * bfq_update_inject_limit()). Accordingly, the next
5767 	 * instructions reset the inject limit if the think-time state
5768 	 * has changed and the above base value is still to be
5769 	 * computed.
5770 	 *
5771 	 * However, the reset is performed only if more than 100 ms
5772 	 * have elapsed since the last update of the inject limit, or
5773 	 * (inclusive) if the change is from short to long think
5774 	 * time. The reason for this waiting is as follows.
5775 	 *
5776 	 * bfqq may have a long think time because of a
5777 	 * synchronization with some other queue, i.e., because the
5778 	 * I/O of some other queue may need to be completed for bfqq
5779 	 * to receive new I/O. Details in the comments on the choice
5780 	 * of the queue for injection in bfq_select_queue().
5781 	 *
5782 	 * As stressed in those comments, if such a synchronization is
5783 	 * actually in place, then, without injection on bfqq, the
5784 	 * blocking I/O cannot happen to served while bfqq is in
5785 	 * service. As a consequence, if bfqq is granted
5786 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5787 	 * is dispatched, until the idle timeout fires. This is likely
5788 	 * to result in lower bandwidth and higher latencies for bfqq,
5789 	 * and in a severe loss of total throughput.
5790 	 *
5791 	 * On the opposite end, a non-zero inject limit may allow the
5792 	 * I/O that blocks bfqq to be executed soon, and therefore
5793 	 * bfqq to receive new I/O soon.
5794 	 *
5795 	 * But, if the blocking gets actually eliminated, then the
5796 	 * next think-time sample for bfqq may be very low. This in
5797 	 * turn may cause bfqq's think time to be deemed
5798 	 * short. Without the 100 ms barrier, this new state change
5799 	 * would cause the body of the next if to be executed
5800 	 * immediately. But this would set to 0 the inject
5801 	 * limit. Without injection, the blocking I/O would cause the
5802 	 * think time of bfqq to become long again, and therefore the
5803 	 * inject limit to be raised again, and so on. The only effect
5804 	 * of such a steady oscillation between the two think-time
5805 	 * states would be to prevent effective injection on bfqq.
5806 	 *
5807 	 * In contrast, if the inject limit is not reset during such a
5808 	 * long time interval as 100 ms, then the number of short
5809 	 * think time samples can grow significantly before the reset
5810 	 * is performed. As a consequence, the think time state can
5811 	 * become stable before the reset. Therefore there will be no
5812 	 * state change when the 100 ms elapse, and no reset of the
5813 	 * inject limit. The inject limit remains steadily equal to 1
5814 	 * both during and after the 100 ms. So injection can be
5815 	 * performed at all times, and throughput gets boosted.
5816 	 *
5817 	 * An inject limit equal to 1 is however in conflict, in
5818 	 * general, with the fact that the think time of bfqq is
5819 	 * short, because injection may be likely to delay bfqq's I/O
5820 	 * (as explained in the comments in
5821 	 * bfq_update_inject_limit()). But this does not happen in
5822 	 * this special case, because bfqq's low think time is due to
5823 	 * an effective handling of a synchronization, through
5824 	 * injection. In this special case, bfqq's I/O does not get
5825 	 * delayed by injection; on the contrary, bfqq's I/O is
5826 	 * brought forward, because it is not blocked for
5827 	 * milliseconds.
5828 	 *
5829 	 * In addition, serving the blocking I/O much sooner, and much
5830 	 * more frequently than once per I/O-plugging timeout, makes
5831 	 * it much quicker to detect a waker queue (the concept of
5832 	 * waker queue is defined in the comments in
5833 	 * bfq_add_request()). This makes it possible to start sooner
5834 	 * to boost throughput more effectively, by injecting the I/O
5835 	 * of the waker queue unconditionally on every
5836 	 * bfq_dispatch_request().
5837 	 *
5838 	 * One last, important benefit of not resetting the inject
5839 	 * limit before 100 ms is that, during this time interval, the
5840 	 * base value for the total service time is likely to get
5841 	 * finally computed for bfqq, freeing the inject limit from
5842 	 * its relation with the think time.
5843 	 */
5844 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5845 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5846 				      msecs_to_jiffies(100)) ||
5847 	     !has_short_ttime))
5848 		bfq_reset_inject_limit(bfqd, bfqq);
5849 }
5850 
5851 /*
5852  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5853  * something we should do about it.
5854  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5855 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5856 			    struct request *rq)
5857 {
5858 	if (rq->cmd_flags & REQ_META)
5859 		bfqq->meta_pending++;
5860 
5861 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5862 
5863 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5864 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5865 				 blk_rq_sectors(rq) < 32;
5866 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5867 
5868 		/*
5869 		 * There is just this request queued: if
5870 		 * - the request is small, and
5871 		 * - we are idling to boost throughput, and
5872 		 * - the queue is not to be expired,
5873 		 * then just exit.
5874 		 *
5875 		 * In this way, if the device is being idled to wait
5876 		 * for a new request from the in-service queue, we
5877 		 * avoid unplugging the device and committing the
5878 		 * device to serve just a small request. In contrast
5879 		 * we wait for the block layer to decide when to
5880 		 * unplug the device: hopefully, new requests will be
5881 		 * merged to this one quickly, then the device will be
5882 		 * unplugged and larger requests will be dispatched.
5883 		 */
5884 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5885 		    !budget_timeout)
5886 			return;
5887 
5888 		/*
5889 		 * A large enough request arrived, or idling is being
5890 		 * performed to preserve service guarantees, or
5891 		 * finally the queue is to be expired: in all these
5892 		 * cases disk idling is to be stopped, so clear
5893 		 * wait_request flag and reset timer.
5894 		 */
5895 		bfq_clear_bfqq_wait_request(bfqq);
5896 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5897 
5898 		/*
5899 		 * The queue is not empty, because a new request just
5900 		 * arrived. Hence we can safely expire the queue, in
5901 		 * case of budget timeout, without risking that the
5902 		 * timestamps of the queue are not updated correctly.
5903 		 * See [1] for more details.
5904 		 */
5905 		if (budget_timeout)
5906 			bfq_bfqq_expire(bfqd, bfqq, false,
5907 					BFQQE_BUDGET_TIMEOUT);
5908 	}
5909 }
5910 
5911 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)5912 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5913 {
5914 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5915 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5916 						 RQ_BIC(rq));
5917 	bool waiting, idle_timer_disabled = false;
5918 
5919 	if (new_bfqq) {
5920 		/*
5921 		 * Release the request's reference to the old bfqq
5922 		 * and make sure one is taken to the shared queue.
5923 		 */
5924 		new_bfqq->allocated++;
5925 		bfqq->allocated--;
5926 		new_bfqq->ref++;
5927 		/*
5928 		 * If the bic associated with the process
5929 		 * issuing this request still points to bfqq
5930 		 * (and thus has not been already redirected
5931 		 * to new_bfqq or even some other bfq_queue),
5932 		 * then complete the merge and redirect it to
5933 		 * new_bfqq.
