1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #include <trace/hooks/net.h>
84
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113
114 #define REXMIT_NONE 0 /* no loss recovery to do */
115 #define REXMIT_LOST 1 /* retransmit packets marked lost */
116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
117
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 icsk->icsk_clean_acked = cad;
125 static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 struct bpf_sock_ops_kern sock_ops;
152
153 if (likely(!unknown_opt && !parse_all_opt))
154 return;
155
156 /* The skb will be handled in the
157 * bpf_skops_established() or
158 * bpf_skops_write_hdr_opt().
159 */
160 switch (sk->sk_state) {
161 case TCP_SYN_RECV:
162 case TCP_SYN_SENT:
163 case TCP_LISTEN:
164 return;
165 }
166
167 sock_owned_by_me(sk);
168
169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 sock_ops.is_fullsock = 1;
172 sock_ops.sk = sk;
173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174
175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 struct sk_buff *skb)
180 {
181 struct bpf_sock_ops_kern sock_ops;
182
183 sock_owned_by_me(sk);
184
185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 sock_ops.op = bpf_op;
187 sock_ops.is_fullsock = 1;
188 sock_ops.sk = sk;
189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 if (skb)
191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192
193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 struct sk_buff *skb)
202 {
203 }
204 #endif
205
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
207 unsigned int len)
208 {
209 static bool __once __read_mostly;
210
211 if (!__once) {
212 struct net_device *dev;
213
214 __once = true;
215
216 rcu_read_lock();
217 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
218 if (!dev || len >= dev->mtu)
219 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
220 dev ? dev->name : "Unknown driver");
221 rcu_read_unlock();
222 }
223 }
224
225 /* Adapt the MSS value used to make delayed ack decision to the
226 * real world.
227 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)228 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
229 {
230 struct inet_connection_sock *icsk = inet_csk(sk);
231 const unsigned int lss = icsk->icsk_ack.last_seg_size;
232 unsigned int len;
233
234 icsk->icsk_ack.last_seg_size = 0;
235
236 /* skb->len may jitter because of SACKs, even if peer
237 * sends good full-sized frames.
238 */
239 len = skb_shinfo(skb)->gso_size ? : skb->len;
240 if (len >= icsk->icsk_ack.rcv_mss) {
241 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
242 tcp_sk(sk)->advmss);
243 /* Account for possibly-removed options */
244 if (unlikely(len > icsk->icsk_ack.rcv_mss +
245 MAX_TCP_OPTION_SPACE))
246 tcp_gro_dev_warn(sk, skb, len);
247 /* If the skb has a len of exactly 1*MSS and has the PSH bit
248 * set then it is likely the end of an application write. So
249 * more data may not be arriving soon, and yet the data sender
250 * may be waiting for an ACK if cwnd-bound or using TX zero
251 * copy. So we set ICSK_ACK_PUSHED here so that
252 * tcp_cleanup_rbuf() will send an ACK immediately if the app
253 * reads all of the data and is not ping-pong. If len > MSS
254 * then this logic does not matter (and does not hurt) because
255 * tcp_cleanup_rbuf() will always ACK immediately if the app
256 * reads data and there is more than an MSS of unACKed data.
257 */
258 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
259 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
260 } else {
261 /* Otherwise, we make more careful check taking into account,
262 * that SACKs block is variable.
263 *
264 * "len" is invariant segment length, including TCP header.
265 */
266 len += skb->data - skb_transport_header(skb);
267 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
268 /* If PSH is not set, packet should be
269 * full sized, provided peer TCP is not badly broken.
270 * This observation (if it is correct 8)) allows
271 * to handle super-low mtu links fairly.
272 */
273 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
274 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
275 /* Subtract also invariant (if peer is RFC compliant),
276 * tcp header plus fixed timestamp option length.
277 * Resulting "len" is MSS free of SACK jitter.
278 */
279 len -= tcp_sk(sk)->tcp_header_len;
280 icsk->icsk_ack.last_seg_size = len;
281 if (len == lss) {
282 icsk->icsk_ack.rcv_mss = len;
283 return;
284 }
285 }
286 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
287 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
288 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
289 }
290 }
291
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)292 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
293 {
294 struct inet_connection_sock *icsk = inet_csk(sk);
295 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
296
297 if (quickacks == 0)
298 quickacks = 2;
299 quickacks = min(quickacks, max_quickacks);
300 if (quickacks > icsk->icsk_ack.quick)
301 icsk->icsk_ack.quick = quickacks;
302 }
303
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)304 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
305 {
306 struct inet_connection_sock *icsk = inet_csk(sk);
307
308 tcp_incr_quickack(sk, max_quickacks);
309 inet_csk_exit_pingpong_mode(sk);
310 icsk->icsk_ack.ato = TCP_ATO_MIN;
311 }
312
313 /* Send ACKs quickly, if "quick" count is not exhausted
314 * and the session is not interactive.
315 */
316
tcp_in_quickack_mode(struct sock * sk)317 static bool tcp_in_quickack_mode(struct sock *sk)
318 {
319 const struct inet_connection_sock *icsk = inet_csk(sk);
320 const struct dst_entry *dst = __sk_dst_get(sk);
321
322 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
323 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
324 }
325
tcp_ecn_queue_cwr(struct tcp_sock * tp)326 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
327 {
328 if (tp->ecn_flags & TCP_ECN_OK)
329 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
330 }
331
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)332 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
333 {
334 if (tcp_hdr(skb)->cwr) {
335 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
336
337 /* If the sender is telling us it has entered CWR, then its
338 * cwnd may be very low (even just 1 packet), so we should ACK
339 * immediately.
340 */
341 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
342 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
343 }
344 }
345
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)346 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
347 {
348 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 }
350
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)351 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354
355 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
356 case INET_ECN_NOT_ECT:
357 /* Funny extension: if ECT is not set on a segment,
358 * and we already seen ECT on a previous segment,
359 * it is probably a retransmit.
360 */
361 if (tp->ecn_flags & TCP_ECN_SEEN)
362 tcp_enter_quickack_mode(sk, 2);
363 break;
364 case INET_ECN_CE:
365 if (tcp_ca_needs_ecn(sk))
366 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
367
368 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
369 /* Better not delay acks, sender can have a very low cwnd */
370 tcp_enter_quickack_mode(sk, 2);
371 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
372 }
373 tp->ecn_flags |= TCP_ECN_SEEN;
374 break;
375 default:
376 if (tcp_ca_needs_ecn(sk))
377 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
378 tp->ecn_flags |= TCP_ECN_SEEN;
379 break;
380 }
381 }
382
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)383 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
384 {
385 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
386 __tcp_ecn_check_ce(sk, skb);
387 }
388
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)389 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
390 {
391 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
392 tp->ecn_flags &= ~TCP_ECN_OK;
393 }
394
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)395 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
396 {
397 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
398 tp->ecn_flags &= ~TCP_ECN_OK;
399 }
400
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)401 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
402 {
403 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
404 return true;
405 return false;
406 }
407
408 /* Buffer size and advertised window tuning.
409 *
410 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
411 */
412
tcp_sndbuf_expand(struct sock * sk)413 static void tcp_sndbuf_expand(struct sock *sk)
414 {
415 const struct tcp_sock *tp = tcp_sk(sk);
416 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
417 int sndmem, per_mss;
418 u32 nr_segs;
419
420 /* Worst case is non GSO/TSO : each frame consumes one skb
421 * and skb->head is kmalloced using power of two area of memory
422 */
423 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
424 MAX_TCP_HEADER +
425 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426
427 per_mss = roundup_pow_of_two(per_mss) +
428 SKB_DATA_ALIGN(sizeof(struct sk_buff));
429
430 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
431 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
432
433 /* Fast Recovery (RFC 5681 3.2) :
434 * Cubic needs 1.7 factor, rounded to 2 to include
435 * extra cushion (application might react slowly to EPOLLOUT)
436 */
437 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
438 sndmem *= nr_segs * per_mss;
439
440 if (sk->sk_sndbuf < sndmem)
441 WRITE_ONCE(sk->sk_sndbuf,
442 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
443 }
444
445 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
446 *
447 * All tcp_full_space() is split to two parts: "network" buffer, allocated
448 * forward and advertised in receiver window (tp->rcv_wnd) and
449 * "application buffer", required to isolate scheduling/application
450 * latencies from network.
451 * window_clamp is maximal advertised window. It can be less than
452 * tcp_full_space(), in this case tcp_full_space() - window_clamp
453 * is reserved for "application" buffer. The less window_clamp is
454 * the smoother our behaviour from viewpoint of network, but the lower
455 * throughput and the higher sensitivity of the connection to losses. 8)
456 *
457 * rcv_ssthresh is more strict window_clamp used at "slow start"
458 * phase to predict further behaviour of this connection.
459 * It is used for two goals:
460 * - to enforce header prediction at sender, even when application
461 * requires some significant "application buffer". It is check #1.
462 * - to prevent pruning of receive queue because of misprediction
463 * of receiver window. Check #2.
464 *
465 * The scheme does not work when sender sends good segments opening
466 * window and then starts to feed us spaghetti. But it should work
467 * in common situations. Otherwise, we have to rely on queue collapsing.
468 */
469
470 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)471 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
472 unsigned int skbtruesize)
473 {
474 struct tcp_sock *tp = tcp_sk(sk);
475 /* Optimize this! */
476 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
477 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
478
479 while (tp->rcv_ssthresh <= window) {
480 if (truesize <= skb->len)
481 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
482
483 truesize >>= 1;
484 window >>= 1;
485 }
486 return 0;
487 }
488
489 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
490 * can play nice with us, as sk_buff and skb->head might be either
491 * freed or shared with up to MAX_SKB_FRAGS segments.
492 * Only give a boost to drivers using page frag(s) to hold the frame(s),
493 * and if no payload was pulled in skb->head before reaching us.
494 */
truesize_adjust(bool adjust,const struct sk_buff * skb)495 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
496 {
497 u32 truesize = skb->truesize;
498
499 if (adjust && !skb_headlen(skb)) {
500 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
501 /* paranoid check, some drivers might be buggy */
502 if (unlikely((int)truesize < (int)skb->len))
503 truesize = skb->truesize;
504 }
505 return truesize;
506 }
507
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)508 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
509 bool adjust)
510 {
511 struct tcp_sock *tp = tcp_sk(sk);
512 int room;
513
514 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
515
516 /* Check #1 */
517 if (room > 0 && !tcp_under_memory_pressure(sk)) {
518 unsigned int truesize = truesize_adjust(adjust, skb);
519 int incr;
520
521 /* Check #2. Increase window, if skb with such overhead
522 * will fit to rcvbuf in future.
523 */
524 if (tcp_win_from_space(sk, truesize) <= skb->len)
525 incr = 2 * tp->advmss;
526 else
527 incr = __tcp_grow_window(sk, skb, truesize);
528
529 if (incr) {
530 incr = max_t(int, incr, 2 * skb->len);
531 tp->rcv_ssthresh += min(room, incr);
532 inet_csk(sk)->icsk_ack.quick |= 1;
533 }
534 }
535 }
536
537 /* 3. Try to fixup all. It is made immediately after connection enters
538 * established state.
539 */
tcp_init_buffer_space(struct sock * sk)540 static void tcp_init_buffer_space(struct sock *sk)
541 {
542 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
543 struct tcp_sock *tp = tcp_sk(sk);
544 int maxwin;
545
546 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
547 tcp_sndbuf_expand(sk);
548
549 tcp_mstamp_refresh(tp);
550 tp->rcvq_space.time = tp->tcp_mstamp;
551 tp->rcvq_space.seq = tp->copied_seq;
552
553 maxwin = tcp_full_space(sk);
554
555 if (tp->window_clamp >= maxwin) {
556 tp->window_clamp = maxwin;
557
558 if (tcp_app_win && maxwin > 4 * tp->advmss)
559 tp->window_clamp = max(maxwin -
560 (maxwin >> tcp_app_win),
561 4 * tp->advmss);
562 }
563
564 /* Force reservation of one segment. */
565 if (tcp_app_win &&
566 tp->window_clamp > 2 * tp->advmss &&
567 tp->window_clamp + tp->advmss > maxwin)
568 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
569
570 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
571 tp->snd_cwnd_stamp = tcp_jiffies32;
572 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
573 (u32)TCP_INIT_CWND * tp->advmss);
574 }
575
576 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)577 static void tcp_clamp_window(struct sock *sk)
578 {
579 struct tcp_sock *tp = tcp_sk(sk);
580 struct inet_connection_sock *icsk = inet_csk(sk);
581 struct net *net = sock_net(sk);
582 int rmem2;
583
584 icsk->icsk_ack.quick = 0;
585 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
586
587 if (sk->sk_rcvbuf < rmem2 &&
588 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
589 !tcp_under_memory_pressure(sk) &&
590 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
591 WRITE_ONCE(sk->sk_rcvbuf,
592 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
593 }
594 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
595 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
596 }
597
598 /* Initialize RCV_MSS value.
599 * RCV_MSS is an our guess about MSS used by the peer.
600 * We haven't any direct information about the MSS.
601 * It's better to underestimate the RCV_MSS rather than overestimate.
602 * Overestimations make us ACKing less frequently than needed.
603 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
604 */
tcp_initialize_rcv_mss(struct sock * sk)605 void tcp_initialize_rcv_mss(struct sock *sk)
606 {
607 const struct tcp_sock *tp = tcp_sk(sk);
608 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
609
610 hint = min(hint, tp->rcv_wnd / 2);
611 hint = min(hint, TCP_MSS_DEFAULT);
612 hint = max(hint, TCP_MIN_MSS);
613
614 inet_csk(sk)->icsk_ack.rcv_mss = hint;
615 }
616 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
617
618 /* Receiver "autotuning" code.
619 *
620 * The algorithm for RTT estimation w/o timestamps is based on
621 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
622 * <https://public.lanl.gov/radiant/pubs.html#DRS>
623 *
624 * More detail on this code can be found at
625 * <http://staff.psc.edu/jheffner/>,
626 * though this reference is out of date. A new paper
627 * is pending.
628 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)629 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
630 {
631 u32 new_sample = tp->rcv_rtt_est.rtt_us;
632 long m = sample;
633
634 if (new_sample != 0) {
635 /* If we sample in larger samples in the non-timestamp
636 * case, we could grossly overestimate the RTT especially
637 * with chatty applications or bulk transfer apps which
638 * are stalled on filesystem I/O.
639 *
640 * Also, since we are only going for a minimum in the
641 * non-timestamp case, we do not smooth things out
642 * else with timestamps disabled convergence takes too
643 * long.
644 */
645 if (!win_dep) {
646 m -= (new_sample >> 3);
647 new_sample += m;
648 } else {
649 m <<= 3;
650 if (m < new_sample)
651 new_sample = m;
652 }
653 } else {
654 /* No previous measure. */
655 new_sample = m << 3;
656 }
657
658 tp->rcv_rtt_est.rtt_us = new_sample;
659 }
660
tcp_rcv_rtt_measure(struct tcp_sock * tp)661 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
662 {
663 u32 delta_us;
664
665 if (tp->rcv_rtt_est.time == 0)
666 goto new_measure;
667 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
668 return;
669 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
670 if (!delta_us)
671 delta_us = 1;
672 tcp_rcv_rtt_update(tp, delta_us, 1);
673
674 new_measure:
675 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
676 tp->rcv_rtt_est.time = tp->tcp_mstamp;
677 }
678
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)679 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
680 const struct sk_buff *skb)
681 {
682 struct tcp_sock *tp = tcp_sk(sk);
683
684 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
685 return;
686 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
687
688 if (TCP_SKB_CB(skb)->end_seq -
689 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
690 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
691 u32 delta_us;
692
693 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
694 if (!delta)
695 delta = 1;
696 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
697 tcp_rcv_rtt_update(tp, delta_us, 0);
698 }
699 }
700 }
701
702 /*
703 * This function should be called every time data is copied to user space.
704 * It calculates the appropriate TCP receive buffer space.
705 */
tcp_rcv_space_adjust(struct sock * sk)706 void tcp_rcv_space_adjust(struct sock *sk)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709 u32 copied;
710 int time;
711
712 trace_tcp_rcv_space_adjust(sk);
713
714 tcp_mstamp_refresh(tp);
715 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
716 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
717 return;
718
719 /* Number of bytes copied to user in last RTT */
720 copied = tp->copied_seq - tp->rcvq_space.seq;
721 if (copied <= tp->rcvq_space.space)
722 goto new_measure;
723
724 /* A bit of theory :
725 * copied = bytes received in previous RTT, our base window
726 * To cope with packet losses, we need a 2x factor
727 * To cope with slow start, and sender growing its cwin by 100 %
728 * every RTT, we need a 4x factor, because the ACK we are sending
729 * now is for the next RTT, not the current one :
730 * <prev RTT . ><current RTT .. ><next RTT .... >
731 */
732
733 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
734 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
735 int rcvmem, rcvbuf;
736 u64 rcvwin, grow;
737
738 /* minimal window to cope with packet losses, assuming
739 * steady state. Add some cushion because of small variations.
740 */
741 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
742
743 /* Accommodate for sender rate increase (eg. slow start) */
744 grow = rcvwin * (copied - tp->rcvq_space.space);
745 do_div(grow, tp->rcvq_space.space);
746 rcvwin += (grow << 1);
747
748 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
749 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
750 rcvmem += 128;
751
752 do_div(rcvwin, tp->advmss);
753 rcvbuf = min_t(u64, rcvwin * rcvmem,
754 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
755 if (rcvbuf > sk->sk_rcvbuf) {
756 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
757
758 /* Make the window clamp follow along. */
759 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
760 }
761 }
762 tp->rcvq_space.space = copied;
763
764 new_measure:
765 tp->rcvq_space.seq = tp->copied_seq;
766 tp->rcvq_space.time = tp->tcp_mstamp;
767 }
768
769 /* There is something which you must keep in mind when you analyze the
770 * behavior of the tp->ato delayed ack timeout interval. When a
771 * connection starts up, we want to ack as quickly as possible. The
772 * problem is that "good" TCP's do slow start at the beginning of data
773 * transmission. The means that until we send the first few ACK's the
774 * sender will sit on his end and only queue most of his data, because
775 * he can only send snd_cwnd unacked packets at any given time. For
776 * each ACK we send, he increments snd_cwnd and transmits more of his
777 * queue. -DaveM
778 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)779 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
780 {
781 struct tcp_sock *tp = tcp_sk(sk);
782 struct inet_connection_sock *icsk = inet_csk(sk);
783 u32 now;
784
785 inet_csk_schedule_ack(sk);
786
787 tcp_measure_rcv_mss(sk, skb);
788
789 tcp_rcv_rtt_measure(tp);
790
791 now = tcp_jiffies32;
792
793 if (!icsk->icsk_ack.ato) {
794 /* The _first_ data packet received, initialize
795 * delayed ACK engine.
796 */
797 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
798 icsk->icsk_ack.ato = TCP_ATO_MIN;
799 } else {
800 int m = now - icsk->icsk_ack.lrcvtime;
801
802 if (m <= TCP_ATO_MIN / 2) {
803 /* The fastest case is the first. */
804 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
805 } else if (m < icsk->icsk_ack.ato) {
806 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
807 if (icsk->icsk_ack.ato > icsk->icsk_rto)
808 icsk->icsk_ack.ato = icsk->icsk_rto;
809 } else if (m > icsk->icsk_rto) {
810 /* Too long gap. Apparently sender failed to
811 * restart window, so that we send ACKs quickly.
812 */
813 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
814 sk_mem_reclaim(sk);
815 }
816 }
817 icsk->icsk_ack.lrcvtime = now;
818
819 tcp_ecn_check_ce(sk, skb);
820
821 if (skb->len >= 128)
822 tcp_grow_window(sk, skb, true);
823 }
824
825 /* Called to compute a smoothed rtt estimate. The data fed to this
826 * routine either comes from timestamps, or from segments that were
827 * known _not_ to have been retransmitted [see Karn/Partridge
828 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
829 * piece by Van Jacobson.
830 * NOTE: the next three routines used to be one big routine.
831 * To save cycles in the RFC 1323 implementation it was better to break
832 * it up into three procedures. -- erics
833 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)834 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
835 {
836 struct tcp_sock *tp = tcp_sk(sk);
837 long m = mrtt_us; /* RTT */
838 u32 srtt = tp->srtt_us;
839
840 /* The following amusing code comes from Jacobson's
841 * article in SIGCOMM '88. Note that rtt and mdev
842 * are scaled versions of rtt and mean deviation.
843 * This is designed to be as fast as possible
844 * m stands for "measurement".
845 *
846 * On a 1990 paper the rto value is changed to:
847 * RTO = rtt + 4 * mdev
848 *
849 * Funny. This algorithm seems to be very broken.
850 * These formulae increase RTO, when it should be decreased, increase
851 * too slowly, when it should be increased quickly, decrease too quickly
852 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
853 * does not matter how to _calculate_ it. Seems, it was trap
854 * that VJ failed to avoid. 8)
855 */
856 if (srtt != 0) {
857 m -= (srtt >> 3); /* m is now error in rtt est */
858 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
859 if (m < 0) {
860 m = -m; /* m is now abs(error) */
861 m -= (tp->mdev_us >> 2); /* similar update on mdev */
862 /* This is similar to one of Eifel findings.
863 * Eifel blocks mdev updates when rtt decreases.
864 * This solution is a bit different: we use finer gain
865 * for mdev in this case (alpha*beta).
866 * Like Eifel it also prevents growth of rto,
867 * but also it limits too fast rto decreases,
868 * happening in pure Eifel.
869 */
870 if (m > 0)
871 m >>= 3;
872 } else {
873 m -= (tp->mdev_us >> 2); /* similar update on mdev */
874 }
875 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
876 if (tp->mdev_us > tp->mdev_max_us) {
877 tp->mdev_max_us = tp->mdev_us;
878 if (tp->mdev_max_us > tp->rttvar_us)
879 tp->rttvar_us = tp->mdev_max_us;
880 }
881 if (after(tp->snd_una, tp->rtt_seq)) {
882 if (tp->mdev_max_us < tp->rttvar_us)
883 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
884 tp->rtt_seq = tp->snd_nxt;
885 tp->mdev_max_us = tcp_rto_min_us(sk);
886
887 tcp_bpf_rtt(sk);
888 }
889 } else {
890 /* no previous measure. */
891 srtt = m << 3; /* take the measured time to be rtt */
892 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
893 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
894 tp->mdev_max_us = tp->rttvar_us;
895 tp->rtt_seq = tp->snd_nxt;
896
897 tcp_bpf_rtt(sk);
898 }
899 tp->srtt_us = max(1U, srtt);
900 }
901
tcp_update_pacing_rate(struct sock * sk)902 static void tcp_update_pacing_rate(struct sock *sk)
903 {
904 const struct tcp_sock *tp = tcp_sk(sk);
905 u64 rate;
906
907 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
908 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
909
910 /* current rate is (cwnd * mss) / srtt
911 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
912 * In Congestion Avoidance phase, set it to 120 % the current rate.
913 *
914 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
915 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
916 * end of slow start and should slow down.
917 */
918 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
919 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
920 else
921 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
922
923 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
924
925 if (likely(tp->srtt_us))
926 do_div(rate, tp->srtt_us);
927
928 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
929 * without any lock. We want to make sure compiler wont store
930 * intermediate values in this location.
931 */
932 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
933 sk->sk_max_pacing_rate));
934 }
935
936 /* Calculate rto without backoff. This is the second half of Van Jacobson's
937 * routine referred to above.
938 */
tcp_set_rto(struct sock * sk)939 static void tcp_set_rto(struct sock *sk)
940 {
941 const struct tcp_sock *tp = tcp_sk(sk);
942 /* Old crap is replaced with new one. 8)
943 *
944 * More seriously:
945 * 1. If rtt variance happened to be less 50msec, it is hallucination.
946 * It cannot be less due to utterly erratic ACK generation made
947 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
948 * to do with delayed acks, because at cwnd>2 true delack timeout
949 * is invisible. Actually, Linux-2.4 also generates erratic
950 * ACKs in some circumstances.
951 */
952 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
953
954 /* 2. Fixups made earlier cannot be right.
955 * If we do not estimate RTO correctly without them,
956 * all the algo is pure shit and should be replaced
957 * with correct one. It is exactly, which we pretend to do.
958 */
959
960 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
961 * guarantees that rto is higher.
962 */
963 tcp_bound_rto(sk);
964 }
965
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)966 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
967 {
968 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
969
970 if (!cwnd)
971 cwnd = TCP_INIT_CWND;
972 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
973 }
974
975 struct tcp_sacktag_state {
976 /* Timestamps for earliest and latest never-retransmitted segment
977 * that was SACKed. RTO needs the earliest RTT to stay conservative,
978 * but congestion control should still get an accurate delay signal.
979 */
980 u64 first_sackt;
981 u64 last_sackt;
982 u32 reord;
983 u32 sack_delivered;
984 int flag;
985 unsigned int mss_now;
986 struct rate_sample *rate;
987 };
988
989 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
990 * and spurious retransmission information if this DSACK is unlikely caused by
991 * sender's action:
992 * - DSACKed sequence range is larger than maximum receiver's window.
993 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
994 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)995 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
996 u32 end_seq, struct tcp_sacktag_state *state)
997 {
998 u32 seq_len, dup_segs = 1;
999
1000 if (!before(start_seq, end_seq))
1001 return 0;
1002
1003 seq_len = end_seq - start_seq;
1004 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1005 if (seq_len > tp->max_window)
1006 return 0;
1007 if (seq_len > tp->mss_cache)
1008 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1009 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1010 state->flag |= FLAG_DSACK_TLP;
1011
1012 tp->dsack_dups += dup_segs;
1013 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1014 if (tp->dsack_dups > tp->total_retrans)
1015 return 0;
1016
1017 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1018 /* We increase the RACK ordering window in rounds where we receive
1019 * DSACKs that may have been due to reordering causing RACK to trigger
1020 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1021 * without having seen reordering, or that match TLP probes (TLP
1022 * is timer-driven, not triggered by RACK).
