1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Thunderbolt driver - NHI driver
4 *
5 * The NHI (native host interface) is the pci device that allows us to send and
6 * receive frames from the thunderbolt bus.
7 *
8 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9 * Copyright (C) 2018, Intel Corporation
10 */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26
27 #define RING_FIRST_USABLE_HOPID 1
28 /*
29 * Used with QUIRK_E2E to specify an unused HopID the Rx credits are
30 * transferred.
31 */
32 #define RING_E2E_RESERVED_HOPID RING_FIRST_USABLE_HOPID
33 /*
34 * Minimal number of vectors when we use MSI-X. Two for control channel
35 * Rx/Tx and the rest four are for cross domain DMA paths.
36 */
37 #define MSIX_MIN_VECS 6
38 #define MSIX_MAX_VECS 16
39
40 #define NHI_MAILBOX_TIMEOUT 500 /* ms */
41
42 /* Host interface quirks */
43 #define QUIRK_AUTO_CLEAR_INT BIT(0)
44 #define QUIRK_E2E BIT(1)
45
ring_interrupt_index(const struct tb_ring * ring)46 static int ring_interrupt_index(const struct tb_ring *ring)
47 {
48 int bit = ring->hop;
49 if (!ring->is_tx)
50 bit += ring->nhi->hop_count;
51 return bit;
52 }
53
nhi_mask_interrupt(struct tb_nhi * nhi,int mask,int ring)54 static void nhi_mask_interrupt(struct tb_nhi *nhi, int mask, int ring)
55 {
56 if (nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
57 u32 val;
58
59 val = ioread32(nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
60 iowrite32(val & ~mask, nhi->iobase + REG_RING_INTERRUPT_BASE + ring);
61 } else {
62 iowrite32(mask, nhi->iobase + REG_RING_INTERRUPT_MASK_CLEAR_BASE + ring);
63 }
64 }
65
nhi_clear_interrupt(struct tb_nhi * nhi,int ring)66 static void nhi_clear_interrupt(struct tb_nhi *nhi, int ring)
67 {
68 if (nhi->quirks & QUIRK_AUTO_CLEAR_INT)
69 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + ring);
70 else
71 iowrite32(~0, nhi->iobase + REG_RING_INT_CLEAR + ring);
72 }
73
74 /*
75 * ring_interrupt_active() - activate/deactivate interrupts for a single ring
76 *
77 * ring->nhi->lock must be held.
78 */
ring_interrupt_active(struct tb_ring * ring,bool active)79 static void ring_interrupt_active(struct tb_ring *ring, bool active)
80 {
81 int index = ring_interrupt_index(ring) / 32 * 4;
82 int reg = REG_RING_INTERRUPT_BASE + index;
83 int interrupt_bit = ring_interrupt_index(ring) & 31;
84 int mask = 1 << interrupt_bit;
85 u32 old, new;
86
87 if (ring->irq > 0) {
88 u32 step, shift, ivr, misc;
89 void __iomem *ivr_base;
90 int auto_clear_bit;
91 int index;
92
93 if (ring->is_tx)
94 index = ring->hop;
95 else
96 index = ring->hop + ring->nhi->hop_count;
97
98 /*
99 * Intel routers support a bit that isn't part of
100 * the USB4 spec to ask the hardware to clear
101 * interrupt status bits automatically since
102 * we already know which interrupt was triggered.
103 *
104 * Other routers explicitly disable auto-clear
105 * to prevent conditions that may occur where two
106 * MSIX interrupts are simultaneously active and
107 * reading the register clears both of them.
108 */
109 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
110 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
111 auto_clear_bit = REG_DMA_MISC_INT_AUTO_CLEAR;
112 else
113 auto_clear_bit = REG_DMA_MISC_DISABLE_AUTO_CLEAR;
114 if (!(misc & auto_clear_bit))
115 iowrite32(misc | auto_clear_bit,
116 ring->nhi->iobase + REG_DMA_MISC);
117
118 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
119 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
120 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
121 ivr = ioread32(ivr_base + step);
122 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
123 if (active)
124 ivr |= ring->vector << shift;
125 iowrite32(ivr, ivr_base + step);
126 }
127
128 old = ioread32(ring->nhi->iobase + reg);
129 if (active)
130 new = old | mask;
131 else
132 new = old & ~mask;
133
134 dev_dbg(&ring->nhi->pdev->dev,
135 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
136 active ? "enabling" : "disabling", reg, interrupt_bit, old, new);
137
138 if (new == old)
139 dev_WARN(&ring->nhi->pdev->dev,
140 "interrupt for %s %d is already %s\n",
141 RING_TYPE(ring), ring->hop,
142 active ? "enabled" : "disabled");
143
144 if (active)
145 iowrite32(new, ring->nhi->iobase + reg);
146 else
147 nhi_mask_interrupt(ring->nhi, mask, index);
148 }
149
150 /*
151 * nhi_disable_interrupts() - disable interrupts for all rings
152 *
153 * Use only during init and shutdown.
154 */
nhi_disable_interrupts(struct tb_nhi * nhi)155 static void nhi_disable_interrupts(struct tb_nhi *nhi)
156 {
157 int i = 0;
158 /* disable interrupts */
159 for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
160 nhi_mask_interrupt(nhi, ~0, 4 * i);
161
162 /* clear interrupt status bits */
163 for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
164 nhi_clear_interrupt(nhi, 4 * i);
165 }
166
167 /* ring helper methods */
168
ring_desc_base(struct tb_ring * ring)169 static void __iomem *ring_desc_base(struct tb_ring *ring)
170 {
171 void __iomem *io = ring->nhi->iobase;
172 io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
173 io += ring->hop * 16;
174 return io;
175 }
176
ring_options_base(struct tb_ring * ring)177 static void __iomem *ring_options_base(struct tb_ring *ring)
178 {
179 void __iomem *io = ring->nhi->iobase;
180 io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
181 io += ring->hop * 32;
182 return io;
183 }
184
ring_iowrite_cons(struct tb_ring * ring,u16 cons)185 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
186 {
187 /*
188 * The other 16-bits in the register is read-only and writes to it
189 * are ignored by the hardware so we can save one ioread32() by
190 * filling the read-only bits with zeroes.
