1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 #include <trace/hooks/ipv4.h>
285
286 /* Track pending CMSGs. */
287 enum {
288 TCP_CMSG_INQ = 1,
289 TCP_CMSG_TS = 2
290 };
291
292 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
293 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
294
295 long sysctl_tcp_mem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297
298 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
299 EXPORT_SYMBOL(tcp_memory_allocated);
300
301 #if IS_ENABLED(CONFIG_SMC)
302 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
303 EXPORT_SYMBOL(tcp_have_smc);
304 #endif
305
306 /*
307 * Current number of TCP sockets.
308 */
309 struct percpu_counter tcp_sockets_allocated;
310 EXPORT_SYMBOL(tcp_sockets_allocated);
311
312 /*
313 * TCP splice context
314 */
315 struct tcp_splice_state {
316 struct pipe_inode_info *pipe;
317 size_t len;
318 unsigned int flags;
319 };
320
321 /*
322 * Pressure flag: try to collapse.
323 * Technical note: it is used by multiple contexts non atomically.
324 * All the __sk_mem_schedule() is of this nature: accounting
325 * is strict, actions are advisory and have some latency.
326 */
327 unsigned long tcp_memory_pressure __read_mostly;
328 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
329
330 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
331 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
332
333 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
334
tcp_enter_memory_pressure(struct sock * sk)335 void tcp_enter_memory_pressure(struct sock *sk)
336 {
337 unsigned long val;
338
339 if (READ_ONCE(tcp_memory_pressure))
340 return;
341 val = jiffies;
342
343 if (!val)
344 val--;
345 if (!cmpxchg(&tcp_memory_pressure, 0, val))
346 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
347 }
348 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
349
tcp_leave_memory_pressure(struct sock * sk)350 void tcp_leave_memory_pressure(struct sock *sk)
351 {
352 unsigned long val;
353
354 if (!READ_ONCE(tcp_memory_pressure))
355 return;
356 val = xchg(&tcp_memory_pressure, 0);
357 if (val)
358 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
359 jiffies_to_msecs(jiffies - val));
360 }
361 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
362
363 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)364 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
365 {
366 u8 res = 0;
367
368 if (seconds > 0) {
369 int period = timeout;
370
371 res = 1;
372 while (seconds > period && res < 255) {
373 res++;
374 timeout <<= 1;
375 if (timeout > rto_max)
376 timeout = rto_max;
377 period += timeout;
378 }
379 }
380 return res;
381 }
382
383 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)384 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
385 {
386 int period = 0;
387
388 if (retrans > 0) {
389 period = timeout;
390 while (--retrans) {
391 timeout <<= 1;
392 if (timeout > rto_max)
393 timeout = rto_max;
394 period += timeout;
395 }
396 }
397 return period;
398 }
399
tcp_compute_delivery_rate(const struct tcp_sock * tp)400 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
401 {
402 u32 rate = READ_ONCE(tp->rate_delivered);
403 u32 intv = READ_ONCE(tp->rate_interval_us);
404 u64 rate64 = 0;
405
406 if (rate && intv) {
407 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
408 do_div(rate64, intv);
409 }
410 return rate64;
411 }
412
413 /* Address-family independent initialization for a tcp_sock.
414 *
415 * NOTE: A lot of things set to zero explicitly by call to
416 * sk_alloc() so need not be done here.
417 */
tcp_init_sock(struct sock * sk)418 void tcp_init_sock(struct sock *sk)
419 {
420 struct inet_connection_sock *icsk = inet_csk(sk);
421 struct tcp_sock *tp = tcp_sk(sk);
422
423 tp->out_of_order_queue = RB_ROOT;
424 sk->tcp_rtx_queue = RB_ROOT;
425 tcp_init_xmit_timers(sk);
426 INIT_LIST_HEAD(&tp->tsq_node);
427 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
428
429 icsk->icsk_rto = TCP_TIMEOUT_INIT;
430 icsk->icsk_rto_min = TCP_RTO_MIN;
431 icsk->icsk_delack_max = TCP_DELACK_MAX;
432 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
433 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
434
435 /* So many TCP implementations out there (incorrectly) count the
436 * initial SYN frame in their delayed-ACK and congestion control
437 * algorithms that we must have the following bandaid to talk
438 * efficiently to them. -DaveM
439 */
440 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
441
442 /* There's a bubble in the pipe until at least the first ACK. */
443 tp->app_limited = ~0U;
444 tp->rate_app_limited = 1;
445
446 /* See draft-stevens-tcpca-spec-01 for discussion of the
447 * initialization of these values.
