1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/pgsize_migration.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <trace/hooks/mm.h>
79
80 #include <trace/events/kmem.h>
81
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88
89 #include "pgalloc-track.h"
90 #include "internal.h"
91
92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
94 #endif
95
96 #ifndef CONFIG_NUMA
97 unsigned long max_mapnr;
98 EXPORT_SYMBOL(max_mapnr);
99
100 struct page *mem_map;
101 EXPORT_SYMBOL(mem_map);
102 #endif
103
104 /*
105 * A number of key systems in x86 including ioremap() rely on the assumption
106 * that high_memory defines the upper bound on direct map memory, then end
107 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
108 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
109 * and ZONE_HIGHMEM.
110 */
111 void *high_memory;
112 EXPORT_SYMBOL(high_memory);
113
114 /*
115 * Randomize the address space (stacks, mmaps, brk, etc.).
116 *
117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
118 * as ancient (libc5 based) binaries can segfault. )
119 */
120 int randomize_va_space __read_mostly =
121 #ifdef CONFIG_COMPAT_BRK
122 1;
123 #else
124 2;
125 #endif
126
127 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)128 static inline bool arch_wants_old_prefaulted_pte(void)
129 {
130 /*
131 * Transitioning a PTE from 'old' to 'young' can be expensive on
132 * some architectures, even if it's performed in hardware. By
133 * default, "false" means prefaulted entries will be 'young'.
134 */
135 return false;
136 }
137 #endif
138
disable_randmaps(char * s)139 static int __init disable_randmaps(char *s)
140 {
141 randomize_va_space = 0;
142 return 1;
143 }
144 __setup("norandmaps", disable_randmaps);
145
146 unsigned long zero_pfn __read_mostly;
147 EXPORT_SYMBOL(zero_pfn);
148
149 unsigned long highest_memmap_pfn __read_mostly;
150
151 /*
152 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
153 */
init_zero_pfn(void)154 static int __init init_zero_pfn(void)
155 {
156 zero_pfn = page_to_pfn(ZERO_PAGE(0));
157 return 0;
158 }
159 early_initcall(init_zero_pfn);
160
mm_trace_rss_stat(struct mm_struct * mm,int member,long count)161 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
162 {
163 trace_rss_stat(mm, member, count);
164 }
165 EXPORT_SYMBOL_GPL(mm_trace_rss_stat);
166
167 #if defined(SPLIT_RSS_COUNTING)
168
sync_mm_rss(struct mm_struct * mm)169 void sync_mm_rss(struct mm_struct *mm)
170 {
171 int i;
172
173 for (i = 0; i < NR_MM_COUNTERS; i++) {
174 if (current->rss_stat.count[i]) {
175 add_mm_counter(mm, i, current->rss_stat.count[i]);
176 current->rss_stat.count[i] = 0;
177 }
178 }
179 current->rss_stat.events = 0;
180 }
181
add_mm_counter_fast(struct mm_struct * mm,int member,int val)182 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
183 {
184 struct task_struct *task = current;
185
186 if (likely(task->mm == mm))
187 task->rss_stat.count[member] += val;
188 else
189 add_mm_counter(mm, member, val);
190 }
191 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
192 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
193
194 /* sync counter once per 64 page faults */
195 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)196 static void check_sync_rss_stat(struct task_struct *task)
197 {
198 if (unlikely(task != current))
199 return;
200 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
201 sync_mm_rss(task->mm);
202 }
203 #else /* SPLIT_RSS_COUNTING */
204
205 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
206 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
207
check_sync_rss_stat(struct task_struct * task)208 static void check_sync_rss_stat(struct task_struct *task)
209 {
210 }
211
212 #endif /* SPLIT_RSS_COUNTING */
213
214 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
215
get_vma(struct mm_struct * mm,unsigned long addr)216 struct vm_area_struct *get_vma(struct mm_struct *mm, unsigned long addr)
217 {
218 struct vm_area_struct *vma;
219
220 rcu_read_lock();
221 vma = find_vma_from_tree(mm, addr);
222
223 /*
224 * atomic_inc_unless_negative() also protects from races with
225 * fast mremap.
226 *
227 * If there is a concurrent fast mremap, bail out since the entire
228 * PMD/PUD subtree may have been remapped.
229 *
230 * This is usually safe for conventional mremap since it takes the
231 * PTE locks as does SPF. However fast mremap only takes the lock
232 * at the PMD/PUD level which is ok as it is done with the mmap
233 * write lock held. But since SPF, as the term implies forgoes,
234 * taking the mmap read lock and also cannot take PTL lock at the
235 * larger PMD/PUD granualrity, since it would introduce huge
236 * contention in the page fault path; fall back to regular fault
237 * handling.
238 */
239 if (vma) {
240 if (vma->vm_start > addr ||
241 !atomic_inc_unless_negative(&vma->file_ref_count))
242 vma = NULL;
243 }
244 rcu_read_unlock();
245
246 return vma;
247 }
248
put_vma(struct vm_area_struct * vma)249 void put_vma(struct vm_area_struct *vma)
250 {
251 int new_ref_count;
252
253 new_ref_count = atomic_dec_return(&vma->file_ref_count);
254 if (new_ref_count < 0)
255 vm_area_free_no_check(vma);
256 }
257
258 #if ALLOC_SPLIT_PTLOCKS
wait_for_smp_sync(void * arg)259 static void wait_for_smp_sync(void *arg)
260 {
261 }
262 #endif
263 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
264
265 /*
266 * Note: this doesn't free the actual pages themselves. That
267 * has been handled earlier when unmapping all the memory regions.
268 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)269 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
270 unsigned long addr)
271 {
272 pgtable_t token = pmd_pgtable(*pmd);
273 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
274 /*
275 * Ensure page table destruction is blocked if __pte_map_lock managed
276 * to take this lock. Without this barrier tlb_remove_table_rcu can
277 * destroy ptl after __pte_map_lock locked it and during unlock would
278 * cause a use-after-free.
279 */
280 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
281 spin_unlock(ptl);
282 #if ALLOC_SPLIT_PTLOCKS
283 /*
284 * The __pte_map_lock can still be working on the ->ptl in the read side
285 * critical section while ->ptl is freed which results into the use-after
286 * -free. Sync it using the smp_call_().
287 */
288 smp_call_function(wait_for_smp_sync, NULL, 1);
289 #endif
290 #endif
291 pmd_clear(pmd);
292 pte_free_tlb(tlb, token, addr);
293 mm_dec_nr_ptes(tlb->mm);
294 }
295
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)296 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
297 unsigned long addr, unsigned long end,
298 unsigned long floor, unsigned long ceiling)
299 {
300 pmd_t *pmd;
301 unsigned long next;
302 unsigned long start;
303
304 start = addr;
305 pmd = pmd_offset(pud, addr);
306 do {
307 next = pmd_addr_end(addr, end);
308 if (pmd_none_or_clear_bad(pmd))
309 continue;
310 free_pte_range(tlb, pmd, addr);
311 } while (pmd++, addr = next, addr != end);
312
313 start &= PUD_MASK;
314 if (start < floor)
315 return;
316 if (ceiling) {
317 ceiling &= PUD_MASK;
318 if (!ceiling)
319 return;
320 }
321 if (end - 1 > ceiling - 1)
322 return;
323
324 pmd = pmd_offset(pud, start);
325 pud_clear(pud);
326 pmd_free_tlb(tlb, pmd, start);
327 mm_dec_nr_pmds(tlb->mm);
328 }
329
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)330 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
331 unsigned long addr, unsigned long end,
332 unsigned long floor, unsigned long ceiling)
333 {
334 pud_t *pud;
335 unsigned long next;
336 unsigned long start;
337
338 start = addr;
339 pud = pud_offset(p4d, addr);
340 do {
341 next = pud_addr_end(addr, end);
342 if (pud_none_or_clear_bad(pud))
343 continue;
344 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
345 } while (pud++, addr = next, addr != end);
346
347 start &= P4D_MASK;
348 if (start < floor)
349 return;
350 if (ceiling) {
351 ceiling &= P4D_MASK;
352 if (!ceiling)
353 return;
354 }
355 if (end - 1 > ceiling - 1)
356 return;
357
358 pud = pud_offset(p4d, start);
359 p4d_clear(p4d);
360 pud_free_tlb(tlb, pud, start);
361 mm_dec_nr_puds(tlb->mm);
362 }
363
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)364 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
365 unsigned long addr, unsigned long end,
366 unsigned long floor, unsigned long ceiling)
367 {
368 p4d_t *p4d;
369 unsigned long next;
370 unsigned long start;
371
372 start = addr;
373 p4d = p4d_offset(pgd, addr);
374 do {
375 next = p4d_addr_end(addr, end);
376 if (p4d_none_or_clear_bad(p4d))
377 continue;
378 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
379 } while (p4d++, addr = next, addr != end);
380
381 start &= PGDIR_MASK;
382 if (start < floor)
383 return;
384 if (ceiling) {
385 ceiling &= PGDIR_MASK;
386 if (!ceiling)
387 return;
388 }
389 if (end - 1 > ceiling - 1)
390 return;
391
392 p4d = p4d_offset(pgd, start);
393 pgd_clear(pgd);
394 p4d_free_tlb(tlb, p4d, start);
395 }
396
397 /*
398 * This function frees user-level page tables of a process.
399 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)400 void free_pgd_range(struct mmu_gather *tlb,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
403 {
404 pgd_t *pgd;
405 unsigned long next;
406
407 /*
408 * The next few lines have given us lots of grief...
409 *
410 * Why are we testing PMD* at this top level? Because often
411 * there will be no work to do at all, and we'd prefer not to
412 * go all the way down to the bottom just to discover that.
413 *
414 * Why all these "- 1"s? Because 0 represents both the bottom
415 * of the address space and the top of it (using -1 for the
416 * top wouldn't help much: the masks would do the wrong thing).
417 * The rule is that addr 0 and floor 0 refer to the bottom of
418 * the address space, but end 0 and ceiling 0 refer to the top
419 * Comparisons need to use "end - 1" and "ceiling - 1" (though
420 * that end 0 case should be mythical).
421 *
422 * Wherever addr is brought up or ceiling brought down, we must
423 * be careful to reject "the opposite 0" before it confuses the
424 * subsequent tests. But what about where end is brought down
425 * by PMD_SIZE below? no, end can't go down to 0 there.
426 *
427 * Whereas we round start (addr) and ceiling down, by different
428 * masks at different levels, in order to test whether a table
429 * now has no other vmas using it, so can be freed, we don't
430 * bother to round floor or end up - the tests don't need that.
431 */
432
433 addr &= PMD_MASK;
434 if (addr < floor) {
435 addr += PMD_SIZE;
436 if (!addr)
437 return;
438 }
439 if (ceiling) {
440 ceiling &= PMD_MASK;
441 if (!ceiling)
442 return;
443 }
444 if (end - 1 > ceiling - 1)
445 end -= PMD_SIZE;
446 if (addr > end - 1)
447 return;
448 /*
449 * We add page table cache pages with PAGE_SIZE,
450 * (see pte_free_tlb()), flush the tlb if we need
451 */
452 tlb_change_page_size(tlb, PAGE_SIZE);
453 pgd = pgd_offset(tlb->mm, addr);
454 do {
455 next = pgd_addr_end(addr, end);
456 if (pgd_none_or_clear_bad(pgd))
457 continue;
458 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
459 } while (pgd++, addr = next, addr != end);
460 }
461
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)462 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
463 unsigned long floor, unsigned long ceiling)
464 {
465 while (vma) {
466 struct vm_area_struct *next = vma->vm_next;
467 unsigned long addr = vma->vm_start;
468
469 /*
470 * Hide vma from rmap and truncate_pagecache before freeing
471 * pgtables
472 */
473 unlink_anon_vmas(vma);
474 unlink_file_vma(vma);
475
476 if (is_vm_hugetlb_page(vma)) {
477 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
478 floor, next ? next->vm_start : ceiling);
479 } else {
480 /*
481 * Optimization: gather nearby vmas into one call down
482 */
483 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
484 && !is_vm_hugetlb_page(next)) {
485 vma = next;
486 next = vma->vm_next;
487 unlink_anon_vmas(vma);
488 unlink_file_vma(vma);
489 }
490 free_pgd_range(tlb, addr, vma->vm_end,
491 floor, next ? next->vm_start : ceiling);
492 }
493 vma = next;
494 }
495 }
496
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)497 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
498 {
499 spinlock_t *ptl;
500 pgtable_t new = pte_alloc_one(mm);
501 if (!new)
502 return -ENOMEM;
503
504 /*
505 * Ensure all pte setup (eg. pte page lock and page clearing) are
506 * visible before the pte is made visible to other CPUs by being
507 * put into page tables.
508 *
509 * The other side of the story is the pointer chasing in the page
510 * table walking code (when walking the page table without locking;
511 * ie. most of the time). Fortunately, these data accesses consist
512 * of a chain of data-dependent loads, meaning most CPUs (alpha
513 * being the notable exception) will already guarantee loads are
514 * seen in-order. See the alpha page table accessors for the
515 * smp_rmb() barriers in page table walking code.
516 */
517 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
518
519 ptl = pmd_lock(mm, pmd);
520 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
521 mm_inc_nr_ptes(mm);
522 pmd_populate(mm, pmd, new);
523 new = NULL;
524 }
525 spin_unlock(ptl);
526 if (new)
527 pte_free(mm, new);
528 return 0;
529 }
530
__pte_alloc_kernel(pmd_t * pmd)531 int __pte_alloc_kernel(pmd_t *pmd)
532 {
533 pte_t *new = pte_alloc_one_kernel(&init_mm);
534 if (!new)
535 return -ENOMEM;
536
537 smp_wmb(); /* See comment in __pte_alloc */
538
539 spin_lock(&init_mm.page_table_lock);
540 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
541 pmd_populate_kernel(&init_mm, pmd, new);
542 new = NULL;
543 }
544 spin_unlock(&init_mm.page_table_lock);
545 if (new)
546 pte_free_kernel(&init_mm, new);
547 return 0;
548 }
549
init_rss_vec(int * rss)550 static inline void init_rss_vec(int *rss)
551 {
552 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
553 }
554
add_mm_rss_vec(struct mm_struct * mm,int * rss)555 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
556 {
557 int i;
558
559 if (current->mm == mm)
560 sync_mm_rss(mm);
561 for (i = 0; i < NR_MM_COUNTERS; i++)
562 if (rss[i])
563 add_mm_counter(mm, i, rss[i]);
564 }
565
566 /*
567 * This function is called to print an error when a bad pte
568 * is found. For example, we might have a PFN-mapped pte in
569 * a region that doesn't allow it.
570 *
571 * The calling function must still handle the error.
572 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)573 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
574 pte_t pte, struct page *page)
575 {
576 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
577 p4d_t *p4d = p4d_offset(pgd, addr);
578 pud_t *pud = pud_offset(p4d, addr);
579 pmd_t *pmd = pmd_offset(pud, addr);
580 struct address_space *mapping;
581 pgoff_t index;
582 static unsigned long resume;
583 static unsigned long nr_shown;
584 static unsigned long nr_unshown;
585
586 /*
587 * Allow a burst of 60 reports, then keep quiet for that minute;
588 * or allow a steady drip of one report per second.
589 */
590 if (nr_shown == 60) {
591 if (time_before(jiffies, resume)) {
592 nr_unshown++;
593 return;
594 }
595 if (nr_unshown) {
596 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
597 nr_unshown);
598 nr_unshown = 0;
599 }
600 nr_shown = 0;
601 }
602 if (nr_shown++ == 0)
603 resume = jiffies + 60 * HZ;
604
605 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
606 index = linear_page_index(vma, addr);
607
608 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
609 current->comm,
610 (long long)pte_val(pte), (long long)pmd_val(*pmd));
611 if (page)
612 dump_page(page, "bad pte");
613 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
614 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
615 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
616 vma->vm_file,
617 vma->vm_ops ? vma->vm_ops->fault : NULL,
618 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
619 mapping ? mapping->a_ops->readpage : NULL);
620 dump_stack();
621 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
622 }
623
624 /*
625 * vm_normal_page -- This function gets the "struct page" associated with a pte.
626 *
627 * "Special" mappings do not wish to be associated with a "struct page" (either
628 * it doesn't exist, or it exists but they don't want to touch it). In this
629 * case, NULL is returned here. "Normal" mappings do have a struct page.
630 *
631 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
632 * pte bit, in which case this function is trivial. Secondly, an architecture
633 * may not have a spare pte bit, which requires a more complicated scheme,
634 * described below.
635 *
636 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
637 * special mapping (even if there are underlying and valid "struct pages").
638 * COWed pages of a VM_PFNMAP are always normal.
639 *
640 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
641 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
642 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
643 * mapping will always honor the rule
644 *
645 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
646 *
647 * And for normal mappings this is false.
648 *
649 * This restricts such mappings to be a linear translation from virtual address
650 * to pfn. To get around this restriction, we allow arbitrary mappings so long
651 * as the vma is not a COW mapping; in that case, we know that all ptes are
652 * special (because none can have been COWed).
653 *
654 *
655 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
656 *
657 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
658 * page" backing, however the difference is that _all_ pages with a struct
659 * page (that is, those where pfn_valid is true) are refcounted and considered
660 * normal pages by the VM. The disadvantage is that pages are refcounted
661 * (which can be slower and simply not an option for some PFNMAP users). The
662 * advantage is that we don't have to follow the strict linearity rule of
663 * PFNMAP mappings in order to support COWable mappings.
664 *
665 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)666 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
667 pte_t pte)
668 {
669 unsigned long pfn = pte_pfn(pte);
670
671 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
672 if (likely(!pte_special(pte)))
673 goto check_pfn;
674 if (vma->vm_ops && vma->vm_ops->find_special_page)
675 return vma->vm_ops->find_special_page(vma, addr);
676 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
677 return NULL;
678 if (is_zero_pfn(pfn))
679 return NULL;
680 if (pte_devmap(pte))
681 return NULL;
682
683 print_bad_pte(vma, addr, pte, NULL);
684 return NULL;
685 }
686
687 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
688
689 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
690 if (vma->vm_flags & VM_MIXEDMAP) {
691 if (!pfn_valid(pfn))
692 return NULL;
693 goto out;
694 } else {
695 unsigned long off;
696 off = (addr - vma->vm_start) >> PAGE_SHIFT;
697 if (pfn == vma->vm_pgoff + off)
698 return NULL;
699 if (!is_cow_mapping(vma->vm_flags))
700 return NULL;
701 }
702 }
703
704 if (is_zero_pfn(pfn))
705 return NULL;
706
707 check_pfn:
708 if (unlikely(pfn > highest_memmap_pfn)) {
709 print_bad_pte(vma, addr, pte, NULL);
710 return NULL;
711 }
712
713 /*
714 * NOTE! We still have PageReserved() pages in the page tables.
715 * eg. VDSO mappings can cause them to exist.
716 */
717 out:
718 return pfn_to_page(pfn);
719 }
720
721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)722 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
723 pmd_t pmd)
724 {
725 unsigned long pfn = pmd_pfn(pmd);
726
727 /*
728 * There is no pmd_special() but there may be special pmds, e.g.
729 * in a direct-access (dax) mapping, so let's just replicate the
730 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
731 */
732 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
733 if (vma->vm_flags & VM_MIXEDMAP) {
734 if (!pfn_valid(pfn))
735 return NULL;
736 goto out;
737 } else {
738 unsigned long off;
739 off = (addr - vma->vm_start) >> PAGE_SHIFT;
740 if (pfn == vma->vm_pgoff + off)
741 return NULL;
742 if (!is_cow_mapping(vma->vm_flags))
743 return NULL;
744 }
745 }
746
747 if (pmd_devmap(pmd))
748 return NULL;
749 if (is_huge_zero_pmd(pmd))
750 return NULL;
751 if (unlikely(pfn > highest_memmap_pfn))
752 return NULL;
753
754 /*
755 * NOTE! We still have PageReserved() pages in the page tables.
756 * eg. VDSO mappings can cause them to exist.
757 */
758 out:
759 return pfn_to_page(pfn);
760 }
761 #endif
762
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)763 static void restore_exclusive_pte(struct vm_area_struct *vma,
764 struct page *page, unsigned long address,
765 pte_t *ptep)
766 {
767 pte_t pte;
768 swp_entry_t entry;
769
770 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
771 if (pte_swp_soft_dirty(*ptep))
772 pte = pte_mksoft_dirty(pte);
773
774 entry = pte_to_swp_entry(*ptep);
775 if (pte_swp_uffd_wp(*ptep))
776 pte = pte_mkuffd_wp(pte);
777 else if (is_writable_device_exclusive_entry(entry))
778 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
779
780 set_pte_at(vma->vm_mm, address, ptep, pte);
781
782 /*
783 * No need to take a page reference as one was already
784 * created when the swap entry was made.
785 */
786 if (PageAnon(page))
787 page_add_anon_rmap(page, vma, address, false);
788 else
789 /*
790 * Currently device exclusive access only supports anonymous
791 * memory so the entry shouldn't point to a filebacked page.
792 */
793 WARN_ON_ONCE(!PageAnon(page));
794
795 if (vma->vm_flags & VM_LOCKED)
796 mlock_vma_page(page);
797
798 /*
799 * No need to invalidate - it was non-present before. However
800 * secondary CPUs may have mappings that need invalidating.
801 */
802 update_mmu_cache(vma, address, ptep);
803 }
804
805 /*
806 * Tries to restore an exclusive pte if the page lock can be acquired without
807 * sleeping.
808 */
809 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)810 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
811 unsigned long addr)
812 {
813 swp_entry_t entry = pte_to_swp_entry(*src_pte);
814 struct page *page = pfn_swap_entry_to_page(entry);
815
816 if (trylock_page(page)) {
817 restore_exclusive_pte(vma, page, addr, src_pte);
818 unlock_page(page);
819 return 0;
820 }
821
822 return -EBUSY;
823 }
824
825 /*
826 * copy one vm_area from one task to the other. Assumes the page tables
827 * already present in the new task to be cleared in the whole range
828 * covered by this vma.
829 */
830
831 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)832 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
834 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
835 {
836 unsigned long vm_flags = dst_vma->vm_flags;
837 pte_t pte = *src_pte;
838 struct page *page;
839 swp_entry_t entry = pte_to_swp_entry(pte);
840
841 if (likely(!non_swap_entry(entry))) {
842 if (swap_duplicate(entry) < 0)
843 return -EIO;
844
845 /* make sure dst_mm is on swapoff's mmlist. */
846 if (unlikely(list_empty(&dst_mm->mmlist))) {
847 spin_lock(&mmlist_lock);
848 if (list_empty(&dst_mm->mmlist))
849 list_add(&dst_mm->mmlist,
850 &src_mm->mmlist);
851 spin_unlock(&mmlist_lock);
852 }
853 rss[MM_SWAPENTS]++;
854 } else if (is_migration_entry(entry)) {
855 page = pfn_swap_entry_to_page(entry);
856
857 rss[mm_counter(page)]++;
858
859 if (is_writable_migration_entry(entry) &&
860 is_cow_mapping(vm_flags)) {
861 /*
862 * COW mappings require pages in both
863 * parent and child to be set to read.