1023 */
1024 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1025 tp->rack.dsack_seen = 1;
1026
1027 state->flag |= FLAG_DSACKING_ACK;
1028 /* A spurious retransmission is delivered */
1029 state->sack_delivered += dup_segs;
1030
1031 return dup_segs;
1032 }
1033
1034 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1035 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1036 * distance is approximated in full-mss packet distance ("reordering").
1037 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1038 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1039 const int ts)
1040 {
1041 struct tcp_sock *tp = tcp_sk(sk);
1042 const u32 mss = tp->mss_cache;
1043 u32 fack, metric;
1044
1045 fack = tcp_highest_sack_seq(tp);
1046 if (!before(low_seq, fack))
1047 return;
1048
1049 metric = fack - low_seq;
1050 if ((metric > tp->reordering * mss) && mss) {
1051 #if FASTRETRANS_DEBUG > 1
1052 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1053 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1054 tp->reordering,
1055 0,
1056 tp->sacked_out,
1057 tp->undo_marker ? tp->undo_retrans : 0);
1058 #endif
1059 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1060 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1061 }
1062
1063 /* This exciting event is worth to be remembered. 8) */
1064 tp->reord_seen++;
1065 NET_INC_STATS(sock_net(sk),
1066 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1067 }
1068
1069 /* This must be called before lost_out or retrans_out are updated
1070 * on a new loss, because we want to know if all skbs previously
1071 * known to be lost have already been retransmitted, indicating
1072 * that this newly lost skb is our next skb to retransmit.
1073 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1074 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1075 {
1076 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1077 (tp->retransmit_skb_hint &&
1078 before(TCP_SKB_CB(skb)->seq,
1079 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1080 tp->retransmit_skb_hint = skb;
1081 }
1082
1083 /* Sum the number of packets on the wire we have marked as lost, and
1084 * notify the congestion control module that the given skb was marked lost.
1085 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1086 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1087 {
1088 tp->lost += tcp_skb_pcount(skb);
1089 }
1090
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1091 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1092 {
1093 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1094 struct tcp_sock *tp = tcp_sk(sk);
1095
1096 if (sacked & TCPCB_SACKED_ACKED)
1097 return;
1098
1099 tcp_verify_retransmit_hint(tp, skb);
1100 if (sacked & TCPCB_LOST) {
1101 if (sacked & TCPCB_SACKED_RETRANS) {
1102 /* Account for retransmits that are lost again */
1103 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1104 tp->retrans_out -= tcp_skb_pcount(skb);
1105 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1106 tcp_skb_pcount(skb));
1107 tcp_notify_skb_loss_event(tp, skb);
1108 }
1109 } else {
1110 tp->lost_out += tcp_skb_pcount(skb);
1111 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1112 tcp_notify_skb_loss_event(tp, skb);
1113 }
1114 }
1115
1116 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1117 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1118 bool ece_ack)
1119 {
1120 tp->delivered += delivered;
1121 if (ece_ack)
1122 tp->delivered_ce += delivered;
1123 }
1124
1125 /* This procedure tags the retransmission queue when SACKs arrive.
1126 *
1127 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1128 * Packets in queue with these bits set are counted in variables
1129 * sacked_out, retrans_out and lost_out, correspondingly.
1130 *
1131 * Valid combinations are:
1132 * Tag InFlight Description
1133 * 0 1 - orig segment is in flight.
1134 * S 0 - nothing flies, orig reached receiver.
1135 * L 0 - nothing flies, orig lost by net.
1136 * R 2 - both orig and retransmit are in flight.
1137 * L|R 1 - orig is lost, retransmit is in flight.
1138 * S|R 1 - orig reached receiver, retrans is still in flight.
1139 * (L|S|R is logically valid, it could occur when L|R is sacked,
1140 * but it is equivalent to plain S and code short-curcuits it to S.
1141 * L|S is logically invalid, it would mean -1 packet in flight 8))
1142 *
1143 * These 6 states form finite state machine, controlled by the following events:
1144 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1145 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1146 * 3. Loss detection event of two flavors:
1147 * A. Scoreboard estimator decided the packet is lost.
1148 * A'. Reno "three dupacks" marks head of queue lost.
1149 * B. SACK arrives sacking SND.NXT at the moment, when the
1150 * segment was retransmitted.
1151 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1152 *
1153 * It is pleasant to note, that state diagram turns out to be commutative,
1154 * so that we are allowed not to be bothered by order of our actions,
1155 * when multiple events arrive simultaneously. (see the function below).
1156 *
1157 * Reordering detection.
1158 * --------------------
1159 * Reordering metric is maximal distance, which a packet can be displaced
1160 * in packet stream. With SACKs we can estimate it:
1161 *
1162 * 1. SACK fills old hole and the corresponding segment was not
1163 * ever retransmitted -> reordering. Alas, we cannot use it
1164 * when segment was retransmitted.
1165 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1166 * for retransmitted and already SACKed segment -> reordering..
1167 * Both of these heuristics are not used in Loss state, when we cannot
1168 * account for retransmits accurately.
1169 *
1170 * SACK block validation.
1171 * ----------------------
1172 *
1173 * SACK block range validation checks that the received SACK block fits to
1174 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1175 * Note that SND.UNA is not included to the range though being valid because
1176 * it means that the receiver is rather inconsistent with itself reporting
1177 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1178 * perfectly valid, however, in light of RFC2018 which explicitly states
1179 * that "SACK block MUST reflect the newest segment. Even if the newest
1180 * segment is going to be discarded ...", not that it looks very clever
1181 * in case of head skb. Due to potentional receiver driven attacks, we
1182 * choose to avoid immediate execution of a walk in write queue due to
1183 * reneging and defer head skb's loss recovery to standard loss recovery
1184 * procedure that will eventually trigger (nothing forbids us doing this).
1185 *
1186 * Implements also blockage to start_seq wrap-around. Problem lies in the
1187 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1188 * there's no guarantee that it will be before snd_nxt (n). The problem
1189 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1190 * wrap (s_w):
1191 *
1192 * <- outs wnd -> <- wrapzone ->
1193 * u e n u_w e_w s n_w
1194 * | | | | | | |
1195 * |<------------+------+----- TCP seqno space --------------+---------->|
1196 * ...-- <2^31 ->| |<--------...
1197 * ...---- >2^31 ------>| |<--------...
1198 *
1199 * Current code wouldn't be vulnerable but it's better still to discard such
1200 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1201 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1202 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1203 * equal to the ideal case (infinite seqno space without wrap caused issues).
1204 *
1205 * With D-SACK the lower bound is extended to cover sequence space below
1206 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1207 * again, D-SACK block must not to go across snd_una (for the same reason as
1208 * for the normal SACK blocks, explained above). But there all simplicity
1209 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1210 * fully below undo_marker they do not affect behavior in anyway and can
1211 * therefore be safely ignored. In rare cases (which are more or less
1212 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1213 * fragmentation and packet reordering past skb's retransmission. To consider
1214 * them correctly, the acceptable range must be extended even more though
1215 * the exact amount is rather hard to quantify. However, tp->max_window can
1216 * be used as an exaggerated estimate.
1217 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1218 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1219 u32 start_seq, u32 end_seq)
1220 {
1221 /* Too far in future, or reversed (interpretation is ambiguous) */
1222 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1223 return false;
1224
1225 /* Nasty start_seq wrap-around check (see comments above) */
1226 if (!before(start_seq, tp->snd_nxt))
1227 return false;
1228
1229 /* In outstanding window? ...This is valid exit for D-SACKs too.
1230 * start_seq == snd_una is non-sensical (see comments above)
1231 */
1232 if (after(start_seq, tp->snd_una))
1233 return true;
1234
1235 if (!is_dsack || !tp->undo_marker)
1236 return false;
1237
1238 /* ...Then it's D-SACK, and must reside below snd_una completely */
1239 if (after(end_seq, tp->snd_una))
1240 return false;
1241
1242 if (!before(start_seq, tp->undo_marker))
1243 return true;
1244
1245 /* Too old */
1246 if (!after(end_seq, tp->undo_marker))
1247 return false;
1248
1249 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1250 * start_seq < undo_marker and end_seq >= undo_marker.
1251 */
1252 return !before(start_seq, end_seq - tp->max_window);
1253 }
1254
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1255 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1256 struct tcp_sack_block_wire *sp, int num_sacks,
1257 u32 prior_snd_una, struct tcp_sacktag_state *state)
1258 {
1259 struct tcp_sock *tp = tcp_sk(sk);
1260 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1261 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1262 u32 dup_segs;
1263
1264 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1266 } else if (num_sacks > 1) {
1267 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1268 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1269
1270 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1271 return false;
1272 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1273 } else {
1274 return false;
1275 }
1276
1277 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1278 if (!dup_segs) { /* Skip dubious DSACK */
1279 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1280 return false;
1281 }
1282
1283 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1284
1285 /* D-SACK for already forgotten data... Do dumb counting. */
1286 if (tp->undo_marker && tp->undo_retrans > 0 &&
1287 !after(end_seq_0, prior_snd_una) &&
1288 after(end_seq_0, tp->undo_marker))
1289 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1290
1291 return true;
1292 }
1293
1294 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1295 * the incoming SACK may not exactly match but we can find smaller MSS
1296 * aligned portion of it that matches. Therefore we might need to fragment
1297 * which may fail and creates some hassle (caller must handle error case
1298 * returns).
1299 *
1300 * FIXME: this could be merged to shift decision code
1301 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1302 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1303 u32 start_seq, u32 end_seq)
1304 {
1305 int err;
1306 bool in_sack;
1307 unsigned int pkt_len;
1308 unsigned int mss;
1309
1310 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1311 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1312
1313 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1314 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1315 mss = tcp_skb_mss(skb);
1316 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1317
1318 if (!in_sack) {
1319 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1320 if (pkt_len < mss)
1321 pkt_len = mss;
1322 } else {
1323 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1324 if (pkt_len < mss)
1325 return -EINVAL;
1326 }
1327
1328 /* Round if necessary so that SACKs cover only full MSSes
1329 * and/or the remaining small portion (if present)
1330 */
1331 if (pkt_len > mss) {
1332 unsigned int new_len = (pkt_len / mss) * mss;
1333 if (!in_sack && new_len < pkt_len)
1334 new_len += mss;
1335 pkt_len = new_len;
1336 }
1337
1338 if (pkt_len >= skb->len && !in_sack)
1339 return 0;
1340
1341 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1342 pkt_len, mss, GFP_ATOMIC);
1343 if (err < 0)
1344 return err;
1345 }
1346
1347 return in_sack;
1348 }
1349
1350 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1351 static u8 tcp_sacktag_one(struct sock *sk,
1352 struct tcp_sacktag_state *state, u8 sacked,
1353 u32 start_seq, u32 end_seq,
1354 int dup_sack, int pcount,
1355 u64 xmit_time)
1356 {
1357 struct tcp_sock *tp = tcp_sk(sk);
1358
1359 /* Account D-SACK for retransmitted packet. */
1360 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1361 if (tp->undo_marker && tp->undo_retrans > 0 &&
1362 after(end_seq, tp->undo_marker))
1363 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1364 if ((sacked & TCPCB_SACKED_ACKED) &&
1365 before(start_seq, state->reord))
1366 state->reord = start_seq;
1367 }
1368
1369 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1370 if (!after(end_seq, tp->snd_una))
1371 return sacked;
1372
1373 if (!(sacked & TCPCB_SACKED_ACKED)) {
1374 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1375
1376 if (sacked & TCPCB_SACKED_RETRANS) {
1377 /* If the segment is not tagged as lost,
1378 * we do not clear RETRANS, believing
1379 * that retransmission is still in flight.
1380 */
1381 if (sacked & TCPCB_LOST) {
1382 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1383 tp->lost_out -= pcount;
1384 tp->retrans_out -= pcount;
1385 }
1386 } else {
1387 if (!(sacked & TCPCB_RETRANS)) {
1388 /* New sack for not retransmitted frame,
1389 * which was in hole. It is reordering.
1390 */
1391 if (before(start_seq,
1392 tcp_highest_sack_seq(tp)) &&
1393 before(start_seq, state->reord))
1394 state->reord = start_seq;
1395
1396 if (!after(end_seq, tp->high_seq))
1397 state->flag |= FLAG_ORIG_SACK_ACKED;
1398 if (state->first_sackt == 0)
1399 state->first_sackt = xmit_time;
1400 state->last_sackt = xmit_time;
1401 }
1402
1403 if (sacked & TCPCB_LOST) {
1404 sacked &= ~TCPCB_LOST;
1405 tp->lost_out -= pcount;
1406 }
1407 }
1408
1409 sacked |= TCPCB_SACKED_ACKED;
1410 state->flag |= FLAG_DATA_SACKED;
1411 tp->sacked_out += pcount;
1412 /* Out-of-order packets delivered */
1413 state->sack_delivered += pcount;
1414
1415 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1416 if (tp->lost_skb_hint &&
1417 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1418 tp->lost_cnt_hint += pcount;
1419 }
1420
1421 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1422 * frames and clear it. undo_retrans is decreased above, L|R frames
1423 * are accounted above as well.
1424 */
1425 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1426 sacked &= ~TCPCB_SACKED_RETRANS;
1427 tp->retrans_out -= pcount;
1428 }
1429
1430 return sacked;
1431 }
1432
1433 /* Shift newly-SACKed bytes from this skb to the immediately previous
1434 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1435 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1436 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1437 struct sk_buff *skb,
1438 struct tcp_sacktag_state *state,
1439 unsigned int pcount, int shifted, int mss,
1440 bool dup_sack)
1441 {
1442 struct tcp_sock *tp = tcp_sk(sk);
1443 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1444 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1445
1446 BUG_ON(!pcount);
1447
1448 /* Adjust counters and hints for the newly sacked sequence
1449 * range but discard the return value since prev is already
1450 * marked. We must tag the range first because the seq
1451 * advancement below implicitly advances
1452 * tcp_highest_sack_seq() when skb is highest_sack.
1453 */
1454 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1455 start_seq, end_seq, dup_sack, pcount,
1456 tcp_skb_timestamp_us(skb));
1457 tcp_rate_skb_delivered(sk, skb, state->rate);
1458
1459 if (skb == tp->lost_skb_hint)
1460 tp->lost_cnt_hint += pcount;
1461
1462 TCP_SKB_CB(prev)->end_seq += shifted;
1463 TCP_SKB_CB(skb)->seq += shifted;
1464
1465 tcp_skb_pcount_add(prev, pcount);
1466 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1467 tcp_skb_pcount_add(skb, -pcount);
1468
1469 /* When we're adding to gso_segs == 1, gso_size will be zero,
1470 * in theory this shouldn't be necessary but as long as DSACK
1471 * code can come after this skb later on it's better to keep
1472 * setting gso_size to something.
1473 */
1474 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1475 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1476
1477 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1478 if (tcp_skb_pcount(skb) <= 1)
1479 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1480
1481 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1482 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1483
1484 if (skb->len > 0) {
1485 BUG_ON(!tcp_skb_pcount(skb));
1486 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1487 return false;
1488 }
1489
1490 /* Whole SKB was eaten :-) */
1491
1492 if (skb == tp->retransmit_skb_hint)
1493 tp->retransmit_skb_hint = prev;
1494 if (skb == tp->lost_skb_hint) {
1495 tp->lost_skb_hint = prev;
1496 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1497 }
1498
1499 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1500 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1501 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1502 TCP_SKB_CB(prev)->end_seq++;
1503
1504 if (skb == tcp_highest_sack(sk))
1505 tcp_advance_highest_sack(sk, skb);
1506
1507 tcp_skb_collapse_tstamp(prev, skb);
1508 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1509 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1510
1511 tcp_rtx_queue_unlink_and_free(skb, sk);
1512
1513 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1514
1515 return true;
1516 }
1517
1518 /* I wish gso_size would have a bit more sane initialization than
1519 * something-or-zero which complicates things
1520 */
tcp_skb_seglen(const struct sk_buff * skb)1521 static int tcp_skb_seglen(const struct sk_buff *skb)
1522 {
1523 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1524 }
1525
1526 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1527 static int skb_can_shift(const struct sk_buff *skb)
1528 {
1529 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1530 }
1531
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1532 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1533 int pcount, int shiftlen)
1534 {
1535 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1536 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1537 * to make sure not storing more than 65535 * 8 bytes per skb,
1538 * even if current MSS is bigger.
1539 */
1540 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1541 return 0;
1542 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1543 return 0;
1544 return skb_shift(to, from, shiftlen);
1545 }
1546
1547 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1548 * skb.
1549 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1550 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1551 struct tcp_sacktag_state *state,
1552 u32 start_seq, u32 end_seq,
1553 bool dup_sack)
1554 {
1555 struct tcp_sock *tp = tcp_sk(sk);
1556 struct sk_buff *prev;
1557 int mss;
1558 int pcount = 0;
1559 int len;
1560 int in_sack;
1561
1562 /* Normally R but no L won't result in plain S */
1563 if (!dup_sack &&
1564 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1565 goto fallback;
1566 if (!skb_can_shift(skb))
1567 goto fallback;
1568 /* This frame is about to be dropped (was ACKed). */
1569 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1570 goto fallback;
1571
1572 /* Can only happen with delayed DSACK + discard craziness */
1573 prev = skb_rb_prev(skb);
1574 if (!prev)
1575 goto fallback;
1576
1577 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1578 goto fallback;
1579
1580 if (!tcp_skb_can_collapse(prev, skb))
1581 goto fallback;
1582
1583 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1584 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1585
1586 if (in_sack) {
1587 len = skb->len;
1588 pcount = tcp_skb_pcount(skb);
1589 mss = tcp_skb_seglen(skb);
1590
1591 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1592 * drop this restriction as unnecessary
1593 */
1594 if (mss != tcp_skb_seglen(prev))
1595 goto fallback;
1596 } else {
1597 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1598 goto noop;
1599 /* CHECKME: This is non-MSS split case only?, this will
1600 * cause skipped skbs due to advancing loop btw, original
1601 * has that feature too
1602 */
1603 if (tcp_skb_pcount(skb) <= 1)
1604 goto noop;
1605
1606 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1607 if (!in_sack) {
1608 /* TODO: head merge to next could be attempted here
1609 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1610 * though it might not be worth of the additional hassle
1611 *
1612 * ...we can probably just fallback to what was done
1613 * previously. We could try merging non-SACKed ones
1614 * as well but it probably isn't going to buy off
1615 * because later SACKs might again split them, and
1616 * it would make skb timestamp tracking considerably
1617 * harder problem.
1618 */
1619 goto fallback;
1620 }
1621
1622 len = end_seq - TCP_SKB_CB(skb)->seq;
1623 BUG_ON(len < 0);
1624 BUG_ON(len > skb->len);
1625
1626 /* MSS boundaries should be honoured or else pcount will
1627 * severely break even though it makes things bit trickier.
1628 * Optimize common case to avoid most of the divides
1629 */
1630 mss = tcp_skb_mss(skb);
1631
1632 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1633 * drop this restriction as unnecessary
1634 */
1635 if (mss != tcp_skb_seglen(prev))
1636 goto fallback;
1637
1638 if (len == mss) {
1639 pcount = 1;
1640 } else if (len < mss) {
1641 goto noop;
1642 } else {
1643 pcount = len / mss;
1644 len = pcount * mss;
1645 }
1646 }
1647
1648 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1649 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1650 goto fallback;
1651
1652 if (!tcp_skb_shift(prev, skb, pcount, len))
1653 goto fallback;
1654 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1655 goto out;
1656
1657 /* Hole filled allows collapsing with the next as well, this is very
1658 * useful when hole on every nth skb pattern happens
1659 */
1660 skb = skb_rb_next(prev);
1661 if (!skb)
1662 goto out;
1663
1664 if (!skb_can_shift(skb) ||
1665 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1666 (mss != tcp_skb_seglen(skb)))
1667 goto out;
1668
1669 if (!tcp_skb_can_collapse(prev, skb))
1670 goto out;
1671 len = skb->len;
1672 pcount = tcp_skb_pcount(skb);
1673 if (tcp_skb_shift(prev, skb, pcount, len))
1674 tcp_shifted_skb(sk, prev, skb, state, pcount,
1675 len, mss, 0);
1676
1677 out:
1678 return prev;
1679
1680 noop:
1681 return skb;
1682
1683 fallback:
1684 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1685 return NULL;
1686 }
1687
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1688 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1689 struct tcp_sack_block *next_dup,
1690 struct tcp_sacktag_state *state,
1691 u32 start_seq, u32 end_seq,
1692 bool dup_sack_in)
1693 {
1694 struct tcp_sock *tp = tcp_sk(sk);
1695 struct sk_buff *tmp;
1696
1697 skb_rbtree_walk_from(skb) {
1698 int in_sack = 0;
1699 bool dup_sack = dup_sack_in;
1700
1701 /* queue is in-order => we can short-circuit the walk early */
1702 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1703 break;
1704
1705 if (next_dup &&
1706 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1707 in_sack = tcp_match_skb_to_sack(sk, skb,
1708 next_dup->start_seq,
1709 next_dup->end_seq);
1710 if (in_sack > 0)
1711 dup_sack = true;
1712 }
1713
1714 /* skb reference here is a bit tricky to get right, since
1715 * shifting can eat and free both this skb and the next,
1716 * so not even _safe variant of the loop is enough.
1717 */
1718 if (in_sack <= 0) {
1719 tmp = tcp_shift_skb_data(sk, skb, state,
1720 start_seq, end_seq, dup_sack);
1721 if (tmp) {
1722 if (tmp != skb) {
1723 skb = tmp;
1724 continue;
1725 }
1726
1727 in_sack = 0;
1728 } else {
1729 in_sack = tcp_match_skb_to_sack(sk, skb,
1730 start_seq,
1731 end_seq);
1732 }
1733 }
1734
1735 if (unlikely(in_sack < 0))
1736 break;
1737
1738 if (in_sack) {
1739 TCP_SKB_CB(skb)->sacked =
1740 tcp_sacktag_one(sk,
1741 state,
1742 TCP_SKB_CB(skb)->sacked,
1743 TCP_SKB_CB(skb)->seq,
1744 TCP_SKB_CB(skb)->end_seq,
1745 dup_sack,
1746 tcp_skb_pcount(skb),
1747 tcp_skb_timestamp_us(skb));
1748 tcp_rate_skb_delivered(sk, skb, state->rate);
1749 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1750 list_del_init(&skb->tcp_tsorted_anchor);
1751
1752 if (!before(TCP_SKB_CB(skb)->seq,
1753 tcp_highest_sack_seq(tp)))
1754 tcp_advance_highest_sack(sk, skb);
1755 }
1756 }
1757 return skb;
1758 }
1759
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1760 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1761 {
1762 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1763 struct sk_buff *skb;
1764
1765 while (*p) {
1766 parent = *p;
1767 skb = rb_to_skb(parent);
1768 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1769 p = &parent->rb_left;
1770 continue;
1771 }
1772 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1773 p = &parent->rb_right;
1774 continue;
1775 }
1776 return skb;
1777 }
1778 return NULL;
1779 }
1780
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1781 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1782 u32 skip_to_seq)
1783 {
1784 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1785 return skb;
1786
1787 return tcp_sacktag_bsearch(sk, skip_to_seq);
1788 }
1789
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1790 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1791 struct sock *sk,
1792 struct tcp_sack_block *next_dup,
1793 struct tcp_sacktag_state *state,
1794 u32 skip_to_seq)
1795 {
1796 if (!next_dup)
1797 return skb;
1798
1799 if (before(next_dup->start_seq, skip_to_seq)) {
1800 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1801 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1802 next_dup->start_seq, next_dup->end_seq,
1803 1);
1804 }
1805
1806 return skb;
1807 }
1808
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1809 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1810 {
1811 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1812 }
1813
1814 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1815 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1816 u32 prior_snd_una, struct tcp_sacktag_state *state)
1817 {
1818 struct tcp_sock *tp = tcp_sk(sk);
1819 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1820 TCP_SKB_CB(ack_skb)->sacked);
1821 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1822 struct tcp_sack_block sp[TCP_NUM_SACKS];
1823 struct tcp_sack_block *cache;
1824 struct sk_buff *skb;
1825 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1826 int used_sacks;
1827 bool found_dup_sack = false;
1828 int i, j;
1829 int first_sack_index;
1830
1831 state->flag = 0;
1832 state->reord = tp->snd_nxt;
1833
1834 if (!tp->sacked_out)
1835 tcp_highest_sack_reset(sk);
1836
1837 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1838 num_sacks, prior_snd_una, state);
1839
1840 /* Eliminate too old ACKs, but take into
1841 * account more or less fresh ones, they can
1842 * contain valid SACK info.
