1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59
init_se_kmem_caches(void)60 int init_se_kmem_caches(void)
61 {
62 se_sess_cache = kmem_cache_create("se_sess_cache",
63 sizeof(struct se_session), __alignof__(struct se_session),
64 0, NULL);
65 if (!se_sess_cache) {
66 pr_err("kmem_cache_create() for struct se_session"
67 " failed\n");
68 goto out;
69 }
70 se_ua_cache = kmem_cache_create("se_ua_cache",
71 sizeof(struct se_ua), __alignof__(struct se_ua),
72 0, NULL);
73 if (!se_ua_cache) {
74 pr_err("kmem_cache_create() for struct se_ua failed\n");
75 goto out_free_sess_cache;
76 }
77 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 sizeof(struct t10_pr_registration),
79 __alignof__(struct t10_pr_registration), 0, NULL);
80 if (!t10_pr_reg_cache) {
81 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 " failed\n");
83 goto out_free_ua_cache;
84 }
85 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 0, NULL);
88 if (!t10_alua_lu_gp_cache) {
89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 " failed\n");
91 goto out_free_pr_reg_cache;
92 }
93 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 sizeof(struct t10_alua_lu_gp_member),
95 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 if (!t10_alua_lu_gp_mem_cache) {
97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 "cache failed\n");
99 goto out_free_lu_gp_cache;
100 }
101 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 sizeof(struct t10_alua_tg_pt_gp),
103 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 if (!t10_alua_tg_pt_gp_cache) {
105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 "cache failed\n");
107 goto out_free_lu_gp_mem_cache;
108 }
109 t10_alua_lba_map_cache = kmem_cache_create(
110 "t10_alua_lba_map_cache",
111 sizeof(struct t10_alua_lba_map),
112 __alignof__(struct t10_alua_lba_map), 0, NULL);
113 if (!t10_alua_lba_map_cache) {
114 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 "cache failed\n");
116 goto out_free_tg_pt_gp_cache;
117 }
118 t10_alua_lba_map_mem_cache = kmem_cache_create(
119 "t10_alua_lba_map_mem_cache",
120 sizeof(struct t10_alua_lba_map_member),
121 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 if (!t10_alua_lba_map_mem_cache) {
123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 "cache failed\n");
125 goto out_free_lba_map_cache;
126 }
127
128 target_completion_wq = alloc_workqueue("target_completion",
129 WQ_MEM_RECLAIM, 0);
130 if (!target_completion_wq)
131 goto out_free_lba_map_mem_cache;
132
133 target_submission_wq = alloc_workqueue("target_submission",
134 WQ_MEM_RECLAIM, 0);
135 if (!target_submission_wq)
136 goto out_free_completion_wq;
137
138 return 0;
139
140 out_free_completion_wq:
141 destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 kmem_cache_destroy(se_sess_cache);
158 out:
159 return -ENOMEM;
160 }
161
release_se_kmem_caches(void)162 void release_se_kmem_caches(void)
163 {
164 destroy_workqueue(target_submission_wq);
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_lba_map_cache);
173 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179
180 /*
181 * Allocate a new row index for the entry type specified
182 */
scsi_get_new_index(scsi_index_t type)183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 u32 new_index;
186
187 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188
189 spin_lock(&scsi_mib_index_lock);
190 new_index = ++scsi_mib_index[type];
191 spin_unlock(&scsi_mib_index_lock);
192
193 return new_index;
194 }
195
transport_subsystem_check_init(void)196 void transport_subsystem_check_init(void)
197 {
198 int ret;
199 static int sub_api_initialized;
200
201 if (sub_api_initialized)
202 return;
203
204 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 if (ret != 0)
206 pr_err("Unable to load target_core_iblock\n");
207
208 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 if (ret != 0)
210 pr_err("Unable to load target_core_file\n");
211
212 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 if (ret != 0)
214 pr_err("Unable to load target_core_pscsi\n");
215
216 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 if (ret != 0)
218 pr_err("Unable to load target_core_user\n");
219
220 sub_api_initialized = 1;
221 }
222
target_release_sess_cmd_refcnt(struct percpu_ref * ref)223 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
224 {
225 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
226
227 wake_up(&sess->cmd_count_wq);
228 }
229
230 /**
231 * transport_init_session - initialize a session object
232 * @se_sess: Session object pointer.
233 *
234 * The caller must have zero-initialized @se_sess before calling this function.
235 */
transport_init_session(struct se_session * se_sess)236 int transport_init_session(struct se_session *se_sess)
237 {
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 spin_lock_init(&se_sess->sess_cmd_lock);
241 init_waitqueue_head(&se_sess->cmd_count_wq);
242 init_completion(&se_sess->stop_done);
243 atomic_set(&se_sess->stopped, 0);
244 return percpu_ref_init(&se_sess->cmd_count,
245 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
transport_uninit_session(struct se_session * se_sess)249 void transport_uninit_session(struct se_session *se_sess)
250 {
251 /*
252 * Drivers like iscsi and loop do not call target_stop_session
253 * during session shutdown so we have to drop the ref taken at init
254 * time here.
255 */
256 if (!atomic_read(&se_sess->stopped))
257 percpu_ref_put(&se_sess->cmd_count);
258
259 percpu_ref_exit(&se_sess->cmd_count);
260 }
261
262 /**
263 * transport_alloc_session - allocate a session object and initialize it
264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
265 */
transport_alloc_session(enum target_prot_op sup_prot_ops)266 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
267 {
268 struct se_session *se_sess;
269 int ret;
270
271 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
272 if (!se_sess) {
273 pr_err("Unable to allocate struct se_session from"
274 " se_sess_cache\n");
275 return ERR_PTR(-ENOMEM);
276 }
277 ret = transport_init_session(se_sess);
278 if (ret < 0) {
279 kmem_cache_free(se_sess_cache, se_sess);
280 return ERR_PTR(ret);
281 }
282 se_sess->sup_prot_ops = sup_prot_ops;
283
284 return se_sess;
285 }
286 EXPORT_SYMBOL(transport_alloc_session);
287
288 /**
289 * transport_alloc_session_tags - allocate target driver private data
290 * @se_sess: Session pointer.
291 * @tag_num: Maximum number of in-flight commands between initiator and target.
292 * @tag_size: Size in bytes of the private data a target driver associates with
293 * each command.
294 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)295 int transport_alloc_session_tags(struct se_session *se_sess,
296 unsigned int tag_num, unsigned int tag_size)
297 {
298 int rc;
299
300 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
301 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
302 if (!se_sess->sess_cmd_map) {
303 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
304 return -ENOMEM;
305 }
306
307 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
308 false, GFP_KERNEL, NUMA_NO_NODE);
309 if (rc < 0) {
310 pr_err("Unable to init se_sess->sess_tag_pool,"
311 " tag_num: %u\n", tag_num);
312 kvfree(se_sess->sess_cmd_map);
313 se_sess->sess_cmd_map = NULL;
314 return -ENOMEM;
315 }
316
317 return 0;
318 }
319 EXPORT_SYMBOL(transport_alloc_session_tags);
320
321 /**
322 * transport_init_session_tags - allocate a session and target driver private data
323 * @tag_num: Maximum number of in-flight commands between initiator and target.
324 * @tag_size: Size in bytes of the private data a target driver associates with
325 * each command.
326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
327 */
328 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)329 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
330 enum target_prot_op sup_prot_ops)
331 {
332 struct se_session *se_sess;
333 int rc;
334
335 if (tag_num != 0 && !tag_size) {
336 pr_err("init_session_tags called with percpu-ida tag_num:"
337 " %u, but zero tag_size\n", tag_num);
338 return ERR_PTR(-EINVAL);
339 }
340 if (!tag_num && tag_size) {
341 pr_err("init_session_tags called with percpu-ida tag_size:"
342 " %u, but zero tag_num\n", tag_size);
343 return ERR_PTR(-EINVAL);
344 }
345
346 se_sess = transport_alloc_session(sup_prot_ops);
347 if (IS_ERR(se_sess))
348 return se_sess;
349
350 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
351 if (rc < 0) {
352 transport_free_session(se_sess);
353 return ERR_PTR(-ENOMEM);
354 }
355
356 return se_sess;
357 }
358
359 /*
360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
361 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)362 void __transport_register_session(
363 struct se_portal_group *se_tpg,
364 struct se_node_acl *se_nacl,
365 struct se_session *se_sess,
366 void *fabric_sess_ptr)
367 {
368 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
369 unsigned char buf[PR_REG_ISID_LEN];
370 unsigned long flags;
371
372 se_sess->se_tpg = se_tpg;
373 se_sess->fabric_sess_ptr = fabric_sess_ptr;
374 /*
375 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
376 *
377 * Only set for struct se_session's that will actually be moving I/O.
378 * eg: *NOT* discovery sessions.
379 */
380 if (se_nacl) {
381 /*
382 *
383 * Determine if fabric allows for T10-PI feature bits exposed to
384 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
385 *
386 * If so, then always save prot_type on a per se_node_acl node
387 * basis and re-instate the previous sess_prot_type to avoid
388 * disabling PI from below any previously initiator side
389 * registered LUNs.
390 */
391 if (se_nacl->saved_prot_type)
392 se_sess->sess_prot_type = se_nacl->saved_prot_type;
393 else if (tfo->tpg_check_prot_fabric_only)
394 se_sess->sess_prot_type = se_nacl->saved_prot_type =
395 tfo->tpg_check_prot_fabric_only(se_tpg);
396 /*
397 * If the fabric module supports an ISID based TransportID,
398 * save this value in binary from the fabric I_T Nexus now.
399 */
400 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
401 memset(&buf[0], 0, PR_REG_ISID_LEN);
402 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
403 &buf[0], PR_REG_ISID_LEN);
404 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
405 }
406
407 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
408 /*
409 * The se_nacl->nacl_sess pointer will be set to the
410 * last active I_T Nexus for each struct se_node_acl.
411 */
412 se_nacl->nacl_sess = se_sess;
413
414 list_add_tail(&se_sess->sess_acl_list,
415 &se_nacl->acl_sess_list);
416 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
417 }
418 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
419
420 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
421 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
422 }
423 EXPORT_SYMBOL(__transport_register_session);
424
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)425 void transport_register_session(
426 struct se_portal_group *se_tpg,
427 struct se_node_acl *se_nacl,
428 struct se_session *se_sess,
429 void *fabric_sess_ptr)
430 {
431 unsigned long flags;
432
433 spin_lock_irqsave(&se_tpg->session_lock, flags);
434 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
435 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
436 }
437 EXPORT_SYMBOL(transport_register_session);
438
439 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))440 target_setup_session(struct se_portal_group *tpg,
441 unsigned int tag_num, unsigned int tag_size,
442 enum target_prot_op prot_op,
443 const char *initiatorname, void *private,
444 int (*callback)(struct se_portal_group *,
445 struct se_session *, void *))
446 {
447 struct se_session *sess;
448
449 /*
450 * If the fabric driver is using percpu-ida based pre allocation
451 * of I/O descriptor tags, go ahead and perform that setup now..
452 */
453 if (tag_num != 0)
454 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
455 else
456 sess = transport_alloc_session(prot_op);
457
458 if (IS_ERR(sess))
459 return sess;
460
461 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
462 (unsigned char *)initiatorname);
463 if (!sess->se_node_acl) {
464 transport_free_session(sess);
465 return ERR_PTR(-EACCES);
466 }
467 /*
468 * Go ahead and perform any remaining fabric setup that is
469 * required before transport_register_session().
470 */
471 if (callback != NULL) {
472 int rc = callback(tpg, sess, private);
473 if (rc) {
474 transport_free_session(sess);
475 return ERR_PTR(rc);
476 }
477 }
478
479 transport_register_session(tpg, sess->se_node_acl, sess, private);
480 return sess;
481 }
482 EXPORT_SYMBOL(target_setup_session);
483
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)484 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
485 {
486 struct se_session *se_sess;
487 ssize_t len = 0;
488
489 spin_lock_bh(&se_tpg->session_lock);
490 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
491 if (!se_sess->se_node_acl)
492 continue;
493 if (!se_sess->se_node_acl->dynamic_node_acl)
494 continue;
495 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
496 break;
497
498 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
499 se_sess->se_node_acl->initiatorname);
500 len += 1; /* Include NULL terminator */
501 }
502 spin_unlock_bh(&se_tpg->session_lock);
503
504 return len;
505 }
506 EXPORT_SYMBOL(target_show_dynamic_sessions);
507
target_complete_nacl(struct kref * kref)508 static void target_complete_nacl(struct kref *kref)
509 {
510 struct se_node_acl *nacl = container_of(kref,
511 struct se_node_acl, acl_kref);
512 struct se_portal_group *se_tpg = nacl->se_tpg;
513
514 if (!nacl->dynamic_stop) {
515 complete(&nacl->acl_free_comp);
516 return;
517 }
518
519 mutex_lock(&se_tpg->acl_node_mutex);
520 list_del_init(&nacl->acl_list);
521 mutex_unlock(&se_tpg->acl_node_mutex);
522
523 core_tpg_wait_for_nacl_pr_ref(nacl);
524 core_free_device_list_for_node(nacl, se_tpg);
525 kfree(nacl);
526 }
527
target_put_nacl(struct se_node_acl * nacl)528 void target_put_nacl(struct se_node_acl *nacl)
529 {
530 kref_put(&nacl->acl_kref, target_complete_nacl);
531 }
532 EXPORT_SYMBOL(target_put_nacl);
533
transport_deregister_session_configfs(struct se_session * se_sess)534 void transport_deregister_session_configfs(struct se_session *se_sess)
535 {
536 struct se_node_acl *se_nacl;
537 unsigned long flags;
538 /*
539 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
540 */
541 se_nacl = se_sess->se_node_acl;
542 if (se_nacl) {
543 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
544 if (!list_empty(&se_sess->sess_acl_list))
545 list_del_init(&se_sess->sess_acl_list);
546 /*
547 * If the session list is empty, then clear the pointer.
