• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #include <trace/hooks/net.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.sk = sk;
173 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 				  struct sk_buff *skb)
180 {
181 	struct bpf_sock_ops_kern sock_ops;
182 
183 	sock_owned_by_me(sk);
184 
185 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 	sock_ops.op = bpf_op;
187 	sock_ops.is_fullsock = 1;
188 	sock_ops.sk = sk;
189 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 	if (skb)
191 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 				  struct sk_buff *skb)
202 {
203 }
204 #endif
205 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
207 			     unsigned int len)
208 {
209 	static bool __once __read_mostly;
210 
211 	if (!__once) {
212 		struct net_device *dev;
213 
214 		__once = true;
215 
216 		rcu_read_lock();
217 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 		if (!dev || len >= dev->mtu)
219 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 				dev ? dev->name : "Unknown driver");
221 		rcu_read_unlock();
222 	}
223 }
224 
225 /* Adapt the MSS value used to make delayed ack decision to the
226  * real world.
227  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)228 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
229 {
230 	struct inet_connection_sock *icsk = inet_csk(sk);
231 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
232 	unsigned int len;
233 
234 	icsk->icsk_ack.last_seg_size = 0;
235 
236 	/* skb->len may jitter because of SACKs, even if peer
237 	 * sends good full-sized frames.
238 	 */
239 	len = skb_shinfo(skb)->gso_size ? : skb->len;
240 	if (len >= icsk->icsk_ack.rcv_mss) {
241 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
242 					       tcp_sk(sk)->advmss);
243 		/* Account for possibly-removed options */
244 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
245 				   MAX_TCP_OPTION_SPACE))
246 			tcp_gro_dev_warn(sk, skb, len);
247 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
248 		 * set then it is likely the end of an application write. So
249 		 * more data may not be arriving soon, and yet the data sender
250 		 * may be waiting for an ACK if cwnd-bound or using TX zero
251 		 * copy. So we set ICSK_ACK_PUSHED here so that
252 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
253 		 * reads all of the data and is not ping-pong. If len > MSS
254 		 * then this logic does not matter (and does not hurt) because
255 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
256 		 * reads data and there is more than an MSS of unACKed data.
257 		 */
258 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
259 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
260 	} else {
261 		/* Otherwise, we make more careful check taking into account,
262 		 * that SACKs block is variable.
263 		 *
264 		 * "len" is invariant segment length, including TCP header.
265 		 */
266 		len += skb->data - skb_transport_header(skb);
267 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
268 		    /* If PSH is not set, packet should be
269 		     * full sized, provided peer TCP is not badly broken.
270 		     * This observation (if it is correct 8)) allows
271 		     * to handle super-low mtu links fairly.
272 		     */
273 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
274 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
275 			/* Subtract also invariant (if peer is RFC compliant),
276 			 * tcp header plus fixed timestamp option length.
277 			 * Resulting "len" is MSS free of SACK jitter.
278 			 */
279 			len -= tcp_sk(sk)->tcp_header_len;
280 			icsk->icsk_ack.last_seg_size = len;
281 			if (len == lss) {
282 				icsk->icsk_ack.rcv_mss = len;
283 				return;
284 			}
285 		}
286 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
287 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
288 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
289 	}
290 }
291 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)292 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
293 {
294 	struct inet_connection_sock *icsk = inet_csk(sk);
295 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
296 
297 	if (quickacks == 0)
298 		quickacks = 2;
299 	quickacks = min(quickacks, max_quickacks);
300 	if (quickacks > icsk->icsk_ack.quick)
301 		icsk->icsk_ack.quick = quickacks;
302 }
303 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)304 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
305 {
306 	struct inet_connection_sock *icsk = inet_csk(sk);
307 
308 	tcp_incr_quickack(sk, max_quickacks);
309 	inet_csk_exit_pingpong_mode(sk);
310 	icsk->icsk_ack.ato = TCP_ATO_MIN;
311 }
312 
313 /* Send ACKs quickly, if "quick" count is not exhausted
314  * and the session is not interactive.
315  */
316 
tcp_in_quickack_mode(struct sock * sk)317 static bool tcp_in_quickack_mode(struct sock *sk)
318 {
319 	const struct inet_connection_sock *icsk = inet_csk(sk);
320 	const struct dst_entry *dst = __sk_dst_get(sk);
321 
322 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
323 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
324 }
325 
tcp_ecn_queue_cwr(struct tcp_sock * tp)326 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
327 {
328 	if (tp->ecn_flags & TCP_ECN_OK)
329 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
330 }
331 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)332 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
333 {
334 	if (tcp_hdr(skb)->cwr) {
335 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
336 
337 		/* If the sender is telling us it has entered CWR, then its
338 		 * cwnd may be very low (even just 1 packet), so we should ACK
339 		 * immediately.
340 		 */
341 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
342 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
343 	}
344 }
345 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)346 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
347 {
348 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 }
350 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)351 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 
355 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
356 	case INET_ECN_NOT_ECT:
357 		/* Funny extension: if ECT is not set on a segment,
358 		 * and we already seen ECT on a previous segment,
359 		 * it is probably a retransmit.
360 		 */
361 		if (tp->ecn_flags & TCP_ECN_SEEN)
362 			tcp_enter_quickack_mode(sk, 2);
363 		break;
364 	case INET_ECN_CE:
365 		if (tcp_ca_needs_ecn(sk))
366 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
367 
368 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
369 			/* Better not delay acks, sender can have a very low cwnd */
370 			tcp_enter_quickack_mode(sk, 2);
371 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
372 		}
373 		tp->ecn_flags |= TCP_ECN_SEEN;
374 		break;
375 	default:
376 		if (tcp_ca_needs_ecn(sk))
377 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
378 		tp->ecn_flags |= TCP_ECN_SEEN;
379 		break;
380 	}
381 }
382 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)383 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
384 {
385 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
386 		__tcp_ecn_check_ce(sk, skb);
387 }
388 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)389 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
390 {
391 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
392 		tp->ecn_flags &= ~TCP_ECN_OK;
393 }
394 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)395 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
396 {
397 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
398 		tp->ecn_flags &= ~TCP_ECN_OK;
399 }
400 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)401 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
402 {
403 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
404 		return true;
405 	return false;
406 }
407 
408 /* Buffer size and advertised window tuning.
409  *
410  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
411  */
412 
tcp_sndbuf_expand(struct sock * sk)413 static void tcp_sndbuf_expand(struct sock *sk)
414 {
415 	const struct tcp_sock *tp = tcp_sk(sk);
416 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
417 	int sndmem, per_mss;
418 	u32 nr_segs;
419 
420 	/* Worst case is non GSO/TSO : each frame consumes one skb
421 	 * and skb->head is kmalloced using power of two area of memory
422 	 */
423 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
424 		  MAX_TCP_HEADER +
425 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 
427 	per_mss = roundup_pow_of_two(per_mss) +
428 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
429 
430 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
431 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
432 
433 	/* Fast Recovery (RFC 5681 3.2) :
434 	 * Cubic needs 1.7 factor, rounded to 2 to include
435 	 * extra cushion (application might react slowly to EPOLLOUT)
436 	 */
437 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
438 	sndmem *= nr_segs * per_mss;
439 
440 	if (sk->sk_sndbuf < sndmem)
441 		WRITE_ONCE(sk->sk_sndbuf,
442 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
443 }
444 
445 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
446  *
447  * All tcp_full_space() is split to two parts: "network" buffer, allocated
448  * forward and advertised in receiver window (tp->rcv_wnd) and
449  * "application buffer", required to isolate scheduling/application
450  * latencies from network.
451  * window_clamp is maximal advertised window. It can be less than
452  * tcp_full_space(), in this case tcp_full_space() - window_clamp
453  * is reserved for "application" buffer. The less window_clamp is
454  * the smoother our behaviour from viewpoint of network, but the lower
455  * throughput and the higher sensitivity of the connection to losses. 8)
456  *
457  * rcv_ssthresh is more strict window_clamp used at "slow start"
458  * phase to predict further behaviour of this connection.
459  * It is used for two goals:
460  * - to enforce header prediction at sender, even when application
461  *   requires some significant "application buffer". It is check #1.
462  * - to prevent pruning of receive queue because of misprediction
463  *   of receiver window. Check #2.
464  *
465  * The scheme does not work when sender sends good segments opening
466  * window and then starts to feed us spaghetti. But it should work
467  * in common situations. Otherwise, we have to rely on queue collapsing.
468  */
469 
470 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)471 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
472 			     unsigned int skbtruesize)
473 {
474 	struct tcp_sock *tp = tcp_sk(sk);
475 	/* Optimize this! */
476 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
477 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
478 
479 	while (tp->rcv_ssthresh <= window) {
480 		if (truesize <= skb->len)
481 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
482 
483 		truesize >>= 1;
484 		window >>= 1;
485 	}
486 	return 0;
487 }
488 
489 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
490  * can play nice with us, as sk_buff and skb->head might be either
491  * freed or shared with up to MAX_SKB_FRAGS segments.
492  * Only give a boost to drivers using page frag(s) to hold the frame(s),
493  * and if no payload was pulled in skb->head before reaching us.
494  */
truesize_adjust(bool adjust,const struct sk_buff * skb)495 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
496 {
497 	u32 truesize = skb->truesize;
498 
499 	if (adjust && !skb_headlen(skb)) {
500 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
501 		/* paranoid check, some drivers might be buggy */
502 		if (unlikely((int)truesize < (int)skb->len))
503 			truesize = skb->truesize;
504 	}
505 	return truesize;
506 }
507 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)508 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
509 			    bool adjust)
510 {
511 	struct tcp_sock *tp = tcp_sk(sk);
512 	int room;
513 
514 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
515 
516 	/* Check #1 */
517 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
518 		unsigned int truesize = truesize_adjust(adjust, skb);
519 		int incr;
520 
521 		/* Check #2. Increase window, if skb with such overhead
522 		 * will fit to rcvbuf in future.
523 		 */
524 		if (tcp_win_from_space(sk, truesize) <= skb->len)
525 			incr = 2 * tp->advmss;
526 		else
527 			incr = __tcp_grow_window(sk, skb, truesize);
528 
529 		if (incr) {
530 			incr = max_t(int, incr, 2 * skb->len);
531 			tp->rcv_ssthresh += min(room, incr);
532 			inet_csk(sk)->icsk_ack.quick |= 1;
533 		}
534 	}
535 }
536 
537 /* 3. Try to fixup all. It is made immediately after connection enters
538  *    established state.
539  */
tcp_init_buffer_space(struct sock * sk)540 static void tcp_init_buffer_space(struct sock *sk)
541 {
542 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
543 	struct tcp_sock *tp = tcp_sk(sk);
544 	int maxwin;
545 
546 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
547 		tcp_sndbuf_expand(sk);
548 
549 	tcp_mstamp_refresh(tp);
550 	tp->rcvq_space.time = tp->tcp_mstamp;
551 	tp->rcvq_space.seq = tp->copied_seq;
552 
553 	maxwin = tcp_full_space(sk);
554 
555 	if (tp->window_clamp >= maxwin) {
556 		tp->window_clamp = maxwin;
557 
558 		if (tcp_app_win && maxwin > 4 * tp->advmss)
559 			tp->window_clamp = max(maxwin -
560 					       (maxwin >> tcp_app_win),
561 					       4 * tp->advmss);
562 	}
563 
564 	/* Force reservation of one segment. */
565 	if (tcp_app_win &&
566 	    tp->window_clamp > 2 * tp->advmss &&
567 	    tp->window_clamp + tp->advmss > maxwin)
568 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
569 
570 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
571 	tp->snd_cwnd_stamp = tcp_jiffies32;
572 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
573 				    (u32)TCP_INIT_CWND * tp->advmss);
574 }
575 
576 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)577 static void tcp_clamp_window(struct sock *sk)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 	struct inet_connection_sock *icsk = inet_csk(sk);
581 	struct net *net = sock_net(sk);
582 	int rmem2;
583 
584 	icsk->icsk_ack.quick = 0;
585 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
586 
587 	if (sk->sk_rcvbuf < rmem2 &&
588 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
589 	    !tcp_under_memory_pressure(sk) &&
590 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
591 		WRITE_ONCE(sk->sk_rcvbuf,
592 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
593 	}
594 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
595 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
596 }
597 
598 /* Initialize RCV_MSS value.
599  * RCV_MSS is an our guess about MSS used by the peer.
600  * We haven't any direct information about the MSS.
601  * It's better to underestimate the RCV_MSS rather than overestimate.
602  * Overestimations make us ACKing less frequently than needed.
603  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
604  */
tcp_initialize_rcv_mss(struct sock * sk)605 void tcp_initialize_rcv_mss(struct sock *sk)
606 {
607 	const struct tcp_sock *tp = tcp_sk(sk);
608 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
609 
610 	hint = min(hint, tp->rcv_wnd / 2);
611 	hint = min(hint, TCP_MSS_DEFAULT);
612 	hint = max(hint, TCP_MIN_MSS);
613 
614 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
615 }
616 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
617 
618 /* Receiver "autotuning" code.
619  *
620  * The algorithm for RTT estimation w/o timestamps is based on
621  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
622  * <https://public.lanl.gov/radiant/pubs.html#DRS>
623  *
624  * More detail on this code can be found at
625  * <http://staff.psc.edu/jheffner/>,
626  * though this reference is out of date.  A new paper
627  * is pending.
628  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)629 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
630 {
631 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
632 	long m = sample;
633 
634 	if (new_sample != 0) {
635 		/* If we sample in larger samples in the non-timestamp
636 		 * case, we could grossly overestimate the RTT especially
637 		 * with chatty applications or bulk transfer apps which
638 		 * are stalled on filesystem I/O.
639 		 *
640 		 * Also, since we are only going for a minimum in the
641 		 * non-timestamp case, we do not smooth things out
642 		 * else with timestamps disabled convergence takes too
643 		 * long.
644 		 */
645 		if (!win_dep) {
646 			m -= (new_sample >> 3);
647 			new_sample += m;
648 		} else {
649 			m <<= 3;
650 			if (m < new_sample)
651 				new_sample = m;
652 		}
653 	} else {
654 		/* No previous measure. */
655 		new_sample = m << 3;
656 	}
657 
658 	tp->rcv_rtt_est.rtt_us = new_sample;
659 }
660 
tcp_rcv_rtt_measure(struct tcp_sock * tp)661 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
662 {
663 	u32 delta_us;
664 
665 	if (tp->rcv_rtt_est.time == 0)
666 		goto new_measure;
667 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
668 		return;
669 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
670 	if (!delta_us)
671 		delta_us = 1;
672 	tcp_rcv_rtt_update(tp, delta_us, 1);
673 
674 new_measure:
675 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
676 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
677 }
678 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)679 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
680 					  const struct sk_buff *skb)
681 {
682 	struct tcp_sock *tp = tcp_sk(sk);
683 
684 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
685 		return;
686 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
687 
688 	if (TCP_SKB_CB(skb)->end_seq -
689 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
690 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
691 		u32 delta_us;
692 
693 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
694 			if (!delta)
695 				delta = 1;
696 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
697 			tcp_rcv_rtt_update(tp, delta_us, 0);
698 		}
699 	}
700 }
701 
702 /*
703  * This function should be called every time data is copied to user space.
704  * It calculates the appropriate TCP receive buffer space.
705  */
tcp_rcv_space_adjust(struct sock * sk)706 void tcp_rcv_space_adjust(struct sock *sk)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	u32 copied;
710 	int time;
711 
712 	trace_tcp_rcv_space_adjust(sk);
713 
714 	tcp_mstamp_refresh(tp);
715 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
716 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
717 		return;
718 
719 	/* Number of bytes copied to user in last RTT */
720 	copied = tp->copied_seq - tp->rcvq_space.seq;
721 	if (copied <= tp->rcvq_space.space)
722 		goto new_measure;
723 
724 	/* A bit of theory :
725 	 * copied = bytes received in previous RTT, our base window
726 	 * To cope with packet losses, we need a 2x factor
727 	 * To cope with slow start, and sender growing its cwin by 100 %
728 	 * every RTT, we need a 4x factor, because the ACK we are sending
729 	 * now is for the next RTT, not the current one :
730 	 * <prev RTT . ><current RTT .. ><next RTT .... >
731 	 */
732 
733 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
734 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
735 		int rcvmem, rcvbuf;
736 		u64 rcvwin, grow;
737 
738 		/* minimal window to cope with packet losses, assuming
739 		 * steady state. Add some cushion because of small variations.
740 		 */
741 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
742 
743 		/* Accommodate for sender rate increase (eg. slow start) */
744 		grow = rcvwin * (copied - tp->rcvq_space.space);
745 		do_div(grow, tp->rcvq_space.space);
746 		rcvwin += (grow << 1);
747 
748 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
749 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
750 			rcvmem += 128;
751 
752 		do_div(rcvwin, tp->advmss);
753 		rcvbuf = min_t(u64, rcvwin * rcvmem,
754 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
755 		if (rcvbuf > sk->sk_rcvbuf) {
756 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
757 
758 			/* Make the window clamp follow along.  */
759 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
760 		}
761 	}
762 	tp->rcvq_space.space = copied;
763 
764 new_measure:
765 	tp->rcvq_space.seq = tp->copied_seq;
766 	tp->rcvq_space.time = tp->tcp_mstamp;
767 }
768 
769 /* There is something which you must keep in mind when you analyze the
770  * behavior of the tp->ato delayed ack timeout interval.  When a
771  * connection starts up, we want to ack as quickly as possible.  The
772  * problem is that "good" TCP's do slow start at the beginning of data
773  * transmission.  The means that until we send the first few ACK's the
774  * sender will sit on his end and only queue most of his data, because
775  * he can only send snd_cwnd unacked packets at any given time.  For
776  * each ACK we send, he increments snd_cwnd and transmits more of his
777  * queue.  -DaveM
778  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)779 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
780 {
781 	struct tcp_sock *tp = tcp_sk(sk);
782 	struct inet_connection_sock *icsk = inet_csk(sk);
783 	u32 now;
784 
785 	inet_csk_schedule_ack(sk);
786 
787 	tcp_measure_rcv_mss(sk, skb);
788 
789 	tcp_rcv_rtt_measure(tp);
790 
791 	now = tcp_jiffies32;
792 
793 	if (!icsk->icsk_ack.ato) {
794 		/* The _first_ data packet received, initialize
795 		 * delayed ACK engine.
796 		 */
797 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
798 		icsk->icsk_ack.ato = TCP_ATO_MIN;
799 	} else {
800 		int m = now - icsk->icsk_ack.lrcvtime;
801 
802 		if (m <= TCP_ATO_MIN / 2) {
803 			/* The fastest case is the first. */
804 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
805 		} else if (m < icsk->icsk_ack.ato) {
806 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
807 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
808 				icsk->icsk_ack.ato = icsk->icsk_rto;
809 		} else if (m > icsk->icsk_rto) {
810 			/* Too long gap. Apparently sender failed to
811 			 * restart window, so that we send ACKs quickly.
812 			 */
813 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
814 			sk_mem_reclaim(sk);
815 		}
816 	}
817 	icsk->icsk_ack.lrcvtime = now;
818 
819 	tcp_ecn_check_ce(sk, skb);
820 
821 	if (skb->len >= 128)
822 		tcp_grow_window(sk, skb, true);
823 }
824 
825 /* Called to compute a smoothed rtt estimate. The data fed to this
826  * routine either comes from timestamps, or from segments that were
827  * known _not_ to have been retransmitted [see Karn/Partridge
828  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
829  * piece by Van Jacobson.
830  * NOTE: the next three routines used to be one big routine.
831  * To save cycles in the RFC 1323 implementation it was better to break
832  * it up into three procedures. -- erics
833  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)834 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
835 {
836 	struct tcp_sock *tp = tcp_sk(sk);
837 	long m = mrtt_us; /* RTT */
838 	u32 srtt = tp->srtt_us;
839 
840 	/*	The following amusing code comes from Jacobson's
841 	 *	article in SIGCOMM '88.  Note that rtt and mdev
842 	 *	are scaled versions of rtt and mean deviation.
843 	 *	This is designed to be as fast as possible
844 	 *	m stands for "measurement".
845 	 *
846 	 *	On a 1990 paper the rto value is changed to:
847 	 *	RTO = rtt + 4 * mdev
848 	 *
849 	 * Funny. This algorithm seems to be very broken.
850 	 * These formulae increase RTO, when it should be decreased, increase
851 	 * too slowly, when it should be increased quickly, decrease too quickly
852 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
853 	 * does not matter how to _calculate_ it. Seems, it was trap
854 	 * that VJ failed to avoid. 8)
855 	 */
856 	if (srtt != 0) {
857 		m -= (srtt >> 3);	/* m is now error in rtt est */
858 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
859 		if (m < 0) {
860 			m = -m;		/* m is now abs(error) */
861 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
862 			/* This is similar to one of Eifel findings.
863 			 * Eifel blocks mdev updates when rtt decreases.
864 			 * This solution is a bit different: we use finer gain
865 			 * for mdev in this case (alpha*beta).
866 			 * Like Eifel it also prevents growth of rto,
867 			 * but also it limits too fast rto decreases,
868 			 * happening in pure Eifel.
869 			 */
870 			if (m > 0)
871 				m >>= 3;
872 		} else {
873 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
874 		}
875 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
876 		if (tp->mdev_us > tp->mdev_max_us) {
877 			tp->mdev_max_us = tp->mdev_us;
878 			if (tp->mdev_max_us > tp->rttvar_us)
879 				tp->rttvar_us = tp->mdev_max_us;
880 		}
881 		if (after(tp->snd_una, tp->rtt_seq)) {
882 			if (tp->mdev_max_us < tp->rttvar_us)
883 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
884 			tp->rtt_seq = tp->snd_nxt;
885 			tp->mdev_max_us = tcp_rto_min_us(sk);
886 
887 			tcp_bpf_rtt(sk);
888 		}
889 	} else {
890 		/* no previous measure. */
891 		srtt = m << 3;		/* take the measured time to be rtt */
892 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
893 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
894 		tp->mdev_max_us = tp->rttvar_us;
895 		tp->rtt_seq = tp->snd_nxt;
896 
897 		tcp_bpf_rtt(sk);
898 	}
899 	tp->srtt_us = max(1U, srtt);
900 }
901 
tcp_update_pacing_rate(struct sock * sk)902 static void tcp_update_pacing_rate(struct sock *sk)
903 {
904 	const struct tcp_sock *tp = tcp_sk(sk);
905 	u64 rate;
906 
907 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
908 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
909 
910 	/* current rate is (cwnd * mss) / srtt
911 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
912 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
913 	 *
914 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
915 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
916 	 *	 end of slow start and should slow down.
917 	 */
918 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
919 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
920 	else
921 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
922 
923 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
924 
925 	if (likely(tp->srtt_us))
926 		do_div(rate, tp->srtt_us);
927 
928 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
929 	 * without any lock. We want to make sure compiler wont store
930 	 * intermediate values in this location.
931 	 */
932 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
933 					     sk->sk_max_pacing_rate));
934 }
935 
936 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
937  * routine referred to above.
938  */
tcp_set_rto(struct sock * sk)939 static void tcp_set_rto(struct sock *sk)
940 {
941 	const struct tcp_sock *tp = tcp_sk(sk);
942 	/* Old crap is replaced with new one. 8)
943 	 *
944 	 * More seriously:
945 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
946 	 *    It cannot be less due to utterly erratic ACK generation made
947 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
948 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
949 	 *    is invisible. Actually, Linux-2.4 also generates erratic
950 	 *    ACKs in some circumstances.
951 	 */
952 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
953 
954 	/* 2. Fixups made earlier cannot be right.
955 	 *    If we do not estimate RTO correctly without them,
956 	 *    all the algo is pure shit and should be replaced
957 	 *    with correct one. It is exactly, which we pretend to do.
958 	 */
959 
960 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
961 	 * guarantees that rto is higher.
962 	 */
963 	tcp_bound_rto(sk);
964 }
965 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)966 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
967 {
968 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
969 
970 	if (!cwnd)
971 		cwnd = TCP_INIT_CWND;
972 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
973 }
974 
975 struct tcp_sacktag_state {
976 	/* Timestamps for earliest and latest never-retransmitted segment
977 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
978 	 * but congestion control should still get an accurate delay signal.
979 	 */
980 	u64	first_sackt;
981 	u64	last_sackt;
982 	u32	reord;
983 	u32	sack_delivered;
984 	int	flag;
985 	unsigned int mss_now;
986 	struct rate_sample *rate;
987 };
988 
989 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
990  * and spurious retransmission information if this DSACK is unlikely caused by
991  * sender's action:
992  * - DSACKed sequence range is larger than maximum receiver's window.
993  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
994  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)995 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
996 			  u32 end_seq, struct tcp_sacktag_state *state)
997 {
998 	u32 seq_len, dup_segs = 1;
999 
1000 	if (!before(start_seq, end_seq))
1001 		return 0;
1002 
1003 	seq_len = end_seq - start_seq;
1004 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1005 	if (seq_len > tp->max_window)
1006 		return 0;
1007 	if (seq_len > tp->mss_cache)
1008 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1009 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1010 		state->flag |= FLAG_DSACK_TLP;
1011 
1012 	tp->dsack_dups += dup_segs;
1013 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1014 	if (tp->dsack_dups > tp->total_retrans)
1015 		return 0;
1016 
1017 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1018 	/* We increase the RACK ordering window in rounds where we receive
1019 	 * DSACKs that may have been due to reordering causing RACK to trigger
1020 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1021 	 * without having seen reordering, or that match TLP probes (TLP
1022 	 * is timer-driven, not triggered by RACK).
1023 	 */
1024 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1025 		tp->rack.dsack_seen = 1;
1026 
1027 	state->flag |= FLAG_DSACKING_ACK;
1028 	/* A spurious retransmission is delivered */
1029 	state->sack_delivered += dup_segs;
1030 
1031 	return dup_segs;
1032 }
1033 
1034 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1035  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1036  * distance is approximated in full-mss packet distance ("reordering").
1037  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1038 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1039 				      const int ts)
1040 {
1041 	struct tcp_sock *tp = tcp_sk(sk);
1042 	const u32 mss = tp->mss_cache;
1043 	u32 fack, metric;
1044 
1045 	fack = tcp_highest_sack_seq(tp);
1046 	if (!before(low_seq, fack))
1047 		return;
1048 
1049 	metric = fack - low_seq;
1050 	if ((metric > tp->reordering * mss) && mss) {
1051 #if FASTRETRANS_DEBUG > 1
1052 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1053 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1054 			 tp->reordering,
1055 			 0,
1056 			 tp->sacked_out,
1057 			 tp->undo_marker ? tp->undo_retrans : 0);
1058 #endif
1059 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1060 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1061 	}
1062 
1063 	/* This exciting event is worth to be remembered. 8) */
1064 	tp->reord_seen++;
1065 	NET_INC_STATS(sock_net(sk),
1066 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1067 }
1068 
1069  /* This must be called before lost_out or retrans_out are updated
1070   * on a new loss, because we want to know if all skbs previously
1071   * known to be lost have already been retransmitted, indicating
1072   * that this newly lost skb is our next skb to retransmit.