1843 */
1844 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1845 return 0;
1846
1847 if (!tp->packets_out)
1848 goto out;
1849
1850 used_sacks = 0;
1851 first_sack_index = 0;
1852 for (i = 0; i < num_sacks; i++) {
1853 bool dup_sack = !i && found_dup_sack;
1854
1855 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1856 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1857
1858 if (!tcp_is_sackblock_valid(tp, dup_sack,
1859 sp[used_sacks].start_seq,
1860 sp[used_sacks].end_seq)) {
1861 int mib_idx;
1862
1863 if (dup_sack) {
1864 if (!tp->undo_marker)
1865 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1866 else
1867 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1868 } else {
1869 /* Don't count olds caused by ACK reordering */
1870 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1871 !after(sp[used_sacks].end_seq, tp->snd_una))
1872 continue;
1873 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1874 }
1875
1876 NET_INC_STATS(sock_net(sk), mib_idx);
1877 if (i == 0)
1878 first_sack_index = -1;
1879 continue;
1880 }
1881
1882 /* Ignore very old stuff early */
1883 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1884 if (i == 0)
1885 first_sack_index = -1;
1886 continue;
1887 }
1888
1889 used_sacks++;
1890 }
1891
1892 /* order SACK blocks to allow in order walk of the retrans queue */
1893 for (i = used_sacks - 1; i > 0; i--) {
1894 for (j = 0; j < i; j++) {
1895 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1896 swap(sp[j], sp[j + 1]);
1897
1898 /* Track where the first SACK block goes to */
1899 if (j == first_sack_index)
1900 first_sack_index = j + 1;
1901 }
1902 }
1903 }
1904
1905 state->mss_now = tcp_current_mss(sk);
1906 skb = NULL;
1907 i = 0;
1908
1909 if (!tp->sacked_out) {
1910 /* It's already past, so skip checking against it */
1911 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1912 } else {
1913 cache = tp->recv_sack_cache;
1914 /* Skip empty blocks in at head of the cache */
1915 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1916 !cache->end_seq)
1917 cache++;
1918 }
1919
1920 while (i < used_sacks) {
1921 u32 start_seq = sp[i].start_seq;
1922 u32 end_seq = sp[i].end_seq;
1923 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1924 struct tcp_sack_block *next_dup = NULL;
1925
1926 if (found_dup_sack && ((i + 1) == first_sack_index))
1927 next_dup = &sp[i + 1];
1928
1929 /* Skip too early cached blocks */
1930 while (tcp_sack_cache_ok(tp, cache) &&
1931 !before(start_seq, cache->end_seq))
1932 cache++;
1933
1934 /* Can skip some work by looking recv_sack_cache? */
1935 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1936 after(end_seq, cache->start_seq)) {
1937
1938 /* Head todo? */
1939 if (before(start_seq, cache->start_seq)) {
1940 skb = tcp_sacktag_skip(skb, sk, start_seq);
1941 skb = tcp_sacktag_walk(skb, sk, next_dup,
1942 state,
1943 start_seq,
1944 cache->start_seq,
1945 dup_sack);
1946 }
1947
1948 /* Rest of the block already fully processed? */
1949 if (!after(end_seq, cache->end_seq))
1950 goto advance_sp;
1951
1952 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1953 state,
1954 cache->end_seq);
1955
1956 /* ...tail remains todo... */
1957 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1958 /* ...but better entrypoint exists! */
1959 skb = tcp_highest_sack(sk);
1960 if (!skb)
1961 break;
1962 cache++;
1963 goto walk;
1964 }
1965
1966 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1967 /* Check overlap against next cached too (past this one already) */
1968 cache++;
1969 continue;
1970 }
1971
1972 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1973 skb = tcp_highest_sack(sk);
1974 if (!skb)
1975 break;
1976 }
1977 skb = tcp_sacktag_skip(skb, sk, start_seq);
1978
1979 walk:
1980 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1981 start_seq, end_seq, dup_sack);
1982
1983 advance_sp:
1984 i++;
1985 }
1986
1987 /* Clear the head of the cache sack blocks so we can skip it next time */
1988 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1989 tp->recv_sack_cache[i].start_seq = 0;
1990 tp->recv_sack_cache[i].end_seq = 0;
1991 }
1992 for (j = 0; j < used_sacks; j++)
1993 tp->recv_sack_cache[i++] = sp[j];
1994
1995 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1996 tcp_check_sack_reordering(sk, state->reord, 0);
1997
1998 tcp_verify_left_out(tp);
1999 out:
2000
2001 #if FASTRETRANS_DEBUG > 0
2002 WARN_ON((int)tp->sacked_out < 0);
2003 WARN_ON((int)tp->lost_out < 0);
2004 WARN_ON((int)tp->retrans_out < 0);
2005 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2006 #endif
2007 return state->flag;
2008 }
2009
2010 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2011 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2012 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2013 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2014 {
2015 u32 holes;
2016
2017 holes = max(tp->lost_out, 1U);
2018 holes = min(holes, tp->packets_out);
2019
2020 if ((tp->sacked_out + holes) > tp->packets_out) {
2021 tp->sacked_out = tp->packets_out - holes;
2022 return true;
2023 }
2024 return false;
2025 }
2026
2027 /* If we receive more dupacks than we expected counting segments
2028 * in assumption of absent reordering, interpret this as reordering.
2029 * The only another reason could be bug in receiver TCP.
2030 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2031 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2032 {
2033 struct tcp_sock *tp = tcp_sk(sk);
2034
2035 if (!tcp_limit_reno_sacked(tp))
2036 return;
2037
2038 tp->reordering = min_t(u32, tp->packets_out + addend,
2039 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2040 tp->reord_seen++;
2041 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2042 }
2043
2044 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2045
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2046 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2047 {
2048 if (num_dupack) {
2049 struct tcp_sock *tp = tcp_sk(sk);
2050 u32 prior_sacked = tp->sacked_out;
2051 s32 delivered;
2052
2053 tp->sacked_out += num_dupack;
2054 tcp_check_reno_reordering(sk, 0);
2055 delivered = tp->sacked_out - prior_sacked;
2056 if (delivered > 0)
2057 tcp_count_delivered(tp, delivered, ece_ack);
2058 tcp_verify_left_out(tp);
2059 }
2060 }
2061
2062 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2063
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2064 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2065 {
2066 struct tcp_sock *tp = tcp_sk(sk);
2067
2068 if (acked > 0) {
2069 /* One ACK acked hole. The rest eat duplicate ACKs. */
2070 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2071 ece_ack);
2072 if (acked - 1 >= tp->sacked_out)
2073 tp->sacked_out = 0;
2074 else
2075 tp->sacked_out -= acked - 1;
2076 }
2077 tcp_check_reno_reordering(sk, acked);
2078 tcp_verify_left_out(tp);
2079 }
2080
tcp_reset_reno_sack(struct tcp_sock * tp)2081 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2082 {
2083 tp->sacked_out = 0;
2084 }
2085
tcp_clear_retrans(struct tcp_sock * tp)2086 void tcp_clear_retrans(struct tcp_sock *tp)
2087 {
2088 tp->retrans_out = 0;
2089 tp->lost_out = 0;
2090 tp->undo_marker = 0;
2091 tp->undo_retrans = -1;
2092 tp->sacked_out = 0;
2093 }
2094
tcp_init_undo(struct tcp_sock * tp)2095 static inline void tcp_init_undo(struct tcp_sock *tp)
2096 {
2097 tp->undo_marker = tp->snd_una;
2098 /* Retransmission still in flight may cause DSACKs later. */
2099 tp->undo_retrans = tp->retrans_out ? : -1;
2100 }
2101
tcp_is_rack(const struct sock * sk)2102 static bool tcp_is_rack(const struct sock *sk)
2103 {
2104 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2105 TCP_RACK_LOSS_DETECTION;
2106 }
2107
2108 /* If we detect SACK reneging, forget all SACK information
2109 * and reset tags completely, otherwise preserve SACKs. If receiver
2110 * dropped its ofo queue, we will know this due to reneging detection.
2111 */
tcp_timeout_mark_lost(struct sock * sk)2112 static void tcp_timeout_mark_lost(struct sock *sk)
2113 {
2114 struct tcp_sock *tp = tcp_sk(sk);
2115 struct sk_buff *skb, *head;
2116 bool is_reneg; /* is receiver reneging on SACKs? */
2117
2118 head = tcp_rtx_queue_head(sk);
2119 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2120 if (is_reneg) {
2121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2122 tp->sacked_out = 0;
2123 /* Mark SACK reneging until we recover from this loss event. */
2124 tp->is_sack_reneg = 1;
2125 } else if (tcp_is_reno(tp)) {
2126 tcp_reset_reno_sack(tp);
2127 }
2128
2129 skb = head;
2130 skb_rbtree_walk_from(skb) {
2131 if (is_reneg)
2132 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2133 else if (tcp_is_rack(sk) && skb != head &&
2134 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2135 continue; /* Don't mark recently sent ones lost yet */
2136 tcp_mark_skb_lost(sk, skb);
2137 }
2138 tcp_verify_left_out(tp);
2139 tcp_clear_all_retrans_hints(tp);
2140 }
2141
2142 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2143 void tcp_enter_loss(struct sock *sk)
2144 {
2145 const struct inet_connection_sock *icsk = inet_csk(sk);
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 struct net *net = sock_net(sk);
2148 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2149 u8 reordering;
2150
2151 tcp_timeout_mark_lost(sk);
2152
2153 /* Reduce ssthresh if it has not yet been made inside this window. */
2154 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2155 !after(tp->high_seq, tp->snd_una) ||
2156 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2157 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2158 tp->prior_cwnd = tcp_snd_cwnd(tp);
2159 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2160 tcp_ca_event(sk, CA_EVENT_LOSS);
2161 tcp_init_undo(tp);
2162 }
2163 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2164 tp->snd_cwnd_cnt = 0;
2165 tp->snd_cwnd_stamp = tcp_jiffies32;
2166
2167 /* Timeout in disordered state after receiving substantial DUPACKs
2168 * suggests that the degree of reordering is over-estimated.
2169 */
2170 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2171 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2172 tp->sacked_out >= reordering)
2173 tp->reordering = min_t(unsigned int, tp->reordering,
2174 reordering);
2175
2176 tcp_set_ca_state(sk, TCP_CA_Loss);
2177 tp->high_seq = tp->snd_nxt;
2178 tcp_ecn_queue_cwr(tp);
2179
2180 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2181 * loss recovery is underway except recurring timeout(s) on
2182 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2183 */
2184 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2185 (new_recovery || icsk->icsk_retransmits) &&
2186 !inet_csk(sk)->icsk_mtup.probe_size;
2187 }
2188
2189 /* If ACK arrived pointing to a remembered SACK, it means that our
2190 * remembered SACKs do not reflect real state of receiver i.e.
2191 * receiver _host_ is heavily congested (or buggy).
2192 *
2193 * To avoid big spurious retransmission bursts due to transient SACK
2194 * scoreboard oddities that look like reneging, we give the receiver a
2195 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2196 * restore sanity to the SACK scoreboard. If the apparent reneging
2197 * persists until this RTO then we'll clear the SACK scoreboard.
2198 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2199 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2200 {
2201 if (*ack_flag & FLAG_SACK_RENEGING &&
2202 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2203 struct tcp_sock *tp = tcp_sk(sk);
2204 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2205 msecs_to_jiffies(10));
2206
2207 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2208 delay, TCP_RTO_MAX);
2209 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2210 return true;
2211 }
2212 return false;
2213 }
2214
2215 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2216 * counter when SACK is enabled (without SACK, sacked_out is used for
2217 * that purpose).
2218 *
2219 * With reordering, holes may still be in flight, so RFC3517 recovery
2220 * uses pure sacked_out (total number of SACKed segments) even though
2221 * it violates the RFC that uses duplicate ACKs, often these are equal
2222 * but when e.g. out-of-window ACKs or packet duplication occurs,
2223 * they differ. Since neither occurs due to loss, TCP should really
2224 * ignore them.
2225 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2226 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2227 {
2228 return tp->sacked_out + 1;
2229 }
2230
2231 /* Linux NewReno/SACK/ECN state machine.
2232 * --------------------------------------
2233 *
2234 * "Open" Normal state, no dubious events, fast path.
2235 * "Disorder" In all the respects it is "Open",
2236 * but requires a bit more attention. It is entered when
2237 * we see some SACKs or dupacks. It is split of "Open"
2238 * mainly to move some processing from fast path to slow one.
2239 * "CWR" CWND was reduced due to some Congestion Notification event.
2240 * It can be ECN, ICMP source quench, local device congestion.
2241 * "Recovery" CWND was reduced, we are fast-retransmitting.
2242 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2243 *
2244 * tcp_fastretrans_alert() is entered:
2245 * - each incoming ACK, if state is not "Open"
2246 * - when arrived ACK is unusual, namely:
2247 * * SACK
2248 * * Duplicate ACK.
2249 * * ECN ECE.
2250 *
2251 * Counting packets in flight is pretty simple.
2252 *
2253 * in_flight = packets_out - left_out + retrans_out
2254 *
2255 * packets_out is SND.NXT-SND.UNA counted in packets.
2256 *
2257 * retrans_out is number of retransmitted segments.
2258 *
2259 * left_out is number of segments left network, but not ACKed yet.
2260 *
2261 * left_out = sacked_out + lost_out
2262 *
2263 * sacked_out: Packets, which arrived to receiver out of order
2264 * and hence not ACKed. With SACKs this number is simply
2265 * amount of SACKed data. Even without SACKs
2266 * it is easy to give pretty reliable estimate of this number,
2267 * counting duplicate ACKs.
2268 *
2269 * lost_out: Packets lost by network. TCP has no explicit
2270 * "loss notification" feedback from network (for now).
2271 * It means that this number can be only _guessed_.
2272 * Actually, it is the heuristics to predict lossage that
2273 * distinguishes different algorithms.
2274 *
2275 * F.e. after RTO, when all the queue is considered as lost,
2276 * lost_out = packets_out and in_flight = retrans_out.
2277 *
2278 * Essentially, we have now a few algorithms detecting
2279 * lost packets.
2280 *
2281 * If the receiver supports SACK:
2282 *
2283 * RFC6675/3517: It is the conventional algorithm. A packet is
2284 * considered lost if the number of higher sequence packets
2285 * SACKed is greater than or equal the DUPACK thoreshold
2286 * (reordering). This is implemented in tcp_mark_head_lost and
2287 * tcp_update_scoreboard.
2288 *
2289 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2290 * (2017-) that checks timing instead of counting DUPACKs.
2291 * Essentially a packet is considered lost if it's not S/ACKed
2292 * after RTT + reordering_window, where both metrics are
2293 * dynamically measured and adjusted. This is implemented in
2294 * tcp_rack_mark_lost.
2295 *
2296 * If the receiver does not support SACK:
2297 *
2298 * NewReno (RFC6582): in Recovery we assume that one segment
2299 * is lost (classic Reno). While we are in Recovery and
2300 * a partial ACK arrives, we assume that one more packet
2301 * is lost (NewReno). This heuristics are the same in NewReno
2302 * and SACK.
2303 *
2304 * Really tricky (and requiring careful tuning) part of algorithm
2305 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2306 * The first determines the moment _when_ we should reduce CWND and,
2307 * hence, slow down forward transmission. In fact, it determines the moment
2308 * when we decide that hole is caused by loss, rather than by a reorder.
2309 *
2310 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2311 * holes, caused by lost packets.
2312 *
2313 * And the most logically complicated part of algorithm is undo
2314 * heuristics. We detect false retransmits due to both too early
2315 * fast retransmit (reordering) and underestimated RTO, analyzing
2316 * timestamps and D-SACKs. When we detect that some segments were
2317 * retransmitted by mistake and CWND reduction was wrong, we undo
2318 * window reduction and abort recovery phase. This logic is hidden
2319 * inside several functions named tcp_try_undo_<something>.
2320 */
2321
2322 /* This function decides, when we should leave Disordered state
2323 * and enter Recovery phase, reducing congestion window.
2324 *
2325 * Main question: may we further continue forward transmission
2326 * with the same cwnd?
2327 */
tcp_time_to_recover(struct sock * sk,int flag)2328 static bool tcp_time_to_recover(struct sock *sk, int flag)
2329 {
2330 struct tcp_sock *tp = tcp_sk(sk);
2331
2332 /* Trick#1: The loss is proven. */
2333 if (tp->lost_out)
2334 return true;
2335
2336 /* Not-A-Trick#2 : Classic rule... */
2337 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2338 return true;
2339
2340 return false;
2341 }
2342
2343 /* Detect loss in event "A" above by marking head of queue up as lost.
2344 * For RFC3517 SACK, a segment is considered lost if it
2345 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2346 * the maximum SACKed segments to pass before reaching this limit.
2347 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2348 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2349 {
2350 struct tcp_sock *tp = tcp_sk(sk);
2351 struct sk_buff *skb;
2352 int cnt;
2353 /* Use SACK to deduce losses of new sequences sent during recovery */
2354 const u32 loss_high = tp->snd_nxt;
2355
2356 WARN_ON(packets > tp->packets_out);
2357 skb = tp->lost_skb_hint;
2358 if (skb) {
2359 /* Head already handled? */
2360 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2361 return;
2362 cnt = tp->lost_cnt_hint;
2363 } else {
2364 skb = tcp_rtx_queue_head(sk);
2365 cnt = 0;
2366 }
2367
2368 skb_rbtree_walk_from(skb) {
2369 /* TODO: do this better */
2370 /* this is not the most efficient way to do this... */
2371 tp->lost_skb_hint = skb;
2372 tp->lost_cnt_hint = cnt;
2373
2374 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2375 break;
2376
2377 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2378 cnt += tcp_skb_pcount(skb);
2379
2380 if (cnt > packets)
2381 break;
2382
2383 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2384 tcp_mark_skb_lost(sk, skb);
2385
2386 if (mark_head)
2387 break;
2388 }
2389 tcp_verify_left_out(tp);
2390 }
2391
2392 /* Account newly detected lost packet(s) */
2393
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2394 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2395 {
2396 struct tcp_sock *tp = tcp_sk(sk);
2397
2398 if (tcp_is_sack(tp)) {
2399 int sacked_upto = tp->sacked_out - tp->reordering;
2400 if (sacked_upto >= 0)
2401 tcp_mark_head_lost(sk, sacked_upto, 0);
2402 else if (fast_rexmit)
2403 tcp_mark_head_lost(sk, 1, 1);
2404 }
2405 }
2406
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2407 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2408 {
2409 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2410 before(tp->rx_opt.rcv_tsecr, when);
2411 }
2412
2413 /* skb is spurious retransmitted if the returned timestamp echo
2414 * reply is prior to the skb transmission time
2415 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2416 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2417 const struct sk_buff *skb)
2418 {
2419 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2420 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2421 }
2422
2423 /* Nothing was retransmitted or returned timestamp is less
2424 * than timestamp of the first retransmission.
2425 */
tcp_packet_delayed(const struct tcp_sock * tp)2426 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2427 {
2428 return tp->retrans_stamp &&
2429 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2430 }
2431
2432 /* Undo procedures. */
2433
2434 /* We can clear retrans_stamp when there are no retransmissions in the
2435 * window. It would seem that it is trivially available for us in
2436 * tp->retrans_out, however, that kind of assumptions doesn't consider
2437 * what will happen if errors occur when sending retransmission for the
2438 * second time. ...It could the that such segment has only
2439 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2440 * the head skb is enough except for some reneging corner cases that
2441 * are not worth the effort.
2442 *
2443 * Main reason for all this complexity is the fact that connection dying
2444 * time now depends on the validity of the retrans_stamp, in particular,
2445 * that successive retransmissions of a segment must not advance
2446 * retrans_stamp under any conditions.
2447 */
tcp_any_retrans_done(const struct sock * sk)2448 static bool tcp_any_retrans_done(const struct sock *sk)
2449 {
2450 const struct tcp_sock *tp = tcp_sk(sk);
2451 struct sk_buff *skb;
2452
2453 if (tp->retrans_out)
2454 return true;
2455
2456 skb = tcp_rtx_queue_head(sk);
2457 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2458 return true;
2459
2460 return false;
2461 }
2462
DBGUNDO(struct sock * sk,const char * msg)2463 static void DBGUNDO(struct sock *sk, const char *msg)
2464 {
2465 #if FASTRETRANS_DEBUG > 1
2466 struct tcp_sock *tp = tcp_sk(sk);
2467 struct inet_sock *inet = inet_sk(sk);
2468
2469 if (sk->sk_family == AF_INET) {
2470 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2471 msg,
2472 &inet->inet_daddr, ntohs(inet->inet_dport),
2473 tcp_snd_cwnd(tp), tcp_left_out(tp),
2474 tp->snd_ssthresh, tp->prior_ssthresh,
2475 tp->packets_out);
2476 }
2477 #if IS_ENABLED(CONFIG_IPV6)
2478 else if (sk->sk_family == AF_INET6) {
2479 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2480 msg,
2481 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2482 tcp_snd_cwnd(tp), tcp_left_out(tp),
2483 tp->snd_ssthresh, tp->prior_ssthresh,
2484 tp->packets_out);
2485 }
2486 #endif
2487 #endif
2488 }
2489
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2490 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2491 {
2492 struct tcp_sock *tp = tcp_sk(sk);
2493
2494 if (unmark_loss) {
2495 struct sk_buff *skb;
2496
2497 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2498 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2499 }
2500 tp->lost_out = 0;
2501 tcp_clear_all_retrans_hints(tp);
2502 }
2503
2504 if (tp->prior_ssthresh) {
2505 const struct inet_connection_sock *icsk = inet_csk(sk);
2506
2507 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2508
2509 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2510 tp->snd_ssthresh = tp->prior_ssthresh;
2511 tcp_ecn_withdraw_cwr(tp);
2512 }
2513 }
2514 tp->snd_cwnd_stamp = tcp_jiffies32;
2515 tp->undo_marker = 0;
2516 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2517 }
2518
tcp_may_undo(const struct tcp_sock * tp)2519 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2520 {
2521 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2522 }
2523
tcp_is_non_sack_preventing_reopen(struct sock * sk)2524 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2525 {
2526 struct tcp_sock *tp = tcp_sk(sk);
2527
2528 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2529 /* Hold old state until something *above* high_seq
2530 * is ACKed. For Reno it is MUST to prevent false
2531 * fast retransmits (RFC2582). SACK TCP is safe. */
2532 if (!tcp_any_retrans_done(sk))
2533 tp->retrans_stamp = 0;
2534 return true;
2535 }
2536 return false;
2537 }
2538
2539 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2540 static bool tcp_try_undo_recovery(struct sock *sk)
2541 {
2542 struct tcp_sock *tp = tcp_sk(sk);
2543
2544 if (tcp_may_undo(tp)) {
2545 int mib_idx;
2546
2547 /* Happy end! We did not retransmit anything
2548 * or our original transmission succeeded.
2549 */
2550 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2551 tcp_undo_cwnd_reduction(sk, false);
2552 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2553 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2554 else
2555 mib_idx = LINUX_MIB_TCPFULLUNDO;
2556
2557 NET_INC_STATS(sock_net(sk), mib_idx);
2558 } else if (tp->rack.reo_wnd_persist) {
2559 tp->rack.reo_wnd_persist--;
2560 }
2561 if (tcp_is_non_sack_preventing_reopen(sk))
2562 return true;
2563 tcp_set_ca_state(sk, TCP_CA_Open);
2564 tp->is_sack_reneg = 0;
2565 return false;
2566 }
2567
2568 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2569 static bool tcp_try_undo_dsack(struct sock *sk)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572
2573 if (tp->undo_marker && !tp->undo_retrans) {
2574 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2575 tp->rack.reo_wnd_persist + 1);
2576 DBGUNDO(sk, "D-SACK");
2577 tcp_undo_cwnd_reduction(sk, false);
2578 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2579 return true;
2580 }
2581 return false;
2582 }
2583
2584 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2585 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588
2589 if (frto_undo || tcp_may_undo(tp)) {
2590 tcp_undo_cwnd_reduction(sk, true);
2591
2592 DBGUNDO(sk, "partial loss");
2593 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2594 if (frto_undo)
2595 NET_INC_STATS(sock_net(sk),
2596 LINUX_MIB_TCPSPURIOUSRTOS);
2597 inet_csk(sk)->icsk_retransmits = 0;
2598 if (tcp_is_non_sack_preventing_reopen(sk))
2599 return true;
2600 if (frto_undo || tcp_is_sack(tp)) {
2601 tcp_set_ca_state(sk, TCP_CA_Open);
2602 tp->is_sack_reneg = 0;
2603 }
2604 return true;
2605 }
2606 return false;
2607 }
2608
2609 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2610 * It computes the number of packets to send (sndcnt) based on packets newly
2611 * delivered:
2612 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2613 * cwnd reductions across a full RTT.
2614 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2615 * But when SND_UNA is acked without further losses,
2616 * slow starts cwnd up to ssthresh to speed up the recovery.
2617 */
tcp_init_cwnd_reduction(struct sock * sk)2618 static void tcp_init_cwnd_reduction(struct sock *sk)
2619 {
2620 struct tcp_sock *tp = tcp_sk(sk);
2621
2622 tp->high_seq = tp->snd_nxt;
2623 tp->tlp_high_seq = 0;
2624 tp->snd_cwnd_cnt = 0;
2625 tp->prior_cwnd = tcp_snd_cwnd(tp);
2626 tp->prr_delivered = 0;
2627 tp->prr_out = 0;
2628 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2629 tcp_ecn_queue_cwr(tp);
2630 }
2631
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2632 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2633 {
2634 struct tcp_sock *tp = tcp_sk(sk);
2635 int sndcnt = 0;
2636 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2637
2638 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2639 return;
2640
2641 tp->prr_delivered += newly_acked_sacked;
2642 if (delta < 0) {
2643 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2644 tp->prior_cwnd - 1;
2645 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2647 sndcnt = min_t(int, delta,
2648 max_t(int, tp->prr_delivered - tp->prr_out,
2649 newly_acked_sacked) + 1);
2650 } else {
2651 sndcnt = min(delta, newly_acked_sacked);
2652 }
2653 /* Force a fast retransmit upon entering fast recovery */
2654 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2655 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2656 }
2657
tcp_end_cwnd_reduction(struct sock * sk)2658 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661
2662 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2663 return;
2664
2665 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2666 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2667 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2668 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2669 tp->snd_cwnd_stamp = tcp_jiffies32;
2670 }
2671 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2672 }
2673
2674 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2675 void tcp_enter_cwr(struct sock *sk)
2676 {
2677 struct tcp_sock *tp = tcp_sk(sk);
2678
2679 tp->prior_ssthresh = 0;
2680 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2681 tp->undo_marker = 0;
2682 tcp_init_cwnd_reduction(sk);
2683 tcp_set_ca_state(sk, TCP_CA_CWR);
2684 }
2685 }
2686 EXPORT_SYMBOL(tcp_enter_cwr);
2687
tcp_try_keep_open(struct sock * sk)2688 static void tcp_try_keep_open(struct sock *sk)
2689 {
2690 struct tcp_sock *tp = tcp_sk(sk);
2691 int state = TCP_CA_Open;
2692
2693 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2694 state = TCP_CA_Disorder;
2695
2696 if (inet_csk(sk)->icsk_ca_state != state) {
2697 tcp_set_ca_state(sk, state);
2698 tp->high_seq = tp->snd_nxt;
2699 }
2700 }
2701
tcp_try_to_open(struct sock * sk,int flag)2702 static void tcp_try_to_open(struct sock *sk, int flag)
2703 {
2704 struct tcp_sock *tp = tcp_sk(sk);
2705
2706 tcp_verify_left_out(tp);
2707
2708 if (!tcp_any_retrans_done(sk))
2709 tp->retrans_stamp = 0;
2710
2711 if (flag & FLAG_ECE)
2712 tcp_enter_cwr(sk);
2713
2714 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2715 tcp_try_keep_open(sk);
2716 }
2717 }
2718
tcp_mtup_probe_failed(struct sock * sk)2719 static void tcp_mtup_probe_failed(struct sock *sk)
2720 {
2721 struct inet_connection_sock *icsk = inet_csk(sk);
2722
2723 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2724 icsk->icsk_mtup.probe_size = 0;
2725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2726 }
2727
tcp_mtup_probe_success(struct sock * sk)2728 static void tcp_mtup_probe_success(struct sock *sk)
2729 {
2730 struct tcp_sock *tp = tcp_sk(sk);
2731 struct inet_connection_sock *icsk = inet_csk(sk);
2732 u64 val;
2733
2734 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2735
2736 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2737 do_div(val, icsk->icsk_mtup.probe_size);
2738 WARN_ON_ONCE((u32)val != val);
2739 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2740
2741 tp->snd_cwnd_cnt = 0;
2742 tp->snd_cwnd_stamp = tcp_jiffies32;
2743 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2744
2745 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2746 icsk->icsk_mtup.probe_size = 0;
2747 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2748 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2749 }
2750
2751 /* Do a simple retransmit without using the backoff mechanisms in
2752 * tcp_timer. This is used for path mtu discovery.