191 */
192 iowrite32(cons, ring_desc_base(ring) + 8);
193 }
194
ring_iowrite_prod(struct tb_ring * ring,u16 prod)195 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
196 {
197 /* See ring_iowrite_cons() above for explanation */
198 iowrite32(prod << 16, ring_desc_base(ring) + 8);
199 }
200
ring_iowrite32desc(struct tb_ring * ring,u32 value,u32 offset)201 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
202 {
203 iowrite32(value, ring_desc_base(ring) + offset);
204 }
205
ring_iowrite64desc(struct tb_ring * ring,u64 value,u32 offset)206 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
207 {
208 iowrite32(value, ring_desc_base(ring) + offset);
209 iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
210 }
211
ring_iowrite32options(struct tb_ring * ring,u32 value,u32 offset)212 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
213 {
214 iowrite32(value, ring_options_base(ring) + offset);
215 }
216
ring_full(struct tb_ring * ring)217 static bool ring_full(struct tb_ring *ring)
218 {
219 return ((ring->head + 1) % ring->size) == ring->tail;
220 }
221
ring_empty(struct tb_ring * ring)222 static bool ring_empty(struct tb_ring *ring)
223 {
224 return ring->head == ring->tail;
225 }
226
227 /*
228 * ring_write_descriptors() - post frames from ring->queue to the controller
229 *
230 * ring->lock is held.
231 */
ring_write_descriptors(struct tb_ring * ring)232 static void ring_write_descriptors(struct tb_ring *ring)
233 {
234 struct ring_frame *frame, *n;
235 struct ring_desc *descriptor;
236 list_for_each_entry_safe(frame, n, &ring->queue, list) {
237 if (ring_full(ring))
238 break;
239 list_move_tail(&frame->list, &ring->in_flight);
240 descriptor = &ring->descriptors[ring->head];
241 descriptor->phys = frame->buffer_phy;
242 descriptor->time = 0;
243 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
244 if (ring->is_tx) {
245 descriptor->length = frame->size;
246 descriptor->eof = frame->eof;
247 descriptor->sof = frame->sof;
248 }
249 ring->head = (ring->head + 1) % ring->size;
250 if (ring->is_tx)
251 ring_iowrite_prod(ring, ring->head);
252 else
253 ring_iowrite_cons(ring, ring->head);
254 }
255 }
256
257 /*
258 * ring_work() - progress completed frames
259 *
260 * If the ring is shutting down then all frames are marked as canceled and
261 * their callbacks are invoked.
262 *
263 * Otherwise we collect all completed frame from the ring buffer, write new
264 * frame to the ring buffer and invoke the callbacks for the completed frames.
265 */
ring_work(struct work_struct * work)266 static void ring_work(struct work_struct *work)
267 {
268 struct tb_ring *ring = container_of(work, typeof(*ring), work);
269 struct ring_frame *frame;
270 bool canceled = false;
271 unsigned long flags;
272 LIST_HEAD(done);
273
274 spin_lock_irqsave(&ring->lock, flags);
275
276 if (!ring->running) {
277 /* Move all frames to done and mark them as canceled. */
278 list_splice_tail_init(&ring->in_flight, &done);
279 list_splice_tail_init(&ring->queue, &done);
280 canceled = true;
281 goto invoke_callback;
282 }
283
284 while (!ring_empty(ring)) {
285 if (!(ring->descriptors[ring->tail].flags
286 & RING_DESC_COMPLETED))
287 break;
288 frame = list_first_entry(&ring->in_flight, typeof(*frame),
289 list);
290 list_move_tail(&frame->list, &done);
291 if (!ring->is_tx) {
292 frame->size = ring->descriptors[ring->tail].length;
293 frame->eof = ring->descriptors[ring->tail].eof;
294 frame->sof = ring->descriptors[ring->tail].sof;
295 frame->flags = ring->descriptors[ring->tail].flags;
296 }
297 ring->tail = (ring->tail + 1) % ring->size;
298 }
299 ring_write_descriptors(ring);
300
301 invoke_callback:
302 /* allow callbacks to schedule new work */
303 spin_unlock_irqrestore(&ring->lock, flags);
304 while (!list_empty(&done)) {
305 frame = list_first_entry(&done, typeof(*frame), list);
306 /*
307 * The callback may reenqueue or delete frame.
308 * Do not hold on to it.
309 */
310 list_del_init(&frame->list);
311 if (frame->callback)
312 frame->callback(ring, frame, canceled);
313 }
314 }
315
__tb_ring_enqueue(struct tb_ring * ring,struct ring_frame * frame)316 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
317 {
318 unsigned long flags;
319 int ret = 0;
320
321 spin_lock_irqsave(&ring->lock, flags);
322 if (ring->running) {
323 list_add_tail(&frame->list, &ring->queue);
324 ring_write_descriptors(ring);
325 } else {
326 ret = -ESHUTDOWN;
327 }
328 spin_unlock_irqrestore(&ring->lock, flags);
329 return ret;
330 }
331 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
332
333 /**
334 * tb_ring_poll() - Poll one completed frame from the ring
335 * @ring: Ring to poll
336 *
337 * This function can be called when @start_poll callback of the @ring
338 * has been called. It will read one completed frame from the ring and
339 * return it to the caller. Returns %NULL if there is no more completed
340 * frames.