1073   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1074 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1075 {
1076 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1077 	    (tp->retransmit_skb_hint &&
1078 	     before(TCP_SKB_CB(skb)->seq,
1079 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1080 		tp->retransmit_skb_hint = skb;
1081 }
1082 
1083 /* Sum the number of packets on the wire we have marked as lost, and
1084  * notify the congestion control module that the given skb was marked lost.
1085  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1086 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1087 {
1088 	tp->lost += tcp_skb_pcount(skb);
1089 }
1090 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1091 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1092 {
1093 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1094 	struct tcp_sock *tp = tcp_sk(sk);
1095 
1096 	if (sacked & TCPCB_SACKED_ACKED)
1097 		return;
1098 
1099 	tcp_verify_retransmit_hint(tp, skb);
1100 	if (sacked & TCPCB_LOST) {
1101 		if (sacked & TCPCB_SACKED_RETRANS) {
1102 			/* Account for retransmits that are lost again */
1103 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1104 			tp->retrans_out -= tcp_skb_pcount(skb);
1105 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1106 				      tcp_skb_pcount(skb));
1107 			tcp_notify_skb_loss_event(tp, skb);
1108 		}
1109 	} else {
1110 		tp->lost_out += tcp_skb_pcount(skb);
1111 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1112 		tcp_notify_skb_loss_event(tp, skb);
1113 	}
1114 }
1115 
1116 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1117 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1118 				bool ece_ack)
1119 {
1120 	tp->delivered += delivered;
1121 	if (ece_ack)
1122 		tp->delivered_ce += delivered;
1123 }
1124 
1125 /* This procedure tags the retransmission queue when SACKs arrive.
1126  *
1127  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1128  * Packets in queue with these bits set are counted in variables
1129  * sacked_out, retrans_out and lost_out, correspondingly.
1130  *
1131  * Valid combinations are:
1132  * Tag  InFlight	Description
1133  * 0	1		- orig segment is in flight.
1134  * S	0		- nothing flies, orig reached receiver.
1135  * L	0		- nothing flies, orig lost by net.
1136  * R	2		- both orig and retransmit are in flight.
1137  * L|R	1		- orig is lost, retransmit is in flight.
1138  * S|R  1		- orig reached receiver, retrans is still in flight.
1139  * (L|S|R is logically valid, it could occur when L|R is sacked,
1140  *  but it is equivalent to plain S and code short-curcuits it to S.
1141  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1142  *
1143  * These 6 states form finite state machine, controlled by the following events:
1144  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1145  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1146  * 3. Loss detection event of two flavors:
1147  *	A. Scoreboard estimator decided the packet is lost.
1148  *	   A'. Reno "three dupacks" marks head of queue lost.
1149  *	B. SACK arrives sacking SND.NXT at the moment, when the
1150  *	   segment was retransmitted.
1151  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1152  *
1153  * It is pleasant to note, that state diagram turns out to be commutative,
1154  * so that we are allowed not to be bothered by order of our actions,
1155  * when multiple events arrive simultaneously. (see the function below).
1156  *
1157  * Reordering detection.
1158  * --------------------
1159  * Reordering metric is maximal distance, which a packet can be displaced
1160  * in packet stream. With SACKs we can estimate it:
1161  *
1162  * 1. SACK fills old hole and the corresponding segment was not
1163  *    ever retransmitted -> reordering. Alas, we cannot use it
1164  *    when segment was retransmitted.
1165  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1166  *    for retransmitted and already SACKed segment -> reordering..
1167  * Both of these heuristics are not used in Loss state, when we cannot
1168  * account for retransmits accurately.
1169  *
1170  * SACK block validation.
1171  * ----------------------
1172  *
1173  * SACK block range validation checks that the received SACK block fits to
1174  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1175  * Note that SND.UNA is not included to the range though being valid because
1176  * it means that the receiver is rather inconsistent with itself reporting
1177  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1178  * perfectly valid, however, in light of RFC2018 which explicitly states
1179  * that "SACK block MUST reflect the newest segment.  Even if the newest
1180  * segment is going to be discarded ...", not that it looks very clever
1181  * in case of head skb. Due to potentional receiver driven attacks, we
1182  * choose to avoid immediate execution of a walk in write queue due to
1183  * reneging and defer head skb's loss recovery to standard loss recovery
1184  * procedure that will eventually trigger (nothing forbids us doing this).
1185  *
1186  * Implements also blockage to start_seq wrap-around. Problem lies in the
1187  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1188  * there's no guarantee that it will be before snd_nxt (n). The problem
1189  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1190  * wrap (s_w):
1191  *
1192  *         <- outs wnd ->                          <- wrapzone ->
1193  *         u     e      n                         u_w   e_w  s n_w
1194  *         |     |      |                          |     |   |  |
1195  * |<------------+------+----- TCP seqno space --------------+---------->|
1196  * ...-- <2^31 ->|                                           |<--------...
1197  * ...---- >2^31 ------>|                                    |<--------...
1198  *
1199  * Current code wouldn't be vulnerable but it's better still to discard such
1200  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1201  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1202  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1203  * equal to the ideal case (infinite seqno space without wrap caused issues).
1204  *
1205  * With D-SACK the lower bound is extended to cover sequence space below
1206  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1207  * again, D-SACK block must not to go across snd_una (for the same reason as
1208  * for the normal SACK blocks, explained above). But there all simplicity
1209  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1210  * fully below undo_marker they do not affect behavior in anyway and can
1211  * therefore be safely ignored. In rare cases (which are more or less
1212  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1213  * fragmentation and packet reordering past skb's retransmission. To consider
1214  * them correctly, the acceptable range must be extended even more though
1215  * the exact amount is rather hard to quantify. However, tp->max_window can
1216  * be used as an exaggerated estimate.
1217  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1218 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1219 				   u32 start_seq, u32 end_seq)
1220 {
1221 	/* Too far in future, or reversed (interpretation is ambiguous) */
1222 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1223 		return false;
1224 
1225 	/* Nasty start_seq wrap-around check (see comments above) */
1226 	if (!before(start_seq, tp->snd_nxt))
1227 		return false;
1228 
1229 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1230 	 * start_seq == snd_una is non-sensical (see comments above)
1231 	 */
1232 	if (after(start_seq, tp->snd_una))
1233 		return true;
1234 
1235 	if (!is_dsack || !tp->undo_marker)
1236 		return false;
1237 
1238 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1239 	if (after(end_seq, tp->snd_una))
1240 		return false;
1241 
1242 	if (!before(start_seq, tp->undo_marker))
1243 		return true;
1244 
1245 	/* Too old */
1246 	if (!after(end_seq, tp->undo_marker))
1247 		return false;
1248 
1249 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1250 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1251 	 */
1252 	return !before(start_seq, end_seq - tp->max_window);
1253 }
1254 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1255 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1256 			    struct tcp_sack_block_wire *sp, int num_sacks,
1257 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1258 {
1259 	struct tcp_sock *tp = tcp_sk(sk);
1260 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1261 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1262 	u32 dup_segs;
1263 
1264 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1265 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1266 	} else if (num_sacks > 1) {
1267 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1268 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1269 
1270 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1271 			return false;
1272 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1273 	} else {
1274 		return false;
1275 	}
1276 
1277 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1278 	if (!dup_segs) {	/* Skip dubious DSACK */
1279 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1280 		return false;
1281 	}
1282 
1283 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1284 
1285 	/* D-SACK for already forgotten data... Do dumb counting. */
1286 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1287 	    !after(end_seq_0, prior_snd_una) &&
1288 	    after(end_seq_0, tp->undo_marker))
1289 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1290 
1291 	return true;
1292 }
1293 
1294 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1295  * the incoming SACK may not exactly match but we can find smaller MSS
1296  * aligned portion of it that matches. Therefore we might need to fragment
1297  * which may fail and creates some hassle (caller must handle error case
1298  * returns).
1299  *
1300  * FIXME: this could be merged to shift decision code
1301  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1302 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1303 				  u32 start_seq, u32 end_seq)
1304 {
1305 	int err;
1306 	bool in_sack;
1307 	unsigned int pkt_len;
1308 	unsigned int mss;
1309 
1310 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1311 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1312 
1313 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1314 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1315 		mss = tcp_skb_mss(skb);
1316 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1317 
1318 		if (!in_sack) {
1319 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1320 			if (pkt_len < mss)
1321 				pkt_len = mss;
1322 		} else {
1323 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1324 			if (pkt_len < mss)
1325 				return -EINVAL;
1326 		}
1327 
1328 		/* Round if necessary so that SACKs cover only full MSSes
1329 		 * and/or the remaining small portion (if present)
1330 		 */
1331 		if (pkt_len > mss) {
1332 			unsigned int new_len = (pkt_len / mss) * mss;
1333 			if (!in_sack && new_len < pkt_len)
1334 				new_len += mss;
1335 			pkt_len = new_len;
1336 		}
1337 
1338 		if (pkt_len >= skb->len && !in_sack)
1339 			return 0;
1340 
1341 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1342 				   pkt_len, mss, GFP_ATOMIC);
1343 		if (err < 0)
1344 			return err;
1345 	}
1346 
1347 	return in_sack;
1348 }
1349 
1350 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1351 static u8 tcp_sacktag_one(struct sock *sk,
1352 			  struct tcp_sacktag_state *state, u8 sacked,
1353 			  u32 start_seq, u32 end_seq,
1354 			  int dup_sack, int pcount,
1355 			  u64 xmit_time)
1356 {
1357 	struct tcp_sock *tp = tcp_sk(sk);
1358 
1359 	/* Account D-SACK for retransmitted packet. */
1360 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1361 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1362 		    after(end_seq, tp->undo_marker))
1363 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1364 		if ((sacked & TCPCB_SACKED_ACKED) &&
1365 		    before(start_seq, state->reord))
1366 				state->reord = start_seq;
1367 	}
1368 
1369 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1370 	if (!after(end_seq, tp->snd_una))
1371 		return sacked;
1372 
1373 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1374 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1375 
1376 		if (sacked & TCPCB_SACKED_RETRANS) {
1377 			/* If the segment is not tagged as lost,
1378 			 * we do not clear RETRANS, believing
1379 			 * that retransmission is still in flight.
1380 			 */
1381 			if (sacked & TCPCB_LOST) {
1382 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1383 				tp->lost_out -= pcount;
1384 				tp->retrans_out -= pcount;
1385 			}
1386 		} else {
1387 			if (!(sacked & TCPCB_RETRANS)) {
1388 				/* New sack for not retransmitted frame,
1389 				 * which was in hole. It is reordering.
1390 				 */
1391 				if (before(start_seq,
1392 					   tcp_highest_sack_seq(tp)) &&
1393 				    before(start_seq, state->reord))
1394 					state->reord = start_seq;
1395 
1396 				if (!after(end_seq, tp->high_seq))
1397 					state->flag |= FLAG_ORIG_SACK_ACKED;
1398 				if (state->first_sackt == 0)
1399 					state->first_sackt = xmit_time;
1400 				state->last_sackt = xmit_time;
1401 			}
1402 
1403 			if (sacked & TCPCB_LOST) {
1404 				sacked &= ~TCPCB_LOST;
1405 				tp->lost_out -= pcount;
1406 			}
1407 		}
1408 
1409 		sacked |= TCPCB_SACKED_ACKED;
1410 		state->flag |= FLAG_DATA_SACKED;
1411 		tp->sacked_out += pcount;
1412 		/* Out-of-order packets delivered */
1413 		state->sack_delivered += pcount;
1414 
1415 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1416 		if (tp->lost_skb_hint &&
1417 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1418 			tp->lost_cnt_hint += pcount;
1419 	}
1420 
1421 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1422 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1423 	 * are accounted above as well.
1424 	 */
1425 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1426 		sacked &= ~TCPCB_SACKED_RETRANS;
1427 		tp->retrans_out -= pcount;
1428 	}
1429 
1430 	return sacked;
1431 }
1432 
1433 /* Shift newly-SACKed bytes from this skb to the immediately previous
1434  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1435  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1436 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1437 			    struct sk_buff *skb,
1438 			    struct tcp_sacktag_state *state,
1439 			    unsigned int pcount, int shifted, int mss,
1440 			    bool dup_sack)
1441 {
1442 	struct tcp_sock *tp = tcp_sk(sk);
1443 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1444 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1445 
1446 	BUG_ON(!pcount);
1447 
1448 	/* Adjust counters and hints for the newly sacked sequence
1449 	 * range but discard the return value since prev is already
1450 	 * marked. We must tag the range first because the seq
1451 	 * advancement below implicitly advances
1452 	 * tcp_highest_sack_seq() when skb is highest_sack.
1453 	 */
1454 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1455 			start_seq, end_seq, dup_sack, pcount,
1456 			tcp_skb_timestamp_us(skb));
1457 	tcp_rate_skb_delivered(sk, skb, state->rate);
1458 
1459 	if (skb == tp->lost_skb_hint)
1460 		tp->lost_cnt_hint += pcount;
1461 
1462 	TCP_SKB_CB(prev)->end_seq += shifted;
1463 	TCP_SKB_CB(skb)->seq += shifted;
1464 
1465 	tcp_skb_pcount_add(prev, pcount);
1466 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1467 	tcp_skb_pcount_add(skb, -pcount);
1468 
1469 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1470 	 * in theory this shouldn't be necessary but as long as DSACK
1471 	 * code can come after this skb later on it's better to keep
1472 	 * setting gso_size to something.
1473 	 */
1474 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1475 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1476 
1477 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1478 	if (tcp_skb_pcount(skb) <= 1)
1479 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1480 
1481 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1482 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1483 
1484 	if (skb->len > 0) {
1485 		BUG_ON(!tcp_skb_pcount(skb));
1486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1487 		return false;
1488 	}
1489 
1490 	/* Whole SKB was eaten :-) */
1491 
1492 	if (skb == tp->retransmit_skb_hint)
1493 		tp->retransmit_skb_hint = prev;
1494 	if (skb == tp->lost_skb_hint) {
1495 		tp->lost_skb_hint = prev;
1496 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1497 	}
1498 
1499 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1500 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1501 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1502 		TCP_SKB_CB(prev)->end_seq++;
1503 
1504 	if (skb == tcp_highest_sack(sk))
1505 		tcp_advance_highest_sack(sk, skb);
1506 
1507 	tcp_skb_collapse_tstamp(prev, skb);
1508 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1509 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1510 
1511 	tcp_rtx_queue_unlink_and_free(skb, sk);
1512 
1513 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1514 
1515 	return true;
1516 }
1517 
1518 /* I wish gso_size would have a bit more sane initialization than
1519  * something-or-zero which complicates things
1520  */
tcp_skb_seglen(const struct sk_buff * skb)1521 static int tcp_skb_seglen(const struct sk_buff *skb)
1522 {
1523 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1524 }
1525 
1526 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1527 static int skb_can_shift(const struct sk_buff *skb)
1528 {
1529 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1530 }
1531 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1532 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1533 		  int pcount, int shiftlen)
1534 {
1535 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1536 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1537 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1538 	 * even if current MSS is bigger.
1539 	 */
1540 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1541 		return 0;
1542 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1543 		return 0;
1544 	return skb_shift(to, from, shiftlen);
1545 }
1546 
1547 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1548  * skb.
1549  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1550 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1551 					  struct tcp_sacktag_state *state,
1552 					  u32 start_seq, u32 end_seq,
1553 					  bool dup_sack)
1554 {
1555 	struct tcp_sock *tp = tcp_sk(sk);
1556 	struct sk_buff *prev;
1557 	int mss;
1558 	int pcount = 0;
1559 	int len;
1560 	int in_sack;
1561 
1562 	/* Normally R but no L won't result in plain S */
1563 	if (!dup_sack &&
1564 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1565 		goto fallback;
1566 	if (!skb_can_shift(skb))
1567 		goto fallback;
1568 	/* This frame is about to be dropped (was ACKed). */
1569 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1570 		goto fallback;
1571 
1572 	/* Can only happen with delayed DSACK + discard craziness */
1573 	prev = skb_rb_prev(skb);
1574 	if (!prev)
1575 		goto fallback;
1576 
1577 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1578 		goto fallback;
1579 
1580 	if (!tcp_skb_can_collapse(prev, skb))
1581 		goto fallback;
1582 
1583 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1584 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1585 
1586 	if (in_sack) {
1587 		len = skb->len;
1588 		pcount = tcp_skb_pcount(skb);
1589 		mss = tcp_skb_seglen(skb);
1590 
1591 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1592 		 * drop this restriction as unnecessary
1593 		 */
1594 		if (mss != tcp_skb_seglen(prev))
1595 			goto fallback;
1596 	} else {
1597 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1598 			goto noop;
1599 		/* CHECKME: This is non-MSS split case only?, this will
1600 		 * cause skipped skbs due to advancing loop btw, original
1601 		 * has that feature too
1602 		 */
1603 		if (tcp_skb_pcount(skb) <= 1)
1604 			goto noop;
1605 
1606 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1607 		if (!in_sack) {
1608 			/* TODO: head merge to next could be attempted here
1609 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1610 			 * though it might not be worth of the additional hassle
1611 			 *
1612 			 * ...we can probably just fallback to what was done
1613 			 * previously. We could try merging non-SACKed ones
1614 			 * as well but it probably isn't going to buy off
1615 			 * because later SACKs might again split them, and
1616 			 * it would make skb timestamp tracking considerably
1617 			 * harder problem.
1618 			 */
1619 			goto fallback;
1620 		}
1621 
1622 		len = end_seq - TCP_SKB_CB(skb)->seq;
1623 		BUG_ON(len < 0);
1624 		BUG_ON(len > skb->len);
1625 
1626 		/* MSS boundaries should be honoured or else pcount will
1627 		 * severely break even though it makes things bit trickier.
1628 		 * Optimize common case to avoid most of the divides
1629 		 */
1630 		mss = tcp_skb_mss(skb);
1631 
1632 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1633 		 * drop this restriction as unnecessary
1634 		 */
1635 		if (mss != tcp_skb_seglen(prev))
1636 			goto fallback;
1637 
1638 		if (len == mss) {
1639 			pcount = 1;
1640 		} else if (len < mss) {
1641 			goto noop;
1642 		} else {
1643 			pcount = len / mss;
1644 			len = pcount * mss;
1645 		}
1646 	}
1647 
1648 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1649 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1650 		goto fallback;
1651 
1652 	if (!tcp_skb_shift(prev, skb, pcount, len))
1653 		goto fallback;
1654 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1655 		goto out;
1656 
1657 	/* Hole filled allows collapsing with the next as well, this is very
1658 	 * useful when hole on every nth skb pattern happens
1659 	 */
1660 	skb = skb_rb_next(prev);
1661 	if (!skb)
1662 		goto out;
1663 
1664 	if (!skb_can_shift(skb) ||
1665 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1666 	    (mss != tcp_skb_seglen(skb)))
1667 		goto out;
1668 
1669 	if (!tcp_skb_can_collapse(prev, skb))
1670 		goto out;
1671 	len = skb->len;
1672 	pcount = tcp_skb_pcount(skb);
1673 	if (tcp_skb_shift(prev, skb, pcount, len))
1674 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1675 				len, mss, 0);
1676 
1677 out:
1678 	return prev;
1679 
1680 noop:
1681 	return skb;
1682 
1683 fallback:
1684 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1685 	return NULL;
1686 }
1687 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1688 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1689 					struct tcp_sack_block *next_dup,
1690 					struct tcp_sacktag_state *state,
1691 					u32 start_seq, u32 end_seq,
1692 					bool dup_sack_in)
1693 {
1694 	struct tcp_sock *tp = tcp_sk(sk);
1695 	struct sk_buff *tmp;
1696 
1697 	skb_rbtree_walk_from(skb) {
1698 		int in_sack = 0;
1699 		bool dup_sack = dup_sack_in;
1700 
1701 		/* queue is in-order => we can short-circuit the walk early */
1702 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1703 			break;
1704 
1705 		if (next_dup  &&
1706 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1707 			in_sack = tcp_match_skb_to_sack(sk, skb,
1708 							next_dup->start_seq,
1709 							next_dup->end_seq);
1710 			if (in_sack > 0)
1711 				dup_sack = true;
1712 		}
1713 
1714 		/* skb reference here is a bit tricky to get right, since
1715 		 * shifting can eat and free both this skb and the next,
1716 		 * so not even _safe variant of the loop is enough.
1717 		 */
1718 		if (in_sack <= 0) {
1719 			tmp = tcp_shift_skb_data(sk, skb, state,
1720 						 start_seq, end_seq, dup_sack);
1721 			if (tmp) {
1722 				if (tmp != skb) {
1723 					skb = tmp;
1724 					continue;
1725 				}
1726 
1727 				in_sack = 0;
1728 			} else {
1729 				in_sack = tcp_match_skb_to_sack(sk, skb,
1730 								start_seq,
1731 								end_seq);
1732 			}
1733 		}
1734 
1735 		if (unlikely(in_sack < 0))
1736 			break;
1737 
1738 		if (in_sack) {
1739 			TCP_SKB_CB(skb)->sacked =
1740 				tcp_sacktag_one(sk,
1741 						state,
1742 						TCP_SKB_CB(skb)->sacked,
1743 						TCP_SKB_CB(skb)->seq,
1744 						TCP_SKB_CB(skb)->end_seq,
1745 						dup_sack,
1746 						tcp_skb_pcount(skb),
1747 						tcp_skb_timestamp_us(skb));
1748 			tcp_rate_skb_delivered(sk, skb, state->rate);
1749 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1750 				list_del_init(&skb->tcp_tsorted_anchor);
1751 
1752 			if (!before(TCP_SKB_CB(skb)->seq,
1753 				    tcp_highest_sack_seq(tp)))
1754 				tcp_advance_highest_sack(sk, skb);
1755 		}
1756 	}
1757 	return skb;
1758 }
1759 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1760 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1761 {
1762 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1763 	struct sk_buff *skb;
1764 
1765 	while (*p) {
1766 		parent = *p;
1767 		skb = rb_to_skb(parent);
1768 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1769 			p = &parent->rb_left;
1770 			continue;
1771 		}
1772 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1773 			p = &parent->rb_right;
1774 			continue;
1775 		}
1776 		return skb;
1777 	}
1778 	return NULL;
1779 }
1780 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1781 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1782 					u32 skip_to_seq)
1783 {
1784 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1785 		return skb;
1786 
1787 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1788 }
1789 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1790 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1791 						struct sock *sk,
1792 						struct tcp_sack_block *next_dup,
1793 						struct tcp_sacktag_state *state,
1794 						u32 skip_to_seq)
1795 {
1796 	if (!next_dup)
1797 		return skb;
1798 
1799 	if (before(next_dup->start_seq, skip_to_seq)) {
1800 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1801 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1802 				       next_dup->start_seq, next_dup->end_seq,
1803 				       1);
1804 	}
1805 
1806 	return skb;
1807 }
1808 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1809 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1810 {
1811 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1812 }
1813 
1814 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1815 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1816 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1817 {
1818 	struct tcp_sock *tp = tcp_sk(sk);
1819 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1820 				    TCP_SKB_CB(ack_skb)->sacked);
1821 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1822 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1823 	struct tcp_sack_block *cache;
1824 	struct sk_buff *skb;
1825 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1826 	int used_sacks;
1827 	bool found_dup_sack = false;
1828 	int i, j;
1829 	int first_sack_index;
1830 
1831 	state->flag = 0;
1832 	state->reord = tp->snd_nxt;
1833 
1834 	if (!tp->sacked_out)
1835 		tcp_highest_sack_reset(sk);
1836 
1837 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1838 					 num_sacks, prior_snd_una, state);
1839 
1840 	/* Eliminate too old ACKs, but take into
1841 	 * account more or less fresh ones, they can
1842 	 * contain valid SACK info.