548 * Otherwise, set the struct se_session pointer from the tail
549 * element of the per struct se_node_acl active session list.
550 */
551 if (list_empty(&se_nacl->acl_sess_list))
552 se_nacl->nacl_sess = NULL;
553 else {
554 se_nacl->nacl_sess = container_of(
555 se_nacl->acl_sess_list.prev,
556 struct se_session, sess_acl_list);
557 }
558 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
559 }
560 }
561 EXPORT_SYMBOL(transport_deregister_session_configfs);
562
transport_free_session(struct se_session * se_sess)563 void transport_free_session(struct se_session *se_sess)
564 {
565 struct se_node_acl *se_nacl = se_sess->se_node_acl;
566
567 /*
568 * Drop the se_node_acl->nacl_kref obtained from within
569 * core_tpg_get_initiator_node_acl().
570 */
571 if (se_nacl) {
572 struct se_portal_group *se_tpg = se_nacl->se_tpg;
573 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
574 unsigned long flags;
575
576 se_sess->se_node_acl = NULL;
577
578 /*
579 * Also determine if we need to drop the extra ->cmd_kref if
580 * it had been previously dynamically generated, and
581 * the endpoint is not caching dynamic ACLs.
582 */
583 mutex_lock(&se_tpg->acl_node_mutex);
584 if (se_nacl->dynamic_node_acl &&
585 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
586 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
587 if (list_empty(&se_nacl->acl_sess_list))
588 se_nacl->dynamic_stop = true;
589 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
590
591 if (se_nacl->dynamic_stop)
592 list_del_init(&se_nacl->acl_list);
593 }
594 mutex_unlock(&se_tpg->acl_node_mutex);
595
596 if (se_nacl->dynamic_stop)
597 target_put_nacl(se_nacl);
598
599 target_put_nacl(se_nacl);
600 }
601 if (se_sess->sess_cmd_map) {
602 sbitmap_queue_free(&se_sess->sess_tag_pool);
603 kvfree(se_sess->sess_cmd_map);
604 }
605 transport_uninit_session(se_sess);
606 kmem_cache_free(se_sess_cache, se_sess);
607 }
608 EXPORT_SYMBOL(transport_free_session);
609
target_release_res(struct se_device * dev,void * data)610 static int target_release_res(struct se_device *dev, void *data)
611 {
612 struct se_session *sess = data;
613
614 if (dev->reservation_holder == sess)
615 target_release_reservation(dev);
616 return 0;
617 }
618
transport_deregister_session(struct se_session * se_sess)619 void transport_deregister_session(struct se_session *se_sess)
620 {
621 struct se_portal_group *se_tpg = se_sess->se_tpg;
622 unsigned long flags;
623
624 if (!se_tpg) {
625 transport_free_session(se_sess);
626 return;
627 }
628
629 spin_lock_irqsave(&se_tpg->session_lock, flags);
630 list_del(&se_sess->sess_list);
631 se_sess->se_tpg = NULL;
632 se_sess->fabric_sess_ptr = NULL;
633 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
634
635 /*
636 * Since the session is being removed, release SPC-2
637 * reservations held by the session that is disappearing.
638 */
639 target_for_each_device(target_release_res, se_sess);
640
641 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
642 se_tpg->se_tpg_tfo->fabric_name);
643 /*
644 * If last kref is dropping now for an explicit NodeACL, awake sleeping
645 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
646 * removal context from within transport_free_session() code.
647 *
648 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
649 * to release all remaining generate_node_acl=1 created ACL resources.
650 */
651
652 transport_free_session(se_sess);
653 }
654 EXPORT_SYMBOL(transport_deregister_session);
655
target_remove_session(struct se_session * se_sess)656 void target_remove_session(struct se_session *se_sess)
657 {
658 transport_deregister_session_configfs(se_sess);
659 transport_deregister_session(se_sess);
660 }
661 EXPORT_SYMBOL(target_remove_session);
662
target_remove_from_state_list(struct se_cmd * cmd)663 static void target_remove_from_state_list(struct se_cmd *cmd)
664 {
665 struct se_device *dev = cmd->se_dev;
666 unsigned long flags;
667
668 if (!dev)
669 return;
670
671 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
672 if (cmd->state_active) {
673 list_del(&cmd->state_list);
674 cmd->state_active = false;
675 }
676 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
677 }
678
target_remove_from_tmr_list(struct se_cmd * cmd)679 static void target_remove_from_tmr_list(struct se_cmd *cmd)
680 {
681 struct se_device *dev = NULL;
682 unsigned long flags;
683
684 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
685 dev = cmd->se_tmr_req->tmr_dev;
686
687 if (dev) {
688 spin_lock_irqsave(&dev->se_tmr_lock, flags);
689 if (cmd->se_tmr_req->tmr_dev)
690 list_del_init(&cmd->se_tmr_req->tmr_list);
691 spin_unlock_irqrestore(&dev->se_tmr_lock, flags);
692 }
693 }
694 /*
695 * This function is called by the target core after the target core has
696 * finished processing a SCSI command or SCSI TMF. Both the regular command
697 * processing code and the code for aborting commands can call this
698 * function. CMD_T_STOP is set if and only if another thread is waiting
699 * inside transport_wait_for_tasks() for t_transport_stop_comp.
700 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)701 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
702 {
703 unsigned long flags;
704
705 spin_lock_irqsave(&cmd->t_state_lock, flags);
706 /*
707 * Determine if frontend context caller is requesting the stopping of
708 * this command for frontend exceptions.
709 */
710 if (cmd->transport_state & CMD_T_STOP) {
711 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
712 __func__, __LINE__, cmd->tag);
713
714 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715
716 complete_all(&cmd->t_transport_stop_comp);
717 return 1;
718 }
719 cmd->transport_state &= ~CMD_T_ACTIVE;
720 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
721
722 /*
723 * Some fabric modules like tcm_loop can release their internally
724 * allocated I/O reference and struct se_cmd now.
725 *
726 * Fabric modules are expected to return '1' here if the se_cmd being
727 * passed is released at this point, or zero if not being released.
728 */
729 return cmd->se_tfo->check_stop_free(cmd);
730 }
731
transport_lun_remove_cmd(struct se_cmd * cmd)732 static void transport_lun_remove_cmd(struct se_cmd *cmd)
733 {
734 struct se_lun *lun = cmd->se_lun;
735
736 if (!lun)
737 return;
738
739 target_remove_from_state_list(cmd);
740 target_remove_from_tmr_list(cmd);
741
742 if (cmpxchg(&cmd->lun_ref_active, true, false))
743 percpu_ref_put(&lun->lun_ref);
744
745 /*
746 * Clear struct se_cmd->se_lun before the handoff to FE.
747 */
748 cmd->se_lun = NULL;
749 }
750
target_complete_failure_work(struct work_struct * work)751 static void target_complete_failure_work(struct work_struct *work)
752 {
753 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
754
755 transport_generic_request_failure(cmd, cmd->sense_reason);
756 }
757
758 /*
759 * Used when asking transport to copy Sense Data from the underlying
760 * Linux/SCSI struct scsi_cmnd
761 */
transport_get_sense_buffer(struct se_cmd * cmd)762 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
763 {
764 struct se_device *dev = cmd->se_dev;
765
766 WARN_ON(!cmd->se_lun);
767
768 if (!dev)
769 return NULL;
770
771 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
772 return NULL;
773
774 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
775
776 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
777 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
778 return cmd->sense_buffer;
779 }
780
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)781 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
782 {
783 unsigned char *cmd_sense_buf;
784 unsigned long flags;
785
786 spin_lock_irqsave(&cmd->t_state_lock, flags);
787 cmd_sense_buf = transport_get_sense_buffer(cmd);
788 if (!cmd_sense_buf) {
789 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
790 return;
791 }
792
793 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
794 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
795 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
796 }
797 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
798
target_handle_abort(struct se_cmd * cmd)799 static void target_handle_abort(struct se_cmd *cmd)
800 {
801 bool tas = cmd->transport_state & CMD_T_TAS;
802 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
803 int ret;
804
805 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
806
807 if (tas) {
808 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
809 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
810 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
811 cmd->t_task_cdb[0], cmd->tag);
812 trace_target_cmd_complete(cmd);
813 ret = cmd->se_tfo->queue_status(cmd);
814 if (ret) {
815 transport_handle_queue_full(cmd, cmd->se_dev,
816 ret, false);
817 return;
818 }
819 } else {
820 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
821 cmd->se_tfo->queue_tm_rsp(cmd);
822 }
823 } else {
824 /*
825 * Allow the fabric driver to unmap any resources before
826 * releasing the descriptor via TFO->release_cmd().
827 */
828 cmd->se_tfo->aborted_task(cmd);
829 if (ack_kref)
830 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
831 /*
832 * To do: establish a unit attention condition on the I_T
833 * nexus associated with cmd. See also the paragraph "Aborting
834 * commands" in SAM.
835 */
836 }
837
838 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
839
840 transport_lun_remove_cmd(cmd);
841
842 transport_cmd_check_stop_to_fabric(cmd);
843 }
844
target_abort_work(struct work_struct * work)845 static void target_abort_work(struct work_struct *work)
846 {
847 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
848
849 target_handle_abort(cmd);
850 }
851
target_cmd_interrupted(struct se_cmd * cmd)852 static bool target_cmd_interrupted(struct se_cmd *cmd)
853 {
854 int post_ret;
855
856 if (cmd->transport_state & CMD_T_ABORTED) {
857 if (cmd->transport_complete_callback)
858 cmd->transport_complete_callback(cmd, false, &post_ret);
859 INIT_WORK(&cmd->work, target_abort_work);
860 queue_work(target_completion_wq, &cmd->work);
861 return true;
862 } else if (cmd->transport_state & CMD_T_STOP) {
863 if (cmd->transport_complete_callback)
864 cmd->transport_complete_callback(cmd, false, &post_ret);
865 complete_all(&cmd->t_transport_stop_comp);
866 return true;
867 }
868
869 return false;
870 }
871
872 /* May be called from interrupt context so must not sleep. */
target_complete_cmd_with_sense(struct se_cmd * cmd,u8 scsi_status,sense_reason_t sense_reason)873 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
874 sense_reason_t sense_reason)
875 {
876 struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
877 int success, cpu;
878 unsigned long flags;
879
880 if (target_cmd_interrupted(cmd))
881 return;
882
883 cmd->scsi_status = scsi_status;
884 cmd->sense_reason = sense_reason;
885
886 spin_lock_irqsave(&cmd->t_state_lock, flags);
887 switch (cmd->scsi_status) {
888 case SAM_STAT_CHECK_CONDITION:
889 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
890 success = 1;
891 else
892 success = 0;
893 break;
894 default:
895 success = 1;
896 break;
897 }
898
899 cmd->t_state = TRANSPORT_COMPLETE;
900 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
901 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
902
903 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
904 target_complete_failure_work);
905
906 if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
907 cpu = cmd->cpuid;
908 else
909 cpu = wwn->cmd_compl_affinity;
910
911 queue_work_on(cpu, target_completion_wq, &cmd->work);
912 }
913 EXPORT_SYMBOL(target_complete_cmd_with_sense);
914
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)915 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
916 {
917 target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
918 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
919 TCM_NO_SENSE);
920 }
921 EXPORT_SYMBOL(target_complete_cmd);
922
target_set_cmd_data_length(struct se_cmd * cmd,int length)923 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
924 {
925 if (length < cmd->data_length) {
926 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
927 cmd->residual_count += cmd->data_length - length;
928 } else {
929 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
930 cmd->residual_count = cmd->data_length - length;
931 }
932
933 cmd->data_length = length;
934 }
935 }
936 EXPORT_SYMBOL(target_set_cmd_data_length);
937
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)938 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
939 {
940 if (scsi_status == SAM_STAT_GOOD ||
941 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
942 target_set_cmd_data_length(cmd, length);
943 }
944
945 target_complete_cmd(cmd, scsi_status);
946 }
947 EXPORT_SYMBOL(target_complete_cmd_with_length);
948
target_add_to_state_list(struct se_cmd * cmd)949 static void target_add_to_state_list(struct se_cmd *cmd)
950 {
951 struct se_device *dev = cmd->se_dev;
952 unsigned long flags;
953
954 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
955 if (!cmd->state_active) {
956 list_add_tail(&cmd->state_list,
957 &dev->queues[cmd->cpuid].state_list);
958 cmd->state_active = true;
959 }
960 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
961 }
962
963 /*
964 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
965 */
966 static void transport_write_pending_qf(struct se_cmd *cmd);
967 static void transport_complete_qf(struct se_cmd *cmd);
968
target_qf_do_work(struct work_struct * work)969 void target_qf_do_work(struct work_struct *work)
970 {
971 struct se_device *dev = container_of(work, struct se_device,
972 qf_work_queue);
973 LIST_HEAD(qf_cmd_list);
974 struct se_cmd *cmd, *cmd_tmp;
975
976 spin_lock_irq(&dev->qf_cmd_lock);
977 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
978 spin_unlock_irq(&dev->qf_cmd_lock);
979
980 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
981 list_del(&cmd->se_qf_node);
982 atomic_dec_mb(&dev->dev_qf_count);
983
984 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
985 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
986 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
987 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
988 : "UNKNOWN");
989
990 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
991 transport_write_pending_qf(cmd);
992 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
993 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
994 transport_complete_qf(cmd);
995 }
996 }
997
transport_dump_cmd_direction(struct se_cmd * cmd)998 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
999 {
1000 switch (cmd->data_direction) {
1001 case DMA_NONE:
1002 return "NONE";
1003 case DMA_FROM_DEVICE:
1004 return "READ";
1005 case DMA_TO_DEVICE:
1006 return "WRITE";
1007 case DMA_BIDIRECTIONAL:
1008 return "BIDI";
1009 default:
1010 break;
1011 }
1012
1013 return "UNKNOWN";
1014 }
1015
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)1016 void transport_dump_dev_state(
1017 struct se_device *dev,
1018 char *b,
1019 int *bl)
1020 {
1021 *bl += sprintf(b + *bl, "Status: ");
1022 if (dev->export_count)
1023 *bl += sprintf(b + *bl, "ACTIVATED");
1024 else
1025 *bl += sprintf(b + *bl, "DEACTIVATED");
1026
1027 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
1028 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
1029 dev->dev_attrib.block_size,
1030 dev->dev_attrib.hw_max_sectors);
1031 *bl += sprintf(b + *bl, " ");
1032 }
1033
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1034 void transport_dump_vpd_proto_id(
1035 struct t10_vpd *vpd,
1036 unsigned char *p_buf,
1037 int p_buf_len)
1038 {
1039 unsigned char buf[VPD_TMP_BUF_SIZE];
1040 int len;
1041
1042 memset(buf, 0, VPD_TMP_BUF_SIZE);
1043 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1044
1045 switch (vpd->protocol_identifier) {
1046 case 0x00:
1047 sprintf(buf+len, "Fibre Channel\n");
1048 break;
1049 case 0x10:
1050 sprintf(buf+len, "Parallel SCSI\n");
1051 break;
1052 case 0x20:
1053 sprintf(buf+len, "SSA\n");
1054 break;
1055 case 0x30:
1056 sprintf(buf+len, "IEEE 1394\n");
1057 break;
1058 case 0x40:
1059 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1060 " Protocol\n");
1061 break;
1062 case 0x50:
1063 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1064 break;
1065 case 0x60:
1066 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1067 break;
1068 case 0x70:
1069 sprintf(buf+len, "Automation/Drive Interface Transport"
1070 " Protocol\n");
1071 break;
1072 case 0x80:
1073 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1074 break;
1075 default:
1076 sprintf(buf+len, "Unknown 0x%02x\n",
1077 vpd->protocol_identifier);
1078 break;
1079 }
1080
1081 if (p_buf)
1082 strncpy(p_buf, buf, p_buf_len);
1083 else
1084 pr_debug("%s", buf);
1085 }
1086
1087 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1088 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1089 {
1090 /*
1091 * Check if the Protocol Identifier Valid (PIV) bit is set..