2753 * The socket is already locked here.
2754 */
tcp_simple_retransmit(struct sock * sk)2755 void tcp_simple_retransmit(struct sock *sk)
2756 {
2757 const struct inet_connection_sock *icsk = inet_csk(sk);
2758 struct tcp_sock *tp = tcp_sk(sk);
2759 struct sk_buff *skb;
2760 int mss;
2761
2762 /* A fastopen SYN request is stored as two separate packets within
2763 * the retransmit queue, this is done by tcp_send_syn_data().
2764 * As a result simply checking the MSS of the frames in the queue
2765 * will not work for the SYN packet.
2766 *
2767 * Us being here is an indication of a path MTU issue so we can
2768 * assume that the fastopen SYN was lost and just mark all the
2769 * frames in the retransmit queue as lost. We will use an MSS of
2770 * -1 to mark all frames as lost, otherwise compute the current MSS.
2771 */
2772 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2773 mss = -1;
2774 else
2775 mss = tcp_current_mss(sk);
2776
2777 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2778 if (tcp_skb_seglen(skb) > mss)
2779 tcp_mark_skb_lost(sk, skb);
2780 }
2781
2782 tcp_clear_retrans_hints_partial(tp);
2783
2784 if (!tp->lost_out)
2785 return;
2786
2787 if (tcp_is_reno(tp))
2788 tcp_limit_reno_sacked(tp);
2789
2790 tcp_verify_left_out(tp);
2791
2792 /* Don't muck with the congestion window here.
2793 * Reason is that we do not increase amount of _data_
2794 * in network, but units changed and effective
2795 * cwnd/ssthresh really reduced now.
2796 */
2797 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2798 tp->high_seq = tp->snd_nxt;
2799 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2800 tp->prior_ssthresh = 0;
2801 tp->undo_marker = 0;
2802 tcp_set_ca_state(sk, TCP_CA_Loss);
2803 }
2804 tcp_xmit_retransmit_queue(sk);
2805 }
2806 EXPORT_SYMBOL(tcp_simple_retransmit);
2807
tcp_enter_recovery(struct sock * sk,bool ece_ack)2808 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2809 {
2810 struct tcp_sock *tp = tcp_sk(sk);
2811 int mib_idx;
2812
2813 if (tcp_is_reno(tp))
2814 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2815 else
2816 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2817
2818 NET_INC_STATS(sock_net(sk), mib_idx);
2819
2820 tp->prior_ssthresh = 0;
2821 tcp_init_undo(tp);
2822
2823 if (!tcp_in_cwnd_reduction(sk)) {
2824 if (!ece_ack)
2825 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2826 tcp_init_cwnd_reduction(sk);
2827 }
2828 tcp_set_ca_state(sk, TCP_CA_Recovery);
2829 }
2830
2831 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2832 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2833 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2834 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2835 int *rexmit)
2836 {
2837 struct tcp_sock *tp = tcp_sk(sk);
2838 bool recovered = !before(tp->snd_una, tp->high_seq);
2839
2840 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2841 tcp_try_undo_loss(sk, false))
2842 return;
2843
2844 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2845 /* Step 3.b. A timeout is spurious if not all data are
2846 * lost, i.e., never-retransmitted data are (s)acked.
2847 */
2848 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2849 tcp_try_undo_loss(sk, true))
2850 return;
2851
2852 if (after(tp->snd_nxt, tp->high_seq)) {
2853 if (flag & FLAG_DATA_SACKED || num_dupack)
2854 tp->frto = 0; /* Step 3.a. loss was real */
2855 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2856 tp->high_seq = tp->snd_nxt;
2857 /* Step 2.b. Try send new data (but deferred until cwnd
2858 * is updated in tcp_ack()). Otherwise fall back to
2859 * the conventional recovery.
2860 */
2861 if (!tcp_write_queue_empty(sk) &&
2862 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2863 *rexmit = REXMIT_NEW;
2864 return;
2865 }
2866 tp->frto = 0;
2867 }
2868 }
2869
2870 if (recovered) {
2871 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2872 tcp_try_undo_recovery(sk);
2873 return;
2874 }
2875 if (tcp_is_reno(tp)) {
2876 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2877 * delivered. Lower inflight to clock out (re)tranmissions.
2878 */
2879 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2880 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2881 else if (flag & FLAG_SND_UNA_ADVANCED)
2882 tcp_reset_reno_sack(tp);
2883 }
2884 *rexmit = REXMIT_LOST;
2885 }
2886
tcp_force_fast_retransmit(struct sock * sk)2887 static bool tcp_force_fast_retransmit(struct sock *sk)
2888 {
2889 struct tcp_sock *tp = tcp_sk(sk);
2890
2891 return after(tcp_highest_sack_seq(tp),
2892 tp->snd_una + tp->reordering * tp->mss_cache);
2893 }
2894
2895 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2896 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2897 bool *do_lost)
2898 {
2899 struct tcp_sock *tp = tcp_sk(sk);
2900
2901 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2902 /* Plain luck! Hole if filled with delayed
2903 * packet, rather than with a retransmit. Check reordering.
2904 */
2905 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2906
2907 /* We are getting evidence that the reordering degree is higher
2908 * than we realized. If there are no retransmits out then we
2909 * can undo. Otherwise we clock out new packets but do not
2910 * mark more packets lost or retransmit more.
2911 */
2912 if (tp->retrans_out)
2913 return true;
2914
2915 if (!tcp_any_retrans_done(sk))
2916 tp->retrans_stamp = 0;
2917
2918 DBGUNDO(sk, "partial recovery");
2919 tcp_undo_cwnd_reduction(sk, true);
2920 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2921 tcp_try_keep_open(sk);
2922 } else {
2923 /* Partial ACK arrived. Force fast retransmit. */
2924 *do_lost = tcp_force_fast_retransmit(sk);
2925 }
2926 return false;
2927 }
2928
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2929 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2930 {
2931 struct tcp_sock *tp = tcp_sk(sk);
2932
2933 if (tcp_rtx_queue_empty(sk))
2934 return;
2935
2936 if (unlikely(tcp_is_reno(tp))) {
2937 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2938 } else if (tcp_is_rack(sk)) {
2939 u32 prior_retrans = tp->retrans_out;
2940
2941 if (tcp_rack_mark_lost(sk))
2942 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2943 if (prior_retrans > tp->retrans_out)
2944 *ack_flag |= FLAG_LOST_RETRANS;
2945 }
2946 }
2947
2948 /* Process an event, which can update packets-in-flight not trivially.
2949 * Main goal of this function is to calculate new estimate for left_out,
2950 * taking into account both packets sitting in receiver's buffer and
2951 * packets lost by network.
2952 *
2953 * Besides that it updates the congestion state when packet loss or ECN
2954 * is detected. But it does not reduce the cwnd, it is done by the
2955 * congestion control later.
2956 *
2957 * It does _not_ decide what to send, it is made in function
2958 * tcp_xmit_retransmit_queue().
2959 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2960 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2961 int num_dupack, int *ack_flag, int *rexmit)
2962 {
2963 struct inet_connection_sock *icsk = inet_csk(sk);
2964 struct tcp_sock *tp = tcp_sk(sk);
2965 int fast_rexmit = 0, flag = *ack_flag;
2966 bool ece_ack = flag & FLAG_ECE;
2967 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2968 tcp_force_fast_retransmit(sk));
2969
2970 if (!tp->packets_out && tp->sacked_out)
2971 tp->sacked_out = 0;
2972
2973 /* Now state machine starts.
2974 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2975 if (ece_ack)
2976 tp->prior_ssthresh = 0;
2977
2978 /* B. In all the states check for reneging SACKs. */
2979 if (tcp_check_sack_reneging(sk, ack_flag))
2980 return;
2981
2982 /* C. Check consistency of the current state. */
2983 tcp_verify_left_out(tp);
2984
2985 /* D. Check state exit conditions. State can be terminated
2986 * when high_seq is ACKed. */
2987 if (icsk->icsk_ca_state == TCP_CA_Open) {
2988 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2989 tp->retrans_stamp = 0;
2990 } else if (!before(tp->snd_una, tp->high_seq)) {
2991 switch (icsk->icsk_ca_state) {
2992 case TCP_CA_CWR:
2993 /* CWR is to be held something *above* high_seq
2994 * is ACKed for CWR bit to reach receiver. */
2995 if (tp->snd_una != tp->high_seq) {
2996 tcp_end_cwnd_reduction(sk);
2997 tcp_set_ca_state(sk, TCP_CA_Open);
2998 }
2999 break;
3000
3001 case TCP_CA_Recovery:
3002 if (tcp_is_reno(tp))
3003 tcp_reset_reno_sack(tp);
3004 if (tcp_try_undo_recovery(sk))
3005 return;
3006 tcp_end_cwnd_reduction(sk);
3007 break;
3008 }
3009 }
3010
3011 /* E. Process state. */
3012 switch (icsk->icsk_ca_state) {
3013 case TCP_CA_Recovery:
3014 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3015 if (tcp_is_reno(tp))
3016 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3017 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3018 return;
3019
3020 if (tcp_try_undo_dsack(sk))
3021 tcp_try_keep_open(sk);
3022
3023 tcp_identify_packet_loss(sk, ack_flag);
3024 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3025 if (!tcp_time_to_recover(sk, flag))
3026 return;
3027 /* Undo reverts the recovery state. If loss is evident,
3028 * starts a new recovery (e.g. reordering then loss);
3029 */
3030 tcp_enter_recovery(sk, ece_ack);
3031 }
3032 break;
3033 case TCP_CA_Loss:
3034 tcp_process_loss(sk, flag, num_dupack, rexmit);
3035 tcp_identify_packet_loss(sk, ack_flag);
3036 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3037 (*ack_flag & FLAG_LOST_RETRANS)))
3038 return;
3039 /* Change state if cwnd is undone or retransmits are lost */
3040 fallthrough;
3041 default:
3042 if (tcp_is_reno(tp)) {
3043 if (flag & FLAG_SND_UNA_ADVANCED)
3044 tcp_reset_reno_sack(tp);
3045 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3046 }
3047
3048 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3049 tcp_try_undo_dsack(sk);
3050
3051 tcp_identify_packet_loss(sk, ack_flag);
3052 if (!tcp_time_to_recover(sk, flag)) {
3053 tcp_try_to_open(sk, flag);
3054 return;
3055 }
3056
3057 /* MTU probe failure: don't reduce cwnd */
3058 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3059 icsk->icsk_mtup.probe_size &&
3060 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3061 tcp_mtup_probe_failed(sk);
3062 /* Restores the reduction we did in tcp_mtup_probe() */
3063 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3064 tcp_simple_retransmit(sk);
3065 return;
3066 }
3067
3068 /* Otherwise enter Recovery state */
3069 tcp_enter_recovery(sk, ece_ack);
3070 fast_rexmit = 1;
3071 }
3072
3073 if (!tcp_is_rack(sk) && do_lost)
3074 tcp_update_scoreboard(sk, fast_rexmit);
3075 *rexmit = REXMIT_LOST;
3076 }
3077
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3078 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3079 {
3080 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3081 struct tcp_sock *tp = tcp_sk(sk);
3082
3083 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3084 /* If the remote keeps returning delayed ACKs, eventually
3085 * the min filter would pick it up and overestimate the
3086 * prop. delay when it expires. Skip suspected delayed ACKs.
3087 */
3088 return;
3089 }
3090 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3091 rtt_us ? : jiffies_to_usecs(1));
3092 }
3093
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3094 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3095 long seq_rtt_us, long sack_rtt_us,
3096 long ca_rtt_us, struct rate_sample *rs)
3097 {
3098 const struct tcp_sock *tp = tcp_sk(sk);
3099
3100 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3101 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3102 * Karn's algorithm forbids taking RTT if some retransmitted data
3103 * is acked (RFC6298).
3104 */
3105 if (seq_rtt_us < 0)
3106 seq_rtt_us = sack_rtt_us;
3107
3108 /* RTTM Rule: A TSecr value received in a segment is used to
3109 * update the averaged RTT measurement only if the segment
3110 * acknowledges some new data, i.e., only if it advances the
3111 * left edge of the send window.
3112 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3113 */
3114 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3115 flag & FLAG_ACKED) {
3116 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3117
3118 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3119 if (!delta)
3120 delta = 1;
3121 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3122 ca_rtt_us = seq_rtt_us;
3123 }
3124 }
3125 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3126 if (seq_rtt_us < 0)
3127 return false;
3128
3129 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3130 * always taken together with ACK, SACK, or TS-opts. Any negative
3131 * values will be skipped with the seq_rtt_us < 0 check above.
3132 */
3133 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3134 tcp_rtt_estimator(sk, seq_rtt_us);
3135 tcp_set_rto(sk);
3136
3137 /* RFC6298: only reset backoff on valid RTT measurement. */
3138 inet_csk(sk)->icsk_backoff = 0;
3139 return true;
3140 }
3141
3142 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3143 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3144 {
3145 struct rate_sample rs;
3146 long rtt_us = -1L;
3147
3148 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3149 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3150
3151 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3152 }
3153
3154
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3155 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3156 {
3157 const struct inet_connection_sock *icsk = inet_csk(sk);
3158
3159 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3160 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3161 }
3162
3163 /* Restart timer after forward progress on connection.
3164 * RFC2988 recommends to restart timer to now+rto.
3165 */
tcp_rearm_rto(struct sock * sk)3166 void tcp_rearm_rto(struct sock *sk)
3167 {
3168 const struct inet_connection_sock *icsk = inet_csk(sk);
3169 struct tcp_sock *tp = tcp_sk(sk);
3170
3171 /* If the retrans timer is currently being used by Fast Open
3172 * for SYN-ACK retrans purpose, stay put.
3173 */
3174 if (rcu_access_pointer(tp->fastopen_rsk))
3175 return;
3176
3177 if (!tp->packets_out) {
3178 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3179 } else {
3180 u32 rto = inet_csk(sk)->icsk_rto;
3181 /* Offset the time elapsed after installing regular RTO */
3182 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3183 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3184 s64 delta_us = tcp_rto_delta_us(sk);
3185 /* delta_us may not be positive if the socket is locked
3186 * when the retrans timer fires and is rescheduled.
3187 */
3188 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3189 }
3190 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3191 TCP_RTO_MAX);
3192 }
3193 }
3194
3195 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3196 static void tcp_set_xmit_timer(struct sock *sk)
3197 {
3198 if (!tcp_schedule_loss_probe(sk, true))
3199 tcp_rearm_rto(sk);
3200 }
3201
3202 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3203 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3204 {
3205 struct tcp_sock *tp = tcp_sk(sk);
3206 u32 packets_acked;
3207
3208 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3209
3210 packets_acked = tcp_skb_pcount(skb);
3211 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3212 return 0;
3213 packets_acked -= tcp_skb_pcount(skb);
3214
3215 if (packets_acked) {
3216 BUG_ON(tcp_skb_pcount(skb) == 0);
3217 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3218 }
3219
3220 return packets_acked;
3221 }
3222
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3223 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3224 const struct sk_buff *ack_skb, u32 prior_snd_una)
3225 {
3226 const struct skb_shared_info *shinfo;
3227
3228 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3229 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3230 return;
3231
3232 shinfo = skb_shinfo(skb);
3233 if (!before(shinfo->tskey, prior_snd_una) &&
3234 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3235 tcp_skb_tsorted_save(skb) {
3236 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3237 } tcp_skb_tsorted_restore(skb);
3238 }
3239 }
3240
3241 /* Remove acknowledged frames from the retransmission queue. If our packet
3242 * is before the ack sequence we can discard it as it's confirmed to have
3243 * arrived at the other end.
3244 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3245 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3246 u32 prior_fack, u32 prior_snd_una,
3247 struct tcp_sacktag_state *sack, bool ece_ack)
3248 {
3249 const struct inet_connection_sock *icsk = inet_csk(sk);
3250 u64 first_ackt, last_ackt;
3251 struct tcp_sock *tp = tcp_sk(sk);
3252 u32 prior_sacked = tp->sacked_out;
3253 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3254 struct sk_buff *skb, *next;
3255 bool fully_acked = true;
3256 long sack_rtt_us = -1L;
3257 long seq_rtt_us = -1L;
3258 long ca_rtt_us = -1L;
3259 u32 pkts_acked = 0;
3260 u32 last_in_flight = 0;
3261 bool rtt_update;
3262 int flag = 0;
3263
3264 first_ackt = 0;
3265
3266 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3267 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3268 const u32 start_seq = scb->seq;
3269 u8 sacked = scb->sacked;
3270 u32 acked_pcount;
3271
3272 /* Determine how many packets and what bytes were acked, tso and else */
3273 if (after(scb->end_seq, tp->snd_una)) {
3274 if (tcp_skb_pcount(skb) == 1 ||
3275 !after(tp->snd_una, scb->seq))
3276 break;
3277
3278 acked_pcount = tcp_tso_acked(sk, skb);
3279 if (!acked_pcount)
3280 break;
3281 fully_acked = false;
3282 } else {
3283 acked_pcount = tcp_skb_pcount(skb);
3284 }
3285
3286 if (unlikely(sacked & TCPCB_RETRANS)) {
3287 if (sacked & TCPCB_SACKED_RETRANS)
3288 tp->retrans_out -= acked_pcount;
3289 flag |= FLAG_RETRANS_DATA_ACKED;
3290 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3291 last_ackt = tcp_skb_timestamp_us(skb);
3292 WARN_ON_ONCE(last_ackt == 0);
3293 if (!first_ackt)
3294 first_ackt = last_ackt;
3295
3296 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3297 if (before(start_seq, reord))
3298 reord = start_seq;
3299 if (!after(scb->end_seq, tp->high_seq))
3300 flag |= FLAG_ORIG_SACK_ACKED;
3301 }
3302
3303 if (sacked & TCPCB_SACKED_ACKED) {
3304 tp->sacked_out -= acked_pcount;
3305 } else if (tcp_is_sack(tp)) {
3306 tcp_count_delivered(tp, acked_pcount, ece_ack);
3307 if (!tcp_skb_spurious_retrans(tp, skb))
3308 tcp_rack_advance(tp, sacked, scb->end_seq,
3309 tcp_skb_timestamp_us(skb));
3310 }
3311 if (sacked & TCPCB_LOST)
3312 tp->lost_out -= acked_pcount;
3313
3314 tp->packets_out -= acked_pcount;
3315 pkts_acked += acked_pcount;
3316 tcp_rate_skb_delivered(sk, skb, sack->rate);
3317
3318 /* Initial outgoing SYN's get put onto the write_queue
3319 * just like anything else we transmit. It is not
3320 * true data, and if we misinform our callers that
3321 * this ACK acks real data, we will erroneously exit
3322 * connection startup slow start one packet too
3323 * quickly. This is severely frowned upon behavior.
3324 */
3325 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3326 flag |= FLAG_DATA_ACKED;
3327 } else {
3328 flag |= FLAG_SYN_ACKED;
3329 tp->retrans_stamp = 0;
3330 }
3331
3332 if (!fully_acked)
3333 break;
3334
3335 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3336
3337 next = skb_rb_next(skb);
3338 if (unlikely(skb == tp->retransmit_skb_hint))
3339 tp->retransmit_skb_hint = NULL;
3340 if (unlikely(skb == tp->lost_skb_hint))
3341 tp->lost_skb_hint = NULL;
3342 tcp_highest_sack_replace(sk, skb, next);
3343 tcp_rtx_queue_unlink_and_free(skb, sk);
3344 }
3345
3346 if (!skb)
3347 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3348
3349 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3350 tp->snd_up = tp->snd_una;
3351
3352 if (skb) {
3353 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3354 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3355 flag |= FLAG_SACK_RENEGING;
3356 }
3357
3358 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3359 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3360 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3361
3362 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3363 last_in_flight && !prior_sacked && fully_acked &&
3364 sack->rate->prior_delivered + 1 == tp->delivered &&
3365 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3366 /* Conservatively mark a delayed ACK. It's typically
3367 * from a lone runt packet over the round trip to
3368 * a receiver w/o out-of-order or CE events.
3369 */
3370 flag |= FLAG_ACK_MAYBE_DELAYED;
3371 }
3372 }
3373 if (sack->first_sackt) {
3374 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3375 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3376 }
3377 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3378 ca_rtt_us, sack->rate);
3379
3380 if (flag & FLAG_ACKED) {
3381 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3382 if (unlikely(icsk->icsk_mtup.probe_size &&
3383 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3384 tcp_mtup_probe_success(sk);
3385 }
3386
3387 if (tcp_is_reno(tp)) {
3388 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3389
3390 /* If any of the cumulatively ACKed segments was
3391 * retransmitted, non-SACK case cannot confirm that
3392 * progress was due to original transmission due to
3393 * lack of TCPCB_SACKED_ACKED bits even if some of
3394 * the packets may have been never retransmitted.
3395 */
3396 if (flag & FLAG_RETRANS_DATA_ACKED)
3397 flag &= ~FLAG_ORIG_SACK_ACKED;
3398 } else {
3399 int delta;
3400
3401 /* Non-retransmitted hole got filled? That's reordering */
3402 if (before(reord, prior_fack))
3403 tcp_check_sack_reordering(sk, reord, 0);
3404
3405 delta = prior_sacked - tp->sacked_out;
3406 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3407 }
3408 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3409 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3410 tcp_skb_timestamp_us(skb))) {
3411 /* Do not re-arm RTO if the sack RTT is measured from data sent
3412 * after when the head was last (re)transmitted. Otherwise the
3413 * timeout may continue to extend in loss recovery.
3414 */
3415 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3416 }
3417
3418 if (icsk->icsk_ca_ops->pkts_acked) {
3419 struct ack_sample sample = { .pkts_acked = pkts_acked,
3420 .rtt_us = sack->rate->rtt_us,
3421 .in_flight = last_in_flight };
3422
3423 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3424 }
3425
3426 #if FASTRETRANS_DEBUG > 0
3427 WARN_ON((int)tp->sacked_out < 0);
3428 WARN_ON((int)tp->lost_out < 0);
3429 WARN_ON((int)tp->retrans_out < 0);
3430 if (!tp->packets_out && tcp_is_sack(tp)) {
3431 icsk = inet_csk(sk);
3432 if (tp->lost_out) {
3433 pr_debug("Leak l=%u %d\n",
3434 tp->lost_out, icsk->icsk_ca_state);
3435 tp->lost_out = 0;
3436 }
3437 if (tp->sacked_out) {
3438 pr_debug("Leak s=%u %d\n",
3439 tp->sacked_out, icsk->icsk_ca_state);
3440 tp->sacked_out = 0;
3441 }
3442 if (tp->retrans_out) {
3443 pr_debug("Leak r=%u %d\n",
3444 tp->retrans_out, icsk->icsk_ca_state);
3445 tp->retrans_out = 0;
3446 }
3447 }
3448 #endif
3449 return flag;
3450 }
3451
tcp_ack_probe(struct sock * sk)3452 static void tcp_ack_probe(struct sock *sk)
3453 {
3454 struct inet_connection_sock *icsk = inet_csk(sk);
3455 struct sk_buff *head = tcp_send_head(sk);
3456 const struct tcp_sock *tp = tcp_sk(sk);
3457
3458 /* Was it a usable window open? */
3459 if (!head)
3460 return;
3461 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3462 icsk->icsk_backoff = 0;
3463 icsk->icsk_probes_tstamp = 0;
3464 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3465 /* Socket must be waked up by subsequent tcp_data_snd_check().
3466 * This function is not for random using!
3467 */
3468 } else {
3469 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3470
3471 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3472 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3473 }
3474 }
3475
tcp_ack_is_dubious(const struct sock * sk,const int flag)3476 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3477 {
3478 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3479 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3480 }
3481
3482 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3483 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3484 {
3485 /* If reordering is high then always grow cwnd whenever data is
3486 * delivered regardless of its ordering. Otherwise stay conservative
3487 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3488 * new SACK or ECE mark may first advance cwnd here and later reduce
3489 * cwnd in tcp_fastretrans_alert() based on more states.
3490 */
3491 if (tcp_sk(sk)->reordering >
3492 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3493 return flag & FLAG_FORWARD_PROGRESS;
3494
3495 return flag & FLAG_DATA_ACKED;
3496 }
3497
3498 /* The "ultimate" congestion control function that aims to replace the rigid
3499 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3500 * It's called toward the end of processing an ACK with precise rate
3501 * information. All transmission or retransmission are delayed afterwards.
3502 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3503 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3504 int flag, const struct rate_sample *rs)
3505 {
3506 const struct inet_connection_sock *icsk = inet_csk(sk);
3507
3508 if (icsk->icsk_ca_ops->cong_control) {
3509 icsk->icsk_ca_ops->cong_control(sk, rs);
3510 return;
3511 }
3512
3513 if (tcp_in_cwnd_reduction(sk)) {
3514 /* Reduce cwnd if state mandates */
3515 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3516 } else if (tcp_may_raise_cwnd(sk, flag)) {
3517 /* Advance cwnd if state allows */
3518 tcp_cong_avoid(sk, ack, acked_sacked);
3519 }
3520 tcp_update_pacing_rate(sk);
3521 }
3522
3523 /* Check that window update is acceptable.