1843 	 */
1844 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1845 		return 0;
1846 
1847 	if (!tp->packets_out)
1848 		goto out;
1849 
1850 	used_sacks = 0;
1851 	first_sack_index = 0;
1852 	for (i = 0; i < num_sacks; i++) {
1853 		bool dup_sack = !i && found_dup_sack;
1854 
1855 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1856 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1857 
1858 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1859 					    sp[used_sacks].start_seq,
1860 					    sp[used_sacks].end_seq)) {
1861 			int mib_idx;
1862 
1863 			if (dup_sack) {
1864 				if (!tp->undo_marker)
1865 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1866 				else
1867 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1868 			} else {
1869 				/* Don't count olds caused by ACK reordering */
1870 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1871 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1872 					continue;
1873 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1874 			}
1875 
1876 			NET_INC_STATS(sock_net(sk), mib_idx);
1877 			if (i == 0)
1878 				first_sack_index = -1;
1879 			continue;
1880 		}
1881 
1882 		/* Ignore very old stuff early */
1883 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1884 			if (i == 0)
1885 				first_sack_index = -1;
1886 			continue;
1887 		}
1888 
1889 		used_sacks++;
1890 	}
1891 
1892 	/* order SACK blocks to allow in order walk of the retrans queue */
1893 	for (i = used_sacks - 1; i > 0; i--) {
1894 		for (j = 0; j < i; j++) {
1895 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1896 				swap(sp[j], sp[j + 1]);
1897 
1898 				/* Track where the first SACK block goes to */
1899 				if (j == first_sack_index)
1900 					first_sack_index = j + 1;
1901 			}
1902 		}
1903 	}
1904 
1905 	state->mss_now = tcp_current_mss(sk);
1906 	skb = NULL;
1907 	i = 0;
1908 
1909 	if (!tp->sacked_out) {
1910 		/* It's already past, so skip checking against it */
1911 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1912 	} else {
1913 		cache = tp->recv_sack_cache;
1914 		/* Skip empty blocks in at head of the cache */
1915 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1916 		       !cache->end_seq)
1917 			cache++;
1918 	}
1919 
1920 	while (i < used_sacks) {
1921 		u32 start_seq = sp[i].start_seq;
1922 		u32 end_seq = sp[i].end_seq;
1923 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1924 		struct tcp_sack_block *next_dup = NULL;
1925 
1926 		if (found_dup_sack && ((i + 1) == first_sack_index))
1927 			next_dup = &sp[i + 1];
1928 
1929 		/* Skip too early cached blocks */
1930 		while (tcp_sack_cache_ok(tp, cache) &&
1931 		       !before(start_seq, cache->end_seq))
1932 			cache++;
1933 
1934 		/* Can skip some work by looking recv_sack_cache? */
1935 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1936 		    after(end_seq, cache->start_seq)) {
1937 
1938 			/* Head todo? */
1939 			if (before(start_seq, cache->start_seq)) {
1940 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1941 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1942 						       state,
1943 						       start_seq,
1944 						       cache->start_seq,
1945 						       dup_sack);
1946 			}
1947 
1948 			/* Rest of the block already fully processed? */
1949 			if (!after(end_seq, cache->end_seq))
1950 				goto advance_sp;
1951 
1952 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1953 						       state,
1954 						       cache->end_seq);
1955 
1956 			/* ...tail remains todo... */
1957 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1958 				/* ...but better entrypoint exists! */
1959 				skb = tcp_highest_sack(sk);
1960 				if (!skb)
1961 					break;
1962 				cache++;
1963 				goto walk;
1964 			}
1965 
1966 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1967 			/* Check overlap against next cached too (past this one already) */
1968 			cache++;
1969 			continue;
1970 		}
1971 
1972 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1973 			skb = tcp_highest_sack(sk);
1974 			if (!skb)
1975 				break;
1976 		}
1977 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1978 
1979 walk:
1980 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1981 				       start_seq, end_seq, dup_sack);
1982 
1983 advance_sp:
1984 		i++;
1985 	}
1986 
1987 	/* Clear the head of the cache sack blocks so we can skip it next time */
1988 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1989 		tp->recv_sack_cache[i].start_seq = 0;
1990 		tp->recv_sack_cache[i].end_seq = 0;
1991 	}
1992 	for (j = 0; j < used_sacks; j++)
1993 		tp->recv_sack_cache[i++] = sp[j];
1994 
1995 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1996 		tcp_check_sack_reordering(sk, state->reord, 0);
1997 
1998 	tcp_verify_left_out(tp);
1999 out:
2000 
2001 #if FASTRETRANS_DEBUG > 0
2002 	WARN_ON((int)tp->sacked_out < 0);
2003 	WARN_ON((int)tp->lost_out < 0);
2004 	WARN_ON((int)tp->retrans_out < 0);
2005 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2006 #endif
2007 	return state->flag;
2008 }
2009 
2010 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2011  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2012  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2013 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2014 {
2015 	u32 holes;
2016 
2017 	holes = max(tp->lost_out, 1U);
2018 	holes = min(holes, tp->packets_out);
2019 
2020 	if ((tp->sacked_out + holes) > tp->packets_out) {
2021 		tp->sacked_out = tp->packets_out - holes;
2022 		return true;
2023 	}
2024 	return false;
2025 }
2026 
2027 /* If we receive more dupacks than we expected counting segments
2028  * in assumption of absent reordering, interpret this as reordering.
2029  * The only another reason could be bug in receiver TCP.
2030  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2031 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2032 {
2033 	struct tcp_sock *tp = tcp_sk(sk);
2034 
2035 	if (!tcp_limit_reno_sacked(tp))
2036 		return;
2037 
2038 	tp->reordering = min_t(u32, tp->packets_out + addend,
2039 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2040 	tp->reord_seen++;
2041 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2042 }
2043 
2044 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2045 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2046 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2047 {
2048 	if (num_dupack) {
2049 		struct tcp_sock *tp = tcp_sk(sk);
2050 		u32 prior_sacked = tp->sacked_out;
2051 		s32 delivered;
2052 
2053 		tp->sacked_out += num_dupack;
2054 		tcp_check_reno_reordering(sk, 0);
2055 		delivered = tp->sacked_out - prior_sacked;
2056 		if (delivered > 0)
2057 			tcp_count_delivered(tp, delivered, ece_ack);
2058 		tcp_verify_left_out(tp);
2059 	}
2060 }
2061 
2062 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2063 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2064 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2065 {
2066 	struct tcp_sock *tp = tcp_sk(sk);
2067 
2068 	if (acked > 0) {
2069 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2070 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2071 				    ece_ack);
2072 		if (acked - 1 >= tp->sacked_out)
2073 			tp->sacked_out = 0;
2074 		else
2075 			tp->sacked_out -= acked - 1;
2076 	}
2077 	tcp_check_reno_reordering(sk, acked);
2078 	tcp_verify_left_out(tp);
2079 }
2080 
tcp_reset_reno_sack(struct tcp_sock * tp)2081 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2082 {
2083 	tp->sacked_out = 0;
2084 }
2085 
tcp_clear_retrans(struct tcp_sock * tp)2086 void tcp_clear_retrans(struct tcp_sock *tp)
2087 {
2088 	tp->retrans_out = 0;
2089 	tp->lost_out = 0;
2090 	tp->undo_marker = 0;
2091 	tp->undo_retrans = -1;
2092 	tp->sacked_out = 0;
2093 }
2094 
tcp_init_undo(struct tcp_sock * tp)2095 static inline void tcp_init_undo(struct tcp_sock *tp)
2096 {
2097 	tp->undo_marker = tp->snd_una;
2098 	/* Retransmission still in flight may cause DSACKs later. */
2099 	tp->undo_retrans = tp->retrans_out ? : -1;
2100 }
2101 
tcp_is_rack(const struct sock * sk)2102 static bool tcp_is_rack(const struct sock *sk)
2103 {
2104 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2105 		TCP_RACK_LOSS_DETECTION;
2106 }
2107 
2108 /* If we detect SACK reneging, forget all SACK information
2109  * and reset tags completely, otherwise preserve SACKs. If receiver
2110  * dropped its ofo queue, we will know this due to reneging detection.
2111  */
tcp_timeout_mark_lost(struct sock * sk)2112 static void tcp_timeout_mark_lost(struct sock *sk)
2113 {
2114 	struct tcp_sock *tp = tcp_sk(sk);
2115 	struct sk_buff *skb, *head;
2116 	bool is_reneg;			/* is receiver reneging on SACKs? */
2117 
2118 	head = tcp_rtx_queue_head(sk);
2119 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2120 	if (is_reneg) {
2121 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2122 		tp->sacked_out = 0;
2123 		/* Mark SACK reneging until we recover from this loss event. */
2124 		tp->is_sack_reneg = 1;
2125 	} else if (tcp_is_reno(tp)) {
2126 		tcp_reset_reno_sack(tp);
2127 	}
2128 
2129 	skb = head;
2130 	skb_rbtree_walk_from(skb) {
2131 		if (is_reneg)
2132 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2133 		else if (tcp_is_rack(sk) && skb != head &&
2134 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2135 			continue; /* Don't mark recently sent ones lost yet */
2136 		tcp_mark_skb_lost(sk, skb);
2137 	}
2138 	tcp_verify_left_out(tp);
2139 	tcp_clear_all_retrans_hints(tp);
2140 }
2141 
2142 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2143 void tcp_enter_loss(struct sock *sk)
2144 {
2145 	const struct inet_connection_sock *icsk = inet_csk(sk);
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 	struct net *net = sock_net(sk);
2148 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2149 	u8 reordering;
2150 
2151 	tcp_timeout_mark_lost(sk);
2152 
2153 	/* Reduce ssthresh if it has not yet been made inside this window. */
2154 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2155 	    !after(tp->high_seq, tp->snd_una) ||
2156 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2157 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2158 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2159 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2160 		tcp_ca_event(sk, CA_EVENT_LOSS);
2161 		tcp_init_undo(tp);
2162 	}
2163 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2164 	tp->snd_cwnd_cnt   = 0;
2165 	tp->snd_cwnd_stamp = tcp_jiffies32;
2166 
2167 	/* Timeout in disordered state after receiving substantial DUPACKs
2168 	 * suggests that the degree of reordering is over-estimated.
2169 	 */
2170 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2171 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2172 	    tp->sacked_out >= reordering)
2173 		tp->reordering = min_t(unsigned int, tp->reordering,
2174 				       reordering);
2175 
2176 	tcp_set_ca_state(sk, TCP_CA_Loss);
2177 	tp->high_seq = tp->snd_nxt;
2178 	tcp_ecn_queue_cwr(tp);
2179 
2180 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2181 	 * loss recovery is underway except recurring timeout(s) on
2182 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2183 	 */
2184 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2185 		   (new_recovery || icsk->icsk_retransmits) &&
2186 		   !inet_csk(sk)->icsk_mtup.probe_size;
2187 }
2188 
2189 /* If ACK arrived pointing to a remembered SACK, it means that our
2190  * remembered SACKs do not reflect real state of receiver i.e.
2191  * receiver _host_ is heavily congested (or buggy).
2192  *
2193  * To avoid big spurious retransmission bursts due to transient SACK
2194  * scoreboard oddities that look like reneging, we give the receiver a
2195  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2196  * restore sanity to the SACK scoreboard. If the apparent reneging
2197  * persists until this RTO then we'll clear the SACK scoreboard.
2198  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2199 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2200 {
2201 	if (*ack_flag & FLAG_SACK_RENEGING &&
2202 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2203 		struct tcp_sock *tp = tcp_sk(sk);
2204 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2205 					  msecs_to_jiffies(10));
2206 
2207 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2208 					  delay, TCP_RTO_MAX);
2209 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2210 		return true;
2211 	}
2212 	return false;
2213 }
2214 
2215 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2216  * counter when SACK is enabled (without SACK, sacked_out is used for
2217  * that purpose).
2218  *
2219  * With reordering, holes may still be in flight, so RFC3517 recovery
2220  * uses pure sacked_out (total number of SACKed segments) even though
2221  * it violates the RFC that uses duplicate ACKs, often these are equal
2222  * but when e.g. out-of-window ACKs or packet duplication occurs,
2223  * they differ. Since neither occurs due to loss, TCP should really
2224  * ignore them.
2225  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2226 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2227 {
2228 	return tp->sacked_out + 1;
2229 }
2230 
2231 /* Linux NewReno/SACK/ECN state machine.
2232  * --------------------------------------
2233  *
2234  * "Open"	Normal state, no dubious events, fast path.
2235  * "Disorder"   In all the respects it is "Open",
2236  *		but requires a bit more attention. It is entered when
2237  *		we see some SACKs or dupacks. It is split of "Open"
2238  *		mainly to move some processing from fast path to slow one.
2239  * "CWR"	CWND was reduced due to some Congestion Notification event.
2240  *		It can be ECN, ICMP source quench, local device congestion.
2241  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2242  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2243  *
2244  * tcp_fastretrans_alert() is entered:
2245  * - each incoming ACK, if state is not "Open"
2246  * - when arrived ACK is unusual, namely:
2247  *	* SACK
2248  *	* Duplicate ACK.
2249  *	* ECN ECE.
2250  *
2251  * Counting packets in flight is pretty simple.
2252  *
2253  *	in_flight = packets_out - left_out + retrans_out
2254  *
2255  *	packets_out is SND.NXT-SND.UNA counted in packets.
2256  *
2257  *	retrans_out is number of retransmitted segments.
2258  *
2259  *	left_out is number of segments left network, but not ACKed yet.
2260  *
2261  *		left_out = sacked_out + lost_out
2262  *
2263  *     sacked_out: Packets, which arrived to receiver out of order
2264  *		   and hence not ACKed. With SACKs this number is simply
2265  *		   amount of SACKed data. Even without SACKs
2266  *		   it is easy to give pretty reliable estimate of this number,
2267  *		   counting duplicate ACKs.
2268  *
2269  *       lost_out: Packets lost by network. TCP has no explicit
2270  *		   "loss notification" feedback from network (for now).
2271  *		   It means that this number can be only _guessed_.
2272  *		   Actually, it is the heuristics to predict lossage that
2273  *		   distinguishes different algorithms.
2274  *
2275  *	F.e. after RTO, when all the queue is considered as lost,
2276  *	lost_out = packets_out and in_flight = retrans_out.
2277  *
2278  *		Essentially, we have now a few algorithms detecting
2279  *		lost packets.
2280  *
2281  *		If the receiver supports SACK:
2282  *
2283  *		RFC6675/3517: It is the conventional algorithm. A packet is
2284  *		considered lost if the number of higher sequence packets
2285  *		SACKed is greater than or equal the DUPACK thoreshold
2286  *		(reordering). This is implemented in tcp_mark_head_lost and
2287  *		tcp_update_scoreboard.
2288  *
2289  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2290  *		(2017-) that checks timing instead of counting DUPACKs.
2291  *		Essentially a packet is considered lost if it's not S/ACKed
2292  *		after RTT + reordering_window, where both metrics are
2293  *		dynamically measured and adjusted. This is implemented in
2294  *		tcp_rack_mark_lost.
2295  *
2296  *		If the receiver does not support SACK:
2297  *
2298  *		NewReno (RFC6582): in Recovery we assume that one segment
2299  *		is lost (classic Reno). While we are in Recovery and
2300  *		a partial ACK arrives, we assume that one more packet
2301  *		is lost (NewReno). This heuristics are the same in NewReno
2302  *		and SACK.
2303  *
2304  * Really tricky (and requiring careful tuning) part of algorithm
2305  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2306  * The first determines the moment _when_ we should reduce CWND and,
2307  * hence, slow down forward transmission. In fact, it determines the moment
2308  * when we decide that hole is caused by loss, rather than by a reorder.
2309  *
2310  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2311  * holes, caused by lost packets.
2312  *
2313  * And the most logically complicated part of algorithm is undo
2314  * heuristics. We detect false retransmits due to both too early
2315  * fast retransmit (reordering) and underestimated RTO, analyzing
2316  * timestamps and D-SACKs. When we detect that some segments were
2317  * retransmitted by mistake and CWND reduction was wrong, we undo
2318  * window reduction and abort recovery phase. This logic is hidden
2319  * inside several functions named tcp_try_undo_<something>.
2320  */
2321 
2322 /* This function decides, when we should leave Disordered state
2323  * and enter Recovery phase, reducing congestion window.
2324  *
2325  * Main question: may we further continue forward transmission
2326  * with the same cwnd?
2327  */
tcp_time_to_recover(struct sock * sk,int flag)2328 static bool tcp_time_to_recover(struct sock *sk, int flag)
2329 {
2330 	struct tcp_sock *tp = tcp_sk(sk);
2331 
2332 	/* Trick#1: The loss is proven. */
2333 	if (tp->lost_out)
2334 		return true;
2335 
2336 	/* Not-A-Trick#2 : Classic rule... */
2337 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2338 		return true;
2339 
2340 	return false;
2341 }
2342 
2343 /* Detect loss in event "A" above by marking head of queue up as lost.
2344  * For RFC3517 SACK, a segment is considered lost if it
2345  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2346  * the maximum SACKed segments to pass before reaching this limit.
2347  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2348 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2349 {
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 	struct sk_buff *skb;
2352 	int cnt;
2353 	/* Use SACK to deduce losses of new sequences sent during recovery */
2354 	const u32 loss_high = tp->snd_nxt;
2355 
2356 	WARN_ON(packets > tp->packets_out);
2357 	skb = tp->lost_skb_hint;
2358 	if (skb) {
2359 		/* Head already handled? */
2360 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2361 			return;
2362 		cnt = tp->lost_cnt_hint;
2363 	} else {
2364 		skb = tcp_rtx_queue_head(sk);
2365 		cnt = 0;
2366 	}
2367 
2368 	skb_rbtree_walk_from(skb) {
2369 		/* TODO: do this better */
2370 		/* this is not the most efficient way to do this... */
2371 		tp->lost_skb_hint = skb;
2372 		tp->lost_cnt_hint = cnt;
2373 
2374 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2375 			break;
2376 
2377 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2378 			cnt += tcp_skb_pcount(skb);
2379 
2380 		if (cnt > packets)
2381 			break;
2382 
2383 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2384 			tcp_mark_skb_lost(sk, skb);
2385 
2386 		if (mark_head)
2387 			break;
2388 	}
2389 	tcp_verify_left_out(tp);
2390 }
2391 
2392 /* Account newly detected lost packet(s) */
2393 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2394 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2395 {
2396 	struct tcp_sock *tp = tcp_sk(sk);
2397 
2398 	if (tcp_is_sack(tp)) {
2399 		int sacked_upto = tp->sacked_out - tp->reordering;
2400 		if (sacked_upto >= 0)
2401 			tcp_mark_head_lost(sk, sacked_upto, 0);
2402 		else if (fast_rexmit)
2403 			tcp_mark_head_lost(sk, 1, 1);
2404 	}
2405 }
2406 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2407 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2408 {
2409 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2410 	       before(tp->rx_opt.rcv_tsecr, when);
2411 }
2412 
2413 /* skb is spurious retransmitted if the returned timestamp echo
2414  * reply is prior to the skb transmission time
2415  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2416 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2417 				     const struct sk_buff *skb)
2418 {
2419 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2420 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2421 }
2422 
2423 /* Nothing was retransmitted or returned timestamp is less
2424  * than timestamp of the first retransmission.
2425  */
tcp_packet_delayed(const struct tcp_sock * tp)2426 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2427 {
2428 	return tp->retrans_stamp &&
2429 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2430 }
2431 
2432 /* Undo procedures. */
2433 
2434 /* We can clear retrans_stamp when there are no retransmissions in the
2435  * window. It would seem that it is trivially available for us in
2436  * tp->retrans_out, however, that kind of assumptions doesn't consider
2437  * what will happen if errors occur when sending retransmission for the
2438  * second time. ...It could the that such segment has only
2439  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2440  * the head skb is enough except for some reneging corner cases that
2441  * are not worth the effort.
2442  *
2443  * Main reason for all this complexity is the fact that connection dying
2444  * time now depends on the validity of the retrans_stamp, in particular,
2445  * that successive retransmissions of a segment must not advance
2446  * retrans_stamp under any conditions.
2447  */
tcp_any_retrans_done(const struct sock * sk)2448 static bool tcp_any_retrans_done(const struct sock *sk)
2449 {
2450 	const struct tcp_sock *tp = tcp_sk(sk);
2451 	struct sk_buff *skb;
2452 
2453 	if (tp->retrans_out)
2454 		return true;
2455 
2456 	skb = tcp_rtx_queue_head(sk);
2457 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2458 		return true;
2459 
2460 	return false;
2461 }
2462 
DBGUNDO(struct sock * sk,const char * msg)2463 static void DBGUNDO(struct sock *sk, const char *msg)
2464 {
2465 #if FASTRETRANS_DEBUG > 1
2466 	struct tcp_sock *tp = tcp_sk(sk);
2467 	struct inet_sock *inet = inet_sk(sk);
2468 
2469 	if (sk->sk_family == AF_INET) {
2470 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2471 			 msg,
2472 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2473 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2474 			 tp->snd_ssthresh, tp->prior_ssthresh,
2475 			 tp->packets_out);
2476 	}
2477 #if IS_ENABLED(CONFIG_IPV6)
2478 	else if (sk->sk_family == AF_INET6) {
2479 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2480 			 msg,
2481 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2482 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2483 			 tp->snd_ssthresh, tp->prior_ssthresh,
2484 			 tp->packets_out);
2485 	}
2486 #endif
2487 #endif
2488 }
2489 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2490 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 
2494 	if (unmark_loss) {
2495 		struct sk_buff *skb;
2496 
2497 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2498 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2499 		}
2500 		tp->lost_out = 0;
2501 		tcp_clear_all_retrans_hints(tp);
2502 	}
2503 
2504 	if (tp->prior_ssthresh) {
2505 		const struct inet_connection_sock *icsk = inet_csk(sk);
2506 
2507 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2508 
2509 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2510 			tp->snd_ssthresh = tp->prior_ssthresh;
2511 			tcp_ecn_withdraw_cwr(tp);
2512 		}
2513 	}
2514 	tp->snd_cwnd_stamp = tcp_jiffies32;
2515 	tp->undo_marker = 0;
2516 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2517 }
2518 
tcp_may_undo(const struct tcp_sock * tp)2519 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2520 {
2521 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2522 }
2523 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2524 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 
2528 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2529 		/* Hold old state until something *above* high_seq
2530 		 * is ACKed. For Reno it is MUST to prevent false
2531 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2532 		if (!tcp_any_retrans_done(sk))
2533 			tp->retrans_stamp = 0;
2534 		return true;
2535 	}
2536 	return false;
2537 }
2538 
2539 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2540 static bool tcp_try_undo_recovery(struct sock *sk)
2541 {
2542 	struct tcp_sock *tp = tcp_sk(sk);
2543 
2544 	if (tcp_may_undo(tp)) {
2545 		int mib_idx;
2546 
2547 		/* Happy end! We did not retransmit anything
2548 		 * or our original transmission succeeded.
2549 		 */
2550 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2551 		tcp_undo_cwnd_reduction(sk, false);
2552 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2553 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2554 		else
2555 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2556 
2557 		NET_INC_STATS(sock_net(sk), mib_idx);
2558 	} else if (tp->rack.reo_wnd_persist) {
2559 		tp->rack.reo_wnd_persist--;
2560 	}
2561 	if (tcp_is_non_sack_preventing_reopen(sk))
2562 		return true;
2563 	tcp_set_ca_state(sk, TCP_CA_Open);
2564 	tp->is_sack_reneg = 0;
2565 	return false;
2566 }
2567 
2568 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2569 static bool tcp_try_undo_dsack(struct sock *sk)
2570 {
2571 	struct tcp_sock *tp = tcp_sk(sk);
2572 
2573 	if (tp->undo_marker && !tp->undo_retrans) {
2574 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2575 					       tp->rack.reo_wnd_persist + 1);
2576 		DBGUNDO(sk, "D-SACK");
2577 		tcp_undo_cwnd_reduction(sk, false);
2578 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2579 		return true;
2580 	}
2581 	return false;
2582 }
2583 
2584 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2585 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2586 {
2587 	struct tcp_sock *tp = tcp_sk(sk);
2588 
2589 	if (frto_undo || tcp_may_undo(tp)) {
2590 		tcp_undo_cwnd_reduction(sk, true);
2591 
2592 		DBGUNDO(sk, "partial loss");
2593 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2594 		if (frto_undo)
2595 			NET_INC_STATS(sock_net(sk),
2596 					LINUX_MIB_TCPSPURIOUSRTOS);
2597 		inet_csk(sk)->icsk_retransmits = 0;
2598 		if (tcp_is_non_sack_preventing_reopen(sk))
2599 			return true;
2600 		if (frto_undo || tcp_is_sack(tp)) {
2601 			tcp_set_ca_state(sk, TCP_CA_Open);
2602 			tp->is_sack_reneg = 0;
2603 		}
2604 		return true;
2605 	}
2606 	return false;
2607 }
2608 
2609 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2610  * It computes the number of packets to send (sndcnt) based on packets newly
2611  * delivered:
2612  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2613  *	cwnd reductions across a full RTT.
2614  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2615  *      But when SND_UNA is acked without further losses,
2616  *      slow starts cwnd up to ssthresh to speed up the recovery.
2617  */
tcp_init_cwnd_reduction(struct sock * sk)2618 static void tcp_init_cwnd_reduction(struct sock *sk)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 
2622 	tp->high_seq = tp->snd_nxt;
2623 	tp->tlp_high_seq = 0;
2624 	tp->snd_cwnd_cnt = 0;
2625 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2626 	tp->prr_delivered = 0;
2627 	tp->prr_out = 0;
2628 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2629 	tcp_ecn_queue_cwr(tp);
2630 }
2631 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2632 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2633 {
2634 	struct tcp_sock *tp = tcp_sk(sk);
2635 	int sndcnt = 0;
2636 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2637 
2638 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2639 		return;
2640 
2641 	tp->prr_delivered += newly_acked_sacked;
2642 	if (delta < 0) {
2643 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2644 			       tp->prior_cwnd - 1;
2645 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2646 	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2647 		sndcnt = min_t(int, delta,
2648 			       max_t(int, tp->prr_delivered - tp->prr_out,
2649 				     newly_acked_sacked) + 1);
2650 	} else {
2651 		sndcnt = min(delta, newly_acked_sacked);
2652 	}
2653 	/* Force a fast retransmit upon entering fast recovery */
2654 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2655 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2656 }
2657 
tcp_end_cwnd_reduction(struct sock * sk)2658 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 
2662 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2663 		return;
2664 
2665 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2666 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2667 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2668 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2669 		tp->snd_cwnd_stamp = tcp_jiffies32;
2670 	}
2671 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2672 }
2673 
2674 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2675 void tcp_enter_cwr(struct sock *sk)
2676 {
2677 	struct tcp_sock *tp = tcp_sk(sk);
2678 
2679 	tp->prior_ssthresh = 0;
2680 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2681 		tp->undo_marker = 0;
2682 		tcp_init_cwnd_reduction(sk);
2683 		tcp_set_ca_state(sk, TCP_CA_CWR);
2684 	}
2685 }
2686 EXPORT_SYMBOL(tcp_enter_cwr);
2687 
tcp_try_keep_open(struct sock * sk)2688 static void tcp_try_keep_open(struct sock *sk)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 	int state = TCP_CA_Open;
2692 
2693 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2694 		state = TCP_CA_Disorder;
2695 
2696 	if (inet_csk(sk)->icsk_ca_state != state) {
2697 		tcp_set_ca_state(sk, state);
2698 		tp->high_seq = tp->snd_nxt;
2699 	}
2700 }
2701 
tcp_try_to_open(struct sock * sk,int flag)2702 static void tcp_try_to_open(struct sock *sk, int flag)
2703 {
2704 	struct tcp_sock *tp = tcp_sk(sk);
2705 
2706 	tcp_verify_left_out(tp);
2707 
2708 	if (!tcp_any_retrans_done(sk))
2709 		tp->retrans_stamp = 0;
2710 
2711 	if (flag & FLAG_ECE)
2712 		tcp_enter_cwr(sk);
2713 
2714 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2715 		tcp_try_keep_open(sk);
2716 	}
2717 }
2718 
tcp_mtup_probe_failed(struct sock * sk)2719 static void tcp_mtup_probe_failed(struct sock *sk)
2720 {
2721 	struct inet_connection_sock *icsk = inet_csk(sk);
2722 
2723 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2724 	icsk->icsk_mtup.probe_size = 0;
2725 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2726 }
2727 
tcp_mtup_probe_success(struct sock * sk)2728 static void tcp_mtup_probe_success(struct sock *sk)
2729 {
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 	struct inet_connection_sock *icsk = inet_csk(sk);
2732 	u64 val;
2733 
2734 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2735 
2736 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2737 	do_div(val, icsk->icsk_mtup.probe_size);
2738 	WARN_ON_ONCE((u32)val != val);
2739 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2740 
2741 	tp->snd_cwnd_cnt = 0;
2742 	tp->snd_cwnd_stamp = tcp_jiffies32;
2743 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2744 
2745 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2746 	icsk->icsk_mtup.probe_size = 0;
2747 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2748 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2749 }
2750 
2751 /* Do a simple retransmit without using the backoff mechanisms in
2752  * tcp_timer. This is used for path mtu discovery.