5934 		 */
5935 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5936 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5937 					bfqq, new_bfqq);
5938 
5939 		bfq_clear_bfqq_just_created(bfqq);
5940 		/*
5941 		 * rq is about to be enqueued into new_bfqq,
5942 		 * release rq reference on bfqq
5943 		 */
5944 		bfq_put_queue(bfqq);
5945 		rq->elv.priv[1] = new_bfqq;
5946 		bfqq = new_bfqq;
5947 	}
5948 
5949 	bfq_update_io_thinktime(bfqd, bfqq);
5950 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5951 	bfq_update_io_seektime(bfqd, bfqq, rq);
5952 
5953 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5954 	bfq_add_request(rq);
5955 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5956 
5957 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5958 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5959 
5960 	bfq_rq_enqueued(bfqd, bfqq, rq);
5961 
5962 	return idle_timer_disabled;
5963 }
5964 
5965 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5966 static void bfq_update_insert_stats(struct request_queue *q,
5967 				    struct bfq_queue *bfqq,
5968 				    bool idle_timer_disabled,
5969 				    unsigned int cmd_flags)
5970 {
5971 	if (!bfqq)
5972 		return;
5973 
5974 	/*
5975 	 * bfqq still exists, because it can disappear only after
5976 	 * either it is merged with another queue, or the process it
5977 	 * is associated with exits. But both actions must be taken by
5978 	 * the same process currently executing this flow of
5979 	 * instructions.
5980 	 *
5981 	 * In addition, the following queue lock guarantees that
5982 	 * bfqq_group(bfqq) exists as well.
5983 	 */
5984 	spin_lock_irq(&q->queue_lock);
5985 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5986 	if (idle_timer_disabled)
5987 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5988 	spin_unlock_irq(&q->queue_lock);
5989 }
5990 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5991 static inline void bfq_update_insert_stats(struct request_queue *q,
5992 					   struct bfq_queue *bfqq,
5993 					   bool idle_timer_disabled,
5994 					   unsigned int cmd_flags) {}
5995 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5996 
5997 static struct bfq_queue *bfq_init_rq(struct request *rq);
5998 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)5999 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
6000 			       bool at_head)
6001 {
6002 	struct request_queue *q = hctx->queue;
6003 	struct bfq_data *bfqd = q->elevator->elevator_data;
6004 	struct bfq_queue *bfqq;
6005 	bool idle_timer_disabled = false;
6006 	unsigned int cmd_flags;
6007 	LIST_HEAD(free);
6008 
6009 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6010 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
6011 		bfqg_stats_update_legacy_io(q, rq);
6012 #endif
6013 	spin_lock_irq(&bfqd->lock);
6014 	bfqq = bfq_init_rq(rq);
6015 	if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
6016 		spin_unlock_irq(&bfqd->lock);
6017 		blk_mq_free_requests(&free);
6018 		return;
6019 	}
6020 
6021 	trace_block_rq_insert(rq);
6022 
6023 	if (!bfqq || at_head) {
6024 		if (at_head)
6025 			list_add(&rq->queuelist, &bfqd->dispatch);
6026 		else
6027 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
6028 	} else {
6029 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
6030 		/*
6031 		 * Update bfqq, because, if a queue merge has occurred
6032 		 * in __bfq_insert_request, then rq has been
6033 		 * redirected into a new queue.
6034 		 */
6035 		bfqq = RQ_BFQQ(rq);
6036 
6037 		if (rq_mergeable(rq)) {
6038 			elv_rqhash_add(q, rq);
6039 			if (!q->last_merge)
6040 				q->last_merge = rq;
6041 		}
6042 	}
6043 
6044 	/*
6045 	 * Cache cmd_flags before releasing scheduler lock, because rq
6046 	 * may disappear afterwards (for example, because of a request
6047 	 * merge).
6048 	 */
6049 	cmd_flags = rq->cmd_flags;
6050 	spin_unlock_irq(&bfqd->lock);
6051 
6052 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6053 				cmd_flags);
6054 }
6055 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)6056 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6057 				struct list_head *list, bool at_head)
6058 {
6059 	while (!list_empty(list)) {
6060 		struct request *rq;
6061 
6062 		rq = list_first_entry(list, struct request, queuelist);
6063 		list_del_init(&rq->queuelist);
6064 		bfq_insert_request(hctx, rq, at_head);
6065 	}
6066 }
6067 
bfq_update_hw_tag(struct bfq_data * bfqd)6068 static void bfq_update_hw_tag(struct bfq_data *bfqd)
6069 {
6070 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6071 
6072 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6073 				       bfqd->rq_in_driver);
6074 
6075 	if (bfqd->hw_tag == 1)
6076 		return;
6077 
6078 	/*
6079 	 * This sample is valid if the number of outstanding requests
6080 	 * is large enough to allow a queueing behavior.  Note that the
6081 	 * sum is not exact, as it's not taking into account deactivated
6082 	 * requests.
6083 	 */
6084 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
6085 		return;
6086 
6087 	/*
6088 	 * If active queue hasn't enough requests and can idle, bfq might not
6089 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6090 	 * case
6091 	 */
6092 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6093 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6094 	    BFQ_HW_QUEUE_THRESHOLD &&
6095 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6096 		return;
6097 
6098 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6099 		return;
6100 
6101 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6102 	bfqd->max_rq_in_driver = 0;
6103 	bfqd->hw_tag_samples = 0;
6104 
6105 	bfqd->nonrot_with_queueing =
6106 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
6107 }
6108 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)6109 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6110 {
6111 	u64 now_ns;
6112 	u32 delta_us;
6113 
6114 	bfq_update_hw_tag(bfqd);
6115 
6116 	bfqd->rq_in_driver--;
6117 	bfqq->dispatched--;
6118 
6119 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6120 		/*
6121 		 * Set budget_timeout (which we overload to store the
6122 		 * time at which the queue remains with no backlog and
6123 		 * no outstanding request; used by the weight-raising
6124 		 * mechanism).
6125 		 */
6126 		bfqq->budget_timeout = jiffies;
6127 
6128 		bfq_weights_tree_remove(bfqd, bfqq);
6129 	}
6130 
6131 	now_ns = ktime_get_ns();
6132 
6133 	bfqq->ttime.last_end_request = now_ns;
6134 
6135 	/*
6136 	 * Using us instead of ns, to get a reasonable precision in
6137 	 * computing rate in next check.
6138 	 */
6139 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6140 
6141 	/*
6142 	 * If the request took rather long to complete, and, according
6143 	 * to the maximum request size recorded, this completion latency
6144 	 * implies that the request was certainly served at a very low
6145 	 * rate (less than 1M sectors/sec), then the whole observation
6146 	 * interval that lasts up to this time instant cannot be a
6147 	 * valid time interval for computing a new peak rate.  Invoke
6148 	 * bfq_update_rate_reset to have the following three steps
6149 	 * taken:
6150 	 * - close the observation interval at the last (previous)
6151 	 *   request dispatch or completion
6152 	 * - compute rate, if possible, for that observation interval
6153 	 * - reset to zero samples, which will trigger a proper
6154 	 *   re-initialization of the observation interval on next
6155 	 *   dispatch
6156 	 */
6157 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6158 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6159 			1UL<<(BFQ_RATE_SHIFT - 10))
6160 		bfq_update_rate_reset(bfqd, NULL);
6161 	bfqd->last_completion = now_ns;
6162 	/*
6163 	 * Shared queues are likely to receive I/O at a high
6164 	 * rate. This may deceptively let them be considered as wakers
6165 	 * of other queues. But a false waker will unjustly steal
6166 	 * bandwidth to its supposedly woken queue. So considering
6167 	 * also shared queues in the waking mechanism may cause more
6168 	 * control troubles than throughput benefits. Then reset
6169 	 * last_completed_rq_bfqq if bfqq is a shared queue.