341 */
tb_ring_poll(struct tb_ring * ring)342 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
343 {
344 struct ring_frame *frame = NULL;
345 unsigned long flags;
346
347 spin_lock_irqsave(&ring->lock, flags);
348 if (!ring->running)
349 goto unlock;
350 if (ring_empty(ring))
351 goto unlock;
352
353 if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
354 frame = list_first_entry(&ring->in_flight, typeof(*frame),
355 list);
356 list_del_init(&frame->list);
357
358 if (!ring->is_tx) {
359 frame->size = ring->descriptors[ring->tail].length;
360 frame->eof = ring->descriptors[ring->tail].eof;
361 frame->sof = ring->descriptors[ring->tail].sof;
362 frame->flags = ring->descriptors[ring->tail].flags;
363 }
364
365 ring->tail = (ring->tail + 1) % ring->size;
366 }
367
368 unlock:
369 spin_unlock_irqrestore(&ring->lock, flags);
370 return frame;
371 }
372 EXPORT_SYMBOL_GPL(tb_ring_poll);
373
__ring_interrupt_mask(struct tb_ring * ring,bool mask)374 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
375 {
376 int idx = ring_interrupt_index(ring);
377 int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
378 int bit = idx % 32;
379 u32 val;
380
381 val = ioread32(ring->nhi->iobase + reg);
382 if (mask)
383 val &= ~BIT(bit);
384 else
385 val |= BIT(bit);
386 iowrite32(val, ring->nhi->iobase + reg);
387 }
388
389 /* Both @nhi->lock and @ring->lock should be held */
__ring_interrupt(struct tb_ring * ring)390 static void __ring_interrupt(struct tb_ring *ring)
391 {
392 if (!ring->running)
393 return;
394
395 if (ring->start_poll) {
396 __ring_interrupt_mask(ring, true);
397 ring->start_poll(ring->poll_data);
398 } else {
399 schedule_work(&ring->work);
400 }
401 }
402
403 /**
404 * tb_ring_poll_complete() - Re-start interrupt for the ring
405 * @ring: Ring to re-start the interrupt
406 *
407 * This will re-start (unmask) the ring interrupt once the user is done
408 * with polling.
409 */
tb_ring_poll_complete(struct tb_ring * ring)410 void tb_ring_poll_complete(struct tb_ring *ring)
411 {
412 unsigned long flags;
413
414 spin_lock_irqsave(&ring->nhi->lock, flags);
415 spin_lock(&ring->lock);
416 if (ring->start_poll)
417 __ring_interrupt_mask(ring, false);
418 spin_unlock(&ring->lock);
419 spin_unlock_irqrestore(&ring->nhi->lock, flags);
420 }
421 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
422
ring_clear_msix(const struct tb_ring * ring)423 static void ring_clear_msix(const struct tb_ring *ring)
424 {
425 int bit;
426
427 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
428 return;
429
430 bit = ring_interrupt_index(ring) & 31;
431 if (ring->is_tx)
432 iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR);
433 else
434 iowrite32(BIT(bit), ring->nhi->iobase + REG_RING_INT_CLEAR +
435 4 * (ring->nhi->hop_count / 32));
436 }
437
ring_msix(int irq,void * data)438 static irqreturn_t ring_msix(int irq, void *data)
439 {
440 struct tb_ring *ring = data;
441
442 spin_lock(&ring->nhi->lock);
443 ring_clear_msix(ring);
444 spin_lock(&ring->lock);
445 __ring_interrupt(ring);
446 spin_unlock(&ring->lock);
447 spin_unlock(&ring->nhi->lock);
448
449 return IRQ_HANDLED;
450 }
451
ring_request_msix(struct tb_ring * ring,bool no_suspend)452 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
453 {
454 struct tb_nhi *nhi = ring->nhi;
455 unsigned long irqflags;
456 int ret;
457
458 if (!nhi->pdev->msix_enabled)
459 return 0;
460
461 ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
462 if (ret < 0)
463 return ret;
464
465 ring->vector = ret;
466
467 ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
468 if (ret < 0)
469 goto err_ida_remove;
470
471 ring->irq = ret;
472
473 irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
474 ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
475 if (ret)
476 goto err_ida_remove;
477
478 return 0;
479
480 err_ida_remove:
481 ida_simple_remove(&nhi->msix_ida, ring->vector);
482
483 return ret;
484 }
485
ring_release_msix(struct tb_ring * ring)486 static void ring_release_msix(struct tb_ring *ring)
487 {
488 if (ring->irq <= 0)
489 return;
490
491 free_irq(ring->irq, ring);
492 ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
493 ring->vector = 0;
494 ring->irq = 0;
495 }
496
nhi_alloc_hop(struct tb_nhi * nhi,struct tb_ring * ring)497 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
498 {
499 unsigned int start_hop = RING_FIRST_USABLE_HOPID;
500 int ret = 0;
501
502 if (nhi->quirks & QUIRK_E2E) {
503 start_hop = RING_FIRST_USABLE_HOPID + 1;
504 if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
505 dev_dbg(&nhi->pdev->dev, "quirking E2E TX HopID %u -> %u\n",
506 ring->e2e_tx_hop, RING_E2E_RESERVED_HOPID);
507 ring->e2e_tx_hop = RING_E2E_RESERVED_HOPID;
508 }
509 }
510
511 spin_lock_irq(&nhi->lock);
512
513 if (ring->hop < 0) {
514 unsigned int i;
515
516 /*
517 * Automatically allocate HopID from the non-reserved
518 * range 1 .. hop_count - 1.
