• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/crypto.h>
3 #include <linux/err.h>
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/list.h>
7 #include <linux/tcp.h>
8 #include <linux/rcupdate.h>
9 #include <linux/rculist.h>
10 #include <net/inetpeer.h>
11 #include <net/tcp.h>
12 
tcp_fastopen_init_key_once(struct net * net)13 void tcp_fastopen_init_key_once(struct net *net)
14 {
15 	u8 key[TCP_FASTOPEN_KEY_LENGTH];
16 	struct tcp_fastopen_context *ctxt;
17 
18 	rcu_read_lock();
19 	ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 	if (ctxt) {
21 		rcu_read_unlock();
22 		return;
23 	}
24 	rcu_read_unlock();
25 
26 	/* tcp_fastopen_reset_cipher publishes the new context
27 	 * atomically, so we allow this race happening here.
28 	 *
29 	 * All call sites of tcp_fastopen_cookie_gen also check
30 	 * for a valid cookie, so this is an acceptable risk.
31 	 */
32 	get_random_bytes(key, sizeof(key));
33 	tcp_fastopen_reset_cipher(net, NULL, key, NULL);
34 }
35 
tcp_fastopen_ctx_free(struct rcu_head * head)36 static void tcp_fastopen_ctx_free(struct rcu_head *head)
37 {
38 	struct tcp_fastopen_context *ctx =
39 	    container_of(head, struct tcp_fastopen_context, rcu);
40 
41 	kfree_sensitive(ctx);
42 }
43 
tcp_fastopen_destroy_cipher(struct sock * sk)44 void tcp_fastopen_destroy_cipher(struct sock *sk)
45 {
46 	struct tcp_fastopen_context *ctx;
47 
48 	ctx = rcu_dereference_protected(
49 			inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
50 	if (ctx)
51 		call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
52 }
53 
tcp_fastopen_ctx_destroy(struct net * net)54 void tcp_fastopen_ctx_destroy(struct net *net)
55 {
56 	struct tcp_fastopen_context *ctxt;
57 
58 	ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
59 
60 	if (ctxt)
61 		call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
62 }
63 
tcp_fastopen_reset_cipher(struct net * net,struct sock * sk,void * primary_key,void * backup_key)64 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
65 			      void *primary_key, void *backup_key)
66 {
67 	struct tcp_fastopen_context *ctx, *octx;
68 	struct fastopen_queue *q;
69 	int err = 0;
70 
71 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
72 	if (!ctx) {
73 		err = -ENOMEM;
74 		goto out;
75 	}
76 
77 	ctx->key[0].key[0] = get_unaligned_le64(primary_key);
78 	ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
79 	if (backup_key) {
80 		ctx->key[1].key[0] = get_unaligned_le64(backup_key);
81 		ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
82 		ctx->num = 2;
83 	} else {
84 		ctx->num = 1;
85 	}
86 
87 	if (sk) {
88 		q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
89 		octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
90 	} else {
91 		octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
92 	}
93 
94 	if (octx)
95 		call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
96 out:
97 	return err;
98 }
99 
tcp_fastopen_get_cipher(struct net * net,struct inet_connection_sock * icsk,u64 * key)100 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
101 			    u64 *key)
102 {
103 	struct tcp_fastopen_context *ctx;
104 	int n_keys = 0, i;
105 
106 	rcu_read_lock();
107 	if (icsk)
108 		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
109 	else
110 		ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
111 	if (ctx) {
112 		n_keys = tcp_fastopen_context_len(ctx);
113 		for (i = 0; i < n_keys; i++) {
114 			put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
115 			put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
116 		}
117 	}
118 	rcu_read_unlock();
119 
120 	return n_keys;
121 }
122 
__tcp_fastopen_cookie_gen_cipher(struct request_sock * req,struct sk_buff * syn,const siphash_key_t * key,struct tcp_fastopen_cookie * foc)123 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
124 					     struct sk_buff *syn,
125 					     const siphash_key_t *key,
126 					     struct tcp_fastopen_cookie *foc)
127 {
128 	BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
129 
130 	if (req->rsk_ops->family == AF_INET) {
131 		const struct iphdr *iph = ip_hdr(syn);
132 
133 		foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
134 					  sizeof(iph->saddr) +
135 					  sizeof(iph->daddr),
136 					  key));
137 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
138 		return true;
139 	}
140 #if IS_ENABLED(CONFIG_IPV6)
141 	if (req->rsk_ops->family == AF_INET6) {
142 		const struct ipv6hdr *ip6h = ipv6_hdr(syn);
143 
144 		foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
145 					  sizeof(ip6h->saddr) +
146 					  sizeof(ip6h->daddr),
147 					  key));
148 		foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149 		return true;
150 	}
151 #endif
152 	return false;
153 }
154 
155 /* Generate the fastopen cookie by applying SipHash to both the source and
156  * destination addresses.