448 */
449 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
450 tp->snd_cwnd_clamp = ~0;
451 tp->mss_cache = TCP_MSS_DEFAULT;
452
453 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
454 tcp_assign_congestion_control(sk);
455
456 tp->tsoffset = 0;
457 tp->rack.reo_wnd_steps = 1;
458
459 sk->sk_write_space = sk_stream_write_space;
460 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
461
462 icsk->icsk_sync_mss = tcp_sync_mss;
463
464 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
465 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
466
467 sk_sockets_allocated_inc(sk);
468 sk->sk_route_forced_caps = NETIF_F_GSO;
469 }
470 EXPORT_SYMBOL(tcp_init_sock);
471
tcp_tx_timestamp(struct sock * sk,u16 tsflags)472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 struct sk_buff *skb = tcp_write_queue_tail(sk);
475
476 if (tsflags && skb) {
477 struct skb_shared_info *shinfo = skb_shinfo(skb);
478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479
480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 tcb->txstamp_ack = 1;
483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 }
486 }
487
tcp_stream_is_readable(struct sock * sk,int target)488 static bool tcp_stream_is_readable(struct sock *sk, int target)
489 {
490 if (tcp_epollin_ready(sk, target))
491 return true;
492 return sk_is_readable(sk);
493 }
494
495 /*
496 * Wait for a TCP event.
497 *
498 * Note that we don't need to lock the socket, as the upper poll layers
499 * take care of normal races (between the test and the event) and we don't
500 * go look at any of the socket buffers directly.
501 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)502 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
503 {
504 __poll_t mask;
505 struct sock *sk = sock->sk;
506 const struct tcp_sock *tp = tcp_sk(sk);
507 u8 shutdown;
508 int state;
509
510 sock_poll_wait(file, sock, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 shutdown = READ_ONCE(sk->sk_shutdown);
551 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
552 mask |= EPOLLHUP;
553 if (shutdown & RCV_SHUTDOWN)
554 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
555
556 /* Connected or passive Fast Open socket? */
557 if (state != TCP_SYN_SENT &&
558 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
559 int target = sock_rcvlowat(sk, 0, INT_MAX);
560
561 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
562 !sock_flag(sk, SOCK_URGINLINE) &&
563 tp->urg_data)
564 target++;
565
566 if (tcp_stream_is_readable(sk, target))
567 mask |= EPOLLIN | EPOLLRDNORM;
568
569 if (!(shutdown & SEND_SHUTDOWN)) {
570 if (__sk_stream_is_writeable(sk, 1)) {
571 mask |= EPOLLOUT | EPOLLWRNORM;
572 } else { /* send SIGIO later */
573 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
574 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
575
576 /* Race breaker. If space is freed after
577 * wspace test but before the flags are set,
578 * IO signal will be lost. Memory barrier
579 * pairs with the input side.
580 */
581 smp_mb__after_atomic();
582 if (__sk_stream_is_writeable(sk, 1))
583 mask |= EPOLLOUT | EPOLLWRNORM;
584 }
585 } else
586 mask |= EPOLLOUT | EPOLLWRNORM;
587
588 if (tp->urg_data & TCP_URG_VALID)
589 mask |= EPOLLPRI;
590 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
591 /* Active TCP fastopen socket with defer_connect
592 * Return EPOLLOUT so application can call write()
593 * in order for kernel to generate SYN+data
594 */
595 mask |= EPOLLOUT | EPOLLWRNORM;
596 }
597 /* This barrier is coupled with smp_wmb() in tcp_reset() */
598 smp_rmb();
599 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
600 mask |= EPOLLERR;
601
602 return mask;
603 }
604 EXPORT_SYMBOL(tcp_poll);
605
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)606 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
607 {
608 struct tcp_sock *tp = tcp_sk(sk);
609 int answ;
610 bool slow;
611
612 switch (cmd) {
613 case SIOCINQ:
614 if (sk->sk_state == TCP_LISTEN)
615 return -EINVAL;
616
617 slow = lock_sock_fast(sk);
618 answ = tcp_inq(sk);
619 unlock_sock_fast(sk, slow);
620 break;
621 case SIOCATMARK:
622 answ = tp->urg_data &&
623 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
624 break;
625 case SIOCOUTQ:
626 if (sk->sk_state == TCP_LISTEN)
627 return -EINVAL;
628
629 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 answ = 0;
631 else
632 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
633 break;
634 case SIOCOUTQNSD:
635 if (sk->sk_state == TCP_LISTEN)
636 return -EINVAL;
637
638 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
639 answ = 0;
640 else
641 answ = READ_ONCE(tp->write_seq) -
642 READ_ONCE(tp->snd_nxt);
643 break;
644 default:
645 return -ENOIOCTLCMD;
646 }
647
648 return put_user(answ, (int __user *)arg);
649 }
650 EXPORT_SYMBOL(tcp_ioctl);
651
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
653 {
654 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
655 tp->pushed_seq = tp->write_seq;
656 }
657
forced_push(const struct tcp_sock * tp)658 static inline bool forced_push(const struct tcp_sock *tp)
659 {
660 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
661 }
662
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)663 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
664 {
665 struct tcp_sock *tp = tcp_sk(sk);
666 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
667
668 skb->csum = 0;
669 tcb->seq = tcb->end_seq = tp->write_seq;
670 tcb->tcp_flags = TCPHDR_ACK;
671 tcb->sacked = 0;
672 __skb_header_release(skb);
673 tcp_add_write_queue_tail(sk, skb);
674 sk_wmem_queued_add(sk, skb->truesize);
675 sk_mem_charge(sk, skb->truesize);
676 if (tp->nonagle & TCP_NAGLE_PUSH)
677 tp->nonagle &= ~TCP_NAGLE_PUSH;
678
679 tcp_slow_start_after_idle_check(sk);
680 }
681
tcp_mark_urg(struct tcp_sock * tp,int flags)682 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
683 {
684 if (flags & MSG_OOB)
685 tp->snd_up = tp->write_seq;
686 }
687
688 /* If a not yet filled skb is pushed, do not send it if
689 * we have data packets in Qdisc or NIC queues :
690 * Because TX completion will happen shortly, it gives a chance
691 * to coalesce future sendmsg() payload into this skb, without
692 * need for a timer, and with no latency trade off.