6170 	 */
6171 	if (!bfq_bfqq_coop(bfqq))
6172 		bfqd->last_completed_rq_bfqq = bfqq;
6173 	else
6174 		bfqd->last_completed_rq_bfqq = NULL;
6175 
6176 	/*
6177 	 * If we are waiting to discover whether the request pattern
6178 	 * of the task associated with the queue is actually
6179 	 * isochronous, and both requisites for this condition to hold
6180 	 * are now satisfied, then compute soft_rt_next_start (see the
6181 	 * comments on the function bfq_bfqq_softrt_next_start()). We
6182 	 * do not compute soft_rt_next_start if bfqq is in interactive
6183 	 * weight raising (see the comments in bfq_bfqq_expire() for
6184 	 * an explanation). We schedule this delayed update when bfqq
6185 	 * expires, if it still has in-flight requests.
6186 	 */
6187 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
6188 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
6189 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
6190 		bfqq->soft_rt_next_start =
6191 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
6192 
6193 	/*
6194 	 * If this is the in-service queue, check if it needs to be expired,
6195 	 * or if we want to idle in case it has no pending requests.
6196 	 */
6197 	if (bfqd->in_service_queue == bfqq) {
6198 		if (bfq_bfqq_must_idle(bfqq)) {
6199 			if (bfqq->dispatched == 0)
6200 				bfq_arm_slice_timer(bfqd);
6201 			/*
6202 			 * If we get here, we do not expire bfqq, even
6203 			 * if bfqq was in budget timeout or had no
6204 			 * more requests (as controlled in the next
6205 			 * conditional instructions). The reason for
6206 			 * not expiring bfqq is as follows.
6207 			 *
6208 			 * Here bfqq->dispatched > 0 holds, but
6209 			 * bfq_bfqq_must_idle() returned true. This
6210 			 * implies that, even if no request arrives
6211 			 * for bfqq before bfqq->dispatched reaches 0,
6212 			 * bfqq will, however, not be expired on the
6213 			 * completion event that causes bfqq->dispatch
6214 			 * to reach zero. In contrast, on this event,
6215 			 * bfqq will start enjoying device idling
6216 			 * (I/O-dispatch plugging).
6217 			 *
6218 			 * But, if we expired bfqq here, bfqq would
6219 			 * not have the chance to enjoy device idling
6220 			 * when bfqq->dispatched finally reaches
6221 			 * zero. This would expose bfqq to violation
6222 			 * of its reserved service guarantees.
6223 			 */
6224 			return;
6225 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
6226 			bfq_bfqq_expire(bfqd, bfqq, false,
6227 					BFQQE_BUDGET_TIMEOUT);
6228 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6229 			 (bfqq->dispatched == 0 ||
6230 			  !bfq_better_to_idle(bfqq)))
6231 			bfq_bfqq_expire(bfqd, bfqq, false,
6232 					BFQQE_NO_MORE_REQUESTS);
6233 	}
6234 
6235 	if (!bfqd->rq_in_driver)
6236 		bfq_schedule_dispatch(bfqd);
6237 }
6238 
bfq_finish_requeue_request_body(struct bfq_queue * bfqq)6239 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
6240 {
6241 	bfqq->allocated--;
6242 
6243 	bfq_put_queue(bfqq);
6244 }
6245 
6246 /*
6247  * The processes associated with bfqq may happen to generate their
6248  * cumulative I/O at a lower rate than the rate at which the device
6249  * could serve the same I/O. This is rather probable, e.g., if only
6250  * one process is associated with bfqq and the device is an SSD. It
6251  * results in bfqq becoming often empty while in service. In this
6252  * respect, if BFQ is allowed to switch to another queue when bfqq
6253  * remains empty, then the device goes on being fed with I/O requests,
6254  * and the throughput is not affected. In contrast, if BFQ is not
6255  * allowed to switch to another queue---because bfqq is sync and
6256  * I/O-dispatch needs to be plugged while bfqq is temporarily
6257  * empty---then, during the service of bfqq, there will be frequent
6258  * "service holes", i.e., time intervals during which bfqq gets empty
6259  * and the device can only consume the I/O already queued in its
6260  * hardware queues. During service holes, the device may even get to
6261  * remaining idle. In the end, during the service of bfqq, the device
6262  * is driven at a lower speed than the one it can reach with the kind
6263  * of I/O flowing through bfqq.
6264  *
6265  * To counter this loss of throughput, BFQ implements a "request
6266  * injection mechanism", which tries to fill the above service holes
6267  * with I/O requests taken from other queues. The hard part in this
6268  * mechanism is finding the right amount of I/O to inject, so as to
6269  * both boost throughput and not break bfqq's bandwidth and latency
6270  * guarantees. In this respect, the mechanism maintains a per-queue
6271  * inject limit, computed as below. While bfqq is empty, the injection
6272  * mechanism dispatches extra I/O requests only until the total number
6273  * of I/O requests in flight---i.e., already dispatched but not yet
6274  * completed---remains lower than this limit.
6275  *
6276  * A first definition comes in handy to introduce the algorithm by
6277  * which the inject limit is computed.  We define as first request for
6278  * bfqq, an I/O request for bfqq that arrives while bfqq is in
6279  * service, and causes bfqq to switch from empty to non-empty. The
6280  * algorithm updates the limit as a function of the effect of
6281  * injection on the service times of only the first requests of
6282  * bfqq. The reason for this restriction is that these are the
6283  * requests whose service time is affected most, because they are the
6284  * first to arrive after injection possibly occurred.
6285  *
6286  * To evaluate the effect of injection, the algorithm measures the
6287  * "total service time" of first requests. We define as total service
6288  * time of an I/O request, the time that elapses since when the
6289  * request is enqueued into bfqq, to when it is completed. This
6290  * quantity allows the whole effect of injection to be measured. It is
6291  * easy to see why. Suppose that some requests of other queues are
6292  * actually injected while bfqq is empty, and that a new request R
6293  * then arrives for bfqq. If the device does start to serve all or
6294  * part of the injected requests during the service hole, then,
6295  * because of this extra service, it may delay the next invocation of
6296  * the dispatch hook of BFQ. Then, even after R gets eventually
6297  * dispatched, the device may delay the actual service of R if it is
6298  * still busy serving the extra requests, or if it decides to serve,
6299  * before R, some extra request still present in its queues. As a
6300  * conclusion, the cumulative extra delay caused by injection can be
6301  * easily evaluated by just comparing the total service time of first
6302  * requests with and without injection.
6303  *
6304  * The limit-update algorithm works as follows. On the arrival of a
6305  * first request of bfqq, the algorithm measures the total time of the
6306  * request only if one of the three cases below holds, and, for each
6307  * case, it updates the limit as described below:
6308  *
6309  * (1) If there is no in-flight request. This gives a baseline for the
6310  *     total service time of the requests of bfqq. If the baseline has
6311  *     not been computed yet, then, after computing it, the limit is
6312  *     set to 1, to start boosting throughput, and to prepare the
6313  *     ground for the next case. If the baseline has already been
6314  *     computed, then it is updated, in case it results to be lower
6315  *     than the previous value.