1092 *
1093 * from spc3r23.pdf section 7.5.1
1094 */
1095 if (page_83[1] & 0x80) {
1096 vpd->protocol_identifier = (page_83[0] & 0xf0);
1097 vpd->protocol_identifier_set = 1;
1098 transport_dump_vpd_proto_id(vpd, NULL, 0);
1099 }
1100 }
1101 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1102
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1103 int transport_dump_vpd_assoc(
1104 struct t10_vpd *vpd,
1105 unsigned char *p_buf,
1106 int p_buf_len)
1107 {
1108 unsigned char buf[VPD_TMP_BUF_SIZE];
1109 int ret = 0;
1110 int len;
1111
1112 memset(buf, 0, VPD_TMP_BUF_SIZE);
1113 len = sprintf(buf, "T10 VPD Identifier Association: ");
1114
1115 switch (vpd->association) {
1116 case 0x00:
1117 sprintf(buf+len, "addressed logical unit\n");
1118 break;
1119 case 0x10:
1120 sprintf(buf+len, "target port\n");
1121 break;
1122 case 0x20:
1123 sprintf(buf+len, "SCSI target device\n");
1124 break;
1125 default:
1126 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1127 ret = -EINVAL;
1128 break;
1129 }
1130
1131 if (p_buf)
1132 strncpy(p_buf, buf, p_buf_len);
1133 else
1134 pr_debug("%s", buf);
1135
1136 return ret;
1137 }
1138
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1139 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1140 {
1141 /*
1142 * The VPD identification association..
1143 *
1144 * from spc3r23.pdf Section 7.6.3.1 Table 297
1145 */
1146 vpd->association = (page_83[1] & 0x30);
1147 return transport_dump_vpd_assoc(vpd, NULL, 0);
1148 }
1149 EXPORT_SYMBOL(transport_set_vpd_assoc);
1150
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1151 int transport_dump_vpd_ident_type(
1152 struct t10_vpd *vpd,
1153 unsigned char *p_buf,
1154 int p_buf_len)
1155 {
1156 unsigned char buf[VPD_TMP_BUF_SIZE];
1157 int ret = 0;
1158 int len;
1159
1160 memset(buf, 0, VPD_TMP_BUF_SIZE);
1161 len = sprintf(buf, "T10 VPD Identifier Type: ");
1162
1163 switch (vpd->device_identifier_type) {
1164 case 0x00:
1165 sprintf(buf+len, "Vendor specific\n");
1166 break;
1167 case 0x01:
1168 sprintf(buf+len, "T10 Vendor ID based\n");
1169 break;
1170 case 0x02:
1171 sprintf(buf+len, "EUI-64 based\n");
1172 break;
1173 case 0x03:
1174 sprintf(buf+len, "NAA\n");
1175 break;
1176 case 0x04:
1177 sprintf(buf+len, "Relative target port identifier\n");
1178 break;
1179 case 0x08:
1180 sprintf(buf+len, "SCSI name string\n");
1181 break;
1182 default:
1183 sprintf(buf+len, "Unsupported: 0x%02x\n",
1184 vpd->device_identifier_type);
1185 ret = -EINVAL;
1186 break;
1187 }
1188
1189 if (p_buf) {
1190 if (p_buf_len < strlen(buf)+1)
1191 return -EINVAL;
1192 strncpy(p_buf, buf, p_buf_len);
1193 } else {
1194 pr_debug("%s", buf);
1195 }
1196
1197 return ret;
1198 }
1199
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1200 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1201 {
1202 /*
1203 * The VPD identifier type..
1204 *
1205 * from spc3r23.pdf Section 7.6.3.1 Table 298
1206 */
1207 vpd->device_identifier_type = (page_83[1] & 0x0f);
1208 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1209 }
1210 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1211
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1212 int transport_dump_vpd_ident(
1213 struct t10_vpd *vpd,
1214 unsigned char *p_buf,
1215 int p_buf_len)
1216 {
1217 unsigned char buf[VPD_TMP_BUF_SIZE];
1218 int ret = 0;
1219
1220 memset(buf, 0, VPD_TMP_BUF_SIZE);
1221
1222 switch (vpd->device_identifier_code_set) {
1223 case 0x01: /* Binary */
1224 snprintf(buf, sizeof(buf),
1225 "T10 VPD Binary Device Identifier: %s\n",
1226 &vpd->device_identifier[0]);
1227 break;
1228 case 0x02: /* ASCII */
1229 snprintf(buf, sizeof(buf),
1230 "T10 VPD ASCII Device Identifier: %s\n",
1231 &vpd->device_identifier[0]);
1232 break;
1233 case 0x03: /* UTF-8 */
1234 snprintf(buf, sizeof(buf),
1235 "T10 VPD UTF-8 Device Identifier: %s\n",
1236 &vpd->device_identifier[0]);
1237 break;
1238 default:
1239 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1240 " 0x%02x", vpd->device_identifier_code_set);
1241 ret = -EINVAL;
1242 break;
1243 }
1244
1245 if (p_buf)
1246 strncpy(p_buf, buf, p_buf_len);
1247 else
1248 pr_debug("%s", buf);
1249
1250 return ret;
1251 }
1252
1253 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1254 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1255 {
1256 static const char hex_str[] = "0123456789abcdef";
1257 int j = 0, i = 4; /* offset to start of the identifier */
1258
1259 /*
1260 * The VPD Code Set (encoding)
1261 *
1262 * from spc3r23.pdf Section 7.6.3.1 Table 296
1263 */
1264 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1265 switch (vpd->device_identifier_code_set) {
1266 case 0x01: /* Binary */
1267 vpd->device_identifier[j++] =
1268 hex_str[vpd->device_identifier_type];
1269 while (i < (4 + page_83[3])) {
1270 vpd->device_identifier[j++] =
1271 hex_str[(page_83[i] & 0xf0) >> 4];
1272 vpd->device_identifier[j++] =
1273 hex_str[page_83[i] & 0x0f];
1274 i++;
1275 }
1276 break;
1277 case 0x02: /* ASCII */
1278 case 0x03: /* UTF-8 */
1279 while (i < (4 + page_83[3]))
1280 vpd->device_identifier[j++] = page_83[i++];
1281 break;
1282 default:
1283 break;
1284 }
1285
1286 return transport_dump_vpd_ident(vpd, NULL, 0);
1287 }
1288 EXPORT_SYMBOL(transport_set_vpd_ident);
1289
1290 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1291 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1292 unsigned int size)
1293 {
1294 u32 mtl;
1295
1296 if (!cmd->se_tfo->max_data_sg_nents)
1297 return TCM_NO_SENSE;
1298 /*
1299 * Check if fabric enforced maximum SGL entries per I/O descriptor
1300 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1301 * residual_count and reduce original cmd->data_length to maximum
1302 * length based on single PAGE_SIZE entry scatter-lists.
1303 */
1304 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1305 if (cmd->data_length > mtl) {
1306 /*
1307 * If an existing CDB overflow is present, calculate new residual
1308 * based on CDB size minus fabric maximum transfer length.
1309 *
1310 * If an existing CDB underflow is present, calculate new residual
1311 * based on original cmd->data_length minus fabric maximum transfer
1312 * length.
1313 *
1314 * Otherwise, set the underflow residual based on cmd->data_length
1315 * minus fabric maximum transfer length.
1316 */
1317 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1318 cmd->residual_count = (size - mtl);
1319 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1320 u32 orig_dl = size + cmd->residual_count;
1321 cmd->residual_count = (orig_dl - mtl);
1322 } else {
1323 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1324 cmd->residual_count = (cmd->data_length - mtl);
1325 }
1326 cmd->data_length = mtl;
1327 /*
1328 * Reset sbc_check_prot() calculated protection payload
1329 * length based upon the new smaller MTL.
1330 */
1331 if (cmd->prot_length) {
1332 u32 sectors = (mtl / dev->dev_attrib.block_size);
1333 cmd->prot_length = dev->prot_length * sectors;
1334 }
1335 }
1336 return TCM_NO_SENSE;
1337 }
1338
1339 /**
1340 * target_cmd_size_check - Check whether there will be a residual.
1341 * @cmd: SCSI command.
1342 * @size: Data buffer size derived from CDB. The data buffer size provided by
1343 * the SCSI transport driver is available in @cmd->data_length.
1344 *
1345 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1346 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1347 *
1348 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1349 *
1350 * Return: TCM_NO_SENSE
1351 */
1352 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1353 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1354 {
1355 struct se_device *dev = cmd->se_dev;
1356
1357 if (cmd->unknown_data_length) {
1358 cmd->data_length = size;
1359 } else if (size != cmd->data_length) {
1360 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1361 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1362 " 0x%02x\n", cmd->se_tfo->fabric_name,
1363 cmd->data_length, size, cmd->t_task_cdb[0]);
1364 /*
1365 * For READ command for the overflow case keep the existing
1366 * fabric provided ->data_length. Otherwise for the underflow
1367 * case, reset ->data_length to the smaller SCSI expected data
1368 * transfer length.
1369 */
1370 if (size > cmd->data_length) {
1371 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1372 cmd->residual_count = (size - cmd->data_length);
1373 } else {
1374 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1375 cmd->residual_count = (cmd->data_length - size);
1376 /*
1377 * Do not truncate ->data_length for WRITE command to
1378 * dump all payload
1379 */
1380 if (cmd->data_direction == DMA_FROM_DEVICE) {
1381 cmd->data_length = size;
1382 }
1383 }
1384
1385 if (cmd->data_direction == DMA_TO_DEVICE) {
1386 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1387 pr_err_ratelimited("Rejecting underflow/overflow"
1388 " for WRITE data CDB\n");
1389 return TCM_INVALID_FIELD_IN_COMMAND_IU;
1390 }
1391 /*
1392 * Some fabric drivers like iscsi-target still expect to
1393 * always reject overflow writes. Reject this case until
1394 * full fabric driver level support for overflow writes
1395 * is introduced tree-wide.
1396 */
1397 if (size > cmd->data_length) {
1398 pr_err_ratelimited("Rejecting overflow for"
1399 " WRITE control CDB\n");
1400 return TCM_INVALID_CDB_FIELD;
1401 }
1402 }
1403 }
1404
1405 return target_check_max_data_sg_nents(cmd, dev, size);
1406
1407 }
1408
1409 /*
1410 * Used by fabric modules containing a local struct se_cmd within their
1411 * fabric dependent per I/O descriptor.
1412 *
1413 * Preserves the value of @cmd->tag.