519 */
520 for (i = start_hop; i < nhi->hop_count; i++) {
521 if (ring->is_tx) {
522 if (!nhi->tx_rings[i]) {
523 ring->hop = i;
524 break;
525 }
526 } else {
527 if (!nhi->rx_rings[i]) {
528 ring->hop = i;
529 break;
530 }
531 }
532 }
533 }
534
535 if (ring->hop > 0 && ring->hop < start_hop) {
536 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
537 ret = -EINVAL;
538 goto err_unlock;
539 }
540 if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
541 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
542 ret = -EINVAL;
543 goto err_unlock;
544 }
545 if (ring->is_tx && nhi->tx_rings[ring->hop]) {
546 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
547 ring->hop);
548 ret = -EBUSY;
549 goto err_unlock;
550 } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
551 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
552 ring->hop);
553 ret = -EBUSY;
554 goto err_unlock;
555 }
556
557 if (ring->is_tx)
558 nhi->tx_rings[ring->hop] = ring;
559 else
560 nhi->rx_rings[ring->hop] = ring;
561
562 err_unlock:
563 spin_unlock_irq(&nhi->lock);
564
565 return ret;
566 }
567
tb_ring_alloc(struct tb_nhi * nhi,u32 hop,int size,bool transmit,unsigned int flags,int e2e_tx_hop,u16 sof_mask,u16 eof_mask,void (* start_poll)(void *),void * poll_data)568 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
569 bool transmit, unsigned int flags,
570 int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
571 void (*start_poll)(void *),
572 void *poll_data)
573 {
574 struct tb_ring *ring = NULL;
575
576 dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
577 transmit ? "TX" : "RX", hop, size);
578
579 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
580 if (!ring)
581 return NULL;
582
583 spin_lock_init(&ring->lock);
584 INIT_LIST_HEAD(&ring->queue);
585 INIT_LIST_HEAD(&ring->in_flight);
586 INIT_WORK(&ring->work, ring_work);
587
588 ring->nhi = nhi;
589 ring->hop = hop;
590 ring->is_tx = transmit;
591 ring->size = size;
592 ring->flags = flags;
593 ring->e2e_tx_hop = e2e_tx_hop;
594 ring->sof_mask = sof_mask;
595 ring->eof_mask = eof_mask;
596 ring->head = 0;
597 ring->tail = 0;
598 ring->running = false;
599 ring->start_poll = start_poll;
600 ring->poll_data = poll_data;
601
602 ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
603 size * sizeof(*ring->descriptors),
604 &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
605 if (!ring->descriptors)
606 goto err_free_ring;
607
608 if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
609 goto err_free_descs;
610
611 if (nhi_alloc_hop(nhi, ring))
612 goto err_release_msix;
613
614 return ring;
615
616 err_release_msix:
617 ring_release_msix(ring);
618 err_free_descs:
619 dma_free_coherent(&ring->nhi->pdev->dev,
620 ring->size * sizeof(*ring->descriptors),
621 ring->descriptors, ring->descriptors_dma);
622 err_free_ring:
623 kfree(ring);
624
625 return NULL;
626 }
627
628 /**
629 * tb_ring_alloc_tx() - Allocate DMA ring for transmit
630 * @nhi: Pointer to the NHI the ring is to be allocated
631 * @hop: HopID (ring) to allocate
632 * @size: Number of entries in the ring
633 * @flags: Flags for the ring
634 */
tb_ring_alloc_tx(struct tb_nhi * nhi,int hop,int size,unsigned int flags)635 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
636 unsigned int flags)
637 {
638 return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
639 }
640 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
641
642 /**
643 * tb_ring_alloc_rx() - Allocate DMA ring for receive
644 * @nhi: Pointer to the NHI the ring is to be allocated
645 * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
646 * @size: Number of entries in the ring
647 * @flags: Flags for the ring
648 * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
649 * @sof_mask: Mask of PDF values that start a frame
650 * @eof_mask: Mask of PDF values that end a frame
651 * @start_poll: If not %NULL the ring will call this function when an
652 * interrupt is triggered and masked, instead of callback
653 * in each Rx frame.
654 * @poll_data: Optional data passed to @start_poll
655 */
tb_ring_alloc_rx(struct tb_nhi * nhi,int hop,int size,unsigned int flags,int e2e_tx_hop,u16 sof_mask,u16 eof_mask,void (* start_poll)(void *),void * poll_data)656 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
657 unsigned int flags, int e2e_tx_hop,
658 u16 sof_mask, u16 eof_mask,
659 void (*start_poll)(void *), void *poll_data)
660 {
661 return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
662 start_poll, poll_data);
663 }
664 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
665
666 /**
667 * tb_ring_start() - enable a ring
668 * @ring: Ring to start
669 *
670 * Must not be invoked in parallel with tb_ring_stop().
671 */
tb_ring_start(struct tb_ring * ring)672 void tb_ring_start(struct tb_ring *ring)
673 {
674 u16 frame_size;
675 u32 flags;
676
677 spin_lock_irq(&ring->nhi->lock);
678 spin_lock(&ring->lock);
679 if (ring->nhi->going_away)
680 goto err;
681 if (ring->running) {
682 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
683 goto err;
684 }
685 dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
686 RING_TYPE(ring), ring->hop);
687
688 if (ring->flags & RING_FLAG_FRAME) {
689 /* Means 4096 */
690 frame_size = 0;
691 flags = RING_FLAG_ENABLE;
692 } else {
693 frame_size = TB_FRAME_SIZE;
694 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
695 }
696
697 ring_iowrite64desc(ring, ring->descriptors_dma, 0);
698 if (ring->is_tx) {
699 ring_iowrite32desc(ring, ring->size, 12);
700 ring_iowrite32options(ring, 0, 4); /* time releated ? */
701 ring_iowrite32options(ring, flags, 0);
702 } else {
703 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
704
705 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
706 ring_iowrite32options(ring, sof_eof_mask, 4);
707 ring_iowrite32options(ring, flags, 0);
708 }
709
710 /*
711 * Now that the ring valid bit is set we can configure E2E if
712 * enabled for the ring.