6316  *
6317  * (2) If the limit is higher than 0 and there are in-flight
6318  *     requests. By comparing the total service time in this case with
6319  *     the above baseline, it is possible to know at which extent the
6320  *     current value of the limit is inflating the total service
6321  *     time. If the inflation is below a certain threshold, then bfqq
6322  *     is assumed to be suffering from no perceivable loss of its
6323  *     service guarantees, and the limit is even tentatively
6324  *     increased. If the inflation is above the threshold, then the
6325  *     limit is decreased. Due to the lack of any hysteresis, this
6326  *     logic makes the limit oscillate even in steady workload
6327  *     conditions. Yet we opted for it, because it is fast in reaching
6328  *     the best value for the limit, as a function of the current I/O
6329  *     workload. To reduce oscillations, this step is disabled for a
6330  *     short time interval after the limit happens to be decreased.
6331  *
6332  * (3) Periodically, after resetting the limit, to make sure that the
6333  *     limit eventually drops in case the workload changes. This is
6334  *     needed because, after the limit has gone safely up for a
6335  *     certain workload, it is impossible to guess whether the
6336  *     baseline total service time may have changed, without measuring
6337  *     it again without injection. A more effective version of this
6338  *     step might be to just sample the baseline, by interrupting
6339  *     injection only once, and then to reset/lower the limit only if
6340  *     the total service time with the current limit does happen to be
6341  *     too large.
6342  *
6343  * More details on each step are provided in the comments on the
6344  * pieces of code that implement these steps: the branch handling the
6345  * transition from empty to non empty in bfq_add_request(), the branch
6346  * handling injection in bfq_select_queue(), and the function
6347  * bfq_choose_bfqq_for_injection(). These comments also explain some
6348  * exceptions, made by the injection mechanism in some special cases.
6349  */
bfq_update_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)6350 static void bfq_update_inject_limit(struct bfq_data *bfqd,
6351 				    struct bfq_queue *bfqq)
6352 {
6353 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6354 	unsigned int old_limit = bfqq->inject_limit;
6355 
6356 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
6357 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6358 
6359 		if (tot_time_ns >= threshold && old_limit > 0) {
6360 			bfqq->inject_limit--;
6361 			bfqq->decrease_time_jif = jiffies;
6362 		} else if (tot_time_ns < threshold &&
6363 			   old_limit <= bfqd->max_rq_in_driver)
6364 			bfqq->inject_limit++;
6365 	}
6366 
6367 	/*
6368 	 * Either we still have to compute the base value for the
6369 	 * total service time, and there seem to be the right
6370 	 * conditions to do it, or we can lower the last base value
6371 	 * computed.
6372 	 *
6373 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6374 	 * request in flight, because this function is in the code
6375 	 * path that handles the completion of a request of bfqq, and,
6376 	 * in particular, this function is executed before
6377 	 * bfqd->rq_in_driver is decremented in such a code path.
6378 	 */
6379 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
6380 	    tot_time_ns < bfqq->last_serv_time_ns) {
6381 		if (bfqq->last_serv_time_ns == 0) {
6382 			/*
6383 			 * Now we certainly have a base value: make sure we
6384 			 * start trying injection.
6385 			 */
6386 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6387 		}
6388 		bfqq->last_serv_time_ns = tot_time_ns;
6389 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6390 		/*
6391 		 * No I/O injected and no request still in service in
6392 		 * the drive: these are the exact conditions for
6393 		 * computing the base value of the total service time
6394 		 * for bfqq. So let's update this value, because it is
6395 		 * rather variable. For example, it varies if the size
6396 		 * or the spatial locality of the I/O requests in bfqq
6397 		 * change.
6398 		 */
6399 		bfqq->last_serv_time_ns = tot_time_ns;
6400 
6401 
6402 	/* update complete, not waiting for any request completion any longer */
6403 	bfqd->waited_rq = NULL;
6404 	bfqd->rqs_injected = false;
6405 }
6406 
6407 /*
6408  * Handle either a requeue or a finish for rq. The things to do are
6409  * the same in both cases: all references to rq are to be dropped. In
6410  * particular, rq is considered completed from the point of view of
6411  * the scheduler.
6412  */
bfq_finish_requeue_request(struct request * rq)6413 static void bfq_finish_requeue_request(struct request *rq)
6414 {
6415 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
6416 	struct bfq_data *bfqd;
6417 	unsigned long flags;
6418 
6419 	/*
6420 	 * rq either is not associated with any icq, or is an already
6421 	 * requeued request that has not (yet) been re-inserted into
6422 	 * a bfq_queue.
6423 	 */
6424 	if (!rq->elv.icq || !bfqq)
6425 		return;
6426 
6427 	bfqd = bfqq->bfqd;
6428 
6429 	if (rq->rq_flags & RQF_STARTED)
6430 		bfqg_stats_update_completion(bfqq_group(bfqq),
6431 					     rq->start_time_ns,
6432 					     rq->io_start_time_ns,
6433 					     rq->cmd_flags);
6434 
6435 	spin_lock_irqsave(&bfqd->lock, flags);
6436 	if (likely(rq->rq_flags & RQF_STARTED)) {
6437 		if (rq == bfqd->waited_rq)
6438 			bfq_update_inject_limit(bfqd, bfqq);
6439 
6440 		bfq_completed_request(bfqq, bfqd);
6441 	}
6442 	bfq_finish_requeue_request_body(bfqq);
6443 	RQ_BIC(rq)->requests--;
6444 	spin_unlock_irqrestore(&bfqd->lock, flags);
6445 
6446 	/*
6447 	 * Reset private fields. In case of a requeue, this allows
6448 	 * this function to correctly do nothing if it is spuriously
6449 	 * invoked again on this same request (see the check at the
6450 	 * beginning of the function). Probably, a better general
6451 	 * design would be to prevent blk-mq from invoking the requeue
6452 	 * or finish hooks of an elevator, for a request that is not
6453 	 * referred by that elevator.
6454 	 *
6455 	 * Resetting the following fields would break the
6456 	 * request-insertion logic if rq is re-inserted into a bfq
6457 	 * internal queue, without a re-preparation. Here we assume
6458 	 * that re-insertions of requeued requests, without
6459 	 * re-preparation, can happen only for pass_through or at_head
6460 	 * requests (which are not re-inserted into bfq internal
6461 	 * queues).
6462 	 */
6463 	rq->elv.priv[0] = NULL;
6464 	rq->elv.priv[1] = NULL;
6465 }
6466 
6467 /*
6468  * Removes the association between the current task and bfqq, assuming
6469  * that bic points to the bfq iocontext of the task.
6470  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6471  * was the last process referring to that bfqq.