693 * As packets containing data payload have a bigger truesize
694 * than pure acks (dataless) packets, the last checks prevent
695 * autocorking if we only have an ACK in Qdisc/NIC queues,
696 * or if TX completion was delayed after we processed ACK packet.
697 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)698 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
699 int size_goal)
700 {
701 return skb->len < size_goal &&
702 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
703 !tcp_rtx_queue_empty(sk) &&
704 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
705 }
706
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)707 void tcp_push(struct sock *sk, int flags, int mss_now,
708 int nonagle, int size_goal)
709 {
710 struct tcp_sock *tp = tcp_sk(sk);
711 struct sk_buff *skb;
712
713 skb = tcp_write_queue_tail(sk);
714 if (!skb)
715 return;
716 if (!(flags & MSG_MORE) || forced_push(tp))
717 tcp_mark_push(tp, skb);
718
719 tcp_mark_urg(tp, flags);
720
721 if (tcp_should_autocork(sk, skb, size_goal)) {
722
723 /* avoid atomic op if TSQ_THROTTLED bit is already set */
724 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
726 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
727 smp_mb__after_atomic();
728 }
729 /* It is possible TX completion already happened
730 * before we set TSQ_THROTTLED.
731 */
732 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
733 return;
734 }
735
736 if (flags & MSG_MORE)
737 nonagle = TCP_NAGLE_CORK;
738
739 __tcp_push_pending_frames(sk, mss_now, nonagle);
740 }
741
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)742 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
743 unsigned int offset, size_t len)
744 {
745 struct tcp_splice_state *tss = rd_desc->arg.data;
746 int ret;
747
748 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
749 min(rd_desc->count, len), tss->flags);
750 if (ret > 0)
751 rd_desc->count -= ret;
752 return ret;
753 }
754
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)755 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
756 {
757 /* Store TCP splice context information in read_descriptor_t. */
758 read_descriptor_t rd_desc = {
759 .arg.data = tss,
760 .count = tss->len,
761 };
762
763 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
764 }
765
766 /**
767 * tcp_splice_read - splice data from TCP socket to a pipe
768 * @sock: socket to splice from
769 * @ppos: position (not valid)
770 * @pipe: pipe to splice to
771 * @len: number of bytes to splice
772 * @flags: splice modifier flags
773 *
774 * Description:
775 * Will read pages from given socket and fill them into a pipe.
776 *
777 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)778 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
779 struct pipe_inode_info *pipe, size_t len,
780 unsigned int flags)
781 {
782 struct sock *sk = sock->sk;
783 struct tcp_splice_state tss = {
784 .pipe = pipe,
785 .len = len,
786 .flags = flags,
787 };
788 long timeo;
789 ssize_t spliced;
790 int ret;
791
792 sock_rps_record_flow(sk);
793 /*
794 * We can't seek on a socket input
795 */
796 if (unlikely(*ppos))
797 return -ESPIPE;
798
799 ret = spliced = 0;
800
801 lock_sock(sk);
802
803 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
804 while (tss.len) {
805 ret = __tcp_splice_read(sk, &tss);
806 if (ret < 0)
807 break;
808 else if (!ret) {
809 if (spliced)
810 break;
811 if (sock_flag(sk, SOCK_DONE))
812 break;
813 if (sk->sk_err) {
814 ret = sock_error(sk);
815 break;
816 }
817 if (sk->sk_shutdown & RCV_SHUTDOWN)
818 break;
819 if (sk->sk_state == TCP_CLOSE) {
820 /*
821 * This occurs when user tries to read
822 * from never connected socket.
823 */
824 ret = -ENOTCONN;
825 break;
826 }
827 if (!timeo) {
828 ret = -EAGAIN;
829 break;
830 }
831 /* if __tcp_splice_read() got nothing while we have
832 * an skb in receive queue, we do not want to loop.
833 * This might happen with URG data.
834 */
835 if (!skb_queue_empty(&sk->sk_receive_queue))
836 break;
837 sk_wait_data(sk, &timeo, NULL);
838 if (signal_pending(current)) {
839 ret = sock_intr_errno(timeo);
840 break;
841 }
842 continue;
843 }
844 tss.len -= ret;
845 spliced += ret;
846
847 if (!timeo)
848 break;
849 release_sock(sk);
850 lock_sock(sk);
851
852 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 signal_pending(current))
855 break;
856 }
857
858 release_sock(sk);
859
860 if (spliced)
861 return spliced;
862
863 return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)867 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
868 bool force_schedule)
869 {
870 struct sk_buff *skb;
871
872 if (likely(!size)) {
873 skb = sk->sk_tx_skb_cache;
874 if (skb) {
875 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
876 sk->sk_tx_skb_cache = NULL;
877 pskb_trim(skb, 0);
878 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
879 skb_shinfo(skb)->tx_flags = 0;
880 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
881 return skb;
882 }
883 }
884 /* The TCP header must be at least 32-bit aligned. */
885 size = ALIGN(size, 4);
886
887 if (unlikely(tcp_under_memory_pressure(sk)))
888 sk_mem_reclaim_partial(sk);
889
890 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
891 if (likely(skb)) {
892 bool mem_scheduled;
893
894 if (force_schedule) {
895 mem_scheduled = true;
896 sk_forced_mem_schedule(sk, skb->truesize);
897 } else {
898 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
899 }
900 if (likely(mem_scheduled)) {
901 skb_reserve(skb, sk->sk_prot->max_header);
902 /*
903 * Make sure that we have exactly size bytes
904 * available to the caller, no more, no less.