2753  * The socket is already locked here.
2754  */
tcp_simple_retransmit(struct sock * sk)2755 void tcp_simple_retransmit(struct sock *sk)
2756 {
2757 	const struct inet_connection_sock *icsk = inet_csk(sk);
2758 	struct tcp_sock *tp = tcp_sk(sk);
2759 	struct sk_buff *skb;
2760 	int mss;
2761 
2762 	/* A fastopen SYN request is stored as two separate packets within
2763 	 * the retransmit queue, this is done by tcp_send_syn_data().
2764 	 * As a result simply checking the MSS of the frames in the queue
2765 	 * will not work for the SYN packet.
2766 	 *
2767 	 * Us being here is an indication of a path MTU issue so we can
2768 	 * assume that the fastopen SYN was lost and just mark all the
2769 	 * frames in the retransmit queue as lost. We will use an MSS of
2770 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2771 	 */
2772 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2773 		mss = -1;
2774 	else
2775 		mss = tcp_current_mss(sk);
2776 
2777 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2778 		if (tcp_skb_seglen(skb) > mss)
2779 			tcp_mark_skb_lost(sk, skb);
2780 	}
2781 
2782 	tcp_clear_retrans_hints_partial(tp);
2783 
2784 	if (!tp->lost_out)
2785 		return;
2786 
2787 	if (tcp_is_reno(tp))
2788 		tcp_limit_reno_sacked(tp);
2789 
2790 	tcp_verify_left_out(tp);
2791 
2792 	/* Don't muck with the congestion window here.
2793 	 * Reason is that we do not increase amount of _data_
2794 	 * in network, but units changed and effective
2795 	 * cwnd/ssthresh really reduced now.
2796 	 */
2797 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2798 		tp->high_seq = tp->snd_nxt;
2799 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2800 		tp->prior_ssthresh = 0;
2801 		tp->undo_marker = 0;
2802 		tcp_set_ca_state(sk, TCP_CA_Loss);
2803 	}
2804 	tcp_xmit_retransmit_queue(sk);
2805 }
2806 EXPORT_SYMBOL(tcp_simple_retransmit);
2807 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2808 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2809 {
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 	int mib_idx;
2812 
2813 	if (tcp_is_reno(tp))
2814 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2815 	else
2816 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2817 
2818 	NET_INC_STATS(sock_net(sk), mib_idx);
2819 
2820 	tp->prior_ssthresh = 0;
2821 	tcp_init_undo(tp);
2822 
2823 	if (!tcp_in_cwnd_reduction(sk)) {
2824 		if (!ece_ack)
2825 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2826 		tcp_init_cwnd_reduction(sk);
2827 	}
2828 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2829 }
2830 
2831 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2832  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2833  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2834 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2835 			     int *rexmit)
2836 {
2837 	struct tcp_sock *tp = tcp_sk(sk);
2838 	bool recovered = !before(tp->snd_una, tp->high_seq);
2839 
2840 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2841 	    tcp_try_undo_loss(sk, false))
2842 		return;
2843 
2844 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2845 		/* Step 3.b. A timeout is spurious if not all data are
2846 		 * lost, i.e., never-retransmitted data are (s)acked.
2847 		 */
2848 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2849 		    tcp_try_undo_loss(sk, true))
2850 			return;
2851 
2852 		if (after(tp->snd_nxt, tp->high_seq)) {
2853 			if (flag & FLAG_DATA_SACKED || num_dupack)
2854 				tp->frto = 0; /* Step 3.a. loss was real */
2855 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2856 			tp->high_seq = tp->snd_nxt;
2857 			/* Step 2.b. Try send new data (but deferred until cwnd
2858 			 * is updated in tcp_ack()). Otherwise fall back to
2859 			 * the conventional recovery.
2860 			 */
2861 			if (!tcp_write_queue_empty(sk) &&
2862 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2863 				*rexmit = REXMIT_NEW;
2864 				return;
2865 			}
2866 			tp->frto = 0;
2867 		}
2868 	}
2869 
2870 	if (recovered) {
2871 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2872 		tcp_try_undo_recovery(sk);
2873 		return;
2874 	}
2875 	if (tcp_is_reno(tp)) {
2876 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2877 		 * delivered. Lower inflight to clock out (re)tranmissions.
2878 		 */
2879 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2880 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2881 		else if (flag & FLAG_SND_UNA_ADVANCED)
2882 			tcp_reset_reno_sack(tp);
2883 	}
2884 	*rexmit = REXMIT_LOST;
2885 }
2886 
tcp_force_fast_retransmit(struct sock * sk)2887 static bool tcp_force_fast_retransmit(struct sock *sk)
2888 {
2889 	struct tcp_sock *tp = tcp_sk(sk);
2890 
2891 	return after(tcp_highest_sack_seq(tp),
2892 		     tp->snd_una + tp->reordering * tp->mss_cache);
2893 }
2894 
2895 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2896 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2897 				 bool *do_lost)
2898 {
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 
2901 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2902 		/* Plain luck! Hole if filled with delayed
2903 		 * packet, rather than with a retransmit. Check reordering.
2904 		 */
2905 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2906 
2907 		/* We are getting evidence that the reordering degree is higher
2908 		 * than we realized. If there are no retransmits out then we
2909 		 * can undo. Otherwise we clock out new packets but do not
2910 		 * mark more packets lost or retransmit more.
2911 		 */
2912 		if (tp->retrans_out)
2913 			return true;
2914 
2915 		if (!tcp_any_retrans_done(sk))
2916 			tp->retrans_stamp = 0;
2917 
2918 		DBGUNDO(sk, "partial recovery");
2919 		tcp_undo_cwnd_reduction(sk, true);
2920 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2921 		tcp_try_keep_open(sk);
2922 	} else {
2923 		/* Partial ACK arrived. Force fast retransmit. */
2924 		*do_lost = tcp_force_fast_retransmit(sk);
2925 	}
2926 	return false;
2927 }
2928 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2929 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 
2933 	if (tcp_rtx_queue_empty(sk))
2934 		return;
2935 
2936 	if (unlikely(tcp_is_reno(tp))) {
2937 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2938 	} else if (tcp_is_rack(sk)) {
2939 		u32 prior_retrans = tp->retrans_out;
2940 
2941 		if (tcp_rack_mark_lost(sk))
2942 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2943 		if (prior_retrans > tp->retrans_out)
2944 			*ack_flag |= FLAG_LOST_RETRANS;
2945 	}
2946 }
2947 
2948 /* Process an event, which can update packets-in-flight not trivially.
2949  * Main goal of this function is to calculate new estimate for left_out,
2950  * taking into account both packets sitting in receiver's buffer and
2951  * packets lost by network.
2952  *
2953  * Besides that it updates the congestion state when packet loss or ECN
2954  * is detected. But it does not reduce the cwnd, it is done by the
2955  * congestion control later.
2956  *
2957  * It does _not_ decide what to send, it is made in function
2958  * tcp_xmit_retransmit_queue().
2959  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2960 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2961 				  int num_dupack, int *ack_flag, int *rexmit)
2962 {
2963 	struct inet_connection_sock *icsk = inet_csk(sk);
2964 	struct tcp_sock *tp = tcp_sk(sk);
2965 	int fast_rexmit = 0, flag = *ack_flag;
2966 	bool ece_ack = flag & FLAG_ECE;
2967 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2968 				      tcp_force_fast_retransmit(sk));
2969 
2970 	if (!tp->packets_out && tp->sacked_out)
2971 		tp->sacked_out = 0;
2972 
2973 	/* Now state machine starts.
2974 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2975 	if (ece_ack)
2976 		tp->prior_ssthresh = 0;
2977 
2978 	/* B. In all the states check for reneging SACKs. */
2979 	if (tcp_check_sack_reneging(sk, ack_flag))
2980 		return;
2981 
2982 	/* C. Check consistency of the current state. */
2983 	tcp_verify_left_out(tp);
2984 
2985 	/* D. Check state exit conditions. State can be terminated
2986 	 *    when high_seq is ACKed. */
2987 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2988 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2989 		tp->retrans_stamp = 0;
2990 	} else if (!before(tp->snd_una, tp->high_seq)) {
2991 		switch (icsk->icsk_ca_state) {
2992 		case TCP_CA_CWR:
2993 			/* CWR is to be held something *above* high_seq
2994 			 * is ACKed for CWR bit to reach receiver. */
2995 			if (tp->snd_una != tp->high_seq) {
2996 				tcp_end_cwnd_reduction(sk);
2997 				tcp_set_ca_state(sk, TCP_CA_Open);
2998 			}
2999 			break;
3000 
3001 		case TCP_CA_Recovery:
3002 			if (tcp_is_reno(tp))
3003 				tcp_reset_reno_sack(tp);
3004 			if (tcp_try_undo_recovery(sk))
3005 				return;
3006 			tcp_end_cwnd_reduction(sk);
3007 			break;
3008 		}
3009 	}
3010 
3011 	/* E. Process state. */
3012 	switch (icsk->icsk_ca_state) {
3013 	case TCP_CA_Recovery:
3014 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3015 			if (tcp_is_reno(tp))
3016 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3017 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3018 			return;
3019 
3020 		if (tcp_try_undo_dsack(sk))
3021 			tcp_try_keep_open(sk);
3022 
3023 		tcp_identify_packet_loss(sk, ack_flag);
3024 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3025 			if (!tcp_time_to_recover(sk, flag))
3026 				return;
3027 			/* Undo reverts the recovery state. If loss is evident,
3028 			 * starts a new recovery (e.g. reordering then loss);
3029 			 */
3030 			tcp_enter_recovery(sk, ece_ack);
3031 		}
3032 		break;
3033 	case TCP_CA_Loss:
3034 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3035 		tcp_identify_packet_loss(sk, ack_flag);
3036 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3037 		      (*ack_flag & FLAG_LOST_RETRANS)))
3038 			return;
3039 		/* Change state if cwnd is undone or retransmits are lost */
3040 		fallthrough;
3041 	default:
3042 		if (tcp_is_reno(tp)) {
3043 			if (flag & FLAG_SND_UNA_ADVANCED)
3044 				tcp_reset_reno_sack(tp);
3045 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3046 		}
3047 
3048 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3049 			tcp_try_undo_dsack(sk);
3050 
3051 		tcp_identify_packet_loss(sk, ack_flag);
3052 		if (!tcp_time_to_recover(sk, flag)) {
3053 			tcp_try_to_open(sk, flag);
3054 			return;
3055 		}
3056 
3057 		/* MTU probe failure: don't reduce cwnd */
3058 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3059 		    icsk->icsk_mtup.probe_size &&
3060 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3061 			tcp_mtup_probe_failed(sk);
3062 			/* Restores the reduction we did in tcp_mtup_probe() */
3063 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3064 			tcp_simple_retransmit(sk);
3065 			return;
3066 		}
3067 
3068 		/* Otherwise enter Recovery state */
3069 		tcp_enter_recovery(sk, ece_ack);
3070 		fast_rexmit = 1;
3071 	}
3072 
3073 	if (!tcp_is_rack(sk) && do_lost)
3074 		tcp_update_scoreboard(sk, fast_rexmit);
3075 	*rexmit = REXMIT_LOST;
3076 }
3077 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3078 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3079 {
3080 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3081 	struct tcp_sock *tp = tcp_sk(sk);
3082 
3083 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3084 		/* If the remote keeps returning delayed ACKs, eventually
3085 		 * the min filter would pick it up and overestimate the
3086 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3087 		 */
3088 		return;
3089 	}
3090 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3091 			   rtt_us ? : jiffies_to_usecs(1));
3092 }
3093 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3094 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3095 			       long seq_rtt_us, long sack_rtt_us,
3096 			       long ca_rtt_us, struct rate_sample *rs)
3097 {
3098 	const struct tcp_sock *tp = tcp_sk(sk);
3099 
3100 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3101 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3102 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3103 	 * is acked (RFC6298).
3104 	 */
3105 	if (seq_rtt_us < 0)
3106 		seq_rtt_us = sack_rtt_us;
3107 
3108 	/* RTTM Rule: A TSecr value received in a segment is used to
3109 	 * update the averaged RTT measurement only if the segment
3110 	 * acknowledges some new data, i.e., only if it advances the
3111 	 * left edge of the send window.
3112 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3113 	 */
3114 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3115 	    flag & FLAG_ACKED) {
3116 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3117 
3118 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3119 			if (!delta)
3120 				delta = 1;
3121 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3122 			ca_rtt_us = seq_rtt_us;
3123 		}
3124 	}
3125 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3126 	if (seq_rtt_us < 0)
3127 		return false;
3128 
3129 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3130 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3131 	 * values will be skipped with the seq_rtt_us < 0 check above.
3132 	 */
3133 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3134 	tcp_rtt_estimator(sk, seq_rtt_us);
3135 	tcp_set_rto(sk);
3136 
3137 	/* RFC6298: only reset backoff on valid RTT measurement. */
3138 	inet_csk(sk)->icsk_backoff = 0;
3139 	return true;
3140 }
3141 
3142 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3143 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3144 {
3145 	struct rate_sample rs;
3146 	long rtt_us = -1L;
3147 
3148 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3149 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3150 
3151 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3152 }
3153 
3154 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3155 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3156 {
3157 	const struct inet_connection_sock *icsk = inet_csk(sk);
3158 
3159 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3160 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3161 }
3162 
3163 /* Restart timer after forward progress on connection.
3164  * RFC2988 recommends to restart timer to now+rto.
3165  */
tcp_rearm_rto(struct sock * sk)3166 void tcp_rearm_rto(struct sock *sk)
3167 {
3168 	const struct inet_connection_sock *icsk = inet_csk(sk);
3169 	struct tcp_sock *tp = tcp_sk(sk);
3170 
3171 	/* If the retrans timer is currently being used by Fast Open
3172 	 * for SYN-ACK retrans purpose, stay put.
3173 	 */
3174 	if (rcu_access_pointer(tp->fastopen_rsk))
3175 		return;
3176 
3177 	if (!tp->packets_out) {
3178 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3179 	} else {
3180 		u32 rto = inet_csk(sk)->icsk_rto;
3181 		/* Offset the time elapsed after installing regular RTO */
3182 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3183 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3184 			s64 delta_us = tcp_rto_delta_us(sk);
3185 			/* delta_us may not be positive if the socket is locked
3186 			 * when the retrans timer fires and is rescheduled.
3187 			 */
3188 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3189 		}
3190 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3191 				     TCP_RTO_MAX);
3192 	}
3193 }
3194 
3195 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3196 static void tcp_set_xmit_timer(struct sock *sk)
3197 {
3198 	if (!tcp_schedule_loss_probe(sk, true))
3199 		tcp_rearm_rto(sk);
3200 }
3201 
3202 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3203 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3204 {
3205 	struct tcp_sock *tp = tcp_sk(sk);
3206 	u32 packets_acked;
3207 
3208 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3209 
3210 	packets_acked = tcp_skb_pcount(skb);
3211 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3212 		return 0;
3213 	packets_acked -= tcp_skb_pcount(skb);
3214 
3215 	if (packets_acked) {
3216 		BUG_ON(tcp_skb_pcount(skb) == 0);
3217 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3218 	}
3219 
3220 	return packets_acked;
3221 }
3222 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3223 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3224 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3225 {
3226 	const struct skb_shared_info *shinfo;
3227 
3228 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3229 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3230 		return;
3231 
3232 	shinfo = skb_shinfo(skb);
3233 	if (!before(shinfo->tskey, prior_snd_una) &&
3234 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3235 		tcp_skb_tsorted_save(skb) {
3236 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3237 		} tcp_skb_tsorted_restore(skb);
3238 	}
3239 }
3240 
3241 /* Remove acknowledged frames from the retransmission queue. If our packet
3242  * is before the ack sequence we can discard it as it's confirmed to have
3243  * arrived at the other end.
3244  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3245 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3246 			       u32 prior_fack, u32 prior_snd_una,
3247 			       struct tcp_sacktag_state *sack, bool ece_ack)
3248 {
3249 	const struct inet_connection_sock *icsk = inet_csk(sk);
3250 	u64 first_ackt, last_ackt;
3251 	struct tcp_sock *tp = tcp_sk(sk);
3252 	u32 prior_sacked = tp->sacked_out;
3253 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3254 	struct sk_buff *skb, *next;
3255 	bool fully_acked = true;
3256 	long sack_rtt_us = -1L;
3257 	long seq_rtt_us = -1L;
3258 	long ca_rtt_us = -1L;
3259 	u32 pkts_acked = 0;
3260 	u32 last_in_flight = 0;
3261 	bool rtt_update;
3262 	int flag = 0;
3263 
3264 	first_ackt = 0;
3265 
3266 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3267 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3268 		const u32 start_seq = scb->seq;
3269 		u8 sacked = scb->sacked;
3270 		u32 acked_pcount;
3271 
3272 		/* Determine how many packets and what bytes were acked, tso and else */
3273 		if (after(scb->end_seq, tp->snd_una)) {
3274 			if (tcp_skb_pcount(skb) == 1 ||
3275 			    !after(tp->snd_una, scb->seq))
3276 				break;
3277 
3278 			acked_pcount = tcp_tso_acked(sk, skb);
3279 			if (!acked_pcount)
3280 				break;
3281 			fully_acked = false;
3282 		} else {
3283 			acked_pcount = tcp_skb_pcount(skb);
3284 		}
3285 
3286 		if (unlikely(sacked & TCPCB_RETRANS)) {
3287 			if (sacked & TCPCB_SACKED_RETRANS)
3288 				tp->retrans_out -= acked_pcount;
3289 			flag |= FLAG_RETRANS_DATA_ACKED;
3290 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3291 			last_ackt = tcp_skb_timestamp_us(skb);
3292 			WARN_ON_ONCE(last_ackt == 0);
3293 			if (!first_ackt)
3294 				first_ackt = last_ackt;
3295 
3296 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3297 			if (before(start_seq, reord))
3298 				reord = start_seq;
3299 			if (!after(scb->end_seq, tp->high_seq))
3300 				flag |= FLAG_ORIG_SACK_ACKED;
3301 		}
3302 
3303 		if (sacked & TCPCB_SACKED_ACKED) {
3304 			tp->sacked_out -= acked_pcount;
3305 		} else if (tcp_is_sack(tp)) {
3306 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3307 			if (!tcp_skb_spurious_retrans(tp, skb))
3308 				tcp_rack_advance(tp, sacked, scb->end_seq,
3309 						 tcp_skb_timestamp_us(skb));
3310 		}
3311 		if (sacked & TCPCB_LOST)
3312 			tp->lost_out -= acked_pcount;
3313 
3314 		tp->packets_out -= acked_pcount;
3315 		pkts_acked += acked_pcount;
3316 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3317 
3318 		/* Initial outgoing SYN's get put onto the write_queue
3319 		 * just like anything else we transmit.  It is not
3320 		 * true data, and if we misinform our callers that
3321 		 * this ACK acks real data, we will erroneously exit
3322 		 * connection startup slow start one packet too
3323 		 * quickly.  This is severely frowned upon behavior.
3324 		 */
3325 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3326 			flag |= FLAG_DATA_ACKED;
3327 		} else {
3328 			flag |= FLAG_SYN_ACKED;
3329 			tp->retrans_stamp = 0;
3330 		}
3331 
3332 		if (!fully_acked)
3333 			break;
3334 
3335 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3336 
3337 		next = skb_rb_next(skb);
3338 		if (unlikely(skb == tp->retransmit_skb_hint))
3339 			tp->retransmit_skb_hint = NULL;
3340 		if (unlikely(skb == tp->lost_skb_hint))
3341 			tp->lost_skb_hint = NULL;
3342 		tcp_highest_sack_replace(sk, skb, next);
3343 		tcp_rtx_queue_unlink_and_free(skb, sk);
3344 	}
3345 
3346 	if (!skb)
3347 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3348 
3349 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3350 		tp->snd_up = tp->snd_una;
3351 
3352 	if (skb) {
3353 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3354 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3355 			flag |= FLAG_SACK_RENEGING;
3356 	}
3357 
3358 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3359 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3360 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3361 
3362 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3363 		    last_in_flight && !prior_sacked && fully_acked &&
3364 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3365 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3366 			/* Conservatively mark a delayed ACK. It's typically
3367 			 * from a lone runt packet over the round trip to
3368 			 * a receiver w/o out-of-order or CE events.
3369 			 */
3370 			flag |= FLAG_ACK_MAYBE_DELAYED;
3371 		}
3372 	}
3373 	if (sack->first_sackt) {
3374 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3375 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3376 	}
3377 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3378 					ca_rtt_us, sack->rate);
3379 
3380 	if (flag & FLAG_ACKED) {
3381 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3382 		if (unlikely(icsk->icsk_mtup.probe_size &&
3383 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3384 			tcp_mtup_probe_success(sk);
3385 		}
3386 
3387 		if (tcp_is_reno(tp)) {
3388 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3389 
3390 			/* If any of the cumulatively ACKed segments was
3391 			 * retransmitted, non-SACK case cannot confirm that
3392 			 * progress was due to original transmission due to
3393 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3394 			 * the packets may have been never retransmitted.
3395 			 */
3396 			if (flag & FLAG_RETRANS_DATA_ACKED)
3397 				flag &= ~FLAG_ORIG_SACK_ACKED;
3398 		} else {
3399 			int delta;
3400 
3401 			/* Non-retransmitted hole got filled? That's reordering */
3402 			if (before(reord, prior_fack))
3403 				tcp_check_sack_reordering(sk, reord, 0);
3404 
3405 			delta = prior_sacked - tp->sacked_out;
3406 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3407 		}
3408 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3409 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3410 						    tcp_skb_timestamp_us(skb))) {
3411 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3412 		 * after when the head was last (re)transmitted. Otherwise the
3413 		 * timeout may continue to extend in loss recovery.
3414 		 */
3415 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3416 	}
3417 
3418 	if (icsk->icsk_ca_ops->pkts_acked) {
3419 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3420 					     .rtt_us = sack->rate->rtt_us,
3421 					     .in_flight = last_in_flight };
3422 
3423 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3424 	}
3425 
3426 #if FASTRETRANS_DEBUG > 0
3427 	WARN_ON((int)tp->sacked_out < 0);
3428 	WARN_ON((int)tp->lost_out < 0);
3429 	WARN_ON((int)tp->retrans_out < 0);
3430 	if (!tp->packets_out && tcp_is_sack(tp)) {
3431 		icsk = inet_csk(sk);
3432 		if (tp->lost_out) {
3433 			pr_debug("Leak l=%u %d\n",
3434 				 tp->lost_out, icsk->icsk_ca_state);
3435 			tp->lost_out = 0;
3436 		}
3437 		if (tp->sacked_out) {
3438 			pr_debug("Leak s=%u %d\n",
3439 				 tp->sacked_out, icsk->icsk_ca_state);
3440 			tp->sacked_out = 0;
3441 		}
3442 		if (tp->retrans_out) {
3443 			pr_debug("Leak r=%u %d\n",
3444 				 tp->retrans_out, icsk->icsk_ca_state);
3445 			tp->retrans_out = 0;
3446 		}
3447 	}
3448 #endif
3449 	return flag;
3450 }
3451 
tcp_ack_probe(struct sock * sk)3452 static void tcp_ack_probe(struct sock *sk)
3453 {
3454 	struct inet_connection_sock *icsk = inet_csk(sk);
3455 	struct sk_buff *head = tcp_send_head(sk);
3456 	const struct tcp_sock *tp = tcp_sk(sk);
3457 
3458 	/* Was it a usable window open? */
3459 	if (!head)
3460 		return;
3461 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3462 		icsk->icsk_backoff = 0;
3463 		icsk->icsk_probes_tstamp = 0;
3464 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3465 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3466 		 * This function is not for random using!
3467 		 */
3468 	} else {
3469 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3470 
3471 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3472 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3473 	}
3474 }
3475 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3476 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3477 {
3478 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3479 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3480 }
3481 
3482 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3483 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3484 {
3485 	/* If reordering is high then always grow cwnd whenever data is
3486 	 * delivered regardless of its ordering. Otherwise stay conservative
3487 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3488 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3489 	 * cwnd in tcp_fastretrans_alert() based on more states.
3490 	 */
3491 	if (tcp_sk(sk)->reordering >
3492 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3493 		return flag & FLAG_FORWARD_PROGRESS;
3494 
3495 	return flag & FLAG_DATA_ACKED;
3496 }
3497 
3498 /* The "ultimate" congestion control function that aims to replace the rigid
3499  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3500  * It's called toward the end of processing an ACK with precise rate
3501  * information. All transmission or retransmission are delayed afterwards.
3502  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3503 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3504 			     int flag, const struct rate_sample *rs)
3505 {
3506 	const struct inet_connection_sock *icsk = inet_csk(sk);
3507 
3508 	if (icsk->icsk_ca_ops->cong_control) {
3509 		icsk->icsk_ca_ops->cong_control(sk, rs);
3510 		return;
3511 	}
3512 
3513 	if (tcp_in_cwnd_reduction(sk)) {
3514 		/* Reduce cwnd if state mandates */
3515 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3516 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3517 		/* Advance cwnd if state allows */
3518 		tcp_cong_avoid(sk, ack, acked_sacked);
3519 	}
3520 	tcp_update_pacing_rate(sk);
3521 }
3522 
3523 /* Check that window update is acceptable.
3524  * The function assumes that snd_una<=ack<=snd_next.
3525  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3526 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3527 					const u32 ack, const u32 ack_seq,
3528 					const u32 nwin)
3529 {
3530 	return	after(ack, tp->snd_una) ||
3531 		after(ack_seq, tp->snd_wl1) ||
3532 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3533 }
3534 
3535 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3536 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3537 {
3538 	u32 delta = ack - tp->snd_una;
3539 
3540 	sock_owned_by_me((struct sock *)tp);
3541 	tp->bytes_acked += delta;
3542 	tp->snd_una = ack;
3543 }
3544 
3545 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3546 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3547 {
3548 	u32 delta = seq - tp->rcv_nxt;
3549 
3550 	sock_owned_by_me((struct sock *)tp);
3551 	tp->bytes_received += delta;
3552 	WRITE_ONCE(tp->rcv_nxt, seq);
3553 }
3554 
3555 /* Update our send window.