6472  */
6473 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)6474 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6475 {
6476 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6477 
6478 	if (bfqq_process_refs(bfqq) == 1) {
6479 		bfqq->pid = current->pid;
6480 		bfq_clear_bfqq_coop(bfqq);
6481 		bfq_clear_bfqq_split_coop(bfqq);
6482 		return bfqq;
6483 	}
6484 
6485 	bic_set_bfqq(bic, NULL, true);
6486 
6487 	bfq_put_cooperator(bfqq);
6488 
6489 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6490 	return NULL;
6491 }
6492 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)6493 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6494 						   struct bfq_io_cq *bic,
6495 						   struct bio *bio,
6496 						   bool split, bool is_sync,
6497 						   bool *new_queue)
6498 {
6499 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6500 
6501 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6502 		return bfqq;
6503 
6504 	if (new_queue)
6505 		*new_queue = true;
6506 
6507 	if (bfqq)
6508 		bfq_put_queue(bfqq);
6509 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
6510 
6511 	bic_set_bfqq(bic, bfqq, is_sync);
6512 	if (split && is_sync) {
6513 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6514 		    bic->saved_in_large_burst)
6515 			bfq_mark_bfqq_in_large_burst(bfqq);
6516 		else {
6517 			bfq_clear_bfqq_in_large_burst(bfqq);
6518 			if (bic->was_in_burst_list)
6519 				/*
6520 				 * If bfqq was in the current
6521 				 * burst list before being
6522 				 * merged, then we have to add
6523 				 * it back. And we do not need
6524 				 * to increase burst_size, as
6525 				 * we did not decrement
6526 				 * burst_size when we removed
6527 				 * bfqq from the burst list as
6528 				 * a consequence of a merge
6529 				 * (see comments in
6530 				 * bfq_put_queue). In this
6531 				 * respect, it would be rather
6532 				 * costly to know whether the
6533 				 * current burst list is still
6534 				 * the same burst list from
6535 				 * which bfqq was removed on
6536 				 * the merge. To avoid this
6537 				 * cost, if bfqq was in a
6538 				 * burst list, then we add
6539 				 * bfqq to the current burst
6540 				 * list without any further
6541 				 * check. This can cause
6542 				 * inappropriate insertions,
6543 				 * but rarely enough to not
6544 				 * harm the detection of large
6545 				 * bursts significantly.
6546 				 */
6547 				hlist_add_head(&bfqq->burst_list_node,
6548 					       &bfqd->burst_list);
6549 		}
6550 		bfqq->split_time = jiffies;
6551 	}
6552 
6553 	return bfqq;
6554 }
6555 
6556 /*
6557  * Only reset private fields. The actual request preparation will be
6558  * performed by bfq_init_rq, when rq is either inserted or merged. See
6559  * comments on bfq_init_rq for the reason behind this delayed
6560  * preparation.
6561  */
bfq_prepare_request(struct request * rq)6562 static void bfq_prepare_request(struct request *rq)
6563 {
6564 	/*
6565 	 * Regardless of whether we have an icq attached, we have to
6566 	 * clear the scheduler pointers, as they might point to
6567 	 * previously allocated bic/bfqq structs.
6568 	 */
6569 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6570 }
6571 
6572 /*
6573  * If needed, init rq, allocate bfq data structures associated with
6574  * rq, and increment reference counters in the destination bfq_queue
6575  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6576  * not associated with any bfq_queue.
6577  *
6578  * This function is invoked by the functions that perform rq insertion
6579  * or merging. One may have expected the above preparation operations
6580  * to be performed in bfq_prepare_request, and not delayed to when rq
6581  * is inserted or merged. The rationale behind this delayed
6582  * preparation is that, after the prepare_request hook is invoked for
6583  * rq, rq may still be transformed into a request with no icq, i.e., a
6584  * request not associated with any queue. No bfq hook is invoked to
6585  * signal this transformation. As a consequence, should these
6586  * preparation operations be performed when the prepare_request hook
6587  * is invoked, and should rq be transformed one moment later, bfq
6588  * would end up in an inconsistent state, because it would have
6589  * incremented some queue counters for an rq destined to
6590  * transformation, without any chance to correctly lower these
6591  * counters back. In contrast, no transformation can still happen for
6592  * rq after rq has been inserted or merged. So, it is safe to execute
6593  * these preparation operations when rq is finally inserted or merged.
6594  */
bfq_init_rq(struct request * rq)6595 static struct bfq_queue *bfq_init_rq(struct request *rq)
6596 {
6597 	struct request_queue *q = rq->q;
6598 	struct bio *bio = rq->bio;
6599 	struct bfq_data *bfqd = q->elevator->elevator_data;
6600 	struct bfq_io_cq *bic;
6601 	const int is_sync = rq_is_sync(rq);
6602 	struct bfq_queue *bfqq;
6603 	bool new_queue = false;
6604 	bool bfqq_already_existing = false, split = false;
6605 
6606 	if (unlikely(!rq->elv.icq))
6607 		return NULL;
6608 
6609 	/*
6610 	 * Assuming that elv.priv[1] is set only if everything is set
6611 	 * for this rq. This holds true, because this function is
6612 	 * invoked only for insertion or merging, and, after such
6613 	 * events, a request cannot be manipulated any longer before
6614 	 * being removed from bfq.
6615 	 */
6616 	if (rq->elv.priv[1])
6617 		return rq->elv.priv[1];
6618 
6619 	bic = icq_to_bic(rq->elv.icq);
6620 
6621 	bfq_check_ioprio_change(bic, bio);
6622 
6623 	bfq_bic_update_cgroup(bic, bio);
6624 
6625 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6626 					 &new_queue);
6627 
6628 	if (likely(!new_queue)) {
6629 		/* If the queue was seeky for too long, break it apart. */
6630 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6631 			!bic->stably_merged) {
6632 			struct bfq_queue *old_bfqq = bfqq;
6633 
6634 			/* Update bic before losing reference to bfqq */
6635 			if (bfq_bfqq_in_large_burst(bfqq))
6636 				bic->saved_in_large_burst = true;
6637 
6638 			bfqq = bfq_split_bfqq(bic, bfqq);
6639 			split = true;
6640 
6641 			if (!bfqq) {
6642 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6643 								 true, is_sync,
6644 								 NULL);
6645 				if (unlikely(bfqq == &bfqd->oom_bfqq))
6646 					bfqq_already_existing = true;
6647 			} else
6648 				bfqq_already_existing = true;
6649 
6650 			if (!bfqq_already_existing) {
6651 				bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6652 				bfqq->tentative_waker_bfqq = NULL;
6653 
6654 				/*
6655 				 * If the waker queue disappears, then
6656 				 * new_bfqq->waker_bfqq must be
6657 				 * reset. So insert new_bfqq into the
6658 				 * woken_list of the waker. See
6659 				 * bfq_check_waker for details.
6660 				 */
6661 				if (bfqq->waker_bfqq)
6662 					hlist_add_head(&bfqq->woken_list_node,
6663 						       &bfqq->waker_bfqq->woken_list);
6664 			}
6665 		}
6666 	}
6667 
6668 	bfqq->allocated++;
6669 	bfqq->ref++;
6670 	bic->requests++;
6671 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6672 		     rq, bfqq, bfqq->ref);
6673 
6674 	rq->elv.priv[0] = bic;
6675 	rq->elv.priv[1] = bfqq;
6676 
6677 	/*
6678 	 * If a bfq_queue has only one process reference, it is owned
6679 	 * by only this bic: we can then set bfqq->bic = bic. in
6680 	 * addition, if the queue has also just been split, we have to
6681 	 * resume its state.
6682 	 */
6683 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6684 		bfqq->bic = bic;
6685 		if (split) {
6686 			/*
6687 			 * The queue has just been split from a shared
6688 			 * queue: restore the idle window and the
6689 			 * possible weight raising period.
6690 			 */
6691 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6692 					      bfqq_already_existing);
6693 		}
6694 	}
6695 
6696 	/*
6697 	 * Consider bfqq as possibly belonging to a burst of newly
6698 	 * created queues only if:
6699 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6700 	 * or
6701 	 * 2) There is no other active queue. In fact, if, in
6702 	 *    contrast, there are active queues not belonging to the
6703 	 *    possible burst bfqq may belong to, then there is no gain
6704 	 *    in considering bfqq as belonging to a burst, and
6705 	 *    therefore in not weight-raising bfqq. See comments on
6706 	 *    bfq_handle_burst().