864 */
865 entry = make_readable_migration_entry(
866 swp_offset(entry));
867 pte = swp_entry_to_pte(entry);
868 if (pte_swp_soft_dirty(*src_pte))
869 pte = pte_swp_mksoft_dirty(pte);
870 if (pte_swp_uffd_wp(*src_pte))
871 pte = pte_swp_mkuffd_wp(pte);
872 set_pte_at(src_mm, addr, src_pte, pte);
873 }
874 } else if (is_device_private_entry(entry)) {
875 page = pfn_swap_entry_to_page(entry);
876
877 /*
878 * Update rss count even for unaddressable pages, as
879 * they should treated just like normal pages in this
880 * respect.
881 *
882 * We will likely want to have some new rss counters
883 * for unaddressable pages, at some point. But for now
884 * keep things as they are.
885 */
886 get_page(page);
887 rss[mm_counter(page)]++;
888 page_dup_rmap(page, false);
889
890 /*
891 * We do not preserve soft-dirty information, because so
892 * far, checkpoint/restore is the only feature that
893 * requires that. And checkpoint/restore does not work
894 * when a device driver is involved (you cannot easily
895 * save and restore device driver state).
896 */
897 if (is_writable_device_private_entry(entry) &&
898 is_cow_mapping(vm_flags)) {
899 entry = make_readable_device_private_entry(
900 swp_offset(entry));
901 pte = swp_entry_to_pte(entry);
902 if (pte_swp_uffd_wp(*src_pte))
903 pte = pte_swp_mkuffd_wp(pte);
904 set_pte_at(src_mm, addr, src_pte, pte);
905 }
906 } else if (is_device_exclusive_entry(entry)) {
907 /*
908 * Make device exclusive entries present by restoring the
909 * original entry then copying as for a present pte. Device
910 * exclusive entries currently only support private writable
911 * (ie. COW) mappings.
912 */
913 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
914 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
915 return -EBUSY;
916 return -ENOENT;
917 }
918 if (!userfaultfd_wp(dst_vma))
919 pte = pte_swp_clear_uffd_wp(pte);
920 set_pte_at(dst_mm, addr, dst_pte, pte);
921 return 0;
922 }
923
924 /*
925 * Copy a present and normal page if necessary.
926 *
927 * NOTE! The usual case is that this doesn't need to do
928 * anything, and can just return a positive value. That
929 * will let the caller know that it can just increase
930 * the page refcount and re-use the pte the traditional
931 * way.
932 *
933 * But _if_ we need to copy it because it needs to be
934 * pinned in the parent (and the child should get its own
935 * copy rather than just a reference to the same page),
936 * we'll do that here and return zero to let the caller
937 * know we're done.
938 *
939 * And if we need a pre-allocated page but don't yet have
940 * one, return a negative error to let the preallocation
941 * code know so that it can do so outside the page table
942 * lock.
943 */
944 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)945 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
946 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
947 struct page **prealloc, pte_t pte, struct page *page)
948 {
949 struct page *new_page;
950
951 /*
952 * What we want to do is to check whether this page may
953 * have been pinned by the parent process. If so,
954 * instead of wrprotect the pte on both sides, we copy
955 * the page immediately so that we'll always guarantee
956 * the pinned page won't be randomly replaced in the
957 * future.
958 *
959 * The page pinning checks are just "has this mm ever
960 * seen pinning", along with the (inexact) check of
961 * the page count. That might give false positives for
962 * for pinning, but it will work correctly.
963 */
964 if (likely(!page_needs_cow_for_dma(src_vma, page)))
965 return 1;
966
967 new_page = *prealloc;
968 if (!new_page)
969 return -EAGAIN;
970
971 /*
972 * We have a prealloc page, all good! Take it
973 * over and copy the page & arm it.
974 */
975 *prealloc = NULL;
976 copy_user_highpage(new_page, page, addr, src_vma);
977 __SetPageUptodate(new_page);
978 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
979 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
980 rss[mm_counter(new_page)]++;
981
982 /* All done, just insert the new page copy in the child */
983 pte = mk_pte(new_page, dst_vma->vm_page_prot);
984 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
985 if (userfaultfd_pte_wp(dst_vma, *src_pte))
986 /* Uffd-wp needs to be delivered to dest pte as well */
987 pte = pte_wrprotect(pte_mkuffd_wp(pte));
988 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
989 return 0;
990 }
991
992 /*
993 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
994 * is required to copy this pte.
995 */
996 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)997 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
998 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
999 struct page **prealloc)
1000 {
1001 struct mm_struct *src_mm = src_vma->vm_mm;
1002 unsigned long vm_flags = src_vma->vm_flags;
1003 pte_t pte = *src_pte;
1004 struct page *page;
1005
1006 page = vm_normal_page(src_vma, addr, pte);
1007 if (page) {
1008 int retval;
1009
1010 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1011 addr, rss, prealloc, pte, page);
1012 if (retval <= 0)
1013 return retval;
1014
1015 get_page(page);
1016 page_dup_rmap(page, false);
1017 rss[mm_counter(page)]++;
1018 }
1019
1020 /*
1021 * If it's a COW mapping, write protect it both
1022 * in the parent and the child
1023 */
1024 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1025 ptep_set_wrprotect(src_mm, addr, src_pte);
1026 pte = pte_wrprotect(pte);
1027 }
1028
1029 /*
1030 * If it's a shared mapping, mark it clean in
1031 * the child
1032 */
1033 if (vm_flags & VM_SHARED)
1034 pte = pte_mkclean(pte);
1035 pte = pte_mkold(pte);
1036
1037 if (!userfaultfd_wp(dst_vma))
1038 pte = pte_clear_uffd_wp(pte);
1039
1040 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
1041 return 0;
1042 }
1043
1044 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)1045 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1046 unsigned long addr)
1047 {
1048 struct page *new_page;
1049
1050 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1051 if (!new_page)
1052 return NULL;
1053
1054 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
1055 put_page(new_page);
1056 return NULL;
1057 }
1058 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1059
1060 return new_page;
1061 }
1062
1063 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1064 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 unsigned long end)
1067 {
1068 struct mm_struct *dst_mm = dst_vma->vm_mm;
1069 struct mm_struct *src_mm = src_vma->vm_mm;
1070 pte_t *orig_src_pte, *orig_dst_pte;
1071 pte_t *src_pte, *dst_pte;
1072 spinlock_t *src_ptl, *dst_ptl;
1073 int progress, ret = 0;
1074 int rss[NR_MM_COUNTERS];
1075 swp_entry_t entry = (swp_entry_t){0};
1076 struct page *prealloc = NULL;
1077
1078 again:
1079 progress = 0;
1080 init_rss_vec(rss);
1081
1082 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1083 if (!dst_pte) {
1084 ret = -ENOMEM;
1085 goto out;
1086 }
1087 src_pte = pte_offset_map(src_pmd, addr);
1088 src_ptl = pte_lockptr(src_mm, src_pmd);
1089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1090 orig_src_pte = src_pte;
1091 orig_dst_pte = dst_pte;
1092 arch_enter_lazy_mmu_mode();
1093
1094 do {
1095 /*
1096 * We are holding two locks at this point - either of them
1097 * could generate latencies in another task on another CPU.
1098 */
1099 if (progress >= 32) {
1100 progress = 0;
1101 if (need_resched() ||
1102 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1103 break;
1104 }
1105 if (pte_none(*src_pte)) {
1106 progress++;
1107 continue;
1108 }
1109 if (unlikely(!pte_present(*src_pte))) {
1110 ret = copy_nonpresent_pte(dst_mm, src_mm,
1111 dst_pte, src_pte,
1112 dst_vma, src_vma,
1113 addr, rss);
1114 if (ret == -EIO) {
1115 entry = pte_to_swp_entry(*src_pte);
1116 break;
1117 } else if (ret == -EBUSY) {
1118 break;
1119 } else if (!ret) {
1120 progress += 8;
1121 continue;
1122 }
1123
1124 /*
1125 * Device exclusive entry restored, continue by copying
1126 * the now present pte.
1127 */
1128 WARN_ON_ONCE(ret != -ENOENT);
1129 }
1130 /* copy_present_pte() will clear `*prealloc' if consumed */
1131 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1132 addr, rss, &prealloc);
1133 /*
1134 * If we need a pre-allocated page for this pte, drop the
1135 * locks, allocate, and try again.
1136 */
1137 if (unlikely(ret == -EAGAIN))
1138 break;
1139 if (unlikely(prealloc)) {
1140 /*
1141 * pre-alloc page cannot be reused by next time so as
1142 * to strictly follow mempolicy (e.g., alloc_page_vma()
1143 * will allocate page according to address). This
1144 * could only happen if one pinned pte changed.
1145 */
1146 put_page(prealloc);
1147 prealloc = NULL;
1148 }
1149 progress += 8;
1150 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1151
1152 arch_leave_lazy_mmu_mode();
1153 spin_unlock(src_ptl);
1154 pte_unmap(orig_src_pte);
1155 add_mm_rss_vec(dst_mm, rss);
1156 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1157 cond_resched();
1158
1159 if (ret == -EIO) {
1160 VM_WARN_ON_ONCE(!entry.val);
1161 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1162 ret = -ENOMEM;
1163 goto out;
1164 }
1165 entry.val = 0;
1166 } else if (ret == -EBUSY) {
1167 goto out;
1168 } else if (ret == -EAGAIN) {
1169 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1170 if (!prealloc)
1171 return -ENOMEM;
1172 } else if (ret) {
1173 VM_WARN_ON_ONCE(1);
1174 }
1175
1176 /* We've captured and resolved the error. Reset, try again. */
1177 ret = 0;
1178
1179 if (addr != end)
1180 goto again;
1181 out:
1182 if (unlikely(prealloc))
1183 put_page(prealloc);
1184 return ret;
1185 }
1186
1187 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1188 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1189 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1190 unsigned long end)
1191 {
1192 struct mm_struct *dst_mm = dst_vma->vm_mm;
1193 struct mm_struct *src_mm = src_vma->vm_mm;
1194 pmd_t *src_pmd, *dst_pmd;
1195 unsigned long next;
1196
1197 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1198 if (!dst_pmd)
1199 return -ENOMEM;
1200 src_pmd = pmd_offset(src_pud, addr);
1201 do {
1202 next = pmd_addr_end(addr, end);
1203 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1204 || pmd_devmap(*src_pmd)) {
1205 int err;
1206 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1207 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1208 addr, dst_vma, src_vma);
1209 if (err == -ENOMEM)
1210 return -ENOMEM;
1211 if (!err)
1212 continue;
1213 /* fall through */
1214 }
1215 if (pmd_none_or_clear_bad(src_pmd))
1216 continue;
1217 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1218 addr, next))
1219 return -ENOMEM;
1220 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1221 return 0;
1222 }
1223
1224 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1225 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1226 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1227 unsigned long end)
1228 {
1229 struct mm_struct *dst_mm = dst_vma->vm_mm;
1230 struct mm_struct *src_mm = src_vma->vm_mm;
1231 pud_t *src_pud, *dst_pud;
1232 unsigned long next;
1233
1234 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1235 if (!dst_pud)
1236 return -ENOMEM;
1237 src_pud = pud_offset(src_p4d, addr);
1238 do {
1239 next = pud_addr_end(addr, end);
1240 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1241 int err;
1242
1243 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1244 err = copy_huge_pud(dst_mm, src_mm,
1245 dst_pud, src_pud, addr, src_vma);
1246 if (err == -ENOMEM)
1247 return -ENOMEM;
1248 if (!err)
1249 continue;
1250 /* fall through */
1251 }
1252 if (pud_none_or_clear_bad(src_pud))
1253 continue;
1254 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1255 addr, next))
1256 return -ENOMEM;
1257 } while (dst_pud++, src_pud++, addr = next, addr != end);
1258 return 0;
1259 }
1260
1261 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1262 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1263 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1264 unsigned long end)
1265 {
1266 struct mm_struct *dst_mm = dst_vma->vm_mm;
1267 p4d_t *src_p4d, *dst_p4d;
1268 unsigned long next;
1269
1270 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1271 if (!dst_p4d)
1272 return -ENOMEM;
1273 src_p4d = p4d_offset(src_pgd, addr);
1274 do {
1275 next = p4d_addr_end(addr, end);
1276 if (p4d_none_or_clear_bad(src_p4d))
1277 continue;
1278 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1279 addr, next))
1280 return -ENOMEM;
1281 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1282 return 0;
1283 }
1284
1285 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1286 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1287 {
1288 pgd_t *src_pgd, *dst_pgd;
1289 unsigned long next;
1290 unsigned long addr = src_vma->vm_start;
1291 unsigned long end = src_vma->vm_end;
1292 struct mm_struct *dst_mm = dst_vma->vm_mm;
1293 struct mm_struct *src_mm = src_vma->vm_mm;
1294 struct mmu_notifier_range range;
1295 bool is_cow;
1296 int ret;
1297
1298 /*
1299 * Don't copy ptes where a page fault will fill them correctly.
1300 * Fork becomes much lighter when there are big shared or private
1301 * readonly mappings. The tradeoff is that copy_page_range is more
1302 * efficient than faulting.
1303 */
1304 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1305 !src_vma->anon_vma)
1306 return 0;
1307
1308 if (is_vm_hugetlb_page(src_vma))
1309 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1310
1311 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1312 /*
1313 * We do not free on error cases below as remove_vma
1314 * gets called on error from higher level routine
1315 */
1316 ret = track_pfn_copy(src_vma);
1317 if (ret)
1318 return ret;
1319 }
1320
1321 /*
1322 * We need to invalidate the secondary MMU mappings only when
1323 * there could be a permission downgrade on the ptes of the
1324 * parent mm. And a permission downgrade will only happen if
1325 * is_cow_mapping() returns true.
1326 */
1327 is_cow = is_cow_mapping(src_vma->vm_flags);
1328
1329 if (is_cow) {
1330 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1331 0, src_vma, src_mm, addr, end);
1332 mmu_notifier_invalidate_range_start(&range);
1333 /*
1334 * Disabling preemption is not needed for the write side, as
1335 * the read side doesn't spin, but goes to the mmap_lock.
1336 *
1337 * Use the raw variant of the seqcount_t write API to avoid
1338 * lockdep complaining about preemptibility.
1339 */
1340 mmap_assert_write_locked(src_mm);
1341 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1342 }
1343
1344 ret = 0;
1345 dst_pgd = pgd_offset(dst_mm, addr);
1346 src_pgd = pgd_offset(src_mm, addr);
1347 do {
1348 next = pgd_addr_end(addr, end);
1349 if (pgd_none_or_clear_bad(src_pgd))
1350 continue;
1351 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1352 addr, next))) {
1353 ret = -ENOMEM;
1354 break;
1355 }
1356 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1357
1358 if (is_cow) {
1359 raw_write_seqcount_end(&src_mm->write_protect_seq);
1360 mmu_notifier_invalidate_range_end(&range);
1361 }
1362 return ret;
1363 }
1364
1365 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1366 static inline bool should_zap_cows(struct zap_details *details)
1367 {
1368 /* By default, zap all pages */
1369 if (!details)
1370 return true;
1371
1372 /* Or, we zap COWed pages only if the caller wants to */
1373 return !details->check_mapping;
1374 }
1375
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1376 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1377 struct vm_area_struct *vma, pmd_t *pmd,
1378 unsigned long addr, unsigned long end,
1379 struct zap_details *details)
1380 {
1381 struct mm_struct *mm = tlb->mm;
1382 int force_flush = 0;
1383 int rss[NR_MM_COUNTERS];
1384 spinlock_t *ptl;
1385 pte_t *start_pte;
1386 pte_t *pte;
1387 swp_entry_t entry;
1388 int v_ret = 0;
1389
1390 tlb_change_page_size(tlb, PAGE_SIZE);
1391 again:
1392 trace_android_vh_zap_pte_range_tlb_start(&v_ret);
1393 init_rss_vec(rss);
1394 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1395 pte = start_pte;
1396 flush_tlb_batched_pending(mm);
1397 arch_enter_lazy_mmu_mode();
1398 do {
1399 bool flush = false;
1400 pte_t ptent = *pte;
1401 if (pte_none(ptent))
1402 continue;
1403
1404 if (need_resched())
1405 break;
1406
1407 if (pte_present(ptent)) {
1408 struct page *page;
1409
1410 page = vm_normal_page(vma, addr, ptent);
1411 if (unlikely(details) && page) {
1412 /*
1413 * unmap_shared_mapping_pages() wants to
1414 * invalidate cache without truncating:
1415 * unmap shared but keep private pages.
1416 */
1417 if (details->check_mapping &&
1418 details->check_mapping != page_rmapping(page))
1419 continue;
1420 }
1421 ptent = ptep_get_and_clear_full(mm, addr, pte,
1422 tlb->fullmm);
1423 tlb_remove_tlb_entry(tlb, pte, addr);
1424 if (unlikely(!page))
1425 continue;
1426
1427 if (!PageAnon(page)) {
1428 if (pte_dirty(ptent)) {
1429 force_flush = 1;
1430 set_page_dirty(page);
1431 }
1432 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1433 mark_page_accessed(page);
1434 }
1435 rss[mm_counter(page)]--;
1436 page_remove_rmap(page, false);
1437 if (unlikely(page_mapcount(page) < 0))
1438 print_bad_pte(vma, addr, ptent, page);
1439 trace_android_vh_zap_pte_range_tlb_force_flush(page, &flush);
1440 if (unlikely(__tlb_remove_page(tlb, page)) || flush) {
1441 force_flush = 1;
1442 addr += PAGE_SIZE;
1443 break;
1444 }
1445 continue;
1446 }
1447
1448 entry = pte_to_swp_entry(ptent);
1449 if (is_device_private_entry(entry) ||
1450 is_device_exclusive_entry(entry)) {
1451 struct page *page = pfn_swap_entry_to_page(entry);
1452
1453 if (unlikely(details && details->check_mapping)) {
1454 /*
1455 * unmap_shared_mapping_pages() wants to
1456 * invalidate cache without truncating:
1457 * unmap shared but keep private pages.
1458 */
1459 if (details->check_mapping !=
1460 page_rmapping(page))
1461 continue;
1462 }
1463
1464 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1465 rss[mm_counter(page)]--;
1466
1467 if (is_device_private_entry(entry))
1468 page_remove_rmap(page, false);
1469
1470 put_page(page);
1471 continue;
1472 }
1473
1474 if (!non_swap_entry(entry)) {
1475 /* Genuine swap entry, hence a private anon page */
1476 if (!should_zap_cows(details))
1477 continue;
1478 rss[MM_SWAPENTS]--;
1479 } else if (is_migration_entry(entry)) {
1480 struct page *page;
1481
1482 page = pfn_swap_entry_to_page(entry);
1483 if (details && details->check_mapping &&
1484 details->check_mapping != page_rmapping(page))
1485 continue;
1486 rss[mm_counter(page)]--;
1487 }
1488 if (unlikely(!free_swap_and_cache(entry)))
1489 print_bad_pte(vma, addr, ptent, NULL);
1490 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1491 } while (pte++, addr += PAGE_SIZE, addr != end);
1492
1493 add_mm_rss_vec(mm, rss);
1494 arch_leave_lazy_mmu_mode();
1495
1496 /* Do the actual TLB flush before dropping ptl */
1497 if (force_flush)
1498 tlb_flush_mmu_tlbonly(tlb);
1499 pte_unmap_unlock(start_pte, ptl);
1500
1501 /*
1502 * If we forced a TLB flush (either due to running out of
1503 * batch buffers or because we needed to flush dirty TLB
1504 * entries before releasing the ptl), free the batched
1505 * memory too. Restart if we didn't do everything.
1506 */
1507 if (force_flush) {
1508 force_flush = 0;
1509 tlb_flush_mmu(tlb);
1510 }
1511
1512 trace_android_vh_zap_pte_range_tlb_end(&v_ret);
1513 if (addr != end) {
1514 cond_resched();
1515 goto again;
1516 }
1517
1518 return addr;
1519 }
1520
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1521 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1522 struct vm_area_struct *vma, pud_t *pud,
1523 unsigned long addr, unsigned long end,
1524 struct zap_details *details)
1525 {
1526 pmd_t *pmd;
1527 unsigned long next;
1528
1529 pmd = pmd_offset(pud, addr);
1530 do {
1531 next = pmd_addr_end(addr, end);
1532 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1533 if (next - addr != HPAGE_PMD_SIZE)
1534 __split_huge_pmd(vma, pmd, addr, false, NULL);
1535 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1536 goto next;
1537 /* fall through */
1538 } else if (details && details->single_page &&
1539 PageTransCompound(details->single_page) &&
1540 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1541 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1542 /*
1543 * Take and drop THP pmd lock so that we cannot return
1544 * prematurely, while zap_huge_pmd() has cleared *pmd,
1545 * but not yet decremented compound_mapcount().
1546 */
1547 spin_unlock(ptl);
1548 }
1549
1550 /*
1551 * Here there can be other concurrent MADV_DONTNEED or
1552 * trans huge page faults running, and if the pmd is
1553 * none or trans huge it can change under us. This is
1554 * because MADV_DONTNEED holds the mmap_lock in read
1555 * mode.
1556 */
1557 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1558 goto next;
1559 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1560 next:
1561 cond_resched();
1562 } while (pmd++, addr = next, addr != end);
1563
1564 return addr;
1565 }
1566
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1567 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1568 struct vm_area_struct *vma, p4d_t *p4d,
1569 unsigned long addr, unsigned long end,
1570 struct zap_details *details)
1571 {
1572 pud_t *pud;
1573 unsigned long next;
1574
1575 pud = pud_offset(p4d, addr);
1576 do {
1577 next = pud_addr_end(addr, end);
1578 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1579 if (next - addr != HPAGE_PUD_SIZE) {
1580 mmap_assert_locked(tlb->mm);
1581 split_huge_pud(vma, pud, addr);
1582 } else if (zap_huge_pud(tlb, vma, pud, addr))
1583 goto next;
1584 /* fall through */
1585 }
1586 if (pud_none_or_clear_bad(pud))
1587 continue;
1588 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1589 next:
1590 cond_resched();
1591 } while (pud++, addr = next, addr != end);
1592
1593 return addr;
1594 }
1595
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1596 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1597 struct vm_area_struct *vma, pgd_t *pgd,
1598 unsigned long addr, unsigned long end,
1599 struct zap_details *details)
1600 {
1601 p4d_t *p4d;
1602 unsigned long next;
1603
1604 p4d = p4d_offset(pgd, addr);
1605 do {
1606 next = p4d_addr_end(addr, end);
1607 if (p4d_none_or_clear_bad(p4d))
1608 continue;
1609 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1610 } while (p4d++, addr = next, addr != end);
1611
1612 return addr;
1613 }
1614
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1615 void unmap_page_range(struct mmu_gather *tlb,
1616 struct vm_area_struct *vma,
1617 unsigned long addr, unsigned long end,
1618 struct zap_details *details)
1619 {
1620 pgd_t *pgd;
1621 unsigned long next;
1622
1623 BUG_ON(addr >= end);
1624 tlb_start_vma(tlb, vma);
1625 pgd = pgd_offset(vma->vm_mm, addr);
1626 do {
1627 next = pgd_addr_end(addr, end);
1628 if (pgd_none_or_clear_bad(pgd))
1629 continue;
1630 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1631 } while (pgd++, addr = next, addr != end);
1632 tlb_end_vma(tlb, vma);
1633 }
1634
1635
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1636 static void unmap_single_vma(struct mmu_gather *tlb,
1637 struct vm_area_struct *vma, unsigned long start_addr,
1638 unsigned long end_addr,
1639 struct zap_details *details)
1640 {
1641 unsigned long start = max(vma->vm_start, start_addr);
1642 unsigned long end;
1643
1644 if (start >= vma->vm_end)
1645 return;
1646 end = min(vma->vm_end, end_addr);
1647 if (end <= vma->vm_start)
1648 return;
1649
1650 if (vma->vm_file)
1651 uprobe_munmap(vma, start, end);
1652
1653 if (unlikely(vma->vm_flags & VM_PFNMAP))
1654 untrack_pfn(vma, 0, 0);
1655
1656 if (start != end) {
1657 if (unlikely(is_vm_hugetlb_page(vma))) {
1658 /*
1659 * It is undesirable to test vma->vm_file as it
1660 * should be non-null for valid hugetlb area.