3556  *
3557  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3558  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3559  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3560 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3561 				 u32 ack_seq)
3562 {
3563 	struct tcp_sock *tp = tcp_sk(sk);
3564 	int flag = 0;
3565 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3566 
3567 	if (likely(!tcp_hdr(skb)->syn))
3568 		nwin <<= tp->rx_opt.snd_wscale;
3569 
3570 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3571 		flag |= FLAG_WIN_UPDATE;
3572 		tcp_update_wl(tp, ack_seq);
3573 
3574 		if (tp->snd_wnd != nwin) {
3575 			tp->snd_wnd = nwin;
3576 
3577 			/* Note, it is the only place, where
3578 			 * fast path is recovered for sending TCP.
3579 			 */
3580 			tp->pred_flags = 0;
3581 			tcp_fast_path_check(sk);
3582 
3583 			if (!tcp_write_queue_empty(sk))
3584 				tcp_slow_start_after_idle_check(sk);
3585 
3586 			if (nwin > tp->max_window) {
3587 				tp->max_window = nwin;
3588 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3589 			}
3590 		}
3591 	}
3592 
3593 	tcp_snd_una_update(tp, ack);
3594 
3595 	return flag;
3596 }
3597 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3598 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3599 				   u32 *last_oow_ack_time)
3600 {
3601 	/* Paired with the WRITE_ONCE() in this function. */
3602 	u32 val = READ_ONCE(*last_oow_ack_time);
3603 
3604 	if (val) {
3605 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3606 
3607 		if (0 <= elapsed &&
3608 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3609 			NET_INC_STATS(net, mib_idx);
3610 			return true;	/* rate-limited: don't send yet! */
3611 		}
3612 	}
3613 
3614 	/* Paired with the prior READ_ONCE() and with itself,
3615 	 * as we might be lockless.
3616 	 */
3617 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3618 
3619 	return false;	/* not rate-limited: go ahead, send dupack now! */
3620 }
3621 
3622 /* Return true if we're currently rate-limiting out-of-window ACKs and
3623  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3624  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3625  * attacks that send repeated SYNs or ACKs for the same connection. To
3626  * do this, we do not send a duplicate SYNACK or ACK if the remote
3627  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3628  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3629 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3630 			  int mib_idx, u32 *last_oow_ack_time)
3631 {
3632 	/* Data packets without SYNs are not likely part of an ACK loop. */
3633 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3634 	    !tcp_hdr(skb)->syn)
3635 		return false;
3636 
3637 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3638 }
3639 
3640 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3641 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3642 {
3643 	/* unprotected vars, we dont care of overwrites */
3644 	static u32 challenge_timestamp;
3645 	static unsigned int challenge_count;
3646 	struct tcp_sock *tp = tcp_sk(sk);
3647 	struct net *net = sock_net(sk);
3648 	u32 count, now;
3649 
3650 	/* First check our per-socket dupack rate limit. */
3651 	if (__tcp_oow_rate_limited(net,
3652 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3653 				   &tp->last_oow_ack_time))
3654 		return;
3655 
3656 	/* Then check host-wide RFC 5961 rate limit. */
3657 	now = jiffies / HZ;
3658 	if (now != READ_ONCE(challenge_timestamp)) {
3659 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3660 		u32 half = (ack_limit + 1) >> 1;
3661 
3662 		WRITE_ONCE(challenge_timestamp, now);
3663 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3664 	}
3665 	count = READ_ONCE(challenge_count);
3666 	if (count > 0) {
3667 		WRITE_ONCE(challenge_count, count - 1);
3668 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3669 		tcp_send_ack(sk);
3670 	}
3671 }
3672 
tcp_store_ts_recent(struct tcp_sock * tp)3673 static void tcp_store_ts_recent(struct tcp_sock *tp)
3674 {
3675 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3676 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3677 }
3678 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3679 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3680 {
3681 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3682 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3683 		 * extra check below makes sure this can only happen
3684 		 * for pure ACK frames.  -DaveM
3685 		 *
3686 		 * Not only, also it occurs for expired timestamps.
3687 		 */
3688 
3689 		if (tcp_paws_check(&tp->rx_opt, 0))
3690 			tcp_store_ts_recent(tp);
3691 	}
3692 }
3693 
3694 /* This routine deals with acks during a TLP episode and ends an episode by
3695  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3696  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3697 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3698 {
3699 	struct tcp_sock *tp = tcp_sk(sk);
3700 
3701 	if (before(ack, tp->tlp_high_seq))
3702 		return;
3703 
3704 	if (!tp->tlp_retrans) {
3705 		/* TLP of new data has been acknowledged */
3706 		tp->tlp_high_seq = 0;
3707 	} else if (flag & FLAG_DSACK_TLP) {
3708 		/* This DSACK means original and TLP probe arrived; no loss */
3709 		tp->tlp_high_seq = 0;
3710 	} else if (after(ack, tp->tlp_high_seq)) {
3711 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3712 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3713 		 */
3714 		tcp_init_cwnd_reduction(sk);
3715 		tcp_set_ca_state(sk, TCP_CA_CWR);
3716 		tcp_end_cwnd_reduction(sk);
3717 		tcp_try_keep_open(sk);
3718 		NET_INC_STATS(sock_net(sk),
3719 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3720 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3721 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3722 		/* Pure dupack: original and TLP probe arrived; no loss */
3723 		tp->tlp_high_seq = 0;
3724 	}
3725 }
3726 
tcp_in_ack_event(struct sock * sk,u32 flags)3727 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3728 {
3729 	const struct inet_connection_sock *icsk = inet_csk(sk);
3730 
3731 	if (icsk->icsk_ca_ops->in_ack_event)
3732 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3733 }
3734 
3735 /* Congestion control has updated the cwnd already. So if we're in
3736  * loss recovery then now we do any new sends (for FRTO) or
3737  * retransmits (for CA_Loss or CA_recovery) that make sense.
3738  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3739 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3740 {
3741 	struct tcp_sock *tp = tcp_sk(sk);
3742 
3743 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3744 		return;
3745 
3746 	if (unlikely(rexmit == REXMIT_NEW)) {
3747 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3748 					  TCP_NAGLE_OFF);
3749 		if (after(tp->snd_nxt, tp->high_seq))
3750 			return;
3751 		tp->frto = 0;
3752 	}
3753 	tcp_xmit_retransmit_queue(sk);
3754 }
3755 
3756 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3757 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3758 {
3759 	const struct net *net = sock_net(sk);
3760 	struct tcp_sock *tp = tcp_sk(sk);
3761 	u32 delivered;
3762 
3763 	delivered = tp->delivered - prior_delivered;
3764 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3765 	if (flag & FLAG_ECE)
3766 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3767 
3768 	return delivered;
3769 }
3770 
3771 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3772 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3773 {
3774 	struct inet_connection_sock *icsk = inet_csk(sk);
3775 	struct tcp_sock *tp = tcp_sk(sk);
3776 	struct tcp_sacktag_state sack_state;
3777 	struct rate_sample rs = { .prior_delivered = 0 };
3778 	u32 prior_snd_una = tp->snd_una;
3779 	bool is_sack_reneg = tp->is_sack_reneg;
3780 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3781 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3782 	int num_dupack = 0;
3783 	int prior_packets = tp->packets_out;
3784 	u32 delivered = tp->delivered;
3785 	u32 lost = tp->lost;
3786 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3787 	u32 prior_fack;
3788 
3789 	sack_state.first_sackt = 0;
3790 	sack_state.rate = &rs;
3791 	sack_state.sack_delivered = 0;
3792 
3793 	/* We very likely will need to access rtx queue. */
3794 	prefetch(sk->tcp_rtx_queue.rb_node);
3795 
3796 	/* If the ack is older than previous acks
3797 	 * then we can probably ignore it.
3798 	 */
3799 	if (before(ack, prior_snd_una)) {
3800 		u32 max_window;
3801 
3802 		/* do not accept ACK for bytes we never sent. */
3803 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3804 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3805 		if (before(ack, prior_snd_una - max_window)) {
3806 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3807 				tcp_send_challenge_ack(sk, skb);
3808 			return -1;
3809 		}
3810 		goto old_ack;
3811 	}
3812 
3813 	/* If the ack includes data we haven't sent yet, discard
3814 	 * this segment (RFC793 Section 3.9).
3815 	 */
3816 	if (after(ack, tp->snd_nxt))
3817 		return -1;
3818 
3819 	if (after(ack, prior_snd_una)) {
3820 		flag |= FLAG_SND_UNA_ADVANCED;
3821 		icsk->icsk_retransmits = 0;
3822 
3823 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3824 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3825 			if (icsk->icsk_clean_acked)
3826 				icsk->icsk_clean_acked(sk, ack);
3827 #endif
3828 	}
3829 
3830 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3831 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3832 
3833 	/* ts_recent update must be made after we are sure that the packet
3834 	 * is in window.
3835 	 */
3836 	if (flag & FLAG_UPDATE_TS_RECENT)
3837 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3838 
3839 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3840 	    FLAG_SND_UNA_ADVANCED) {
3841 		/* Window is constant, pure forward advance.
3842 		 * No more checks are required.
3843 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3844 		 */
3845 		tcp_update_wl(tp, ack_seq);
3846 		tcp_snd_una_update(tp, ack);
3847 		flag |= FLAG_WIN_UPDATE;
3848 
3849 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3850 
3851 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3852 	} else {
3853 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3854 
3855 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3856 			flag |= FLAG_DATA;
3857 		else
3858 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3859 
3860 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3861 
3862 		if (TCP_SKB_CB(skb)->sacked)
3863 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3864 							&sack_state);
3865 
3866 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3867 			flag |= FLAG_ECE;
3868 			ack_ev_flags |= CA_ACK_ECE;
3869 		}
3870 
3871 		if (sack_state.sack_delivered)
3872 			tcp_count_delivered(tp, sack_state.sack_delivered,
3873 					    flag & FLAG_ECE);
3874 
3875 		if (flag & FLAG_WIN_UPDATE)
3876 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3877 
3878 		tcp_in_ack_event(sk, ack_ev_flags);
3879 	}
3880 
3881 	/* This is a deviation from RFC3168 since it states that:
3882 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3883 	 * the congestion window, it SHOULD set the CWR bit only on the first
3884 	 * new data packet that it transmits."
3885 	 * We accept CWR on pure ACKs to be more robust
3886 	 * with widely-deployed TCP implementations that do this.
3887 	 */
3888 	tcp_ecn_accept_cwr(sk, skb);
3889 
3890 	/* We passed data and got it acked, remove any soft error
3891 	 * log. Something worked...
3892 	 */
3893 	sk->sk_err_soft = 0;
3894 	icsk->icsk_probes_out = 0;
3895 	tp->rcv_tstamp = tcp_jiffies32;
3896 	if (!prior_packets)
3897 		goto no_queue;
3898 
3899 	/* See if we can take anything off of the retransmit queue. */
3900 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3901 				    &sack_state, flag & FLAG_ECE);
3902 
3903 	tcp_rack_update_reo_wnd(sk, &rs);
3904 
3905 	if (tp->tlp_high_seq)
3906 		tcp_process_tlp_ack(sk, ack, flag);
3907 
3908 	if (tcp_ack_is_dubious(sk, flag)) {
3909 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3910 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3911 			num_dupack = 1;
3912 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3913 			if (!(flag & FLAG_DATA))
3914 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3915 		}
3916 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3917 				      &rexmit);
3918 	}
3919 
3920 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3921 	if (flag & FLAG_SET_XMIT_TIMER)
3922 		tcp_set_xmit_timer(sk);
3923 
3924 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3925 		sk_dst_confirm(sk);
3926 
3927 	delivered = tcp_newly_delivered(sk, delivered, flag);
3928 	lost = tp->lost - lost;			/* freshly marked lost */
3929 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3930 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3931 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3932 	tcp_xmit_recovery(sk, rexmit);
3933 	return 1;
3934 
3935 no_queue:
3936 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3937 	if (flag & FLAG_DSACKING_ACK) {
3938 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3939 				      &rexmit);
3940 		tcp_newly_delivered(sk, delivered, flag);
3941 	}
3942 	/* If this ack opens up a zero window, clear backoff.  It was
3943 	 * being used to time the probes, and is probably far higher than
3944 	 * it needs to be for normal retransmission.
3945 	 */
3946 	tcp_ack_probe(sk);
3947 
3948 	if (tp->tlp_high_seq)
3949 		tcp_process_tlp_ack(sk, ack, flag);
3950 	return 1;
3951 
3952 old_ack:
3953 	/* If data was SACKed, tag it and see if we should send more data.
3954 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3955 	 */
3956 	if (TCP_SKB_CB(skb)->sacked) {
3957 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3958 						&sack_state);
3959 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3960 				      &rexmit);
3961 		tcp_newly_delivered(sk, delivered, flag);
3962 		tcp_xmit_recovery(sk, rexmit);
3963 	}
3964 
3965 	return 0;
3966 }
3967 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3968 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3969 				      bool syn, struct tcp_fastopen_cookie *foc,
3970 				      bool exp_opt)
3971 {
3972 	/* Valid only in SYN or SYN-ACK with an even length.  */
3973 	if (!foc || !syn || len < 0 || (len & 1))
3974 		return;
3975 
3976 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3977 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3978 		memcpy(foc->val, cookie, len);
3979 	else if (len != 0)
3980 		len = -1;
3981 	foc->len = len;
3982 	foc->exp = exp_opt;
3983 }
3984 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3985 static bool smc_parse_options(const struct tcphdr *th,
3986 			      struct tcp_options_received *opt_rx,
3987 			      const unsigned char *ptr,
3988 			      int opsize)
3989 {
3990 #if IS_ENABLED(CONFIG_SMC)
3991 	if (static_branch_unlikely(&tcp_have_smc)) {
3992 		if (th->syn && !(opsize & 1) &&
3993 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3994 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3995 			opt_rx->smc_ok = 1;
3996 			return true;
3997 		}
3998 	}
3999 #endif
4000 	return false;
4001 }
4002 
4003 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4004  * value on success.
4005  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4006 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4007 {
4008 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4009 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4010 	u16 mss = 0;
4011 
4012 	while (length > 0) {
4013 		int opcode = *ptr++;
4014 		int opsize;
4015 
4016 		switch (opcode) {
4017 		case TCPOPT_EOL:
4018 			return mss;
4019 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4020 			length--;
4021 			continue;
4022 		default:
4023 			if (length < 2)
4024 				return mss;
4025 			opsize = *ptr++;
4026 			if (opsize < 2) /* "silly options" */
4027 				return mss;
4028 			if (opsize > length)
4029 				return mss;	/* fail on partial options */
4030 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4031 				u16 in_mss = get_unaligned_be16(ptr);
4032 
4033 				if (in_mss) {
4034 					if (user_mss && user_mss < in_mss)
4035 						in_mss = user_mss;
4036 					mss = in_mss;
4037 				}
4038 			}
4039 			ptr += opsize - 2;
4040 			length -= opsize;
4041 		}
4042 	}
4043 	return mss;
4044 }
4045 
4046 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4047  * But, this can also be called on packets in the established flow when
4048  * the fast version below fails.
4049  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4050 void tcp_parse_options(const struct net *net,
4051 		       const struct sk_buff *skb,
4052 		       struct tcp_options_received *opt_rx, int estab,
4053 		       struct tcp_fastopen_cookie *foc)
4054 {
4055 	const unsigned char *ptr;
4056 	const struct tcphdr *th = tcp_hdr(skb);
4057 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4058 
4059 	ptr = (const unsigned char *)(th + 1);
4060 	opt_rx->saw_tstamp = 0;
4061 	opt_rx->saw_unknown = 0;
4062 
4063 	while (length > 0) {
4064 		int opcode = *ptr++;
4065 		int opsize;
4066 
4067 		switch (opcode) {
4068 		case TCPOPT_EOL:
4069 			return;
4070 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4071 			length--;
4072 			continue;
4073 		default:
4074 			if (length < 2)
4075 				return;
4076 			opsize = *ptr++;
4077 			if (opsize < 2) /* "silly options" */
4078 				return;
4079 			if (opsize > length)
4080 				return;	/* don't parse partial options */
4081 			switch (opcode) {
4082 			case TCPOPT_MSS:
4083 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4084 					u16 in_mss = get_unaligned_be16(ptr);
4085 					if (in_mss) {
4086 						if (opt_rx->user_mss &&
4087 						    opt_rx->user_mss < in_mss)
4088 							in_mss = opt_rx->user_mss;
4089 						opt_rx->mss_clamp = in_mss;
4090 					}
4091 				}
4092 				break;
4093 			case TCPOPT_WINDOW:
4094 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4095 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4096 					__u8 snd_wscale = *(__u8 *)ptr;
4097 					opt_rx->wscale_ok = 1;
4098 					if (snd_wscale > TCP_MAX_WSCALE) {
4099 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4100 								     __func__,
4101 								     snd_wscale,
4102 								     TCP_MAX_WSCALE);
4103 						snd_wscale = TCP_MAX_WSCALE;
4104 					}
4105 					opt_rx->snd_wscale = snd_wscale;
4106 				}
4107 				break;
4108 			case TCPOPT_TIMESTAMP:
4109 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4110 				    ((estab && opt_rx->tstamp_ok) ||
4111 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4112 					opt_rx->saw_tstamp = 1;
4113 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4114 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4115 				}
4116 				break;
4117 			case TCPOPT_SACK_PERM:
4118 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4119 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4120 					opt_rx->sack_ok = TCP_SACK_SEEN;
4121 					tcp_sack_reset(opt_rx);
4122 				}
4123 				break;
4124 
4125 			case TCPOPT_SACK:
4126 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4127 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4128 				   opt_rx->sack_ok) {
4129 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4130 				}
4131 				break;
4132 #ifdef CONFIG_TCP_MD5SIG
4133 			case TCPOPT_MD5SIG:
4134 				/*
4135 				 * The MD5 Hash has already been
4136 				 * checked (see tcp_v{4,6}_do_rcv()).
4137 				 */
4138 				break;
4139 #endif
4140 			case TCPOPT_FASTOPEN:
4141 				tcp_parse_fastopen_option(
4142 					opsize - TCPOLEN_FASTOPEN_BASE,
4143 					ptr, th->syn, foc, false);
4144 				break;
4145 
4146 			case TCPOPT_EXP:
4147 				/* Fast Open option shares code 254 using a
4148 				 * 16 bits magic number.
4149 				 */
4150 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4151 				    get_unaligned_be16(ptr) ==
4152 				    TCPOPT_FASTOPEN_MAGIC) {
4153 					tcp_parse_fastopen_option(opsize -
4154 						TCPOLEN_EXP_FASTOPEN_BASE,
4155 						ptr + 2, th->syn, foc, true);
4156 					break;
4157 				}
4158 
4159 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4160 					break;
4161 
4162 				opt_rx->saw_unknown = 1;
4163 				break;
4164 
4165 			default:
4166 				opt_rx->saw_unknown = 1;
4167 			}
4168 			ptr += opsize-2;
4169 			length -= opsize;
4170 		}
4171 	}
4172 }
4173 EXPORT_SYMBOL(tcp_parse_options);
4174 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4175 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4176 {
4177 	const __be32 *ptr = (const __be32 *)(th + 1);
4178 
4179 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4180 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4181 		tp->rx_opt.saw_tstamp = 1;
4182 		++ptr;
4183 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4184 		++ptr;
4185 		if (*ptr)
4186 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4187 		else
4188 			tp->rx_opt.rcv_tsecr = 0;
4189 		return true;
4190 	}
4191 	return false;
4192 }
4193 
4194 /* Fast parse options. This hopes to only see timestamps.
4195  * If it is wrong it falls back on tcp_parse_options().
4196  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4197 static bool tcp_fast_parse_options(const struct net *net,
4198 				   const struct sk_buff *skb,
4199 				   const struct tcphdr *th, struct tcp_sock *tp)
4200 {
4201 	/* In the spirit of fast parsing, compare doff directly to constant
4202 	 * values.  Because equality is used, short doff can be ignored here.
4203 	 */
4204 	if (th->doff == (sizeof(*th) / 4)) {
4205 		tp->rx_opt.saw_tstamp = 0;
4206 		return false;
4207 	} else if (tp->rx_opt.tstamp_ok &&
4208 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4209 		if (tcp_parse_aligned_timestamp(tp, th))
4210 			return true;
4211 	}
4212 
4213 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4214 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4215 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4216 
4217 	return true;
4218 }
4219 
4220 #ifdef CONFIG_TCP_MD5SIG
4221 /*
4222  * Parse MD5 Signature option
4223  */
tcp_parse_md5sig_option(const struct tcphdr * th)4224 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4225 {
4226 	int length = (th->doff << 2) - sizeof(*th);
4227 	const u8 *ptr = (const u8 *)(th + 1);
4228 
4229 	/* If not enough data remaining, we can short cut */
4230 	while (length >= TCPOLEN_MD5SIG) {
4231 		int opcode = *ptr++;
4232 		int opsize;
4233 
4234 		switch (opcode) {
4235 		case TCPOPT_EOL:
4236 			return NULL;
4237 		case TCPOPT_NOP:
4238 			length--;
4239 			continue;
4240 		default:
4241 			opsize = *ptr++;
4242 			if (opsize < 2 || opsize > length)
4243 				return NULL;
4244 			if (opcode == TCPOPT_MD5SIG)
4245 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4246 		}
4247 		ptr += opsize - 2;
4248 		length -= opsize;
4249 	}
4250 	return NULL;
4251 }
4252 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4253 #endif
4254 
4255 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4256  *
4257  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4258  * it can pass through stack. So, the following predicate verifies that
4259  * this segment is not used for anything but congestion avoidance or
4260  * fast retransmit. Moreover, we even are able to eliminate most of such
4261  * second order effects, if we apply some small "replay" window (~RTO)
4262  * to timestamp space.
4263  *
4264  * All these measures still do not guarantee that we reject wrapped ACKs
4265  * on networks with high bandwidth, when sequence space is recycled fastly,
4266  * but it guarantees that such events will be very rare and do not affect
4267  * connection seriously. This doesn't look nice, but alas, PAWS is really
4268  * buggy extension.
4269  *
4270  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4271  * states that events when retransmit arrives after original data are rare.
4272  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4273  * the biggest problem on large power networks even with minor reordering.
4274  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4275  * up to bandwidth of 18Gigabit/sec. 8) ]
4276  */
4277 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4278 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4279 {
4280 	const struct tcp_sock *tp = tcp_sk(sk);
4281 	const struct tcphdr *th = tcp_hdr(skb);
4282 	u32 seq = TCP_SKB_CB(skb)->seq;
4283 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4284 
4285 	return (/* 1. Pure ACK with correct sequence number. */
4286 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4287 
4288 		/* 2. ... and duplicate ACK. */
4289 		ack == tp->snd_una &&
4290 
4291 		/* 3. ... and does not update window. */
4292 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4293 
4294 		/* 4. ... and sits in replay window. */
4295 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4296 }
4297 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4298 static inline bool tcp_paws_discard(const struct sock *sk,
4299 				   const struct sk_buff *skb)
4300 {
4301 	const struct tcp_sock *tp = tcp_sk(sk);
4302 
4303 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4304 	       !tcp_disordered_ack(sk, skb);
4305 }
4306 
4307 /* Check segment sequence number for validity.
4308  *
4309  * Segment controls are considered valid, if the segment
4310  * fits to the window after truncation to the window. Acceptability
4311  * of data (and SYN, FIN, of course) is checked separately.
4312  * See tcp_data_queue(), for example.
4313  *
4314  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4315  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4316  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4317  * (borrowed from freebsd)
4318  */
4319 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4320 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4321 {
4322 	return	!before(end_seq, tp->rcv_wup) &&
4323 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4324 }
4325 
4326 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4327 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4328 {
4329 	trace_tcp_receive_reset(sk);
4330 
4331 	/* mptcp can't tell us to ignore reset pkts,
4332 	 * so just ignore the return value of mptcp_incoming_options().
4333 	 */
4334 	if (sk_is_mptcp(sk))
4335 		mptcp_incoming_options(sk, skb);
4336 
4337 	/* We want the right error as BSD sees it (and indeed as we do). */
4338 	switch (sk->sk_state) {
4339 	case TCP_SYN_SENT:
4340 		sk->sk_err = ECONNREFUSED;
4341 		break;
4342 	case TCP_CLOSE_WAIT:
4343 		sk->sk_err = EPIPE;
4344 		break;
4345 	case TCP_CLOSE:
4346 		return;
4347 	default:
4348 		sk->sk_err = ECONNRESET;
4349 	}
4350 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4351 	smp_wmb();
4352 
4353 	tcp_write_queue_purge(sk);
4354 	tcp_done(sk);
4355 
4356 	if (!sock_flag(sk, SOCK_DEAD))
4357 		sk_error_report(sk);
4358 }
4359 
4360 /*
4361  * 	Process the FIN bit. This now behaves as it is supposed to work
4362  *	and the FIN takes effect when it is validly part of sequence
4363  *	space. Not before when we get holes.
4364  *
4365  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4366  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4367  *	TIME-WAIT)
4368  *
4369  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4370  *	close and we go into CLOSING (and later onto TIME-WAIT)
4371  *
4372  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4373  */
tcp_fin(struct sock * sk)4374 void tcp_fin(struct sock *sk)
4375 {
4376 	struct tcp_sock *tp = tcp_sk(sk);
4377 
4378 	inet_csk_schedule_ack(sk);
4379 
4380 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4381 	sock_set_flag(sk, SOCK_DONE);
4382 
4383 	switch (sk->sk_state) {
4384 	case TCP_SYN_RECV:
4385 	case TCP_ESTABLISHED:
4386 		/* Move to CLOSE_WAIT */
4387 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4388 		inet_csk_enter_pingpong_mode(sk);
4389 		break;
4390 
4391 	case TCP_CLOSE_WAIT:
4392 	case TCP_CLOSING:
4393 		/* Received a retransmission of the FIN, do
4394 		 * nothing.
4395 		 */
4396 		break;
4397 	case TCP_LAST_ACK:
4398 		/* RFC793: Remain in the LAST-ACK state. */
4399 		break;
4400 
4401 	case TCP_FIN_WAIT1:
4402 		/* This case occurs when a simultaneous close
4403 		 * happens, we must ack the received FIN and
4404 		 * enter the CLOSING state.
4405 		 */
4406 		tcp_send_ack(sk);
4407 		tcp_set_state(sk, TCP_CLOSING);
4408 		break;
4409 	case TCP_FIN_WAIT2:
4410 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4411 		tcp_send_ack(sk);
4412 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4413 		break;
4414 	default:
4415 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4416 		 * cases we should never reach this piece of code.
4417 		 */
4418 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4419 		       __func__, sk->sk_state);
4420 		break;
4421 	}
4422 
4423 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4424 	 * Probably, we should reset in this case. For now drop them.