1414 */
__target_init_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun)1415 void __target_init_cmd(
1416 struct se_cmd *cmd,
1417 const struct target_core_fabric_ops *tfo,
1418 struct se_session *se_sess,
1419 u32 data_length,
1420 int data_direction,
1421 int task_attr,
1422 unsigned char *sense_buffer, u64 unpacked_lun)
1423 {
1424 INIT_LIST_HEAD(&cmd->se_delayed_node);
1425 INIT_LIST_HEAD(&cmd->se_qf_node);
1426 INIT_LIST_HEAD(&cmd->state_list);
1427 init_completion(&cmd->t_transport_stop_comp);
1428 cmd->free_compl = NULL;
1429 cmd->abrt_compl = NULL;
1430 spin_lock_init(&cmd->t_state_lock);
1431 INIT_WORK(&cmd->work, NULL);
1432 kref_init(&cmd->cmd_kref);
1433
1434 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1435 cmd->se_tfo = tfo;
1436 cmd->se_sess = se_sess;
1437 cmd->data_length = data_length;
1438 cmd->data_direction = data_direction;
1439 cmd->sam_task_attr = task_attr;
1440 cmd->sense_buffer = sense_buffer;
1441 cmd->orig_fe_lun = unpacked_lun;
1442
1443 if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1444 cmd->cpuid = raw_smp_processor_id();
1445
1446 cmd->state_active = false;
1447 }
1448 EXPORT_SYMBOL(__target_init_cmd);
1449
1450 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1451 transport_check_alloc_task_attr(struct se_cmd *cmd)
1452 {
1453 struct se_device *dev = cmd->se_dev;
1454
1455 /*
1456 * Check if SAM Task Attribute emulation is enabled for this
1457 * struct se_device storage object
1458 */
1459 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1460 return 0;
1461
1462 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1463 pr_debug("SAM Task Attribute ACA"
1464 " emulation is not supported\n");
1465 return TCM_INVALID_CDB_FIELD;
1466 }
1467
1468 return 0;
1469 }
1470
1471 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb,gfp_t gfp)1472 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1473 {
1474 sense_reason_t ret;
1475
1476 /*
1477 * Ensure that the received CDB is less than the max (252 + 8) bytes
1478 * for VARIABLE_LENGTH_CMD
1479 */
1480 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1481 pr_err("Received SCSI CDB with command_size: %d that"
1482 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1483 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1484 ret = TCM_INVALID_CDB_FIELD;
1485 goto err;
1486 }
1487 /*
1488 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1489 * allocate the additional extended CDB buffer now.. Otherwise
1490 * setup the pointer from __t_task_cdb to t_task_cdb.
1491 */
1492 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1493 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1494 if (!cmd->t_task_cdb) {
1495 pr_err("Unable to allocate cmd->t_task_cdb"
1496 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1497 scsi_command_size(cdb),
1498 (unsigned long)sizeof(cmd->__t_task_cdb));
1499 ret = TCM_OUT_OF_RESOURCES;
1500 goto err;
1501 }
1502 }
1503 /*
1504 * Copy the original CDB into cmd->
1505 */
1506 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1507
1508 trace_target_sequencer_start(cmd);
1509 return 0;
1510
1511 err:
1512 /*
1513 * Copy the CDB here to allow trace_target_cmd_complete() to
1514 * print the cdb to the trace buffers.
1515 */
1516 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1517 (unsigned int)TCM_MAX_COMMAND_SIZE));
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(target_cmd_init_cdb);
1521
1522 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1523 target_cmd_parse_cdb(struct se_cmd *cmd)
1524 {
1525 struct se_device *dev = cmd->se_dev;
1526 sense_reason_t ret;
1527
1528 ret = dev->transport->parse_cdb(cmd);
1529 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1530 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1531 cmd->se_tfo->fabric_name,
1532 cmd->se_sess->se_node_acl->initiatorname,
1533 cmd->t_task_cdb[0]);
1534 if (ret)
1535 return ret;
1536
1537 ret = transport_check_alloc_task_attr(cmd);
1538 if (ret)
1539 return ret;
1540
1541 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1542 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1543 return 0;
1544 }
1545 EXPORT_SYMBOL(target_cmd_parse_cdb);
1546
1547 /*
1548 * Used by fabric module frontends to queue tasks directly.
1549 * May only be used from process context.
1550 */
transport_handle_cdb_direct(struct se_cmd * cmd)1551 int transport_handle_cdb_direct(
1552 struct se_cmd *cmd)
1553 {
1554 sense_reason_t ret;
1555
1556 might_sleep();
1557
1558 if (!cmd->se_lun) {
1559 dump_stack();
1560 pr_err("cmd->se_lun is NULL\n");
1561 return -EINVAL;
1562 }
1563
1564 /*
1565 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1566 * outstanding descriptors are handled correctly during shutdown via
1567 * transport_wait_for_tasks()
1568 *
1569 * Also, we don't take cmd->t_state_lock here as we only expect
1570 * this to be called for initial descriptor submission.
1571 */
1572 cmd->t_state = TRANSPORT_NEW_CMD;
1573 cmd->transport_state |= CMD_T_ACTIVE;
1574
1575 /*
1576 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1577 * so follow TRANSPORT_NEW_CMD processing thread context usage
1578 * and call transport_generic_request_failure() if necessary..
1579 */
1580 ret = transport_generic_new_cmd(cmd);
1581 if (ret)
1582 transport_generic_request_failure(cmd, ret);
1583 return 0;
1584 }
1585 EXPORT_SYMBOL(transport_handle_cdb_direct);
1586
1587 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1588 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1589 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1590 {
1591 if (!sgl || !sgl_count)
1592 return 0;
1593
1594 /*
1595 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1596 * scatterlists already have been set to follow what the fabric
1597 * passes for the original expected data transfer length.
1598 */
1599 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1600 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1601 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1602 return TCM_INVALID_CDB_FIELD;
1603 }
1604
1605 cmd->t_data_sg = sgl;
1606 cmd->t_data_nents = sgl_count;
1607 cmd->t_bidi_data_sg = sgl_bidi;
1608 cmd->t_bidi_data_nents = sgl_bidi_count;
1609
1610 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1611 return 0;
1612 }
1613
1614 /**
1615 * target_init_cmd - initialize se_cmd
1616 * @se_cmd: command descriptor to init
1617 * @se_sess: associated se_sess for endpoint
1618 * @sense: pointer to SCSI sense buffer
1619 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1620 * @data_length: fabric expected data transfer length
1621 * @task_attr: SAM task attribute
1622 * @data_dir: DMA data direction
1623 * @flags: flags for command submission from target_sc_flags_tables
1624 *
1625 * Task tags are supported if the caller has set @se_cmd->tag.
1626 *
1627 * Returns:
1628 * - less than zero to signal active I/O shutdown failure.
1629 * - zero on success.
1630 *
1631 * If the fabric driver calls target_stop_session, then it must check the
1632 * return code and handle failures. This will never fail for other drivers,
1633 * and the return code can be ignored.
1634 */
target_init_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1635 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1636 unsigned char *sense, u64 unpacked_lun,
1637 u32 data_length, int task_attr, int data_dir, int flags)
1638 {
1639 struct se_portal_group *se_tpg;
1640
1641 se_tpg = se_sess->se_tpg;
1642 BUG_ON(!se_tpg);
1643 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1644
1645 if (flags & TARGET_SCF_USE_CPUID)
1646 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1647 /*
1648 * Signal bidirectional data payloads to target-core
1649 */
1650 if (flags & TARGET_SCF_BIDI_OP)
1651 se_cmd->se_cmd_flags |= SCF_BIDI;
1652
1653 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1654 se_cmd->unknown_data_length = 1;
1655 /*
1656 * Initialize se_cmd for target operation. From this point
1657 * exceptions are handled by sending exception status via
1658 * target_core_fabric_ops->queue_status() callback
1659 */
1660 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1661 data_dir, task_attr, sense, unpacked_lun);
1662
1663 /*
1664 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1665 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1666 * kref_put() to happen during fabric packet acknowledgement.
1667 */
1668 return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1669 }
1670 EXPORT_SYMBOL_GPL(target_init_cmd);
1671
1672 /**
1673 * target_submit_prep - prepare cmd for submission
1674 * @se_cmd: command descriptor to prep
1675 * @cdb: pointer to SCSI CDB
1676 * @sgl: struct scatterlist memory for unidirectional mapping
1677 * @sgl_count: scatterlist count for unidirectional mapping
1678 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1679 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1680 * @sgl_prot: struct scatterlist memory protection information
1681 * @sgl_prot_count: scatterlist count for protection information
1682 * @gfp: gfp allocation type
1683 *
1684 * Returns:
1685 * - less than zero to signal failure.
1686 * - zero on success.
1687 *
1688 * If failure is returned, lio will the callers queue_status to complete
1689 * the cmd.
1690 */
target_submit_prep(struct se_cmd * se_cmd,unsigned char * cdb,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count,gfp_t gfp)1691 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1692 struct scatterlist *sgl, u32 sgl_count,
1693 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1694 struct scatterlist *sgl_prot, u32 sgl_prot_count,
1695 gfp_t gfp)
1696 {
1697 sense_reason_t rc;
1698
1699 rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1700 if (rc)
1701 goto send_cc_direct;
1702
1703 /*
1704 * Locate se_lun pointer and attach it to struct se_cmd
1705 */
1706 rc = transport_lookup_cmd_lun(se_cmd);
1707 if (rc)
1708 goto send_cc_direct;
1709
1710 rc = target_cmd_parse_cdb(se_cmd);
1711 if (rc != 0)
1712 goto generic_fail;
1713
1714 /*
1715 * Save pointers for SGLs containing protection information,
1716 * if present.
1717 */
1718 if (sgl_prot_count) {
1719 se_cmd->t_prot_sg = sgl_prot;
1720 se_cmd->t_prot_nents = sgl_prot_count;
1721 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1722 }
1723
1724 /*
1725 * When a non zero sgl_count has been passed perform SGL passthrough
1726 * mapping for pre-allocated fabric memory instead of having target
1727 * core perform an internal SGL allocation..
1728 */
1729 if (sgl_count != 0) {
1730 BUG_ON(!sgl);
1731
1732 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1733 sgl_bidi, sgl_bidi_count);
1734 if (rc != 0)
1735 goto generic_fail;
1736 }
1737
1738 return 0;
1739
1740 send_cc_direct:
1741 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1742 target_put_sess_cmd(se_cmd);
1743 return -EIO;
1744
1745 generic_fail:
1746 transport_generic_request_failure(se_cmd, rc);
1747 return -EIO;
1748 }
1749 EXPORT_SYMBOL_GPL(target_submit_prep);
1750
1751 /**
1752 * target_submit - perform final initialization and submit cmd to LIO core
1753 * @se_cmd: command descriptor to submit
1754 *
1755 * target_submit_prep must have been called on the cmd, and this must be
1756 * called from process context.
1757 */
target_submit(struct se_cmd * se_cmd)1758 void target_submit(struct se_cmd *se_cmd)
1759 {
1760 struct scatterlist *sgl = se_cmd->t_data_sg;
1761 unsigned char *buf = NULL;
1762
1763 might_sleep();
1764
1765 if (se_cmd->t_data_nents != 0) {
1766 BUG_ON(!sgl);
1767 /*
1768 * A work-around for tcm_loop as some userspace code via
1769 * scsi-generic do not memset their associated read buffers,
1770 * so go ahead and do that here for type non-data CDBs. Also
1771 * note that this is currently guaranteed to be a single SGL
1772 * for this case by target core in target_setup_cmd_from_cdb()
1773 * -> transport_generic_cmd_sequencer().
1774 */
1775 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1776 se_cmd->data_direction == DMA_FROM_DEVICE) {
1777 if (sgl)
1778 buf = kmap(sg_page(sgl)) + sgl->offset;
1779
1780 if (buf) {
1781 memset(buf, 0, sgl->length);
1782 kunmap(sg_page(sgl));
1783 }
1784 }
1785
1786 }
1787
1788 /*
1789 * Check if we need to delay processing because of ALUA
1790 * Active/NonOptimized primary access state..
1791 */
1792 core_alua_check_nonop_delay(se_cmd);
1793
1794 transport_handle_cdb_direct(se_cmd);
1795 }
1796 EXPORT_SYMBOL_GPL(target_submit);
1797
1798 /**
1799 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1800 *
1801 * @se_cmd: command descriptor to submit
1802 * @se_sess: associated se_sess for endpoint
1803 * @cdb: pointer to SCSI CDB
1804 * @sense: pointer to SCSI sense buffer
1805 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1806 * @data_length: fabric expected data transfer length
1807 * @task_attr: SAM task attribute
1808 * @data_dir: DMA data direction
1809 * @flags: flags for command submission from target_sc_flags_tables
1810 *
1811 * Task tags are supported if the caller has set @se_cmd->tag.
1812 *
1813 * This may only be called from process context, and also currently
1814 * assumes internal allocation of fabric payload buffer by target-core.
1815 *
1816 * It also assumes interal target core SGL memory allocation.
1817 *
1818 * This function must only be used by drivers that do their own
1819 * sync during shutdown and does not use target_stop_session. If there
1820 * is a failure this function will call into the fabric driver's
1821 * queue_status with a CHECK_CONDITION.
1822 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1823 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1824 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1825 u32 data_length, int task_attr, int data_dir, int flags)
1826 {
1827 int rc;
1828
1829 rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1830 task_attr, data_dir, flags);
1831 WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1832 if (rc)
1833 return;
1834
1835 if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1836 GFP_KERNEL))
1837 return;
1838
1839 target_submit(se_cmd);
1840 }
1841 EXPORT_SYMBOL(target_submit_cmd);
1842
1843
target_plug_device(struct se_device * se_dev)1844 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1845 {
1846 struct se_dev_plug *se_plug;
1847
1848 if (!se_dev->transport->plug_device)
1849 return NULL;
1850
1851 se_plug = se_dev->transport->plug_device(se_dev);
1852 if (!se_plug)
1853 return NULL;
1854
1855 se_plug->se_dev = se_dev;
1856 /*
1857 * We have a ref to the lun at this point, but the cmds could
1858 * complete before we unplug, so grab a ref to the se_device so we
1859 * can call back into the backend.