157  */
tcp_fastopen_cookie_gen(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * foc)158 static void tcp_fastopen_cookie_gen(struct sock *sk,
159 				    struct request_sock *req,
160 				    struct sk_buff *syn,
161 				    struct tcp_fastopen_cookie *foc)
162 {
163 	struct tcp_fastopen_context *ctx;
164 
165 	rcu_read_lock();
166 	ctx = tcp_fastopen_get_ctx(sk);
167 	if (ctx)
168 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
169 	rcu_read_unlock();
170 }
171 
172 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
173  * queue this additional data / FIN.
174  */
tcp_fastopen_add_skb(struct sock * sk,struct sk_buff * skb)175 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
176 {
177 	struct tcp_sock *tp = tcp_sk(sk);
178 
179 	if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
180 		return;
181 
182 	skb = skb_clone(skb, GFP_ATOMIC);
183 	if (!skb)
184 		return;
185 
186 	skb_dst_drop(skb);
187 	/* segs_in has been initialized to 1 in tcp_create_openreq_child().
188 	 * Hence, reset segs_in to 0 before calling tcp_segs_in()
189 	 * to avoid double counting.  Also, tcp_segs_in() expects
190 	 * skb->len to include the tcp_hdrlen.  Hence, it should
191 	 * be called before __skb_pull().
192 	 */
193 	tp->segs_in = 0;
194 	tcp_segs_in(tp, skb);
195 	__skb_pull(skb, tcp_hdrlen(skb));
196 	sk_forced_mem_schedule(sk, skb->truesize);
197 	skb_set_owner_r(skb, sk);
198 
199 	TCP_SKB_CB(skb)->seq++;
200 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
201 
202 	tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
203 	__skb_queue_tail(&sk->sk_receive_queue, skb);
204 	tp->syn_data_acked = 1;
205 
206 	/* u64_stats_update_begin(&tp->syncp) not needed here,
207 	 * as we certainly are not changing upper 32bit value (0)
208 	 */
209 	tp->bytes_received = skb->len;
210 
211 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
212 		tcp_fin(sk);
213 }
214 
215 /* returns 0 - no key match, 1 for primary, 2 for backup */
tcp_fastopen_cookie_gen_check(struct sock * sk,struct request_sock * req,struct sk_buff * syn,struct tcp_fastopen_cookie * orig,struct tcp_fastopen_cookie * valid_foc)216 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
217 					 struct request_sock *req,
218 					 struct sk_buff *syn,
219 					 struct tcp_fastopen_cookie *orig,
220 					 struct tcp_fastopen_cookie *valid_foc)
221 {
222 	struct tcp_fastopen_cookie search_foc = { .len = -1 };
223 	struct tcp_fastopen_cookie *foc = valid_foc;
224 	struct tcp_fastopen_context *ctx;
225 	int i, ret = 0;
226 
227 	rcu_read_lock();
228 	ctx = tcp_fastopen_get_ctx(sk);
229 	if (!ctx)
230 		goto out;
231 	for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
232 		__tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
233 		if (tcp_fastopen_cookie_match(foc, orig)) {
234 			ret = i + 1;
235 			goto out;
236 		}
237 		foc = &search_foc;
238 	}
239 out:
240 	rcu_read_unlock();
241 	return ret;
242 }
243 
tcp_fastopen_create_child(struct sock * sk,struct sk_buff * skb,struct request_sock * req)244 static struct sock *tcp_fastopen_create_child(struct sock *sk,
245 					      struct sk_buff *skb,
246 					      struct request_sock *req)
247 {
248 	struct tcp_sock *tp;
249 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
250 	struct sock *child;
251 	bool own_req;
252 
253 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
254 							 NULL, &own_req);
255 	if (!child)
256 		return NULL;
257 
258 	spin_lock(&queue->fastopenq.lock);
259 	queue->fastopenq.qlen++;
260 	spin_unlock(&queue->fastopenq.lock);
261 
262 	/* Initialize the child socket. Have to fix some values to take
263 	 * into account the child is a Fast Open socket and is created
264 	 * only out of the bits carried in the SYN packet.