1661 * However, vm_file will be NULL in the error
1662 * cleanup path of mmap_region. When
1663 * hugetlbfs ->mmap method fails,
1664 * mmap_region() nullifies vma->vm_file
1665 * before calling this function to clean up.
1666 * Since no pte has actually been setup, it is
1667 * safe to do nothing in this case.
1668 */
1669 if (vma->vm_file) {
1670 i_mmap_lock_write(vma->vm_file->f_mapping);
1671 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1672 i_mmap_unlock_write(vma->vm_file->f_mapping);
1673 }
1674 } else
1675 unmap_page_range(tlb, vma, start, end, details);
1676 }
1677 }
1678
1679 /**
1680 * unmap_vmas - unmap a range of memory covered by a list of vma's
1681 * @tlb: address of the caller's struct mmu_gather
1682 * @vma: the starting vma
1683 * @start_addr: virtual address at which to start unmapping
1684 * @end_addr: virtual address at which to end unmapping
1685 *
1686 * Unmap all pages in the vma list.
1687 *
1688 * Only addresses between `start' and `end' will be unmapped.
1689 *
1690 * The VMA list must be sorted in ascending virtual address order.
1691 *
1692 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1693 * range after unmap_vmas() returns. So the only responsibility here is to
1694 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1695 * drops the lock and schedules.
1696 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1697 void unmap_vmas(struct mmu_gather *tlb,
1698 struct vm_area_struct *vma, unsigned long start_addr,
1699 unsigned long end_addr)
1700 {
1701 struct mmu_notifier_range range;
1702
1703 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1704 start_addr, end_addr);
1705 mmu_notifier_invalidate_range_start(&range);
1706 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1707 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1708 mmu_notifier_invalidate_range_end(&range);
1709 }
1710
1711 /**
1712 * zap_page_range - remove user pages in a given range
1713 * @vma: vm_area_struct holding the applicable pages
1714 * @start: starting address of pages to zap
1715 * @size: number of bytes to zap
1716 *
1717 * Caller must protect the VMA list
1718 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1719 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1720 unsigned long size)
1721 {
1722 struct mmu_notifier_range range;
1723 struct mmu_gather tlb;
1724
1725 lru_add_drain();
1726 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1727 start, start + size);
1728 tlb_gather_mmu(&tlb, vma->vm_mm);
1729 update_hiwater_rss(vma->vm_mm);
1730 mmu_notifier_invalidate_range_start(&range);
1731 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1732 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1733 mmu_notifier_invalidate_range_end(&range);
1734 tlb_finish_mmu(&tlb);
1735 }
1736
1737 /**
1738 * zap_page_range_single - remove user pages in a given range
1739 * @vma: vm_area_struct holding the applicable pages
1740 * @address: starting address of pages to zap
1741 * @size: number of bytes to zap
1742 * @details: details of shared cache invalidation
1743 *
1744 * The range must fit into one VMA.
1745 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1746 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1747 unsigned long size, struct zap_details *details)
1748 {
1749 struct mmu_notifier_range range;
1750 struct mmu_gather tlb;
1751
1752 lru_add_drain();
1753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1754 address, address + size);
1755 tlb_gather_mmu(&tlb, vma->vm_mm);
1756 update_hiwater_rss(vma->vm_mm);
1757 mmu_notifier_invalidate_range_start(&range);
1758 unmap_single_vma(&tlb, vma, address, range.end, details);
1759 mmu_notifier_invalidate_range_end(&range);
1760 tlb_finish_mmu(&tlb);
1761 }
1762
1763 /**
1764 * zap_vma_ptes - remove ptes mapping the vma
1765 * @vma: vm_area_struct holding ptes to be zapped
1766 * @address: starting address of pages to zap
1767 * @size: number of bytes to zap
1768 *
1769 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1770 *
1771 * The entire address range must be fully contained within the vma.
1772 *
1773 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1774 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1775 unsigned long size)
1776 {
1777 if (address < vma->vm_start || address + size > vma->vm_end ||
1778 !(vma->vm_flags & VM_PFNMAP))
1779 return;
1780
1781 zap_page_range_single(vma, address, size, NULL);
1782 }
1783 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1784
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1785 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1786 {
1787 pgd_t *pgd;
1788 p4d_t *p4d;
1789 pud_t *pud;
1790 pmd_t *pmd;
1791
1792 pgd = pgd_offset(mm, addr);
1793 p4d = p4d_alloc(mm, pgd, addr);
1794 if (!p4d)
1795 return NULL;
1796 pud = pud_alloc(mm, p4d, addr);
1797 if (!pud)
1798 return NULL;
1799 pmd = pmd_alloc(mm, pud, addr);
1800 if (!pmd)
1801 return NULL;
1802
1803 VM_BUG_ON(pmd_trans_huge(*pmd));
1804 return pmd;
1805 }
1806
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1807 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1808 spinlock_t **ptl)
1809 {
1810 pmd_t *pmd = walk_to_pmd(mm, addr);
1811
1812 if (!pmd)
1813 return NULL;
1814 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1815 }
1816
validate_page_before_insert(struct page * page)1817 static int validate_page_before_insert(struct page *page)
1818 {
1819 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1820 return -EINVAL;
1821 flush_dcache_page(page);
1822 return 0;
1823 }
1824
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1825 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1826 unsigned long addr, struct page *page, pgprot_t prot)
1827 {
1828 if (!pte_none(*pte))
1829 return -EBUSY;
1830 /* Ok, finally just insert the thing.. */
1831 get_page(page);
1832 inc_mm_counter_fast(mm, mm_counter_file(page));
1833 page_add_file_rmap(page, false);
1834 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1835 return 0;
1836 }
1837
1838 /*
1839 * This is the old fallback for page remapping.
1840 *
1841 * For historical reasons, it only allows reserved pages. Only
1842 * old drivers should use this, and they needed to mark their
1843 * pages reserved for the old functions anyway.
1844 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1845 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1846 struct page *page, pgprot_t prot)
1847 {
1848 struct mm_struct *mm = vma->vm_mm;
1849 int retval;
1850 pte_t *pte;
1851 spinlock_t *ptl;
1852
1853 retval = validate_page_before_insert(page);
1854 if (retval)
1855 goto out;
1856 retval = -ENOMEM;
1857 pte = get_locked_pte(mm, addr, &ptl);
1858 if (!pte)
1859 goto out;
1860 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1861 pte_unmap_unlock(pte, ptl);
1862 out:
1863 return retval;
1864 }
1865
1866 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1867 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1868 unsigned long addr, struct page *page, pgprot_t prot)
1869 {
1870 int err;
1871
1872 if (!page_count(page))
1873 return -EINVAL;
1874 err = validate_page_before_insert(page);
1875 if (err)
1876 return err;
1877 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1878 }
1879
1880 /* insert_pages() amortizes the cost of spinlock operations
1881 * when inserting pages in a loop. Arch *must* define pte_index.
1882 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1883 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1884 struct page **pages, unsigned long *num, pgprot_t prot)
1885 {
1886 pmd_t *pmd = NULL;
1887 pte_t *start_pte, *pte;
1888 spinlock_t *pte_lock;
1889 struct mm_struct *const mm = vma->vm_mm;
1890 unsigned long curr_page_idx = 0;
1891 unsigned long remaining_pages_total = *num;
1892 unsigned long pages_to_write_in_pmd;
1893 int ret;
1894 more:
1895 ret = -EFAULT;
1896 pmd = walk_to_pmd(mm, addr);
1897 if (!pmd)
1898 goto out;
1899
1900 pages_to_write_in_pmd = min_t(unsigned long,
1901 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1902
1903 /* Allocate the PTE if necessary; takes PMD lock once only. */
1904 ret = -ENOMEM;
1905 if (pte_alloc(mm, pmd))
1906 goto out;
1907
1908 while (pages_to_write_in_pmd) {
1909 int pte_idx = 0;
1910 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1911
1912 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1913 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1914 int err = insert_page_in_batch_locked(mm, pte,
1915 addr, pages[curr_page_idx], prot);
1916 if (unlikely(err)) {
1917 pte_unmap_unlock(start_pte, pte_lock);
1918 ret = err;
1919 remaining_pages_total -= pte_idx;
1920 goto out;
1921 }
1922 addr += PAGE_SIZE;
1923 ++curr_page_idx;
1924 }
1925 pte_unmap_unlock(start_pte, pte_lock);
1926 pages_to_write_in_pmd -= batch_size;
1927 remaining_pages_total -= batch_size;
1928 }
1929 if (remaining_pages_total)
1930 goto more;
1931 ret = 0;
1932 out:
1933 *num = remaining_pages_total;
1934 return ret;
1935 }
1936 #endif /* ifdef pte_index */
1937
1938 /**
1939 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1940 * @vma: user vma to map to
1941 * @addr: target start user address of these pages
1942 * @pages: source kernel pages
1943 * @num: in: number of pages to map. out: number of pages that were *not*
1944 * mapped. (0 means all pages were successfully mapped).
1945 *
1946 * Preferred over vm_insert_page() when inserting multiple pages.
1947 *
1948 * In case of error, we may have mapped a subset of the provided
1949 * pages. It is the caller's responsibility to account for this case.
1950 *
1951 * The same restrictions apply as in vm_insert_page().
1952 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1953 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1954 struct page **pages, unsigned long *num)
1955 {
1956 #ifdef pte_index
1957 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1958
1959 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1960 return -EFAULT;
1961 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1962 BUG_ON(mmap_read_trylock(vma->vm_mm));
1963 BUG_ON(vma->vm_flags & VM_PFNMAP);
1964 vma->vm_flags |= VM_MIXEDMAP;
1965 }
1966 /* Defer page refcount checking till we're about to map that page. */
1967 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1968 #else
1969 unsigned long idx = 0, pgcount = *num;
1970 int err = -EINVAL;
1971
1972 for (; idx < pgcount; ++idx) {
1973 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1974 if (err)
1975 break;
1976 }
1977 *num = pgcount - idx;
1978 return err;
1979 #endif /* ifdef pte_index */
1980 }
1981 EXPORT_SYMBOL(vm_insert_pages);
1982
1983 /**
1984 * vm_insert_page - insert single page into user vma
1985 * @vma: user vma to map to
1986 * @addr: target user address of this page
1987 * @page: source kernel page
1988 *
1989 * This allows drivers to insert individual pages they've allocated
1990 * into a user vma.
1991 *
1992 * The page has to be a nice clean _individual_ kernel allocation.
1993 * If you allocate a compound page, you need to have marked it as
1994 * such (__GFP_COMP), or manually just split the page up yourself
1995 * (see split_page()).
1996 *
1997 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1998 * took an arbitrary page protection parameter. This doesn't allow
1999 * that. Your vma protection will have to be set up correctly, which
2000 * means that if you want a shared writable mapping, you'd better
2001 * ask for a shared writable mapping!
2002 *
2003 * The page does not need to be reserved.
2004 *
2005 * Usually this function is called from f_op->mmap() handler
2006 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2007 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2008 * function from other places, for example from page-fault handler.
2009 *
2010 * Return: %0 on success, negative error code otherwise.
2011 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2012 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2013 struct page *page)
2014 {
2015 if (addr < vma->vm_start || addr >= vma->vm_end)
2016 return -EFAULT;
2017 if (!page_count(page))
2018 return -EINVAL;
2019 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2020 BUG_ON(mmap_read_trylock(vma->vm_mm));
2021 BUG_ON(vma->vm_flags & VM_PFNMAP);
2022 vma->vm_flags |= VM_MIXEDMAP;
2023 }
2024 return insert_page(vma, addr, page, vma->vm_page_prot);
2025 }
2026 EXPORT_SYMBOL(vm_insert_page);
2027
2028 /*
2029 * __vm_map_pages - maps range of kernel pages into user vma
2030 * @vma: user vma to map to
2031 * @pages: pointer to array of source kernel pages
2032 * @num: number of pages in page array
2033 * @offset: user's requested vm_pgoff
2034 *
2035 * This allows drivers to map range of kernel pages into a user vma.
2036 *
2037 * Return: 0 on success and error code otherwise.
2038 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2039 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2040 unsigned long num, unsigned long offset)
2041 {
2042 unsigned long count = vma_pages(vma);
2043 unsigned long uaddr = vma->vm_start;
2044 int ret, i;
2045
2046 /* Fail if the user requested offset is beyond the end of the object */
2047 if (offset >= num)
2048 return -ENXIO;
2049
2050 /* Fail if the user requested size exceeds available object size */
2051 if (count > num - offset)
2052 return -ENXIO;
2053
2054 for (i = 0; i < count; i++) {
2055 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2056 if (ret < 0)
2057 return ret;
2058 uaddr += PAGE_SIZE;
2059 }
2060
2061 return 0;
2062 }
2063
2064 /**
2065 * vm_map_pages - maps range of kernel pages starts with non zero offset
2066 * @vma: user vma to map to
2067 * @pages: pointer to array of source kernel pages
2068 * @num: number of pages in page array
2069 *
2070 * Maps an object consisting of @num pages, catering for the user's
2071 * requested vm_pgoff
2072 *
2073 * If we fail to insert any page into the vma, the function will return
2074 * immediately leaving any previously inserted pages present. Callers
2075 * from the mmap handler may immediately return the error as their caller
2076 * will destroy the vma, removing any successfully inserted pages. Other
2077 * callers should make their own arrangements for calling unmap_region().
2078 *
2079 * Context: Process context. Called by mmap handlers.
2080 * Return: 0 on success and error code otherwise.
2081 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2082 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2083 unsigned long num)
2084 {
2085 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2086 }
2087 EXPORT_SYMBOL(vm_map_pages);
2088
2089 /**
2090 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2091 * @vma: user vma to map to
2092 * @pages: pointer to array of source kernel pages
2093 * @num: number of pages in page array
2094 *
2095 * Similar to vm_map_pages(), except that it explicitly sets the offset
2096 * to 0. This function is intended for the drivers that did not consider
2097 * vm_pgoff.
2098 *
2099 * Context: Process context. Called by mmap handlers.
2100 * Return: 0 on success and error code otherwise.
2101 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2102 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2103 unsigned long num)
2104 {
2105 return __vm_map_pages(vma, pages, num, 0);
2106 }
2107 EXPORT_SYMBOL(vm_map_pages_zero);
2108
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2109 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2110 pfn_t pfn, pgprot_t prot, bool mkwrite)
2111 {
2112 struct mm_struct *mm = vma->vm_mm;
2113 pte_t *pte, entry;
2114 spinlock_t *ptl;
2115
2116 pte = get_locked_pte(mm, addr, &ptl);
2117 if (!pte)
2118 return VM_FAULT_OOM;
2119 if (!pte_none(*pte)) {
2120 if (mkwrite) {
2121 /*
2122 * For read faults on private mappings the PFN passed
2123 * in may not match the PFN we have mapped if the
2124 * mapped PFN is a writeable COW page. In the mkwrite
2125 * case we are creating a writable PTE for a shared
2126 * mapping and we expect the PFNs to match. If they
2127 * don't match, we are likely racing with block
2128 * allocation and mapping invalidation so just skip the
2129 * update.
2130 */
2131 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2132 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2133 goto out_unlock;
2134 }
2135 entry = pte_mkyoung(*pte);
2136 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2138 update_mmu_cache(vma, addr, pte);
2139 }
2140 goto out_unlock;
2141 }
2142
2143 /* Ok, finally just insert the thing.. */
2144 if (pfn_t_devmap(pfn))
2145 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2146 else
2147 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2148
2149 if (mkwrite) {
2150 entry = pte_mkyoung(entry);
2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152 }
2153
2154 set_pte_at(mm, addr, pte, entry);
2155 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2156
2157 out_unlock:
2158 pte_unmap_unlock(pte, ptl);
2159 return VM_FAULT_NOPAGE;
2160 }
2161
2162 /**
2163 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2164 * @vma: user vma to map to
2165 * @addr: target user address of this page
2166 * @pfn: source kernel pfn
2167 * @pgprot: pgprot flags for the inserted page
2168 *
2169 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2170 * to override pgprot on a per-page basis.
2171 *
2172 * This only makes sense for IO mappings, and it makes no sense for
2173 * COW mappings. In general, using multiple vmas is preferable;
2174 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2175 * impractical.
2176 *
2177 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2178 * a value of @pgprot different from that of @vma->vm_page_prot.
2179 *
2180 * Context: Process context. May allocate using %GFP_KERNEL.
2181 * Return: vm_fault_t value.
2182 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2183 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2184 unsigned long pfn, pgprot_t pgprot)
2185 {
2186 /*
2187 * Technically, architectures with pte_special can avoid all these
2188 * restrictions (same for remap_pfn_range). However we would like
2189 * consistency in testing and feature parity among all, so we should
2190 * try to keep these invariants in place for everybody.
2191 */
2192 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2193 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2194 (VM_PFNMAP|VM_MIXEDMAP));
2195 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2196 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2197
2198 if (addr < vma->vm_start || addr >= vma->vm_end)
2199 return VM_FAULT_SIGBUS;
2200
2201 if (!pfn_modify_allowed(pfn, pgprot))
2202 return VM_FAULT_SIGBUS;
2203
2204 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2205
2206 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2207 false);
2208 }
2209 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2210
2211 /**
2212 * vmf_insert_pfn - insert single pfn into user vma
2213 * @vma: user vma to map to
2214 * @addr: target user address of this page
2215 * @pfn: source kernel pfn
2216 *
2217 * Similar to vm_insert_page, this allows drivers to insert individual pages
2218 * they've allocated into a user vma. Same comments apply.
2219 *
2220 * This function should only be called from a vm_ops->fault handler, and
2221 * in that case the handler should return the result of this function.
2222 *
2223 * vma cannot be a COW mapping.
2224 *
2225 * As this is called only for pages that do not currently exist, we
2226 * do not need to flush old virtual caches or the TLB.
2227 *
2228 * Context: Process context. May allocate using %GFP_KERNEL.
2229 * Return: vm_fault_t value.
2230 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2231 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2232 unsigned long pfn)
2233 {
2234 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2235 }
2236 EXPORT_SYMBOL(vmf_insert_pfn);
2237
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2238 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2239 {
2240 /* these checks mirror the abort conditions in vm_normal_page */
2241 if (vma->vm_flags & VM_MIXEDMAP)
2242 return true;
2243 if (pfn_t_devmap(pfn))
2244 return true;
2245 if (pfn_t_special(pfn))
2246 return true;
2247 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2248 return true;
2249 return false;
2250 }
2251
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2252 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2253 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2254 bool mkwrite)
2255 {
2256 int err;
2257
2258 BUG_ON(!vm_mixed_ok(vma, pfn));
2259
2260 if (addr < vma->vm_start || addr >= vma->vm_end)
2261 return VM_FAULT_SIGBUS;
2262
2263 track_pfn_insert(vma, &pgprot, pfn);
2264
2265 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2266 return VM_FAULT_SIGBUS;
2267
2268 /*
2269 * If we don't have pte special, then we have to use the pfn_valid()
2270 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2271 * refcount the page if pfn_valid is true (hence insert_page rather
2272 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2273 * without pte special, it would there be refcounted as a normal page.
2274 */
2275 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2276 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2277 struct page *page;
2278
2279 /*
2280 * At this point we are committed to insert_page()
2281 * regardless of whether the caller specified flags that
2282 * result in pfn_t_has_page() == false.
2283 */
2284 page = pfn_to_page(pfn_t_to_pfn(pfn));
2285 err = insert_page(vma, addr, page, pgprot);
2286 } else {
2287 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2288 }
2289
2290 if (err == -ENOMEM)
2291 return VM_FAULT_OOM;
2292 if (err < 0 && err != -EBUSY)
2293 return VM_FAULT_SIGBUS;
2294
2295 return VM_FAULT_NOPAGE;
2296 }
2297
2298 /**
2299 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2300 * @vma: user vma to map to
2301 * @addr: target user address of this page
2302 * @pfn: source kernel pfn
2303 * @pgprot: pgprot flags for the inserted page
2304 *
2305 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2306 * to override pgprot on a per-page basis.
2307 *
2308 * Typically this function should be used by drivers to set caching- and
2309 * encryption bits different than those of @vma->vm_page_prot, because
2310 * the caching- or encryption mode may not be known at mmap() time.
2311 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2312 * to set caching and encryption bits for those vmas (except for COW pages).
2313 * This is ensured by core vm only modifying these page table entries using
2314 * functions that don't touch caching- or encryption bits, using pte_modify()
2315 * if needed. (See for example mprotect()).
2316 * Also when new page-table entries are created, this is only done using the
2317 * fault() callback, and never using the value of vma->vm_page_prot,
2318 * except for page-table entries that point to anonymous pages as the result
2319 * of COW.
2320 *
2321 * Context: Process context. May allocate using %GFP_KERNEL.
2322 * Return: vm_fault_t value.
2323 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2324 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2325 pfn_t pfn, pgprot_t pgprot)
2326 {
2327 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2328 }
2329 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2330
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2331 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2332 pfn_t pfn)
2333 {
2334 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2335 }
2336 EXPORT_SYMBOL(vmf_insert_mixed);
2337
2338 /*
2339 * If the insertion of PTE failed because someone else already added a
2340 * different entry in the mean time, we treat that as success as we assume
2341 * the same entry was actually inserted.