3524 * The function assumes that snd_una<=ack<=snd_next.
3525 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3526 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3527 const u32 ack, const u32 ack_seq,
3528 const u32 nwin)
3529 {
3530 return after(ack, tp->snd_una) ||
3531 after(ack_seq, tp->snd_wl1) ||
3532 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3533 }
3534
3535 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3536 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3537 {
3538 u32 delta = ack - tp->snd_una;
3539
3540 sock_owned_by_me((struct sock *)tp);
3541 tp->bytes_acked += delta;
3542 tp->snd_una = ack;
3543 }
3544
3545 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3546 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3547 {
3548 u32 delta = seq - tp->rcv_nxt;
3549
3550 sock_owned_by_me((struct sock *)tp);
3551 tp->bytes_received += delta;
3552 WRITE_ONCE(tp->rcv_nxt, seq);
3553 }
3554
3555 /* Update our send window.
3556 *
3557 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3558 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3559 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3560 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3561 u32 ack_seq)
3562 {
3563 struct tcp_sock *tp = tcp_sk(sk);
3564 int flag = 0;
3565 u32 nwin = ntohs(tcp_hdr(skb)->window);
3566
3567 if (likely(!tcp_hdr(skb)->syn))
3568 nwin <<= tp->rx_opt.snd_wscale;
3569
3570 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3571 flag |= FLAG_WIN_UPDATE;
3572 tcp_update_wl(tp, ack_seq);
3573
3574 if (tp->snd_wnd != nwin) {
3575 tp->snd_wnd = nwin;
3576
3577 /* Note, it is the only place, where
3578 * fast path is recovered for sending TCP.
3579 */
3580 tp->pred_flags = 0;
3581 tcp_fast_path_check(sk);
3582
3583 if (!tcp_write_queue_empty(sk))
3584 tcp_slow_start_after_idle_check(sk);
3585
3586 if (nwin > tp->max_window) {
3587 tp->max_window = nwin;
3588 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3589 }
3590 }
3591 }
3592
3593 tcp_snd_una_update(tp, ack);
3594
3595 return flag;
3596 }
3597
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3598 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3599 u32 *last_oow_ack_time)
3600 {
3601 /* Paired with the WRITE_ONCE() in this function. */
3602 u32 val = READ_ONCE(*last_oow_ack_time);
3603
3604 if (val) {
3605 s32 elapsed = (s32)(tcp_jiffies32 - val);
3606
3607 if (0 <= elapsed &&
3608 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3609 NET_INC_STATS(net, mib_idx);
3610 return true; /* rate-limited: don't send yet! */
3611 }
3612 }
3613
3614 /* Paired with the prior READ_ONCE() and with itself,
3615 * as we might be lockless.
3616 */
3617 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3618
3619 return false; /* not rate-limited: go ahead, send dupack now! */
3620 }
3621
3622 /* Return true if we're currently rate-limiting out-of-window ACKs and
3623 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3624 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3625 * attacks that send repeated SYNs or ACKs for the same connection. To
3626 * do this, we do not send a duplicate SYNACK or ACK if the remote
3627 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3628 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3629 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3630 int mib_idx, u32 *last_oow_ack_time)
3631 {
3632 /* Data packets without SYNs are not likely part of an ACK loop. */
3633 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3634 !tcp_hdr(skb)->syn)
3635 return false;
3636
3637 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3638 }
3639
3640 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3641 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3642 {
3643 /* unprotected vars, we dont care of overwrites */
3644 static u32 challenge_timestamp;
3645 static unsigned int challenge_count;
3646 struct tcp_sock *tp = tcp_sk(sk);
3647 struct net *net = sock_net(sk);
3648 u32 count, now;
3649
3650 /* First check our per-socket dupack rate limit. */
3651 if (__tcp_oow_rate_limited(net,
3652 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3653 &tp->last_oow_ack_time))
3654 return;
3655
3656 /* Then check host-wide RFC 5961 rate limit. */
3657 now = jiffies / HZ;
3658 if (now != READ_ONCE(challenge_timestamp)) {
3659 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3660 u32 half = (ack_limit + 1) >> 1;
3661
3662 WRITE_ONCE(challenge_timestamp, now);
3663 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3664 }
3665 count = READ_ONCE(challenge_count);
3666 if (count > 0) {
3667 WRITE_ONCE(challenge_count, count - 1);
3668 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3669 tcp_send_ack(sk);
3670 }
3671 }
3672
tcp_store_ts_recent(struct tcp_sock * tp)3673 static void tcp_store_ts_recent(struct tcp_sock *tp)
3674 {
3675 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3676 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3677 }
3678
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3679 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3680 {
3681 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3682 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3683 * extra check below makes sure this can only happen
3684 * for pure ACK frames. -DaveM
3685 *
3686 * Not only, also it occurs for expired timestamps.
3687 */
3688
3689 if (tcp_paws_check(&tp->rx_opt, 0))
3690 tcp_store_ts_recent(tp);
3691 }
3692 }
3693
3694 /* This routine deals with acks during a TLP episode and ends an episode by
3695 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3696 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3697 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3698 {
3699 struct tcp_sock *tp = tcp_sk(sk);
3700
3701 if (before(ack, tp->tlp_high_seq))
3702 return;
3703
3704 if (!tp->tlp_retrans) {
3705 /* TLP of new data has been acknowledged */
3706 tp->tlp_high_seq = 0;
3707 } else if (flag & FLAG_DSACK_TLP) {
3708 /* This DSACK means original and TLP probe arrived; no loss */
3709 tp->tlp_high_seq = 0;
3710 } else if (after(ack, tp->tlp_high_seq)) {
3711 /* ACK advances: there was a loss, so reduce cwnd. Reset
3712 * tlp_high_seq in tcp_init_cwnd_reduction()
3713 */
3714 tcp_init_cwnd_reduction(sk);
3715 tcp_set_ca_state(sk, TCP_CA_CWR);
3716 tcp_end_cwnd_reduction(sk);
3717 tcp_try_keep_open(sk);
3718 NET_INC_STATS(sock_net(sk),
3719 LINUX_MIB_TCPLOSSPROBERECOVERY);
3720 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3721 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3722 /* Pure dupack: original and TLP probe arrived; no loss */
3723 tp->tlp_high_seq = 0;
3724 }
3725 }
3726
tcp_in_ack_event(struct sock * sk,u32 flags)3727 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3728 {
3729 const struct inet_connection_sock *icsk = inet_csk(sk);
3730
3731 if (icsk->icsk_ca_ops->in_ack_event)
3732 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3733 }
3734
3735 /* Congestion control has updated the cwnd already. So if we're in
3736 * loss recovery then now we do any new sends (for FRTO) or
3737 * retransmits (for CA_Loss or CA_recovery) that make sense.
3738 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3739 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3740 {
3741 struct tcp_sock *tp = tcp_sk(sk);
3742
3743 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3744 return;
3745
3746 if (unlikely(rexmit == REXMIT_NEW)) {
3747 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3748 TCP_NAGLE_OFF);
3749 if (after(tp->snd_nxt, tp->high_seq))
3750 return;
3751 tp->frto = 0;
3752 }
3753 tcp_xmit_retransmit_queue(sk);
3754 }
3755
3756 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3757 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3758 {
3759 const struct net *net = sock_net(sk);
3760 struct tcp_sock *tp = tcp_sk(sk);
3761 u32 delivered;
3762
3763 delivered = tp->delivered - prior_delivered;
3764 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3765 if (flag & FLAG_ECE)
3766 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3767
3768 return delivered;
3769 }
3770
3771 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3772 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3773 {
3774 struct inet_connection_sock *icsk = inet_csk(sk);
3775 struct tcp_sock *tp = tcp_sk(sk);
3776 struct tcp_sacktag_state sack_state;
3777 struct rate_sample rs = { .prior_delivered = 0 };
3778 u32 prior_snd_una = tp->snd_una;
3779 bool is_sack_reneg = tp->is_sack_reneg;
3780 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3781 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3782 int num_dupack = 0;
3783 int prior_packets = tp->packets_out;
3784 u32 delivered = tp->delivered;
3785 u32 lost = tp->lost;
3786 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3787 u32 prior_fack;
3788
3789 sack_state.first_sackt = 0;
3790 sack_state.rate = &rs;
3791 sack_state.sack_delivered = 0;
3792
3793 /* We very likely will need to access rtx queue. */
3794 prefetch(sk->tcp_rtx_queue.rb_node);
3795
3796 /* If the ack is older than previous acks
3797 * then we can probably ignore it.
3798 */
3799 if (before(ack, prior_snd_una)) {
3800 u32 max_window;
3801
3802 /* do not accept ACK for bytes we never sent. */
3803 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3804 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3805 if (before(ack, prior_snd_una - max_window)) {
3806 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3807 tcp_send_challenge_ack(sk, skb);
3808 return -1;
3809 }
3810 goto old_ack;
3811 }
3812
3813 /* If the ack includes data we haven't sent yet, discard
3814 * this segment (RFC793 Section 3.9).
3815 */
3816 if (after(ack, tp->snd_nxt))
3817 return -1;
3818
3819 if (after(ack, prior_snd_una)) {
3820 flag |= FLAG_SND_UNA_ADVANCED;
3821 icsk->icsk_retransmits = 0;
3822
3823 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3824 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3825 if (icsk->icsk_clean_acked)
3826 icsk->icsk_clean_acked(sk, ack);
3827 #endif
3828 }
3829
3830 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3831 rs.prior_in_flight = tcp_packets_in_flight(tp);
3832
3833 /* ts_recent update must be made after we are sure that the packet
3834 * is in window.
3835 */
3836 if (flag & FLAG_UPDATE_TS_RECENT)
3837 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3838
3839 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3840 FLAG_SND_UNA_ADVANCED) {
3841 /* Window is constant, pure forward advance.
3842 * No more checks are required.
3843 * Note, we use the fact that SND.UNA>=SND.WL2.
3844 */
3845 tcp_update_wl(tp, ack_seq);
3846 tcp_snd_una_update(tp, ack);
3847 flag |= FLAG_WIN_UPDATE;
3848
3849 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3850
3851 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3852 } else {
3853 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3854
3855 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3856 flag |= FLAG_DATA;
3857 else
3858 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3859
3860 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3861
3862 if (TCP_SKB_CB(skb)->sacked)
3863 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3864 &sack_state);
3865
3866 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3867 flag |= FLAG_ECE;
3868 ack_ev_flags |= CA_ACK_ECE;
3869 }
3870
3871 if (sack_state.sack_delivered)
3872 tcp_count_delivered(tp, sack_state.sack_delivered,
3873 flag & FLAG_ECE);
3874
3875 if (flag & FLAG_WIN_UPDATE)
3876 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3877
3878 tcp_in_ack_event(sk, ack_ev_flags);
3879 }
3880
3881 /* This is a deviation from RFC3168 since it states that:
3882 * "When the TCP data sender is ready to set the CWR bit after reducing
3883 * the congestion window, it SHOULD set the CWR bit only on the first
3884 * new data packet that it transmits."
3885 * We accept CWR on pure ACKs to be more robust
3886 * with widely-deployed TCP implementations that do this.
3887 */
3888 tcp_ecn_accept_cwr(sk, skb);
3889
3890 /* We passed data and got it acked, remove any soft error
3891 * log. Something worked...
3892 */
3893 sk->sk_err_soft = 0;
3894 icsk->icsk_probes_out = 0;
3895 tp->rcv_tstamp = tcp_jiffies32;
3896 if (!prior_packets)
3897 goto no_queue;
3898
3899 /* See if we can take anything off of the retransmit queue. */
3900 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3901 &sack_state, flag & FLAG_ECE);
3902
3903 tcp_rack_update_reo_wnd(sk, &rs);
3904
3905 if (tp->tlp_high_seq)
3906 tcp_process_tlp_ack(sk, ack, flag);
3907
3908 if (tcp_ack_is_dubious(sk, flag)) {
3909 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3910 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3911 num_dupack = 1;
3912 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3913 if (!(flag & FLAG_DATA))
3914 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3915 }
3916 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3917 &rexmit);
3918 }
3919
3920 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3921 if (flag & FLAG_SET_XMIT_TIMER)
3922 tcp_set_xmit_timer(sk);
3923
3924 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3925 sk_dst_confirm(sk);
3926
3927 delivered = tcp_newly_delivered(sk, delivered, flag);
3928 lost = tp->lost - lost; /* freshly marked lost */
3929 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3930 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3931 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3932 tcp_xmit_recovery(sk, rexmit);
3933 return 1;
3934
3935 no_queue:
3936 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3937 if (flag & FLAG_DSACKING_ACK) {
3938 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3939 &rexmit);
3940 tcp_newly_delivered(sk, delivered, flag);
3941 }
3942 /* If this ack opens up a zero window, clear backoff. It was
3943 * being used to time the probes, and is probably far higher than
3944 * it needs to be for normal retransmission.
3945 */
3946 tcp_ack_probe(sk);
3947
3948 if (tp->tlp_high_seq)
3949 tcp_process_tlp_ack(sk, ack, flag);
3950 return 1;
3951
3952 old_ack:
3953 /* If data was SACKed, tag it and see if we should send more data.
3954 * If data was DSACKed, see if we can undo a cwnd reduction.
3955 */
3956 if (TCP_SKB_CB(skb)->sacked) {
3957 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3958 &sack_state);
3959 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3960 &rexmit);
3961 tcp_newly_delivered(sk, delivered, flag);
3962 tcp_xmit_recovery(sk, rexmit);
3963 }
3964
3965 return 0;
3966 }
3967
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3968 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3969 bool syn, struct tcp_fastopen_cookie *foc,
3970 bool exp_opt)
3971 {
3972 /* Valid only in SYN or SYN-ACK with an even length. */
3973 if (!foc || !syn || len < 0 || (len & 1))
3974 return;
3975
3976 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3977 len <= TCP_FASTOPEN_COOKIE_MAX)
3978 memcpy(foc->val, cookie, len);
3979 else if (len != 0)
3980 len = -1;
3981 foc->len = len;
3982 foc->exp = exp_opt;
3983 }
3984
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3985 static bool smc_parse_options(const struct tcphdr *th,
3986 struct tcp_options_received *opt_rx,
3987 const unsigned char *ptr,
3988 int opsize)
3989 {
3990 #if IS_ENABLED(CONFIG_SMC)
3991 if (static_branch_unlikely(&tcp_have_smc)) {
3992 if (th->syn && !(opsize & 1) &&
3993 opsize >= TCPOLEN_EXP_SMC_BASE &&
3994 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3995 opt_rx->smc_ok = 1;
3996 return true;
3997 }
3998 }
3999 #endif
4000 return false;
4001 }
4002
4003 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4004 * value on success.
4005 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4006 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4007 {
4008 const unsigned char *ptr = (const unsigned char *)(th + 1);
4009 int length = (th->doff * 4) - sizeof(struct tcphdr);
4010 u16 mss = 0;
4011
4012 while (length > 0) {
4013 int opcode = *ptr++;
4014 int opsize;
4015
4016 switch (opcode) {
4017 case TCPOPT_EOL:
4018 return mss;
4019 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4020 length--;
4021 continue;
4022 default:
4023 if (length < 2)
4024 return mss;
4025 opsize = *ptr++;
4026 if (opsize < 2) /* "silly options" */
4027 return mss;
4028 if (opsize > length)
4029 return mss; /* fail on partial options */
4030 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4031 u16 in_mss = get_unaligned_be16(ptr);
4032
4033 if (in_mss) {
4034 if (user_mss && user_mss < in_mss)
4035 in_mss = user_mss;
4036 mss = in_mss;
4037 }
4038 }
4039 ptr += opsize - 2;
4040 length -= opsize;
4041 }
4042 }
4043 return mss;
4044 }
4045
4046 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4047 * But, this can also be called on packets in the established flow when
4048 * the fast version below fails.
4049 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4050 void tcp_parse_options(const struct net *net,
4051 const struct sk_buff *skb,
4052 struct tcp_options_received *opt_rx, int estab,
4053 struct tcp_fastopen_cookie *foc)
4054 {
4055 const unsigned char *ptr;
4056 const struct tcphdr *th = tcp_hdr(skb);
4057 int length = (th->doff * 4) - sizeof(struct tcphdr);
4058
4059 ptr = (const unsigned char *)(th + 1);
4060 opt_rx->saw_tstamp = 0;
4061 opt_rx->saw_unknown = 0;
4062
4063 while (length > 0) {
4064 int opcode = *ptr++;
4065 int opsize;
4066
4067 switch (opcode) {
4068 case TCPOPT_EOL:
4069 return;
4070 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4071 length--;
4072 continue;
4073 default:
4074 if (length < 2)
4075 return;
4076 opsize = *ptr++;
4077 if (opsize < 2) /* "silly options" */
4078 return;
4079 if (opsize > length)
4080 return; /* don't parse partial options */
4081 switch (opcode) {
4082 case TCPOPT_MSS:
4083 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4084 u16 in_mss = get_unaligned_be16(ptr);
4085 if (in_mss) {
4086 if (opt_rx->user_mss &&
4087 opt_rx->user_mss < in_mss)
4088 in_mss = opt_rx->user_mss;
4089 opt_rx->mss_clamp = in_mss;
4090 }
4091 }
4092 break;
4093 case TCPOPT_WINDOW:
4094 if (opsize == TCPOLEN_WINDOW && th->syn &&
4095 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4096 __u8 snd_wscale = *(__u8 *)ptr;
4097 opt_rx->wscale_ok = 1;
4098 if (snd_wscale > TCP_MAX_WSCALE) {
4099 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4100 __func__,
4101 snd_wscale,
4102 TCP_MAX_WSCALE);
4103 snd_wscale = TCP_MAX_WSCALE;
4104 }
4105 opt_rx->snd_wscale = snd_wscale;
4106 }
4107 break;
4108 case TCPOPT_TIMESTAMP:
4109 if ((opsize == TCPOLEN_TIMESTAMP) &&
4110 ((estab && opt_rx->tstamp_ok) ||
4111 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4112 opt_rx->saw_tstamp = 1;
4113 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4114 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4115 }
4116 break;
4117 case TCPOPT_SACK_PERM:
4118 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4119 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4120 opt_rx->sack_ok = TCP_SACK_SEEN;
4121 tcp_sack_reset(opt_rx);
4122 }
4123 break;
4124
4125 case TCPOPT_SACK:
4126 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4127 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4128 opt_rx->sack_ok) {
4129 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4130 }
4131 break;
4132 #ifdef CONFIG_TCP_MD5SIG
4133 case TCPOPT_MD5SIG:
4134 /*
4135 * The MD5 Hash has already been
4136 * checked (see tcp_v{4,6}_do_rcv()).
4137 */
4138 break;
4139 #endif
4140 case TCPOPT_FASTOPEN:
4141 tcp_parse_fastopen_option(
4142 opsize - TCPOLEN_FASTOPEN_BASE,
4143 ptr, th->syn, foc, false);
4144 break;
4145
4146 case TCPOPT_EXP:
4147 /* Fast Open option shares code 254 using a
4148 * 16 bits magic number.
4149 */
4150 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4151 get_unaligned_be16(ptr) ==
4152 TCPOPT_FASTOPEN_MAGIC) {
4153 tcp_parse_fastopen_option(opsize -
4154 TCPOLEN_EXP_FASTOPEN_BASE,
4155 ptr + 2, th->syn, foc, true);
4156 break;
4157 }
4158
4159 if (smc_parse_options(th, opt_rx, ptr, opsize))
4160 break;
4161
4162 opt_rx->saw_unknown = 1;
4163 break;
4164
4165 default:
4166 opt_rx->saw_unknown = 1;
4167 }
4168 ptr += opsize-2;
4169 length -= opsize;
4170 }
4171 }
4172 }
4173 EXPORT_SYMBOL(tcp_parse_options);
4174
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4175 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4176 {
4177 const __be32 *ptr = (const __be32 *)(th + 1);
4178
4179 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4180 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4181 tp->rx_opt.saw_tstamp = 1;
4182 ++ptr;
4183 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4184 ++ptr;
4185 if (*ptr)
4186 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4187 else
4188 tp->rx_opt.rcv_tsecr = 0;
4189 return true;
4190 }
4191 return false;
4192 }
4193
4194 /* Fast parse options. This hopes to only see timestamps.
4195 * If it is wrong it falls back on tcp_parse_options().
4196 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4197 static bool tcp_fast_parse_options(const struct net *net,
4198 const struct sk_buff *skb,
4199 const struct tcphdr *th, struct tcp_sock *tp)
4200 {
4201 /* In the spirit of fast parsing, compare doff directly to constant
4202 * values. Because equality is used, short doff can be ignored here.
4203 */
4204 if (th->doff == (sizeof(*th) / 4)) {
4205 tp->rx_opt.saw_tstamp = 0;
4206 return false;
4207 } else if (tp->rx_opt.tstamp_ok &&
4208 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4209 if (tcp_parse_aligned_timestamp(tp, th))
4210 return true;
4211 }
4212
4213 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4214 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4215 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4216
4217 return true;
4218 }
4219
4220 #ifdef CONFIG_TCP_MD5SIG
4221 /*
4222 * Parse MD5 Signature option
4223 */
tcp_parse_md5sig_option(const struct tcphdr * th)4224 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4225 {
4226 int length = (th->doff << 2) - sizeof(*th);
4227 const u8 *ptr = (const u8 *)(th + 1);
4228
4229 /* If not enough data remaining, we can short cut */
4230 while (length >= TCPOLEN_MD5SIG) {
4231 int opcode = *ptr++;
4232 int opsize;
4233
4234 switch (opcode) {
4235 case TCPOPT_EOL:
4236 return NULL;
4237 case TCPOPT_NOP:
4238 length--;
4239 continue;
4240 default:
4241 opsize = *ptr++;
4242 if (opsize < 2 || opsize > length)
4243 return NULL;
4244 if (opcode == TCPOPT_MD5SIG)
4245 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4246 }
4247 ptr += opsize - 2;
4248 length -= opsize;
4249 }
4250 return NULL;
4251 }
4252 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4253 #endif
4254
4255 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4256 *
4257 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4258 * it can pass through stack. So, the following predicate verifies that
4259 * this segment is not used for anything but congestion avoidance or
4260 * fast retransmit. Moreover, we even are able to eliminate most of such
4261 * second order effects, if we apply some small "replay" window (~RTO)
4262 * to timestamp space.
4263 *
4264 * All these measures still do not guarantee that we reject wrapped ACKs
4265 * on networks with high bandwidth, when sequence space is recycled fastly,
4266 * but it guarantees that such events will be very rare and do not affect
4267 * connection seriously. This doesn't look nice, but alas, PAWS is really
4268 * buggy extension.
4269 *
4270 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4271 * states that events when retransmit arrives after original data are rare.
4272 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4273 * the biggest problem on large power networks even with minor reordering.
4274 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4275 * up to bandwidth of 18Gigabit/sec. 8) ]
4276 */
4277
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4278 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4279 {
4280 const struct tcp_sock *tp = tcp_sk(sk);
4281 const struct tcphdr *th = tcp_hdr(skb);
4282 u32 seq = TCP_SKB_CB(skb)->seq;
4283 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4284
4285 return (/* 1. Pure ACK with correct sequence number. */
4286 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4287
4288 /* 2. ... and duplicate ACK. */
4289 ack == tp->snd_una &&
4290
4291 /* 3. ... and does not update window. */
4292 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4293
4294 /* 4. ... and sits in replay window. */
4295 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4296 }
4297
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4298 static inline bool tcp_paws_discard(const struct sock *sk,
4299 const struct sk_buff *skb)
4300 {
4301 const struct tcp_sock *tp = tcp_sk(sk);
4302
4303 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4304 !tcp_disordered_ack(sk, skb);
4305 }
4306
4307 /* Check segment sequence number for validity.
4308 *
4309 * Segment controls are considered valid, if the segment
4310 * fits to the window after truncation to the window. Acceptability
4311 * of data (and SYN, FIN, of course) is checked separately.
4312 * See tcp_data_queue(), for example.
4313 *
4314 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4315 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4316 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4317 * (borrowed from freebsd)
4318 */
4319
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4320 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4321 {
4322 return !before(end_seq, tp->rcv_wup) &&
4323 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4324 }
4325
4326 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4327 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4328 {
4329 trace_tcp_receive_reset(sk);
4330
4331 /* mptcp can't tell us to ignore reset pkts,
4332 * so just ignore the return value of mptcp_incoming_options().
4333 */
4334 if (sk_is_mptcp(sk))
4335 mptcp_incoming_options(sk, skb);
4336
4337 /* We want the right error as BSD sees it (and indeed as we do). */
4338 switch (sk->sk_state) {
4339 case TCP_SYN_SENT:
4340 sk->sk_err = ECONNREFUSED;
4341 break;
4342 case TCP_CLOSE_WAIT:
4343 sk->sk_err = EPIPE;
4344 break;
4345 case TCP_CLOSE:
4346 return;
4347 default:
4348 sk->sk_err = ECONNRESET;
4349 }
4350 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4351 smp_wmb();
4352
4353 tcp_write_queue_purge(sk);
4354 tcp_done(sk);
4355
4356 if (!sock_flag(sk, SOCK_DEAD))
4357 sk_error_report(sk);
4358 }
4359
4360 /*
4361 * Process the FIN bit. This now behaves as it is supposed to work
4362 * and the FIN takes effect when it is validly part of sequence
4363 * space. Not before when we get holes.
4364 *
4365 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4366 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4367 * TIME-WAIT)
4368 *
4369 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4370 * close and we go into CLOSING (and later onto TIME-WAIT)
4371 *
4372 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4373 */
tcp_fin(struct sock * sk)4374 void tcp_fin(struct sock *sk)
4375 {
4376 struct tcp_sock *tp = tcp_sk(sk);
4377
4378 inet_csk_schedule_ack(sk);
4379
4380 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4381 sock_set_flag(sk, SOCK_DONE);
4382
4383 switch (sk->sk_state) {
4384 case TCP_SYN_RECV:
4385 case TCP_ESTABLISHED:
4386 /* Move to CLOSE_WAIT */
4387 tcp_set_state(sk, TCP_CLOSE_WAIT);
4388 inet_csk_enter_pingpong_mode(sk);
4389 break;
4390
4391 case TCP_CLOSE_WAIT:
4392 case TCP_CLOSING:
4393 /* Received a retransmission of the FIN, do
4394 * nothing.