1860 */
1861 config_group_get(&se_dev->dev_group);
1862 return se_plug;
1863 }
1864
target_unplug_device(struct se_dev_plug * se_plug)1865 static void target_unplug_device(struct se_dev_plug *se_plug)
1866 {
1867 struct se_device *se_dev = se_plug->se_dev;
1868
1869 se_dev->transport->unplug_device(se_plug);
1870 config_group_put(&se_dev->dev_group);
1871 }
1872
target_queued_submit_work(struct work_struct * work)1873 void target_queued_submit_work(struct work_struct *work)
1874 {
1875 struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1876 struct se_cmd *se_cmd, *next_cmd;
1877 struct se_dev_plug *se_plug = NULL;
1878 struct se_device *se_dev = NULL;
1879 struct llist_node *cmd_list;
1880
1881 cmd_list = llist_del_all(&sq->cmd_list);
1882 if (!cmd_list)
1883 /* Previous call took what we were queued to submit */
1884 return;
1885
1886 cmd_list = llist_reverse_order(cmd_list);
1887 llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1888 if (!se_dev) {
1889 se_dev = se_cmd->se_dev;
1890 se_plug = target_plug_device(se_dev);
1891 }
1892
1893 target_submit(se_cmd);
1894 }
1895
1896 if (se_plug)
1897 target_unplug_device(se_plug);
1898 }
1899
1900 /**
1901 * target_queue_submission - queue the cmd to run on the LIO workqueue
1902 * @se_cmd: command descriptor to submit
1903 */
target_queue_submission(struct se_cmd * se_cmd)1904 void target_queue_submission(struct se_cmd *se_cmd)
1905 {
1906 struct se_device *se_dev = se_cmd->se_dev;
1907 int cpu = se_cmd->cpuid;
1908 struct se_cmd_queue *sq;
1909
1910 sq = &se_dev->queues[cpu].sq;
1911 llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1912 queue_work_on(cpu, target_submission_wq, &sq->work);
1913 }
1914 EXPORT_SYMBOL_GPL(target_queue_submission);
1915
target_complete_tmr_failure(struct work_struct * work)1916 static void target_complete_tmr_failure(struct work_struct *work)
1917 {
1918 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1919
1920 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1921 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1922
1923 transport_lun_remove_cmd(se_cmd);
1924 transport_cmd_check_stop_to_fabric(se_cmd);
1925 }
1926
1927 /**
1928 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1929 * for TMR CDBs
1930 *
1931 * @se_cmd: command descriptor to submit
1932 * @se_sess: associated se_sess for endpoint
1933 * @sense: pointer to SCSI sense buffer
1934 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1935 * @fabric_tmr_ptr: fabric context for TMR req
1936 * @tm_type: Type of TM request
1937 * @gfp: gfp type for caller
1938 * @tag: referenced task tag for TMR_ABORT_TASK
1939 * @flags: submit cmd flags
1940 *
1941 * Callable from all contexts.
1942 **/
1943
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1944 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1945 unsigned char *sense, u64 unpacked_lun,
1946 void *fabric_tmr_ptr, unsigned char tm_type,
1947 gfp_t gfp, u64 tag, int flags)
1948 {
1949 struct se_portal_group *se_tpg;
1950 int ret;
1951
1952 se_tpg = se_sess->se_tpg;
1953 BUG_ON(!se_tpg);
1954
1955 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1956 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1957 /*
1958 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1959 * allocation failure.
1960 */
1961 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1962 if (ret < 0)
1963 return -ENOMEM;
1964
1965 if (tm_type == TMR_ABORT_TASK)
1966 se_cmd->se_tmr_req->ref_task_tag = tag;
1967
1968 /* See target_submit_cmd for commentary */
1969 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1970 if (ret) {
1971 core_tmr_release_req(se_cmd->se_tmr_req);
1972 return ret;
1973 }
1974
1975 ret = transport_lookup_tmr_lun(se_cmd);
1976 if (ret)
1977 goto failure;
1978
1979 transport_generic_handle_tmr(se_cmd);
1980 return 0;
1981
1982 /*
1983 * For callback during failure handling, push this work off
1984 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1985 */
1986 failure:
1987 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1988 schedule_work(&se_cmd->work);
1989 return 0;
1990 }
1991 EXPORT_SYMBOL(target_submit_tmr);
1992
1993 /*
1994 * Handle SAM-esque emulation for generic transport request failures.
1995 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1996 void transport_generic_request_failure(struct se_cmd *cmd,
1997 sense_reason_t sense_reason)
1998 {
1999 int ret = 0, post_ret;
2000
2001 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
2002 sense_reason);
2003 target_show_cmd("-----[ ", cmd);
2004
2005 /*
2006 * For SAM Task Attribute emulation for failed struct se_cmd
2007 */
2008 transport_complete_task_attr(cmd);
2009
2010 if (cmd->transport_complete_callback)
2011 cmd->transport_complete_callback(cmd, false, &post_ret);
2012
2013 if (cmd->transport_state & CMD_T_ABORTED) {
2014 INIT_WORK(&cmd->work, target_abort_work);
2015 queue_work(target_completion_wq, &cmd->work);
2016 return;
2017 }
2018
2019 switch (sense_reason) {
2020 case TCM_NON_EXISTENT_LUN:
2021 case TCM_UNSUPPORTED_SCSI_OPCODE:
2022 case TCM_INVALID_CDB_FIELD:
2023 case TCM_INVALID_PARAMETER_LIST:
2024 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2025 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2026 case TCM_UNKNOWN_MODE_PAGE:
2027 case TCM_WRITE_PROTECTED:
2028 case TCM_ADDRESS_OUT_OF_RANGE:
2029 case TCM_CHECK_CONDITION_ABORT_CMD:
2030 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2031 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2032 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2033 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2034 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2035 case TCM_TOO_MANY_TARGET_DESCS:
2036 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2037 case TCM_TOO_MANY_SEGMENT_DESCS:
2038 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2039 case TCM_INVALID_FIELD_IN_COMMAND_IU:
2040 case TCM_ALUA_TG_PT_STANDBY:
2041 case TCM_ALUA_TG_PT_UNAVAILABLE:
2042 case TCM_ALUA_STATE_TRANSITION:
2043 case TCM_ALUA_OFFLINE:
2044 break;
2045 case TCM_OUT_OF_RESOURCES:
2046 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2047 goto queue_status;
2048 case TCM_LUN_BUSY:
2049 cmd->scsi_status = SAM_STAT_BUSY;
2050 goto queue_status;
2051 case TCM_RESERVATION_CONFLICT:
2052 /*
2053 * No SENSE Data payload for this case, set SCSI Status
2054 * and queue the response to $FABRIC_MOD.
2055 *
2056 * Uses linux/include/scsi/scsi.h SAM status codes defs
2057 */
2058 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2059 /*
2060 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2061 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2062 * CONFLICT STATUS.
2063 *
2064 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2065 */
2066 if (cmd->se_sess &&
2067 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2068 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2069 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2070 cmd->orig_fe_lun, 0x2C,
2071 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2072 }
2073
2074 goto queue_status;
2075 default:
2076 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2077 cmd->t_task_cdb[0], sense_reason);
2078 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2079 break;
2080 }
2081
2082 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2083 if (ret)
2084 goto queue_full;
2085
2086 check_stop:
2087 transport_lun_remove_cmd(cmd);
2088 transport_cmd_check_stop_to_fabric(cmd);
2089 return;
2090
2091 queue_status:
2092 trace_target_cmd_complete(cmd);
2093 ret = cmd->se_tfo->queue_status(cmd);
2094 if (!ret)
2095 goto check_stop;
2096 queue_full:
2097 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2098 }
2099 EXPORT_SYMBOL(transport_generic_request_failure);
2100
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)2101 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2102 {
2103 sense_reason_t ret;
2104
2105 if (!cmd->execute_cmd) {
2106 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2107 goto err;
2108 }
2109 if (do_checks) {
2110 /*
2111 * Check for an existing UNIT ATTENTION condition after
2112 * target_handle_task_attr() has done SAM task attr
2113 * checking, and possibly have already defered execution
2114 * out to target_restart_delayed_cmds() context.
2115 */
2116 ret = target_scsi3_ua_check(cmd);
2117 if (ret)
2118 goto err;
2119
2120 ret = target_alua_state_check(cmd);
2121 if (ret)
2122 goto err;
2123
2124 ret = target_check_reservation(cmd);
2125 if (ret) {
2126 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2127 goto err;
2128 }
2129 }
2130
2131 ret = cmd->execute_cmd(cmd);
2132 if (!ret)
2133 return;
2134 err:
2135 spin_lock_irq(&cmd->t_state_lock);
2136 cmd->transport_state &= ~CMD_T_SENT;
2137 spin_unlock_irq(&cmd->t_state_lock);
2138
2139 transport_generic_request_failure(cmd, ret);
2140 }
2141
target_write_prot_action(struct se_cmd * cmd)2142 static int target_write_prot_action(struct se_cmd *cmd)
2143 {
2144 u32 sectors;
2145 /*
2146 * Perform WRITE_INSERT of PI using software emulation when backend
2147 * device has PI enabled, if the transport has not already generated
2148 * PI using hardware WRITE_INSERT offload.
2149 */
2150 switch (cmd->prot_op) {
2151 case TARGET_PROT_DOUT_INSERT:
2152 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2153 sbc_dif_generate(cmd);
2154 break;
2155 case TARGET_PROT_DOUT_STRIP:
2156 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2157 break;
2158
2159 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2160 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2161 sectors, 0, cmd->t_prot_sg, 0);
2162 if (unlikely(cmd->pi_err)) {
2163 spin_lock_irq(&cmd->t_state_lock);
2164 cmd->transport_state &= ~CMD_T_SENT;
2165 spin_unlock_irq(&cmd->t_state_lock);
2166 transport_generic_request_failure(cmd, cmd->pi_err);
2167 return -1;
2168 }
2169 break;
2170 default:
2171 break;
2172 }
2173
2174 return 0;
2175 }
2176
target_handle_task_attr(struct se_cmd * cmd)2177 static bool target_handle_task_attr(struct se_cmd *cmd)
2178 {
2179 struct se_device *dev = cmd->se_dev;
2180
2181 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2182 return false;
2183
2184 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2185
2186 /*
2187 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2188 * to allow the passed struct se_cmd list of tasks to the front of the list.
2189 */
2190 switch (cmd->sam_task_attr) {
2191 case TCM_HEAD_TAG:
2192 atomic_inc_mb(&dev->non_ordered);
2193 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2194 cmd->t_task_cdb[0]);
2195 return false;
2196 case TCM_ORDERED_TAG:
2197 atomic_inc_mb(&dev->delayed_cmd_count);
2198
2199 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2200 cmd->t_task_cdb[0]);
2201 break;
2202 default:
2203 /*
2204 * For SIMPLE and UNTAGGED Task Attribute commands
2205 */
2206 atomic_inc_mb(&dev->non_ordered);
2207
2208 if (atomic_read(&dev->delayed_cmd_count) == 0)
2209 return false;
2210 break;
2211 }
2212
2213 if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
2214 atomic_inc_mb(&dev->delayed_cmd_count);
2215 /*
2216 * We will account for this when we dequeue from the delayed
2217 * list.
2218 */
2219 atomic_dec_mb(&dev->non_ordered);
2220 }
2221
2222 spin_lock(&dev->delayed_cmd_lock);
2223 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2224 spin_unlock(&dev->delayed_cmd_lock);
2225
2226 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2227 cmd->t_task_cdb[0], cmd->sam_task_attr);
2228 /*
2229 * We may have no non ordered cmds when this function started or we
2230 * could have raced with the last simple/head cmd completing, so kick
2231 * the delayed handler here.
2232 */
2233 schedule_work(&dev->delayed_cmd_work);
2234 return true;
2235 }
2236
target_execute_cmd(struct se_cmd * cmd)2237 void target_execute_cmd(struct se_cmd *cmd)
2238 {
2239 /*
2240 * Determine if frontend context caller is requesting the stopping of
2241 * this command for frontend exceptions.
2242 *
2243 * If the received CDB has already been aborted stop processing it here.
2244 */
2245 if (target_cmd_interrupted(cmd))
2246 return;
2247
2248 spin_lock_irq(&cmd->t_state_lock);
2249 cmd->t_state = TRANSPORT_PROCESSING;
2250 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2251 spin_unlock_irq(&cmd->t_state_lock);
2252
2253 if (target_write_prot_action(cmd))
2254 return;
2255
2256 if (target_handle_task_attr(cmd)) {
2257 spin_lock_irq(&cmd->t_state_lock);
2258 cmd->transport_state &= ~CMD_T_SENT;
2259 spin_unlock_irq(&cmd->t_state_lock);
2260 return;
2261 }
2262
2263 __target_execute_cmd(cmd, true);
2264 }
2265 EXPORT_SYMBOL(target_execute_cmd);
2266
2267 /*
2268 * Process all commands up to the last received ORDERED task attribute which
2269 * requires another blocking boundary
2270 */
target_do_delayed_work(struct work_struct * work)2271 void target_do_delayed_work(struct work_struct *work)
2272 {
2273 struct se_device *dev = container_of(work, struct se_device,
2274 delayed_cmd_work);
2275
2276 spin_lock(&dev->delayed_cmd_lock);
2277 while (!dev->ordered_sync_in_progress) {
2278 struct se_cmd *cmd;
2279
2280 if (list_empty(&dev->delayed_cmd_list))
2281 break;
2282
2283 cmd = list_entry(dev->delayed_cmd_list.next,
2284 struct se_cmd, se_delayed_node);
2285
2286 if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2287 /*
2288 * Check if we started with:
2289 * [ordered] [simple] [ordered]
2290 * and we are now at the last ordered so we have to wait
2291 * for the simple cmd.