2342 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2343 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2344 unsigned long addr, pfn_t pfn)
2345 {
2346 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2347 }
2348 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2349
2350 /*
2351 * maps a range of physical memory into the requested pages. the old
2352 * mappings are removed. any references to nonexistent pages results
2353 * in null mappings (currently treated as "copy-on-access")
2354 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2355 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2356 unsigned long addr, unsigned long end,
2357 unsigned long pfn, pgprot_t prot)
2358 {
2359 pte_t *pte, *mapped_pte;
2360 spinlock_t *ptl;
2361 int err = 0;
2362
2363 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2364 if (!pte)
2365 return -ENOMEM;
2366 arch_enter_lazy_mmu_mode();
2367 do {
2368 BUG_ON(!pte_none(*pte));
2369 if (!pfn_modify_allowed(pfn, prot)) {
2370 err = -EACCES;
2371 break;
2372 }
2373 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2374 pfn++;
2375 } while (pte++, addr += PAGE_SIZE, addr != end);
2376 arch_leave_lazy_mmu_mode();
2377 pte_unmap_unlock(mapped_pte, ptl);
2378 return err;
2379 }
2380
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2381 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2382 unsigned long addr, unsigned long end,
2383 unsigned long pfn, pgprot_t prot)
2384 {
2385 pmd_t *pmd;
2386 unsigned long next;
2387 int err;
2388
2389 pfn -= addr >> PAGE_SHIFT;
2390 pmd = pmd_alloc(mm, pud, addr);
2391 if (!pmd)
2392 return -ENOMEM;
2393 VM_BUG_ON(pmd_trans_huge(*pmd));
2394 do {
2395 next = pmd_addr_end(addr, end);
2396 err = remap_pte_range(mm, pmd, addr, next,
2397 pfn + (addr >> PAGE_SHIFT), prot);
2398 if (err)
2399 return err;
2400 } while (pmd++, addr = next, addr != end);
2401 return 0;
2402 }
2403
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2404 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2405 unsigned long addr, unsigned long end,
2406 unsigned long pfn, pgprot_t prot)
2407 {
2408 pud_t *pud;
2409 unsigned long next;
2410 int err;
2411
2412 pfn -= addr >> PAGE_SHIFT;
2413 pud = pud_alloc(mm, p4d, addr);
2414 if (!pud)
2415 return -ENOMEM;
2416 do {
2417 next = pud_addr_end(addr, end);
2418 err = remap_pmd_range(mm, pud, addr, next,
2419 pfn + (addr >> PAGE_SHIFT), prot);
2420 if (err)
2421 return err;
2422 } while (pud++, addr = next, addr != end);
2423 return 0;
2424 }
2425
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2426 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2427 unsigned long addr, unsigned long end,
2428 unsigned long pfn, pgprot_t prot)
2429 {
2430 p4d_t *p4d;
2431 unsigned long next;
2432 int err;
2433
2434 pfn -= addr >> PAGE_SHIFT;
2435 p4d = p4d_alloc(mm, pgd, addr);
2436 if (!p4d)
2437 return -ENOMEM;
2438 do {
2439 next = p4d_addr_end(addr, end);
2440 err = remap_pud_range(mm, p4d, addr, next,
2441 pfn + (addr >> PAGE_SHIFT), prot);
2442 if (err)
2443 return err;
2444 } while (p4d++, addr = next, addr != end);
2445 return 0;
2446 }
2447
2448 /*
2449 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2450 * must have pre-validated the caching bits of the pgprot_t.
2451 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2452 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2453 unsigned long pfn, unsigned long size, pgprot_t prot)
2454 {
2455 pgd_t *pgd;
2456 unsigned long next;
2457 unsigned long end = addr + PAGE_ALIGN(size);
2458 struct mm_struct *mm = vma->vm_mm;
2459 int err;
2460
2461 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2462 return -EINVAL;
2463
2464 /*
2465 * Physically remapped pages are special. Tell the
2466 * rest of the world about it:
2467 * VM_IO tells people not to look at these pages
2468 * (accesses can have side effects).
2469 * VM_PFNMAP tells the core MM that the base pages are just
2470 * raw PFN mappings, and do not have a "struct page" associated
2471 * with them.
2472 * VM_DONTEXPAND
2473 * Disable vma merging and expanding with mremap().
2474 * VM_DONTDUMP
2475 * Omit vma from core dump, even when VM_IO turned off.
2476 *
2477 * There's a horrible special case to handle copy-on-write
2478 * behaviour that some programs depend on. We mark the "original"
2479 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2480 * See vm_normal_page() for details.
2481 */
2482 if (is_cow_mapping(vma->vm_flags)) {
2483 if (addr != vma->vm_start || end != vma->vm_end)
2484 return -EINVAL;
2485 vma->vm_pgoff = pfn;
2486 }
2487
2488 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2489
2490 BUG_ON(addr >= end);
2491 pfn -= addr >> PAGE_SHIFT;
2492 pgd = pgd_offset(mm, addr);
2493 flush_cache_range(vma, addr, end);
2494 do {
2495 next = pgd_addr_end(addr, end);
2496 err = remap_p4d_range(mm, pgd, addr, next,
2497 pfn + (addr >> PAGE_SHIFT), prot);
2498 if (err)
2499 return err;
2500 } while (pgd++, addr = next, addr != end);
2501
2502 return 0;
2503 }
2504
2505 /**
2506 * remap_pfn_range - remap kernel memory to userspace
2507 * @vma: user vma to map to
2508 * @addr: target page aligned user address to start at
2509 * @pfn: page frame number of kernel physical memory address
2510 * @size: size of mapping area
2511 * @prot: page protection flags for this mapping
2512 *
2513 * Note: this is only safe if the mm semaphore is held when called.
2514 *
2515 * Return: %0 on success, negative error code otherwise.
2516 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2517 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2518 unsigned long pfn, unsigned long size, pgprot_t prot)
2519 {
2520 int err;
2521
2522 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2523 if (err)
2524 return -EINVAL;
2525
2526 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2527 if (err)
2528 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2529 return err;
2530 }
2531 EXPORT_SYMBOL(remap_pfn_range);
2532
2533 /**
2534 * vm_iomap_memory - remap memory to userspace
2535 * @vma: user vma to map to
2536 * @start: start of the physical memory to be mapped
2537 * @len: size of area
2538 *
2539 * This is a simplified io_remap_pfn_range() for common driver use. The
2540 * driver just needs to give us the physical memory range to be mapped,
2541 * we'll figure out the rest from the vma information.
2542 *
2543 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2544 * whatever write-combining details or similar.
2545 *
2546 * Return: %0 on success, negative error code otherwise.
2547 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2548 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2549 {
2550 unsigned long vm_len, pfn, pages;
2551
2552 /* Check that the physical memory area passed in looks valid */
2553 if (start + len < start)
2554 return -EINVAL;
2555 /*
2556 * You *really* shouldn't map things that aren't page-aligned,
2557 * but we've historically allowed it because IO memory might
2558 * just have smaller alignment.
2559 */
2560 len += start & ~PAGE_MASK;
2561 pfn = start >> PAGE_SHIFT;
2562 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2563 if (pfn + pages < pfn)
2564 return -EINVAL;
2565
2566 /* We start the mapping 'vm_pgoff' pages into the area */
2567 if (vma->vm_pgoff > pages)
2568 return -EINVAL;
2569 pfn += vma->vm_pgoff;
2570 pages -= vma->vm_pgoff;
2571
2572 /* Can we fit all of the mapping? */
2573 vm_len = vma->vm_end - vma->vm_start;
2574 if (vm_len >> PAGE_SHIFT > pages)
2575 return -EINVAL;
2576
2577 /* Ok, let it rip */
2578 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2579 }
2580 EXPORT_SYMBOL(vm_iomap_memory);
2581
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2582 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2583 unsigned long addr, unsigned long end,
2584 pte_fn_t fn, void *data, bool create,
2585 pgtbl_mod_mask *mask)
2586 {
2587 pte_t *pte, *mapped_pte;
2588 int err = 0;
2589 spinlock_t *ptl;
2590
2591 if (create) {
2592 mapped_pte = pte = (mm == &init_mm) ?
2593 pte_alloc_kernel_track(pmd, addr, mask) :
2594 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2595 if (!pte)
2596 return -ENOMEM;
2597 } else {
2598 mapped_pte = pte = (mm == &init_mm) ?
2599 pte_offset_kernel(pmd, addr) :
2600 pte_offset_map_lock(mm, pmd, addr, &ptl);
2601 }
2602
2603 BUG_ON(pmd_huge(*pmd));
2604
2605 arch_enter_lazy_mmu_mode();
2606
2607 if (fn) {
2608 do {
2609 if (create || !pte_none(*pte)) {
2610 err = fn(pte++, addr, data);
2611 if (err)
2612 break;
2613 }
2614 } while (addr += PAGE_SIZE, addr != end);
2615 }
2616 *mask |= PGTBL_PTE_MODIFIED;
2617
2618 arch_leave_lazy_mmu_mode();
2619
2620 if (mm != &init_mm)
2621 pte_unmap_unlock(mapped_pte, ptl);
2622 return err;
2623 }
2624
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2625 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2626 unsigned long addr, unsigned long end,
2627 pte_fn_t fn, void *data, bool create,
2628 pgtbl_mod_mask *mask)
2629 {
2630 pmd_t *pmd;
2631 unsigned long next;
2632 int err = 0;
2633
2634 BUG_ON(pud_huge(*pud));
2635
2636 if (create) {
2637 pmd = pmd_alloc_track(mm, pud, addr, mask);
2638 if (!pmd)
2639 return -ENOMEM;
2640 } else {
2641 pmd = pmd_offset(pud, addr);
2642 }
2643 do {
2644 next = pmd_addr_end(addr, end);
2645 if (pmd_none(*pmd) && !create)
2646 continue;
2647 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2648 return -EINVAL;
2649 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2650 if (!create)
2651 continue;
2652 pmd_clear_bad(pmd);
2653 }
2654 err = apply_to_pte_range(mm, pmd, addr, next,
2655 fn, data, create, mask);
2656 if (err)
2657 break;
2658 } while (pmd++, addr = next, addr != end);
2659
2660 return err;
2661 }
2662
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2663 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2664 unsigned long addr, unsigned long end,
2665 pte_fn_t fn, void *data, bool create,
2666 pgtbl_mod_mask *mask)
2667 {
2668 pud_t *pud;
2669 unsigned long next;
2670 int err = 0;
2671
2672 if (create) {
2673 pud = pud_alloc_track(mm, p4d, addr, mask);
2674 if (!pud)
2675 return -ENOMEM;
2676 } else {
2677 pud = pud_offset(p4d, addr);
2678 }
2679 do {
2680 next = pud_addr_end(addr, end);
2681 if (pud_none(*pud) && !create)
2682 continue;
2683 if (WARN_ON_ONCE(pud_leaf(*pud)))
2684 return -EINVAL;
2685 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2686 if (!create)
2687 continue;
2688 pud_clear_bad(pud);
2689 }
2690 err = apply_to_pmd_range(mm, pud, addr, next,
2691 fn, data, create, mask);
2692 if (err)
2693 break;
2694 } while (pud++, addr = next, addr != end);
2695
2696 return err;
2697 }
2698
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2699 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2700 unsigned long addr, unsigned long end,
2701 pte_fn_t fn, void *data, bool create,
2702 pgtbl_mod_mask *mask)
2703 {
2704 p4d_t *p4d;
2705 unsigned long next;
2706 int err = 0;
2707
2708 if (create) {
2709 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2710 if (!p4d)
2711 return -ENOMEM;
2712 } else {
2713 p4d = p4d_offset(pgd, addr);
2714 }
2715 do {
2716 next = p4d_addr_end(addr, end);
2717 if (p4d_none(*p4d) && !create)
2718 continue;
2719 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2720 return -EINVAL;
2721 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2722 if (!create)
2723 continue;
2724 p4d_clear_bad(p4d);
2725 }
2726 err = apply_to_pud_range(mm, p4d, addr, next,
2727 fn, data, create, mask);
2728 if (err)
2729 break;
2730 } while (p4d++, addr = next, addr != end);
2731
2732 return err;
2733 }
2734
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2735 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2736 unsigned long size, pte_fn_t fn,
2737 void *data, bool create)
2738 {
2739 pgd_t *pgd;
2740 unsigned long start = addr, next;
2741 unsigned long end = addr + size;
2742 pgtbl_mod_mask mask = 0;
2743 int err = 0;
2744
2745 if (WARN_ON(addr >= end))
2746 return -EINVAL;
2747
2748 pgd = pgd_offset(mm, addr);
2749 do {
2750 next = pgd_addr_end(addr, end);
2751 if (pgd_none(*pgd) && !create)
2752 continue;
2753 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2754 return -EINVAL;
2755 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2756 if (!create)
2757 continue;
2758 pgd_clear_bad(pgd);
2759 }
2760 err = apply_to_p4d_range(mm, pgd, addr, next,
2761 fn, data, create, &mask);
2762 if (err)
2763 break;
2764 } while (pgd++, addr = next, addr != end);
2765
2766 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2767 arch_sync_kernel_mappings(start, start + size);
2768
2769 return err;
2770 }
2771
2772 /*
2773 * Scan a region of virtual memory, filling in page tables as necessary
2774 * and calling a provided function on each leaf page table.
2775 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2776 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2777 unsigned long size, pte_fn_t fn, void *data)
2778 {
2779 return __apply_to_page_range(mm, addr, size, fn, data, true);
2780 }
2781 EXPORT_SYMBOL_GPL(apply_to_page_range);
2782
2783 /*
2784 * Scan a region of virtual memory, calling a provided function on
2785 * each leaf page table where it exists.
2786 *
2787 * Unlike apply_to_page_range, this does _not_ fill in page tables
2788 * where they are absent.
2789 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2790 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2791 unsigned long size, pte_fn_t fn, void *data)
2792 {
2793 return __apply_to_page_range(mm, addr, size, fn, data, false);
2794 }
2795 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2796
2797 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
2798
2799 /*
2800 * speculative_page_walk_begin() ... speculative_page_walk_end() protects
2801 * against races with page table reclamation.
2802 *
2803 * This is similar to what fast GUP does, but fast GUP also needs to
2804 * protect against races with THP page splitting, so it always needs
2805 * to disable interrupts.
2806 * Speculative page faults need to protect against page table reclamation,
2807 * even with MMU_GATHER_RCU_TABLE_FREE case page table removal slow-path is
2808 * not RCU-safe (see comment inside tlb_remove_table_sync_one), therefore
2809 * we still have to disable IRQs.
2810 */
2811 #define speculative_page_walk_begin() local_irq_disable()
2812 #define speculative_page_walk_end() local_irq_enable()
2813
__pte_map_lock(struct vm_fault * vmf)2814 bool __pte_map_lock(struct vm_fault *vmf)
2815 {
2816 pmd_t pmdval;
2817 pte_t *pte = vmf->pte;
2818 spinlock_t *ptl;
2819
2820 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2821 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2822 if (!pte)
2823 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2824 spin_lock(vmf->ptl);
2825 return true;
2826 }
2827
2828 speculative_page_walk_begin();
2829 if (!mmap_seq_read_check(vmf->vma->vm_mm, vmf->seq,
2830 SPF_ABORT_PTE_MAP_LOCK_SEQ1))
2831 goto fail;
2832 /*
2833 * The mmap sequence count check guarantees that the page
2834 * tables are still valid at that point, and
2835 * speculative_page_walk_begin() ensures that they stay around.
2836 */
2837 /*
2838 * We check if the pmd value is still the same to ensure that there
2839 * is not a huge collapse operation in progress in our back.
2840 * It also ensures that pmd was not cleared by pmd_clear in
2841 * free_pte_range and ptl is still valid.
2842 */
2843 pmdval = READ_ONCE(*vmf->pmd);
2844 if (!pmd_same(pmdval, vmf->orig_pmd)) {
2845 count_vm_spf_event(SPF_ABORT_PTE_MAP_LOCK_PMD);
2846 goto fail;
2847 }
2848 ptl = pte_lockptr(vmf->vma->vm_mm, &pmdval);
2849 if (!pte)
2850 pte = pte_offset_map(&pmdval, vmf->address);
2851 /*
2852 * Try locking the page table.
2853 *
2854 * Note that we might race against zap_pte_range() which
2855 * invalidates TLBs while holding the page table lock.
2856 * We are still under the speculative_page_walk_begin() section,
2857 * and zap_pte_range() could thus deadlock with us if we tried
2858 * using spin_lock() here.
2859 *
2860 * We also don't want to retry until spin_trylock() succeeds,
2861 * because of the starvation potential against a stream of lockers.
2862 */
2863 if (unlikely(!spin_trylock(ptl))) {
2864 count_vm_spf_event(SPF_ABORT_PTE_MAP_LOCK_PTL);
2865 goto fail;
2866 }
2867 /*
2868 * The check below will fail if __pte_map_lock passed its ptl barrier
2869 * before we took the ptl lock.
2870 */
2871 if (!mmap_seq_read_check(vmf->vma->vm_mm, vmf->seq,
2872 SPF_ABORT_PTE_MAP_LOCK_SEQ2))
2873 goto unlock_fail;
2874 speculative_page_walk_end();
2875 vmf->pte = pte;
2876 vmf->ptl = ptl;
2877 return true;
2878
2879 unlock_fail:
2880 spin_unlock(ptl);
2881 fail:
2882 if (pte)
2883 pte_unmap(pte);
2884 speculative_page_walk_end();
2885 return false;
2886 }
2887
2888 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
2889
2890 /*
2891 * handle_pte_fault chooses page fault handler according to an entry which was
2892 * read non-atomically. Before making any commitment, on those architectures
2893 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2894 * parts, do_swap_page must check under lock before unmapping the pte and
2895 * proceeding (but do_wp_page is only called after already making such a check;
2896 * and do_anonymous_page can safely check later on).
2897 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2898 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2899 pte_t *page_table, pte_t orig_pte)
2900 {
2901 int same = 1;
2902 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2903 if (sizeof(pte_t) > sizeof(unsigned long)) {
2904 spinlock_t *ptl = pte_lockptr(mm, pmd);
2905 spin_lock(ptl);
2906 same = pte_same(*page_table, orig_pte);
2907 spin_unlock(ptl);
2908 }
2909 #endif
2910 pte_unmap(page_table);
2911 return same;
2912 }
2913
2914 /*
2915 * Return:
2916 * 0: copied succeeded
2917 * -EHWPOISON: copy failed due to hwpoison in source page
2918 * -EAGAIN: copied failed (some other reason)
2919 */
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2920 static inline int cow_user_page(struct page *dst, struct page *src,
2921 struct vm_fault *vmf)
2922 {
2923 int ret;
2924 void *kaddr;
2925 void __user *uaddr;
2926 bool locked = false;
2927 struct vm_area_struct *vma = vmf->vma;
2928 struct mm_struct *mm = vma->vm_mm;
2929 unsigned long addr = vmf->address;
2930
2931 if (likely(src)) {
2932 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2933 memory_failure_queue(page_to_pfn(src), 0);
2934 return -EHWPOISON;
2935 }
2936 return 0;
2937 }
2938
2939 /*
2940 * If the source page was a PFN mapping, we don't have
2941 * a "struct page" for it. We do a best-effort copy by
2942 * just copying from the original user address. If that
2943 * fails, we just zero-fill it. Live with it.
2944 */
2945 kaddr = kmap_atomic(dst);
2946 uaddr = (void __user *)(addr & PAGE_MASK);
2947
2948 /*
2949 * On architectures with software "accessed" bits, we would
2950 * take a double page fault, so mark it accessed here.
2951 */
2952 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2953 pte_t entry;
2954
2955 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2956 locked = true;
2957 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2958 /*
2959 * Other thread has already handled the fault
2960 * and update local tlb only
2961 */
2962 update_mmu_tlb(vma, addr, vmf->pte);
2963 ret = -EAGAIN;
2964 goto pte_unlock;
2965 }
2966
2967 entry = pte_mkyoung(vmf->orig_pte);
2968 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2969 update_mmu_cache(vma, addr, vmf->pte);
2970 }
2971
2972 /*
2973 * This really shouldn't fail, because the page is there
2974 * in the page tables. But it might just be unreadable,
2975 * in which case we just give up and fill the result with
2976 * zeroes.
2977 */
2978 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2979 if (locked)
2980 goto warn;
2981
2982 /* Re-validate under PTL if the page is still mapped */
2983 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2984 locked = true;
2985 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2986 /* The PTE changed under us, update local tlb */
2987 update_mmu_tlb(vma, addr, vmf->pte);
2988 ret = -EAGAIN;
2989 goto pte_unlock;
2990 }
2991
2992 /*
2993 * The same page can be mapped back since last copy attempt.
2994 * Try to copy again under PTL.
2995 */
2996 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2997 /*
2998 * Give a warn in case there can be some obscure
2999 * use-case
3000 */
3001 warn:
3002 WARN_ON_ONCE(1);
3003 clear_page(kaddr);
3004 }
3005 }
3006
3007 ret = 0;
3008
3009 pte_unlock:
3010 if (locked)
3011 pte_unmap_unlock(vmf->pte, vmf->ptl);
3012 kunmap_atomic(kaddr);
3013 flush_dcache_page(dst);
3014
3015 return ret;
3016 }
3017
__get_fault_gfp_mask(struct vm_area_struct * vma)3018 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3019 {
3020 struct file *vm_file = vma->vm_file;
3021
3022 if (vm_file)
3023 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3024
3025 /*
3026 * Special mappings (e.g. VDSO) do not have any file so fake
3027 * a default GFP_KERNEL for them.
3028 */
3029 return GFP_KERNEL;
3030 }
3031
3032 /*
3033 * Notify the address space that the page is about to become writable so that
3034 * it can prohibit this or wait for the page to get into an appropriate state.
3035 *
3036 * We do this without the lock held, so that it can sleep if it needs to.
3037 */
do_page_mkwrite(struct vm_fault * vmf)3038 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
3039 {
3040 vm_fault_t ret;
3041 struct page *page = vmf->page;
3042 unsigned int old_flags = vmf->flags;
3043
3044 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3045
3046 if (vmf->vma->vm_file &&
3047 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3048 return VM_FAULT_SIGBUS;
3049
3050 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3051 /* Restore original flags so that caller is not surprised */
3052 vmf->flags = old_flags;
3053 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3054 return ret;
3055 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3056 lock_page(page);
3057 if (!page->mapping) {
3058 unlock_page(page);
3059 return 0; /* retry */
3060 }
3061 ret |= VM_FAULT_LOCKED;
3062 } else
3063 VM_BUG_ON_PAGE(!PageLocked(page), page);
3064 return ret;
3065 }
3066
3067 /*
3068 * Handle dirtying of a page in shared file mapping on a write fault.
3069 *
3070 * The function expects the page to be locked and unlocks it.
3071 */
fault_dirty_shared_page(struct vm_fault * vmf)3072 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3073 {
3074 struct vm_area_struct *vma = vmf->vma;
3075 struct address_space *mapping;
3076 struct page *page = vmf->page;
3077 bool dirtied;
3078 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3079
3080 dirtied = set_page_dirty(page);
3081 VM_BUG_ON_PAGE(PageAnon(page), page);
3082 /*
3083 * Take a local copy of the address_space - page.mapping may be zeroed
3084 * by truncate after unlock_page(). The address_space itself remains
3085 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3086 * release semantics to prevent the compiler from undoing this copying.