4425 	 */
4426 	skb_rbtree_purge(&tp->out_of_order_queue);
4427 	if (tcp_is_sack(tp))
4428 		tcp_sack_reset(&tp->rx_opt);
4429 	sk_mem_reclaim(sk);
4430 
4431 	if (!sock_flag(sk, SOCK_DEAD)) {
4432 		sk->sk_state_change(sk);
4433 
4434 		/* Do not send POLL_HUP for half duplex close. */
4435 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4436 		    sk->sk_state == TCP_CLOSE)
4437 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4438 		else
4439 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4440 	}
4441 }
4442 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4443 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4444 				  u32 end_seq)
4445 {
4446 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4447 		if (before(seq, sp->start_seq))
4448 			sp->start_seq = seq;
4449 		if (after(end_seq, sp->end_seq))
4450 			sp->end_seq = end_seq;
4451 		return true;
4452 	}
4453 	return false;
4454 }
4455 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4456 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4457 {
4458 	struct tcp_sock *tp = tcp_sk(sk);
4459 
4460 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4461 		int mib_idx;
4462 
4463 		if (before(seq, tp->rcv_nxt))
4464 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4465 		else
4466 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4467 
4468 		NET_INC_STATS(sock_net(sk), mib_idx);
4469 
4470 		tp->rx_opt.dsack = 1;
4471 		tp->duplicate_sack[0].start_seq = seq;
4472 		tp->duplicate_sack[0].end_seq = end_seq;
4473 	}
4474 }
4475 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4476 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4477 {
4478 	struct tcp_sock *tp = tcp_sk(sk);
4479 
4480 	if (!tp->rx_opt.dsack)
4481 		tcp_dsack_set(sk, seq, end_seq);
4482 	else
4483 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4484 }
4485 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4486 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4487 {
4488 	/* When the ACK path fails or drops most ACKs, the sender would
4489 	 * timeout and spuriously retransmit the same segment repeatedly.
4490 	 * The receiver remembers and reflects via DSACKs. Leverage the
4491 	 * DSACK state and change the txhash to re-route speculatively.
4492 	 */
4493 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4494 	    sk_rethink_txhash(sk))
4495 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4496 }
4497 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4498 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4499 {
4500 	struct tcp_sock *tp = tcp_sk(sk);
4501 
4502 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4503 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4504 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4505 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4506 
4507 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4508 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4509 
4510 			tcp_rcv_spurious_retrans(sk, skb);
4511 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4512 				end_seq = tp->rcv_nxt;
4513 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4514 		}
4515 	}
4516 
4517 	tcp_send_ack(sk);
4518 }
4519 
4520 /* These routines update the SACK block as out-of-order packets arrive or
4521  * in-order packets close up the sequence space.
4522  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4523 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4524 {
4525 	int this_sack;
4526 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4527 	struct tcp_sack_block *swalk = sp + 1;
4528 
4529 	/* See if the recent change to the first SACK eats into
4530 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4531 	 */
4532 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4533 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4534 			int i;
4535 
4536 			/* Zap SWALK, by moving every further SACK up by one slot.
4537 			 * Decrease num_sacks.
4538 			 */
4539 			tp->rx_opt.num_sacks--;
4540 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4541 				sp[i] = sp[i + 1];
4542 			continue;
4543 		}
4544 		this_sack++;
4545 		swalk++;
4546 	}
4547 }
4548 
tcp_sack_compress_send_ack(struct sock * sk)4549 static void tcp_sack_compress_send_ack(struct sock *sk)
4550 {
4551 	struct tcp_sock *tp = tcp_sk(sk);
4552 
4553 	if (!tp->compressed_ack)
4554 		return;
4555 
4556 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4557 		__sock_put(sk);
4558 
4559 	/* Since we have to send one ack finally,
4560 	 * substract one from tp->compressed_ack to keep
4561 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4562 	 */
4563 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4564 		      tp->compressed_ack - 1);
4565 
4566 	tp->compressed_ack = 0;
4567 	tcp_send_ack(sk);
4568 }
4569 
4570 /* Reasonable amount of sack blocks included in TCP SACK option
4571  * The max is 4, but this becomes 3 if TCP timestamps are there.
4572  * Given that SACK packets might be lost, be conservative and use 2.
4573  */
4574 #define TCP_SACK_BLOCKS_EXPECTED 2
4575 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4576 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4577 {
4578 	struct tcp_sock *tp = tcp_sk(sk);
4579 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4580 	int cur_sacks = tp->rx_opt.num_sacks;
4581 	int this_sack;
4582 
4583 	if (!cur_sacks)
4584 		goto new_sack;
4585 
4586 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4587 		if (tcp_sack_extend(sp, seq, end_seq)) {
4588 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4589 				tcp_sack_compress_send_ack(sk);
4590 			/* Rotate this_sack to the first one. */
4591 			for (; this_sack > 0; this_sack--, sp--)
4592 				swap(*sp, *(sp - 1));
4593 			if (cur_sacks > 1)
4594 				tcp_sack_maybe_coalesce(tp);
4595 			return;
4596 		}
4597 	}
4598 
4599 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4600 		tcp_sack_compress_send_ack(sk);
4601 
4602 	/* Could not find an adjacent existing SACK, build a new one,
4603 	 * put it at the front, and shift everyone else down.  We
4604 	 * always know there is at least one SACK present already here.
4605 	 *
4606 	 * If the sack array is full, forget about the last one.
4607 	 */
4608 	if (this_sack >= TCP_NUM_SACKS) {
4609 		this_sack--;
4610 		tp->rx_opt.num_sacks--;
4611 		sp--;
4612 	}
4613 	for (; this_sack > 0; this_sack--, sp--)
4614 		*sp = *(sp - 1);
4615 
4616 new_sack:
4617 	/* Build the new head SACK, and we're done. */
4618 	sp->start_seq = seq;
4619 	sp->end_seq = end_seq;
4620 	tp->rx_opt.num_sacks++;
4621 }
4622 
4623 /* RCV.NXT advances, some SACKs should be eaten. */
4624 
tcp_sack_remove(struct tcp_sock * tp)4625 static void tcp_sack_remove(struct tcp_sock *tp)
4626 {
4627 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4628 	int num_sacks = tp->rx_opt.num_sacks;
4629 	int this_sack;
4630 
4631 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4632 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4633 		tp->rx_opt.num_sacks = 0;
4634 		return;
4635 	}
4636 
4637 	for (this_sack = 0; this_sack < num_sacks;) {
4638 		/* Check if the start of the sack is covered by RCV.NXT. */
4639 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4640 			int i;
4641 
4642 			/* RCV.NXT must cover all the block! */
4643 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4644 
4645 			/* Zap this SACK, by moving forward any other SACKS. */
4646 			for (i = this_sack+1; i < num_sacks; i++)
4647 				tp->selective_acks[i-1] = tp->selective_acks[i];
4648 			num_sacks--;
4649 			continue;
4650 		}
4651 		this_sack++;
4652 		sp++;
4653 	}
4654 	tp->rx_opt.num_sacks = num_sacks;
4655 }
4656 
4657 /**
4658  * tcp_try_coalesce - try to merge skb to prior one
4659  * @sk: socket
4660  * @to: prior buffer
4661  * @from: buffer to add in queue
4662  * @fragstolen: pointer to boolean
4663  *
4664  * Before queueing skb @from after @to, try to merge them
4665  * to reduce overall memory use and queue lengths, if cost is small.
4666  * Packets in ofo or receive queues can stay a long time.
4667  * Better try to coalesce them right now to avoid future collapses.
4668  * Returns true if caller should free @from instead of queueing it
4669  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4670 static bool tcp_try_coalesce(struct sock *sk,
4671 			     struct sk_buff *to,
4672 			     struct sk_buff *from,
4673 			     bool *fragstolen)
4674 {
4675 	int delta;
4676 
4677 	*fragstolen = false;
4678 
4679 	/* Its possible this segment overlaps with prior segment in queue */
4680 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4681 		return false;
4682 
4683 	if (!mptcp_skb_can_collapse(to, from))
4684 		return false;
4685 
4686 #ifdef CONFIG_TLS_DEVICE
4687 	if (from->decrypted != to->decrypted)
4688 		return false;
4689 #endif
4690 
4691 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4692 		return false;
4693 
4694 	atomic_add(delta, &sk->sk_rmem_alloc);
4695 	sk_mem_charge(sk, delta);
4696 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4697 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4698 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4699 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4700 
4701 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4702 		TCP_SKB_CB(to)->has_rxtstamp = true;
4703 		to->tstamp = from->tstamp;
4704 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4705 	}
4706 
4707 	return true;
4708 }
4709 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4710 static bool tcp_ooo_try_coalesce(struct sock *sk,
4711 			     struct sk_buff *to,
4712 			     struct sk_buff *from,
4713 			     bool *fragstolen)
4714 {
4715 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4716 
4717 	/* In case tcp_drop() is called later, update to->gso_segs */
4718 	if (res) {
4719 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4720 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4721 
4722 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4723 	}
4724 	return res;
4725 }
4726 
tcp_drop(struct sock * sk,struct sk_buff * skb)4727 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4728 {
4729 	trace_android_vh_kfree_skb(skb);
4730 	sk_drops_add(sk, skb);
4731 	__kfree_skb(skb);
4732 }
4733 
4734 /* This one checks to see if we can put data from the
4735  * out_of_order queue into the receive_queue.
4736  */
tcp_ofo_queue(struct sock * sk)4737 static void tcp_ofo_queue(struct sock *sk)
4738 {
4739 	struct tcp_sock *tp = tcp_sk(sk);
4740 	__u32 dsack_high = tp->rcv_nxt;
4741 	bool fin, fragstolen, eaten;
4742 	struct sk_buff *skb, *tail;
4743 	struct rb_node *p;
4744 
4745 	p = rb_first(&tp->out_of_order_queue);
4746 	while (p) {
4747 		skb = rb_to_skb(p);
4748 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4749 			break;
4750 
4751 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4752 			__u32 dsack = dsack_high;
4753 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4754 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4755 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4756 		}
4757 		p = rb_next(p);
4758 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4759 
4760 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4761 			tcp_drop(sk, skb);
4762 			continue;
4763 		}
4764 
4765 		tail = skb_peek_tail(&sk->sk_receive_queue);
4766 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4767 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4768 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4769 		if (!eaten)
4770 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4771 		else
4772 			kfree_skb_partial(skb, fragstolen);
4773 
4774 		if (unlikely(fin)) {
4775 			tcp_fin(sk);
4776 			/* tcp_fin() purges tp->out_of_order_queue,
4777 			 * so we must end this loop right now.
4778 			 */
4779 			break;
4780 		}
4781 	}
4782 }
4783 
4784 static bool tcp_prune_ofo_queue(struct sock *sk);
4785 static int tcp_prune_queue(struct sock *sk);
4786 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4787 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4788 				 unsigned int size)
4789 {
4790 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4791 	    !sk_rmem_schedule(sk, skb, size)) {
4792 
4793 		if (tcp_prune_queue(sk) < 0)
4794 			return -1;
4795 
4796 		while (!sk_rmem_schedule(sk, skb, size)) {
4797 			if (!tcp_prune_ofo_queue(sk))
4798 				return -1;
4799 		}
4800 	}
4801 	return 0;
4802 }
4803 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4804 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4805 {
4806 	struct tcp_sock *tp = tcp_sk(sk);
4807 	struct rb_node **p, *parent;
4808 	struct sk_buff *skb1;
4809 	u32 seq, end_seq;
4810 	bool fragstolen;
4811 
4812 	tcp_ecn_check_ce(sk, skb);
4813 
4814 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4815 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4816 		sk->sk_data_ready(sk);
4817 		tcp_drop(sk, skb);
4818 		return;
4819 	}
4820 
4821 	/* Disable header prediction. */
4822 	tp->pred_flags = 0;
4823 	inet_csk_schedule_ack(sk);
4824 
4825 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4826 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4827 	seq = TCP_SKB_CB(skb)->seq;
4828 	end_seq = TCP_SKB_CB(skb)->end_seq;
4829 
4830 	p = &tp->out_of_order_queue.rb_node;
4831 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4832 		/* Initial out of order segment, build 1 SACK. */
4833 		if (tcp_is_sack(tp)) {
4834 			tp->rx_opt.num_sacks = 1;
4835 			tp->selective_acks[0].start_seq = seq;
4836 			tp->selective_acks[0].end_seq = end_seq;
4837 		}
4838 		rb_link_node(&skb->rbnode, NULL, p);
4839 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4840 		tp->ooo_last_skb = skb;
4841 		goto end;
4842 	}
4843 
4844 	/* In the typical case, we are adding an skb to the end of the list.
4845 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4846 	 */
4847 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4848 				 skb, &fragstolen)) {
4849 coalesce_done:
4850 		/* For non sack flows, do not grow window to force DUPACK
4851 		 * and trigger fast retransmit.
4852 		 */
4853 		if (tcp_is_sack(tp))
4854 			tcp_grow_window(sk, skb, true);
4855 		kfree_skb_partial(skb, fragstolen);
4856 		skb = NULL;
4857 		goto add_sack;
4858 	}
4859 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4860 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4861 		parent = &tp->ooo_last_skb->rbnode;
4862 		p = &parent->rb_right;
4863 		goto insert;
4864 	}
4865 
4866 	/* Find place to insert this segment. Handle overlaps on the way. */
4867 	parent = NULL;
4868 	while (*p) {
4869 		parent = *p;
4870 		skb1 = rb_to_skb(parent);
4871 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4872 			p = &parent->rb_left;
4873 			continue;
4874 		}
4875 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4876 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4877 				/* All the bits are present. Drop. */
4878 				NET_INC_STATS(sock_net(sk),
4879 					      LINUX_MIB_TCPOFOMERGE);
4880 				tcp_drop(sk, skb);
4881 				skb = NULL;
4882 				tcp_dsack_set(sk, seq, end_seq);
4883 				goto add_sack;
4884 			}
4885 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4886 				/* Partial overlap. */
4887 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4888 			} else {
4889 				/* skb's seq == skb1's seq and skb covers skb1.
4890 				 * Replace skb1 with skb.
4891 				 */
4892 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4893 						&tp->out_of_order_queue);
4894 				tcp_dsack_extend(sk,
4895 						 TCP_SKB_CB(skb1)->seq,
4896 						 TCP_SKB_CB(skb1)->end_seq);
4897 				NET_INC_STATS(sock_net(sk),
4898 					      LINUX_MIB_TCPOFOMERGE);
4899 				tcp_drop(sk, skb1);
4900 				goto merge_right;
4901 			}
4902 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4903 						skb, &fragstolen)) {
4904 			goto coalesce_done;
4905 		}
4906 		p = &parent->rb_right;
4907 	}
4908 insert:
4909 	/* Insert segment into RB tree. */
4910 	rb_link_node(&skb->rbnode, parent, p);
4911 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4912 
4913 merge_right:
4914 	/* Remove other segments covered by skb. */
4915 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4916 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4917 			break;
4918 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4919 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4920 					 end_seq);
4921 			break;
4922 		}
4923 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4924 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4925 				 TCP_SKB_CB(skb1)->end_seq);
4926 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4927 		tcp_drop(sk, skb1);
4928 	}
4929 	/* If there is no skb after us, we are the last_skb ! */
4930 	if (!skb1)
4931 		tp->ooo_last_skb = skb;
4932 
4933 add_sack:
4934 	if (tcp_is_sack(tp))
4935 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4936 end:
4937 	if (skb) {
4938 		/* For non sack flows, do not grow window to force DUPACK
4939 		 * and trigger fast retransmit.
4940 		 */
4941 		if (tcp_is_sack(tp))
4942 			tcp_grow_window(sk, skb, false);
4943 		skb_condense(skb);
4944 		skb_set_owner_r(skb, sk);
4945 	}
4946 }
4947 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4948 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4949 				      bool *fragstolen)
4950 {
4951 	int eaten;
4952 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4953 
4954 	eaten = (tail &&
4955 		 tcp_try_coalesce(sk, tail,
4956 				  skb, fragstolen)) ? 1 : 0;
4957 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4958 	if (!eaten) {
4959 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4960 		skb_set_owner_r(skb, sk);
4961 	}
4962 	return eaten;
4963 }
4964 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4965 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4966 {
4967 	struct sk_buff *skb;
4968 	int err = -ENOMEM;
4969 	int data_len = 0;
4970 	bool fragstolen;
4971 
4972 	if (size == 0)
4973 		return 0;
4974 
4975 	if (size > PAGE_SIZE) {
4976 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4977 
4978 		data_len = npages << PAGE_SHIFT;
4979 		size = data_len + (size & ~PAGE_MASK);
4980 	}
4981 	skb = alloc_skb_with_frags(size - data_len, data_len,
4982 				   PAGE_ALLOC_COSTLY_ORDER,
4983 				   &err, sk->sk_allocation);
4984 	if (!skb)
4985 		goto err;
4986 
4987 	skb_put(skb, size - data_len);
4988 	skb->data_len = data_len;
4989 	skb->len = size;
4990 
4991 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4992 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4993 		goto err_free;
4994 	}
4995 
4996 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4997 	if (err)
4998 		goto err_free;
4999 
5000 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5001 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5002 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5003 
5004 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5005 		WARN_ON_ONCE(fragstolen); /* should not happen */
5006 		__kfree_skb(skb);
5007 	}
5008 	return size;
5009 
5010 err_free:
5011 	kfree_skb(skb);
5012 err:
5013 	return err;
5014 
5015 }
5016 
tcp_data_ready(struct sock * sk)5017 void tcp_data_ready(struct sock *sk)
5018 {
5019 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5020 		sk->sk_data_ready(sk);
5021 }
5022 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5023 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5024 {
5025 	struct tcp_sock *tp = tcp_sk(sk);
5026 	bool fragstolen;
5027 	int eaten;
5028 
5029 	/* If a subflow has been reset, the packet should not continue
5030 	 * to be processed, drop the packet.
5031 	 */
5032 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5033 		__kfree_skb(skb);
5034 		return;
5035 	}
5036 
5037 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5038 		__kfree_skb(skb);
5039 		return;
5040 	}
5041 	skb_dst_drop(skb);
5042 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5043 
5044 	tp->rx_opt.dsack = 0;
5045 
5046 	/*  Queue data for delivery to the user.
5047 	 *  Packets in sequence go to the receive queue.
5048 	 *  Out of sequence packets to the out_of_order_queue.
5049 	 */
5050 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5051 		if (tcp_receive_window(tp) == 0) {
5052 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5053 			goto out_of_window;
5054 		}
5055 
5056 		/* Ok. In sequence. In window. */
5057 queue_and_out:
5058 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5059 			sk_forced_mem_schedule(sk, skb->truesize);
5060 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5061 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5062 			sk->sk_data_ready(sk);
5063 			goto drop;
5064 		}
5065 
5066 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5067 		if (skb->len)
5068 			tcp_event_data_recv(sk, skb);
5069 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5070 			tcp_fin(sk);
5071 
5072 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5073 			tcp_ofo_queue(sk);
5074 
5075 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5076 			 * gap in queue is filled.
5077 			 */
5078 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5079 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5080 		}
5081 
5082 		if (tp->rx_opt.num_sacks)
5083 			tcp_sack_remove(tp);
5084 
5085 		tcp_fast_path_check(sk);
5086 
5087 		if (eaten > 0)
5088 			kfree_skb_partial(skb, fragstolen);
5089 		if (!sock_flag(sk, SOCK_DEAD))
5090 			tcp_data_ready(sk);
5091 		return;
5092 	}
5093 
5094 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5095 		tcp_rcv_spurious_retrans(sk, skb);
5096 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5097 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5098 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5099 
5100 out_of_window:
5101 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5102 		inet_csk_schedule_ack(sk);
5103 drop:
5104 		tcp_drop(sk, skb);
5105 		return;
5106 	}
5107 
5108 	/* Out of window. F.e. zero window probe. */
5109 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5110 		goto out_of_window;
5111 
5112 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5113 		/* Partial packet, seq < rcv_next < end_seq */
5114 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5115 
5116 		/* If window is closed, drop tail of packet. But after
5117 		 * remembering D-SACK for its head made in previous line.
5118 		 */
5119 		if (!tcp_receive_window(tp)) {
5120 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5121 			goto out_of_window;
5122 		}
5123 		goto queue_and_out;
5124 	}
5125 
5126 	tcp_data_queue_ofo(sk, skb);
5127 }
5128 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5129 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5130 {
5131 	if (list)
5132 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5133 
5134 	return skb_rb_next(skb);
5135 }
5136 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5137 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5138 					struct sk_buff_head *list,
5139 					struct rb_root *root)
5140 {
5141 	struct sk_buff *next = tcp_skb_next(skb, list);
5142 
5143 	if (list)
5144 		__skb_unlink(skb, list);
5145 	else
5146 		rb_erase(&skb->rbnode, root);
5147 
5148 	__kfree_skb(skb);
5149 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5150 
5151 	return next;
5152 }
5153 
5154 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5155 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5156 {
5157 	struct rb_node **p = &root->rb_node;
5158 	struct rb_node *parent = NULL;
5159 	struct sk_buff *skb1;
5160 
5161 	while (*p) {
5162 		parent = *p;
5163 		skb1 = rb_to_skb(parent);
5164 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5165 			p = &parent->rb_left;
5166 		else
5167 			p = &parent->rb_right;
5168 	}
5169 	rb_link_node(&skb->rbnode, parent, p);
5170 	rb_insert_color(&skb->rbnode, root);
5171 }
5172 
5173 /* Collapse contiguous sequence of skbs head..tail with
5174  * sequence numbers start..end.
5175  *
5176  * If tail is NULL, this means until the end of the queue.
5177  *
5178  * Segments with FIN/SYN are not collapsed (only because this
5179  * simplifies code)
5180  */
5181 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5182 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5183 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5184 {
5185 	struct sk_buff *skb = head, *n;
5186 	struct sk_buff_head tmp;
5187 	bool end_of_skbs;
5188 
5189 	/* First, check that queue is collapsible and find
5190 	 * the point where collapsing can be useful.
5191 	 */
5192 restart:
5193 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5194 		n = tcp_skb_next(skb, list);
5195 
5196 		/* No new bits? It is possible on ofo queue. */
5197 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5198 			skb = tcp_collapse_one(sk, skb, list, root);
5199 			if (!skb)
5200 				break;
5201 			goto restart;
5202 		}
5203 
5204 		/* The first skb to collapse is:
5205 		 * - not SYN/FIN and
5206 		 * - bloated or contains data before "start" or
5207 		 *   overlaps to the next one and mptcp allow collapsing.
5208 		 */
5209 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5210 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5211 		     before(TCP_SKB_CB(skb)->seq, start))) {
5212 			end_of_skbs = false;
5213 			break;
5214 		}
5215 
5216 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5217 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5218 			end_of_skbs = false;
5219 			break;
5220 		}
5221 
5222 		/* Decided to skip this, advance start seq. */
5223 		start = TCP_SKB_CB(skb)->end_seq;
5224 	}
5225 	if (end_of_skbs ||
5226 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5227 		return;
5228 
5229 	__skb_queue_head_init(&tmp);
5230 
5231 	while (before(start, end)) {
5232 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5233 		struct sk_buff *nskb;
5234 
5235 		nskb = alloc_skb(copy, GFP_ATOMIC);
5236 		if (!nskb)
5237 			break;
5238 
5239 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5240 #ifdef CONFIG_TLS_DEVICE
5241 		nskb->decrypted = skb->decrypted;
5242 #endif
5243 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5244 		if (list)
5245 			__skb_queue_before(list, skb, nskb);
5246 		else
5247 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5248 		skb_set_owner_r(nskb, sk);
5249 		mptcp_skb_ext_move(nskb, skb);
5250 
5251 		/* Copy data, releasing collapsed skbs. */
5252 		while (copy > 0) {
5253 			int offset = start - TCP_SKB_CB(skb)->seq;
5254 			int size = TCP_SKB_CB(skb)->end_seq - start;
5255 
5256 			BUG_ON(offset < 0);
5257 			if (size > 0) {
5258 				size = min(copy, size);
5259 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5260 					BUG();
5261 				TCP_SKB_CB(nskb)->end_seq += size;
5262 				copy -= size;
5263 				start += size;
5264 			}
5265 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5266 				skb = tcp_collapse_one(sk, skb, list, root);
5267 				if (!skb ||
5268 				    skb == tail ||
5269 				    !mptcp_skb_can_collapse(nskb, skb) ||
5270 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5271 					goto end;
5272 #ifdef CONFIG_TLS_DEVICE
5273 				if (skb->decrypted != nskb->decrypted)
5274 					goto end;
5275 #endif
5276 			}
5277 		}
5278 	}
5279 end:
5280 	skb_queue_walk_safe(&tmp, skb, n)
5281 		tcp_rbtree_insert(root, skb);
5282 }
5283 
5284 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5285  * and tcp_collapse() them until all the queue is collapsed.
5286  */
tcp_collapse_ofo_queue(struct sock * sk)5287 static void tcp_collapse_ofo_queue(struct sock *sk)
5288 {
5289 	struct tcp_sock *tp = tcp_sk(sk);
5290 	u32 range_truesize, sum_tiny = 0;
5291 	struct sk_buff *skb, *head;
5292 	u32 start, end;
5293 
5294 	skb = skb_rb_first(&tp->out_of_order_queue);
5295 new_range:
5296 	if (!skb) {
5297 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5298 		return;
5299 	}
5300 	start = TCP_SKB_CB(skb)->seq;
5301 	end = TCP_SKB_CB(skb)->end_seq;
5302 	range_truesize = skb->truesize;
5303 
5304 	for (head = skb;;) {
5305 		skb = skb_rb_next(skb);
5306 
5307 		/* Range is terminated when we see a gap or when
5308 		 * we are at the queue end.
5309 		 */
5310 		if (!skb ||
5311 		    after(TCP_SKB_CB(skb)->seq, end) ||
5312 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5313 			/* Do not attempt collapsing tiny skbs */
5314 			if (range_truesize != head->truesize ||
5315 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5316 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5317 					     head, skb, start, end);
5318 			} else {
5319 				sum_tiny += range_truesize;
5320 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5321 					return;
5322 			}
5323 			goto new_range;
5324 		}
5325 
5326 		range_truesize += skb->truesize;
5327 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5328 			start = TCP_SKB_CB(skb)->seq;
5329 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5330 			end = TCP_SKB_CB(skb)->end_seq;
5331 	}
5332 }
5333 
5334 /*
5335  * Clean the out-of-order queue to make room.
5336  * We drop high sequences packets to :
5337  * 1) Let a chance for holes to be filled.
5338  * 2) not add too big latencies if thousands of packets sit there.