905 */
906 skb->reserved_tailroom = skb->end - skb->tail - size;
907 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
908 return skb;
909 }
910 __kfree_skb(skb);
911 } else {
912 sk->sk_prot->enter_memory_pressure(sk);
913 sk_stream_moderate_sndbuf(sk);
914 }
915 return NULL;
916 }
917
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)918 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
919 int large_allowed)
920 {
921 struct tcp_sock *tp = tcp_sk(sk);
922 u32 new_size_goal, size_goal;
923
924 if (!large_allowed)
925 return mss_now;
926
927 /* Note : tcp_tso_autosize() will eventually split this later */
928 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
929 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
930
931 /* We try hard to avoid divides here */
932 size_goal = tp->gso_segs * mss_now;
933 if (unlikely(new_size_goal < size_goal ||
934 new_size_goal >= size_goal + mss_now)) {
935 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 sk->sk_gso_max_segs);
937 size_goal = tp->gso_segs * mss_now;
938 }
939
940 return max(size_goal, mss_now);
941 }
942
tcp_send_mss(struct sock * sk,int * size_goal,int flags)943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 int mss_now;
946
947 mss_now = tcp_current_mss(sk);
948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949
950 return mss_now;
951 }
952
953 /* In some cases, both sendpage() and sendmsg() could have added
954 * an skb to the write queue, but failed adding payload on it.
955 * We need to remove it to consume less memory, but more
956 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
957 * users.
958 */
tcp_remove_empty_skb(struct sock * sk)959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 struct sk_buff *skb = tcp_write_queue_tail(sk);
962
963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 tcp_unlink_write_queue(skb, sk);
965 if (tcp_write_queue_empty(sk))
966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 sk_wmem_free_skb(sk, skb);
968 }
969 }
970
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)971 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
972 struct page *page, int offset, size_t *size)
973 {
974 struct sk_buff *skb = tcp_write_queue_tail(sk);
975 struct tcp_sock *tp = tcp_sk(sk);
976 bool can_coalesce;
977 int copy, i;
978
979 if (!skb || (copy = size_goal - skb->len) <= 0 ||
980 !tcp_skb_can_collapse_to(skb)) {
981 new_segment:
982 if (!sk_stream_memory_free(sk))
983 return NULL;
984
985 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
986 tcp_rtx_and_write_queues_empty(sk));
987 if (!skb)
988 return NULL;
989
990 #ifdef CONFIG_TLS_DEVICE
991 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
992 #endif
993 tcp_skb_entail(sk, skb);
994 copy = size_goal;
995 }
996
997 if (copy > *size)
998 copy = *size;
999
1000 i = skb_shinfo(skb)->nr_frags;
1001 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1002 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1003 tcp_mark_push(tp, skb);
1004 goto new_segment;
1005 }
1006 if (!sk_wmem_schedule(sk, copy))
1007 return NULL;
1008
1009 if (can_coalesce) {
1010 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1011 } else {
1012 get_page(page);
1013 skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1014 }
1015
1016 if (!(flags & MSG_NO_SHARED_FRAGS))
1017 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1018
1019 skb->len += copy;
1020 skb->data_len += copy;
1021 skb->truesize += copy;
1022 sk_wmem_queued_add(sk, copy);
1023 sk_mem_charge(sk, copy);
1024 skb->ip_summed = CHECKSUM_PARTIAL;
1025 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1026 TCP_SKB_CB(skb)->end_seq += copy;
1027 tcp_skb_pcount_set(skb, 0);
1028
1029 *size = copy;
1030 return skb;
1031 }
1032
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1033 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1034 size_t size, int flags)
1035 {
1036 struct tcp_sock *tp = tcp_sk(sk);
1037 int mss_now, size_goal;
1038 int err;
1039 ssize_t copied;
1040 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1041
1042 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1043 WARN_ONCE(!sendpage_ok(page),
1044 "page must not be a Slab one and have page_count > 0"))
1045 return -EINVAL;
1046
1047 /* Wait for a connection to finish. One exception is TCP Fast Open
1048 * (passive side) where data is allowed to be sent before a connection
1049 * is fully established.