3087 */
3088 mapping = page_rmapping(page);
3089 unlock_page(page);
3090
3091 if (!page_mkwrite)
3092 file_update_time(vma->vm_file);
3093
3094 /*
3095 * Throttle page dirtying rate down to writeback speed.
3096 *
3097 * mapping may be NULL here because some device drivers do not
3098 * set page.mapping but still dirty their pages
3099 *
3100 * Drop the mmap_lock before waiting on IO, if we can. The file
3101 * is pinning the mapping, as per above.
3102 */
3103 if ((dirtied || page_mkwrite) && mapping) {
3104 struct file *fpin;
3105
3106 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3107 balance_dirty_pages_ratelimited(mapping);
3108 if (fpin) {
3109 fput(fpin);
3110 return VM_FAULT_RETRY;
3111 }
3112 }
3113
3114 return 0;
3115 }
3116
3117 /*
3118 * Handle write page faults for pages that can be reused in the current vma
3119 *
3120 * This can happen either due to the mapping being with the VM_SHARED flag,
3121 * or due to us being the last reference standing to the page. In either
3122 * case, all we need to do here is to mark the page as writable and update
3123 * any related book-keeping.
3124 */
wp_page_reuse(struct vm_fault * vmf)3125 static inline void wp_page_reuse(struct vm_fault *vmf)
3126 __releases(vmf->ptl)
3127 {
3128 struct vm_area_struct *vma = vmf->vma;
3129 struct page *page = vmf->page;
3130 pte_t entry;
3131 /*
3132 * Clear the pages cpupid information as the existing
3133 * information potentially belongs to a now completely
3134 * unrelated process.
3135 */
3136 if (page)
3137 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3138
3139 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3140 entry = pte_mkyoung(vmf->orig_pte);
3141 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3142 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3143 update_mmu_cache(vma, vmf->address, vmf->pte);
3144 pte_unmap_unlock(vmf->pte, vmf->ptl);
3145 count_vm_event(PGREUSE);
3146 }
3147
3148 /*
3149 * Handle the case of a page which we actually need to copy to a new page.
3150 *
3151 * Called with mmap_lock locked and the old page referenced, but
3152 * without the ptl held.
3153 *
3154 * High level logic flow:
3155 *
3156 * - Allocate a page, copy the content of the old page to the new one.
3157 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3158 * - Take the PTL. If the pte changed, bail out and release the allocated page
3159 * - If the pte is still the way we remember it, update the page table and all
3160 * relevant references. This includes dropping the reference the page-table
3161 * held to the old page, as well as updating the rmap.
3162 * - In any case, unlock the PTL and drop the reference we took to the old page.
3163 */
wp_page_copy(struct vm_fault * vmf)3164 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3165 {
3166 struct vm_area_struct *vma = vmf->vma;
3167 struct mm_struct *mm = vma->vm_mm;
3168 struct page *old_page = vmf->page;
3169 struct page *new_page = NULL;
3170 pte_t entry;
3171 int page_copied = 0;
3172 struct mmu_notifier_range range;
3173 vm_fault_t ret = VM_FAULT_OOM;
3174
3175 if (unlikely(!vma->anon_vma)) {
3176 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3177 count_vm_spf_event(SPF_ABORT_ANON_VMA);
3178 ret = VM_FAULT_RETRY;
3179 goto out;
3180 }
3181 if (__anon_vma_prepare(vma))
3182 goto out;
3183 }
3184
3185 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3186 new_page = alloc_zeroed_user_highpage_movable(vma,
3187 vmf->address);
3188 if (!new_page)
3189 goto out;
3190 } else {
3191 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3192 vmf->address);
3193 if (!new_page)
3194 goto out;
3195
3196 ret = cow_user_page(new_page, old_page, vmf);
3197 if (ret) {
3198 /*
3199 * COW failed, if the fault was solved by other,
3200 * it's fine. If not, userspace would re-fault on
3201 * the same address and we will handle the fault
3202 * from the second attempt.
3203 * The -EHWPOISON case will not be retried.
3204 */
3205 put_page(new_page);
3206 if (old_page)
3207 put_page(old_page);
3208
3209 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3210 }
3211 }
3212
3213 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3214 goto out_free_new;
3215 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3216
3217 __SetPageUptodate(new_page);
3218
3219 if ((vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3220 !mmu_notifier_trylock(mm)) {
3221 ret = VM_FAULT_RETRY;
3222 goto out_free_new;
3223 }
3224 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3225 vmf->address & PAGE_MASK,
3226 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3227 mmu_notifier_invalidate_range_start(&range);
3228
3229 /*
3230 * Re-check the pte - we dropped the lock
3231 */
3232 if (!pte_map_lock(vmf)) {
3233 ret = VM_FAULT_RETRY;
3234 /* put_page() will uncharge the page */
3235 goto out_notify;
3236 }
3237 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3238 if (old_page) {
3239 if (!PageAnon(old_page)) {
3240 dec_mm_counter_fast(mm,
3241 mm_counter_file(old_page));
3242 inc_mm_counter_fast(mm, MM_ANONPAGES);
3243 }
3244 } else {
3245 inc_mm_counter_fast(mm, MM_ANONPAGES);
3246 }
3247 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3248 entry = mk_pte(new_page, vma->vm_page_prot);
3249 entry = pte_sw_mkyoung(entry);
3250 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3251
3252 /*
3253 * Clear the pte entry and flush it first, before updating the
3254 * pte with the new entry, to keep TLBs on different CPUs in
3255 * sync. This code used to set the new PTE then flush TLBs, but
3256 * that left a window where the new PTE could be loaded into
3257 * some TLBs while the old PTE remains in others.
3258 */
3259 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3260 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3261 lru_cache_add_inactive_or_unevictable(new_page, vma);
3262 /*
3263 * We call the notify macro here because, when using secondary
3264 * mmu page tables (such as kvm shadow page tables), we want the
3265 * new page to be mapped directly into the secondary page table.
3266 */
3267 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3268 update_mmu_cache(vma, vmf->address, vmf->pte);
3269 if (old_page) {
3270 /*
3271 * Only after switching the pte to the new page may
3272 * we remove the mapcount here. Otherwise another
3273 * process may come and find the rmap count decremented
3274 * before the pte is switched to the new page, and
3275 * "reuse" the old page writing into it while our pte
3276 * here still points into it and can be read by other
3277 * threads.
3278 *
3279 * The critical issue is to order this
3280 * page_remove_rmap with the ptp_clear_flush above.
3281 * Those stores are ordered by (if nothing else,)
3282 * the barrier present in the atomic_add_negative
3283 * in page_remove_rmap.
3284 *
3285 * Then the TLB flush in ptep_clear_flush ensures that
3286 * no process can access the old page before the
3287 * decremented mapcount is visible. And the old page
3288 * cannot be reused until after the decremented
3289 * mapcount is visible. So transitively, TLBs to
3290 * old page will be flushed before it can be reused.
3291 */
3292 page_remove_rmap(old_page, false);
3293 }
3294
3295 /* Free the old page.. */
3296 new_page = old_page;
3297 page_copied = 1;
3298 } else {
3299 update_mmu_tlb(vma, vmf->address, vmf->pte);
3300 }
3301
3302 if (new_page)
3303 put_page(new_page);
3304
3305 pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 /*
3307 * No need to double call mmu_notifier->invalidate_range() callback as
3308 * the above ptep_clear_flush_notify() did already call it.
3309 */
3310 mmu_notifier_invalidate_range_only_end(&range);
3311 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3312 mmu_notifier_unlock(mm);
3313 if (old_page) {
3314 /*
3315 * Don't let another task, with possibly unlocked vma,
3316 * keep the mlocked page.
3317 */
3318 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3319 lock_page(old_page); /* LRU manipulation */
3320 if (PageMlocked(old_page))
3321 munlock_vma_page(old_page);
3322 unlock_page(old_page);
3323 }
3324 if (page_copied)
3325 free_swap_cache(old_page);
3326 put_page(old_page);
3327 }
3328 return page_copied ? VM_FAULT_WRITE : 0;
3329 out_notify:
3330 mmu_notifier_invalidate_range_only_end(&range);
3331 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3332 mmu_notifier_unlock(mm);
3333 out_free_new:
3334 put_page(new_page);
3335 out:
3336 if (old_page)
3337 put_page(old_page);
3338 return ret;
3339 }
3340
3341 /**
3342 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3343 * writeable once the page is prepared
3344 *
3345 * @vmf: structure describing the fault
3346 *
3347 * This function handles all that is needed to finish a write page fault in a
3348 * shared mapping due to PTE being read-only once the mapped page is prepared.
3349 * It handles locking of PTE and modifying it.
3350 *
3351 * The function expects the page to be locked or other protection against
3352 * concurrent faults / writeback (such as DAX radix tree locks).
3353 *
3354 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3355 * we acquired PTE lock.
3356 */
finish_mkwrite_fault(struct vm_fault * vmf)3357 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3358 {
3359 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3360 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3361 &vmf->ptl);
3362 /*
3363 * We might have raced with another page fault while we released the
3364 * pte_offset_map_lock.
3365 */
3366 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3367 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3368 pte_unmap_unlock(vmf->pte, vmf->ptl);
3369 return VM_FAULT_NOPAGE;
3370 }
3371 wp_page_reuse(vmf);
3372 return 0;
3373 }
3374
3375 /*
3376 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3377 * mapping
3378 */
wp_pfn_shared(struct vm_fault * vmf)3379 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3380 {
3381 struct vm_area_struct *vma = vmf->vma;
3382
3383 VM_BUG_ON(vmf->flags & FAULT_FLAG_SPECULATIVE);
3384 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3385 vm_fault_t ret;
3386
3387 pte_unmap_unlock(vmf->pte, vmf->ptl);
3388 vmf->flags |= FAULT_FLAG_MKWRITE;
3389 ret = vma->vm_ops->pfn_mkwrite(vmf);
3390 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3391 return ret;
3392 return finish_mkwrite_fault(vmf);
3393 }
3394 wp_page_reuse(vmf);
3395 return VM_FAULT_WRITE;
3396 }
3397
wp_page_shared(struct vm_fault * vmf)3398 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3399 __releases(vmf->ptl)
3400 {
3401 struct vm_area_struct *vma = vmf->vma;
3402 vm_fault_t ret = VM_FAULT_WRITE;
3403
3404 VM_BUG_ON(vmf->flags & FAULT_FLAG_SPECULATIVE);
3405
3406 get_page(vmf->page);
3407
3408 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3409 vm_fault_t tmp;
3410
3411 pte_unmap_unlock(vmf->pte, vmf->ptl);
3412 tmp = do_page_mkwrite(vmf);
3413 if (unlikely(!tmp || (tmp &
3414 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3415 put_page(vmf->page);
3416 return tmp;
3417 }
3418 tmp = finish_mkwrite_fault(vmf);
3419 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3420 unlock_page(vmf->page);
3421 put_page(vmf->page);
3422 return tmp;
3423 }
3424 } else {
3425 wp_page_reuse(vmf);
3426 lock_page(vmf->page);
3427 }
3428 ret |= fault_dirty_shared_page(vmf);
3429 put_page(vmf->page);
3430
3431 return ret;
3432 }
3433
3434 /*
3435 * This routine handles present pages, when users try to write
3436 * to a shared page. It is done by copying the page to a new address
3437 * and decrementing the shared-page counter for the old page.
3438 *
3439 * Note that this routine assumes that the protection checks have been
3440 * done by the caller (the low-level page fault routine in most cases).
3441 * Thus we can safely just mark it writable once we've done any necessary
3442 * COW.
3443 *
3444 * We also mark the page dirty at this point even though the page will
3445 * change only once the write actually happens. This avoids a few races,
3446 * and potentially makes it more efficient.
3447 *
3448 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3449 * but allow concurrent faults), with pte both mapped and locked.
3450 * We return with mmap_lock still held, but pte unmapped and unlocked.
3451 */
do_wp_page(struct vm_fault * vmf)3452 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3453 __releases(vmf->ptl)
3454 {
3455 struct vm_area_struct *vma = vmf->vma;
3456
3457 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3458 count_vm_spf_event(SPF_ATTEMPT_WP);
3459
3460 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
3462 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3463 count_vm_spf_event(SPF_ABORT_USERFAULTFD);
3464 return VM_FAULT_RETRY;
3465 }
3466 return handle_userfault(vmf, VM_UFFD_WP);
3467 }
3468
3469 /*
3470 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3471 * is flushed in this case before copying.
3472 */
3473 if (unlikely(userfaultfd_wp(vmf->vma) &&
3474 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3475 flush_tlb_page(vmf->vma, vmf->address);
3476
3477 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3478 if (!vmf->page) {
3479 /*
3480 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3481 * VM_PFNMAP VMA.
3482 *
3483 * We should not cow pages in a shared writeable mapping.
3484 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3485 */
3486 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3487 (VM_WRITE|VM_SHARED))
3488 return wp_pfn_shared(vmf);
3489
3490 pte_unmap_unlock(vmf->pte, vmf->ptl);
3491 vmf->pte = NULL;
3492 return wp_page_copy(vmf);
3493 }
3494
3495 /*
3496 * Take out anonymous pages first, anonymous shared vmas are
3497 * not dirty accountable.
3498 */
3499 if (PageAnon(vmf->page)) {
3500 struct page *page = vmf->page;
3501
3502 /* PageKsm() doesn't necessarily raise the page refcount */
3503 if (PageKsm(page) || page_count(page) != 1)
3504 goto copy;
3505 if (!trylock_page(page))
3506 goto copy;
3507 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3508 unlock_page(page);
3509 goto copy;
3510 }
3511 /*
3512 * Ok, we've got the only map reference, and the only
3513 * page count reference, and the page is locked,
3514 * it's dark out, and we're wearing sunglasses. Hit it.
3515 */
3516 unlock_page(page);
3517 wp_page_reuse(vmf);
3518 return VM_FAULT_WRITE;
3519 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3520 (VM_WRITE|VM_SHARED))) {
3521 return wp_page_shared(vmf);
3522 }
3523 copy:
3524 /*
3525 * Ok, we need to copy. Oh, well..
3526 */
3527 get_page(vmf->page);
3528
3529 pte_unmap_unlock(vmf->pte, vmf->ptl);
3530 vmf->pte = NULL;
3531 return wp_page_copy(vmf);
3532 }
3533
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3534 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3535 unsigned long start_addr, unsigned long end_addr,
3536 struct zap_details *details)
3537 {
3538 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3539 }
3540
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3541 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3542 struct zap_details *details)
3543 {
3544 struct vm_area_struct *vma;
3545 pgoff_t vba, vea, zba, zea;
3546
3547 vma_interval_tree_foreach(vma, root,
3548 details->first_index, details->last_index) {
3549
3550 vba = vma->vm_pgoff;
3551 vea = vba + vma_pages(vma) - 1;
3552 zba = details->first_index;
3553 if (zba < vba)
3554 zba = vba;
3555 zea = details->last_index;
3556 if (zea > vea)
3557 zea = vea;
3558
3559 unmap_mapping_range_vma(vma,
3560 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3561 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3562 details);
3563 }
3564 }
3565
3566 /**
3567 * unmap_mapping_page() - Unmap single page from processes.
3568 * @page: The locked page to be unmapped.
3569 *
3570 * Unmap this page from any userspace process which still has it mmaped.
3571 * Typically, for efficiency, the range of nearby pages has already been
3572 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3573 * truncation or invalidation holds the lock on a page, it may find that
3574 * the page has been remapped again: and then uses unmap_mapping_page()
3575 * to unmap it finally.
3576 */
unmap_mapping_page(struct page * page)3577 void unmap_mapping_page(struct page *page)
3578 {
3579 struct address_space *mapping = page->mapping;
3580 struct zap_details details = { };
3581
3582 VM_BUG_ON(!PageLocked(page));
3583 VM_BUG_ON(PageTail(page));
3584
3585 details.check_mapping = mapping;
3586 details.first_index = page->index;
3587 details.last_index = page->index + thp_nr_pages(page) - 1;
3588 details.single_page = page;
3589
3590 i_mmap_lock_write(mapping);
3591 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3592 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3593 i_mmap_unlock_write(mapping);
3594 }
3595
3596 /**
3597 * unmap_mapping_pages() - Unmap pages from processes.
3598 * @mapping: The address space containing pages to be unmapped.
3599 * @start: Index of first page to be unmapped.
3600 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3601 * @even_cows: Whether to unmap even private COWed pages.
3602 *
3603 * Unmap the pages in this address space from any userspace process which
3604 * has them mmaped. Generally, you want to remove COWed pages as well when
3605 * a file is being truncated, but not when invalidating pages from the page
3606 * cache.
3607 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3608 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3609 pgoff_t nr, bool even_cows)
3610 {
3611 struct zap_details details = { };
3612
3613 details.check_mapping = even_cows ? NULL : mapping;
3614 details.first_index = start;
3615 details.last_index = start + nr - 1;
3616 if (details.last_index < details.first_index)
3617 details.last_index = ULONG_MAX;
3618
3619 i_mmap_lock_write(mapping);
3620 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3621 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3622 i_mmap_unlock_write(mapping);
3623 }
3624 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3625
3626 /**
3627 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3628 * address_space corresponding to the specified byte range in the underlying
3629 * file.
3630 *
3631 * @mapping: the address space containing mmaps to be unmapped.
3632 * @holebegin: byte in first page to unmap, relative to the start of
3633 * the underlying file. This will be rounded down to a PAGE_SIZE
3634 * boundary. Note that this is different from truncate_pagecache(), which
3635 * must keep the partial page. In contrast, we must get rid of
3636 * partial pages.
3637 * @holelen: size of prospective hole in bytes. This will be rounded
3638 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3639 * end of the file.
3640 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3641 * but 0 when invalidating pagecache, don't throw away private data.
3642 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3643 void unmap_mapping_range(struct address_space *mapping,
3644 loff_t const holebegin, loff_t const holelen, int even_cows)
3645 {
3646 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3647 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3648
3649 /* Check for overflow. */
3650 if (sizeof(holelen) > sizeof(hlen)) {
3651 long long holeend =
3652 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3653 if (holeend & ~(long long)ULONG_MAX)
3654 hlen = ULONG_MAX - hba + 1;
3655 }
3656
3657 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3658 }
3659 EXPORT_SYMBOL(unmap_mapping_range);
3660
3661 /*
3662 * Restore a potential device exclusive pte to a working pte entry
3663 */
remove_device_exclusive_entry(struct vm_fault * vmf)3664 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3665 {
3666 struct page *page = vmf->page;
3667 struct vm_area_struct *vma = vmf->vma;
3668 struct mmu_notifier_range range;
3669
3670 /*
3671 * We need a reference to lock the page because we don't hold
3672 * the PTL so a racing thread can remove the device-exclusive
3673 * entry and unmap it. If the page is free the entry must
3674 * have been removed already. If it happens to have already
3675 * been re-allocated after being freed all we do is lock and
3676 * unlock it.
3677 */
3678 if (!get_page_unless_zero(page))
3679 return 0;
3680
3681 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
3682 put_page(page);
3683 return VM_FAULT_RETRY;
3684 }
3685 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3686 vma->vm_mm, vmf->address & PAGE_MASK,
3687 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3688 mmu_notifier_invalidate_range_start(&range);
3689
3690 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3691 &vmf->ptl);
3692 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3693 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3694
3695 pte_unmap_unlock(vmf->pte, vmf->ptl);
3696 unlock_page(page);
3697 put_page(page);
3698
3699 mmu_notifier_invalidate_range_end(&range);
3700 return 0;
3701 }
3702
3703 /*
3704 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3705 * but allow concurrent faults), and pte mapped but not yet locked.
3706 * We return with pte unmapped and unlocked.
3707 *
3708 * We return with the mmap_lock locked or unlocked in the same cases
3709 * as does filemap_fault().
3710 */
do_swap_page(struct vm_fault * vmf)3711 vm_fault_t do_swap_page(struct vm_fault *vmf)
3712 {
3713 struct vm_area_struct *vma = vmf->vma;
3714 struct page *page = NULL, *swapcache;
3715 struct swap_info_struct *si = NULL;
3716 swp_entry_t entry;
3717 pte_t pte;
3718 int locked;
3719 int exclusive = 0;
3720 vm_fault_t ret = 0;
3721 void *shadow = NULL;
3722
3723 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3724 bool allow_swap_spf = false;
3725
3726 /* ksm_might_need_to_copy() needs a stable VMA, spf can't be used */
3727 #ifndef CONFIG_KSM
3728 trace_android_vh_do_swap_page_spf(&allow_swap_spf);
3729 #endif
3730 if (!allow_swap_spf) {
3731 pte_unmap(vmf->pte);
3732 count_vm_spf_event(SPF_ABORT_SWAP);
3733 return VM_FAULT_RETRY;
3734 }
3735 }
3736
3737 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
3738 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3739 ret = VM_FAULT_RETRY;
3740 goto out;
3741 }
3742
3743 entry = pte_to_swp_entry(vmf->orig_pte);
3744 if (unlikely(non_swap_entry(entry))) {
3745 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3746 ret = VM_FAULT_RETRY;
3747 goto out;
3748 }
3749 if (is_migration_entry(entry)) {
3750 migration_entry_wait(vma->vm_mm, vmf->pmd,
3751 vmf->address);
3752 } else if (is_device_exclusive_entry(entry)) {
3753 vmf->page = pfn_swap_entry_to_page(entry);
3754 ret = remove_device_exclusive_entry(vmf);
3755 } else if (is_device_private_entry(entry)) {
3756 vmf->page = pfn_swap_entry_to_page(entry);
3757 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3758 } else if (is_hwpoison_entry(entry)) {
3759 ret = VM_FAULT_HWPOISON;
3760 } else {
3761 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3762 ret = VM_FAULT_SIGBUS;
3763 }
3764 goto out;
3765 }
3766
3767 /* Prevent swapoff from happening to us. */
3768 si = get_swap_device(entry);
3769 if (unlikely(!si))
3770 goto out;
3771
3772 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3773 page = lookup_swap_cache(entry, vma, vmf->address);
3774 swapcache = page;
3775
3776 if (!page) {
3777 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3778 __swap_count(entry) == 1) {
3779 /* skip swapcache */
3780 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_CMA;
3781
3782 trace_android_rvh_set_skip_swapcache_flags(&flags);
3783 page = alloc_page_vma(flags, vma, vmf->address);
3784 if (page) {
3785 __SetPageLocked(page);
3786 __SetPageSwapBacked(page);
3787
3788 if (mem_cgroup_swapin_charge_page(page,
3789 vma->vm_mm, GFP_KERNEL, entry)) {
3790 ret = VM_FAULT_OOM;
3791 goto out_page;
3792 }
3793 mem_cgroup_swapin_uncharge_swap(entry);
3794
3795 shadow = get_shadow_from_swap_cache(entry);
3796 if (shadow)
3797 workingset_refault(page, shadow);
3798
3799 lru_cache_add(page);
3800
3801 /* To provide entry to swap_readpage() */
3802 set_page_private(page, entry.val);
3803 swap_readpage(page, true);
3804 set_page_private(page, 0);
3805 }
3806 } else if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3807 /*
3808 * Don't try readahead during a speculative page fault
3809 * as the VMA's boundaries may change in our back.