4395 */
4396 break;
4397 case TCP_LAST_ACK:
4398 /* RFC793: Remain in the LAST-ACK state. */
4399 break;
4400
4401 case TCP_FIN_WAIT1:
4402 /* This case occurs when a simultaneous close
4403 * happens, we must ack the received FIN and
4404 * enter the CLOSING state.
4405 */
4406 tcp_send_ack(sk);
4407 tcp_set_state(sk, TCP_CLOSING);
4408 break;
4409 case TCP_FIN_WAIT2:
4410 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4411 tcp_send_ack(sk);
4412 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4413 break;
4414 default:
4415 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4416 * cases we should never reach this piece of code.
4417 */
4418 pr_err("%s: Impossible, sk->sk_state=%d\n",
4419 __func__, sk->sk_state);
4420 break;
4421 }
4422
4423 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4424 * Probably, we should reset in this case. For now drop them.
4425 */
4426 skb_rbtree_purge(&tp->out_of_order_queue);
4427 if (tcp_is_sack(tp))
4428 tcp_sack_reset(&tp->rx_opt);
4429 sk_mem_reclaim(sk);
4430
4431 if (!sock_flag(sk, SOCK_DEAD)) {
4432 sk->sk_state_change(sk);
4433
4434 /* Do not send POLL_HUP for half duplex close. */
4435 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4436 sk->sk_state == TCP_CLOSE)
4437 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4438 else
4439 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4440 }
4441 }
4442
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4443 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4444 u32 end_seq)
4445 {
4446 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4447 if (before(seq, sp->start_seq))
4448 sp->start_seq = seq;
4449 if (after(end_seq, sp->end_seq))
4450 sp->end_seq = end_seq;
4451 return true;
4452 }
4453 return false;
4454 }
4455
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4456 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4457 {
4458 struct tcp_sock *tp = tcp_sk(sk);
4459
4460 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4461 int mib_idx;
4462
4463 if (before(seq, tp->rcv_nxt))
4464 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4465 else
4466 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4467
4468 NET_INC_STATS(sock_net(sk), mib_idx);
4469
4470 tp->rx_opt.dsack = 1;
4471 tp->duplicate_sack[0].start_seq = seq;
4472 tp->duplicate_sack[0].end_seq = end_seq;
4473 }
4474 }
4475
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4476 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4477 {
4478 struct tcp_sock *tp = tcp_sk(sk);
4479
4480 if (!tp->rx_opt.dsack)
4481 tcp_dsack_set(sk, seq, end_seq);
4482 else
4483 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4484 }
4485
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4486 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4487 {
4488 /* When the ACK path fails or drops most ACKs, the sender would
4489 * timeout and spuriously retransmit the same segment repeatedly.
4490 * The receiver remembers and reflects via DSACKs. Leverage the
4491 * DSACK state and change the txhash to re-route speculatively.
4492 */
4493 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4494 sk_rethink_txhash(sk))
4495 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4496 }
4497
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4498 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4499 {
4500 struct tcp_sock *tp = tcp_sk(sk);
4501
4502 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4503 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4504 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4505 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4506
4507 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4508 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4509
4510 tcp_rcv_spurious_retrans(sk, skb);
4511 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4512 end_seq = tp->rcv_nxt;
4513 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4514 }
4515 }
4516
4517 tcp_send_ack(sk);
4518 }
4519
4520 /* These routines update the SACK block as out-of-order packets arrive or
4521 * in-order packets close up the sequence space.
4522 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4523 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4524 {
4525 int this_sack;
4526 struct tcp_sack_block *sp = &tp->selective_acks[0];
4527 struct tcp_sack_block *swalk = sp + 1;
4528
4529 /* See if the recent change to the first SACK eats into
4530 * or hits the sequence space of other SACK blocks, if so coalesce.
4531 */
4532 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4533 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4534 int i;
4535
4536 /* Zap SWALK, by moving every further SACK up by one slot.
4537 * Decrease num_sacks.
4538 */
4539 tp->rx_opt.num_sacks--;
4540 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4541 sp[i] = sp[i + 1];
4542 continue;
4543 }
4544 this_sack++;
4545 swalk++;
4546 }
4547 }
4548
tcp_sack_compress_send_ack(struct sock * sk)4549 static void tcp_sack_compress_send_ack(struct sock *sk)
4550 {
4551 struct tcp_sock *tp = tcp_sk(sk);
4552
4553 if (!tp->compressed_ack)
4554 return;
4555
4556 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4557 __sock_put(sk);
4558
4559 /* Since we have to send one ack finally,
4560 * substract one from tp->compressed_ack to keep
4561 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4562 */
4563 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4564 tp->compressed_ack - 1);
4565
4566 tp->compressed_ack = 0;
4567 tcp_send_ack(sk);
4568 }
4569
4570 /* Reasonable amount of sack blocks included in TCP SACK option
4571 * The max is 4, but this becomes 3 if TCP timestamps are there.
4572 * Given that SACK packets might be lost, be conservative and use 2.
4573 */
4574 #define TCP_SACK_BLOCKS_EXPECTED 2
4575
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4576 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4577 {
4578 struct tcp_sock *tp = tcp_sk(sk);
4579 struct tcp_sack_block *sp = &tp->selective_acks[0];
4580 int cur_sacks = tp->rx_opt.num_sacks;
4581 int this_sack;
4582
4583 if (!cur_sacks)
4584 goto new_sack;
4585
4586 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4587 if (tcp_sack_extend(sp, seq, end_seq)) {
4588 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4589 tcp_sack_compress_send_ack(sk);
4590 /* Rotate this_sack to the first one. */
4591 for (; this_sack > 0; this_sack--, sp--)
4592 swap(*sp, *(sp - 1));
4593 if (cur_sacks > 1)
4594 tcp_sack_maybe_coalesce(tp);
4595 return;
4596 }
4597 }
4598
4599 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4600 tcp_sack_compress_send_ack(sk);
4601
4602 /* Could not find an adjacent existing SACK, build a new one,
4603 * put it at the front, and shift everyone else down. We
4604 * always know there is at least one SACK present already here.
4605 *
4606 * If the sack array is full, forget about the last one.
4607 */
4608 if (this_sack >= TCP_NUM_SACKS) {
4609 this_sack--;
4610 tp->rx_opt.num_sacks--;
4611 sp--;
4612 }
4613 for (; this_sack > 0; this_sack--, sp--)
4614 *sp = *(sp - 1);
4615
4616 new_sack:
4617 /* Build the new head SACK, and we're done. */
4618 sp->start_seq = seq;
4619 sp->end_seq = end_seq;
4620 tp->rx_opt.num_sacks++;
4621 }
4622
4623 /* RCV.NXT advances, some SACKs should be eaten. */
4624
tcp_sack_remove(struct tcp_sock * tp)4625 static void tcp_sack_remove(struct tcp_sock *tp)
4626 {
4627 struct tcp_sack_block *sp = &tp->selective_acks[0];
4628 int num_sacks = tp->rx_opt.num_sacks;
4629 int this_sack;
4630
4631 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4632 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4633 tp->rx_opt.num_sacks = 0;
4634 return;
4635 }
4636
4637 for (this_sack = 0; this_sack < num_sacks;) {
4638 /* Check if the start of the sack is covered by RCV.NXT. */
4639 if (!before(tp->rcv_nxt, sp->start_seq)) {
4640 int i;
4641
4642 /* RCV.NXT must cover all the block! */
4643 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4644
4645 /* Zap this SACK, by moving forward any other SACKS. */
4646 for (i = this_sack+1; i < num_sacks; i++)
4647 tp->selective_acks[i-1] = tp->selective_acks[i];
4648 num_sacks--;
4649 continue;
4650 }
4651 this_sack++;
4652 sp++;
4653 }
4654 tp->rx_opt.num_sacks = num_sacks;
4655 }
4656
4657 /**
4658 * tcp_try_coalesce - try to merge skb to prior one
4659 * @sk: socket
4660 * @to: prior buffer
4661 * @from: buffer to add in queue
4662 * @fragstolen: pointer to boolean
4663 *
4664 * Before queueing skb @from after @to, try to merge them
4665 * to reduce overall memory use and queue lengths, if cost is small.
4666 * Packets in ofo or receive queues can stay a long time.
4667 * Better try to coalesce them right now to avoid future collapses.
4668 * Returns true if caller should free @from instead of queueing it
4669 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4670 static bool tcp_try_coalesce(struct sock *sk,
4671 struct sk_buff *to,
4672 struct sk_buff *from,
4673 bool *fragstolen)
4674 {
4675 int delta;
4676
4677 *fragstolen = false;
4678
4679 /* Its possible this segment overlaps with prior segment in queue */
4680 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4681 return false;
4682
4683 if (!mptcp_skb_can_collapse(to, from))
4684 return false;
4685
4686 #ifdef CONFIG_TLS_DEVICE
4687 if (from->decrypted != to->decrypted)
4688 return false;
4689 #endif
4690
4691 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4692 return false;
4693
4694 atomic_add(delta, &sk->sk_rmem_alloc);
4695 sk_mem_charge(sk, delta);
4696 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4697 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4698 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4699 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4700
4701 if (TCP_SKB_CB(from)->has_rxtstamp) {
4702 TCP_SKB_CB(to)->has_rxtstamp = true;
4703 to->tstamp = from->tstamp;
4704 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4705 }
4706
4707 return true;
4708 }
4709
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4710 static bool tcp_ooo_try_coalesce(struct sock *sk,
4711 struct sk_buff *to,
4712 struct sk_buff *from,
4713 bool *fragstolen)
4714 {
4715 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4716
4717 /* In case tcp_drop() is called later, update to->gso_segs */
4718 if (res) {
4719 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4720 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4721
4722 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4723 }
4724 return res;
4725 }
4726
tcp_drop(struct sock * sk,struct sk_buff * skb)4727 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4728 {
4729 trace_android_vh_kfree_skb(skb);
4730 sk_drops_add(sk, skb);
4731 __kfree_skb(skb);
4732 }
4733
4734 /* This one checks to see if we can put data from the
4735 * out_of_order queue into the receive_queue.
4736 */
tcp_ofo_queue(struct sock * sk)4737 static void tcp_ofo_queue(struct sock *sk)
4738 {
4739 struct tcp_sock *tp = tcp_sk(sk);
4740 __u32 dsack_high = tp->rcv_nxt;
4741 bool fin, fragstolen, eaten;
4742 struct sk_buff *skb, *tail;
4743 struct rb_node *p;
4744
4745 p = rb_first(&tp->out_of_order_queue);
4746 while (p) {
4747 skb = rb_to_skb(p);
4748 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4749 break;
4750
4751 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4752 __u32 dsack = dsack_high;
4753 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4754 dsack_high = TCP_SKB_CB(skb)->end_seq;
4755 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4756 }
4757 p = rb_next(p);
4758 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4759
4760 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4761 tcp_drop(sk, skb);
4762 continue;
4763 }
4764
4765 tail = skb_peek_tail(&sk->sk_receive_queue);
4766 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4767 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4768 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4769 if (!eaten)
4770 __skb_queue_tail(&sk->sk_receive_queue, skb);
4771 else
4772 kfree_skb_partial(skb, fragstolen);
4773
4774 if (unlikely(fin)) {
4775 tcp_fin(sk);
4776 /* tcp_fin() purges tp->out_of_order_queue,
4777 * so we must end this loop right now.
4778 */
4779 break;
4780 }
4781 }
4782 }
4783
4784 static bool tcp_prune_ofo_queue(struct sock *sk);
4785 static int tcp_prune_queue(struct sock *sk);
4786
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4787 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4788 unsigned int size)
4789 {
4790 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4791 !sk_rmem_schedule(sk, skb, size)) {
4792
4793 if (tcp_prune_queue(sk) < 0)
4794 return -1;
4795
4796 while (!sk_rmem_schedule(sk, skb, size)) {
4797 if (!tcp_prune_ofo_queue(sk))
4798 return -1;
4799 }
4800 }
4801 return 0;
4802 }
4803
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4804 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4805 {
4806 struct tcp_sock *tp = tcp_sk(sk);
4807 struct rb_node **p, *parent;
4808 struct sk_buff *skb1;
4809 u32 seq, end_seq;
4810 bool fragstolen;
4811
4812 tcp_ecn_check_ce(sk, skb);
4813
4814 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4815 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4816 sk->sk_data_ready(sk);
4817 tcp_drop(sk, skb);
4818 return;
4819 }
4820
4821 /* Disable header prediction. */
4822 tp->pred_flags = 0;
4823 inet_csk_schedule_ack(sk);
4824
4825 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4827 seq = TCP_SKB_CB(skb)->seq;
4828 end_seq = TCP_SKB_CB(skb)->end_seq;
4829
4830 p = &tp->out_of_order_queue.rb_node;
4831 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4832 /* Initial out of order segment, build 1 SACK. */
4833 if (tcp_is_sack(tp)) {
4834 tp->rx_opt.num_sacks = 1;
4835 tp->selective_acks[0].start_seq = seq;
4836 tp->selective_acks[0].end_seq = end_seq;
4837 }
4838 rb_link_node(&skb->rbnode, NULL, p);
4839 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4840 tp->ooo_last_skb = skb;
4841 goto end;
4842 }
4843
4844 /* In the typical case, we are adding an skb to the end of the list.
4845 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4846 */
4847 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4848 skb, &fragstolen)) {
4849 coalesce_done:
4850 /* For non sack flows, do not grow window to force DUPACK
4851 * and trigger fast retransmit.
4852 */
4853 if (tcp_is_sack(tp))
4854 tcp_grow_window(sk, skb, true);
4855 kfree_skb_partial(skb, fragstolen);
4856 skb = NULL;
4857 goto add_sack;
4858 }
4859 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4860 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4861 parent = &tp->ooo_last_skb->rbnode;
4862 p = &parent->rb_right;
4863 goto insert;
4864 }
4865
4866 /* Find place to insert this segment. Handle overlaps on the way. */
4867 parent = NULL;
4868 while (*p) {
4869 parent = *p;
4870 skb1 = rb_to_skb(parent);
4871 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4872 p = &parent->rb_left;
4873 continue;
4874 }
4875 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4876 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4877 /* All the bits are present. Drop. */
4878 NET_INC_STATS(sock_net(sk),
4879 LINUX_MIB_TCPOFOMERGE);
4880 tcp_drop(sk, skb);
4881 skb = NULL;
4882 tcp_dsack_set(sk, seq, end_seq);
4883 goto add_sack;
4884 }
4885 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4886 /* Partial overlap. */
4887 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4888 } else {
4889 /* skb's seq == skb1's seq and skb covers skb1.
4890 * Replace skb1 with skb.
4891 */
4892 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4893 &tp->out_of_order_queue);
4894 tcp_dsack_extend(sk,
4895 TCP_SKB_CB(skb1)->seq,
4896 TCP_SKB_CB(skb1)->end_seq);
4897 NET_INC_STATS(sock_net(sk),
4898 LINUX_MIB_TCPOFOMERGE);
4899 tcp_drop(sk, skb1);
4900 goto merge_right;
4901 }
4902 } else if (tcp_ooo_try_coalesce(sk, skb1,
4903 skb, &fragstolen)) {
4904 goto coalesce_done;
4905 }
4906 p = &parent->rb_right;
4907 }
4908 insert:
4909 /* Insert segment into RB tree. */
4910 rb_link_node(&skb->rbnode, parent, p);
4911 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4912
4913 merge_right:
4914 /* Remove other segments covered by skb. */
4915 while ((skb1 = skb_rb_next(skb)) != NULL) {
4916 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4917 break;
4918 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4919 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4920 end_seq);
4921 break;
4922 }
4923 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4924 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4925 TCP_SKB_CB(skb1)->end_seq);
4926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4927 tcp_drop(sk, skb1);
4928 }
4929 /* If there is no skb after us, we are the last_skb ! */
4930 if (!skb1)
4931 tp->ooo_last_skb = skb;
4932
4933 add_sack:
4934 if (tcp_is_sack(tp))
4935 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4936 end:
4937 if (skb) {
4938 /* For non sack flows, do not grow window to force DUPACK
4939 * and trigger fast retransmit.
4940 */
4941 if (tcp_is_sack(tp))
4942 tcp_grow_window(sk, skb, false);
4943 skb_condense(skb);
4944 skb_set_owner_r(skb, sk);
4945 }
4946 }
4947
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4948 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4949 bool *fragstolen)
4950 {
4951 int eaten;
4952 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4953
4954 eaten = (tail &&
4955 tcp_try_coalesce(sk, tail,
4956 skb, fragstolen)) ? 1 : 0;
4957 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4958 if (!eaten) {
4959 __skb_queue_tail(&sk->sk_receive_queue, skb);
4960 skb_set_owner_r(skb, sk);
4961 }
4962 return eaten;
4963 }
4964
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4965 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4966 {
4967 struct sk_buff *skb;
4968 int err = -ENOMEM;
4969 int data_len = 0;
4970 bool fragstolen;
4971
4972 if (size == 0)
4973 return 0;
4974
4975 if (size > PAGE_SIZE) {
4976 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4977
4978 data_len = npages << PAGE_SHIFT;
4979 size = data_len + (size & ~PAGE_MASK);
4980 }
4981 skb = alloc_skb_with_frags(size - data_len, data_len,
4982 PAGE_ALLOC_COSTLY_ORDER,
4983 &err, sk->sk_allocation);
4984 if (!skb)
4985 goto err;
4986
4987 skb_put(skb, size - data_len);
4988 skb->data_len = data_len;
4989 skb->len = size;
4990
4991 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4993 goto err_free;
4994 }
4995
4996 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4997 if (err)
4998 goto err_free;
4999
5000 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5001 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5002 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5003
5004 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5005 WARN_ON_ONCE(fragstolen); /* should not happen */
5006 __kfree_skb(skb);
5007 }
5008 return size;
5009
5010 err_free:
5011 kfree_skb(skb);
5012 err:
5013 return err;
5014
5015 }
5016
tcp_data_ready(struct sock * sk)5017 void tcp_data_ready(struct sock *sk)
5018 {
5019 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5020 sk->sk_data_ready(sk);
5021 }
5022
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5023 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5024 {
5025 struct tcp_sock *tp = tcp_sk(sk);
5026 bool fragstolen;
5027 int eaten;
5028
5029 /* If a subflow has been reset, the packet should not continue
5030 * to be processed, drop the packet.
5031 */
5032 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5033 __kfree_skb(skb);
5034 return;
5035 }
5036
5037 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5038 __kfree_skb(skb);
5039 return;
5040 }
5041 skb_dst_drop(skb);
5042 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5043
5044 tp->rx_opt.dsack = 0;
5045
5046 /* Queue data for delivery to the user.
5047 * Packets in sequence go to the receive queue.
5048 * Out of sequence packets to the out_of_order_queue.
5049 */
5050 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5051 if (tcp_receive_window(tp) == 0) {
5052 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5053 goto out_of_window;
5054 }
5055
5056 /* Ok. In sequence. In window. */
5057 queue_and_out:
5058 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5059 sk_forced_mem_schedule(sk, skb->truesize);
5060 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5061 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5062 sk->sk_data_ready(sk);
5063 goto drop;
5064 }
5065
5066 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5067 if (skb->len)
5068 tcp_event_data_recv(sk, skb);
5069 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5070 tcp_fin(sk);
5071
5072 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5073 tcp_ofo_queue(sk);
5074
5075 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5076 * gap in queue is filled.
5077 */
5078 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5079 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5080 }
5081
5082 if (tp->rx_opt.num_sacks)
5083 tcp_sack_remove(tp);
5084
5085 tcp_fast_path_check(sk);
5086
5087 if (eaten > 0)
5088 kfree_skb_partial(skb, fragstolen);
5089 if (!sock_flag(sk, SOCK_DEAD))
5090 tcp_data_ready(sk);
5091 return;
5092 }
5093
5094 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5095 tcp_rcv_spurious_retrans(sk, skb);
5096 /* A retransmit, 2nd most common case. Force an immediate ack. */
5097 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5098 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5099
5100 out_of_window:
5101 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5102 inet_csk_schedule_ack(sk);
5103 drop:
5104 tcp_drop(sk, skb);
5105 return;
5106 }
5107
5108 /* Out of window. F.e. zero window probe. */
5109 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5110 goto out_of_window;
5111
5112 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5113 /* Partial packet, seq < rcv_next < end_seq */
5114 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5115
5116 /* If window is closed, drop tail of packet. But after
5117 * remembering D-SACK for its head made in previous line.
5118 */
5119 if (!tcp_receive_window(tp)) {
5120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5121 goto out_of_window;
5122 }
5123 goto queue_and_out;
5124 }
5125
5126 tcp_data_queue_ofo(sk, skb);
5127 }
5128
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5129 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5130 {
5131 if (list)
5132 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5133
5134 return skb_rb_next(skb);
5135 }
5136
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5137 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5138 struct sk_buff_head *list,
5139 struct rb_root *root)
5140 {
5141 struct sk_buff *next = tcp_skb_next(skb, list);
5142
5143 if (list)
5144 __skb_unlink(skb, list);
5145 else
5146 rb_erase(&skb->rbnode, root);
5147
5148 __kfree_skb(skb);
5149 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5150
5151 return next;
5152 }
5153
5154 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5155 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5156 {
5157 struct rb_node **p = &root->rb_node;
5158 struct rb_node *parent = NULL;
5159 struct sk_buff *skb1;
5160
5161 while (*p) {
5162 parent = *p;
5163 skb1 = rb_to_skb(parent);
5164 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5165 p = &parent->rb_left;
5166 else
5167 p = &parent->rb_right;
5168 }
5169 rb_link_node(&skb->rbnode, parent, p);
5170 rb_insert_color(&skb->rbnode, root);
5171 }
5172
5173 /* Collapse contiguous sequence of skbs head..tail with
5174 * sequence numbers start..end.
5175 *
5176 * If tail is NULL, this means until the end of the queue.
5177 *
5178 * Segments with FIN/SYN are not collapsed (only because this
5179 * simplifies code)
5180 */
5181 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5182 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5183 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5184 {
5185 struct sk_buff *skb = head, *n;
5186 struct sk_buff_head tmp;
5187 bool end_of_skbs;
5188
5189 /* First, check that queue is collapsible and find
5190 * the point where collapsing can be useful.
5191 */
5192 restart:
5193 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5194 n = tcp_skb_next(skb, list);
5195
5196 /* No new bits? It is possible on ofo queue. */
5197 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5198 skb = tcp_collapse_one(sk, skb, list, root);
5199 if (!skb)
5200 break;
5201 goto restart;
5202 }
5203
5204 /* The first skb to collapse is:
5205 * - not SYN/FIN and
5206 * - bloated or contains data before "start" or
5207 * overlaps to the next one and mptcp allow collapsing.
5208 */
5209 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5210 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5211 before(TCP_SKB_CB(skb)->seq, start))) {
5212 end_of_skbs = false;
5213 break;
5214 }
5215
5216 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5217 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5218 end_of_skbs = false;
5219 break;
5220 }
5221
5222 /* Decided to skip this, advance start seq. */
5223 start = TCP_SKB_CB(skb)->end_seq;
5224 }
5225 if (end_of_skbs ||
5226 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5227 return;
5228
5229 __skb_queue_head_init(&tmp);
5230
5231 while (before(start, end)) {
5232 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5233 struct sk_buff *nskb;
5234
5235 nskb = alloc_skb(copy, GFP_ATOMIC);
5236 if (!nskb)
5237 break;
5238
5239 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5240 #ifdef CONFIG_TLS_DEVICE
5241 nskb->decrypted = skb->decrypted;
5242 #endif
5243 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5244 if (list)
5245 __skb_queue_before(list, skb, nskb);
5246 else
5247 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5248 skb_set_owner_r(nskb, sk);
5249 mptcp_skb_ext_move(nskb, skb);
5250
5251 /* Copy data, releasing collapsed skbs. */
5252 while (copy > 0) {
5253 int offset = start - TCP_SKB_CB(skb)->seq;
5254 int size = TCP_SKB_CB(skb)->end_seq - start;
5255
5256 BUG_ON(offset < 0);
5257 if (size > 0) {
5258 size = min(copy, size);
5259 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5260 BUG();
5261 TCP_SKB_CB(nskb)->end_seq += size;
5262 copy -= size;
5263 start += size;
5264 }
5265 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5266 skb = tcp_collapse_one(sk, skb, list, root);
5267 if (!skb ||
5268 skb == tail ||
5269 !mptcp_skb_can_collapse(nskb, skb) ||
5270 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5271 goto end;
5272 #ifdef CONFIG_TLS_DEVICE
5273 if (skb->decrypted != nskb->decrypted)
5274 goto end;
5275 #endif
5276 }
5277 }
5278 }
5279 end:
5280 skb_queue_walk_safe(&tmp, skb, n)
5281 tcp_rbtree_insert(root, skb);
5282 }
5283
5284 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5285 * and tcp_collapse() them until all the queue is collapsed.
5286 */
tcp_collapse_ofo_queue(struct sock * sk)5287 static void tcp_collapse_ofo_queue(struct sock *sk)
5288 {
5289 struct tcp_sock *tp = tcp_sk(sk);
5290 u32 range_truesize, sum_tiny = 0;
5291 struct sk_buff *skb, *head;
5292 u32 start, end;
5293
5294 skb = skb_rb_first(&tp->out_of_order_queue);
5295 new_range:
5296 if (!skb) {
5297 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5298 return;
5299 }
5300 start = TCP_SKB_CB(skb)->seq;
5301 end = TCP_SKB_CB(skb)->end_seq;
5302 range_truesize = skb->truesize;
5303
5304 for (head = skb;;) {
5305 skb = skb_rb_next(skb);
5306
5307 /* Range is terminated when we see a gap or when
5308 * we are at the queue end.