1050 */
1051 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1052 !tcp_passive_fastopen(sk)) {
1053 err = sk_stream_wait_connect(sk, &timeo);
1054 if (err != 0)
1055 goto out_err;
1056 }
1057
1058 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1059
1060 mss_now = tcp_send_mss(sk, &size_goal, flags);
1061 copied = 0;
1062
1063 err = -EPIPE;
1064 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1065 goto out_err;
1066
1067 while (size > 0) {
1068 struct sk_buff *skb;
1069 size_t copy = size;
1070
1071 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1072 if (!skb)
1073 goto wait_for_space;
1074
1075 if (!copied)
1076 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1077
1078 copied += copy;
1079 offset += copy;
1080 size -= copy;
1081 if (!size)
1082 goto out;
1083
1084 if (skb->len < size_goal || (flags & MSG_OOB))
1085 continue;
1086
1087 if (forced_push(tp)) {
1088 tcp_mark_push(tp, skb);
1089 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1090 } else if (skb == tcp_send_head(sk))
1091 tcp_push_one(sk, mss_now);
1092 continue;
1093
1094 wait_for_space:
1095 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1096 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1097 TCP_NAGLE_PUSH, size_goal);
1098
1099 err = sk_stream_wait_memory(sk, &timeo);
1100 if (err != 0)
1101 goto do_error;
1102
1103 mss_now = tcp_send_mss(sk, &size_goal, flags);
1104 }
1105
1106 out:
1107 if (copied) {
1108 tcp_tx_timestamp(sk, sk->sk_tsflags);
1109 if (!(flags & MSG_SENDPAGE_NOTLAST))
1110 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1111 }
1112 return copied;
1113
1114 do_error:
1115 tcp_remove_empty_skb(sk);
1116 if (copied)
1117 goto out;
1118 out_err:
1119 /* make sure we wake any epoll edge trigger waiter */
1120 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1121 sk->sk_write_space(sk);
1122 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1123 }
1124 return sk_stream_error(sk, flags, err);
1125 }
1126 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1127
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1128 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1129 size_t size, int flags)
1130 {
1131 if (!(sk->sk_route_caps & NETIF_F_SG))
1132 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1133
1134 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1135
1136 return do_tcp_sendpages(sk, page, offset, size, flags);
1137 }
1138 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1139
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1140 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1141 size_t size, int flags)
1142 {
1143 int ret;
1144
1145 lock_sock(sk);
1146 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1147 release_sock(sk);
1148
1149 return ret;
1150 }
1151 EXPORT_SYMBOL(tcp_sendpage);
1152
tcp_free_fastopen_req(struct tcp_sock * tp)1153 void tcp_free_fastopen_req(struct tcp_sock *tp)
1154 {
1155 if (tp->fastopen_req) {
1156 kfree(tp->fastopen_req);
1157 tp->fastopen_req = NULL;
1158 }
1159 }
1160
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1161 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1162 int *copied, size_t size,
1163 struct ubuf_info *uarg)
1164 {
1165 struct tcp_sock *tp = tcp_sk(sk);
1166 struct inet_sock *inet = inet_sk(sk);
1167 struct sockaddr *uaddr = msg->msg_name;
1168 int err, flags;
1169
1170 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1171 TFO_CLIENT_ENABLE) ||
1172 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1173 uaddr->sa_family == AF_UNSPEC))
1174 return -EOPNOTSUPP;
1175 if (tp->fastopen_req)
1176 return -EALREADY; /* Another Fast Open is in progress */
1177
1178 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1179 sk->sk_allocation);
1180 if (unlikely(!tp->fastopen_req))
1181 return -ENOBUFS;
1182 tp->fastopen_req->data = msg;
1183 tp->fastopen_req->size = size;
1184 tp->fastopen_req->uarg = uarg;
1185
1186 if (inet->defer_connect) {
1187 err = tcp_connect(sk);
1188 /* Same failure procedure as in tcp_v4/6_connect */
1189 if (err) {
1190 tcp_set_state(sk, TCP_CLOSE);
1191 inet->inet_dport = 0;
1192 sk->sk_route_caps = 0;
1193 }
1194 }
1195 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1196 err = __inet_stream_connect(sk->sk_socket, uaddr,
1197 msg->msg_namelen, flags, 1);
1198 /* fastopen_req could already be freed in __inet_stream_connect
1199 * if the connection times out or gets rst
1200 */
1201 if (tp->fastopen_req) {
1202 *copied = tp->fastopen_req->copied;
1203 tcp_free_fastopen_req(tp);
1204 inet->defer_connect = 0;
1205 }
1206 return err;
1207 }
1208
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1209 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1210 {
1211 struct tcp_sock *tp = tcp_sk(sk);
1212 struct ubuf_info *uarg = NULL;
1213 struct sk_buff *skb;
1214 struct sockcm_cookie sockc;
1215 int flags, err, copied = 0;
1216 int mss_now = 0, size_goal, copied_syn = 0;
1217 int process_backlog = 0;
1218 bool zc = false;
1219 long timeo;
1220
1221 trace_android_rvh_tcp_sendmsg_locked(sk, size);
1222 flags = msg->msg_flags;
1223
1224 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1225 skb = tcp_write_queue_tail(sk);
1226 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1227 if (!uarg) {
1228 err = -ENOBUFS;
1229 goto out_err;
1230 }
1231
1232 zc = sk->sk_route_caps & NETIF_F_SG;
1233 if (!zc)
1234 uarg->zerocopy = 0;
1235 }
1236
1237 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1238 !tp->repair) {
1239 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1240 if (err == -EINPROGRESS && copied_syn > 0)
1241 goto out;
1242 else if (err)
1243 goto out_err;
1244 }
1245
1246 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1247
1248 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1249
1250 /* Wait for a connection to finish. One exception is TCP Fast Open
1251 * (passive side) where data is allowed to be sent before a connection
1252 * is fully established.