3810 * If the page is not in the swap cache and synchronous
3811 * read is disabled, fall back to the regular page fault
3812 * mechanism.
3813 */
3814 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3815 ret = VM_FAULT_RETRY;
3816 goto out;
3817 } else {
3818 page = swapin_readahead(entry,
3819 GFP_HIGHUSER_MOVABLE | __GFP_CMA,
3820 vmf);
3821 swapcache = page;
3822 }
3823
3824 if (!page) {
3825 /*
3826 * Back out if somebody else faulted in this pte
3827 * while we released the pte lock.
3828 */
3829 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3830 vmf->address, &vmf->ptl);
3831 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3832 ret = VM_FAULT_OOM;
3833 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3834 goto unlock;
3835 }
3836
3837 /* Had to read the page from swap area: Major fault */
3838 ret = VM_FAULT_MAJOR;
3839 count_vm_event(PGMAJFAULT);
3840 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3841 } else if (PageHWPoison(page)) {
3842 /*
3843 * hwpoisoned dirty swapcache pages are kept for killing
3844 * owner processes (which may be unknown at hwpoison time)
3845 */
3846 ret = VM_FAULT_HWPOISON;
3847 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3848 goto out_release;
3849 }
3850
3851 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3852
3853 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3854 if (!locked) {
3855 ret |= VM_FAULT_RETRY;
3856 goto out_release;
3857 }
3858
3859 /*
3860 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3861 * release the swapcache from under us. The page pin, and pte_same
3862 * test below, are not enough to exclude that. Even if it is still
3863 * swapcache, we need to check that the page's swap has not changed.
3864 */
3865 if (unlikely((!PageSwapCache(page) ||
3866 page_private(page) != entry.val)) && swapcache)
3867 goto out_page;
3868
3869 page = ksm_might_need_to_copy(page, vma, vmf->address);
3870 if (unlikely(!page)) {
3871 ret = VM_FAULT_OOM;
3872 page = swapcache;
3873 goto out_page;
3874 }
3875
3876 cgroup_throttle_swaprate(page, GFP_KERNEL);
3877
3878 /*
3879 * Back out if somebody else already faulted in this pte.
3880 */
3881 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3882 &vmf->ptl);
3883 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3884 goto out_nomap;
3885
3886 if (unlikely(!PageUptodate(page))) {
3887 ret = VM_FAULT_SIGBUS;
3888 goto out_nomap;
3889 }
3890
3891 /*
3892 * The page isn't present yet, go ahead with the fault.
3893 *
3894 * Be careful about the sequence of operations here.
3895 * To get its accounting right, reuse_swap_page() must be called
3896 * while the page is counted on swap but not yet in mapcount i.e.
3897 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3898 * must be called after the swap_free(), or it will never succeed.
3899 */
3900
3901 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3902 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3903 pte = mk_pte(page, vma->vm_page_prot);
3904 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3905 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3906 vmf->flags &= ~FAULT_FLAG_WRITE;
3907 ret |= VM_FAULT_WRITE;
3908 exclusive = RMAP_EXCLUSIVE;
3909 }
3910 flush_icache_page(vma, page);
3911 if (pte_swp_soft_dirty(vmf->orig_pte))
3912 pte = pte_mksoft_dirty(pte);
3913 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3914 pte = pte_mkuffd_wp(pte);
3915 pte = pte_wrprotect(pte);
3916 }
3917 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3918 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3919 vmf->orig_pte = pte;
3920
3921 /* ksm created a completely new copy */
3922 if (unlikely(page != swapcache && swapcache)) {
3923 page_add_new_anon_rmap(page, vma, vmf->address, false);
3924 lru_cache_add_inactive_or_unevictable(page, vma);
3925 } else {
3926 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3927 }
3928
3929 swap_free(entry);
3930 if (mem_cgroup_swap_full(page) ||
3931 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3932 try_to_free_swap(page);
3933 unlock_page(page);
3934 if (page != swapcache && swapcache) {
3935 /*
3936 * Hold the lock to avoid the swap entry to be reused
3937 * until we take the PT lock for the pte_same() check
3938 * (to avoid false positives from pte_same). For
3939 * further safety release the lock after the swap_free
3940 * so that the swap count won't change under a
3941 * parallel locked swapcache.
3942 */
3943 unlock_page(swapcache);
3944 put_page(swapcache);
3945 }
3946
3947 if (vmf->flags & FAULT_FLAG_WRITE) {
3948 ret |= do_wp_page(vmf);
3949 if (ret & VM_FAULT_ERROR)
3950 ret &= VM_FAULT_ERROR;
3951 goto out;
3952 }
3953
3954 /* No need to invalidate - it was non-present before */
3955 update_mmu_cache(vma, vmf->address, vmf->pte);
3956 unlock:
3957 pte_unmap_unlock(vmf->pte, vmf->ptl);
3958 out:
3959 if (si)
3960 put_swap_device(si);
3961 return ret;
3962 out_nomap:
3963 pte_unmap_unlock(vmf->pte, vmf->ptl);
3964 out_page:
3965 unlock_page(page);
3966 out_release:
3967 put_page(page);
3968 if (page != swapcache && swapcache) {
3969 unlock_page(swapcache);
3970 put_page(swapcache);
3971 }
3972 if (si)
3973 put_swap_device(si);
3974 return ret;
3975 }
3976
3977 /*
3978 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3979 * but allow concurrent faults), and pte mapped but not yet locked.
3980 * We return with mmap_lock still held, but pte unmapped and unlocked.
3981 */
do_anonymous_page(struct vm_fault * vmf)3982 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3983 {
3984 struct vm_area_struct *vma = vmf->vma;
3985 struct page *page = NULL;
3986 vm_fault_t ret = 0;
3987 pte_t entry;
3988
3989 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3990 count_vm_spf_event(SPF_ATTEMPT_ANON);
3991
3992 /* File mapping without ->vm_ops ? */
3993 if (vma->vm_flags & VM_SHARED)
3994 return VM_FAULT_SIGBUS;
3995
3996 /* Do not check unstable pmd, if it's changed will retry later */
3997 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3998 goto skip_pmd_checks;
3999
4000 /*
4001 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4002 * pte_offset_map() on pmds where a huge pmd might be created
4003 * from a different thread.
4004 *
4005 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4006 * parallel threads are excluded by other means.
4007 *
4008 * Here we only have mmap_read_lock(mm).
4009 */
4010 if (pte_alloc(vma->vm_mm, vmf->pmd))
4011 return VM_FAULT_OOM;
4012
4013 /* See comment in __handle_mm_fault() */
4014 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4015 return 0;
4016
4017 skip_pmd_checks:
4018 /* Use the zero-page for reads */
4019 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4020 !mm_forbids_zeropage(vma->vm_mm)) {
4021 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4022 vma->vm_page_prot));
4023 } else {
4024 /* Allocate our own private page. */
4025 if (unlikely(!vma->anon_vma)) {
4026 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
4027 count_vm_spf_event(SPF_ABORT_ANON_VMA);
4028 return VM_FAULT_RETRY;
4029 }
4030 if (__anon_vma_prepare(vma))
4031 goto oom;
4032 }
4033 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4034 if (!page)
4035 goto oom;
4036
4037 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
4038 goto oom_free_page;
4039 cgroup_throttle_swaprate(page, GFP_KERNEL);
4040
4041 /*
4042 * The memory barrier inside __SetPageUptodate makes sure that
4043 * preceding stores to the page contents become visible before
4044 * the set_pte_at() write.
4045 */
4046 __SetPageUptodate(page);
4047
4048 entry = mk_pte(page, vma->vm_page_prot);
4049 entry = pte_sw_mkyoung(entry);
4050 if (vma->vm_flags & VM_WRITE)
4051 entry = pte_mkwrite(pte_mkdirty(entry));
4052 }
4053
4054 if (!pte_map_lock(vmf)) {
4055 ret = VM_FAULT_RETRY;
4056 goto release;
4057 }
4058 if (!pte_none(*vmf->pte)) {
4059 update_mmu_tlb(vma, vmf->address, vmf->pte);
4060 goto unlock;
4061 }
4062
4063 ret = check_stable_address_space(vma->vm_mm);
4064 if (ret)
4065 goto unlock;
4066
4067 /* Deliver the page fault to userland, check inside PT lock */
4068 if (userfaultfd_missing(vma)) {
4069 pte_unmap_unlock(vmf->pte, vmf->ptl);
4070 if (page)
4071 put_page(page);
4072 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
4073 count_vm_spf_event(SPF_ABORT_USERFAULTFD);
4074 return VM_FAULT_RETRY;
4075 }
4076 return handle_userfault(vmf, VM_UFFD_MISSING);
4077 }
4078
4079 if (page) {
4080 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4081 page_add_new_anon_rmap(page, vma, vmf->address, false);
4082 lru_cache_add_inactive_or_unevictable(page, vma);
4083 }
4084
4085 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4086
4087 /* No need to invalidate - it was non-present before */
4088 update_mmu_cache(vma, vmf->address, vmf->pte);
4089 pte_unmap_unlock(vmf->pte, vmf->ptl);
4090 return 0;
4091 unlock:
4092 pte_unmap_unlock(vmf->pte, vmf->ptl);
4093 release:
4094 if (page)
4095 put_page(page);
4096 return ret;
4097 oom_free_page:
4098 put_page(page);
4099 oom:
4100 return VM_FAULT_OOM;
4101 }
4102
4103 /*
4104 * The mmap_lock must have been held on entry, and may have been
4105 * released depending on flags and vma->vm_ops->fault() return value.
4106 * See filemap_fault() and __lock_page_retry().
4107 */
__do_fault(struct vm_fault * vmf)4108 static vm_fault_t __do_fault(struct vm_fault *vmf)
4109 {
4110 struct vm_area_struct *vma = vmf->vma;
4111 vm_fault_t ret;
4112
4113 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
4114 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
4115 rcu_read_lock();
4116 if (!mmap_seq_read_check(vmf->vma->vm_mm, vmf->seq,
4117 SPF_ABORT_FAULT)) {
4118 ret = VM_FAULT_RETRY;
4119 } else {
4120 /*
4121 * The mmap sequence count check guarantees that the
4122 * vma we fetched at the start of the fault was still
4123 * current at that point in time. The rcu read lock
4124 * ensures vmf->vma->vm_file stays valid.
4125 */
4126 ret = vma->vm_ops->fault(vmf);
4127 }
4128 rcu_read_unlock();
4129 } else
4130 #endif
4131 {
4132 /*
4133 * Preallocate pte before we take page_lock because
4134 * this might lead to deadlocks for memcg reclaim
4135 * which waits for pages under writeback:
4136 * lock_page(A)
4137 * SetPageWriteback(A)
4138 * unlock_page(A)
4139 * lock_page(B)
4140 * lock_page(B)
4141 * pte_alloc_one
4142 * shrink_page_list
4143 * wait_on_page_writeback(A)
4144 * SetPageWriteback(B)
4145 * unlock_page(B)
4146 * # flush A, B to clear writeback
4147 */
4148 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4149 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4150 if (!vmf->prealloc_pte)
4151 return VM_FAULT_OOM;
4152 smp_wmb(); /* See comment in __pte_alloc() */
4153 }
4154
4155 ret = vma->vm_ops->fault(vmf);
4156 }
4157
4158 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4159 VM_FAULT_DONE_COW)))
4160 return ret;
4161
4162 if (unlikely(PageHWPoison(vmf->page))) {
4163 struct page *page = vmf->page;
4164 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4165 if (ret & VM_FAULT_LOCKED) {
4166 if (page_mapped(page))
4167 unmap_mapping_pages(page_mapping(page),
4168 page->index, 1, false);
4169 /* Retry if a clean page was removed from the cache. */
4170 if (invalidate_inode_page(page))
4171 poisonret = VM_FAULT_NOPAGE;
4172 unlock_page(page);
4173 }
4174 put_page(page);
4175 vmf->page = NULL;
4176 return poisonret;
4177 }
4178
4179 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4180 lock_page(vmf->page);
4181 else
4182 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4183
4184 return ret;
4185 }
4186
4187 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4188 static void deposit_prealloc_pte(struct vm_fault *vmf)
4189 {
4190 struct vm_area_struct *vma = vmf->vma;
4191
4192 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4193 /*
4194 * We are going to consume the prealloc table,
4195 * count that as nr_ptes.
4196 */
4197 mm_inc_nr_ptes(vma->vm_mm);
4198 vmf->prealloc_pte = NULL;
4199 }
4200
do_set_pmd(struct vm_fault * vmf,struct page * page)4201 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4202 {
4203 struct vm_area_struct *vma = vmf->vma;
4204 bool write = vmf->flags & FAULT_FLAG_WRITE;
4205 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4206 pmd_t entry;
4207 int i;
4208 vm_fault_t ret = VM_FAULT_FALLBACK;
4209
4210 if (!transhuge_vma_suitable(vma, haddr))
4211 return ret;
4212
4213 page = compound_head(page);
4214 if (compound_order(page) != HPAGE_PMD_ORDER)
4215 return ret;
4216
4217 /*
4218 * Just backoff if any subpage of a THP is corrupted otherwise
4219 * the corrupted page may mapped by PMD silently to escape the
4220 * check. This kind of THP just can be PTE mapped. Access to
4221 * the corrupted subpage should trigger SIGBUS as expected.
4222 */
4223 if (unlikely(PageHasHWPoisoned(page)))
4224 return ret;
4225
4226 /*
4227 * Archs like ppc64 need additional space to store information
4228 * related to pte entry. Use the preallocated table for that.
4229 */
4230 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4231 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4232 if (!vmf->prealloc_pte)
4233 return VM_FAULT_OOM;
4234 smp_wmb(); /* See comment in __pte_alloc() */
4235 }
4236
4237 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4238 if (unlikely(!pmd_none(*vmf->pmd)))
4239 goto out;
4240
4241 for (i = 0; i < HPAGE_PMD_NR; i++)
4242 flush_icache_page(vma, page + i);
4243
4244 entry = mk_huge_pmd(page, vma->vm_page_prot);
4245 if (write)
4246 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4247
4248 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4249 page_add_file_rmap(page, true);
4250 /*
4251 * deposit and withdraw with pmd lock held
4252 */
4253 if (arch_needs_pgtable_deposit())
4254 deposit_prealloc_pte(vmf);
4255
4256 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4257
4258 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4259
4260 /* fault is handled */
4261 ret = 0;
4262 count_vm_event(THP_FILE_MAPPED);
4263 out:
4264 spin_unlock(vmf->ptl);
4265 return ret;
4266 }
4267 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4268 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4269 {
4270 return VM_FAULT_FALLBACK;
4271 }
4272 #endif
4273
do_set_pte(struct vm_fault * vmf,struct page * page,unsigned long addr)4274 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4275 {
4276 struct vm_area_struct *vma = vmf->vma;
4277 bool write = vmf->flags & FAULT_FLAG_WRITE;
4278 bool prefault = vmf->address != addr;
4279 pte_t entry;
4280
4281 flush_icache_page(vma, page);
4282 entry = mk_pte(page, vma->vm_page_prot);
4283
4284 if (prefault && arch_wants_old_prefaulted_pte())
4285 entry = pte_mkold(entry);
4286 else
4287 entry = pte_sw_mkyoung(entry);
4288
4289 if (write)
4290 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4291 /* copy-on-write page */
4292 if (write && !(vma->vm_flags & VM_SHARED)) {
4293 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4294 page_add_new_anon_rmap(page, vma, addr, false);
4295 lru_cache_add_inactive_or_unevictable(page, vma);
4296 } else {
4297 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4298 page_add_file_rmap(page, false);
4299 }
4300 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4301 }
4302
4303 /**
4304 * finish_fault - finish page fault once we have prepared the page to fault
4305 *
4306 * @vmf: structure describing the fault
4307 *
4308 * This function handles all that is needed to finish a page fault once the
4309 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4310 * given page, adds reverse page mapping, handles memcg charges and LRU
4311 * addition.
4312 *
4313 * The function expects the page to be locked and on success it consumes a
4314 * reference of a page being mapped (for the PTE which maps it).
4315 *
4316 * Return: %0 on success, %VM_FAULT_ code in case of error.
4317 */
finish_fault(struct vm_fault * vmf)4318 vm_fault_t finish_fault(struct vm_fault *vmf)
4319 {
4320 struct vm_area_struct *vma = vmf->vma;
4321 struct page *page;
4322 vm_fault_t ret;
4323
4324 /* Did we COW the page? */
4325 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4326 page = vmf->cow_page;
4327 else
4328 page = vmf->page;
4329
4330 /*
4331 * check even for read faults because we might have lost our CoWed
4332 * page
4333 */
4334 if (!(vma->vm_flags & VM_SHARED)) {
4335 ret = check_stable_address_space(vma->vm_mm);
4336 if (ret)
4337 return ret;
4338 }
4339
4340 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
4341 if (pmd_none(*vmf->pmd)) {
4342 if (PageTransCompound(page)) {
4343 ret = do_set_pmd(vmf, page);
4344 if (ret != VM_FAULT_FALLBACK)
4345 return ret;
4346 }
4347
4348 if (vmf->prealloc_pte) {
4349 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4350 if (likely(pmd_none(*vmf->pmd))) {
4351 mm_inc_nr_ptes(vma->vm_mm);
4352 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4353 vmf->prealloc_pte = NULL;
4354 }
4355 spin_unlock(vmf->ptl);
4356 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4357 return VM_FAULT_OOM;
4358 }
4359 }
4360
4361 /*
4362 * See comment in handle_pte_fault() for how this scenario happens, we
4363 * need to return NOPAGE so that we drop this page.
4364 */
4365 if (pmd_devmap_trans_unstable(vmf->pmd))
4366 return VM_FAULT_NOPAGE;
4367 }
4368
4369 if (!pte_map_lock(vmf))
4370 return VM_FAULT_RETRY;
4371 ret = 0;
4372 /* Re-check under ptl */
4373 if (likely(pte_none(*vmf->pte)))
4374 do_set_pte(vmf, page, vmf->address);
4375 else
4376 ret = VM_FAULT_NOPAGE;
4377
4378 update_mmu_tlb(vma, vmf->address, vmf->pte);
4379 pte_unmap_unlock(vmf->pte, vmf->ptl);
4380 return ret;
4381 }
4382
4383 static unsigned long fault_around_bytes __read_mostly =
4384 rounddown_pow_of_two(65536);
4385
4386 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4387 static int fault_around_bytes_get(void *data, u64 *val)
4388 {
4389 *val = fault_around_bytes;
4390 return 0;
4391 }
4392
4393 /*
4394 * fault_around_bytes must be rounded down to the nearest page order as it's
4395 * what do_fault_around() expects to see.
4396 */
fault_around_bytes_set(void * data,u64 val)4397 static int fault_around_bytes_set(void *data, u64 val)
4398 {
4399 if (val / PAGE_SIZE > PTRS_PER_PTE)
4400 return -EINVAL;
4401 if (val > PAGE_SIZE)
4402 fault_around_bytes = rounddown_pow_of_two(val);
4403 else
4404 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4405 return 0;
4406 }
4407 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4408 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4409
fault_around_debugfs(void)4410 static int __init fault_around_debugfs(void)
4411 {
4412 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4413 &fault_around_bytes_fops);
4414 return 0;
4415 }
4416 late_initcall(fault_around_debugfs);
4417 #endif
4418
4419 /*
4420 * do_fault_around() tries to map few pages around the fault address. The hope
4421 * is that the pages will be needed soon and this will lower the number of
4422 * faults to handle.
4423 *
4424 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4425 * not ready to be mapped: not up-to-date, locked, etc.
4426 *
4427 * This function is called with the page table lock taken. In the split ptlock
4428 * case the page table lock only protects only those entries which belong to
4429 * the page table corresponding to the fault address.
4430 *
4431 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4432 * only once.
4433 *
4434 * fault_around_bytes defines how many bytes we'll try to map.
4435 * do_fault_around() expects it to be set to a power of two less than or equal
4436 * to PTRS_PER_PTE.
4437 *
4438 * The virtual address of the area that we map is naturally aligned to
4439 * fault_around_bytes rounded down to the machine page size
4440 * (and therefore to page order). This way it's easier to guarantee
4441 * that we don't cross page table boundaries.
4442 */
do_fault_around(struct vm_fault * vmf)4443 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4444 {
4445 unsigned long address = vmf->address, nr_pages, mask;
4446 pgoff_t start_pgoff = vmf->pgoff;
4447 pgoff_t end_pgoff;
4448 int off;
4449 vm_fault_t ret;
4450
4451 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4452 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4453
4454 address = max(address & mask, vmf->vma->vm_start);
4455 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4456 start_pgoff -= off;
4457
4458 /*
4459 * end_pgoff is either the end of the page table, the end of
4460 * the vma or nr_pages from start_pgoff, depending what is nearest.
4461 */
4462 end_pgoff = start_pgoff -
4463 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4464 PTRS_PER_PTE - 1;
4465 end_pgoff = min3(end_pgoff, vma_data_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4466 start_pgoff + nr_pages - 1);
4467
4468 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
4469 pmd_none(*vmf->pmd)) {
4470 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4471 if (!vmf->prealloc_pte)
4472 return VM_FAULT_OOM;
4473 smp_wmb(); /* See comment in __pte_alloc() */
4474 }
4475
4476 rcu_read_lock();
4477 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
4478 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
4479 if (!mmap_seq_read_check(vmf->vma->vm_mm, vmf->seq,
4480 SPF_ABORT_FAULT)) {
4481 rcu_read_unlock();
4482 return VM_FAULT_RETRY;
4483 }
4484 /*
4485 * the mmap sequence check verified that vmf->vma was still
4486 * current at that point in time.
4487 * The rcu read lock ensures vmf->vma->vm_file stays valid.
4488 */
4489 }
4490 #endif
4491 ret = vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4492 rcu_read_unlock();
4493 return ret;
4494 }
4495
do_read_fault(struct vm_fault * vmf)4496 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4497 {
4498 struct vm_area_struct *vma = vmf->vma;
4499 vm_fault_t ret = 0;
4500
4501 /*
4502 * Let's call ->map_pages() first and use ->fault() as fallback
4503 * if page by the offset is not ready to be mapped (cold cache or
4504 * something).