5309 */
5310 if (!skb ||
5311 after(TCP_SKB_CB(skb)->seq, end) ||
5312 before(TCP_SKB_CB(skb)->end_seq, start)) {
5313 /* Do not attempt collapsing tiny skbs */
5314 if (range_truesize != head->truesize ||
5315 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5316 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5317 head, skb, start, end);
5318 } else {
5319 sum_tiny += range_truesize;
5320 if (sum_tiny > sk->sk_rcvbuf >> 3)
5321 return;
5322 }
5323 goto new_range;
5324 }
5325
5326 range_truesize += skb->truesize;
5327 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5328 start = TCP_SKB_CB(skb)->seq;
5329 if (after(TCP_SKB_CB(skb)->end_seq, end))
5330 end = TCP_SKB_CB(skb)->end_seq;
5331 }
5332 }
5333
5334 /*
5335 * Clean the out-of-order queue to make room.
5336 * We drop high sequences packets to :
5337 * 1) Let a chance for holes to be filled.
5338 * 2) not add too big latencies if thousands of packets sit there.
5339 * (But if application shrinks SO_RCVBUF, we could still end up
5340 * freeing whole queue here)
5341 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5342 *
5343 * Return true if queue has shrunk.
5344 */
tcp_prune_ofo_queue(struct sock * sk)5345 static bool tcp_prune_ofo_queue(struct sock *sk)
5346 {
5347 struct tcp_sock *tp = tcp_sk(sk);
5348 struct rb_node *node, *prev;
5349 int goal;
5350
5351 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5352 return false;
5353
5354 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5355 goal = sk->sk_rcvbuf >> 3;
5356 node = &tp->ooo_last_skb->rbnode;
5357 do {
5358 prev = rb_prev(node);
5359 rb_erase(node, &tp->out_of_order_queue);
5360 goal -= rb_to_skb(node)->truesize;
5361 tcp_drop(sk, rb_to_skb(node));
5362 if (!prev || goal <= 0) {
5363 sk_mem_reclaim(sk);
5364 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5365 !tcp_under_memory_pressure(sk))
5366 break;
5367 goal = sk->sk_rcvbuf >> 3;
5368 }
5369 node = prev;
5370 } while (node);
5371 tp->ooo_last_skb = rb_to_skb(prev);
5372
5373 /* Reset SACK state. A conforming SACK implementation will
5374 * do the same at a timeout based retransmit. When a connection
5375 * is in a sad state like this, we care only about integrity
5376 * of the connection not performance.
5377 */
5378 if (tp->rx_opt.sack_ok)
5379 tcp_sack_reset(&tp->rx_opt);
5380 return true;
5381 }
5382
5383 /* Reduce allocated memory if we can, trying to get
5384 * the socket within its memory limits again.
5385 *
5386 * Return less than zero if we should start dropping frames
5387 * until the socket owning process reads some of the data
5388 * to stabilize the situation.
5389 */
tcp_prune_queue(struct sock * sk)5390 static int tcp_prune_queue(struct sock *sk)
5391 {
5392 struct tcp_sock *tp = tcp_sk(sk);
5393
5394 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5395
5396 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5397 tcp_clamp_window(sk);
5398 else if (tcp_under_memory_pressure(sk))
5399 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5400
5401 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5402 return 0;
5403
5404 tcp_collapse_ofo_queue(sk);
5405 if (!skb_queue_empty(&sk->sk_receive_queue))
5406 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5407 skb_peek(&sk->sk_receive_queue),
5408 NULL,
5409 tp->copied_seq, tp->rcv_nxt);
5410 sk_mem_reclaim(sk);
5411
5412 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5413 return 0;
5414
5415 /* Collapsing did not help, destructive actions follow.
5416 * This must not ever occur. */
5417
5418 tcp_prune_ofo_queue(sk);
5419
5420 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5421 return 0;
5422
5423 /* If we are really being abused, tell the caller to silently
5424 * drop receive data on the floor. It will get retransmitted
5425 * and hopefully then we'll have sufficient space.
5426 */
5427 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5428
5429 /* Massive buffer overcommit. */
5430 tp->pred_flags = 0;
5431 return -1;
5432 }
5433
tcp_should_expand_sndbuf(const struct sock * sk)5434 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5435 {
5436 const struct tcp_sock *tp = tcp_sk(sk);
5437
5438 /* If the user specified a specific send buffer setting, do
5439 * not modify it.
5440 */
5441 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5442 return false;
5443
5444 /* If we are under global TCP memory pressure, do not expand. */
5445 if (tcp_under_memory_pressure(sk))
5446 return false;
5447
5448 /* If we are under soft global TCP memory pressure, do not expand. */
5449 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5450 return false;
5451
5452 /* If we filled the congestion window, do not expand. */
5453 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5454 return false;
5455
5456 return true;
5457 }
5458
tcp_new_space(struct sock * sk)5459 static void tcp_new_space(struct sock *sk)
5460 {
5461 struct tcp_sock *tp = tcp_sk(sk);
5462
5463 if (tcp_should_expand_sndbuf(sk)) {
5464 tcp_sndbuf_expand(sk);
5465 tp->snd_cwnd_stamp = tcp_jiffies32;
5466 }
5467
5468 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5469 }
5470
5471 /* Caller made space either from:
5472 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5473 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5474 *
5475 * We might be able to generate EPOLLOUT to the application if:
5476 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5477 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5478 * small enough that tcp_stream_memory_free() decides it
5479 * is time to generate EPOLLOUT.
5480 */
tcp_check_space(struct sock * sk)5481 void tcp_check_space(struct sock *sk)
5482 {
5483 /* pairs with tcp_poll() */
5484 smp_mb();
5485 if (sk->sk_socket &&
5486 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5487 tcp_new_space(sk);
5488 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5489 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5490 }
5491 }
5492
tcp_data_snd_check(struct sock * sk)5493 static inline void tcp_data_snd_check(struct sock *sk)
5494 {
5495 tcp_push_pending_frames(sk);
5496 tcp_check_space(sk);
5497 }
5498
5499 /*
5500 * Check if sending an ack is needed.
5501 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5502 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5503 {
5504 struct tcp_sock *tp = tcp_sk(sk);
5505 unsigned long rtt, delay;
5506
5507 /* More than one full frame received... */
5508 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5509 /* ... and right edge of window advances far enough.
5510 * (tcp_recvmsg() will send ACK otherwise).
5511 * If application uses SO_RCVLOWAT, we want send ack now if
5512 * we have not received enough bytes to satisfy the condition.
5513 */
5514 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5515 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5516 /* We ACK each frame or... */
5517 tcp_in_quickack_mode(sk) ||
5518 /* Protocol state mandates a one-time immediate ACK */
5519 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5520 send_now:
5521 tcp_send_ack(sk);
5522 return;
5523 }
5524
5525 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5526 tcp_send_delayed_ack(sk);
5527 return;
5528 }
5529
5530 if (!tcp_is_sack(tp) ||
5531 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5532 goto send_now;
5533
5534 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5535 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5536 tp->dup_ack_counter = 0;
5537 }
5538 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5539 tp->dup_ack_counter++;
5540 goto send_now;
5541 }
5542 tp->compressed_ack++;
5543 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5544 return;
5545
5546 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5547
5548 rtt = tp->rcv_rtt_est.rtt_us;
5549 if (tp->srtt_us && tp->srtt_us < rtt)
5550 rtt = tp->srtt_us;
5551
5552 delay = min_t(unsigned long,
5553 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5554 rtt * (NSEC_PER_USEC >> 3)/20);
5555 sock_hold(sk);
5556 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5557 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5558 HRTIMER_MODE_REL_PINNED_SOFT);
5559 }
5560
tcp_ack_snd_check(struct sock * sk)5561 static inline void tcp_ack_snd_check(struct sock *sk)
5562 {
5563 if (!inet_csk_ack_scheduled(sk)) {
5564 /* We sent a data segment already. */
5565 return;
5566 }
5567 __tcp_ack_snd_check(sk, 1);
5568 }
5569
5570 /*
5571 * This routine is only called when we have urgent data
5572 * signaled. Its the 'slow' part of tcp_urg. It could be
5573 * moved inline now as tcp_urg is only called from one
5574 * place. We handle URGent data wrong. We have to - as
5575 * BSD still doesn't use the correction from RFC961.
5576 * For 1003.1g we should support a new option TCP_STDURG to permit
5577 * either form (or just set the sysctl tcp_stdurg).
5578 */
5579
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5580 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5581 {
5582 struct tcp_sock *tp = tcp_sk(sk);
5583 u32 ptr = ntohs(th->urg_ptr);
5584
5585 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5586 ptr--;
5587 ptr += ntohl(th->seq);
5588
5589 /* Ignore urgent data that we've already seen and read. */
5590 if (after(tp->copied_seq, ptr))
5591 return;
5592
5593 /* Do not replay urg ptr.
5594 *
5595 * NOTE: interesting situation not covered by specs.
5596 * Misbehaving sender may send urg ptr, pointing to segment,
5597 * which we already have in ofo queue. We are not able to fetch
5598 * such data and will stay in TCP_URG_NOTYET until will be eaten
5599 * by recvmsg(). Seems, we are not obliged to handle such wicked
5600 * situations. But it is worth to think about possibility of some
5601 * DoSes using some hypothetical application level deadlock.
5602 */
5603 if (before(ptr, tp->rcv_nxt))
5604 return;
5605
5606 /* Do we already have a newer (or duplicate) urgent pointer? */
5607 if (tp->urg_data && !after(ptr, tp->urg_seq))
5608 return;
5609
5610 /* Tell the world about our new urgent pointer. */
5611 sk_send_sigurg(sk);
5612
5613 /* We may be adding urgent data when the last byte read was
5614 * urgent. To do this requires some care. We cannot just ignore
5615 * tp->copied_seq since we would read the last urgent byte again
5616 * as data, nor can we alter copied_seq until this data arrives
5617 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5618 *
5619 * NOTE. Double Dutch. Rendering to plain English: author of comment
5620 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5621 * and expect that both A and B disappear from stream. This is _wrong_.
5622 * Though this happens in BSD with high probability, this is occasional.
5623 * Any application relying on this is buggy. Note also, that fix "works"
5624 * only in this artificial test. Insert some normal data between A and B and we will
5625 * decline of BSD again. Verdict: it is better to remove to trap
5626 * buggy users.
5627 */
5628 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5629 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5630 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5631 tp->copied_seq++;
5632 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5633 __skb_unlink(skb, &sk->sk_receive_queue);
5634 __kfree_skb(skb);
5635 }
5636 }
5637
5638 tp->urg_data = TCP_URG_NOTYET;
5639 WRITE_ONCE(tp->urg_seq, ptr);
5640
5641 /* Disable header prediction. */
5642 tp->pred_flags = 0;
5643 }
5644
5645 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5646 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5647 {
5648 struct tcp_sock *tp = tcp_sk(sk);
5649
5650 /* Check if we get a new urgent pointer - normally not. */
5651 if (th->urg)
5652 tcp_check_urg(sk, th);
5653
5654 /* Do we wait for any urgent data? - normally not... */
5655 if (tp->urg_data == TCP_URG_NOTYET) {
5656 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5657 th->syn;
5658
5659 /* Is the urgent pointer pointing into this packet? */
5660 if (ptr < skb->len) {
5661 u8 tmp;
5662 if (skb_copy_bits(skb, ptr, &tmp, 1))
5663 BUG();
5664 tp->urg_data = TCP_URG_VALID | tmp;
5665 if (!sock_flag(sk, SOCK_DEAD))
5666 sk->sk_data_ready(sk);
5667 }
5668 }
5669 }
5670
5671 /* Accept RST for rcv_nxt - 1 after a FIN.
5672 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5673 * FIN is sent followed by a RST packet. The RST is sent with the same
5674 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5675 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5676 * ACKs on the closed socket. In addition middleboxes can drop either the
5677 * challenge ACK or a subsequent RST.
5678 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5679 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5680 {
5681 struct tcp_sock *tp = tcp_sk(sk);
5682
5683 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5684 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5685 TCPF_CLOSING));
5686 }
5687
5688 /* Does PAWS and seqno based validation of an incoming segment, flags will
5689 * play significant role here.
5690 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5691 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5692 const struct tcphdr *th, int syn_inerr)
5693 {
5694 struct tcp_sock *tp = tcp_sk(sk);
5695 bool rst_seq_match = false;
5696
5697 /* RFC1323: H1. Apply PAWS check first. */
5698 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5699 tp->rx_opt.saw_tstamp &&
5700 tcp_paws_discard(sk, skb)) {
5701 if (!th->rst) {
5702 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5703 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5704 LINUX_MIB_TCPACKSKIPPEDPAWS,
5705 &tp->last_oow_ack_time))
5706 tcp_send_dupack(sk, skb);
5707 goto discard;
5708 }
5709 /* Reset is accepted even if it did not pass PAWS. */
5710 }
5711
5712 /* Step 1: check sequence number */
5713 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5714 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5715 * (RST) segments are validated by checking their SEQ-fields."
5716 * And page 69: "If an incoming segment is not acceptable,
5717 * an acknowledgment should be sent in reply (unless the RST
5718 * bit is set, if so drop the segment and return)".
5719 */
5720 if (!th->rst) {
5721 if (th->syn)
5722 goto syn_challenge;
5723 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5724 LINUX_MIB_TCPACKSKIPPEDSEQ,
5725 &tp->last_oow_ack_time))
5726 tcp_send_dupack(sk, skb);
5727 } else if (tcp_reset_check(sk, skb)) {
5728 tcp_reset(sk, skb);
5729 }
5730 goto discard;
5731 }
5732
5733 /* Step 2: check RST bit */
5734 if (th->rst) {
5735 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5736 * FIN and SACK too if available):
5737 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5738 * the right-most SACK block,
5739 * then
5740 * RESET the connection
5741 * else
5742 * Send a challenge ACK
5743 */
5744 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5745 tcp_reset_check(sk, skb)) {
5746 rst_seq_match = true;
5747 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5748 struct tcp_sack_block *sp = &tp->selective_acks[0];
5749 int max_sack = sp[0].end_seq;
5750 int this_sack;
5751
5752 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5753 ++this_sack) {
5754 max_sack = after(sp[this_sack].end_seq,
5755 max_sack) ?
5756 sp[this_sack].end_seq : max_sack;
5757 }
5758
5759 if (TCP_SKB_CB(skb)->seq == max_sack)
5760 rst_seq_match = true;
5761 }
5762
5763 if (rst_seq_match)
5764 tcp_reset(sk, skb);
5765 else {
5766 /* Disable TFO if RST is out-of-order
5767 * and no data has been received
5768 * for current active TFO socket
5769 */
5770 if (tp->syn_fastopen && !tp->data_segs_in &&
5771 sk->sk_state == TCP_ESTABLISHED)
5772 tcp_fastopen_active_disable(sk);
5773 tcp_send_challenge_ack(sk, skb);
5774 }
5775 goto discard;
5776 }
5777
5778 /* step 3: check security and precedence [ignored] */
5779
5780 /* step 4: Check for a SYN
5781 * RFC 5961 4.2 : Send a challenge ack
5782 */
5783 if (th->syn) {
5784 syn_challenge:
5785 if (syn_inerr)
5786 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5787 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5788 tcp_send_challenge_ack(sk, skb);
5789 goto discard;
5790 }
5791
5792 bpf_skops_parse_hdr(sk, skb);
5793
5794 return true;
5795
5796 discard:
5797 tcp_drop(sk, skb);
5798 return false;
5799 }
5800
5801 /*
5802 * TCP receive function for the ESTABLISHED state.
5803 *
5804 * It is split into a fast path and a slow path. The fast path is
5805 * disabled when:
5806 * - A zero window was announced from us - zero window probing
5807 * is only handled properly in the slow path.
5808 * - Out of order segments arrived.
5809 * - Urgent data is expected.
5810 * - There is no buffer space left
5811 * - Unexpected TCP flags/window values/header lengths are received
5812 * (detected by checking the TCP header against pred_flags)
5813 * - Data is sent in both directions. Fast path only supports pure senders
5814 * or pure receivers (this means either the sequence number or the ack
5815 * value must stay constant)
5816 * - Unexpected TCP option.
5817 *
5818 * When these conditions are not satisfied it drops into a standard
5819 * receive procedure patterned after RFC793 to handle all cases.
5820 * The first three cases are guaranteed by proper pred_flags setting,
5821 * the rest is checked inline. Fast processing is turned on in
5822 * tcp_data_queue when everything is OK.
5823 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5824 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5825 {
5826 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5827 struct tcp_sock *tp = tcp_sk(sk);
5828 unsigned int len = skb->len;
5829
5830 /* TCP congestion window tracking */
5831 trace_tcp_probe(sk, skb);
5832
5833 tcp_mstamp_refresh(tp);
5834 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5835 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5836 /*
5837 * Header prediction.
5838 * The code loosely follows the one in the famous
5839 * "30 instruction TCP receive" Van Jacobson mail.
5840 *
5841 * Van's trick is to deposit buffers into socket queue
5842 * on a device interrupt, to call tcp_recv function
5843 * on the receive process context and checksum and copy
5844 * the buffer to user space. smart...
5845 *
5846 * Our current scheme is not silly either but we take the
5847 * extra cost of the net_bh soft interrupt processing...
5848 * We do checksum and copy also but from device to kernel.
5849 */
5850
5851 tp->rx_opt.saw_tstamp = 0;
5852
5853 /* pred_flags is 0xS?10 << 16 + snd_wnd
5854 * if header_prediction is to be made
5855 * 'S' will always be tp->tcp_header_len >> 2
5856 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5857 * turn it off (when there are holes in the receive
5858 * space for instance)
5859 * PSH flag is ignored.
5860 */
5861
5862 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5863 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5864 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5865 int tcp_header_len = tp->tcp_header_len;
5866
5867 /* Timestamp header prediction: tcp_header_len
5868 * is automatically equal to th->doff*4 due to pred_flags
5869 * match.
5870 */
5871
5872 /* Check timestamp */
5873 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5874 /* No? Slow path! */
5875 if (!tcp_parse_aligned_timestamp(tp, th))
5876 goto slow_path;
5877
5878 /* If PAWS failed, check it more carefully in slow path */
5879 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5880 goto slow_path;
5881
5882 /* DO NOT update ts_recent here, if checksum fails
5883 * and timestamp was corrupted part, it will result
5884 * in a hung connection since we will drop all
5885 * future packets due to the PAWS test.
5886 */
5887 }
5888
5889 if (len <= tcp_header_len) {
5890 /* Bulk data transfer: sender */
5891 if (len == tcp_header_len) {
5892 /* Predicted packet is in window by definition.
5893 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5894 * Hence, check seq<=rcv_wup reduces to:
5895 */
5896 if (tcp_header_len ==
5897 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5898 tp->rcv_nxt == tp->rcv_wup)
5899 tcp_store_ts_recent(tp);
5900
5901 /* We know that such packets are checksummed
5902 * on entry.
5903 */
5904 tcp_ack(sk, skb, 0);
5905 __kfree_skb(skb);
5906 tcp_data_snd_check(sk);
5907 /* When receiving pure ack in fast path, update
5908 * last ts ecr directly instead of calling
5909 * tcp_rcv_rtt_measure_ts()
5910 */
5911 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5912 return;
5913 } else { /* Header too small */
5914 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5915 goto discard;
5916 }
5917 } else {
5918 int eaten = 0;
5919 bool fragstolen = false;
5920
5921 if (tcp_checksum_complete(skb))
5922 goto csum_error;
5923
5924 if ((int)skb->truesize > sk->sk_forward_alloc)
5925 goto step5;
5926
5927 /* Predicted packet is in window by definition.
5928 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5929 * Hence, check seq<=rcv_wup reduces to:
5930 */
5931 if (tcp_header_len ==
5932 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5933 tp->rcv_nxt == tp->rcv_wup)
5934 tcp_store_ts_recent(tp);
5935
5936 tcp_rcv_rtt_measure_ts(sk, skb);
5937
5938 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5939
5940 /* Bulk data transfer: receiver */
5941 __skb_pull(skb, tcp_header_len);
5942 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5943
5944 tcp_event_data_recv(sk, skb);
5945
5946 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5947 /* Well, only one small jumplet in fast path... */
5948 tcp_ack(sk, skb, FLAG_DATA);
5949 tcp_data_snd_check(sk);
5950 if (!inet_csk_ack_scheduled(sk))
5951 goto no_ack;
5952 } else {
5953 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5954 }
5955
5956 __tcp_ack_snd_check(sk, 0);
5957 no_ack:
5958 if (eaten)
5959 kfree_skb_partial(skb, fragstolen);
5960 tcp_data_ready(sk);
5961 return;
5962 }
5963 }
5964
5965 slow_path:
5966 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5967 goto csum_error;
5968
5969 if (!th->ack && !th->rst && !th->syn)
5970 goto discard;
5971
5972 /*
5973 * Standard slow path.
5974 */
5975
5976 if (!tcp_validate_incoming(sk, skb, th, 1))
5977 return;
5978
5979 step5:
5980 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5981 goto discard;
5982
5983 tcp_rcv_rtt_measure_ts(sk, skb);
5984
5985 /* Process urgent data. */
5986 tcp_urg(sk, skb, th);
5987
5988 /* step 7: process the segment text */
5989 tcp_data_queue(sk, skb);
5990
5991 tcp_data_snd_check(sk);
5992 tcp_ack_snd_check(sk);
5993 return;
5994
5995 csum_error:
5996 trace_tcp_bad_csum(skb);
5997 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5998 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5999
6000 discard:
6001 tcp_drop(sk, skb);
6002 }
6003 EXPORT_SYMBOL(tcp_rcv_established);
6004
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6005 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6006 {
6007 struct inet_connection_sock *icsk = inet_csk(sk);
6008 struct tcp_sock *tp = tcp_sk(sk);
6009
6010 tcp_mtup_init(sk);
6011 icsk->icsk_af_ops->rebuild_header(sk);
6012 tcp_init_metrics(sk);
6013
6014 /* Initialize the congestion window to start the transfer.
6015 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6016 * retransmitted. In light of RFC6298 more aggressive 1sec
6017 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6018 * retransmission has occurred.
6019 */
6020 if (tp->total_retrans > 1 && tp->undo_marker)
6021 tcp_snd_cwnd_set(tp, 1);
6022 else
6023 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6024 tp->snd_cwnd_stamp = tcp_jiffies32;
6025
6026 bpf_skops_established(sk, bpf_op, skb);
6027 /* Initialize congestion control unless BPF initialized it already: */
6028 if (!icsk->icsk_ca_initialized)
6029 tcp_init_congestion_control(sk);
6030 tcp_init_buffer_space(sk);
6031 }
6032
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6033 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6034 {
6035 struct tcp_sock *tp = tcp_sk(sk);
6036 struct inet_connection_sock *icsk = inet_csk(sk);
6037
6038 tcp_set_state(sk, TCP_ESTABLISHED);
6039 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6040
6041 if (skb) {
6042 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6043 security_inet_conn_established(sk, skb);
6044 sk_mark_napi_id(sk, skb);
6045 }
6046
6047 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6048
6049 /* Prevent spurious tcp_cwnd_restart() on first data
6050 * packet.
6051 */
6052 tp->lsndtime = tcp_jiffies32;
6053
6054 if (sock_flag(sk, SOCK_KEEPOPEN))
6055 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6056
6057 if (!tp->rx_opt.snd_wscale)
6058 __tcp_fast_path_on(tp, tp->snd_wnd);
6059 else
6060 tp->pred_flags = 0;
6061 }
6062
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6063 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6064 struct tcp_fastopen_cookie *cookie)
6065 {
6066 struct tcp_sock *tp = tcp_sk(sk);
6067 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6068 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6069 bool syn_drop = false;
6070
6071 if (mss == tp->rx_opt.user_mss) {
6072 struct tcp_options_received opt;
6073
6074 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6075 tcp_clear_options(&opt);
6076 opt.user_mss = opt.mss_clamp = 0;
6077 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6078 mss = opt.mss_clamp;
6079 }
6080
6081 if (!tp->syn_fastopen) {
6082 /* Ignore an unsolicited cookie */
6083 cookie->len = -1;
6084 } else if (tp->total_retrans) {
6085 /* SYN timed out and the SYN-ACK neither has a cookie nor
6086 * acknowledges data. Presumably the remote received only
6087 * the retransmitted (regular) SYNs: either the original
6088 * SYN-data or the corresponding SYN-ACK was dropped.
6089 */
6090 syn_drop = (cookie->len < 0 && data);
6091 } else if (cookie->len < 0 && !tp->syn_data) {
6092 /* We requested a cookie but didn't get it. If we did not use
6093 * the (old) exp opt format then try so next time (try_exp=1).
6094 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6095 */
6096 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6097 }
6098
6099 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6100
6101 if (data) { /* Retransmit unacked data in SYN */
6102 if (tp->total_retrans)
6103 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6104 else
6105 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6106 skb_rbtree_walk_from(data)
6107 tcp_mark_skb_lost(sk, data);
6108 tcp_xmit_retransmit_queue(sk);
6109 NET_INC_STATS(sock_net(sk),
6110 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6111 return true;
6112 }
6113 tp->syn_data_acked = tp->syn_data;
6114 if (tp->syn_data_acked) {
6115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6116 /* SYN-data is counted as two separate packets in tcp_ack() */
6117 if (tp->delivered > 1)
6118 --tp->delivered;
6119 }
6120
6121 tcp_fastopen_add_skb(sk, synack);
6122
6123 return false;
6124 }
6125
smc_check_reset_syn(struct tcp_sock * tp)6126 static void smc_check_reset_syn(struct tcp_sock *tp)
6127 {
6128 #if IS_ENABLED(CONFIG_SMC)
6129 if (static_branch_unlikely(&tcp_have_smc)) {
6130 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6131 tp->syn_smc = 0;
6132 }
6133 #endif
6134 }
6135
tcp_try_undo_spurious_syn(struct sock * sk)6136 static void tcp_try_undo_spurious_syn(struct sock *sk)
6137 {
6138 struct tcp_sock *tp = tcp_sk(sk);
6139 u32 syn_stamp;
6140
6141 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6142 * spurious if the ACK's timestamp option echo value matches the
6143 * original SYN timestamp.