265 	 */
266 	tp = tcp_sk(child);
267 
268 	rcu_assign_pointer(tp->fastopen_rsk, req);
269 	tcp_rsk(req)->tfo_listener = true;
270 
271 	/* RFC1323: The window in SYN & SYN/ACK segments is never
272 	 * scaled. So correct it appropriately.
273 	 */
274 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
275 	tp->max_window = tp->snd_wnd;
276 
277 	/* Activate the retrans timer so that SYNACK can be retransmitted.
278 	 * The request socket is not added to the ehash
279 	 * because it's been added to the accept queue directly.
280 	 */
281 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
282 				  TCP_TIMEOUT_INIT, TCP_RTO_MAX);
283 
284 	refcount_set(&req->rsk_refcnt, 2);
285 
286 	/* Now finish processing the fastopen child socket. */
287 	tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
288 
289 	tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
290 
291 	tcp_fastopen_add_skb(child, skb);
292 
293 	tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
294 	tp->rcv_wup = tp->rcv_nxt;
295 	/* tcp_conn_request() is sending the SYNACK,
296 	 * and queues the child into listener accept queue.
297 	 */
298 	return child;
299 }
300 
tcp_fastopen_queue_check(struct sock * sk)301 static bool tcp_fastopen_queue_check(struct sock *sk)
302 {
303 	struct fastopen_queue *fastopenq;
304 	int max_qlen;
305 
306 	/* Make sure the listener has enabled fastopen, and we don't
307 	 * exceed the max # of pending TFO requests allowed before trying
308 	 * to validating the cookie in order to avoid burning CPU cycles
309 	 * unnecessarily.
310 	 *
311 	 * XXX (TFO) - The implication of checking the max_qlen before
312 	 * processing a cookie request is that clients can't differentiate
313 	 * between qlen overflow causing Fast Open to be disabled
314 	 * temporarily vs a server not supporting Fast Open at all.
315 	 */
316 	fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
317 	max_qlen = READ_ONCE(fastopenq->max_qlen);
318 	if (max_qlen == 0)
319 		return false;
320 
321 	if (fastopenq->qlen >= max_qlen) {
322 		struct request_sock *req1;
323 		spin_lock(&fastopenq->lock);
324 		req1 = fastopenq->rskq_rst_head;
325 		if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
326 			__NET_INC_STATS(sock_net(sk),
327 					LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
328 			spin_unlock(&fastopenq->lock);
329 			return false;
330 		}
331 		fastopenq->rskq_rst_head = req1->dl_next;
332 		fastopenq->qlen--;
333 		spin_unlock(&fastopenq->lock);
334 		reqsk_put(req1);
335 	}
336 	return true;
337 }
338 
tcp_fastopen_no_cookie(const struct sock * sk,const struct dst_entry * dst,int flag)339 static bool tcp_fastopen_no_cookie(const struct sock *sk,
340 				   const struct dst_entry *dst,
341 				   int flag)
342 {
343 	return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
344 	       tcp_sk(sk)->fastopen_no_cookie ||
345 	       (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
346 }
347 
348 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
349  * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
350  * cookie request (foc->len == 0).