713 */
714 if (ring->flags & RING_FLAG_E2E) {
715 if (!ring->is_tx) {
716 u32 hop;
717
718 hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
719 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
720 flags |= hop;
721
722 dev_dbg(&ring->nhi->pdev->dev,
723 "enabling E2E for %s %d with TX HopID %d\n",
724 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
725 } else {
726 dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
727 RING_TYPE(ring), ring->hop);
728 }
729
730 flags |= RING_FLAG_E2E_FLOW_CONTROL;
731 ring_iowrite32options(ring, flags, 0);
732 }
733
734 ring_interrupt_active(ring, true);
735 ring->running = true;
736 err:
737 spin_unlock(&ring->lock);
738 spin_unlock_irq(&ring->nhi->lock);
739 }
740 EXPORT_SYMBOL_GPL(tb_ring_start);
741
742 /**
743 * tb_ring_stop() - shutdown a ring
744 * @ring: Ring to stop
745 *
746 * Must not be invoked from a callback.
747 *
748 * This method will disable the ring. Further calls to
749 * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
750 * called.
751 *
752 * All enqueued frames will be canceled and their callbacks will be executed
753 * with frame->canceled set to true (on the callback thread). This method
754 * returns only after all callback invocations have finished.
755 */
tb_ring_stop(struct tb_ring * ring)756 void tb_ring_stop(struct tb_ring *ring)
757 {
758 spin_lock_irq(&ring->nhi->lock);
759 spin_lock(&ring->lock);
760 dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
761 RING_TYPE(ring), ring->hop);
762 if (ring->nhi->going_away)
763 goto err;
764 if (!ring->running) {
765 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
766 RING_TYPE(ring), ring->hop);
767 goto err;
768 }
769 ring_interrupt_active(ring, false);
770
771 ring_iowrite32options(ring, 0, 0);
772 ring_iowrite64desc(ring, 0, 0);
773 ring_iowrite32desc(ring, 0, 8);
774 ring_iowrite32desc(ring, 0, 12);
775 ring->head = 0;
776 ring->tail = 0;
777 ring->running = false;
778
779 err:
780 spin_unlock(&ring->lock);
781 spin_unlock_irq(&ring->nhi->lock);
782
783 /*
784 * schedule ring->work to invoke callbacks on all remaining frames.
785 */
786 schedule_work(&ring->work);
787 flush_work(&ring->work);
788 }
789 EXPORT_SYMBOL_GPL(tb_ring_stop);
790
791 /*
792 * tb_ring_free() - free ring
793 *
794 * When this method returns all invocations of ring->callback will have
795 * finished.
796 *
797 * Ring must be stopped.
798 *
799 * Must NOT be called from ring_frame->callback!
800 */
tb_ring_free(struct tb_ring * ring)801 void tb_ring_free(struct tb_ring *ring)
802 {
803 spin_lock_irq(&ring->nhi->lock);
804 /*
805 * Dissociate the ring from the NHI. This also ensures that
806 * nhi_interrupt_work cannot reschedule ring->work.
807 */
808 if (ring->is_tx)
809 ring->nhi->tx_rings[ring->hop] = NULL;
810 else
811 ring->nhi->rx_rings[ring->hop] = NULL;
812
813 if (ring->running) {
814 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
815 RING_TYPE(ring), ring->hop);
816 }
817 spin_unlock_irq(&ring->nhi->lock);
818
819 ring_release_msix(ring);
820
821 dma_free_coherent(&ring->nhi->pdev->dev,
822 ring->size * sizeof(*ring->descriptors),
823 ring->descriptors, ring->descriptors_dma);
824
825 ring->descriptors = NULL;
826 ring->descriptors_dma = 0;
827
828
829 dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
830 ring->hop);
831
832 /*
833 * ring->work can no longer be scheduled (it is scheduled only
834 * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
835 * to finish before freeing the ring.
836 */
837 flush_work(&ring->work);
838 kfree(ring);
839 }
840 EXPORT_SYMBOL_GPL(tb_ring_free);
841
842 /**
843 * nhi_mailbox_cmd() - Send a command through NHI mailbox
844 * @nhi: Pointer to the NHI structure
845 * @cmd: Command to send
846 * @data: Data to be send with the command
847 *
848 * Sends mailbox command to the firmware running on NHI. Returns %0 in
849 * case of success and negative errno in case of failure.
850 */
nhi_mailbox_cmd(struct tb_nhi * nhi,enum nhi_mailbox_cmd cmd,u32 data)851 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
852 {
853 ktime_t timeout;
854 u32 val;
855
856 iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
857
858 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
859 val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
860 val |= REG_INMAIL_OP_REQUEST | cmd;
861 iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
862
863 timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
864 do {
865 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
866 if (!(val & REG_INMAIL_OP_REQUEST))
867 break;
868 usleep_range(10, 20);
869 } while (ktime_before(ktime_get(), timeout));
870
871 if (val & REG_INMAIL_OP_REQUEST)
872 return -ETIMEDOUT;
873 if (val & REG_INMAIL_ERROR)
874 return -EIO;
875
876 return 0;
877 }
878
879 /**
880 * nhi_mailbox_mode() - Return current firmware operation mode
881 * @nhi: Pointer to the NHI structure
882 *
883 * The function reads current firmware operation mode using NHI mailbox
884 * registers and returns it to the caller.
885 */
nhi_mailbox_mode(struct tb_nhi * nhi)886 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
887 {
888 u32 val;
889
890 val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
891 val &= REG_OUTMAIL_CMD_OPMODE_MASK;
892 val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
893
894 return (enum nhi_fw_mode)val;
895 }
896
nhi_interrupt_work(struct work_struct * work)897 static void nhi_interrupt_work(struct work_struct *work)
898 {
899 struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
900 int value = 0; /* Suppress uninitialized usage warning. */
901 int bit;
902 int hop = -1;
903 int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
904 struct tb_ring *ring;
905
906 spin_lock_irq(&nhi->lock);
907
908 /*
909 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
910 * (TX, RX, RX overflow). We iterate over the bits and read a new
911 * dwords as required. The registers are cleared on read.