2292 */
2293 if (atomic_read(&dev->non_ordered) > 0)
2294 break;
2295
2296 dev->ordered_sync_in_progress = true;
2297 }
2298
2299 list_del(&cmd->se_delayed_node);
2300 atomic_dec_mb(&dev->delayed_cmd_count);
2301 spin_unlock(&dev->delayed_cmd_lock);
2302
2303 if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2304 atomic_inc_mb(&dev->non_ordered);
2305
2306 cmd->transport_state |= CMD_T_SENT;
2307
2308 __target_execute_cmd(cmd, true);
2309
2310 spin_lock(&dev->delayed_cmd_lock);
2311 }
2312 spin_unlock(&dev->delayed_cmd_lock);
2313 }
2314
2315 /*
2316 * Called from I/O completion to determine which dormant/delayed
2317 * and ordered cmds need to have their tasks added to the execution queue.
2318 */
transport_complete_task_attr(struct se_cmd * cmd)2319 static void transport_complete_task_attr(struct se_cmd *cmd)
2320 {
2321 struct se_device *dev = cmd->se_dev;
2322
2323 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2324 return;
2325
2326 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2327 goto restart;
2328
2329 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2330 atomic_dec_mb(&dev->non_ordered);
2331 dev->dev_cur_ordered_id++;
2332 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2333 atomic_dec_mb(&dev->non_ordered);
2334 dev->dev_cur_ordered_id++;
2335 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2336 dev->dev_cur_ordered_id);
2337 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2338 spin_lock(&dev->delayed_cmd_lock);
2339 dev->ordered_sync_in_progress = false;
2340 spin_unlock(&dev->delayed_cmd_lock);
2341
2342 dev->dev_cur_ordered_id++;
2343 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2344 dev->dev_cur_ordered_id);
2345 }
2346 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2347
2348 restart:
2349 if (atomic_read(&dev->delayed_cmd_count) > 0)
2350 schedule_work(&dev->delayed_cmd_work);
2351 }
2352
transport_complete_qf(struct se_cmd * cmd)2353 static void transport_complete_qf(struct se_cmd *cmd)
2354 {
2355 int ret = 0;
2356
2357 transport_complete_task_attr(cmd);
2358 /*
2359 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2360 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2361 * the same callbacks should not be retried. Return CHECK_CONDITION
2362 * if a scsi_status is not already set.
2363 *
2364 * If a fabric driver ->queue_status() has returned non zero, always
2365 * keep retrying no matter what..
2366 */
2367 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2368 if (cmd->scsi_status)
2369 goto queue_status;
2370
2371 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2372 goto queue_status;
2373 }
2374
2375 /*
2376 * Check if we need to send a sense buffer from
2377 * the struct se_cmd in question. We do NOT want
2378 * to take this path of the IO has been marked as
2379 * needing to be treated like a "normal read". This
2380 * is the case if it's a tape read, and either the
2381 * FM, EOM, or ILI bits are set, but there is no
2382 * sense data.
2383 */
2384 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2385 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2386 goto queue_status;
2387
2388 switch (cmd->data_direction) {
2389 case DMA_FROM_DEVICE:
2390 /* queue status if not treating this as a normal read */
2391 if (cmd->scsi_status &&
2392 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2393 goto queue_status;
2394
2395 trace_target_cmd_complete(cmd);
2396 ret = cmd->se_tfo->queue_data_in(cmd);
2397 break;
2398 case DMA_TO_DEVICE:
2399 if (cmd->se_cmd_flags & SCF_BIDI) {
2400 ret = cmd->se_tfo->queue_data_in(cmd);
2401 break;
2402 }
2403 fallthrough;
2404 case DMA_NONE:
2405 queue_status:
2406 trace_target_cmd_complete(cmd);
2407 ret = cmd->se_tfo->queue_status(cmd);
2408 break;
2409 default:
2410 break;
2411 }
2412
2413 if (ret < 0) {
2414 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2415 return;
2416 }
2417 transport_lun_remove_cmd(cmd);
2418 transport_cmd_check_stop_to_fabric(cmd);
2419 }
2420
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2421 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2422 int err, bool write_pending)
2423 {
2424 /*
2425 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2426 * ->queue_data_in() callbacks from new process context.
2427 *
2428 * Otherwise for other errors, transport_complete_qf() will send
2429 * CHECK_CONDITION via ->queue_status() instead of attempting to
2430 * retry associated fabric driver data-transfer callbacks.
2431 */
2432 if (err == -EAGAIN || err == -ENOMEM) {
2433 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2434 TRANSPORT_COMPLETE_QF_OK;
2435 } else {
2436 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2437 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2438 }
2439
2440 spin_lock_irq(&dev->qf_cmd_lock);
2441 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2442 atomic_inc_mb(&dev->dev_qf_count);
2443 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2444
2445 schedule_work(&cmd->se_dev->qf_work_queue);
2446 }
2447
target_read_prot_action(struct se_cmd * cmd)2448 static bool target_read_prot_action(struct se_cmd *cmd)
2449 {
2450 switch (cmd->prot_op) {
2451 case TARGET_PROT_DIN_STRIP:
2452 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2453 u32 sectors = cmd->data_length >>
2454 ilog2(cmd->se_dev->dev_attrib.block_size);
2455
2456 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2457 sectors, 0, cmd->t_prot_sg,
2458 0);
2459 if (cmd->pi_err)
2460 return true;
2461 }
2462 break;
2463 case TARGET_PROT_DIN_INSERT:
2464 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2465 break;
2466
2467 sbc_dif_generate(cmd);
2468 break;
2469 default:
2470 break;
2471 }
2472
2473 return false;
2474 }
2475
target_complete_ok_work(struct work_struct * work)2476 static void target_complete_ok_work(struct work_struct *work)
2477 {
2478 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2479 int ret;
2480
2481 /*
2482 * Check if we need to move delayed/dormant tasks from cmds on the
2483 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2484 * Attribute.
2485 */
2486 transport_complete_task_attr(cmd);
2487
2488 /*
2489 * Check to schedule QUEUE_FULL work, or execute an existing
2490 * cmd->transport_qf_callback()
2491 */
2492 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2493 schedule_work(&cmd->se_dev->qf_work_queue);
2494
2495 /*
2496 * Check if we need to send a sense buffer from
2497 * the struct se_cmd in question. We do NOT want
2498 * to take this path of the IO has been marked as
2499 * needing to be treated like a "normal read". This
2500 * is the case if it's a tape read, and either the
2501 * FM, EOM, or ILI bits are set, but there is no
2502 * sense data.
2503 */
2504 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2505 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2506 WARN_ON(!cmd->scsi_status);
2507 ret = transport_send_check_condition_and_sense(
2508 cmd, 0, 1);
2509 if (ret)
2510 goto queue_full;
2511
2512 transport_lun_remove_cmd(cmd);
2513 transport_cmd_check_stop_to_fabric(cmd);
2514 return;
2515 }
2516 /*
2517 * Check for a callback, used by amongst other things
2518 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2519 */
2520 if (cmd->transport_complete_callback) {
2521 sense_reason_t rc;
2522 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2523 bool zero_dl = !(cmd->data_length);
2524 int post_ret = 0;
2525
2526 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2527 if (!rc && !post_ret) {
2528 if (caw && zero_dl)
2529 goto queue_rsp;
2530
2531 return;
2532 } else if (rc) {
2533 ret = transport_send_check_condition_and_sense(cmd,
2534 rc, 0);
2535 if (ret)
2536 goto queue_full;
2537
2538 transport_lun_remove_cmd(cmd);
2539 transport_cmd_check_stop_to_fabric(cmd);
2540 return;
2541 }
2542 }
2543
2544 queue_rsp:
2545 switch (cmd->data_direction) {
2546 case DMA_FROM_DEVICE:
2547 /*
2548 * if this is a READ-type IO, but SCSI status
2549 * is set, then skip returning data and just
2550 * return the status -- unless this IO is marked
2551 * as needing to be treated as a normal read,
2552 * in which case we want to go ahead and return
2553 * the data. This happens, for example, for tape
2554 * reads with the FM, EOM, or ILI bits set, with
2555 * no sense data.
2556 */
2557 if (cmd->scsi_status &&
2558 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2559 goto queue_status;
2560
2561 atomic_long_add(cmd->data_length,
2562 &cmd->se_lun->lun_stats.tx_data_octets);
2563 /*
2564 * Perform READ_STRIP of PI using software emulation when
2565 * backend had PI enabled, if the transport will not be
2566 * performing hardware READ_STRIP offload.
2567 */
2568 if (target_read_prot_action(cmd)) {
2569 ret = transport_send_check_condition_and_sense(cmd,
2570 cmd->pi_err, 0);
2571 if (ret)
2572 goto queue_full;
2573
2574 transport_lun_remove_cmd(cmd);
2575 transport_cmd_check_stop_to_fabric(cmd);
2576 return;
2577 }
2578
2579 trace_target_cmd_complete(cmd);
2580 ret = cmd->se_tfo->queue_data_in(cmd);
2581 if (ret)
2582 goto queue_full;
2583 break;
2584 case DMA_TO_DEVICE:
2585 atomic_long_add(cmd->data_length,
2586 &cmd->se_lun->lun_stats.rx_data_octets);
2587 /*
2588 * Check if we need to send READ payload for BIDI-COMMAND
2589 */
2590 if (cmd->se_cmd_flags & SCF_BIDI) {
2591 atomic_long_add(cmd->data_length,
2592 &cmd->se_lun->lun_stats.tx_data_octets);
2593 ret = cmd->se_tfo->queue_data_in(cmd);
2594 if (ret)
2595 goto queue_full;
2596 break;
2597 }
2598 fallthrough;
2599 case DMA_NONE:
2600 queue_status:
2601 trace_target_cmd_complete(cmd);
2602 ret = cmd->se_tfo->queue_status(cmd);
2603 if (ret)
2604 goto queue_full;
2605 break;
2606 default:
2607 break;
2608 }
2609
2610 transport_lun_remove_cmd(cmd);
2611 transport_cmd_check_stop_to_fabric(cmd);
2612 return;
2613
2614 queue_full:
2615 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2616 " data_direction: %d\n", cmd, cmd->data_direction);
2617
2618 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2619 }
2620
target_free_sgl(struct scatterlist * sgl,int nents)2621 void target_free_sgl(struct scatterlist *sgl, int nents)
2622 {
2623 sgl_free_n_order(sgl, nents, 0);
2624 }
2625 EXPORT_SYMBOL(target_free_sgl);
2626
transport_reset_sgl_orig(struct se_cmd * cmd)2627 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2628 {
2629 /*
2630 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2631 * emulation, and free + reset pointers if necessary..
2632 */
2633 if (!cmd->t_data_sg_orig)
2634 return;
2635
2636 kfree(cmd->t_data_sg);
2637 cmd->t_data_sg = cmd->t_data_sg_orig;
2638 cmd->t_data_sg_orig = NULL;
2639 cmd->t_data_nents = cmd->t_data_nents_orig;
2640 cmd->t_data_nents_orig = 0;
2641 }
2642
transport_free_pages(struct se_cmd * cmd)2643 static inline void transport_free_pages(struct se_cmd *cmd)
2644 {
2645 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2646 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2647 cmd->t_prot_sg = NULL;
2648 cmd->t_prot_nents = 0;
2649 }
2650
2651 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2652 /*
2653 * Release special case READ buffer payload required for
2654 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2655 */
2656 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2657 target_free_sgl(cmd->t_bidi_data_sg,
2658 cmd->t_bidi_data_nents);
2659 cmd->t_bidi_data_sg = NULL;
2660 cmd->t_bidi_data_nents = 0;
2661 }
2662 transport_reset_sgl_orig(cmd);
2663 return;
2664 }
2665 transport_reset_sgl_orig(cmd);
2666
2667 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2668 cmd->t_data_sg = NULL;
2669 cmd->t_data_nents = 0;
2670
2671 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2672 cmd->t_bidi_data_sg = NULL;
2673 cmd->t_bidi_data_nents = 0;
2674 }
2675
transport_kmap_data_sg(struct se_cmd * cmd)2676 void *transport_kmap_data_sg(struct se_cmd *cmd)
2677 {
2678 struct scatterlist *sg = cmd->t_data_sg;
2679 struct page **pages;
2680 int i;
2681
2682 /*
2683 * We need to take into account a possible offset here for fabrics like
2684 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2685 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2686 */
2687 if (!cmd->t_data_nents)
2688 return NULL;
2689
2690 BUG_ON(!sg);
2691 if (cmd->t_data_nents == 1)
2692 return kmap(sg_page(sg)) + sg->offset;
2693
2694 /* >1 page. use vmap */
2695 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2696 if (!pages)
2697 return NULL;
2698
2699 /* convert sg[] to pages[] */
2700 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2701 pages[i] = sg_page(sg);
2702 }
2703
2704 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2705 kfree(pages);
2706 if (!cmd->t_data_vmap)
2707 return NULL;
2708
2709 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2710 }
2711 EXPORT_SYMBOL(transport_kmap_data_sg);
2712
transport_kunmap_data_sg(struct se_cmd * cmd)2713 void transport_kunmap_data_sg(struct se_cmd *cmd)
2714 {
2715 if (!cmd->t_data_nents) {
2716 return;
2717 } else if (cmd->t_data_nents == 1) {
2718 kunmap(sg_page(cmd->t_data_sg));
2719 return;
2720 }
2721
2722 vunmap(cmd->t_data_vmap);
2723 cmd->t_data_vmap = NULL;
2724 }
2725 EXPORT_SYMBOL(transport_kunmap_data_sg);
2726
2727 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2728 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2729 bool zero_page, bool chainable)
2730 {
2731 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2732
2733 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2734 return *sgl ? 0 : -ENOMEM;
2735 }
2736 EXPORT_SYMBOL(target_alloc_sgl);
2737
2738 /*
2739 * Allocate any required resources to execute the command. For writes we
2740 * might not have the payload yet, so notify the fabric via a call to
2741 * ->write_pending instead. Otherwise place it on the execution queue.