1253 */
1254 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1255 !tcp_passive_fastopen(sk)) {
1256 err = sk_stream_wait_connect(sk, &timeo);
1257 if (err != 0)
1258 goto do_error;
1259 }
1260
1261 if (unlikely(tp->repair)) {
1262 if (tp->repair_queue == TCP_RECV_QUEUE) {
1263 copied = tcp_send_rcvq(sk, msg, size);
1264 goto out_nopush;
1265 }
1266
1267 err = -EINVAL;
1268 if (tp->repair_queue == TCP_NO_QUEUE)
1269 goto out_err;
1270
1271 /* 'common' sending to sendq */
1272 }
1273
1274 sockcm_init(&sockc, sk);
1275 if (msg->msg_controllen) {
1276 err = sock_cmsg_send(sk, msg, &sockc);
1277 if (unlikely(err)) {
1278 err = -EINVAL;
1279 goto out_err;
1280 }
1281 }
1282
1283 /* This should be in poll */
1284 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1285
1286 /* Ok commence sending. */
1287 copied = 0;
1288
1289 restart:
1290 mss_now = tcp_send_mss(sk, &size_goal, flags);
1291
1292 err = -EPIPE;
1293 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1294 goto do_error;
1295
1296 while (msg_data_left(msg)) {
1297 int copy = 0;
1298
1299 skb = tcp_write_queue_tail(sk);
1300 if (skb)
1301 copy = size_goal - skb->len;
1302
1303 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1304 bool first_skb;
1305
1306 new_segment:
1307 if (!sk_stream_memory_free(sk))
1308 goto wait_for_space;
1309
1310 if (unlikely(process_backlog >= 16)) {
1311 process_backlog = 0;
1312 if (sk_flush_backlog(sk))
1313 goto restart;
1314 }
1315 first_skb = tcp_rtx_and_write_queues_empty(sk);
1316 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1317 first_skb);
1318 if (!skb)
1319 goto wait_for_space;
1320
1321 process_backlog++;
1322 skb->ip_summed = CHECKSUM_PARTIAL;
1323
1324 tcp_skb_entail(sk, skb);
1325 copy = size_goal;
1326
1327 /* All packets are restored as if they have
1328 * already been sent. skb_mstamp_ns isn't set to
1329 * avoid wrong rtt estimation.
1330 */
1331 if (tp->repair)
1332 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1333 }
1334
1335 /* Try to append data to the end of skb. */
1336 if (copy > msg_data_left(msg))
1337 copy = msg_data_left(msg);
1338
1339 if (!zc) {
1340 bool merge = true;
1341 int i = skb_shinfo(skb)->nr_frags;
1342 struct page_frag *pfrag = sk_page_frag(sk);
1343
1344 if (!sk_page_frag_refill(sk, pfrag))
1345 goto wait_for_space;
1346
1347 if (!skb_can_coalesce(skb, i, pfrag->page,
1348 pfrag->offset)) {
1349 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1350 tcp_mark_push(tp, skb);
1351 goto new_segment;
1352 }
1353 merge = false;
1354 }
1355
1356 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1357
1358 if (!sk_wmem_schedule(sk, copy))
1359 goto wait_for_space;
1360
1361 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1362 pfrag->page,
1363 pfrag->offset,
1364 copy);
1365 if (err)
1366 goto do_error;
1367
1368 /* Update the skb. */
1369 if (merge) {
1370 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1371 } else {
1372 skb_fill_page_desc(skb, i, pfrag->page,
1373 pfrag->offset, copy);
1374 page_ref_inc(pfrag->page);
1375 }
1376 pfrag->offset += copy;
1377 } else {
1378 if (!sk_wmem_schedule(sk, copy))
1379 goto wait_for_space;
1380
1381 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1382 if (err == -EMSGSIZE || err == -EEXIST) {
1383 tcp_mark_push(tp, skb);
1384 goto new_segment;
1385 }
1386 if (err < 0)
1387 goto do_error;
1388 copy = err;
1389 }
1390
1391 if (!copied)
1392 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1393
1394 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1395 TCP_SKB_CB(skb)->end_seq += copy;
1396 tcp_skb_pcount_set(skb, 0);
1397
1398 copied += copy;
1399 if (!msg_data_left(msg)) {
1400 if (unlikely(flags & MSG_EOR))
1401 TCP_SKB_CB(skb)->eor = 1;
1402 goto out;
1403 }
1404
1405 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1406 continue;
1407
1408 if (forced_push(tp)) {
1409 tcp_mark_push(tp, skb);
1410 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1411 } else if (skb == tcp_send_head(sk))
1412 tcp_push_one(sk, mss_now);
1413 continue;
1414
1415 wait_for_space:
1416 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1417 if (copied)
1418 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1419 TCP_NAGLE_PUSH, size_goal);
1420
1421 err = sk_stream_wait_memory(sk, &timeo);
1422 if (err != 0)
1423 goto do_error;
1424
1425 mss_now = tcp_send_mss(sk, &size_goal, flags);
1426 }
1427
1428 out:
1429 if (copied) {
1430 tcp_tx_timestamp(sk, sockc.tsflags);
1431 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1432 }
1433 out_nopush:
1434 net_zcopy_put(uarg);
1435 return copied + copied_syn;
1436
1437 do_error:
1438 tcp_remove_empty_skb(sk);
1439
1440 if (copied + copied_syn)
1441 goto out;
1442 out_err:
1443 net_zcopy_put_abort(uarg, true);