912 */
913 for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
914 if (bit % 32 == 0)
915 value = ioread32(nhi->iobase
916 + REG_RING_NOTIFY_BASE
917 + 4 * (bit / 32));
918 if (++hop == nhi->hop_count) {
919 hop = 0;
920 type++;
921 }
922 if ((value & (1 << (bit % 32))) == 0)
923 continue;
924 if (type == 2) {
925 dev_warn(&nhi->pdev->dev,
926 "RX overflow for ring %d\n",
927 hop);
928 continue;
929 }
930 if (type == 0)
931 ring = nhi->tx_rings[hop];
932 else
933 ring = nhi->rx_rings[hop];
934 if (ring == NULL) {
935 dev_warn(&nhi->pdev->dev,
936 "got interrupt for inactive %s ring %d\n",
937 type ? "RX" : "TX",
938 hop);
939 continue;
940 }
941
942 spin_lock(&ring->lock);
943 __ring_interrupt(ring);
944 spin_unlock(&ring->lock);
945 }
946 spin_unlock_irq(&nhi->lock);
947 }
948
nhi_msi(int irq,void * data)949 static irqreturn_t nhi_msi(int irq, void *data)
950 {
951 struct tb_nhi *nhi = data;
952 schedule_work(&nhi->interrupt_work);
953 return IRQ_HANDLED;
954 }
955
__nhi_suspend_noirq(struct device * dev,bool wakeup)956 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
957 {
958 struct pci_dev *pdev = to_pci_dev(dev);
959 struct tb *tb = pci_get_drvdata(pdev);
960 struct tb_nhi *nhi = tb->nhi;
961 int ret;
962
963 ret = tb_domain_suspend_noirq(tb);
964 if (ret)
965 return ret;
966
967 if (nhi->ops && nhi->ops->suspend_noirq) {
968 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
969 if (ret)
970 return ret;
971 }
972
973 return 0;
974 }
975
nhi_suspend_noirq(struct device * dev)976 static int nhi_suspend_noirq(struct device *dev)
977 {
978 return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
979 }
980
nhi_freeze_noirq(struct device * dev)981 static int nhi_freeze_noirq(struct device *dev)
982 {
983 struct pci_dev *pdev = to_pci_dev(dev);
984 struct tb *tb = pci_get_drvdata(pdev);
985
986 return tb_domain_freeze_noirq(tb);
987 }
988
nhi_thaw_noirq(struct device * dev)989 static int nhi_thaw_noirq(struct device *dev)
990 {
991 struct pci_dev *pdev = to_pci_dev(dev);
992 struct tb *tb = pci_get_drvdata(pdev);
993
994 return tb_domain_thaw_noirq(tb);
995 }
996
nhi_wake_supported(struct pci_dev * pdev)997 static bool nhi_wake_supported(struct pci_dev *pdev)
998 {
999 u8 val;
1000
1001 /*
1002 * If power rails are sustainable for wakeup from S4 this
1003 * property is set by the BIOS.
1004 */
1005 if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
1006 return !!val;
1007
1008 return true;
1009 }
1010
nhi_poweroff_noirq(struct device * dev)1011 static int nhi_poweroff_noirq(struct device *dev)
1012 {
1013 struct pci_dev *pdev = to_pci_dev(dev);
1014 bool wakeup;
1015
1016 wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
1017 return __nhi_suspend_noirq(dev, wakeup);
1018 }
1019
nhi_enable_int_throttling(struct tb_nhi * nhi)1020 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
1021 {
1022 /* Throttling is specified in 256ns increments */
1023 u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
1024 unsigned int i;
1025
1026 /*
1027 * Configure interrupt throttling for all vectors even if we
1028 * only use few.
1029 */
1030 for (i = 0; i < MSIX_MAX_VECS; i++) {
1031 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
1032 iowrite32(throttle, nhi->iobase + reg);
1033 }
1034 }
1035
nhi_resume_noirq(struct device * dev)1036 static int nhi_resume_noirq(struct device *dev)
1037 {
1038 struct pci_dev *pdev = to_pci_dev(dev);
1039 struct tb *tb = pci_get_drvdata(pdev);
1040 struct tb_nhi *nhi = tb->nhi;
1041 int ret;
1042
1043 /*
1044 * Check that the device is still there. It may be that the user
1045 * unplugged last device which causes the host controller to go
1046 * away on PCs.
1047 */
1048 if (!pci_device_is_present(pdev)) {
1049 nhi->going_away = true;
1050 } else {
1051 if (nhi->ops && nhi->ops->resume_noirq) {
1052 ret = nhi->ops->resume_noirq(nhi);
1053 if (ret)
1054 return ret;
1055 }
1056 nhi_enable_int_throttling(tb->nhi);
1057 }
1058
1059 return tb_domain_resume_noirq(tb);
1060 }
1061
nhi_suspend(struct device * dev)1062 static int nhi_suspend(struct device *dev)
1063 {
1064 struct pci_dev *pdev = to_pci_dev(dev);
1065 struct tb *tb = pci_get_drvdata(pdev);
1066
1067 return tb_domain_suspend(tb);
1068 }
1069
nhi_complete(struct device * dev)1070 static void nhi_complete(struct device *dev)
1071 {
1072 struct pci_dev *pdev = to_pci_dev(dev);
1073 struct tb *tb = pci_get_drvdata(pdev);
1074
1075 /*
1076 * If we were runtime suspended when system suspend started,
1077 * schedule runtime resume now. It should bring the domain back
1078 * to functional state.
