1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/crypto.h>
3 #include <linux/err.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/list.h>
7 #include <linux/tcp.h>
8 #include <linux/rcupdate.h>
9 #include <linux/rculist.h>
10 #include <net/inetpeer.h>
11 #include <net/tcp.h>
12
tcp_fastopen_init_key_once(struct net * net)13 void tcp_fastopen_init_key_once(struct net *net)
14 {
15 u8 key[TCP_FASTOPEN_KEY_LENGTH];
16 struct tcp_fastopen_context *ctxt;
17
18 rcu_read_lock();
19 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 if (ctxt) {
21 rcu_read_unlock();
22 return;
23 }
24 rcu_read_unlock();
25
26 /* tcp_fastopen_reset_cipher publishes the new context
27 * atomically, so we allow this race happening here.
28 *
29 * All call sites of tcp_fastopen_cookie_gen also check
30 * for a valid cookie, so this is an acceptable risk.
31 */
32 get_random_bytes(key, sizeof(key));
33 tcp_fastopen_reset_cipher(net, NULL, key, NULL);
34 }
35
tcp_fastopen_ctx_free(struct rcu_head * head)36 static void tcp_fastopen_ctx_free(struct rcu_head *head)
37 {
38 struct tcp_fastopen_context *ctx =
39 container_of(head, struct tcp_fastopen_context, rcu);
40
41 kfree_sensitive(ctx);
42 }
43
tcp_fastopen_destroy_cipher(struct sock * sk)44 void tcp_fastopen_destroy_cipher(struct sock *sk)
45 {
46 struct tcp_fastopen_context *ctx;
47
48 ctx = rcu_dereference_protected(
49 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
50 if (ctx)
51 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
52 }
53
tcp_fastopen_ctx_destroy(struct net * net)54 void tcp_fastopen_ctx_destroy(struct net *net)
55 {
56 struct tcp_fastopen_context *ctxt;
57
58 ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
59
60 if (ctxt)
61 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
62 }
63
tcp_fastopen_reset_cipher(struct net * net,struct sock * sk,void * primary_key,void * backup_key)64 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
65 void *primary_key, void *backup_key)
66 {
67 struct tcp_fastopen_context *ctx, *octx;
68 struct fastopen_queue *q;
69 int err = 0;
70
71 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
72 if (!ctx) {
73 err = -ENOMEM;
74 goto out;
75 }
76
77 ctx->key[0].key[0] = get_unaligned_le64(primary_key);
78 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
79 if (backup_key) {
80 ctx->key[1].key[0] = get_unaligned_le64(backup_key);
81 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
82 ctx->num = 2;
83 } else {
84 ctx->num = 1;
85 }
86
87 if (sk) {
88 q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
89 octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
90 } else {
91 octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
92 }
93
94 if (octx)
95 call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
96 out:
97 return err;
98 }
99
tcp_fastopen_get_cipher(struct net * net,struct inet_connection_sock * icsk,u64 * key)100 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
101 u64 *key)
102 {
103 struct tcp_fastopen_context *ctx;
104 int n_keys = 0, i;
105
106 rcu_read_lock();
107 if (icsk)
108 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
109 else
110 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
111 if (ctx) {
112 n_keys = tcp_fastopen_context_len(ctx);
113 for (i = 0; i < n_keys; i++) {
114 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
115 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
116 }
117 }
118 rcu_read_unlock();
119
120 return n_keys;
121 }
122
__tcp_fastopen_cookie_gen_cipher(struct request_sock * req,struct sk_buff * syn,const siphash_key_t * key,struct tcp_fastopen_cookie * foc)123 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
124 struct sk_buff *syn,
125 const siphash_key_t *key,
126 struct tcp_fastopen_cookie *foc)
127 {
128 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
129
130 if (req->rsk_ops->family == AF_INET) {
131 const struct iphdr *iph = ip_hdr(syn);
132
133 foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
134 sizeof(iph->saddr) +
135 sizeof(iph->daddr),
136 key));
137 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
138 return true;
139 }
140 #if IS_ENABLED(CONFIG_IPV6)
141 if (req->rsk_ops->family == AF_INET6) {
142 const struct ipv6hdr *ip6h = ipv6_hdr(syn);
143
144 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
145 sizeof(ip6h->saddr) +
146 sizeof(ip6h->daddr),
147 key));
148 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149 return true;
150 }
151 #endif
152 return false;
153 }
154
155 /* Generate the fastopen cookie by applying SipHash to both the source and
156 * destination addresses.