6707 	 *
6708 	 * This filtering also helps eliminating false positives,
6709 	 * occurring when bfqq does not belong to an actual large
6710 	 * burst, but some background task (e.g., a service) happens
6711 	 * to trigger the creation of new queues very close to when
6712 	 * bfqq and its possible companion queues are created. See
6713 	 * comments on bfq_handle_burst() for further details also on
6714 	 * this issue.
6715 	 */
6716 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6717 		     (bfqd->burst_size > 0 ||
6718 		      bfq_tot_busy_queues(bfqd) == 0)))
6719 		bfq_handle_burst(bfqd, bfqq);
6720 
6721 	return bfqq;
6722 }
6723 
6724 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)6725 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6726 {
6727 	enum bfqq_expiration reason;
6728 	unsigned long flags;
6729 
6730 	spin_lock_irqsave(&bfqd->lock, flags);
6731 
6732 	/*
6733 	 * Considering that bfqq may be in race, we should firstly check
6734 	 * whether bfqq is in service before doing something on it. If
6735 	 * the bfqq in race is not in service, it has already been expired
6736 	 * through __bfq_bfqq_expire func and its wait_request flags has
6737 	 * been cleared in __bfq_bfqd_reset_in_service func.
6738 	 */
6739 	if (bfqq != bfqd->in_service_queue) {
6740 		spin_unlock_irqrestore(&bfqd->lock, flags);
6741 		return;
6742 	}
6743 
6744 	bfq_clear_bfqq_wait_request(bfqq);
6745 
6746 	if (bfq_bfqq_budget_timeout(bfqq))
6747 		/*
6748 		 * Also here the queue can be safely expired
6749 		 * for budget timeout without wasting
6750 		 * guarantees
6751 		 */
6752 		reason = BFQQE_BUDGET_TIMEOUT;
6753 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6754 		/*
6755 		 * The queue may not be empty upon timer expiration,
6756 		 * because we may not disable the timer when the
6757 		 * first request of the in-service queue arrives
6758 		 * during disk idling.
6759 		 */
6760 		reason = BFQQE_TOO_IDLE;
6761 	else
6762 		goto schedule_dispatch;
6763 
6764 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6765 
6766 schedule_dispatch:
6767 	bfq_schedule_dispatch(bfqd);
6768 	spin_unlock_irqrestore(&bfqd->lock, flags);
6769 }
6770 
6771 /*
6772  * Handler of the expiration of the timer running if the in-service queue
6773  * is idling inside its time slice.
6774  */
bfq_idle_slice_timer(struct hrtimer * timer)6775 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6776 {
6777 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6778 					     idle_slice_timer);
6779 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6780 
6781 	/*
6782 	 * Theoretical race here: the in-service queue can be NULL or
6783 	 * different from the queue that was idling if a new request
6784 	 * arrives for the current queue and there is a full dispatch
6785 	 * cycle that changes the in-service queue.  This can hardly
6786 	 * happen, but in the worst case we just expire a queue too
6787 	 * early.
6788 	 */
6789 	if (bfqq)
6790 		bfq_idle_slice_timer_body(bfqd, bfqq);
6791 
6792 	return HRTIMER_NORESTART;
6793 }
6794 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)6795 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6796 				 struct bfq_queue **bfqq_ptr)
6797 {
6798 	struct bfq_queue *bfqq = *bfqq_ptr;
6799 
6800 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6801 	if (bfqq) {
6802 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6803 
6804 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6805 			     bfqq, bfqq->ref);
6806 		bfq_put_queue(bfqq);
6807 		*bfqq_ptr = NULL;
6808 	}
6809 }
6810 
6811 /*
6812  * Release all the bfqg references to its async queues.  If we are
6813  * deallocating the group these queues may still contain requests, so
6814  * we reparent them to the root cgroup (i.e., the only one that will
6815  * exist for sure until all the requests on a device are gone).
6816  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)6817 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6818 {
6819 	int i, j;
6820 
6821 	for (i = 0; i < 2; i++)
6822 		for (j = 0; j < IOPRIO_NR_LEVELS; j++)
6823 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6824 
6825 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6826 }
6827 
6828 /*
6829  * See the comments on bfq_limit_depth for the purpose of
6830  * the depths set in the function. Return minimum shallow depth we'll use.
6831  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)6832 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6833 				      struct sbitmap_queue *bt)
6834 {
6835 	unsigned int i, j, min_shallow = UINT_MAX;
6836 
6837 	/*
6838 	 * In-word depths if no bfq_queue is being weight-raised:
6839 	 * leaving 25% of tags only for sync reads.
6840 	 *
6841 	 * In next formulas, right-shift the value
6842 	 * (1U<<bt->sb.shift), instead of computing directly
6843 	 * (1U<<(bt->sb.shift - something)), to be robust against
6844 	 * any possible value of bt->sb.shift, without having to
6845 	 * limit 'something'.
6846 	 */
6847 	/* no more than 50% of tags for async I/O */
6848 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6849 	/*
6850 	 * no more than 75% of tags for sync writes (25% extra tags
6851 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6852 	 * writes)
6853 	 */
6854 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6855 
6856 	/*
6857 	 * In-word depths in case some bfq_queue is being weight-
6858 	 * raised: leaving ~63% of tags for sync reads. This is the
6859 	 * highest percentage for which, in our tests, application
6860 	 * start-up times didn't suffer from any regression due to tag
6861 	 * shortage.
6862 	 */
6863 	/* no more than ~18% of tags for async I/O */
6864 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6865 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6866 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6867 
6868 	for (i = 0; i < 2; i++)
6869 		for (j = 0; j < 2; j++)
6870 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6871 
6872 	return min_shallow;
6873 }
6874 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)6875 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6876 {
6877 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6878 	struct blk_mq_tags *tags = hctx->sched_tags;
6879 	unsigned int min_shallow;
6880 
6881 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6882 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6883 }
6884 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)6885 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6886 {
6887 	bfq_depth_updated(hctx);
6888 	return 0;
6889 }
6890 
bfq_exit_queue(struct elevator_queue * e)6891 static void bfq_exit_queue(struct elevator_queue *e)
6892 {
6893 	struct bfq_data *bfqd = e->elevator_data;
6894 	struct bfq_queue *bfqq, *n;
6895 
6896 	hrtimer_cancel(&bfqd->idle_slice_timer);
6897 
6898 	spin_lock_irq(&bfqd->lock);
6899 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6900 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6901 	spin_unlock_irq(&bfqd->lock);
6902 
6903 	WARN_ON_ONCE(bfqd->rq_in_driver);
6904 
6905 	hrtimer_cancel(&bfqd->idle_slice_timer);
6906 
6907 	/* release oom-queue reference to root group */
6908 	bfqg_and_blkg_put(bfqd->root_group);
6909 
6910 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6911 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6912 #else
6913 	spin_lock_irq(&bfqd->lock);
6914 	bfq_put_async_queues(bfqd, bfqd->root_group);
6915 	kfree(bfqd->root_group);
6916 	spin_unlock_irq(&bfqd->lock);
6917 #endif
6918 
6919 	wbt_enable_default(bfqd->queue);
6920 
6921 	kfree(bfqd);
6922 }
6923 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)6924 static void bfq_init_root_group(struct bfq_group *root_group,
6925 				struct bfq_data *bfqd)
6926 {
6927 	int i;
6928 
6929 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6930 	root_group->entity.parent = NULL;
6931 	root_group->my_entity = NULL;
6932 	root_group->bfqd = bfqd;
6933 #endif
6934 	root_group->rq_pos_tree = RB_ROOT;
6935 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6936 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6937 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6938 }
6939 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)6940 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6941 {
6942 	struct bfq_data *bfqd;
6943 	struct elevator_queue *eq;
6944 
6945 	eq = elevator_alloc(q, e);
6946 	if (!eq)
6947 		return -ENOMEM;
6948 
6949 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6950 	if (!bfqd) {
6951 		kobject_put(&eq->kobj);
6952 		return -ENOMEM;
6953 	}
6954 	eq->elevator_data = bfqd;
6955 
6956 	spin_lock_irq(&q->queue_lock);
6957 	q->elevator = eq;
6958 	spin_unlock_irq(&q->queue_lock);
6959 
6960 	/*
6961 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6962 	 * Grab a permanent reference to it, so that the normal code flow
6963 	 * will not attempt to free it.