2742 */
2743 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2744 transport_generic_new_cmd(struct se_cmd *cmd)
2745 {
2746 unsigned long flags;
2747 int ret = 0;
2748 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2749
2750 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2751 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2752 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2753 cmd->prot_length, true, false);
2754 if (ret < 0)
2755 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2756 }
2757
2758 /*
2759 * Determine if the TCM fabric module has already allocated physical
2760 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2761 * beforehand.
2762 */
2763 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2764 cmd->data_length) {
2765
2766 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2767 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2768 u32 bidi_length;
2769
2770 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2771 bidi_length = cmd->t_task_nolb *
2772 cmd->se_dev->dev_attrib.block_size;
2773 else
2774 bidi_length = cmd->data_length;
2775
2776 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2777 &cmd->t_bidi_data_nents,
2778 bidi_length, zero_flag, false);
2779 if (ret < 0)
2780 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2781 }
2782
2783 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2784 cmd->data_length, zero_flag, false);
2785 if (ret < 0)
2786 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2787 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2788 cmd->data_length) {
2789 /*
2790 * Special case for COMPARE_AND_WRITE with fabrics
2791 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2792 */
2793 u32 caw_length = cmd->t_task_nolb *
2794 cmd->se_dev->dev_attrib.block_size;
2795
2796 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2797 &cmd->t_bidi_data_nents,
2798 caw_length, zero_flag, false);
2799 if (ret < 0)
2800 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2801 }
2802 /*
2803 * If this command is not a write we can execute it right here,
2804 * for write buffers we need to notify the fabric driver first
2805 * and let it call back once the write buffers are ready.
2806 */
2807 target_add_to_state_list(cmd);
2808 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2809 target_execute_cmd(cmd);
2810 return 0;
2811 }
2812
2813 spin_lock_irqsave(&cmd->t_state_lock, flags);
2814 cmd->t_state = TRANSPORT_WRITE_PENDING;
2815 /*
2816 * Determine if frontend context caller is requesting the stopping of
2817 * this command for frontend exceptions.
2818 */
2819 if (cmd->transport_state & CMD_T_STOP &&
2820 !cmd->se_tfo->write_pending_must_be_called) {
2821 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2822 __func__, __LINE__, cmd->tag);
2823
2824 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2825
2826 complete_all(&cmd->t_transport_stop_comp);
2827 return 0;
2828 }
2829 cmd->transport_state &= ~CMD_T_ACTIVE;
2830 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2831
2832 ret = cmd->se_tfo->write_pending(cmd);
2833 if (ret)
2834 goto queue_full;
2835
2836 return 0;
2837
2838 queue_full:
2839 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2840 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2841 return 0;
2842 }
2843 EXPORT_SYMBOL(transport_generic_new_cmd);
2844
transport_write_pending_qf(struct se_cmd * cmd)2845 static void transport_write_pending_qf(struct se_cmd *cmd)
2846 {
2847 unsigned long flags;
2848 int ret;
2849 bool stop;
2850
2851 spin_lock_irqsave(&cmd->t_state_lock, flags);
2852 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2853 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2854
2855 if (stop) {
2856 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2857 __func__, __LINE__, cmd->tag);
2858 complete_all(&cmd->t_transport_stop_comp);
2859 return;
2860 }
2861
2862 ret = cmd->se_tfo->write_pending(cmd);
2863 if (ret) {
2864 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2865 cmd);
2866 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2867 }
2868 }
2869
2870 static bool
2871 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2872 unsigned long *flags);
2873
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2874 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2875 {
2876 unsigned long flags;
2877
2878 spin_lock_irqsave(&cmd->t_state_lock, flags);
2879 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2880 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2881 }
2882
2883 /*
2884 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2885 * finished.
2886 */
target_put_cmd_and_wait(struct se_cmd * cmd)2887 void target_put_cmd_and_wait(struct se_cmd *cmd)
2888 {
2889 DECLARE_COMPLETION_ONSTACK(compl);
2890
2891 WARN_ON_ONCE(cmd->abrt_compl);
2892 cmd->abrt_compl = &compl;
2893 target_put_sess_cmd(cmd);
2894 wait_for_completion(&compl);
2895 }
2896
2897 /*
2898 * This function is called by frontend drivers after processing of a command
2899 * has finished.
2900 *
2901 * The protocol for ensuring that either the regular frontend command
2902 * processing flow or target_handle_abort() code drops one reference is as
2903 * follows:
2904 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2905 * the frontend driver to call this function synchronously or asynchronously.
2906 * That will cause one reference to be dropped.
2907 * - During regular command processing the target core sets CMD_T_COMPLETE
2908 * before invoking one of the .queue_*() functions.
2909 * - The code that aborts commands skips commands and TMFs for which
2910 * CMD_T_COMPLETE has been set.
2911 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2912 * commands that will be aborted.
2913 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2914 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2915 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2916 * be called and will drop a reference.
2917 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2918 * will be called. target_handle_abort() will drop the final reference.
2919 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2920 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2921 {
2922 DECLARE_COMPLETION_ONSTACK(compl);
2923 int ret = 0;
2924 bool aborted = false, tas = false;
2925
2926 if (wait_for_tasks)
2927 target_wait_free_cmd(cmd, &aborted, &tas);
2928
2929 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2930 /*
2931 * Handle WRITE failure case where transport_generic_new_cmd()
2932 * has already added se_cmd to state_list, but fabric has
2933 * failed command before I/O submission.
2934 */
2935 if (cmd->state_active)
2936 target_remove_from_state_list(cmd);
2937
2938 if (cmd->se_lun)
2939 transport_lun_remove_cmd(cmd);
2940 }
2941 if (aborted)
2942 cmd->free_compl = &compl;
2943 ret = target_put_sess_cmd(cmd);
2944 if (aborted) {
2945 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2946 wait_for_completion(&compl);
2947 ret = 1;
2948 }
2949 return ret;
2950 }
2951 EXPORT_SYMBOL(transport_generic_free_cmd);
2952
2953 /**
2954 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2955 * @se_cmd: command descriptor to add
2956 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2957 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2958 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2959 {
2960 struct se_session *se_sess = se_cmd->se_sess;
2961 int ret = 0;
2962
2963 /*
2964 * Add a second kref if the fabric caller is expecting to handle
2965 * fabric acknowledgement that requires two target_put_sess_cmd()
2966 * invocations before se_cmd descriptor release.
2967 */
2968 if (ack_kref) {
2969 kref_get(&se_cmd->cmd_kref);
2970 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2971 }
2972
2973 if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2974 ret = -ESHUTDOWN;
2975
2976 if (ret && ack_kref)
2977 target_put_sess_cmd(se_cmd);
2978
2979 return ret;
2980 }
2981 EXPORT_SYMBOL(target_get_sess_cmd);
2982
target_free_cmd_mem(struct se_cmd * cmd)2983 static void target_free_cmd_mem(struct se_cmd *cmd)
2984 {
2985 transport_free_pages(cmd);
2986
2987 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2988 core_tmr_release_req(cmd->se_tmr_req);
2989 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2990 kfree(cmd->t_task_cdb);
2991 }
2992
target_release_cmd_kref(struct kref * kref)2993 static void target_release_cmd_kref(struct kref *kref)
2994 {
2995 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2996 struct se_session *se_sess = se_cmd->se_sess;
2997 struct completion *free_compl = se_cmd->free_compl;
2998 struct completion *abrt_compl = se_cmd->abrt_compl;
2999
3000 target_free_cmd_mem(se_cmd);
3001 se_cmd->se_tfo->release_cmd(se_cmd);
3002 if (free_compl)
3003 complete(free_compl);
3004 if (abrt_compl)
3005 complete(abrt_compl);
3006
3007 percpu_ref_put(&se_sess->cmd_count);
3008 }
3009
3010 /**
3011 * target_put_sess_cmd - decrease the command reference count
3012 * @se_cmd: command to drop a reference from
3013 *
3014 * Returns 1 if and only if this target_put_sess_cmd() call caused the
3015 * refcount to drop to zero. Returns zero otherwise.
3016 */
target_put_sess_cmd(struct se_cmd * se_cmd)3017 int target_put_sess_cmd(struct se_cmd *se_cmd)
3018 {
3019 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3020 }
3021 EXPORT_SYMBOL(target_put_sess_cmd);
3022
data_dir_name(enum dma_data_direction d)3023 static const char *data_dir_name(enum dma_data_direction d)
3024 {
3025 switch (d) {
3026 case DMA_BIDIRECTIONAL: return "BIDI";
3027 case DMA_TO_DEVICE: return "WRITE";
3028 case DMA_FROM_DEVICE: return "READ";
3029 case DMA_NONE: return "NONE";
3030 }
3031
3032 return "(?)";
3033 }
3034
cmd_state_name(enum transport_state_table t)3035 static const char *cmd_state_name(enum transport_state_table t)
3036 {
3037 switch (t) {
3038 case TRANSPORT_NO_STATE: return "NO_STATE";
3039 case TRANSPORT_NEW_CMD: return "NEW_CMD";
3040 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
3041 case TRANSPORT_PROCESSING: return "PROCESSING";
3042 case TRANSPORT_COMPLETE: return "COMPLETE";
3043 case TRANSPORT_ISTATE_PROCESSING:
3044 return "ISTATE_PROCESSING";
3045 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
3046 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
3047 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3048 }
3049
3050 return "(?)";
3051 }
3052
target_append_str(char ** str,const char * txt)3053 static void target_append_str(char **str, const char *txt)
3054 {
3055 char *prev = *str;
3056
3057 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3058 kstrdup(txt, GFP_ATOMIC);
3059 kfree(prev);
3060 }
3061
3062 /*
3063 * Convert a transport state bitmask into a string. The caller is
3064 * responsible for freeing the returned pointer.
3065 */
target_ts_to_str(u32 ts)3066 static char *target_ts_to_str(u32 ts)
3067 {
3068 char *str = NULL;
3069
3070 if (ts & CMD_T_ABORTED)
3071 target_append_str(&str, "aborted");
3072 if (ts & CMD_T_ACTIVE)
3073 target_append_str(&str, "active");
3074 if (ts & CMD_T_COMPLETE)
3075 target_append_str(&str, "complete");
3076 if (ts & CMD_T_SENT)
3077 target_append_str(&str, "sent");
3078 if (ts & CMD_T_STOP)
3079 target_append_str(&str, "stop");
3080 if (ts & CMD_T_FABRIC_STOP)
3081 target_append_str(&str, "fabric_stop");
3082
3083 return str;
3084 }
3085
target_tmf_name(enum tcm_tmreq_table tmf)3086 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3087 {
3088 switch (tmf) {
3089 case TMR_ABORT_TASK: return "ABORT_TASK";
3090 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
3091 case TMR_CLEAR_ACA: return "CLEAR_ACA";
3092 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
3093 case TMR_LUN_RESET: return "LUN_RESET";
3094 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
3095 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
3096 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
3097 case TMR_UNKNOWN: break;
3098 }
3099 return "(?)";
3100 }
3101
target_show_cmd(const char * pfx,struct se_cmd * cmd)3102 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3103 {
3104 char *ts_str = target_ts_to_str(cmd->transport_state);
3105 const u8 *cdb = cmd->t_task_cdb;
3106 struct se_tmr_req *tmf = cmd->se_tmr_req;
3107
3108 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3109 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3110 pfx, cdb[0], cdb[1], cmd->tag,
3111 data_dir_name(cmd->data_direction),
3112 cmd->se_tfo->get_cmd_state(cmd),
3113 cmd_state_name(cmd->t_state), cmd->data_length,
3114 kref_read(&cmd->cmd_kref), ts_str);
3115 } else {
3116 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3117 pfx, target_tmf_name(tmf->function), cmd->tag,
3118 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3119 cmd_state_name(cmd->t_state),
3120 kref_read(&cmd->cmd_kref), ts_str);
3121 }
3122 kfree(ts_str);
3123 }
3124 EXPORT_SYMBOL(target_show_cmd);
3125
target_stop_session_confirm(struct percpu_ref * ref)3126 static void target_stop_session_confirm(struct percpu_ref *ref)
3127 {
3128 struct se_session *se_sess = container_of(ref, struct se_session,
3129 cmd_count);
3130 complete_all(&se_sess->stop_done);
3131 }
3132
3133 /**
3134 * target_stop_session - Stop new IO from being queued on the session.