157 */
tcp_fastopen_cookie_gen(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * foc)158 static void tcp_fastopen_cookie_gen(struct sock *sk,
159 struct request_sock *req,
160 struct sk_buff *syn,
161 struct tcp_fastopen_cookie *foc)
162 {
163 struct tcp_fastopen_context *ctx;
164
165 rcu_read_lock();
166 ctx = tcp_fastopen_get_ctx(sk);
167 if (ctx)
168 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
169 rcu_read_unlock();
170 }
171
172 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
173 * queue this additional data / FIN.
174 */
tcp_fastopen_add_skb(struct sock * sk,struct sk_buff * skb)175 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
176 {
177 struct tcp_sock *tp = tcp_sk(sk);
178
179 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
180 return;
181
182 skb = skb_clone(skb, GFP_ATOMIC);
183 if (!skb)
184 return;
185
186 skb_dst_drop(skb);
187 /* segs_in has been initialized to 1 in tcp_create_openreq_child().
188 * Hence, reset segs_in to 0 before calling tcp_segs_in()
189 * to avoid double counting. Also, tcp_segs_in() expects
190 * skb->len to include the tcp_hdrlen. Hence, it should
191 * be called before __skb_pull().
192 */
193 tp->segs_in = 0;
194 tcp_segs_in(tp, skb);
195 __skb_pull(skb, tcp_hdrlen(skb));
196 sk_forced_mem_schedule(sk, skb->truesize);
197 skb_set_owner_r(skb, sk);
198
199 TCP_SKB_CB(skb)->seq++;
200 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
201
202 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
203 __skb_queue_tail(&sk->sk_receive_queue, skb);
204 tp->syn_data_acked = 1;
205
206 /* u64_stats_update_begin(&tp->syncp) not needed here,
207 * as we certainly are not changing upper 32bit value (0)
208 */
209 tp->bytes_received = skb->len;
210
211 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
212 tcp_fin(sk);
213 }
214
215 /* returns 0 - no key match, 1 for primary, 2 for backup */
tcp_fastopen_cookie_gen_check(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * orig,struct tcp_fastopen_cookie * valid_foc)216 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
217 struct request_sock *req,
218 struct sk_buff *syn,
219 struct tcp_fastopen_cookie *orig,
220 struct tcp_fastopen_cookie *valid_foc)
221 {
222 struct tcp_fastopen_cookie search_foc = { .len = -1 };
223 struct tcp_fastopen_cookie *foc = valid_foc;
224 struct tcp_fastopen_context *ctx;
225 int i, ret = 0;
226
227 rcu_read_lock();
228 ctx = tcp_fastopen_get_ctx(sk);
229 if (!ctx)
230 goto out;
231 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
232 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
233 if (tcp_fastopen_cookie_match(foc, orig)) {
234 ret = i + 1;
235 goto out;
236 }
237 foc = &search_foc;
238 }
239 out:
240 rcu_read_unlock();
241 return ret;
242 }
243
tcp_fastopen_create_child(struct sock * sk,struct sk_buff * skb,struct request_sock * req)244 static struct sock *tcp_fastopen_create_child(struct sock *sk,
245 struct sk_buff *skb,
246 struct request_sock *req)
247 {
248 struct tcp_sock *tp;
249 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
250 struct sock *child;
251 bool own_req;
252
253 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
254 NULL, &own_req);
255 if (!child)
256 return NULL;
257
258 spin_lock(&queue->fastopenq.lock);
259 queue->fastopenq.qlen++;
260 spin_unlock(&queue->fastopenq.lock);
261
262 /* Initialize the child socket. Have to fix some values to take
263 * into account the child is a Fast Open socket and is created
264 * only out of the bits carried in the SYN packet.
265 */
266 tp = tcp_sk(child);
267
268 rcu_assign_pointer(tp->fastopen_rsk, req);
269 tcp_rsk(req)->tfo_listener = true;
270
271 /* RFC1323: The window in SYN & SYN/ACK segments is never
272 * scaled. So correct it appropriately.
273 */
274 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
275 tp->max_window = tp->snd_wnd;
276
277 /* Activate the retrans timer so that SYNACK can be retransmitted.
278 * The request socket is not added to the ehash
279 * because it's been added to the accept queue directly.
280 */
281 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
282 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
283
284 refcount_set(&req->rsk_refcnt, 2);
285
286 /* Now finish processing the fastopen child socket. */
287 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
288
289 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
290
291 tcp_fastopen_add_skb(child, skb);
292
293 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
294 tp->rcv_wup = tp->rcv_nxt;
295 /* tcp_conn_request() is sending the SYNACK,
296 * and queues the child into listener accept queue.