1444 err = sk_stream_error(sk, flags, err);
1445 /* make sure we wake any epoll edge trigger waiter */
1446 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1447 sk->sk_write_space(sk);
1448 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1449 }
1450 return err;
1451 }
1452 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1453
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1454 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1455 {
1456 int ret;
1457
1458 lock_sock(sk);
1459 ret = tcp_sendmsg_locked(sk, msg, size);
1460 release_sock(sk);
1461
1462 return ret;
1463 }
1464 EXPORT_SYMBOL(tcp_sendmsg);
1465
1466 /*
1467 * Handle reading urgent data. BSD has very simple semantics for
1468 * this, no blocking and very strange errors 8)
1469 */
1470
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1471 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1472 {
1473 struct tcp_sock *tp = tcp_sk(sk);
1474
1475 /* No URG data to read. */
1476 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1477 tp->urg_data == TCP_URG_READ)
1478 return -EINVAL; /* Yes this is right ! */
1479
1480 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1481 return -ENOTCONN;
1482
1483 if (tp->urg_data & TCP_URG_VALID) {
1484 int err = 0;
1485 char c = tp->urg_data;
1486
1487 if (!(flags & MSG_PEEK))
1488 tp->urg_data = TCP_URG_READ;
1489
1490 /* Read urgent data. */
1491 msg->msg_flags |= MSG_OOB;
1492
1493 if (len > 0) {
1494 if (!(flags & MSG_TRUNC))
1495 err = memcpy_to_msg(msg, &c, 1);
1496 len = 1;
1497 } else
1498 msg->msg_flags |= MSG_TRUNC;
1499
1500 return err ? -EFAULT : len;
1501 }
1502
1503 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1504 return 0;
1505
1506 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1507 * the available implementations agree in this case:
1508 * this call should never block, independent of the
1509 * blocking state of the socket.
1510 * Mike <pall@rz.uni-karlsruhe.de>
1511 */
1512 return -EAGAIN;
1513 }
1514
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1515 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1516 {
1517 struct sk_buff *skb;
1518 int copied = 0, err = 0;
1519
1520 /* XXX -- need to support SO_PEEK_OFF */
1521
1522 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1523 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1524 if (err)
1525 return err;
1526 copied += skb->len;
1527 }
1528
1529 skb_queue_walk(&sk->sk_write_queue, skb) {
1530 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1531 if (err)
1532 break;
1533
1534 copied += skb->len;
1535 }
1536
1537 return err ?: copied;
1538 }
1539
1540 /* Clean up the receive buffer for full frames taken by the user,
1541 * then send an ACK if necessary. COPIED is the number of bytes
1542 * tcp_recvmsg has given to the user so far, it speeds up the
1543 * calculation of whether or not we must ACK for the sake of
1544 * a window update.
1545 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1546 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1547 {
1548 struct tcp_sock *tp = tcp_sk(sk);
1549 bool time_to_ack = false;
1550
1551 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1552
1553 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1554 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1555 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1556
1557 if (inet_csk_ack_scheduled(sk)) {
1558 const struct inet_connection_sock *icsk = inet_csk(sk);
1559
1560 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1561 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1562 /*
1563 * If this read emptied read buffer, we send ACK, if
1564 * connection is not bidirectional, user drained
1565 * receive buffer and there was a small segment
1566 * in queue.
1567 */
1568 (copied > 0 &&
1569 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1570 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1571 !inet_csk_in_pingpong_mode(sk))) &&
1572 !atomic_read(&sk->sk_rmem_alloc)))
1573 time_to_ack = true;
1574 }
1575
1576 /* We send an ACK if we can now advertise a non-zero window
1577 * which has been raised "significantly".
1578 *
1579 * Even if window raised up to infinity, do not send window open ACK
1580 * in states, where we will not receive more. It is useless.
1581 */
1582 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1583 __u32 rcv_window_now = tcp_receive_window(tp);
1584
1585 /* Optimize, __tcp_select_window() is not cheap. */
1586 if (2*rcv_window_now <= tp->window_clamp) {
1587 __u32 new_window = __tcp_select_window(sk);
1588
1589 /* Send ACK now, if this read freed lots of space
1590 * in our buffer. Certainly, new_window is new window.
1591 * We can advertise it now, if it is not less than current one.
1592 * "Lots" means "at least twice" here.