6964 	 */
6965 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6966 	bfqd->oom_bfqq.ref++;
6967 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6968 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6969 	bfqd->oom_bfqq.entity.new_weight =
6970 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6971 
6972 	/* oom_bfqq does not participate to bursts */
6973 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6974 
6975 	/*
6976 	 * Trigger weight initialization, according to ioprio, at the
6977 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6978 	 * class won't be changed any more.
6979 	 */
6980 	bfqd->oom_bfqq.entity.prio_changed = 1;
6981 
6982 	bfqd->queue = q;
6983 
6984 	INIT_LIST_HEAD(&bfqd->dispatch);
6985 
6986 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6987 		     HRTIMER_MODE_REL);
6988 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6989 
6990 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6991 	bfqd->num_groups_with_pending_reqs = 0;
6992 
6993 	INIT_LIST_HEAD(&bfqd->active_list);
6994 	INIT_LIST_HEAD(&bfqd->idle_list);
6995 	INIT_HLIST_HEAD(&bfqd->burst_list);
6996 
6997 	bfqd->hw_tag = -1;
6998 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6999 
7000 	bfqd->bfq_max_budget = bfq_default_max_budget;
7001 
7002 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
7003 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
7004 	bfqd->bfq_back_max = bfq_back_max;
7005 	bfqd->bfq_back_penalty = bfq_back_penalty;
7006 	bfqd->bfq_slice_idle = bfq_slice_idle;
7007 	bfqd->bfq_timeout = bfq_timeout;
7008 
7009 	bfqd->bfq_large_burst_thresh = 8;
7010 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
7011 
7012 	bfqd->low_latency = true;
7013 
7014 	/*
7015 	 * Trade-off between responsiveness and fairness.
7016 	 */
7017 	bfqd->bfq_wr_coeff = 30;
7018 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
7019 	bfqd->bfq_wr_max_time = 0;
7020 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
7021 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
7022 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
7023 					      * Approximate rate required
7024 					      * to playback or record a
7025 					      * high-definition compressed
7026 					      * video.
7027 					      */
7028 	bfqd->wr_busy_queues = 0;
7029 
7030 	/*
7031 	 * Begin by assuming, optimistically, that the device peak
7032 	 * rate is equal to 2/3 of the highest reference rate.
7033 	 */
7034 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7035 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7036 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
7037 
7038 	spin_lock_init(&bfqd->lock);
7039 
7040 	/*
7041 	 * The invocation of the next bfq_create_group_hierarchy
7042 	 * function is the head of a chain of function calls
7043 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7044 	 * blk_mq_freeze_queue) that may lead to the invocation of the
7045 	 * has_work hook function. For this reason,
7046 	 * bfq_create_group_hierarchy is invoked only after all
7047 	 * scheduler data has been initialized, apart from the fields
7048 	 * that can be initialized only after invoking
7049 	 * bfq_create_group_hierarchy. This, in particular, enables
7050 	 * has_work to correctly return false. Of course, to avoid
7051 	 * other inconsistencies, the blk-mq stack must then refrain
7052 	 * from invoking further scheduler hooks before this init
7053 	 * function is finished.
7054 	 */
7055 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7056 	if (!bfqd->root_group)
7057 		goto out_free;
7058 	bfq_init_root_group(bfqd->root_group, bfqd);
7059 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7060 
7061 	wbt_disable_default(q);
7062 	blk_stat_enable_accounting(q);
7063 
7064 	return 0;
7065 
7066 out_free:
7067 	kfree(bfqd);
7068 	kobject_put(&eq->kobj);
7069 	return -ENOMEM;
7070 }
7071 
bfq_slab_kill(void)7072 static void bfq_slab_kill(void)
7073 {
7074 	kmem_cache_destroy(bfq_pool);
7075 }
7076 
bfq_slab_setup(void)7077 static int __init bfq_slab_setup(void)
7078 {
7079 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
7080 	if (!bfq_pool)
7081 		return -ENOMEM;
7082 	return 0;
7083 }
7084 
bfq_var_show(unsigned int var,char * page)7085 static ssize_t bfq_var_show(unsigned int var, char *page)
7086 {
7087 	return sprintf(page, "%u\n", var);
7088 }
7089 
bfq_var_store(unsigned long * var,const char * page)7090 static int bfq_var_store(unsigned long *var, const char *page)
7091 {
7092 	unsigned long new_val;
7093 	int ret = kstrtoul(page, 10, &new_val);
7094 
7095 	if (ret)
7096 		return ret;
7097 	*var = new_val;
7098 	return 0;
7099 }
7100 
7101 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
7102 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7103 {									\
7104 	struct bfq_data *bfqd = e->elevator_data;			\
7105 	u64 __data = __VAR;						\
7106 	if (__CONV == 1)						\
7107 		__data = jiffies_to_msecs(__data);			\
7108 	else if (__CONV == 2)						\
7109 		__data = div_u64(__data, NSEC_PER_MSEC);		\
7110 	return bfq_var_show(__data, (page));				\
7111 }
7112 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7113 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7114 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7115 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7116 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7117 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7118 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7119 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
7120 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
7121 #undef SHOW_FUNCTION
7122 
7123 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
7124 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
7125 {									\
7126 	struct bfq_data *bfqd = e->elevator_data;			\
7127 	u64 __data = __VAR;						\
7128 	__data = div_u64(__data, NSEC_PER_USEC);			\
7129 	return bfq_var_show(__data, (page));				\
7130 }
7131 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7132 #undef USEC_SHOW_FUNCTION
7133 
7134 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
7135 static ssize_t								\
7136 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
7137 {									\
7138 	struct bfq_data *bfqd = e->elevator_data;			\
7139 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7140 	int ret;							\
7141 									\
7142 	ret = bfq_var_store(&__data, (page));				\
7143 	if (ret)							\
7144 		return ret;						\
7145 	if (__data < __min)						\
7146 		__data = __min;						\
7147 	else if (__data > __max)					\
7148 		__data = __max;						\
7149 	if (__CONV == 1)						\
7150 		*(__PTR) = msecs_to_jiffies(__data);			\
7151 	else if (__CONV == 2)						\
7152 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
7153 	else								\
7154 		*(__PTR) = __data;					\
7155 	return count;							\
7156 }
7157 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7158 		INT_MAX, 2);
7159 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7160 		INT_MAX, 2);
7161 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7162 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7163 		INT_MAX, 0);
7164 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7165 #undef STORE_FUNCTION
7166 
7167 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
7168 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7169 {									\
7170 	struct bfq_data *bfqd = e->elevator_data;			\
7171 	unsigned long __data, __min = (MIN), __max = (MAX);		\
7172 	int ret;							\
7173 									\
7174 	ret = bfq_var_store(&__data, (page));				\
7175 	if (ret)							\
7176 		return ret;						\
7177 	if (__data < __min)						\
7178 		__data = __min;						\
7179 	else if (__data > __max)					\
7180 		__data = __max;						\
7181 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
7182 	return count;							\
7183 }
7184 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7185 		    UINT_MAX);
7186 #undef USEC_STORE_FUNCTION
7187 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)7188 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7189 				    const char *page, size_t count)
7190 {
7191 	struct bfq_data *bfqd = e->elevator_data;
7192 	unsigned long __data;
7193 	int ret;
7194 
7195 	ret = bfq_var_store(&__data, (page));
7196 	if (ret)
7197 		return ret;
7198 
7199 	if (__data == 0)
7200 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7201 	else {
7202 		if (__data > INT_MAX)
7203 			__data = INT_MAX;
7204 		bfqd->bfq_max_budget = __data;
7205 	}
7206 
7207 	bfqd->bfq_user_max_budget = __data;
7208 
7209 	return count;
7210 }
7211 
7212 /*
7213  * Leaving this name to preserve name compatibility with cfq
7214  * parameters, but this timeout is used for both sync and async.