297 */
298 return child;
299 }
300
tcp_fastopen_queue_check(struct sock * sk)301 static bool tcp_fastopen_queue_check(struct sock *sk)
302 {
303 struct fastopen_queue *fastopenq;
304 int max_qlen;
305
306 /* Make sure the listener has enabled fastopen, and we don't
307 * exceed the max # of pending TFO requests allowed before trying
308 * to validating the cookie in order to avoid burning CPU cycles
309 * unnecessarily.
310 *
311 * XXX (TFO) - The implication of checking the max_qlen before
312 * processing a cookie request is that clients can't differentiate
313 * between qlen overflow causing Fast Open to be disabled
314 * temporarily vs a server not supporting Fast Open at all.
315 */
316 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
317 max_qlen = READ_ONCE(fastopenq->max_qlen);
318 if (max_qlen == 0)
319 return false;
320
321 if (fastopenq->qlen >= max_qlen) {
322 struct request_sock *req1;
323 spin_lock(&fastopenq->lock);
324 req1 = fastopenq->rskq_rst_head;
325 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
326 __NET_INC_STATS(sock_net(sk),
327 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
328 spin_unlock(&fastopenq->lock);
329 return false;
330 }
331 fastopenq->rskq_rst_head = req1->dl_next;
332 fastopenq->qlen--;
333 spin_unlock(&fastopenq->lock);
334 reqsk_put(req1);
335 }
336 return true;
337 }
338
tcp_fastopen_no_cookie(const struct sock * sk,const struct dst_entry * dst,int flag)339 static bool tcp_fastopen_no_cookie(const struct sock *sk,
340 const struct dst_entry *dst,
341 int flag)
342 {
343 return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
344 tcp_sk(sk)->fastopen_no_cookie ||
345 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
346 }
347
348 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
349 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
350 * cookie request (foc->len == 0).
351 */
tcp_try_fastopen(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct tcp_fastopen_cookie * foc,const struct dst_entry * dst)352 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
353 struct request_sock *req,
354 struct tcp_fastopen_cookie *foc,
355 const struct dst_entry *dst)
356 {
357 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
358 int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
359 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
360 struct sock *child;
361 int ret = 0;
362
363 if (foc->len == 0) /* Client requests a cookie */
364 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
365
366 if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
367 (syn_data || foc->len >= 0) &&
368 tcp_fastopen_queue_check(sk))) {
369 foc->len = -1;
370 return NULL;
371 }
372
373 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
374 goto fastopen;
375
376 if (foc->len == 0) {
377 /* Client requests a cookie. */
378 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
379 } else if (foc->len > 0) {
380 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
381 &valid_foc);
382 if (!ret) {
383 NET_INC_STATS(sock_net(sk),
384 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
385 } else {
386 /* Cookie is valid. Create a (full) child socket to
387 * accept the data in SYN before returning a SYN-ACK to
388 * ack the data. If we fail to create the socket, fall
389 * back and ack the ISN only but includes the same
390 * cookie.
391 *
392 * Note: Data-less SYN with valid cookie is allowed to
393 * send data in SYN_RECV state.
394 */
395 fastopen:
396 child = tcp_fastopen_create_child(sk, skb, req);
397 if (child) {
398 if (ret == 2) {
399 valid_foc.exp = foc->exp;
400 *foc = valid_foc;
401 NET_INC_STATS(sock_net(sk),
402 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
403 } else {
404 foc->len = -1;
405 }
406 NET_INC_STATS(sock_net(sk),
407 LINUX_MIB_TCPFASTOPENPASSIVE);
408 return child;
409 }
410 NET_INC_STATS(sock_net(sk),
411 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
412 }
413 }
414 valid_foc.exp = foc->exp;
415 *foc = valid_foc;
416 return NULL;
417 }
418
tcp_fastopen_cookie_check(struct sock * sk,u16 * mss,struct tcp_fastopen_cookie * cookie)419 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
420 struct tcp_fastopen_cookie *cookie)
421 {
422 const struct dst_entry *dst;
423
424 tcp_fastopen_cache_get(sk, mss, cookie);
425
426 /* Firewall blackhole issue check */
427 if (tcp_fastopen_active_should_disable(sk)) {
428 cookie->len = -1;
429 return false;
430 }
431
432 dst = __sk_dst_get(sk);
433
434 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
435 cookie->len = -1;
436 return true;
437 }
438 if (cookie->len > 0)
439 return true;
440 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
441 return false;
442 }
443
444 /* This function checks if we want to defer sending SYN until the first
445 * write(). We defer under the following conditions:
446 * 1. fastopen_connect sockopt is set
447 * 2. we have a valid cookie
448 * Return value: return true if we want to defer until application writes data
449 * return false if we want to send out SYN immediately
450 */
tcp_fastopen_defer_connect(struct sock * sk,int * err)451 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
452 {
453 struct tcp_fastopen_cookie cookie = { .len = 0 };
454 struct tcp_sock *tp = tcp_sk(sk);
455 u16 mss;
456
457 if (tp->fastopen_connect && !tp->fastopen_req) {
458 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
459 inet_sk(sk)->defer_connect = 1;
460 return true;
461 }
462
463 /* Alloc fastopen_req in order for FO option to be included
464 * in SYN
465 */
466 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
467 sk->sk_allocation);
468 if (tp->fastopen_req)
469 tp->fastopen_req->cookie = cookie;
470 else
471 *err = -ENOBUFS;
472 }
473 return false;
474 }
475 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
476
477 /*
478 * The following code block is to deal with middle box issues with TFO:
479 * Middlebox firewall issues can potentially cause server's data being
480 * blackholed after a successful 3WHS using TFO.