4505 */
4506 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4507 if (likely(!userfaultfd_minor(vmf->vma))) {
4508 ret = do_fault_around(vmf);
4509 if (ret)
4510 return ret;
4511 }
4512 }
4513
4514 ret = __do_fault(vmf);
4515 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516 return ret;
4517
4518 ret |= finish_fault(vmf);
4519 unlock_page(vmf->page);
4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 put_page(vmf->page);
4522 return ret;
4523 }
4524
do_cow_fault(struct vm_fault * vmf)4525 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4526 {
4527 struct vm_area_struct *vma = vmf->vma;
4528 vm_fault_t ret;
4529
4530 if (unlikely(!vma->anon_vma)) {
4531 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
4532 count_vm_spf_event(SPF_ABORT_ANON_VMA);
4533 return VM_FAULT_RETRY;
4534 }
4535 if (__anon_vma_prepare(vma))
4536 return VM_FAULT_OOM;
4537 }
4538
4539 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4540 if (!vmf->cow_page)
4541 return VM_FAULT_OOM;
4542
4543 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4544 put_page(vmf->cow_page);
4545 return VM_FAULT_OOM;
4546 }
4547 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4548
4549 ret = __do_fault(vmf);
4550 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4551 goto uncharge_out;
4552 if (ret & VM_FAULT_DONE_COW)
4553 return ret;
4554
4555 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4556 __SetPageUptodate(vmf->cow_page);
4557
4558 ret |= finish_fault(vmf);
4559 unlock_page(vmf->page);
4560 put_page(vmf->page);
4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 goto uncharge_out;
4563 return ret;
4564 uncharge_out:
4565 put_page(vmf->cow_page);
4566 return ret;
4567 }
4568
do_shared_fault(struct vm_fault * vmf)4569 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4570 {
4571 struct vm_area_struct *vma = vmf->vma;
4572 vm_fault_t ret, tmp;
4573
4574 VM_BUG_ON(vmf->flags & FAULT_FLAG_SPECULATIVE);
4575
4576 ret = __do_fault(vmf);
4577 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4578 return ret;
4579
4580 /*
4581 * Check if the backing address space wants to know that the page is
4582 * about to become writable
4583 */
4584 if (vma->vm_ops->page_mkwrite) {
4585 unlock_page(vmf->page);
4586 tmp = do_page_mkwrite(vmf);
4587 if (unlikely(!tmp ||
4588 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4589 put_page(vmf->page);
4590 return tmp;
4591 }
4592 }
4593
4594 ret |= finish_fault(vmf);
4595 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4596 VM_FAULT_RETRY))) {
4597 unlock_page(vmf->page);
4598 put_page(vmf->page);
4599 return ret;
4600 }
4601
4602 ret |= fault_dirty_shared_page(vmf);
4603 return ret;
4604 }
4605
4606 /*
4607 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4608 * but allow concurrent faults).
4609 * The mmap_lock may have been released depending on flags and our
4610 * return value. See filemap_fault() and __lock_page_or_retry().
4611 * If mmap_lock is released, vma may become invalid (for example
4612 * by other thread calling munmap()).
4613 */
do_fault(struct vm_fault * vmf)4614 static vm_fault_t do_fault(struct vm_fault *vmf)
4615 {
4616 struct vm_area_struct *vma = vmf->vma;
4617 struct mm_struct *vm_mm = vma->vm_mm;
4618 vm_fault_t ret;
4619
4620 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4621 count_vm_spf_event(SPF_ATTEMPT_FILE);
4622
4623 /*
4624 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4625 */
4626 if (!vma->vm_ops->fault) {
4627 VM_BUG_ON(vmf->flags & FAULT_FLAG_SPECULATIVE);
4628
4629 /*
4630 * If we find a migration pmd entry or a none pmd entry, which
4631 * should never happen, return SIGBUS
4632 */
4633 if (unlikely(!pmd_present(*vmf->pmd)))
4634 ret = VM_FAULT_SIGBUS;
4635 else {
4636 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4637 vmf->pmd,
4638 vmf->address,
4639 &vmf->ptl);
4640 /*
4641 * Make sure this is not a temporary clearing of pte
4642 * by holding ptl and checking again. A R/M/W update
4643 * of pte involves: take ptl, clearing the pte so that
4644 * we don't have concurrent modification by hardware
4645 * followed by an update.
4646 */
4647 if (unlikely(pte_none(*vmf->pte)))
4648 ret = VM_FAULT_SIGBUS;
4649 else
4650 ret = VM_FAULT_NOPAGE;
4651
4652 pte_unmap_unlock(vmf->pte, vmf->ptl);
4653 }
4654 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4655 ret = do_read_fault(vmf);
4656 else if (!(vma->vm_flags & VM_SHARED))
4657 ret = do_cow_fault(vmf);
4658 else
4659 ret = do_shared_fault(vmf);
4660
4661 /* preallocated pagetable is unused: free it */
4662 if (vmf->prealloc_pte) {
4663 pte_free(vm_mm, vmf->prealloc_pte);
4664 vmf->prealloc_pte = NULL;
4665 }
4666 return ret;
4667 }
4668
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4669 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4670 unsigned long addr, int page_nid, int *flags)
4671 {
4672 get_page(page);
4673
4674 count_vm_numa_event(NUMA_HINT_FAULTS);
4675 if (page_nid == numa_node_id()) {
4676 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4677 *flags |= TNF_FAULT_LOCAL;
4678 }
4679
4680 return mpol_misplaced(page, vma, addr);
4681 }
4682
do_numa_page(struct vm_fault * vmf)4683 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4684 {
4685 struct vm_area_struct *vma = vmf->vma;
4686 struct page *page = NULL;
4687 int page_nid = NUMA_NO_NODE;
4688 int last_cpupid;
4689 int target_nid;
4690 pte_t pte, old_pte;
4691 bool was_writable = pte_savedwrite(vmf->orig_pte);
4692 int flags = 0;
4693
4694 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4695 count_vm_spf_event(SPF_ATTEMPT_NUMA);
4696
4697 /*
4698 * The "pte" at this point cannot be used safely without
4699 * validation through pte_unmap_same(). It's of NUMA type but
4700 * the pfn may be screwed if the read is non atomic.
4701 */
4702 if (!pte_spinlock(vmf))
4703 return VM_FAULT_RETRY;
4704 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4705 pte_unmap_unlock(vmf->pte, vmf->ptl);
4706 goto out;
4707 }
4708
4709 /* Get the normal PTE */
4710 old_pte = ptep_get(vmf->pte);
4711 pte = pte_modify(old_pte, vma->vm_page_prot);
4712
4713 page = vm_normal_page(vma, vmf->address, pte);
4714 if (!page)
4715 goto out_map;
4716
4717 /* TODO: handle PTE-mapped THP */
4718 if (PageCompound(page))
4719 goto out_map;
4720
4721 /*
4722 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4723 * much anyway since they can be in shared cache state. This misses
4724 * the case where a mapping is writable but the process never writes
4725 * to it but pte_write gets cleared during protection updates and
4726 * pte_dirty has unpredictable behaviour between PTE scan updates,
4727 * background writeback, dirty balancing and application behaviour.
4728 */
4729 if (!was_writable)
4730 flags |= TNF_NO_GROUP;
4731
4732 /*
4733 * Flag if the page is shared between multiple address spaces. This
4734 * is later used when determining whether to group tasks together
4735 */
4736 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4737 flags |= TNF_SHARED;
4738
4739 last_cpupid = page_cpupid_last(page);
4740 page_nid = page_to_nid(page);
4741 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4742 &flags);
4743 if (target_nid == NUMA_NO_NODE) {
4744 put_page(page);
4745 goto out_map;
4746 }
4747 pte_unmap_unlock(vmf->pte, vmf->ptl);
4748
4749 /* Migrate to the requested node */
4750 if (migrate_misplaced_page(page, vma, target_nid)) {
4751 page_nid = target_nid;
4752 flags |= TNF_MIGRATED;
4753 } else {
4754 flags |= TNF_MIGRATE_FAIL;
4755 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4756 spin_lock(vmf->ptl);
4757 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4758 pte_unmap_unlock(vmf->pte, vmf->ptl);
4759 goto out;
4760 }
4761 goto out_map;
4762 }
4763
4764 out:
4765 if (page_nid != NUMA_NO_NODE)
4766 task_numa_fault(last_cpupid, page_nid, 1, flags);
4767 return 0;
4768 out_map:
4769 /*
4770 * Make it present again, depending on how arch implements
4771 * non-accessible ptes, some can allow access by kernel mode.
4772 */
4773 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4774 pte = pte_modify(old_pte, vma->vm_page_prot);
4775 pte = pte_mkyoung(pte);
4776 if (was_writable)
4777 pte = pte_mkwrite(pte);
4778 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4779 update_mmu_cache(vma, vmf->address, vmf->pte);
4780 pte_unmap_unlock(vmf->pte, vmf->ptl);
4781 goto out;
4782 }
4783
create_huge_pmd(struct vm_fault * vmf)4784 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4785 {
4786 if (vma_is_anonymous(vmf->vma))
4787 return do_huge_pmd_anonymous_page(vmf);
4788 if (vmf->vma->vm_ops->huge_fault)
4789 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4790 return VM_FAULT_FALLBACK;
4791 }
4792
4793 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4794 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4795 {
4796 if (vma_is_anonymous(vmf->vma)) {
4797 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4798 return handle_userfault(vmf, VM_UFFD_WP);
4799 return do_huge_pmd_wp_page(vmf);
4800 }
4801 if (vmf->vma->vm_ops->huge_fault) {
4802 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4803
4804 if (!(ret & VM_FAULT_FALLBACK))
4805 return ret;
4806 }
4807
4808 /* COW or write-notify handled on pte level: split pmd. */
4809 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4810
4811 return VM_FAULT_FALLBACK;
4812 }
4813
create_huge_pud(struct vm_fault * vmf)4814 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4815 {
4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4817 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4818 /* No support for anonymous transparent PUD pages yet */
4819 if (vma_is_anonymous(vmf->vma))
4820 return VM_FAULT_FALLBACK;
4821 if (vmf->vma->vm_ops->huge_fault)
4822 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4823 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4824 return VM_FAULT_FALLBACK;
4825 }
4826
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4827 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4828 {
4829 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4830 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4831 /* No support for anonymous transparent PUD pages yet */
4832 if (vma_is_anonymous(vmf->vma))
4833 goto split;
4834 if (vmf->vma->vm_ops->huge_fault) {
4835 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4836
4837 if (!(ret & VM_FAULT_FALLBACK))
4838 return ret;
4839 }
4840 split:
4841 /* COW or write-notify not handled on PUD level: split pud.*/
4842 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4843 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4844 return VM_FAULT_FALLBACK;
4845 }
4846
4847 /*
4848 * These routines also need to handle stuff like marking pages dirty
4849 * and/or accessed for architectures that don't do it in hardware (most
4850 * RISC architectures). The early dirtying is also good on the i386.
4851 *
4852 * There is also a hook called "update_mmu_cache()" that architectures
4853 * with external mmu caches can use to update those (ie the Sparc or
4854 * PowerPC hashed page tables that act as extended TLBs).
4855 *
4856 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4857 * concurrent faults).
4858 *
4859 * The mmap_lock may have been released depending on flags and our return value.
4860 * See filemap_fault() and __lock_page_or_retry().
4861 */
handle_pte_fault(struct vm_fault * vmf)4862 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4863 {
4864 pte_t entry;
4865
4866 if (!vmf->pte) {
4867 if (vma_is_anonymous(vmf->vma))
4868 return do_anonymous_page(vmf);
4869 else
4870 return do_fault(vmf);
4871 }
4872
4873 if (!pte_present(vmf->orig_pte))
4874 return do_swap_page(vmf);
4875
4876 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4877 return do_numa_page(vmf);
4878
4879 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4880 count_vm_spf_event(SPF_ATTEMPT_PTE);
4881
4882 if (!pte_spinlock(vmf))
4883 return VM_FAULT_RETRY;
4884 entry = vmf->orig_pte;
4885 if (unlikely(!pte_same(*vmf->pte, entry))) {
4886 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4887 goto unlock;
4888 }
4889 if (vmf->flags & FAULT_FLAG_WRITE) {
4890 if (!pte_write(entry))
4891 return do_wp_page(vmf);
4892 entry = pte_mkdirty(entry);
4893 }
4894 entry = pte_mkyoung(entry);
4895 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4896 vmf->flags & FAULT_FLAG_WRITE)) {
4897 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4898 } else {
4899 /* Skip spurious TLB flush for retried page fault */
4900 if (vmf->flags & FAULT_FLAG_TRIED)
4901 goto unlock;
4902 /*
4903 * This is needed only for protection faults but the arch code
4904 * is not yet telling us if this is a protection fault or not.
4905 * This still avoids useless tlb flushes for .text page faults
4906 * with threads.
4907 */
4908 if (vmf->flags & FAULT_FLAG_WRITE)
4909 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4910 }
4911 unlock:
4912 pte_unmap_unlock(vmf->pte, vmf->ptl);
4913 return 0;
4914 }
4915
4916 /*
4917 * By the time we get here, we already hold the mm semaphore
4918 *
4919 * The mmap_lock may have been released depending on flags and our
4920 * return value. See filemap_fault() and __lock_page_or_retry().
4921 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long seq)4922 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4923 unsigned long address, unsigned int flags, unsigned long seq)
4924 {
4925 struct vm_fault vmf = {
4926 .vma = vma,
4927 .address = address & PAGE_MASK,
4928 .flags = flags,
4929 .pgoff = linear_page_index(vma, address),
4930 .gfp_mask = __get_fault_gfp_mask(vma),
4931 };
4932 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4933 struct mm_struct *mm = vma->vm_mm;
4934 pgd_t *pgd;
4935 p4d_t *p4d;
4936 vm_fault_t ret;
4937
4938 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
4939 if (flags & FAULT_FLAG_SPECULATIVE) {
4940 pgd_t pgdval;
4941 p4d_t p4dval;
4942 pud_t pudval;
4943 bool uffd_missing_sigbus = false;
4944
4945 #ifdef CONFIG_USERFAULTFD
4946 /*
4947 * Only support SPF for SIGBUS+MISSING userfaults in private
4948 * anonymous VMAs.
4949 */
4950 uffd_missing_sigbus = vma_is_anonymous(vma) &&
4951 (vma->vm_flags & VM_UFFD_MISSING) &&
4952 userfaultfd_using_sigbus(vma);
4953 #endif
4954
4955 vmf.seq = seq;
4956
4957 speculative_page_walk_begin();
4958 pgd = pgd_offset(mm, address);
4959 pgdval = READ_ONCE(*pgd);
4960 if (pgd_none(pgdval) || unlikely(pgd_bad(pgdval))) {
4961 count_vm_spf_event(SPF_ABORT_PUD);
4962 goto spf_fail;
4963 }
4964
4965 p4d = p4d_offset(pgd, address);
4966 if (pgd_val(READ_ONCE(*pgd)) != pgd_val(pgdval))
4967 goto spf_fail;
4968 p4dval = READ_ONCE(*p4d);
4969 if (p4d_none(p4dval) || unlikely(p4d_bad(p4dval))) {
4970 count_vm_spf_event(SPF_ABORT_PUD);
4971 goto spf_fail;
4972 }
4973
4974 vmf.pud = pud_offset(p4d, address);
4975 if (p4d_val(READ_ONCE(*p4d)) != p4d_val(p4dval))
4976 goto spf_fail;
4977 pudval = READ_ONCE(*vmf.pud);
4978 if (pud_none(pudval) || unlikely(pud_bad(pudval)) ||
4979 unlikely(pud_trans_huge(pudval)) ||
4980 unlikely(pud_devmap(pudval))) {
4981 count_vm_spf_event(SPF_ABORT_PUD);
4982 goto spf_fail;
4983 }
4984
4985 vmf.pmd = pmd_offset(vmf.pud, address);
4986 if (pud_val(READ_ONCE(*vmf.pud)) != pud_val(pudval))
4987 goto spf_fail;
4988 vmf.orig_pmd = READ_ONCE(*vmf.pmd);
4989
4990 /*
4991 * pmd_none could mean that a hugepage collapse is in
4992 * progress in our back as collapse_huge_page() mark
4993 * it before invalidating the pte (which is done once
4994 * the IPI is catched by all CPU and we have interrupt
4995 * disabled). For this reason we cannot handle THP in
4996 * a speculative way since we can't safely identify an
4997 * in progress collapse operation done in our back on
4998 * that PMD.
4999 */
5000 if (unlikely(pmd_none(vmf.orig_pmd) ||
5001 is_swap_pmd(vmf.orig_pmd) ||
5002 pmd_trans_huge(vmf.orig_pmd) ||
5003 pmd_devmap(vmf.orig_pmd))) {
5004 count_vm_spf_event(SPF_ABORT_PMD);
5005 goto spf_fail;
5006 }
5007
5008 /*
5009 * The above does not allocate/instantiate page-tables because
5010 * doing so would lead to the possibility of instantiating
5011 * page-tables after free_pgtables() -- and consequently
5012 * leaking them.
5013 *
5014 * The result is that we take at least one non-speculative
5015 * fault per PMD in order to instantiate it.
5016 */
5017
5018 vmf.pte = pte_offset_map(vmf.pmd, address);
5019 if (pmd_val(READ_ONCE(*vmf.pmd)) != pmd_val(vmf.orig_pmd)) {
5020 pte_unmap(vmf.pte);
5021 vmf.pte = NULL;
5022 goto spf_fail;
5023 }
5024 vmf.orig_pte = READ_ONCE(*vmf.pte);
5025 barrier();
5026 if (pte_none(vmf.orig_pte)) {
5027 pte_unmap(vmf.pte);
5028 vmf.pte = NULL;
5029 }
5030
5031 speculative_page_walk_end();
5032
5033 if (!vmf.pte && uffd_missing_sigbus)
5034 return VM_FAULT_SIGBUS;
5035
5036 return handle_pte_fault(&vmf);
5037
5038 spf_fail:
5039 speculative_page_walk_end();
5040 /*
5041 * Failing page-table walk is similar to page-missing so give an
5042 * opportunity to SIGBUS+MISSING userfault to handle it before
5043 * retrying with mmap_lock
5044 */
5045 return uffd_missing_sigbus ? VM_FAULT_SIGBUS : VM_FAULT_RETRY;
5046 }
5047 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
5048
5049 pgd = pgd_offset(mm, address);
5050 p4d = p4d_alloc(mm, pgd, address);
5051 if (!p4d)
5052 return VM_FAULT_OOM;
5053
5054 vmf.pud = pud_alloc(mm, p4d, address);
5055 if (!vmf.pud)
5056 return VM_FAULT_OOM;
5057 retry_pud:
5058 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
5059 ret = create_huge_pud(&vmf);
5060 if (!(ret & VM_FAULT_FALLBACK))
5061 return ret;
5062 } else {
5063 pud_t orig_pud = *vmf.pud;
5064
5065 barrier();
5066 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5067
5068 /* NUMA case for anonymous PUDs would go here */
5069
5070 if (dirty && !pud_write(orig_pud)) {
5071 ret = wp_huge_pud(&vmf, orig_pud);
5072 if (!(ret & VM_FAULT_FALLBACK))
5073 return ret;
5074 } else {
5075 huge_pud_set_accessed(&vmf, orig_pud);
5076 return 0;
5077 }
5078 }
5079 }
5080
5081 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5082 if (!vmf.pmd)
5083 return VM_FAULT_OOM;
5084
5085 /* Huge pud page fault raced with pmd_alloc? */
5086 if (pud_trans_unstable(vmf.pud))
5087 goto retry_pud;
5088
5089 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
5090 ret = create_huge_pmd(&vmf);
5091 if (!(ret & VM_FAULT_FALLBACK))
5092 return ret;
5093 } else {
5094 vmf.orig_pmd = *vmf.pmd;
5095
5096 barrier();
5097 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5098 VM_BUG_ON(thp_migration_supported() &&
5099 !is_pmd_migration_entry(vmf.orig_pmd));
5100 if (is_pmd_migration_entry(vmf.orig_pmd))
5101 pmd_migration_entry_wait(mm, vmf.pmd);
5102 return 0;
5103 }
5104 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5105 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5106 return do_huge_pmd_numa_page(&vmf);
5107
5108 if (dirty && !pmd_write(vmf.orig_pmd)) {
5109 ret = wp_huge_pmd(&vmf);
5110 if (!(ret & VM_FAULT_FALLBACK))
5111 return ret;
5112 } else {
5113 huge_pmd_set_accessed(&vmf);
5114 return 0;
5115 }
5116 }
5117 }
5118
5119 if (unlikely(pmd_none(*vmf.pmd))) {
5120 /*
5121 * Leave __pte_alloc() until later: because vm_ops->fault may
5122 * want to allocate huge page, and if we expose page table
5123 * for an instant, it will be difficult to retract from
5124 * concurrent faults and from rmap lookups.
5125 */
5126 vmf.pte = NULL;
5127 } else {
5128 /*
5129 * If a huge pmd materialized under us just retry later. Use
5130 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
5131 * of pmd_trans_huge() to ensure the pmd didn't become
5132 * pmd_trans_huge under us and then back to pmd_none, as a
5133 * result of MADV_DONTNEED running immediately after a huge pmd
5134 * fault in a different thread of this mm, in turn leading to a
5135 * misleading pmd_trans_huge() retval. All we have to ensure is
5136 * that it is a regular pmd that we can walk with
5137 * pte_offset_map() and we can do that through an atomic read
5138 * in C, which is what pmd_trans_unstable() provides.
5139 */
5140 if (pmd_devmap_trans_unstable(vmf.pmd))
5141 return 0;
5142 /*
5143 * A regular pmd is established and it can't morph into a huge
5144 * pmd from under us anymore at this point because we hold the
5145 * mmap_lock read mode and khugepaged takes it in write mode.
5146 * So now it's safe to run pte_offset_map().
5147 */
5148 vmf.pte = pte_offset_map(vmf.pmd, vmf.address);
5149 vmf.orig_pte = *vmf.pte;
5150
5151 /*
5152 * some architectures can have larger ptes than wordsize,
5153 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
5154 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
5155 * accesses. The code below just needs a consistent view
5156 * for the ifs and we later double check anyway with the
5157 * ptl lock held. So here a barrier will do.
5158 */
5159 barrier();
5160 if (pte_none(vmf.orig_pte)) {
5161 pte_unmap(vmf.pte);
5162 vmf.pte = NULL;
5163 }
5164 }
5165
5166 return handle_pte_fault(&vmf);
5167 }
5168
5169 /**
5170 * mm_account_fault - Do page fault accounting
5171 *
5172 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5173 * of perf event counters, but we'll still do the per-task accounting to
5174 * the task who triggered this page fault.
5175 * @address: the faulted address.
5176 * @flags: the fault flags.
5177 * @ret: the fault retcode.
5178 *
5179 * This will take care of most of the page fault accounting. Meanwhile, it
5180 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5181 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5182 * still be in per-arch page fault handlers at the entry of page fault.
5183 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5184 static inline void mm_account_fault(struct pt_regs *regs,
5185 unsigned long address, unsigned int flags,
5186 vm_fault_t ret)
5187 {
5188 bool major;
5189
5190 /*
5191 * We don't do accounting for some specific faults:
5192 *
5193 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5194 * includes arch_vma_access_permitted() failing before reaching here.