1079 */
1080 if (pm_runtime_suspended(&pdev->dev))
1081 pm_runtime_resume(&pdev->dev);
1082 else
1083 tb_domain_complete(tb);
1084 }
1085
nhi_runtime_suspend(struct device * dev)1086 static int nhi_runtime_suspend(struct device *dev)
1087 {
1088 struct pci_dev *pdev = to_pci_dev(dev);
1089 struct tb *tb = pci_get_drvdata(pdev);
1090 struct tb_nhi *nhi = tb->nhi;
1091 int ret;
1092
1093 ret = tb_domain_runtime_suspend(tb);
1094 if (ret)
1095 return ret;
1096
1097 if (nhi->ops && nhi->ops->runtime_suspend) {
1098 ret = nhi->ops->runtime_suspend(tb->nhi);
1099 if (ret)
1100 return ret;
1101 }
1102 return 0;
1103 }
1104
nhi_runtime_resume(struct device * dev)1105 static int nhi_runtime_resume(struct device *dev)
1106 {
1107 struct pci_dev *pdev = to_pci_dev(dev);
1108 struct tb *tb = pci_get_drvdata(pdev);
1109 struct tb_nhi *nhi = tb->nhi;
1110 int ret;
1111
1112 if (nhi->ops && nhi->ops->runtime_resume) {
1113 ret = nhi->ops->runtime_resume(nhi);
1114 if (ret)
1115 return ret;
1116 }
1117
1118 nhi_enable_int_throttling(nhi);
1119 return tb_domain_runtime_resume(tb);
1120 }
1121
nhi_shutdown(struct tb_nhi * nhi)1122 static void nhi_shutdown(struct tb_nhi *nhi)
1123 {
1124 int i;
1125
1126 dev_dbg(&nhi->pdev->dev, "shutdown\n");
1127
1128 for (i = 0; i < nhi->hop_count; i++) {
1129 if (nhi->tx_rings[i])
1130 dev_WARN(&nhi->pdev->dev,
1131 "TX ring %d is still active\n", i);
1132 if (nhi->rx_rings[i])
1133 dev_WARN(&nhi->pdev->dev,
1134 "RX ring %d is still active\n", i);
1135 }
1136 nhi_disable_interrupts(nhi);
1137 /*
1138 * We have to release the irq before calling flush_work. Otherwise an
1139 * already executing IRQ handler could call schedule_work again.
1140 */
1141 if (!nhi->pdev->msix_enabled) {
1142 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1143 flush_work(&nhi->interrupt_work);
1144 }
1145 ida_destroy(&nhi->msix_ida);
1146
1147 if (nhi->ops && nhi->ops->shutdown)
1148 nhi->ops->shutdown(nhi);
1149 }
1150
nhi_check_quirks(struct tb_nhi * nhi)1151 static void nhi_check_quirks(struct tb_nhi *nhi)
1152 {
1153 if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL) {
1154 /*
1155 * Intel hardware supports auto clear of the interrupt
1156 * status register right after interrupt is being
1157 * issued.
1158 */
1159 nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1160
1161 switch (nhi->pdev->device) {
1162 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1163 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1164 /*
1165 * Falcon Ridge controller needs the end-to-end
1166 * flow control workaround to avoid losing Rx
1167 * packets when RING_FLAG_E2E is set.
1168 */
1169 nhi->quirks |= QUIRK_E2E;
1170 break;
1171 }
1172 }
1173 }
1174
nhi_init_msi(struct tb_nhi * nhi)1175 static int nhi_init_msi(struct tb_nhi *nhi)
1176 {
1177 struct pci_dev *pdev = nhi->pdev;
1178 int res, irq, nvec;
1179
1180 /* In case someone left them on. */
1181 nhi_disable_interrupts(nhi);
1182
1183 nhi_enable_int_throttling(nhi);
1184
1185 ida_init(&nhi->msix_ida);
1186
1187 /*
1188 * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1189 * get all MSI-X vectors and if we succeed, each ring will have
1190 * one MSI-X. If for some reason that does not work out, we
1191 * fallback to a single MSI.
1192 */
1193 nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1194 PCI_IRQ_MSIX);
1195 if (nvec < 0) {
1196 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1197 if (nvec < 0)
1198 return nvec;
1199
1200 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1201
1202 irq = pci_irq_vector(nhi->pdev, 0);
1203 if (irq < 0)
1204 return irq;
1205
1206 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1207 IRQF_NO_SUSPEND, "thunderbolt", nhi);
1208 if (res) {
1209 dev_err(&pdev->dev, "request_irq failed, aborting\n");
1210 return res;
1211 }
1212 }
1213
1214 return 0;
1215 }
1216
nhi_imr_valid(struct pci_dev * pdev)1217 static bool nhi_imr_valid(struct pci_dev *pdev)
1218 {
1219 u8 val;
1220
1221 if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1222 return !!val;
1223
1224 return true;
1225 }
1226
nhi_select_cm(struct tb_nhi * nhi)1227 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1228 {
1229 struct tb *tb;
1230
1231 /*
1232 * USB4 case is simple. If we got control of any of the
1233 * capabilities, we use software CM.
1234 */
1235 if (tb_acpi_is_native())
1236 return tb_probe(nhi);
1237
1238 /*
1239 * Either firmware based CM is running (we did not get control
1240 * from the firmware) or this is pre-USB4 PC so try first
1241 * firmware CM and then fallback to software CM.