6144 */
6145 syn_stamp = tp->retrans_stamp;
6146 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6147 syn_stamp == tp->rx_opt.rcv_tsecr)
6148 tp->undo_marker = 0;
6149 }
6150
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6151 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6152 const struct tcphdr *th)
6153 {
6154 struct inet_connection_sock *icsk = inet_csk(sk);
6155 struct tcp_sock *tp = tcp_sk(sk);
6156 struct tcp_fastopen_cookie foc = { .len = -1 };
6157 int saved_clamp = tp->rx_opt.mss_clamp;
6158 bool fastopen_fail;
6159
6160 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6161 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6162 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6163
6164 if (th->ack) {
6165 /* rfc793:
6166 * "If the state is SYN-SENT then
6167 * first check the ACK bit
6168 * If the ACK bit is set
6169 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6170 * a reset (unless the RST bit is set, if so drop
6171 * the segment and return)"
6172 */
6173 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6174 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6175 /* Previous FIN/ACK or RST/ACK might be ignored. */
6176 if (icsk->icsk_retransmits == 0)
6177 inet_csk_reset_xmit_timer(sk,
6178 ICSK_TIME_RETRANS,
6179 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6180 goto reset_and_undo;
6181 }
6182
6183 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6184 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6185 tcp_time_stamp(tp))) {
6186 NET_INC_STATS(sock_net(sk),
6187 LINUX_MIB_PAWSACTIVEREJECTED);
6188 goto reset_and_undo;
6189 }
6190
6191 /* Now ACK is acceptable.
6192 *
6193 * "If the RST bit is set
6194 * If the ACK was acceptable then signal the user "error:
6195 * connection reset", drop the segment, enter CLOSED state,
6196 * delete TCB, and return."
6197 */
6198
6199 if (th->rst) {
6200 tcp_reset(sk, skb);
6201 goto discard;
6202 }
6203
6204 /* rfc793:
6205 * "fifth, if neither of the SYN or RST bits is set then
6206 * drop the segment and return."
6207 *
6208 * See note below!
6209 * --ANK(990513)
6210 */
6211 if (!th->syn)
6212 goto discard_and_undo;
6213
6214 /* rfc793:
6215 * "If the SYN bit is on ...
6216 * are acceptable then ...
6217 * (our SYN has been ACKed), change the connection
6218 * state to ESTABLISHED..."
6219 */
6220
6221 tcp_ecn_rcv_synack(tp, th);
6222
6223 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6224 tcp_try_undo_spurious_syn(sk);
6225 tcp_ack(sk, skb, FLAG_SLOWPATH);
6226
6227 /* Ok.. it's good. Set up sequence numbers and
6228 * move to established.
6229 */
6230 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6231 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6232
6233 /* RFC1323: The window in SYN & SYN/ACK segments is
6234 * never scaled.
6235 */
6236 tp->snd_wnd = ntohs(th->window);
6237
6238 if (!tp->rx_opt.wscale_ok) {
6239 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6240 tp->window_clamp = min(tp->window_clamp, 65535U);
6241 }
6242
6243 if (tp->rx_opt.saw_tstamp) {
6244 tp->rx_opt.tstamp_ok = 1;
6245 tp->tcp_header_len =
6246 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6247 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6248 tcp_store_ts_recent(tp);
6249 } else {
6250 tp->tcp_header_len = sizeof(struct tcphdr);
6251 }
6252
6253 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6254 tcp_initialize_rcv_mss(sk);
6255
6256 /* Remember, tcp_poll() does not lock socket!
6257 * Change state from SYN-SENT only after copied_seq
6258 * is initialized. */
6259 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6260
6261 smc_check_reset_syn(tp);
6262
6263 smp_mb();
6264
6265 tcp_finish_connect(sk, skb);
6266
6267 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6268 tcp_rcv_fastopen_synack(sk, skb, &foc);
6269
6270 if (!sock_flag(sk, SOCK_DEAD)) {
6271 sk->sk_state_change(sk);
6272 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6273 }
6274 if (fastopen_fail)
6275 return -1;
6276 if (sk->sk_write_pending ||
6277 icsk->icsk_accept_queue.rskq_defer_accept ||
6278 inet_csk_in_pingpong_mode(sk)) {
6279 /* Save one ACK. Data will be ready after
6280 * several ticks, if write_pending is set.
6281 *
6282 * It may be deleted, but with this feature tcpdumps
6283 * look so _wonderfully_ clever, that I was not able
6284 * to stand against the temptation 8) --ANK
6285 */
6286 inet_csk_schedule_ack(sk);
6287 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6288 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6289 TCP_DELACK_MAX, TCP_RTO_MAX);
6290
6291 discard:
6292 tcp_drop(sk, skb);
6293 return 0;
6294 } else {
6295 tcp_send_ack(sk);
6296 }
6297 return -1;
6298 }
6299
6300 /* No ACK in the segment */
6301
6302 if (th->rst) {
6303 /* rfc793:
6304 * "If the RST bit is set
6305 *
6306 * Otherwise (no ACK) drop the segment and return."
6307 */
6308
6309 goto discard_and_undo;
6310 }
6311
6312 /* PAWS check. */
6313 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6314 tcp_paws_reject(&tp->rx_opt, 0))
6315 goto discard_and_undo;
6316
6317 if (th->syn) {
6318 /* We see SYN without ACK. It is attempt of
6319 * simultaneous connect with crossed SYNs.
6320 * Particularly, it can be connect to self.
6321 */
6322 tcp_set_state(sk, TCP_SYN_RECV);
6323
6324 if (tp->rx_opt.saw_tstamp) {
6325 tp->rx_opt.tstamp_ok = 1;
6326 tcp_store_ts_recent(tp);
6327 tp->tcp_header_len =
6328 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6329 } else {
6330 tp->tcp_header_len = sizeof(struct tcphdr);
6331 }
6332
6333 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6334 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6335 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6336
6337 /* RFC1323: The window in SYN & SYN/ACK segments is
6338 * never scaled.
6339 */
6340 tp->snd_wnd = ntohs(th->window);
6341 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6342 tp->max_window = tp->snd_wnd;
6343
6344 tcp_ecn_rcv_syn(tp, th);
6345
6346 tcp_mtup_init(sk);
6347 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6348 tcp_initialize_rcv_mss(sk);
6349
6350 tcp_send_synack(sk);
6351 #if 0
6352 /* Note, we could accept data and URG from this segment.
6353 * There are no obstacles to make this (except that we must
6354 * either change tcp_recvmsg() to prevent it from returning data
6355 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6356 *
6357 * However, if we ignore data in ACKless segments sometimes,
6358 * we have no reasons to accept it sometimes.
6359 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6360 * is not flawless. So, discard packet for sanity.
6361 * Uncomment this return to process the data.
6362 */
6363 return -1;
6364 #else
6365 goto discard;
6366 #endif
6367 }
6368 /* "fifth, if neither of the SYN or RST bits is set then
6369 * drop the segment and return."
6370 */
6371
6372 discard_and_undo:
6373 tcp_clear_options(&tp->rx_opt);
6374 tp->rx_opt.mss_clamp = saved_clamp;
6375 goto discard;
6376
6377 reset_and_undo:
6378 tcp_clear_options(&tp->rx_opt);
6379 tp->rx_opt.mss_clamp = saved_clamp;
6380 return 1;
6381 }
6382
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6383 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6384 {
6385 struct tcp_sock *tp = tcp_sk(sk);
6386 struct request_sock *req;
6387
6388 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6389 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6390 */
6391 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6392 tcp_try_undo_recovery(sk);
6393
6394 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6395 tp->retrans_stamp = 0;
6396 inet_csk(sk)->icsk_retransmits = 0;
6397
6398 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6399 * we no longer need req so release it.
6400 */
6401 req = rcu_dereference_protected(tp->fastopen_rsk,
6402 lockdep_sock_is_held(sk));
6403 reqsk_fastopen_remove(sk, req, false);
6404
6405 /* Re-arm the timer because data may have been sent out.
6406 * This is similar to the regular data transmission case
6407 * when new data has just been ack'ed.
6408 *
6409 * (TFO) - we could try to be more aggressive and
6410 * retransmitting any data sooner based on when they
6411 * are sent out.
6412 */
6413 tcp_rearm_rto(sk);
6414 }
6415
6416 /*
6417 * This function implements the receiving procedure of RFC 793 for
6418 * all states except ESTABLISHED and TIME_WAIT.
6419 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6420 * address independent.
6421 */
6422
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6423 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6424 {
6425 struct tcp_sock *tp = tcp_sk(sk);
6426 struct inet_connection_sock *icsk = inet_csk(sk);
6427 const struct tcphdr *th = tcp_hdr(skb);
6428 struct request_sock *req;
6429 int queued = 0;
6430 bool acceptable;
6431
6432 switch (sk->sk_state) {
6433 case TCP_CLOSE:
6434 goto discard;
6435
6436 case TCP_LISTEN:
6437 if (th->ack)
6438 return 1;
6439
6440 if (th->rst)
6441 goto discard;
6442
6443 if (th->syn) {
6444 if (th->fin)
6445 goto discard;
6446 /* It is possible that we process SYN packets from backlog,
6447 * so we need to make sure to disable BH and RCU right there.
6448 */
6449 rcu_read_lock();
6450 local_bh_disable();
6451 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6452 local_bh_enable();
6453 rcu_read_unlock();
6454
6455 if (!acceptable)
6456 return 1;
6457 consume_skb(skb);
6458 return 0;
6459 }
6460 goto discard;
6461
6462 case TCP_SYN_SENT:
6463 tp->rx_opt.saw_tstamp = 0;
6464 tcp_mstamp_refresh(tp);
6465 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6466 if (queued >= 0)
6467 return queued;
6468
6469 /* Do step6 onward by hand. */
6470 tcp_urg(sk, skb, th);
6471 __kfree_skb(skb);
6472 tcp_data_snd_check(sk);
6473 return 0;
6474 }
6475
6476 tcp_mstamp_refresh(tp);
6477 tp->rx_opt.saw_tstamp = 0;
6478 req = rcu_dereference_protected(tp->fastopen_rsk,
6479 lockdep_sock_is_held(sk));
6480 if (req) {
6481 bool req_stolen;
6482
6483 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6484 sk->sk_state != TCP_FIN_WAIT1);
6485
6486 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6487 goto discard;
6488 }
6489
6490 if (!th->ack && !th->rst && !th->syn)
6491 goto discard;
6492
6493 if (!tcp_validate_incoming(sk, skb, th, 0))
6494 return 0;
6495
6496 /* step 5: check the ACK field */
6497 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6498 FLAG_UPDATE_TS_RECENT |
6499 FLAG_NO_CHALLENGE_ACK) > 0;
6500
6501 if (!acceptable) {
6502 if (sk->sk_state == TCP_SYN_RECV)
6503 return 1; /* send one RST */
6504 tcp_send_challenge_ack(sk, skb);
6505 goto discard;
6506 }
6507 switch (sk->sk_state) {
6508 case TCP_SYN_RECV:
6509 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6510 if (!tp->srtt_us)
6511 tcp_synack_rtt_meas(sk, req);
6512
6513 if (req) {
6514 tcp_rcv_synrecv_state_fastopen(sk);
6515 } else {
6516 tcp_try_undo_spurious_syn(sk);
6517 tp->retrans_stamp = 0;
6518 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6519 skb);
6520 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6521 }
6522 smp_mb();
6523 tcp_set_state(sk, TCP_ESTABLISHED);
6524 sk->sk_state_change(sk);
6525
6526 /* Note, that this wakeup is only for marginal crossed SYN case.
6527 * Passively open sockets are not waked up, because
6528 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6529 */
6530 if (sk->sk_socket)
6531 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6532
6533 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6534 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6535 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6536
6537 if (tp->rx_opt.tstamp_ok)
6538 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6539
6540 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6541 tcp_update_pacing_rate(sk);
6542
6543 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6544 tp->lsndtime = tcp_jiffies32;
6545
6546 tcp_initialize_rcv_mss(sk);
6547 tcp_fast_path_on(tp);
6548 break;
6549
6550 case TCP_FIN_WAIT1: {
6551 int tmo;
6552
6553 if (req)
6554 tcp_rcv_synrecv_state_fastopen(sk);
6555
6556 if (tp->snd_una != tp->write_seq)
6557 break;
6558
6559 tcp_set_state(sk, TCP_FIN_WAIT2);
6560 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6561
6562 sk_dst_confirm(sk);
6563
6564 if (!sock_flag(sk, SOCK_DEAD)) {
6565 /* Wake up lingering close() */
6566 sk->sk_state_change(sk);
6567 break;
6568 }
6569
6570 if (tp->linger2 < 0) {
6571 tcp_done(sk);
6572 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6573 return 1;
6574 }
6575 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6576 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6577 /* Receive out of order FIN after close() */
6578 if (tp->syn_fastopen && th->fin)
6579 tcp_fastopen_active_disable(sk);
6580 tcp_done(sk);
6581 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6582 return 1;
6583 }
6584
6585 tmo = tcp_fin_time(sk);
6586 if (tmo > TCP_TIMEWAIT_LEN) {
6587 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6588 } else if (th->fin || sock_owned_by_user(sk)) {
6589 /* Bad case. We could lose such FIN otherwise.
6590 * It is not a big problem, but it looks confusing
6591 * and not so rare event. We still can lose it now,
6592 * if it spins in bh_lock_sock(), but it is really
6593 * marginal case.
6594 */
6595 inet_csk_reset_keepalive_timer(sk, tmo);
6596 } else {
6597 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6598 goto discard;
6599 }
6600 break;
6601 }
6602
6603 case TCP_CLOSING:
6604 if (tp->snd_una == tp->write_seq) {
6605 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6606 goto discard;
6607 }
6608 break;
6609
6610 case TCP_LAST_ACK:
6611 if (tp->snd_una == tp->write_seq) {
6612 tcp_update_metrics(sk);
6613 tcp_done(sk);
6614 goto discard;
6615 }
6616 break;
6617 }
6618
6619 /* step 6: check the URG bit */
6620 tcp_urg(sk, skb, th);
6621
6622 /* step 7: process the segment text */
6623 switch (sk->sk_state) {
6624 case TCP_CLOSE_WAIT:
6625 case TCP_CLOSING:
6626 case TCP_LAST_ACK:
6627 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6628 /* If a subflow has been reset, the packet should not
6629 * continue to be processed, drop the packet.
6630 */
6631 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6632 goto discard;
6633 break;
6634 }
6635 fallthrough;
6636 case TCP_FIN_WAIT1:
6637 case TCP_FIN_WAIT2:
6638 /* RFC 793 says to queue data in these states,
6639 * RFC 1122 says we MUST send a reset.
6640 * BSD 4.4 also does reset.
6641 */
6642 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6643 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6644 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6646 tcp_reset(sk, skb);
6647 return 1;
6648 }
6649 }
6650 fallthrough;
6651 case TCP_ESTABLISHED:
6652 tcp_data_queue(sk, skb);
6653 queued = 1;
6654 break;
6655 }
6656
6657 /* tcp_data could move socket to TIME-WAIT */
6658 if (sk->sk_state != TCP_CLOSE) {
6659 tcp_data_snd_check(sk);
6660 tcp_ack_snd_check(sk);
6661 }
6662
6663 if (!queued) {
6664 discard:
6665 tcp_drop(sk, skb);
6666 }
6667 return 0;
6668 }
6669 EXPORT_SYMBOL(tcp_rcv_state_process);
6670
pr_drop_req(struct request_sock * req,__u16 port,int family)6671 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6672 {
6673 struct inet_request_sock *ireq = inet_rsk(req);
6674
6675 if (family == AF_INET)
6676 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6677 &ireq->ir_rmt_addr, port);
6678 #if IS_ENABLED(CONFIG_IPV6)
6679 else if (family == AF_INET6)
6680 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6681 &ireq->ir_v6_rmt_addr, port);
6682 #endif
6683 }
6684
6685 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6686 *
6687 * If we receive a SYN packet with these bits set, it means a
6688 * network is playing bad games with TOS bits. In order to
6689 * avoid possible false congestion notifications, we disable
6690 * TCP ECN negotiation.
6691 *
6692 * Exception: tcp_ca wants ECN. This is required for DCTCP
6693 * congestion control: Linux DCTCP asserts ECT on all packets,
6694 * including SYN, which is most optimal solution; however,
6695 * others, such as FreeBSD do not.
6696 *
6697 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6698 * set, indicating the use of a future TCP extension (such as AccECN). See
6699 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6700 * extensions.
6701 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6702 static void tcp_ecn_create_request(struct request_sock *req,
6703 const struct sk_buff *skb,
6704 const struct sock *listen_sk,
6705 const struct dst_entry *dst)
6706 {
6707 const struct tcphdr *th = tcp_hdr(skb);
6708 const struct net *net = sock_net(listen_sk);
6709 bool th_ecn = th->ece && th->cwr;
6710 bool ect, ecn_ok;
6711 u32 ecn_ok_dst;
6712
6713 if (!th_ecn)
6714 return;
6715
6716 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6717 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6718 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6719
6720 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6721 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6722 tcp_bpf_ca_needs_ecn((struct sock *)req))
6723 inet_rsk(req)->ecn_ok = 1;
6724 }
6725
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6726 static void tcp_openreq_init(struct request_sock *req,
6727 const struct tcp_options_received *rx_opt,
6728 struct sk_buff *skb, const struct sock *sk)
6729 {
6730 struct inet_request_sock *ireq = inet_rsk(req);
6731
6732 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6733 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6734 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6735 tcp_rsk(req)->snt_synack = 0;
6736 tcp_rsk(req)->last_oow_ack_time = 0;
6737 req->mss = rx_opt->mss_clamp;
6738 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6739 ireq->tstamp_ok = rx_opt->tstamp_ok;
6740 ireq->sack_ok = rx_opt->sack_ok;
6741 ireq->snd_wscale = rx_opt->snd_wscale;
6742 ireq->wscale_ok = rx_opt->wscale_ok;
6743 ireq->acked = 0;
6744 ireq->ecn_ok = 0;
6745 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6746 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6747 ireq->ir_mark = inet_request_mark(sk, skb);
6748 #if IS_ENABLED(CONFIG_SMC)
6749 ireq->smc_ok = rx_opt->smc_ok;
6750 #endif
6751 }
6752
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6753 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6754 struct sock *sk_listener,
6755 bool attach_listener)
6756 {
6757 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6758 attach_listener);
6759
6760 if (req) {
6761 struct inet_request_sock *ireq = inet_rsk(req);
6762
6763 ireq->ireq_opt = NULL;
6764 #if IS_ENABLED(CONFIG_IPV6)
6765 ireq->pktopts = NULL;
6766 #endif
6767 atomic64_set(&ireq->ir_cookie, 0);
6768 ireq->ireq_state = TCP_NEW_SYN_RECV;
6769 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6770 ireq->ireq_family = sk_listener->sk_family;
6771 }
6772
6773 return req;
6774 }
6775 EXPORT_SYMBOL(inet_reqsk_alloc);
6776
6777 /*
6778 * Return true if a syncookie should be sent
6779 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6780 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6781 {
6782 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6783 const char *msg = "Dropping request";
6784 struct net *net = sock_net(sk);
6785 bool want_cookie = false;
6786 u8 syncookies;
6787
6788 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6789
6790 #ifdef CONFIG_SYN_COOKIES
6791 if (syncookies) {
6792 msg = "Sending cookies";
6793 want_cookie = true;
6794 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6795 } else
6796 #endif
6797 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6798
6799 if (!queue->synflood_warned && syncookies != 2 &&
6800 xchg(&queue->synflood_warned, 1) == 0)
6801 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6802 proto, sk->sk_num, msg);
6803
6804 return want_cookie;
6805 }
6806
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6807 static void tcp_reqsk_record_syn(const struct sock *sk,
6808 struct request_sock *req,
6809 const struct sk_buff *skb)
6810 {
6811 if (tcp_sk(sk)->save_syn) {
6812 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6813 struct saved_syn *saved_syn;
6814 u32 mac_hdrlen;
6815 void *base;
6816
6817 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6818 base = skb_mac_header(skb);
6819 mac_hdrlen = skb_mac_header_len(skb);
6820 len += mac_hdrlen;
6821 } else {
6822 base = skb_network_header(skb);
6823 mac_hdrlen = 0;
6824 }
6825
6826 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6827 GFP_ATOMIC);
6828 if (saved_syn) {
6829 saved_syn->mac_hdrlen = mac_hdrlen;
6830 saved_syn->network_hdrlen = skb_network_header_len(skb);
6831 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6832 memcpy(saved_syn->data, base, len);
6833 req->saved_syn = saved_syn;
6834 }
6835 }
6836 }
6837
6838 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6839 * used for SYN cookie generation.
6840 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6841 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6842 const struct tcp_request_sock_ops *af_ops,
6843 struct sock *sk, struct tcphdr *th)
6844 {
6845 struct tcp_sock *tp = tcp_sk(sk);
6846 u16 mss;
6847
6848 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6849 !inet_csk_reqsk_queue_is_full(sk))
6850 return 0;
6851
6852 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6853 return 0;
6854
6855 if (sk_acceptq_is_full(sk)) {
6856 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6857 return 0;
6858 }
6859
6860 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6861 if (!mss)
6862 mss = af_ops->mss_clamp;
6863
6864 return mss;
6865 }
6866 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6867
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6868 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6869 const struct tcp_request_sock_ops *af_ops,
6870 struct sock *sk, struct sk_buff *skb)
6871 {
6872 struct tcp_fastopen_cookie foc = { .len = -1 };
6873 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6874 struct tcp_options_received tmp_opt;
6875 struct tcp_sock *tp = tcp_sk(sk);
6876 struct net *net = sock_net(sk);
6877 struct sock *fastopen_sk = NULL;
6878 struct request_sock *req;
6879 bool want_cookie = false;
6880 struct dst_entry *dst;
6881 struct flowi fl;
6882 u8 syncookies;
6883
6884 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6885
6886 /* TW buckets are converted to open requests without
6887 * limitations, they conserve resources and peer is
6888 * evidently real one.
6889 */
6890 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6891 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6892 if (!want_cookie)
6893 goto drop;
6894 }
6895
6896 if (sk_acceptq_is_full(sk)) {
6897 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6898 goto drop;
6899 }
6900
6901 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6902 if (!req)
6903 goto drop;
6904
6905 req->syncookie = want_cookie;
6906 tcp_rsk(req)->af_specific = af_ops;
6907 tcp_rsk(req)->ts_off = 0;
6908 #if IS_ENABLED(CONFIG_MPTCP)
6909 tcp_rsk(req)->is_mptcp = 0;
6910 #endif
6911
6912 tcp_clear_options(&tmp_opt);
6913 tmp_opt.mss_clamp = af_ops->mss_clamp;
6914 tmp_opt.user_mss = tp->rx_opt.user_mss;
6915 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6916 want_cookie ? NULL : &foc);
6917
6918 if (want_cookie && !tmp_opt.saw_tstamp)
6919 tcp_clear_options(&tmp_opt);
6920
6921 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6922 tmp_opt.smc_ok = 0;
6923
6924 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6925 tcp_openreq_init(req, &tmp_opt, skb, sk);
6926 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6927
6928 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6929 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6930
6931 dst = af_ops->route_req(sk, skb, &fl, req);
6932 if (!dst)
6933 goto drop_and_free;
6934
6935 if (tmp_opt.tstamp_ok)
6936 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6937
6938 if (!want_cookie && !isn) {
6939 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6940
6941 /* Kill the following clause, if you dislike this way. */
6942 if (!syncookies &&
6943 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6944 (max_syn_backlog >> 2)) &&
6945 !tcp_peer_is_proven(req, dst)) {
6946 /* Without syncookies last quarter of
6947 * backlog is filled with destinations,
6948 * proven to be alive.
6949 * It means that we continue to communicate
6950 * to destinations, already remembered
6951 * to the moment of synflood.
6952 */
6953 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6954 rsk_ops->family);
6955 goto drop_and_release;
6956 }
6957
6958 isn = af_ops->init_seq(skb);
6959 }
6960
6961 tcp_ecn_create_request(req, skb, sk, dst);
6962
6963 if (want_cookie) {
6964 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6965 if (!tmp_opt.tstamp_ok)
6966 inet_rsk(req)->ecn_ok = 0;
6967 }
6968
6969 tcp_rsk(req)->snt_isn = isn;
6970 tcp_rsk(req)->txhash = net_tx_rndhash();
6971 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6972 tcp_openreq_init_rwin(req, sk, dst);
6973 sk_rx_queue_set(req_to_sk(req), skb);
6974 if (!want_cookie) {
6975 tcp_reqsk_record_syn(sk, req, skb);
6976 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6977 }
6978 if (fastopen_sk) {
6979 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6980 &foc, TCP_SYNACK_FASTOPEN, skb);
6981 /* Add the child socket directly into the accept queue */
6982 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6983 reqsk_fastopen_remove(fastopen_sk, req, false);
6984 bh_unlock_sock(fastopen_sk);
6985 sock_put(fastopen_sk);
6986 goto drop_and_free;
6987 }
6988 sk->sk_data_ready(sk);
6989 bh_unlock_sock(fastopen_sk);
6990 sock_put(fastopen_sk);
6991 } else {
6992 tcp_rsk(req)->tfo_listener = false;
6993 if (!want_cookie)
6994 inet_csk_reqsk_queue_hash_add(sk, req,
6995 tcp_timeout_init((struct sock *)req));
6996 af_ops->send_synack(sk, dst, &fl, req, &foc,
6997 !want_cookie ? TCP_SYNACK_NORMAL :
6998 TCP_SYNACK_COOKIE,
6999 skb);
7000 if (want_cookie) {
7001 reqsk_free(req);
7002 return 0;
7003 }
7004 }
7005 reqsk_put(req);
7006 return 0;
7007
7008 drop_and_release:
7009 dst_release(dst);
7010 drop_and_free:
7011 __reqsk_free(req);
7012 drop:
7013 tcp_listendrop(sk);
7014 return 0;
7015 }
7016 EXPORT_SYMBOL(tcp_conn_request);
7017