7215  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)7216 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7217 				      const char *page, size_t count)
7218 {
7219 	struct bfq_data *bfqd = e->elevator_data;
7220 	unsigned long __data;
7221 	int ret;
7222 
7223 	ret = bfq_var_store(&__data, (page));
7224 	if (ret)
7225 		return ret;
7226 
7227 	if (__data < 1)
7228 		__data = 1;
7229 	else if (__data > INT_MAX)
7230 		__data = INT_MAX;
7231 
7232 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
7233 	if (bfqd->bfq_user_max_budget == 0)
7234 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
7235 
7236 	return count;
7237 }
7238 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)7239 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7240 				     const char *page, size_t count)
7241 {
7242 	struct bfq_data *bfqd = e->elevator_data;
7243 	unsigned long __data;
7244 	int ret;
7245 
7246 	ret = bfq_var_store(&__data, (page));
7247 	if (ret)
7248 		return ret;
7249 
7250 	if (__data > 1)
7251 		__data = 1;
7252 	if (!bfqd->strict_guarantees && __data == 1
7253 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7254 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7255 
7256 	bfqd->strict_guarantees = __data;
7257 
7258 	return count;
7259 }
7260 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)7261 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7262 				     const char *page, size_t count)
7263 {
7264 	struct bfq_data *bfqd = e->elevator_data;
7265 	unsigned long __data;
7266 	int ret;
7267 
7268 	ret = bfq_var_store(&__data, (page));
7269 	if (ret)
7270 		return ret;
7271 
7272 	if (__data > 1)
7273 		__data = 1;
7274 	if (__data == 0 && bfqd->low_latency != 0)
7275 		bfq_end_wr(bfqd);
7276 	bfqd->low_latency = __data;
7277 
7278 	return count;
7279 }
7280 
7281 #define BFQ_ATTR(name) \
7282 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7283 
7284 static struct elv_fs_entry bfq_attrs[] = {
7285 	BFQ_ATTR(fifo_expire_sync),
7286 	BFQ_ATTR(fifo_expire_async),
7287 	BFQ_ATTR(back_seek_max),
7288 	BFQ_ATTR(back_seek_penalty),
7289 	BFQ_ATTR(slice_idle),
7290 	BFQ_ATTR(slice_idle_us),
7291 	BFQ_ATTR(max_budget),
7292 	BFQ_ATTR(timeout_sync),
7293 	BFQ_ATTR(strict_guarantees),
7294 	BFQ_ATTR(low_latency),
7295 	__ATTR_NULL
7296 };
7297 
7298 static struct elevator_type iosched_bfq_mq = {
7299 	.ops = {
7300 		.limit_depth		= bfq_limit_depth,
7301 		.prepare_request	= bfq_prepare_request,
7302 		.requeue_request        = bfq_finish_requeue_request,
7303 		.finish_request		= bfq_finish_requeue_request,
7304 		.exit_icq		= bfq_exit_icq,
7305 		.insert_requests	= bfq_insert_requests,
7306 		.dispatch_request	= bfq_dispatch_request,
7307 		.next_request		= elv_rb_latter_request,
7308 		.former_request		= elv_rb_former_request,
7309 		.allow_merge		= bfq_allow_bio_merge,
7310 		.bio_merge		= bfq_bio_merge,
7311 		.request_merge		= bfq_request_merge,
7312 		.requests_merged	= bfq_requests_merged,
7313 		.request_merged		= bfq_request_merged,
7314 		.has_work		= bfq_has_work,
7315 		.depth_updated		= bfq_depth_updated,
7316 		.init_hctx		= bfq_init_hctx,
7317 		.init_sched		= bfq_init_queue,
7318 		.exit_sched		= bfq_exit_queue,
7319 	},
7320 
7321 	.icq_size =		sizeof(struct bfq_io_cq),
7322 	.icq_align =		__alignof__(struct bfq_io_cq),
7323 	.elevator_attrs =	bfq_attrs,
7324 	.elevator_name =	"bfq",
7325 	.elevator_owner =	THIS_MODULE,
7326 };
7327 MODULE_ALIAS("bfq-iosched");
7328 
bfq_init(void)7329 static int __init bfq_init(void)
7330 {
7331 	int ret;
7332 
7333 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7334 	ret = blkcg_policy_register(&blkcg_policy_bfq);
7335 	if (ret)
7336 		return ret;
7337 #endif
7338 
7339 	ret = -ENOMEM;
7340 	if (bfq_slab_setup())
7341 		goto err_pol_unreg;
7342 
7343 	/*
7344 	 * Times to load large popular applications for the typical
7345 	 * systems installed on the reference devices (see the
7346 	 * comments before the definition of the next
7347 	 * array). Actually, we use slightly lower values, as the
7348 	 * estimated peak rate tends to be smaller than the actual
7349 	 * peak rate.  The reason for this last fact is that estimates
7350 	 * are computed over much shorter time intervals than the long
7351 	 * intervals typically used for benchmarking. Why? First, to
7352 	 * adapt more quickly to variations. Second, because an I/O
7353 	 * scheduler cannot rely on a peak-rate-evaluation workload to
7354 	 * be run for a long time.
7355 	 */
7356 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7357 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
7358 
7359 	ret = elv_register(&iosched_bfq_mq);
7360 	if (ret)
7361 		goto slab_kill;
7362 
7363 	return 0;
7364 
7365 slab_kill:
7366 	bfq_slab_kill();
7367 err_pol_unreg:
7368 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7369 	blkcg_policy_unregister(&blkcg_policy_bfq);
7370 #endif
7371 	return ret;
7372 }
7373 
bfq_exit(void)7374 static void __exit bfq_exit(void)
7375 {
7376 	elv_unregister(&iosched_bfq_mq);
7377 #ifdef CONFIG_BFQ_GROUP_IOSCHED
7378 	blkcg_policy_unregister(&blkcg_policy_bfq);
7379 #endif
7380 	bfq_slab_kill();
7381 }
7382 
7383 module_init(bfq_init);
7384 module_exit(bfq_exit);
7385 
7386 MODULE_AUTHOR("Paolo Valente");
7387 MODULE_LICENSE("GPL");
7388 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
7389