3135 * @se_sess: session to stop
3136 */
target_stop_session(struct se_session * se_sess)3137 void target_stop_session(struct se_session *se_sess)
3138 {
3139 pr_debug("Stopping session queue.\n");
3140 if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3141 percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3142 target_stop_session_confirm);
3143 }
3144 EXPORT_SYMBOL(target_stop_session);
3145
3146 /**
3147 * target_wait_for_sess_cmds - Wait for outstanding commands
3148 * @se_sess: session to wait for active I/O
3149 */
target_wait_for_sess_cmds(struct se_session * se_sess)3150 void target_wait_for_sess_cmds(struct se_session *se_sess)
3151 {
3152 int ret;
3153
3154 WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3155
3156 do {
3157 pr_debug("Waiting for running cmds to complete.\n");
3158 ret = wait_event_timeout(se_sess->cmd_count_wq,
3159 percpu_ref_is_zero(&se_sess->cmd_count),
3160 180 * HZ);
3161 } while (ret <= 0);
3162
3163 wait_for_completion(&se_sess->stop_done);
3164 pr_debug("Waiting for cmds done.\n");
3165 }
3166 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3167
3168 /*
3169 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3170 * all references to the LUN have been released. Called during LUN shutdown.
3171 */
transport_clear_lun_ref(struct se_lun * lun)3172 void transport_clear_lun_ref(struct se_lun *lun)
3173 {
3174 percpu_ref_kill(&lun->lun_ref);
3175 wait_for_completion(&lun->lun_shutdown_comp);
3176 }
3177
3178 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3179 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3180 bool *aborted, bool *tas, unsigned long *flags)
3181 __releases(&cmd->t_state_lock)
3182 __acquires(&cmd->t_state_lock)
3183 {
3184 lockdep_assert_held(&cmd->t_state_lock);
3185
3186 if (fabric_stop)
3187 cmd->transport_state |= CMD_T_FABRIC_STOP;
3188
3189 if (cmd->transport_state & CMD_T_ABORTED)
3190 *aborted = true;
3191
3192 if (cmd->transport_state & CMD_T_TAS)
3193 *tas = true;
3194
3195 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3196 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3197 return false;
3198
3199 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3200 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3201 return false;
3202
3203 if (!(cmd->transport_state & CMD_T_ACTIVE))
3204 return false;
3205
3206 if (fabric_stop && *aborted)
3207 return false;
3208
3209 cmd->transport_state |= CMD_T_STOP;
3210
3211 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3212
3213 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3214
3215 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3216 180 * HZ))
3217 target_show_cmd("wait for tasks: ", cmd);
3218
3219 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3220 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3221
3222 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3223 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3224
3225 return true;
3226 }
3227
3228 /**
3229 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3230 * @cmd: command to wait on
3231 */
transport_wait_for_tasks(struct se_cmd * cmd)3232 bool transport_wait_for_tasks(struct se_cmd *cmd)
3233 {
3234 unsigned long flags;
3235 bool ret, aborted = false, tas = false;
3236
3237 spin_lock_irqsave(&cmd->t_state_lock, flags);
3238 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3239 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3240
3241 return ret;
3242 }
3243 EXPORT_SYMBOL(transport_wait_for_tasks);
3244
3245 struct sense_detail {
3246 u8 key;
3247 u8 asc;
3248 u8 ascq;
3249 bool add_sense_info;
3250 };
3251
3252 static const struct sense_detail sense_detail_table[] = {
3253 [TCM_NO_SENSE] = {
3254 .key = NOT_READY
3255 },
3256 [TCM_NON_EXISTENT_LUN] = {
3257 .key = ILLEGAL_REQUEST,
3258 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3259 },
3260 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3261 .key = ILLEGAL_REQUEST,
3262 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3263 },
3264 [TCM_SECTOR_COUNT_TOO_MANY] = {
3265 .key = ILLEGAL_REQUEST,
3266 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3267 },
3268 [TCM_UNKNOWN_MODE_PAGE] = {
3269 .key = ILLEGAL_REQUEST,
3270 .asc = 0x24, /* INVALID FIELD IN CDB */
3271 },
3272 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3273 .key = ABORTED_COMMAND,
3274 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3275 .ascq = 0x03,
3276 },
3277 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3278 .key = ABORTED_COMMAND,
3279 .asc = 0x0c, /* WRITE ERROR */
3280 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3281 },
3282 [TCM_INVALID_CDB_FIELD] = {
3283 .key = ILLEGAL_REQUEST,
3284 .asc = 0x24, /* INVALID FIELD IN CDB */
3285 },
3286 [TCM_INVALID_PARAMETER_LIST] = {
3287 .key = ILLEGAL_REQUEST,
3288 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3289 },
3290 [TCM_TOO_MANY_TARGET_DESCS] = {
3291 .key = ILLEGAL_REQUEST,
3292 .asc = 0x26,
3293 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3294 },
3295 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3296 .key = ILLEGAL_REQUEST,
3297 .asc = 0x26,
3298 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3299 },
3300 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3301 .key = ILLEGAL_REQUEST,
3302 .asc = 0x26,
3303 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3304 },
3305 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3306 .key = ILLEGAL_REQUEST,
3307 .asc = 0x26,
3308 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3309 },
3310 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3311 .key = ILLEGAL_REQUEST,
3312 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3313 },
3314 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3315 .key = ILLEGAL_REQUEST,
3316 .asc = 0x0c, /* WRITE ERROR */
3317 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3318 },
3319 [TCM_SERVICE_CRC_ERROR] = {
3320 .key = ABORTED_COMMAND,
3321 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3322 .ascq = 0x05, /* N/A */
3323 },
3324 [TCM_SNACK_REJECTED] = {
3325 .key = ABORTED_COMMAND,
3326 .asc = 0x11, /* READ ERROR */
3327 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3328 },
3329 [TCM_WRITE_PROTECTED] = {
3330 .key = DATA_PROTECT,
3331 .asc = 0x27, /* WRITE PROTECTED */
3332 },
3333 [TCM_ADDRESS_OUT_OF_RANGE] = {
3334 .key = ILLEGAL_REQUEST,
3335 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3336 },
3337 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3338 .key = UNIT_ATTENTION,
3339 },
3340 [TCM_MISCOMPARE_VERIFY] = {
3341 .key = MISCOMPARE,
3342 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3343 .ascq = 0x00,
3344 .add_sense_info = true,
3345 },
3346 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3347 .key = ABORTED_COMMAND,
3348 .asc = 0x10,
3349 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3350 .add_sense_info = true,
3351 },
3352 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3353 .key = ABORTED_COMMAND,
3354 .asc = 0x10,
3355 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3356 .add_sense_info = true,
3357 },
3358 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3359 .key = ABORTED_COMMAND,
3360 .asc = 0x10,
3361 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3362 .add_sense_info = true,
3363 },
3364 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3365 .key = COPY_ABORTED,
3366 .asc = 0x0d,
3367 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3368
3369 },
3370 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3371 /*
3372 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3373 * Solaris initiators. Returning NOT READY instead means the
3374 * operations will be retried a finite number of times and we
3375 * can survive intermittent errors.
3376 */
3377 .key = NOT_READY,
3378 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3379 },
3380 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3381 /*
3382 * From spc4r22 section5.7.7,5.7.8
3383 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3384 * or a REGISTER AND IGNORE EXISTING KEY service action or
3385 * REGISTER AND MOVE service actionis attempted,
3386 * but there are insufficient device server resources to complete the
3387 * operation, then the command shall be terminated with CHECK CONDITION
3388 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3389 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3390 */
3391 .key = ILLEGAL_REQUEST,
3392 .asc = 0x55,
3393 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3394 },
3395 [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3396 .key = ILLEGAL_REQUEST,
3397 .asc = 0x0e,
3398 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3399 },
3400 [TCM_ALUA_TG_PT_STANDBY] = {
3401 .key = NOT_READY,
3402 .asc = 0x04,
3403 .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3404 },
3405 [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3406 .key = NOT_READY,
3407 .asc = 0x04,
3408 .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3409 },
3410 [TCM_ALUA_STATE_TRANSITION] = {
3411 .key = NOT_READY,
3412 .asc = 0x04,
3413 .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3414 },
3415 [TCM_ALUA_OFFLINE] = {
3416 .key = NOT_READY,
3417 .asc = 0x04,
3418 .ascq = ASCQ_04H_ALUA_OFFLINE,
3419 },
3420 };
3421
3422 /**
3423 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3424 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3425 * be stored.
3426 * @reason: LIO sense reason code. If this argument has the value
3427 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3428 * dequeuing a unit attention fails due to multiple commands being processed
3429 * concurrently, set the command status to BUSY.
3430 *
3431 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3432 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3433 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3434 {
3435 const struct sense_detail *sd;
3436 u8 *buffer = cmd->sense_buffer;
3437 int r = (__force int)reason;
3438 u8 key, asc, ascq;
3439 bool desc_format = target_sense_desc_format(cmd->se_dev);
3440
3441 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3442 sd = &sense_detail_table[r];
3443 else
3444 sd = &sense_detail_table[(__force int)
3445 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3446
3447 key = sd->key;
3448 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3449 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3450 &ascq)) {
3451 cmd->scsi_status = SAM_STAT_BUSY;
3452 return;
3453 }
3454 } else {
3455 WARN_ON_ONCE(sd->asc == 0);
3456 asc = sd->asc;
3457 ascq = sd->ascq;
3458 }
3459
3460 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3461 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3462 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3463 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3464 if (sd->add_sense_info)
3465 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3466 cmd->scsi_sense_length,
3467 cmd->sense_info) < 0);
3468 }
3469
3470 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3471 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3472 sense_reason_t reason, int from_transport)
3473 {
3474 unsigned long flags;
3475
3476 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3477
3478 spin_lock_irqsave(&cmd->t_state_lock, flags);
3479 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3480 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3481 return 0;
3482 }
3483 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3484 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3485
3486 if (!from_transport)
3487 translate_sense_reason(cmd, reason);
3488
3489 trace_target_cmd_complete(cmd);
3490 return cmd->se_tfo->queue_status(cmd);
3491 }
3492 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3493
3494 /**
3495 * target_send_busy - Send SCSI BUSY status back to the initiator
3496 * @cmd: SCSI command for which to send a BUSY reply.
3497 *
3498 * Note: Only call this function if target_submit_cmd*() failed.
3499 */
target_send_busy(struct se_cmd * cmd)3500 int target_send_busy(struct se_cmd *cmd)
3501 {
3502 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3503
3504 cmd->scsi_status = SAM_STAT_BUSY;
3505 trace_target_cmd_complete(cmd);
3506 return cmd->se_tfo->queue_status(cmd);
3507 }
3508 EXPORT_SYMBOL(target_send_busy);
3509
target_tmr_work(struct work_struct * work)3510 static void target_tmr_work(struct work_struct *work)
3511 {
3512 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3513 struct se_device *dev = cmd->se_dev;
3514 struct se_tmr_req *tmr = cmd->se_tmr_req;
3515 int ret;
3516
3517 if (cmd->transport_state & CMD_T_ABORTED)
3518 goto aborted;
3519
3520 switch (tmr->function) {
3521 case TMR_ABORT_TASK:
3522 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3523 break;
3524 case TMR_ABORT_TASK_SET:
3525 case TMR_CLEAR_ACA:
3526 case TMR_CLEAR_TASK_SET:
3527 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3528 break;
3529 case TMR_LUN_RESET:
3530 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3531 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3532 TMR_FUNCTION_REJECTED;
3533 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3534 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3535 cmd->orig_fe_lun, 0x29,
3536 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3537 }
3538 break;
3539 case TMR_TARGET_WARM_RESET:
3540 tmr->response = TMR_FUNCTION_REJECTED;
3541 break;
3542 case TMR_TARGET_COLD_RESET:
3543 tmr->response = TMR_FUNCTION_REJECTED;
3544 break;
3545 default:
3546 pr_err("Unknown TMR function: 0x%02x.\n",
3547 tmr->function);
3548 tmr->response = TMR_FUNCTION_REJECTED;
3549 break;
3550 }
3551
3552 if (cmd->transport_state & CMD_T_ABORTED)
3553 goto aborted;
3554
3555 cmd->se_tfo->queue_tm_rsp(cmd);
3556
3557 transport_lun_remove_cmd(cmd);
3558 transport_cmd_check_stop_to_fabric(cmd);
3559 return;
3560
3561 aborted:
3562 target_handle_abort(cmd);
3563 }
3564
transport_generic_handle_tmr(struct se_cmd * cmd)3565 int transport_generic_handle_tmr(
3566 struct se_cmd *cmd)
3567 {
3568 unsigned long flags;
3569 bool aborted = false;
3570
3571 spin_lock_irqsave(&cmd->se_dev->se_tmr_lock, flags);
3572 list_add_tail(&cmd->se_tmr_req->tmr_list, &cmd->se_dev->dev_tmr_list);
3573 spin_unlock_irqrestore(&cmd->se_dev->se_tmr_lock, flags);
3574
3575 spin_lock_irqsave(&cmd->t_state_lock, flags);
3576 if (cmd->transport_state & CMD_T_ABORTED) {
3577 aborted = true;
3578 } else {
3579 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3580 cmd->transport_state |= CMD_T_ACTIVE;
3581 }
3582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3583
3584 if (aborted) {
3585 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3586 cmd->se_tmr_req->function,
3587 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3588 target_handle_abort(cmd);
3589 return 0;
3590 }
3591
3592 INIT_WORK(&cmd->work, target_tmr_work);
3593 schedule_work(&cmd->work);
3594 return 0;
3595 }
3596 EXPORT_SYMBOL(transport_generic_handle_tmr);
3597
3598 bool
target_check_wce(struct se_device * dev)3599 target_check_wce(struct se_device *dev)
3600 {
3601 bool wce = false;
3602
3603 if (dev->transport->get_write_cache)
3604 wce = dev->transport->get_write_cache(dev);
3605 else if (dev->dev_attrib.emulate_write_cache > 0)
3606 wce = true;
3607
3608 return wce;
3609 }
3610
3611 bool
target_check_fua(struct se_device * dev)3612 target_check_fua(struct se_device *dev)
3613 {
3614 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3615 }
3616