1242 */
1243 tb = icm_probe(nhi);
1244 if (!tb)
1245 tb = tb_probe(nhi);
1246
1247 return tb;
1248 }
1249
nhi_probe(struct pci_dev * pdev,const struct pci_device_id * id)1250 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1251 {
1252 struct tb_nhi *nhi;
1253 struct tb *tb;
1254 int res;
1255
1256 if (!nhi_imr_valid(pdev)) {
1257 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1258 return -ENODEV;
1259 }
1260
1261 res = pcim_enable_device(pdev);
1262 if (res) {
1263 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1264 return res;
1265 }
1266
1267 res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1268 if (res) {
1269 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1270 return res;
1271 }
1272
1273 nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1274 if (!nhi)
1275 return -ENOMEM;
1276
1277 nhi->pdev = pdev;
1278 nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1279 /* cannot fail - table is allocated bin pcim_iomap_regions */
1280 nhi->iobase = pcim_iomap_table(pdev)[0];
1281 nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1282 dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1283
1284 nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1285 sizeof(*nhi->tx_rings), GFP_KERNEL);
1286 nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1287 sizeof(*nhi->rx_rings), GFP_KERNEL);
1288 if (!nhi->tx_rings || !nhi->rx_rings)
1289 return -ENOMEM;
1290
1291 nhi_check_quirks(nhi);
1292
1293 res = nhi_init_msi(nhi);
1294 if (res) {
1295 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1296 return res;
1297 }
1298
1299 spin_lock_init(&nhi->lock);
1300
1301 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1302 if (res)
1303 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1304 if (res) {
1305 dev_err(&pdev->dev, "failed to set DMA mask\n");
1306 return res;
1307 }
1308
1309 pci_set_master(pdev);
1310
1311 if (nhi->ops && nhi->ops->init) {
1312 res = nhi->ops->init(nhi);
1313 if (res)
1314 return res;
1315 }
1316
1317 tb = nhi_select_cm(nhi);
1318 if (!tb) {
1319 dev_err(&nhi->pdev->dev,
1320 "failed to determine connection manager, aborting\n");
1321 return -ENODEV;
1322 }
1323
1324 dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1325
1326 res = tb_domain_add(tb);
1327 if (res) {
1328 /*
1329 * At this point the RX/TX rings might already have been
1330 * activated. Do a proper shutdown.
1331 */
1332 tb_domain_put(tb);
1333 nhi_shutdown(nhi);
1334 return res;
1335 }
1336 pci_set_drvdata(pdev, tb);
1337
1338 device_wakeup_enable(&pdev->dev);
1339
1340 pm_runtime_allow(&pdev->dev);
1341 pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1342 pm_runtime_use_autosuspend(&pdev->dev);
1343 pm_runtime_put_autosuspend(&pdev->dev);
1344
1345 return 0;
1346 }
1347
nhi_remove(struct pci_dev * pdev)1348 static void nhi_remove(struct pci_dev *pdev)
1349 {
1350 struct tb *tb = pci_get_drvdata(pdev);
1351 struct tb_nhi *nhi = tb->nhi;
1352
1353 pm_runtime_get_sync(&pdev->dev);
1354 pm_runtime_dont_use_autosuspend(&pdev->dev);
1355 pm_runtime_forbid(&pdev->dev);
1356
1357 tb_domain_remove(tb);
1358 nhi_shutdown(nhi);
1359 }
1360
1361 /*
1362 * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1363 * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1364 * resume_noirq until we are done.
1365 */
1366 static const struct dev_pm_ops nhi_pm_ops = {
1367 .suspend_noirq = nhi_suspend_noirq,
1368 .resume_noirq = nhi_resume_noirq,
1369 .freeze_noirq = nhi_freeze_noirq, /*
1370 * we just disable hotplug, the
1371 * pci-tunnels stay alive.
1372 */
1373 .thaw_noirq = nhi_thaw_noirq,
1374 .restore_noirq = nhi_resume_noirq,
1375 .suspend = nhi_suspend,
1376 .poweroff_noirq = nhi_poweroff_noirq,
1377 .poweroff = nhi_suspend,
1378 .complete = nhi_complete,
1379 .runtime_suspend = nhi_runtime_suspend,
1380 .runtime_resume = nhi_runtime_resume,
1381 };
1382
1383 static struct pci_device_id nhi_ids[] = {
1384 /*
1385 * We have to specify class, the TB bridges use the same device and
1386 * vendor (sub)id on gen 1 and gen 2 controllers.
1387 */
1388 {
1389 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1390 .vendor = PCI_VENDOR_ID_INTEL,
1391 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1392 .subvendor = 0x2222, .subdevice = 0x1111,
1393 },
1394 {
1395 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1396 .vendor = PCI_VENDOR_ID_INTEL,
1397 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1398 .subvendor = 0x2222, .subdevice = 0x1111,
1399 },
1400 {
1401 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1402 .vendor = PCI_VENDOR_ID_INTEL,
1403 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1404 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1405 },
1406 {
1407 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1408 .vendor = PCI_VENDOR_ID_INTEL,
1409 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1410 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1411 },
1412
1413 /* Thunderbolt 3 */
1414 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1415 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1416 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1417 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1418 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1419 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1420 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1421 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1422 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1423 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1424 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1425 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1426 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1427 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1428 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1429 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1430 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1431 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1432 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1433 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1434 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1435 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1436 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1437 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1438 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1439 .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1440
1441 /* Any USB4 compliant host */
1442 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1443
1444 { 0,}
1445 };
1446
1447 MODULE_DEVICE_TABLE(pci, nhi_ids);
1448 MODULE_LICENSE("GPL");
1449
1450 static struct pci_driver nhi_driver = {
1451 .name = "thunderbolt",
1452 .id_table = nhi_ids,
1453 .probe = nhi_probe,
1454 .remove = nhi_remove,
1455 .shutdown = nhi_remove,
1456 .driver.pm = &nhi_pm_ops,
1457 };
1458
nhi_init(void)1459 static int __init nhi_init(void)
1460 {
1461 int ret;
1462
1463 ret = tb_domain_init();
1464 if (ret)
1465 return ret;
1466 ret = pci_register_driver(&nhi_driver);
1467 if (ret)
1468 tb_domain_exit();
1469 return ret;
1470 }
1471
nhi_unload(void)1472 static void __exit nhi_unload(void)
1473 {
1474 pci_unregister_driver(&nhi_driver);
1475 tb_domain_exit();
1476 }
1477
1478 rootfs_initcall(nhi_init);
1479 module_exit(nhi_unload);
1480