5195 * So this is not a "this many hardware page faults" counter. We
5196 * should use the hw profiling for that.
5197 *
5198 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5199 * once they're completed.
5200 */
5201 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5202 return;
5203
5204 /*
5205 * We define the fault as a major fault when the final successful fault
5206 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5207 * handle it immediately previously).
5208 */
5209 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5210
5211 if (major)
5212 current->maj_flt++;
5213 else
5214 current->min_flt++;
5215
5216 /*
5217 * If the fault is done for GUP, regs will be NULL. We only do the
5218 * accounting for the per thread fault counters who triggered the
5219 * fault, and we skip the perf event updates.
5220 */
5221 if (!regs)
5222 return;
5223
5224 if (major)
5225 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5226 else
5227 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5228 }
5229
5230 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5231 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5232 {
5233 /* the LRU algorithm only applies to accesses with recency */
5234 current->in_lru_fault = vma_has_recency(vma);
5235 }
5236
lru_gen_exit_fault(void)5237 static void lru_gen_exit_fault(void)
5238 {
5239 current->in_lru_fault = false;
5240 }
5241 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5242 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5243 {
5244 }
5245
lru_gen_exit_fault(void)5246 static void lru_gen_exit_fault(void)
5247 {
5248 }
5249 #endif /* CONFIG_LRU_GEN */
5250
5251 /*
5252 * By the time we get here, we already hold the mm semaphore
5253 *
5254 * The mmap_lock may have been released depending on flags and our
5255 * return value. See filemap_fault() and __lock_page_or_retry().
5256 */
do_handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long seq,struct pt_regs * regs)5257 vm_fault_t do_handle_mm_fault(struct vm_area_struct *vma,
5258 unsigned long address, unsigned int flags,
5259 unsigned long seq, struct pt_regs *regs)
5260 {
5261 vm_fault_t ret;
5262
5263 VM_BUG_ON((flags & FAULT_FLAG_SPECULATIVE) &&
5264 !vma_can_speculate(vma, flags));
5265
5266 __set_current_state(TASK_RUNNING);
5267
5268 count_vm_event(PGFAULT);
5269 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5270
5271 /* do counter updates before entering really critical section. */
5272 check_sync_rss_stat(current);
5273
5274 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5275 flags & FAULT_FLAG_INSTRUCTION,
5276 flags & FAULT_FLAG_REMOTE))
5277 return VM_FAULT_SIGSEGV;
5278
5279 /*
5280 * Enable the memcg OOM handling for faults triggered in user
5281 * space. Kernel faults are handled more gracefully.
5282 */
5283 if (flags & FAULT_FLAG_USER)
5284 mem_cgroup_enter_user_fault();
5285
5286 lru_gen_enter_fault(vma);
5287
5288 if (unlikely(is_vm_hugetlb_page(vma))) {
5289 VM_BUG_ON(flags & FAULT_FLAG_SPECULATIVE);
5290 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5291 } else {
5292 ret = __handle_mm_fault(vma, address, flags, seq);
5293 }
5294
5295 lru_gen_exit_fault();
5296
5297 if (flags & FAULT_FLAG_USER) {
5298 mem_cgroup_exit_user_fault();
5299 /*
5300 * The task may have entered a memcg OOM situation but
5301 * if the allocation error was handled gracefully (no
5302 * VM_FAULT_OOM), there is no need to kill anything.
5303 * Just clean up the OOM state peacefully.
5304 */
5305 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5306 mem_cgroup_oom_synchronize(false);
5307 }
5308
5309 mm_account_fault(regs, address, flags, ret);
5310
5311 return ret;
5312 }
5313 EXPORT_SYMBOL_GPL(do_handle_mm_fault);
5314
5315 #ifndef __PAGETABLE_P4D_FOLDED
5316 /*
5317 * Allocate p4d page table.
5318 * We've already handled the fast-path in-line.
5319 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5320 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5321 {
5322 p4d_t *new = p4d_alloc_one(mm, address);
5323 if (!new)
5324 return -ENOMEM;
5325
5326 smp_wmb(); /* See comment in __pte_alloc */
5327
5328 spin_lock(&mm->page_table_lock);
5329 if (pgd_present(*pgd)) /* Another has populated it */
5330 p4d_free(mm, new);
5331 else
5332 pgd_populate(mm, pgd, new);
5333 spin_unlock(&mm->page_table_lock);
5334 return 0;
5335 }
5336 #endif /* __PAGETABLE_P4D_FOLDED */
5337
5338 #ifndef __PAGETABLE_PUD_FOLDED
5339 /*
5340 * Allocate page upper directory.
5341 * We've already handled the fast-path in-line.
5342 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5343 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5344 {
5345 pud_t *new = pud_alloc_one(mm, address);
5346 if (!new)
5347 return -ENOMEM;
5348
5349 smp_wmb(); /* See comment in __pte_alloc */
5350
5351 spin_lock(&mm->page_table_lock);
5352 if (!p4d_present(*p4d)) {
5353 mm_inc_nr_puds(mm);
5354 p4d_populate(mm, p4d, new);
5355 } else /* Another has populated it */
5356 pud_free(mm, new);
5357 spin_unlock(&mm->page_table_lock);
5358 return 0;
5359 }
5360 #endif /* __PAGETABLE_PUD_FOLDED */
5361
5362 #ifndef __PAGETABLE_PMD_FOLDED
5363 /*
5364 * Allocate page middle directory.
5365 * We've already handled the fast-path in-line.
5366 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5367 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5368 {
5369 spinlock_t *ptl;
5370 pmd_t *new = pmd_alloc_one(mm, address);
5371 if (!new)
5372 return -ENOMEM;
5373
5374 smp_wmb(); /* See comment in __pte_alloc */
5375
5376 ptl = pud_lock(mm, pud);
5377 if (!pud_present(*pud)) {
5378 mm_inc_nr_pmds(mm);
5379 pud_populate(mm, pud, new);
5380 } else /* Another has populated it */
5381 pmd_free(mm, new);
5382 spin_unlock(ptl);
5383 return 0;
5384 }
5385 #endif /* __PAGETABLE_PMD_FOLDED */
5386
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)5387 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
5388 struct mmu_notifier_range *range, pte_t **ptepp,
5389 pmd_t **pmdpp, spinlock_t **ptlp)
5390 {
5391 pgd_t *pgd;
5392 p4d_t *p4d;
5393 pud_t *pud;
5394 pmd_t *pmd;
5395 pte_t *ptep;
5396
5397 pgd = pgd_offset(mm, address);
5398 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5399 goto out;
5400
5401 p4d = p4d_offset(pgd, address);
5402 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5403 goto out;
5404
5405 pud = pud_offset(p4d, address);
5406 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5407 goto out;
5408
5409 pmd = pmd_offset(pud, address);
5410 VM_BUG_ON(pmd_trans_huge(*pmd));
5411
5412 if (pmd_huge(*pmd)) {
5413 if (!pmdpp)
5414 goto out;
5415
5416 if (range) {
5417 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
5418 NULL, mm, address & PMD_MASK,
5419 (address & PMD_MASK) + PMD_SIZE);
5420 mmu_notifier_invalidate_range_start(range);
5421 }
5422 *ptlp = pmd_lock(mm, pmd);
5423 if (pmd_huge(*pmd)) {
5424 *pmdpp = pmd;
5425 return 0;
5426 }
5427 spin_unlock(*ptlp);
5428 if (range)
5429 mmu_notifier_invalidate_range_end(range);
5430 }
5431
5432 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5433 goto out;
5434
5435 if (range) {
5436 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5437 address & PAGE_MASK,
5438 (address & PAGE_MASK) + PAGE_SIZE);
5439 mmu_notifier_invalidate_range_start(range);
5440 }
5441 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5442 if (!pte_present(*ptep))
5443 goto unlock;
5444 *ptepp = ptep;
5445 return 0;
5446 unlock:
5447 pte_unmap_unlock(ptep, *ptlp);
5448 if (range)
5449 mmu_notifier_invalidate_range_end(range);
5450 out:
5451 return -EINVAL;
5452 }
5453
5454 /**
5455 * follow_pte - look up PTE at a user virtual address
5456 * @mm: the mm_struct of the target address space
5457 * @address: user virtual address
5458 * @ptepp: location to store found PTE
5459 * @ptlp: location to store the lock for the PTE
5460 *
5461 * On a successful return, the pointer to the PTE is stored in @ptepp;
5462 * the corresponding lock is taken and its location is stored in @ptlp.
5463 * The contents of the PTE are only stable until @ptlp is released;
5464 * any further use, if any, must be protected against invalidation
5465 * with MMU notifiers.
5466 *
5467 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5468 * should be taken for read.
5469 *
5470 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5471 * it is not a good general-purpose API.
5472 *
5473 * Return: zero on success, -ve otherwise.
5474 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5475 int follow_pte(struct mm_struct *mm, unsigned long address,
5476 pte_t **ptepp, spinlock_t **ptlp)
5477 {
5478 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5479 }
5480 EXPORT_SYMBOL_GPL(follow_pte);
5481
5482 /**
5483 * follow_pfn - look up PFN at a user virtual address
5484 * @vma: memory mapping
5485 * @address: user virtual address
5486 * @pfn: location to store found PFN
5487 *
5488 * Only IO mappings and raw PFN mappings are allowed.
5489 *
5490 * This function does not allow the caller to read the permissions
5491 * of the PTE. Do not use it.
5492 *
5493 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5494 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5495 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5496 unsigned long *pfn)
5497 {
5498 int ret = -EINVAL;
5499 spinlock_t *ptl;
5500 pte_t *ptep;
5501
5502 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5503 return ret;
5504
5505 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5506 if (ret)
5507 return ret;
5508 *pfn = pte_pfn(*ptep);
5509 pte_unmap_unlock(ptep, ptl);
5510 return 0;
5511 }
5512 EXPORT_SYMBOL(follow_pfn);
5513
5514 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5515 int follow_phys(struct vm_area_struct *vma,
5516 unsigned long address, unsigned int flags,
5517 unsigned long *prot, resource_size_t *phys)
5518 {
5519 int ret = -EINVAL;
5520 pte_t *ptep, pte;
5521 spinlock_t *ptl;
5522
5523 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5524 goto out;
5525
5526 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5527 goto out;
5528 pte = *ptep;
5529
5530 if ((flags & FOLL_WRITE) && !pte_write(pte))
5531 goto unlock;
5532
5533 *prot = pgprot_val(pte_pgprot(pte));
5534 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5535
5536 ret = 0;
5537 unlock:
5538 pte_unmap_unlock(ptep, ptl);
5539 out:
5540 return ret;
5541 }
5542
5543 /**
5544 * generic_access_phys - generic implementation for iomem mmap access
5545 * @vma: the vma to access
5546 * @addr: userspace address, not relative offset within @vma
5547 * @buf: buffer to read/write
5548 * @len: length of transfer
5549 * @write: set to FOLL_WRITE when writing, otherwise reading
5550 *
5551 * This is a generic implementation for &vm_operations_struct.access for an
5552 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5553 * not page based.
5554 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5555 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5556 void *buf, int len, int write)
5557 {
5558 resource_size_t phys_addr;
5559 unsigned long prot = 0;
5560 void __iomem *maddr;
5561 pte_t *ptep, pte;
5562 spinlock_t *ptl;
5563 int offset = offset_in_page(addr);
5564 int ret = -EINVAL;
5565
5566 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5567 return -EINVAL;
5568
5569 retry:
5570 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5571 return -EINVAL;
5572 pte = *ptep;
5573 pte_unmap_unlock(ptep, ptl);
5574
5575 prot = pgprot_val(pte_pgprot(pte));
5576 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5577
5578 if ((write & FOLL_WRITE) && !pte_write(pte))
5579 return -EINVAL;
5580
5581 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5582 if (!maddr)
5583 return -ENOMEM;
5584
5585 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5586 goto out_unmap;
5587
5588 if (!pte_same(pte, *ptep)) {
5589 pte_unmap_unlock(ptep, ptl);
5590 iounmap(maddr);
5591
5592 goto retry;
5593 }
5594
5595 if (write)
5596 memcpy_toio(maddr + offset, buf, len);
5597 else
5598 memcpy_fromio(buf, maddr + offset, len);
5599 ret = len;
5600 pte_unmap_unlock(ptep, ptl);
5601 out_unmap:
5602 iounmap(maddr);
5603
5604 return ret;
5605 }
5606 EXPORT_SYMBOL_GPL(generic_access_phys);
5607 #endif
5608
5609 /*
5610 * Access another process' address space as given in mm.
5611 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5612 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5613 int len, unsigned int gup_flags)
5614 {
5615 struct vm_area_struct *vma;
5616 void *old_buf = buf;
5617 int write = gup_flags & FOLL_WRITE;
5618
5619 if (mmap_read_lock_killable(mm))
5620 return 0;
5621
5622 /* ignore errors, just check how much was successfully transferred */
5623 while (len) {
5624 int bytes, ret, offset;
5625 void *maddr;
5626 struct page *page = NULL;
5627
5628 ret = get_user_pages_remote(mm, addr, 1,
5629 gup_flags, &page, &vma, NULL);
5630 if (ret <= 0) {
5631 #ifndef CONFIG_HAVE_IOREMAP_PROT
5632 break;
5633 #else
5634 /*
5635 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5636 * we can access using slightly different code.
5637 */
5638 vma = vma_lookup(mm, addr);
5639 if (!vma)
5640 break;
5641 if (vma->vm_ops && vma->vm_ops->access)
5642 ret = vma->vm_ops->access(vma, addr, buf,
5643 len, write);
5644 if (ret <= 0)
5645 break;
5646 bytes = ret;
5647 #endif
5648 } else {
5649 bytes = len;
5650 offset = addr & (PAGE_SIZE-1);
5651 if (bytes > PAGE_SIZE-offset)
5652 bytes = PAGE_SIZE-offset;
5653
5654 maddr = kmap(page);
5655 if (write) {
5656 copy_to_user_page(vma, page, addr,
5657 maddr + offset, buf, bytes);
5658 set_page_dirty_lock(page);
5659 } else {
5660 copy_from_user_page(vma, page, addr,
5661 buf, maddr + offset, bytes);
5662 }
5663 kunmap(page);
5664 put_page(page);
5665 }
5666 len -= bytes;
5667 buf += bytes;
5668 addr += bytes;
5669 }
5670 mmap_read_unlock(mm);
5671
5672 return buf - old_buf;
5673 }
5674
5675 /**
5676 * access_remote_vm - access another process' address space
5677 * @mm: the mm_struct of the target address space
5678 * @addr: start address to access
5679 * @buf: source or destination buffer
5680 * @len: number of bytes to transfer
5681 * @gup_flags: flags modifying lookup behaviour
5682 *
5683 * The caller must hold a reference on @mm.
5684 *
5685 * Return: number of bytes copied from source to destination.
5686 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5687 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5688 void *buf, int len, unsigned int gup_flags)
5689 {
5690 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5691 }
5692
5693 /*
5694 * Access another process' address space.
5695 * Source/target buffer must be kernel space,
5696 * Do not walk the page table directly, use get_user_pages
5697 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5698 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5699 void *buf, int len, unsigned int gup_flags)
5700 {
5701 struct mm_struct *mm;
5702 int ret;
5703
5704 mm = get_task_mm(tsk);
5705 if (!mm)
5706 return 0;
5707
5708 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5709
5710 mmput(mm);
5711
5712 return ret;
5713 }
5714 EXPORT_SYMBOL_GPL(access_process_vm);
5715
5716 /*
5717 * Print the name of a VMA.
5718 */
print_vma_addr(char * prefix,unsigned long ip)5719 void print_vma_addr(char *prefix, unsigned long ip)
5720 {
5721 struct mm_struct *mm = current->mm;
5722 struct vm_area_struct *vma;
5723
5724 /*
5725 * we might be running from an atomic context so we cannot sleep
5726 */
5727 if (!mmap_read_trylock(mm))
5728 return;
5729
5730 vma = find_vma(mm, ip);
5731 if (vma && vma->vm_file) {
5732 struct file *f = vma->vm_file;
5733 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5734 if (buf) {
5735 char *p;
5736
5737 p = file_path(f, buf, PAGE_SIZE);
5738 if (IS_ERR(p))
5739 p = "?";
5740 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5741 vma->vm_start,
5742 vma->vm_end - vma->vm_start);
5743 free_page((unsigned long)buf);
5744 }
5745 }
5746 mmap_read_unlock(mm);
5747 }
5748
5749 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5750 void __might_fault(const char *file, int line)
5751 {
5752 /*
5753 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5754 * holding the mmap_lock, this is safe because kernel memory doesn't
5755 * get paged out, therefore we'll never actually fault, and the
5756 * below annotations will generate false positives.
5757 */
5758 if (uaccess_kernel())
5759 return;
5760 if (pagefault_disabled())
5761 return;
5762 __might_sleep(file, line, 0);
5763 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5764 if (current->mm)
5765 might_lock_read(¤t->mm->mmap_lock);
5766 #endif
5767 }
5768 EXPORT_SYMBOL(__might_fault);
5769 #endif
5770
5771 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5772 /*
5773 * Process all subpages of the specified huge page with the specified
5774 * operation. The target subpage will be processed last to keep its
5775 * cache lines hot.
5776 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5777 static inline void process_huge_page(
5778 unsigned long addr_hint, unsigned int pages_per_huge_page,
5779 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5780 void *arg)
5781 {
5782 int i, n, base, l;
5783 unsigned long addr = addr_hint &
5784 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5785
5786 /* Process target subpage last to keep its cache lines hot */
5787 might_sleep();
5788 n = (addr_hint - addr) / PAGE_SIZE;
5789 if (2 * n <= pages_per_huge_page) {
5790 /* If target subpage in first half of huge page */
5791 base = 0;
5792 l = n;
5793 /* Process subpages at the end of huge page */
5794 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5795 cond_resched();
5796 process_subpage(addr + i * PAGE_SIZE, i, arg);
5797 }
5798 } else {
5799 /* If target subpage in second half of huge page */
5800 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5801 l = pages_per_huge_page - n;
5802 /* Process subpages at the begin of huge page */
5803 for (i = 0; i < base; i++) {
5804 cond_resched();
5805 process_subpage(addr + i * PAGE_SIZE, i, arg);
5806 }
5807 }
5808 /*
5809 * Process remaining subpages in left-right-left-right pattern
5810 * towards the target subpage
5811 */
5812 for (i = 0; i < l; i++) {
5813 int left_idx = base + i;
5814 int right_idx = base + 2 * l - 1 - i;
5815
5816 cond_resched();
5817 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5818 cond_resched();
5819 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5820 }
5821 }
5822
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5823 static void clear_gigantic_page(struct page *page,
5824 unsigned long addr,
5825 unsigned int pages_per_huge_page)
5826 {
5827 int i;
5828 struct page *p = page;
5829
5830 might_sleep();
5831 for (i = 0; i < pages_per_huge_page;
5832 i++, p = mem_map_next(p, page, i)) {
5833 cond_resched();
5834 clear_user_highpage(p, addr + i * PAGE_SIZE);
5835 }
5836 }
5837
clear_subpage(unsigned long addr,int idx,void * arg)5838 static void clear_subpage(unsigned long addr, int idx, void *arg)
5839 {
5840 struct page *page = arg;
5841
5842 clear_user_highpage(page + idx, addr);
5843 }
5844
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5845 void clear_huge_page(struct page *page,
5846 unsigned long addr_hint, unsigned int pages_per_huge_page)
5847 {
5848 unsigned long addr = addr_hint &
5849 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5850
5851 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5852 clear_gigantic_page(page, addr, pages_per_huge_page);
5853 return;
5854 }
5855
5856 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5857 }
5858
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5859 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5860 unsigned long addr,
5861 struct vm_area_struct *vma,
5862 unsigned int pages_per_huge_page)
5863 {
5864 int i;
5865 struct page *dst_base = dst;
5866 struct page *src_base = src;
5867
5868 for (i = 0; i < pages_per_huge_page; ) {
5869 cond_resched();
5870 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5871
5872 i++;
5873 dst = mem_map_next(dst, dst_base, i);
5874 src = mem_map_next(src, src_base, i);
5875 }
5876 }
5877
5878 struct copy_subpage_arg {
5879 struct page *dst;
5880 struct page *src;
5881 struct vm_area_struct *vma;
5882 };
5883
copy_subpage(unsigned long addr,int idx,void * arg)5884 static void copy_subpage(unsigned long addr, int idx, void *arg)
5885 {
5886 struct copy_subpage_arg *copy_arg = arg;
5887
5888 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5889 addr, copy_arg->vma);
5890 }
5891
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5892 void copy_user_huge_page(struct page *dst, struct page *src,
5893 unsigned long addr_hint, struct vm_area_struct *vma,
5894 unsigned int pages_per_huge_page)
5895 {
5896 unsigned long addr = addr_hint &
5897 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5898 struct copy_subpage_arg arg = {
5899 .dst = dst,
5900 .src = src,
5901 .vma = vma,
5902 };
5903
5904 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5905 copy_user_gigantic_page(dst, src, addr, vma,
5906 pages_per_huge_page);
5907 return;
5908 }
5909
5910 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5911 }
5912
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5913 long copy_huge_page_from_user(struct page *dst_page,
5914 const void __user *usr_src,
5915 unsigned int pages_per_huge_page,
5916 bool allow_pagefault)
5917 {
5918 void *src = (void *)usr_src;
5919 void *page_kaddr;
5920 unsigned long i, rc = 0;
5921 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5922 struct page *subpage = dst_page;
5923
5924 for (i = 0; i < pages_per_huge_page;
5925 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5926 if (allow_pagefault)
5927 page_kaddr = kmap(subpage);
5928 else
5929 page_kaddr = kmap_atomic(subpage);
5930 rc = copy_from_user(page_kaddr,
5931 (const void __user *)(src + i * PAGE_SIZE),
5932 PAGE_SIZE);
5933 if (allow_pagefault)
5934 kunmap(subpage);
5935 else
5936 kunmap_atomic(page_kaddr);
5937
5938 ret_val -= (PAGE_SIZE - rc);
5939 if (rc)
5940 break;
5941
5942 flush_dcache_page(subpage);
5943
5944 cond_resched();
5945 }
5946 return ret_val;
5947 }
5948 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5949
5950 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5951
5952 static struct kmem_cache *page_ptl_cachep;
5953
ptlock_cache_init(void)5954 void __init ptlock_cache_init(void)
5955 {
5956 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5957 SLAB_PANIC, NULL);
5958 }
5959
ptlock_alloc(struct page * page)5960 bool ptlock_alloc(struct page *page)
5961 {
5962 spinlock_t *ptl;
5963
5964 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5965 if (!ptl)
5966 return false;
5967 page->ptl = ptl;
5968 return true;
5969 }
5970
ptlock_free(struct page * page)5971 void ptlock_free(struct page *page)
5972 {
5973 kmem_cache_free(page_ptl_cachep, page->ptl);
5974 }
5975 #endif
5976