351  */
tcp_try_fastopen(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct tcp_fastopen_cookie * foc,const struct dst_entry * dst)352 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
353 			      struct request_sock *req,
354 			      struct tcp_fastopen_cookie *foc,
355 			      const struct dst_entry *dst)
356 {
357 	bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
358 	int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
359 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
360 	struct sock *child;
361 	int ret = 0;
362 
363 	if (foc->len == 0) /* Client requests a cookie */
364 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
365 
366 	if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
367 	      (syn_data || foc->len >= 0) &&
368 	      tcp_fastopen_queue_check(sk))) {
369 		foc->len = -1;
370 		return NULL;
371 	}
372 
373 	if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
374 		goto fastopen;
375 
376 	if (foc->len == 0) {
377 		/* Client requests a cookie. */
378 		tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
379 	} else if (foc->len > 0) {
380 		ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
381 						    &valid_foc);
382 		if (!ret) {
383 			NET_INC_STATS(sock_net(sk),
384 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
385 		} else {
386 			/* Cookie is valid. Create a (full) child socket to
387 			 * accept the data in SYN before returning a SYN-ACK to
388 			 * ack the data. If we fail to create the socket, fall
389 			 * back and ack the ISN only but includes the same
390 			 * cookie.
391 			 *
392 			 * Note: Data-less SYN with valid cookie is allowed to
393 			 * send data in SYN_RECV state.
394 			 */
395 fastopen:
396 			child = tcp_fastopen_create_child(sk, skb, req);
397 			if (child) {
398 				if (ret == 2) {
399 					valid_foc.exp = foc->exp;
400 					*foc = valid_foc;
401 					NET_INC_STATS(sock_net(sk),
402 						      LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
403 				} else {
404 					foc->len = -1;
405 				}
406 				NET_INC_STATS(sock_net(sk),
407 					      LINUX_MIB_TCPFASTOPENPASSIVE);
408 				return child;
409 			}
410 			NET_INC_STATS(sock_net(sk),
411 				      LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
412 		}
413 	}
414 	valid_foc.exp = foc->exp;
415 	*foc = valid_foc;
416 	return NULL;
417 }
418 
tcp_fastopen_cookie_check(struct sock * sk,u16 * mss,struct tcp_fastopen_cookie * cookie)419 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
420 			       struct tcp_fastopen_cookie *cookie)
421 {
422 	const struct dst_entry *dst;
423 
424 	tcp_fastopen_cache_get(sk, mss, cookie);
425 
426 	/* Firewall blackhole issue check */
427 	if (tcp_fastopen_active_should_disable(sk)) {
428 		cookie->len = -1;
429 		return false;
430 	}
431 
432 	dst = __sk_dst_get(sk);
433 
434 	if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
435 		cookie->len = -1;
436 		return true;
437 	}
438 	if (cookie->len > 0)
439 		return true;
440 	tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
441 	return false;
442 }
443 
444 /* This function checks if we want to defer sending SYN until the first
445  * write().  We defer under the following conditions:
446  * 1. fastopen_connect sockopt is set
447  * 2. we have a valid cookie
448  * Return value: return true if we want to defer until application writes data
449  *               return false if we want to send out SYN immediately
450  */
tcp_fastopen_defer_connect(struct sock * sk,int * err)451 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
452 {
453 	struct tcp_fastopen_cookie cookie = { .len = 0 };
454 	struct tcp_sock *tp = tcp_sk(sk);
455 	u16 mss;
456 
457 	if (tp->fastopen_connect && !tp->fastopen_req) {
458 		if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
459 			inet_sk(sk)->defer_connect = 1;
460 			return true;
461 		}
462 
463 		/* Alloc fastopen_req in order for FO option to be included
464 		 * in SYN
465 		 */
466 		tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
467 					   sk->sk_allocation);
468 		if (tp->fastopen_req)
469 			tp->fastopen_req->cookie = cookie;
470 		else
471 			*err = -ENOBUFS;
472 	}
473 	return false;
474 }
475 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
476 
477 /*
478  * The following code block is to deal with middle box issues with TFO:
479  * Middlebox firewall issues can potentially cause server's data being
480  * blackholed after a successful 3WHS using TFO.