5339  *    (But if application shrinks SO_RCVBUF, we could still end up
5340  *     freeing whole queue here)
5341  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5342  *
5343  * Return true if queue has shrunk.
5344  */
tcp_prune_ofo_queue(struct sock * sk)5345 static bool tcp_prune_ofo_queue(struct sock *sk)
5346 {
5347 	struct tcp_sock *tp = tcp_sk(sk);
5348 	struct rb_node *node, *prev;
5349 	int goal;
5350 
5351 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5352 		return false;
5353 
5354 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5355 	goal = sk->sk_rcvbuf >> 3;
5356 	node = &tp->ooo_last_skb->rbnode;
5357 	do {
5358 		prev = rb_prev(node);
5359 		rb_erase(node, &tp->out_of_order_queue);
5360 		goal -= rb_to_skb(node)->truesize;
5361 		tcp_drop(sk, rb_to_skb(node));
5362 		if (!prev || goal <= 0) {
5363 			sk_mem_reclaim(sk);
5364 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5365 			    !tcp_under_memory_pressure(sk))
5366 				break;
5367 			goal = sk->sk_rcvbuf >> 3;
5368 		}
5369 		node = prev;
5370 	} while (node);
5371 	tp->ooo_last_skb = rb_to_skb(prev);
5372 
5373 	/* Reset SACK state.  A conforming SACK implementation will
5374 	 * do the same at a timeout based retransmit.  When a connection
5375 	 * is in a sad state like this, we care only about integrity
5376 	 * of the connection not performance.
5377 	 */
5378 	if (tp->rx_opt.sack_ok)
5379 		tcp_sack_reset(&tp->rx_opt);
5380 	return true;
5381 }
5382 
5383 /* Reduce allocated memory if we can, trying to get
5384  * the socket within its memory limits again.
5385  *
5386  * Return less than zero if we should start dropping frames
5387  * until the socket owning process reads some of the data
5388  * to stabilize the situation.
5389  */
tcp_prune_queue(struct sock * sk)5390 static int tcp_prune_queue(struct sock *sk)
5391 {
5392 	struct tcp_sock *tp = tcp_sk(sk);
5393 
5394 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5395 
5396 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5397 		tcp_clamp_window(sk);
5398 	else if (tcp_under_memory_pressure(sk))
5399 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5400 
5401 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5402 		return 0;
5403 
5404 	tcp_collapse_ofo_queue(sk);
5405 	if (!skb_queue_empty(&sk->sk_receive_queue))
5406 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5407 			     skb_peek(&sk->sk_receive_queue),
5408 			     NULL,
5409 			     tp->copied_seq, tp->rcv_nxt);
5410 	sk_mem_reclaim(sk);
5411 
5412 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5413 		return 0;
5414 
5415 	/* Collapsing did not help, destructive actions follow.
5416 	 * This must not ever occur. */
5417 
5418 	tcp_prune_ofo_queue(sk);
5419 
5420 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5421 		return 0;
5422 
5423 	/* If we are really being abused, tell the caller to silently
5424 	 * drop receive data on the floor.  It will get retransmitted
5425 	 * and hopefully then we'll have sufficient space.
5426 	 */
5427 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5428 
5429 	/* Massive buffer overcommit. */
5430 	tp->pred_flags = 0;
5431 	return -1;
5432 }
5433 
tcp_should_expand_sndbuf(const struct sock * sk)5434 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5435 {
5436 	const struct tcp_sock *tp = tcp_sk(sk);
5437 
5438 	/* If the user specified a specific send buffer setting, do
5439 	 * not modify it.
5440 	 */
5441 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5442 		return false;
5443 
5444 	/* If we are under global TCP memory pressure, do not expand.  */
5445 	if (tcp_under_memory_pressure(sk))
5446 		return false;
5447 
5448 	/* If we are under soft global TCP memory pressure, do not expand.  */
5449 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5450 		return false;
5451 
5452 	/* If we filled the congestion window, do not expand.  */
5453 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5454 		return false;
5455 
5456 	return true;
5457 }
5458 
tcp_new_space(struct sock * sk)5459 static void tcp_new_space(struct sock *sk)
5460 {
5461 	struct tcp_sock *tp = tcp_sk(sk);
5462 
5463 	if (tcp_should_expand_sndbuf(sk)) {
5464 		tcp_sndbuf_expand(sk);
5465 		tp->snd_cwnd_stamp = tcp_jiffies32;
5466 	}
5467 
5468 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5469 }
5470 
5471 /* Caller made space either from:
5472  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5473  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5474  *
5475  * We might be able to generate EPOLLOUT to the application if:
5476  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5477  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5478  *    small enough that tcp_stream_memory_free() decides it
5479  *    is time to generate EPOLLOUT.
5480  */
tcp_check_space(struct sock * sk)5481 void tcp_check_space(struct sock *sk)
5482 {
5483 	/* pairs with tcp_poll() */
5484 	smp_mb();
5485 	if (sk->sk_socket &&
5486 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5487 		tcp_new_space(sk);
5488 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5489 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5490 	}
5491 }
5492 
tcp_data_snd_check(struct sock * sk)5493 static inline void tcp_data_snd_check(struct sock *sk)
5494 {
5495 	tcp_push_pending_frames(sk);
5496 	tcp_check_space(sk);
5497 }
5498 
5499 /*
5500  * Check if sending an ack is needed.
5501  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5502 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5503 {
5504 	struct tcp_sock *tp = tcp_sk(sk);
5505 	unsigned long rtt, delay;
5506 
5507 	    /* More than one full frame received... */
5508 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5509 	     /* ... and right edge of window advances far enough.
5510 	      * (tcp_recvmsg() will send ACK otherwise).
5511 	      * If application uses SO_RCVLOWAT, we want send ack now if
5512 	      * we have not received enough bytes to satisfy the condition.
5513 	      */
5514 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5515 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5516 	    /* We ACK each frame or... */
5517 	    tcp_in_quickack_mode(sk) ||
5518 	    /* Protocol state mandates a one-time immediate ACK */
5519 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5520 send_now:
5521 		tcp_send_ack(sk);
5522 		return;
5523 	}
5524 
5525 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5526 		tcp_send_delayed_ack(sk);
5527 		return;
5528 	}
5529 
5530 	if (!tcp_is_sack(tp) ||
5531 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5532 		goto send_now;
5533 
5534 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5535 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5536 		tp->dup_ack_counter = 0;
5537 	}
5538 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5539 		tp->dup_ack_counter++;
5540 		goto send_now;
5541 	}
5542 	tp->compressed_ack++;
5543 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5544 		return;
5545 
5546 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5547 
5548 	rtt = tp->rcv_rtt_est.rtt_us;
5549 	if (tp->srtt_us && tp->srtt_us < rtt)
5550 		rtt = tp->srtt_us;
5551 
5552 	delay = min_t(unsigned long,
5553 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5554 		      rtt * (NSEC_PER_USEC >> 3)/20);
5555 	sock_hold(sk);
5556 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5557 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5558 			       HRTIMER_MODE_REL_PINNED_SOFT);
5559 }
5560 
tcp_ack_snd_check(struct sock * sk)5561 static inline void tcp_ack_snd_check(struct sock *sk)
5562 {
5563 	if (!inet_csk_ack_scheduled(sk)) {
5564 		/* We sent a data segment already. */
5565 		return;
5566 	}
5567 	__tcp_ack_snd_check(sk, 1);
5568 }
5569 
5570 /*
5571  *	This routine is only called when we have urgent data
5572  *	signaled. Its the 'slow' part of tcp_urg. It could be
5573  *	moved inline now as tcp_urg is only called from one
5574  *	place. We handle URGent data wrong. We have to - as
5575  *	BSD still doesn't use the correction from RFC961.
5576  *	For 1003.1g we should support a new option TCP_STDURG to permit
5577  *	either form (or just set the sysctl tcp_stdurg).
5578  */
5579 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5580 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5581 {
5582 	struct tcp_sock *tp = tcp_sk(sk);
5583 	u32 ptr = ntohs(th->urg_ptr);
5584 
5585 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5586 		ptr--;
5587 	ptr += ntohl(th->seq);
5588 
5589 	/* Ignore urgent data that we've already seen and read. */
5590 	if (after(tp->copied_seq, ptr))
5591 		return;
5592 
5593 	/* Do not replay urg ptr.
5594 	 *
5595 	 * NOTE: interesting situation not covered by specs.
5596 	 * Misbehaving sender may send urg ptr, pointing to segment,
5597 	 * which we already have in ofo queue. We are not able to fetch
5598 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5599 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5600 	 * situations. But it is worth to think about possibility of some
5601 	 * DoSes using some hypothetical application level deadlock.
5602 	 */
5603 	if (before(ptr, tp->rcv_nxt))
5604 		return;
5605 
5606 	/* Do we already have a newer (or duplicate) urgent pointer? */
5607 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5608 		return;
5609 
5610 	/* Tell the world about our new urgent pointer. */
5611 	sk_send_sigurg(sk);
5612 
5613 	/* We may be adding urgent data when the last byte read was
5614 	 * urgent. To do this requires some care. We cannot just ignore
5615 	 * tp->copied_seq since we would read the last urgent byte again
5616 	 * as data, nor can we alter copied_seq until this data arrives
5617 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5618 	 *
5619 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5620 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5621 	 * and expect that both A and B disappear from stream. This is _wrong_.
5622 	 * Though this happens in BSD with high probability, this is occasional.
5623 	 * Any application relying on this is buggy. Note also, that fix "works"
5624 	 * only in this artificial test. Insert some normal data between A and B and we will
5625 	 * decline of BSD again. Verdict: it is better to remove to trap
5626 	 * buggy users.
5627 	 */
5628 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5629 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5630 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5631 		tp->copied_seq++;
5632 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5633 			__skb_unlink(skb, &sk->sk_receive_queue);
5634 			__kfree_skb(skb);
5635 		}
5636 	}
5637 
5638 	tp->urg_data = TCP_URG_NOTYET;
5639 	WRITE_ONCE(tp->urg_seq, ptr);
5640 
5641 	/* Disable header prediction. */
5642 	tp->pred_flags = 0;
5643 }
5644 
5645 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5646 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5647 {
5648 	struct tcp_sock *tp = tcp_sk(sk);
5649 
5650 	/* Check if we get a new urgent pointer - normally not. */
5651 	if (th->urg)
5652 		tcp_check_urg(sk, th);
5653 
5654 	/* Do we wait for any urgent data? - normally not... */
5655 	if (tp->urg_data == TCP_URG_NOTYET) {
5656 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5657 			  th->syn;
5658 
5659 		/* Is the urgent pointer pointing into this packet? */
5660 		if (ptr < skb->len) {
5661 			u8 tmp;
5662 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5663 				BUG();
5664 			tp->urg_data = TCP_URG_VALID | tmp;
5665 			if (!sock_flag(sk, SOCK_DEAD))
5666 				sk->sk_data_ready(sk);
5667 		}
5668 	}
5669 }
5670 
5671 /* Accept RST for rcv_nxt - 1 after a FIN.
5672  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5673  * FIN is sent followed by a RST packet. The RST is sent with the same
5674  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5675  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5676  * ACKs on the closed socket. In addition middleboxes can drop either the
5677  * challenge ACK or a subsequent RST.
5678  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5679 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5680 {
5681 	struct tcp_sock *tp = tcp_sk(sk);
5682 
5683 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5684 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5685 					       TCPF_CLOSING));
5686 }
5687 
5688 /* Does PAWS and seqno based validation of an incoming segment, flags will
5689  * play significant role here.
5690  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5691 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5692 				  const struct tcphdr *th, int syn_inerr)
5693 {
5694 	struct tcp_sock *tp = tcp_sk(sk);
5695 	bool rst_seq_match = false;
5696 
5697 	/* RFC1323: H1. Apply PAWS check first. */
5698 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5699 	    tp->rx_opt.saw_tstamp &&
5700 	    tcp_paws_discard(sk, skb)) {
5701 		if (!th->rst) {
5702 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5703 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5704 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5705 						  &tp->last_oow_ack_time))
5706 				tcp_send_dupack(sk, skb);
5707 			goto discard;
5708 		}
5709 		/* Reset is accepted even if it did not pass PAWS. */
5710 	}
5711 
5712 	/* Step 1: check sequence number */
5713 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5714 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5715 		 * (RST) segments are validated by checking their SEQ-fields."
5716 		 * And page 69: "If an incoming segment is not acceptable,
5717 		 * an acknowledgment should be sent in reply (unless the RST
5718 		 * bit is set, if so drop the segment and return)".
5719 		 */
5720 		if (!th->rst) {
5721 			if (th->syn)
5722 				goto syn_challenge;
5723 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5724 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5725 						  &tp->last_oow_ack_time))
5726 				tcp_send_dupack(sk, skb);
5727 		} else if (tcp_reset_check(sk, skb)) {
5728 			tcp_reset(sk, skb);
5729 		}
5730 		goto discard;
5731 	}
5732 
5733 	/* Step 2: check RST bit */
5734 	if (th->rst) {
5735 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5736 		 * FIN and SACK too if available):
5737 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5738 		 * the right-most SACK block,
5739 		 * then
5740 		 *     RESET the connection
5741 		 * else
5742 		 *     Send a challenge ACK
5743 		 */
5744 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5745 		    tcp_reset_check(sk, skb)) {
5746 			rst_seq_match = true;
5747 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5748 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5749 			int max_sack = sp[0].end_seq;
5750 			int this_sack;
5751 
5752 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5753 			     ++this_sack) {
5754 				max_sack = after(sp[this_sack].end_seq,
5755 						 max_sack) ?
5756 					sp[this_sack].end_seq : max_sack;
5757 			}
5758 
5759 			if (TCP_SKB_CB(skb)->seq == max_sack)
5760 				rst_seq_match = true;
5761 		}
5762 
5763 		if (rst_seq_match)
5764 			tcp_reset(sk, skb);
5765 		else {
5766 			/* Disable TFO if RST is out-of-order
5767 			 * and no data has been received
5768 			 * for current active TFO socket
5769 			 */
5770 			if (tp->syn_fastopen && !tp->data_segs_in &&
5771 			    sk->sk_state == TCP_ESTABLISHED)
5772 				tcp_fastopen_active_disable(sk);
5773 			tcp_send_challenge_ack(sk, skb);
5774 		}
5775 		goto discard;
5776 	}
5777 
5778 	/* step 3: check security and precedence [ignored] */
5779 
5780 	/* step 4: Check for a SYN
5781 	 * RFC 5961 4.2 : Send a challenge ack
5782 	 */
5783 	if (th->syn) {
5784 syn_challenge:
5785 		if (syn_inerr)
5786 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5787 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5788 		tcp_send_challenge_ack(sk, skb);
5789 		goto discard;
5790 	}
5791 
5792 	bpf_skops_parse_hdr(sk, skb);
5793 
5794 	return true;
5795 
5796 discard:
5797 	tcp_drop(sk, skb);
5798 	return false;
5799 }
5800 
5801 /*
5802  *	TCP receive function for the ESTABLISHED state.
5803  *
5804  *	It is split into a fast path and a slow path. The fast path is
5805  * 	disabled when:
5806  *	- A zero window was announced from us - zero window probing
5807  *        is only handled properly in the slow path.
5808  *	- Out of order segments arrived.
5809  *	- Urgent data is expected.
5810  *	- There is no buffer space left
5811  *	- Unexpected TCP flags/window values/header lengths are received
5812  *	  (detected by checking the TCP header against pred_flags)
5813  *	- Data is sent in both directions. Fast path only supports pure senders
5814  *	  or pure receivers (this means either the sequence number or the ack
5815  *	  value must stay constant)
5816  *	- Unexpected TCP option.
5817  *
5818  *	When these conditions are not satisfied it drops into a standard
5819  *	receive procedure patterned after RFC793 to handle all cases.
5820  *	The first three cases are guaranteed by proper pred_flags setting,
5821  *	the rest is checked inline. Fast processing is turned on in
5822  *	tcp_data_queue when everything is OK.
5823  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5824 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5825 {
5826 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5827 	struct tcp_sock *tp = tcp_sk(sk);
5828 	unsigned int len = skb->len;
5829 
5830 	/* TCP congestion window tracking */
5831 	trace_tcp_probe(sk, skb);
5832 
5833 	tcp_mstamp_refresh(tp);
5834 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5835 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5836 	/*
5837 	 *	Header prediction.
5838 	 *	The code loosely follows the one in the famous
5839 	 *	"30 instruction TCP receive" Van Jacobson mail.
5840 	 *
5841 	 *	Van's trick is to deposit buffers into socket queue
5842 	 *	on a device interrupt, to call tcp_recv function
5843 	 *	on the receive process context and checksum and copy
5844 	 *	the buffer to user space. smart...
5845 	 *
5846 	 *	Our current scheme is not silly either but we take the
5847 	 *	extra cost of the net_bh soft interrupt processing...
5848 	 *	We do checksum and copy also but from device to kernel.
5849 	 */
5850 
5851 	tp->rx_opt.saw_tstamp = 0;
5852 
5853 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5854 	 *	if header_prediction is to be made
5855 	 *	'S' will always be tp->tcp_header_len >> 2
5856 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5857 	 *  turn it off	(when there are holes in the receive
5858 	 *	 space for instance)
5859 	 *	PSH flag is ignored.
5860 	 */
5861 
5862 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5863 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5864 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5865 		int tcp_header_len = tp->tcp_header_len;
5866 
5867 		/* Timestamp header prediction: tcp_header_len
5868 		 * is automatically equal to th->doff*4 due to pred_flags
5869 		 * match.
5870 		 */
5871 
5872 		/* Check timestamp */
5873 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5874 			/* No? Slow path! */
5875 			if (!tcp_parse_aligned_timestamp(tp, th))
5876 				goto slow_path;
5877 
5878 			/* If PAWS failed, check it more carefully in slow path */
5879 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5880 				goto slow_path;
5881 
5882 			/* DO NOT update ts_recent here, if checksum fails
5883 			 * and timestamp was corrupted part, it will result
5884 			 * in a hung connection since we will drop all
5885 			 * future packets due to the PAWS test.
5886 			 */
5887 		}
5888 
5889 		if (len <= tcp_header_len) {
5890 			/* Bulk data transfer: sender */
5891 			if (len == tcp_header_len) {
5892 				/* Predicted packet is in window by definition.
5893 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5894 				 * Hence, check seq<=rcv_wup reduces to:
5895 				 */
5896 				if (tcp_header_len ==
5897 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5898 				    tp->rcv_nxt == tp->rcv_wup)
5899 					tcp_store_ts_recent(tp);
5900 
5901 				/* We know that such packets are checksummed
5902 				 * on entry.
5903 				 */
5904 				tcp_ack(sk, skb, 0);
5905 				__kfree_skb(skb);
5906 				tcp_data_snd_check(sk);
5907 				/* When receiving pure ack in fast path, update
5908 				 * last ts ecr directly instead of calling
5909 				 * tcp_rcv_rtt_measure_ts()
5910 				 */
5911 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5912 				return;
5913 			} else { /* Header too small */
5914 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5915 				goto discard;
5916 			}
5917 		} else {
5918 			int eaten = 0;
5919 			bool fragstolen = false;
5920 
5921 			if (tcp_checksum_complete(skb))
5922 				goto csum_error;
5923 
5924 			if ((int)skb->truesize > sk->sk_forward_alloc)
5925 				goto step5;
5926 
5927 			/* Predicted packet is in window by definition.
5928 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5929 			 * Hence, check seq<=rcv_wup reduces to:
5930 			 */
5931 			if (tcp_header_len ==
5932 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5933 			    tp->rcv_nxt == tp->rcv_wup)
5934 				tcp_store_ts_recent(tp);
5935 
5936 			tcp_rcv_rtt_measure_ts(sk, skb);
5937 
5938 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5939 
5940 			/* Bulk data transfer: receiver */
5941 			__skb_pull(skb, tcp_header_len);
5942 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5943 
5944 			tcp_event_data_recv(sk, skb);
5945 
5946 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5947 				/* Well, only one small jumplet in fast path... */
5948 				tcp_ack(sk, skb, FLAG_DATA);
5949 				tcp_data_snd_check(sk);
5950 				if (!inet_csk_ack_scheduled(sk))
5951 					goto no_ack;
5952 			} else {
5953 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5954 			}
5955 
5956 			__tcp_ack_snd_check(sk, 0);
5957 no_ack:
5958 			if (eaten)
5959 				kfree_skb_partial(skb, fragstolen);
5960 			tcp_data_ready(sk);
5961 			return;
5962 		}
5963 	}
5964 
5965 slow_path:
5966 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5967 		goto csum_error;
5968 
5969 	if (!th->ack && !th->rst && !th->syn)
5970 		goto discard;
5971 
5972 	/*
5973 	 *	Standard slow path.
5974 	 */
5975 
5976 	if (!tcp_validate_incoming(sk, skb, th, 1))
5977 		return;
5978 
5979 step5:
5980 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5981 		goto discard;
5982 
5983 	tcp_rcv_rtt_measure_ts(sk, skb);
5984 
5985 	/* Process urgent data. */
5986 	tcp_urg(sk, skb, th);
5987 
5988 	/* step 7: process the segment text */
5989 	tcp_data_queue(sk, skb);
5990 
5991 	tcp_data_snd_check(sk);
5992 	tcp_ack_snd_check(sk);
5993 	return;
5994 
5995 csum_error:
5996 	trace_tcp_bad_csum(skb);
5997 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5998 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5999 
6000 discard:
6001 	tcp_drop(sk, skb);
6002 }
6003 EXPORT_SYMBOL(tcp_rcv_established);
6004 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6005 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6006 {
6007 	struct inet_connection_sock *icsk = inet_csk(sk);
6008 	struct tcp_sock *tp = tcp_sk(sk);
6009 
6010 	tcp_mtup_init(sk);
6011 	icsk->icsk_af_ops->rebuild_header(sk);
6012 	tcp_init_metrics(sk);
6013 
6014 	/* Initialize the congestion window to start the transfer.
6015 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6016 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6017 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6018 	 * retransmission has occurred.
6019 	 */
6020 	if (tp->total_retrans > 1 && tp->undo_marker)
6021 		tcp_snd_cwnd_set(tp, 1);
6022 	else
6023 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6024 	tp->snd_cwnd_stamp = tcp_jiffies32;
6025 
6026 	bpf_skops_established(sk, bpf_op, skb);
6027 	/* Initialize congestion control unless BPF initialized it already: */
6028 	if (!icsk->icsk_ca_initialized)
6029 		tcp_init_congestion_control(sk);
6030 	tcp_init_buffer_space(sk);
6031 }
6032 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6033 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6034 {
6035 	struct tcp_sock *tp = tcp_sk(sk);
6036 	struct inet_connection_sock *icsk = inet_csk(sk);
6037 
6038 	tcp_set_state(sk, TCP_ESTABLISHED);
6039 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6040 
6041 	if (skb) {
6042 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6043 		security_inet_conn_established(sk, skb);
6044 		sk_mark_napi_id(sk, skb);
6045 	}
6046 
6047 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6048 
6049 	/* Prevent spurious tcp_cwnd_restart() on first data
6050 	 * packet.
6051 	 */
6052 	tp->lsndtime = tcp_jiffies32;
6053 
6054 	if (sock_flag(sk, SOCK_KEEPOPEN))
6055 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6056 
6057 	if (!tp->rx_opt.snd_wscale)
6058 		__tcp_fast_path_on(tp, tp->snd_wnd);
6059 	else
6060 		tp->pred_flags = 0;
6061 }
6062 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6063 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6064 				    struct tcp_fastopen_cookie *cookie)
6065 {
6066 	struct tcp_sock *tp = tcp_sk(sk);
6067 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6068 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6069 	bool syn_drop = false;
6070 
6071 	if (mss == tp->rx_opt.user_mss) {
6072 		struct tcp_options_received opt;
6073 
6074 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6075 		tcp_clear_options(&opt);
6076 		opt.user_mss = opt.mss_clamp = 0;
6077 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6078 		mss = opt.mss_clamp;
6079 	}
6080 
6081 	if (!tp->syn_fastopen) {
6082 		/* Ignore an unsolicited cookie */
6083 		cookie->len = -1;
6084 	} else if (tp->total_retrans) {
6085 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6086 		 * acknowledges data. Presumably the remote received only
6087 		 * the retransmitted (regular) SYNs: either the original
6088 		 * SYN-data or the corresponding SYN-ACK was dropped.
6089 		 */
6090 		syn_drop = (cookie->len < 0 && data);
6091 	} else if (cookie->len < 0 && !tp->syn_data) {
6092 		/* We requested a cookie but didn't get it. If we did not use
6093 		 * the (old) exp opt format then try so next time (try_exp=1).
6094 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6095 		 */
6096 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6097 	}
6098 
6099 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6100 
6101 	if (data) { /* Retransmit unacked data in SYN */
6102 		if (tp->total_retrans)
6103 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6104 		else
6105 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6106 		skb_rbtree_walk_from(data)
6107 			 tcp_mark_skb_lost(sk, data);
6108 		tcp_xmit_retransmit_queue(sk);
6109 		NET_INC_STATS(sock_net(sk),
6110 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6111 		return true;
6112 	}
6113 	tp->syn_data_acked = tp->syn_data;
6114 	if (tp->syn_data_acked) {
6115 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6116 		/* SYN-data is counted as two separate packets in tcp_ack() */
6117 		if (tp->delivered > 1)
6118 			--tp->delivered;
6119 	}
6120 
6121 	tcp_fastopen_add_skb(sk, synack);
6122 
6123 	return false;
6124 }
6125 
smc_check_reset_syn(struct tcp_sock * tp)6126 static void smc_check_reset_syn(struct tcp_sock *tp)
6127 {
6128 #if IS_ENABLED(CONFIG_SMC)
6129 	if (static_branch_unlikely(&tcp_have_smc)) {
6130 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6131 			tp->syn_smc = 0;
6132 	}
6133 #endif
6134 }
6135 
tcp_try_undo_spurious_syn(struct sock * sk)6136 static void tcp_try_undo_spurious_syn(struct sock *sk)
6137 {
6138 	struct tcp_sock *tp = tcp_sk(sk);
6139 	u32 syn_stamp;
6140 
6141 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6142 	 * spurious if the ACK's timestamp option echo value matches the
6143 	 * original SYN timestamp.