481 * The proposed solution is to disable active TFO globally under the
482 * following circumstances:
483 * 1. client side TFO socket receives out of order FIN
484 * 2. client side TFO socket receives out of order RST
485 * 3. client side TFO socket has timed out three times consecutively during
486 * or after handshake
487 * We disable active side TFO globally for 1hr at first. Then if it
488 * happens again, we disable it for 2h, then 4h, 8h, ...
489 * And we reset the timeout back to 1hr when we see a successful active
490 * TFO connection with data exchanges.
491 */
492
493 /* Disable active TFO and record current jiffies and
494 * tfo_active_disable_times
495 */
tcp_fastopen_active_disable(struct sock * sk)496 void tcp_fastopen_active_disable(struct sock *sk)
497 {
498 struct net *net = sock_net(sk);
499
500 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
501 return;
502
503 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
504 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
505
506 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
507 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
508 */
509 smp_mb__before_atomic();
510 atomic_inc(&net->ipv4.tfo_active_disable_times);
511
512 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
513 }
514
515 /* Calculate timeout for tfo active disable
516 * Return true if we are still in the active TFO disable period
517 * Return false if timeout already expired and we should use active TFO
518 */
tcp_fastopen_active_should_disable(struct sock * sk)519 bool tcp_fastopen_active_should_disable(struct sock *sk)
520 {
521 unsigned int tfo_bh_timeout =
522 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
523 unsigned long timeout;
524 int tfo_da_times;
525 int multiplier;
526
527 if (!tfo_bh_timeout)
528 return false;
529
530 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
531 if (!tfo_da_times)
532 return false;
533
534 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
535 smp_rmb();
536
537 /* Limit timeout to max: 2^6 * initial timeout */
538 multiplier = 1 << min(tfo_da_times - 1, 6);
539
540 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
541 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
542 multiplier * tfo_bh_timeout * HZ;
543 if (time_before(jiffies, timeout))
544 return true;
545
546 /* Mark check bit so we can check for successful active TFO
547 * condition and reset tfo_active_disable_times
548 */
549 tcp_sk(sk)->syn_fastopen_ch = 1;
550 return false;
551 }
552
553 /* Disable active TFO if FIN is the only packet in the ofo queue
554 * and no data is received.
555 * Also check if we can reset tfo_active_disable_times if data is
556 * received successfully on a marked active TFO sockets opened on
557 * a non-loopback interface
558 */
tcp_fastopen_active_disable_ofo_check(struct sock * sk)559 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct dst_entry *dst;
563 struct sk_buff *skb;
564
565 if (!tp->syn_fastopen)
566 return;
567
568 if (!tp->data_segs_in) {
569 skb = skb_rb_first(&tp->out_of_order_queue);
570 if (skb && !skb_rb_next(skb)) {
571 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
572 tcp_fastopen_active_disable(sk);
573 return;
574 }
575 }
576 } else if (tp->syn_fastopen_ch &&
577 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
578 dst = sk_dst_get(sk);
579 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
580 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
581 dst_release(dst);
582 }
583 }
584
tcp_fastopen_active_detect_blackhole(struct sock * sk,bool expired)585 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
586 {
587 u32 timeouts = inet_csk(sk)->icsk_retransmits;
588 struct tcp_sock *tp = tcp_sk(sk);
589
590 /* Broken middle-boxes may black-hole Fast Open connection during or
591 * even after the handshake. Be extremely conservative and pause
592 * Fast Open globally after hitting the third consecutive timeout or
593 * exceeding the configured timeout limit.
594 */
595 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
596 (timeouts == 2 || (timeouts < 2 && expired))) {
597 tcp_fastopen_active_disable(sk);
598 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
599 }
600 }
601