481  * The proposed solution is to disable active TFO globally under the
482  * following circumstances:
483  *   1. client side TFO socket receives out of order FIN
484  *   2. client side TFO socket receives out of order RST
485  *   3. client side TFO socket has timed out three times consecutively during
486  *      or after handshake
487  * We disable active side TFO globally for 1hr at first. Then if it
488  * happens again, we disable it for 2h, then 4h, 8h, ...
489  * And we reset the timeout back to 1hr when we see a successful active
490  * TFO connection with data exchanges.
491  */
492 
493 /* Disable active TFO and record current jiffies and
494  * tfo_active_disable_times
495  */
tcp_fastopen_active_disable(struct sock * sk)496 void tcp_fastopen_active_disable(struct sock *sk)
497 {
498 	struct net *net = sock_net(sk);
499 
500 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
501 		return;
502 
503 	/* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
504 	WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
505 
506 	/* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
507 	 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
508 	 */
509 	smp_mb__before_atomic();
510 	atomic_inc(&net->ipv4.tfo_active_disable_times);
511 
512 	NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
513 }
514 
515 /* Calculate timeout for tfo active disable
516  * Return true if we are still in the active TFO disable period
517  * Return false if timeout already expired and we should use active TFO
518  */
tcp_fastopen_active_should_disable(struct sock * sk)519 bool tcp_fastopen_active_should_disable(struct sock *sk)
520 {
521 	unsigned int tfo_bh_timeout =
522 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
523 	unsigned long timeout;
524 	int tfo_da_times;
525 	int multiplier;
526 
527 	if (!tfo_bh_timeout)
528 		return false;
529 
530 	tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
531 	if (!tfo_da_times)
532 		return false;
533 
534 	/* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
535 	smp_rmb();
536 
537 	/* Limit timeout to max: 2^6 * initial timeout */
538 	multiplier = 1 << min(tfo_da_times - 1, 6);
539 
540 	/* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
541 	timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
542 		  multiplier * tfo_bh_timeout * HZ;
543 	if (time_before(jiffies, timeout))
544 		return true;
545 
546 	/* Mark check bit so we can check for successful active TFO
547 	 * condition and reset tfo_active_disable_times
548 	 */
549 	tcp_sk(sk)->syn_fastopen_ch = 1;
550 	return false;
551 }
552 
553 /* Disable active TFO if FIN is the only packet in the ofo queue
554  * and no data is received.
555  * Also check if we can reset tfo_active_disable_times if data is
556  * received successfully on a marked active TFO sockets opened on
557  * a non-loopback interface
558  */
tcp_fastopen_active_disable_ofo_check(struct sock * sk)559 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
560 {
561 	struct tcp_sock *tp = tcp_sk(sk);
562 	struct dst_entry *dst;
563 	struct sk_buff *skb;
564 
565 	if (!tp->syn_fastopen)
566 		return;
567 
568 	if (!tp->data_segs_in) {
569 		skb = skb_rb_first(&tp->out_of_order_queue);
570 		if (skb && !skb_rb_next(skb)) {
571 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
572 				tcp_fastopen_active_disable(sk);
573 				return;
574 			}
575 		}
576 	} else if (tp->syn_fastopen_ch &&
577 		   atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
578 		dst = sk_dst_get(sk);
579 		if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
580 			atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
581 		dst_release(dst);
582 	}
583 }
584 
tcp_fastopen_active_detect_blackhole(struct sock * sk,bool expired)585 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
586 {
587 	u32 timeouts = inet_csk(sk)->icsk_retransmits;
588 	struct tcp_sock *tp = tcp_sk(sk);
589 
590 	/* Broken middle-boxes may black-hole Fast Open connection during or
591 	 * even after the handshake. Be extremely conservative and pause
592 	 * Fast Open globally after hitting the third consecutive timeout or
593 	 * exceeding the configured timeout limit.
594 	 */
595 	if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
596 	    (timeouts == 2 || (timeouts < 2 && expired))) {
597 		tcp_fastopen_active_disable(sk);
598 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
599 	}
600 }
601