6144 	 */
6145 	syn_stamp = tp->retrans_stamp;
6146 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6147 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6148 		tp->undo_marker = 0;
6149 }
6150 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6151 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6152 					 const struct tcphdr *th)
6153 {
6154 	struct inet_connection_sock *icsk = inet_csk(sk);
6155 	struct tcp_sock *tp = tcp_sk(sk);
6156 	struct tcp_fastopen_cookie foc = { .len = -1 };
6157 	int saved_clamp = tp->rx_opt.mss_clamp;
6158 	bool fastopen_fail;
6159 
6160 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6161 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6162 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6163 
6164 	if (th->ack) {
6165 		/* rfc793:
6166 		 * "If the state is SYN-SENT then
6167 		 *    first check the ACK bit
6168 		 *      If the ACK bit is set
6169 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6170 		 *        a reset (unless the RST bit is set, if so drop
6171 		 *        the segment and return)"
6172 		 */
6173 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6174 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6175 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6176 			if (icsk->icsk_retransmits == 0)
6177 				inet_csk_reset_xmit_timer(sk,
6178 						ICSK_TIME_RETRANS,
6179 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6180 			goto reset_and_undo;
6181 		}
6182 
6183 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6184 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6185 			     tcp_time_stamp(tp))) {
6186 			NET_INC_STATS(sock_net(sk),
6187 					LINUX_MIB_PAWSACTIVEREJECTED);
6188 			goto reset_and_undo;
6189 		}
6190 
6191 		/* Now ACK is acceptable.
6192 		 *
6193 		 * "If the RST bit is set
6194 		 *    If the ACK was acceptable then signal the user "error:
6195 		 *    connection reset", drop the segment, enter CLOSED state,
6196 		 *    delete TCB, and return."
6197 		 */
6198 
6199 		if (th->rst) {
6200 			tcp_reset(sk, skb);
6201 			goto discard;
6202 		}
6203 
6204 		/* rfc793:
6205 		 *   "fifth, if neither of the SYN or RST bits is set then
6206 		 *    drop the segment and return."
6207 		 *
6208 		 *    See note below!
6209 		 *                                        --ANK(990513)
6210 		 */
6211 		if (!th->syn)
6212 			goto discard_and_undo;
6213 
6214 		/* rfc793:
6215 		 *   "If the SYN bit is on ...
6216 		 *    are acceptable then ...
6217 		 *    (our SYN has been ACKed), change the connection
6218 		 *    state to ESTABLISHED..."
6219 		 */
6220 
6221 		tcp_ecn_rcv_synack(tp, th);
6222 
6223 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6224 		tcp_try_undo_spurious_syn(sk);
6225 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6226 
6227 		/* Ok.. it's good. Set up sequence numbers and
6228 		 * move to established.
6229 		 */
6230 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6231 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6232 
6233 		/* RFC1323: The window in SYN & SYN/ACK segments is
6234 		 * never scaled.
6235 		 */
6236 		tp->snd_wnd = ntohs(th->window);
6237 
6238 		if (!tp->rx_opt.wscale_ok) {
6239 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6240 			tp->window_clamp = min(tp->window_clamp, 65535U);
6241 		}
6242 
6243 		if (tp->rx_opt.saw_tstamp) {
6244 			tp->rx_opt.tstamp_ok	   = 1;
6245 			tp->tcp_header_len =
6246 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6247 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6248 			tcp_store_ts_recent(tp);
6249 		} else {
6250 			tp->tcp_header_len = sizeof(struct tcphdr);
6251 		}
6252 
6253 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6254 		tcp_initialize_rcv_mss(sk);
6255 
6256 		/* Remember, tcp_poll() does not lock socket!
6257 		 * Change state from SYN-SENT only after copied_seq
6258 		 * is initialized. */
6259 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6260 
6261 		smc_check_reset_syn(tp);
6262 
6263 		smp_mb();
6264 
6265 		tcp_finish_connect(sk, skb);
6266 
6267 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6268 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6269 
6270 		if (!sock_flag(sk, SOCK_DEAD)) {
6271 			sk->sk_state_change(sk);
6272 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6273 		}
6274 		if (fastopen_fail)
6275 			return -1;
6276 		if (sk->sk_write_pending ||
6277 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6278 		    inet_csk_in_pingpong_mode(sk)) {
6279 			/* Save one ACK. Data will be ready after
6280 			 * several ticks, if write_pending is set.
6281 			 *
6282 			 * It may be deleted, but with this feature tcpdumps
6283 			 * look so _wonderfully_ clever, that I was not able
6284 			 * to stand against the temptation 8)     --ANK
6285 			 */
6286 			inet_csk_schedule_ack(sk);
6287 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6288 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6289 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6290 
6291 discard:
6292 			tcp_drop(sk, skb);
6293 			return 0;
6294 		} else {
6295 			tcp_send_ack(sk);
6296 		}
6297 		return -1;
6298 	}
6299 
6300 	/* No ACK in the segment */
6301 
6302 	if (th->rst) {
6303 		/* rfc793:
6304 		 * "If the RST bit is set
6305 		 *
6306 		 *      Otherwise (no ACK) drop the segment and return."
6307 		 */
6308 
6309 		goto discard_and_undo;
6310 	}
6311 
6312 	/* PAWS check. */
6313 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6314 	    tcp_paws_reject(&tp->rx_opt, 0))
6315 		goto discard_and_undo;
6316 
6317 	if (th->syn) {
6318 		/* We see SYN without ACK. It is attempt of
6319 		 * simultaneous connect with crossed SYNs.
6320 		 * Particularly, it can be connect to self.
6321 		 */
6322 		tcp_set_state(sk, TCP_SYN_RECV);
6323 
6324 		if (tp->rx_opt.saw_tstamp) {
6325 			tp->rx_opt.tstamp_ok = 1;
6326 			tcp_store_ts_recent(tp);
6327 			tp->tcp_header_len =
6328 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6329 		} else {
6330 			tp->tcp_header_len = sizeof(struct tcphdr);
6331 		}
6332 
6333 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6334 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6335 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6336 
6337 		/* RFC1323: The window in SYN & SYN/ACK segments is
6338 		 * never scaled.
6339 		 */
6340 		tp->snd_wnd    = ntohs(th->window);
6341 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6342 		tp->max_window = tp->snd_wnd;
6343 
6344 		tcp_ecn_rcv_syn(tp, th);
6345 
6346 		tcp_mtup_init(sk);
6347 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6348 		tcp_initialize_rcv_mss(sk);
6349 
6350 		tcp_send_synack(sk);
6351 #if 0
6352 		/* Note, we could accept data and URG from this segment.
6353 		 * There are no obstacles to make this (except that we must
6354 		 * either change tcp_recvmsg() to prevent it from returning data
6355 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6356 		 *
6357 		 * However, if we ignore data in ACKless segments sometimes,
6358 		 * we have no reasons to accept it sometimes.
6359 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6360 		 * is not flawless. So, discard packet for sanity.
6361 		 * Uncomment this return to process the data.
6362 		 */
6363 		return -1;
6364 #else
6365 		goto discard;
6366 #endif
6367 	}
6368 	/* "fifth, if neither of the SYN or RST bits is set then
6369 	 * drop the segment and return."
6370 	 */
6371 
6372 discard_and_undo:
6373 	tcp_clear_options(&tp->rx_opt);
6374 	tp->rx_opt.mss_clamp = saved_clamp;
6375 	goto discard;
6376 
6377 reset_and_undo:
6378 	tcp_clear_options(&tp->rx_opt);
6379 	tp->rx_opt.mss_clamp = saved_clamp;
6380 	return 1;
6381 }
6382 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6383 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6384 {
6385 	struct tcp_sock *tp = tcp_sk(sk);
6386 	struct request_sock *req;
6387 
6388 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6389 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6390 	 */
6391 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6392 		tcp_try_undo_recovery(sk);
6393 
6394 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6395 	tp->retrans_stamp = 0;
6396 	inet_csk(sk)->icsk_retransmits = 0;
6397 
6398 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6399 	 * we no longer need req so release it.
6400 	 */
6401 	req = rcu_dereference_protected(tp->fastopen_rsk,
6402 					lockdep_sock_is_held(sk));
6403 	reqsk_fastopen_remove(sk, req, false);
6404 
6405 	/* Re-arm the timer because data may have been sent out.
6406 	 * This is similar to the regular data transmission case
6407 	 * when new data has just been ack'ed.
6408 	 *
6409 	 * (TFO) - we could try to be more aggressive and
6410 	 * retransmitting any data sooner based on when they
6411 	 * are sent out.
6412 	 */
6413 	tcp_rearm_rto(sk);
6414 }
6415 
6416 /*
6417  *	This function implements the receiving procedure of RFC 793 for
6418  *	all states except ESTABLISHED and TIME_WAIT.
6419  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6420  *	address independent.
6421  */
6422 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6423 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6424 {
6425 	struct tcp_sock *tp = tcp_sk(sk);
6426 	struct inet_connection_sock *icsk = inet_csk(sk);
6427 	const struct tcphdr *th = tcp_hdr(skb);
6428 	struct request_sock *req;
6429 	int queued = 0;
6430 	bool acceptable;
6431 
6432 	switch (sk->sk_state) {
6433 	case TCP_CLOSE:
6434 		goto discard;
6435 
6436 	case TCP_LISTEN:
6437 		if (th->ack)
6438 			return 1;
6439 
6440 		if (th->rst)
6441 			goto discard;
6442 
6443 		if (th->syn) {
6444 			if (th->fin)
6445 				goto discard;
6446 			/* It is possible that we process SYN packets from backlog,
6447 			 * so we need to make sure to disable BH and RCU right there.
6448 			 */
6449 			rcu_read_lock();
6450 			local_bh_disable();
6451 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6452 			local_bh_enable();
6453 			rcu_read_unlock();
6454 
6455 			if (!acceptable)
6456 				return 1;
6457 			consume_skb(skb);
6458 			return 0;
6459 		}
6460 		goto discard;
6461 
6462 	case TCP_SYN_SENT:
6463 		tp->rx_opt.saw_tstamp = 0;
6464 		tcp_mstamp_refresh(tp);
6465 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6466 		if (queued >= 0)
6467 			return queued;
6468 
6469 		/* Do step6 onward by hand. */
6470 		tcp_urg(sk, skb, th);
6471 		__kfree_skb(skb);
6472 		tcp_data_snd_check(sk);
6473 		return 0;
6474 	}
6475 
6476 	tcp_mstamp_refresh(tp);
6477 	tp->rx_opt.saw_tstamp = 0;
6478 	req = rcu_dereference_protected(tp->fastopen_rsk,
6479 					lockdep_sock_is_held(sk));
6480 	if (req) {
6481 		bool req_stolen;
6482 
6483 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6484 		    sk->sk_state != TCP_FIN_WAIT1);
6485 
6486 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6487 			goto discard;
6488 	}
6489 
6490 	if (!th->ack && !th->rst && !th->syn)
6491 		goto discard;
6492 
6493 	if (!tcp_validate_incoming(sk, skb, th, 0))
6494 		return 0;
6495 
6496 	/* step 5: check the ACK field */
6497 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6498 				      FLAG_UPDATE_TS_RECENT |
6499 				      FLAG_NO_CHALLENGE_ACK) > 0;
6500 
6501 	if (!acceptable) {
6502 		if (sk->sk_state == TCP_SYN_RECV)
6503 			return 1;	/* send one RST */
6504 		tcp_send_challenge_ack(sk, skb);
6505 		goto discard;
6506 	}
6507 	switch (sk->sk_state) {
6508 	case TCP_SYN_RECV:
6509 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6510 		if (!tp->srtt_us)
6511 			tcp_synack_rtt_meas(sk, req);
6512 
6513 		if (req) {
6514 			tcp_rcv_synrecv_state_fastopen(sk);
6515 		} else {
6516 			tcp_try_undo_spurious_syn(sk);
6517 			tp->retrans_stamp = 0;
6518 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6519 					  skb);
6520 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6521 		}
6522 		smp_mb();
6523 		tcp_set_state(sk, TCP_ESTABLISHED);
6524 		sk->sk_state_change(sk);
6525 
6526 		/* Note, that this wakeup is only for marginal crossed SYN case.
6527 		 * Passively open sockets are not waked up, because
6528 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6529 		 */
6530 		if (sk->sk_socket)
6531 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6532 
6533 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6534 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6535 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6536 
6537 		if (tp->rx_opt.tstamp_ok)
6538 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6539 
6540 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6541 			tcp_update_pacing_rate(sk);
6542 
6543 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6544 		tp->lsndtime = tcp_jiffies32;
6545 
6546 		tcp_initialize_rcv_mss(sk);
6547 		tcp_fast_path_on(tp);
6548 		break;
6549 
6550 	case TCP_FIN_WAIT1: {
6551 		int tmo;
6552 
6553 		if (req)
6554 			tcp_rcv_synrecv_state_fastopen(sk);
6555 
6556 		if (tp->snd_una != tp->write_seq)
6557 			break;
6558 
6559 		tcp_set_state(sk, TCP_FIN_WAIT2);
6560 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6561 
6562 		sk_dst_confirm(sk);
6563 
6564 		if (!sock_flag(sk, SOCK_DEAD)) {
6565 			/* Wake up lingering close() */
6566 			sk->sk_state_change(sk);
6567 			break;
6568 		}
6569 
6570 		if (tp->linger2 < 0) {
6571 			tcp_done(sk);
6572 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6573 			return 1;
6574 		}
6575 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6576 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6577 			/* Receive out of order FIN after close() */
6578 			if (tp->syn_fastopen && th->fin)
6579 				tcp_fastopen_active_disable(sk);
6580 			tcp_done(sk);
6581 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6582 			return 1;
6583 		}
6584 
6585 		tmo = tcp_fin_time(sk);
6586 		if (tmo > TCP_TIMEWAIT_LEN) {
6587 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6588 		} else if (th->fin || sock_owned_by_user(sk)) {
6589 			/* Bad case. We could lose such FIN otherwise.
6590 			 * It is not a big problem, but it looks confusing
6591 			 * and not so rare event. We still can lose it now,
6592 			 * if it spins in bh_lock_sock(), but it is really
6593 			 * marginal case.
6594 			 */
6595 			inet_csk_reset_keepalive_timer(sk, tmo);
6596 		} else {
6597 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6598 			goto discard;
6599 		}
6600 		break;
6601 	}
6602 
6603 	case TCP_CLOSING:
6604 		if (tp->snd_una == tp->write_seq) {
6605 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6606 			goto discard;
6607 		}
6608 		break;
6609 
6610 	case TCP_LAST_ACK:
6611 		if (tp->snd_una == tp->write_seq) {
6612 			tcp_update_metrics(sk);
6613 			tcp_done(sk);
6614 			goto discard;
6615 		}
6616 		break;
6617 	}
6618 
6619 	/* step 6: check the URG bit */
6620 	tcp_urg(sk, skb, th);
6621 
6622 	/* step 7: process the segment text */
6623 	switch (sk->sk_state) {
6624 	case TCP_CLOSE_WAIT:
6625 	case TCP_CLOSING:
6626 	case TCP_LAST_ACK:
6627 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6628 			/* If a subflow has been reset, the packet should not
6629 			 * continue to be processed, drop the packet.
6630 			 */
6631 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6632 				goto discard;
6633 			break;
6634 		}
6635 		fallthrough;
6636 	case TCP_FIN_WAIT1:
6637 	case TCP_FIN_WAIT2:
6638 		/* RFC 793 says to queue data in these states,
6639 		 * RFC 1122 says we MUST send a reset.
6640 		 * BSD 4.4 also does reset.
6641 		 */
6642 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6643 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6644 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6645 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6646 				tcp_reset(sk, skb);
6647 				return 1;
6648 			}
6649 		}
6650 		fallthrough;
6651 	case TCP_ESTABLISHED:
6652 		tcp_data_queue(sk, skb);
6653 		queued = 1;
6654 		break;
6655 	}
6656 
6657 	/* tcp_data could move socket to TIME-WAIT */
6658 	if (sk->sk_state != TCP_CLOSE) {
6659 		tcp_data_snd_check(sk);
6660 		tcp_ack_snd_check(sk);
6661 	}
6662 
6663 	if (!queued) {
6664 discard:
6665 		tcp_drop(sk, skb);
6666 	}
6667 	return 0;
6668 }
6669 EXPORT_SYMBOL(tcp_rcv_state_process);
6670 
pr_drop_req(struct request_sock * req,__u16 port,int family)6671 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6672 {
6673 	struct inet_request_sock *ireq = inet_rsk(req);
6674 
6675 	if (family == AF_INET)
6676 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6677 				    &ireq->ir_rmt_addr, port);
6678 #if IS_ENABLED(CONFIG_IPV6)
6679 	else if (family == AF_INET6)
6680 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6681 				    &ireq->ir_v6_rmt_addr, port);
6682 #endif
6683 }
6684 
6685 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6686  *
6687  * If we receive a SYN packet with these bits set, it means a
6688  * network is playing bad games with TOS bits. In order to
6689  * avoid possible false congestion notifications, we disable
6690  * TCP ECN negotiation.
6691  *
6692  * Exception: tcp_ca wants ECN. This is required for DCTCP
6693  * congestion control: Linux DCTCP asserts ECT on all packets,
6694  * including SYN, which is most optimal solution; however,
6695  * others, such as FreeBSD do not.
6696  *
6697  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6698  * set, indicating the use of a future TCP extension (such as AccECN). See
6699  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6700  * extensions.
6701  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6702 static void tcp_ecn_create_request(struct request_sock *req,
6703 				   const struct sk_buff *skb,
6704 				   const struct sock *listen_sk,
6705 				   const struct dst_entry *dst)
6706 {
6707 	const struct tcphdr *th = tcp_hdr(skb);
6708 	const struct net *net = sock_net(listen_sk);
6709 	bool th_ecn = th->ece && th->cwr;
6710 	bool ect, ecn_ok;
6711 	u32 ecn_ok_dst;
6712 
6713 	if (!th_ecn)
6714 		return;
6715 
6716 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6717 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6718 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6719 
6720 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6721 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6722 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6723 		inet_rsk(req)->ecn_ok = 1;
6724 }
6725 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6726 static void tcp_openreq_init(struct request_sock *req,
6727 			     const struct tcp_options_received *rx_opt,
6728 			     struct sk_buff *skb, const struct sock *sk)
6729 {
6730 	struct inet_request_sock *ireq = inet_rsk(req);
6731 
6732 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6733 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6734 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6735 	tcp_rsk(req)->snt_synack = 0;
6736 	tcp_rsk(req)->last_oow_ack_time = 0;
6737 	req->mss = rx_opt->mss_clamp;
6738 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6739 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6740 	ireq->sack_ok = rx_opt->sack_ok;
6741 	ireq->snd_wscale = rx_opt->snd_wscale;
6742 	ireq->wscale_ok = rx_opt->wscale_ok;
6743 	ireq->acked = 0;
6744 	ireq->ecn_ok = 0;
6745 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6746 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6747 	ireq->ir_mark = inet_request_mark(sk, skb);
6748 #if IS_ENABLED(CONFIG_SMC)
6749 	ireq->smc_ok = rx_opt->smc_ok;
6750 #endif
6751 }
6752 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6753 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6754 				      struct sock *sk_listener,
6755 				      bool attach_listener)
6756 {
6757 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6758 					       attach_listener);
6759 
6760 	if (req) {
6761 		struct inet_request_sock *ireq = inet_rsk(req);
6762 
6763 		ireq->ireq_opt = NULL;
6764 #if IS_ENABLED(CONFIG_IPV6)
6765 		ireq->pktopts = NULL;
6766 #endif
6767 		atomic64_set(&ireq->ir_cookie, 0);
6768 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6769 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6770 		ireq->ireq_family = sk_listener->sk_family;
6771 	}
6772 
6773 	return req;
6774 }
6775 EXPORT_SYMBOL(inet_reqsk_alloc);
6776 
6777 /*
6778  * Return true if a syncookie should be sent
6779  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6780 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6781 {
6782 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6783 	const char *msg = "Dropping request";
6784 	struct net *net = sock_net(sk);
6785 	bool want_cookie = false;
6786 	u8 syncookies;
6787 
6788 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6789 
6790 #ifdef CONFIG_SYN_COOKIES
6791 	if (syncookies) {
6792 		msg = "Sending cookies";
6793 		want_cookie = true;
6794 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6795 	} else
6796 #endif
6797 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6798 
6799 	if (!queue->synflood_warned && syncookies != 2 &&
6800 	    xchg(&queue->synflood_warned, 1) == 0)
6801 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6802 				     proto, sk->sk_num, msg);
6803 
6804 	return want_cookie;
6805 }
6806 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6807 static void tcp_reqsk_record_syn(const struct sock *sk,
6808 				 struct request_sock *req,
6809 				 const struct sk_buff *skb)
6810 {
6811 	if (tcp_sk(sk)->save_syn) {
6812 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6813 		struct saved_syn *saved_syn;
6814 		u32 mac_hdrlen;
6815 		void *base;
6816 
6817 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6818 			base = skb_mac_header(skb);
6819 			mac_hdrlen = skb_mac_header_len(skb);
6820 			len += mac_hdrlen;
6821 		} else {
6822 			base = skb_network_header(skb);
6823 			mac_hdrlen = 0;
6824 		}
6825 
6826 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6827 				    GFP_ATOMIC);
6828 		if (saved_syn) {
6829 			saved_syn->mac_hdrlen = mac_hdrlen;
6830 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6831 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6832 			memcpy(saved_syn->data, base, len);
6833 			req->saved_syn = saved_syn;
6834 		}
6835 	}
6836 }
6837 
6838 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6839  * used for SYN cookie generation.
6840  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6841 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6842 			  const struct tcp_request_sock_ops *af_ops,
6843 			  struct sock *sk, struct tcphdr *th)
6844 {
6845 	struct tcp_sock *tp = tcp_sk(sk);
6846 	u16 mss;
6847 
6848 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6849 	    !inet_csk_reqsk_queue_is_full(sk))
6850 		return 0;
6851 
6852 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6853 		return 0;
6854 
6855 	if (sk_acceptq_is_full(sk)) {
6856 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6857 		return 0;
6858 	}
6859 
6860 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6861 	if (!mss)
6862 		mss = af_ops->mss_clamp;
6863 
6864 	return mss;
6865 }
6866 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6867 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6868 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6869 		     const struct tcp_request_sock_ops *af_ops,
6870 		     struct sock *sk, struct sk_buff *skb)
6871 {
6872 	struct tcp_fastopen_cookie foc = { .len = -1 };
6873 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6874 	struct tcp_options_received tmp_opt;
6875 	struct tcp_sock *tp = tcp_sk(sk);
6876 	struct net *net = sock_net(sk);
6877 	struct sock *fastopen_sk = NULL;
6878 	struct request_sock *req;
6879 	bool want_cookie = false;
6880 	struct dst_entry *dst;
6881 	struct flowi fl;
6882 	u8 syncookies;
6883 
6884 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6885 
6886 	/* TW buckets are converted to open requests without
6887 	 * limitations, they conserve resources and peer is
6888 	 * evidently real one.
6889 	 */
6890 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6891 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6892 		if (!want_cookie)
6893 			goto drop;
6894 	}
6895 
6896 	if (sk_acceptq_is_full(sk)) {
6897 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6898 		goto drop;
6899 	}
6900 
6901 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6902 	if (!req)
6903 		goto drop;
6904 
6905 	req->syncookie = want_cookie;
6906 	tcp_rsk(req)->af_specific = af_ops;
6907 	tcp_rsk(req)->ts_off = 0;
6908 #if IS_ENABLED(CONFIG_MPTCP)
6909 	tcp_rsk(req)->is_mptcp = 0;
6910 #endif
6911 
6912 	tcp_clear_options(&tmp_opt);
6913 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6914 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6915 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6916 			  want_cookie ? NULL : &foc);
6917 
6918 	if (want_cookie && !tmp_opt.saw_tstamp)
6919 		tcp_clear_options(&tmp_opt);
6920 
6921 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6922 		tmp_opt.smc_ok = 0;
6923 
6924 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6925 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6926 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6927 
6928 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6929 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6930 
6931 	dst = af_ops->route_req(sk, skb, &fl, req);
6932 	if (!dst)
6933 		goto drop_and_free;
6934 
6935 	if (tmp_opt.tstamp_ok)
6936 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6937 
6938 	if (!want_cookie && !isn) {
6939 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6940 
6941 		/* Kill the following clause, if you dislike this way. */
6942 		if (!syncookies &&
6943 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6944 		     (max_syn_backlog >> 2)) &&
6945 		    !tcp_peer_is_proven(req, dst)) {
6946 			/* Without syncookies last quarter of
6947 			 * backlog is filled with destinations,
6948 			 * proven to be alive.
6949 			 * It means that we continue to communicate
6950 			 * to destinations, already remembered
6951 			 * to the moment of synflood.
6952 			 */
6953 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6954 				    rsk_ops->family);
6955 			goto drop_and_release;
6956 		}
6957 
6958 		isn = af_ops->init_seq(skb);
6959 	}
6960 
6961 	tcp_ecn_create_request(req, skb, sk, dst);
6962 
6963 	if (want_cookie) {
6964 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6965 		if (!tmp_opt.tstamp_ok)
6966 			inet_rsk(req)->ecn_ok = 0;
6967 	}
6968 
6969 	tcp_rsk(req)->snt_isn = isn;
6970 	tcp_rsk(req)->txhash = net_tx_rndhash();
6971 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6972 	tcp_openreq_init_rwin(req, sk, dst);
6973 	sk_rx_queue_set(req_to_sk(req), skb);
6974 	if (!want_cookie) {
6975 		tcp_reqsk_record_syn(sk, req, skb);
6976 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6977 	}
6978 	if (fastopen_sk) {
6979 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6980 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6981 		/* Add the child socket directly into the accept queue */
6982 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6983 			reqsk_fastopen_remove(fastopen_sk, req, false);
6984 			bh_unlock_sock(fastopen_sk);
6985 			sock_put(fastopen_sk);
6986 			goto drop_and_free;
6987 		}
6988 		sk->sk_data_ready(sk);
6989 		bh_unlock_sock(fastopen_sk);
6990 		sock_put(fastopen_sk);
6991 	} else {
6992 		tcp_rsk(req)->tfo_listener = false;
6993 		if (!want_cookie)
6994 			inet_csk_reqsk_queue_hash_add(sk, req,
6995 				tcp_timeout_init((struct sock *)req));
6996 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6997 				    !want_cookie ? TCP_SYNACK_NORMAL :
6998 						   TCP_SYNACK_COOKIE,
6999 				    skb);
7000 		if (want_cookie) {
7001 			reqsk_free(req);
7002 			return 0;
7003 		}
7004 	}
7005 	reqsk_put(req);
7006 	return 0;
7007 
7008 drop_and_release:
7009 	dst_release(dst);
7010 drop_and_free:
7011 	__reqsk_free(req);
7012 drop:
7013 	tcp_listendrop(sk);
7014 	return 0;
7015 }
7016 EXPORT_SYMBOL(tcp_conn_request);
7017