1593 */
1594 if (new_window && new_window >= 2 * rcv_window_now)
1595 time_to_ack = true;
1596 }
1597 }
1598 if (time_to_ack)
1599 tcp_send_ack(sk);
1600 }
1601
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1602 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1603 {
1604 struct sk_buff *skb;
1605 u32 offset;
1606
1607 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1608 offset = seq - TCP_SKB_CB(skb)->seq;
1609 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1610 pr_err_once("%s: found a SYN, please report !\n", __func__);
1611 offset--;
1612 }
1613 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1614 *off = offset;
1615 return skb;
1616 }
1617 /* This looks weird, but this can happen if TCP collapsing
1618 * splitted a fat GRO packet, while we released socket lock
1619 * in skb_splice_bits()
1620 */
1621 sk_eat_skb(sk, skb);
1622 }
1623 return NULL;
1624 }
1625
1626 /*
1627 * This routine provides an alternative to tcp_recvmsg() for routines
1628 * that would like to handle copying from skbuffs directly in 'sendfile'
1629 * fashion.
1630 * Note:
1631 * - It is assumed that the socket was locked by the caller.
1632 * - The routine does not block.
1633 * - At present, there is no support for reading OOB data
1634 * or for 'peeking' the socket using this routine
1635 * (although both would be easy to implement).
1636 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1637 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1638 sk_read_actor_t recv_actor)
1639 {
1640 struct sk_buff *skb;
1641 struct tcp_sock *tp = tcp_sk(sk);
1642 u32 seq = tp->copied_seq;
1643 u32 offset;
1644 int copied = 0;
1645
1646 if (sk->sk_state == TCP_LISTEN)
1647 return -ENOTCONN;
1648 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1649 if (offset < skb->len) {
1650 int used;
1651 size_t len;
1652
1653 len = skb->len - offset;
1654 /* Stop reading if we hit a patch of urgent data */
1655 if (tp->urg_data) {
1656 u32 urg_offset = tp->urg_seq - seq;
1657 if (urg_offset < len)
1658 len = urg_offset;
1659 if (!len)
1660 break;
1661 }
1662 used = recv_actor(desc, skb, offset, len);
1663 if (used <= 0) {
1664 if (!copied)
1665 copied = used;
1666 break;
1667 }
1668 if (WARN_ON_ONCE(used > len))
1669 used = len;
1670 seq += used;
1671 copied += used;
1672 offset += used;
1673
1674 /* If recv_actor drops the lock (e.g. TCP splice
1675 * receive) the skb pointer might be invalid when
1676 * getting here: tcp_collapse might have deleted it
1677 * while aggregating skbs from the socket queue.
1678 */
1679 skb = tcp_recv_skb(sk, seq - 1, &offset);
1680 if (!skb)
1681 break;
1682 /* TCP coalescing might have appended data to the skb.
1683 * Try to splice more frags
1684 */
1685 if (offset + 1 != skb->len)
1686 continue;
1687 }
1688 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1689 sk_eat_skb(sk, skb);
1690 ++seq;
1691 break;
1692 }
1693 sk_eat_skb(sk, skb);
1694 if (!desc->count)
1695 break;
1696 WRITE_ONCE(tp->copied_seq, seq);
1697 }
1698 WRITE_ONCE(tp->copied_seq, seq);
1699
1700 tcp_rcv_space_adjust(sk);
1701
1702 /* Clean up data we have read: This will do ACK frames. */
1703 if (copied > 0) {
1704 tcp_recv_skb(sk, seq, &offset);
1705 tcp_cleanup_rbuf(sk, copied);
1706 }
1707 return copied;
1708 }
1709 EXPORT_SYMBOL(tcp_read_sock);
1710
tcp_peek_len(struct socket * sock)1711 int tcp_peek_len(struct socket *sock)
1712 {
1713 return tcp_inq(sock->sk);
1714 }
1715 EXPORT_SYMBOL(tcp_peek_len);
1716
1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1718 int tcp_set_rcvlowat(struct sock *sk, int val)
1719 {
1720 int cap;
1721
1722 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723 cap = sk->sk_rcvbuf >> 1;
1724 else
1725 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1726 val = min(val, cap);
1727 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728
1729 /* Check if we need to signal EPOLLIN right now */
1730 tcp_data_ready(sk);
1731
1732 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 return 0;
1734
1735 val <<= 1;
1736 if (val > sk->sk_rcvbuf) {
1737 WRITE_ONCE(sk->sk_rcvbuf, val);
1738 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1739 }
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(tcp_set_rcvlowat);
1743
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1744 void tcp_update_recv_tstamps(struct sk_buff *skb,
1745 struct scm_timestamping_internal *tss)
1746 {
1747 if (skb->tstamp)
1748 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749 else
1750 tss->ts[0] = (struct timespec64) {0};
1751
1752 if (skb_hwtstamps(skb)->hwtstamp)
1753 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754 else
1755 tss->ts[2] = (struct timespec64) {0};
1756 }
1757
1758 #ifdef CONFIG_MMU
1759 static const struct vm_operations_struct tcp_vm_ops = {
1760 };
1761
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1762 int tcp_mmap(struct file *file, struct socket *sock,
1763 struct vm_area_struct *vma)
1764 {
1765 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766 return -EPERM;
1767 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1768
1769 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770 vma->vm_flags |= VM_MIXEDMAP;
1771
1772 vma->vm_ops = &tcp_vm_ops;
1773 return 0;
1774 }
1775 EXPORT_SYMBOL(tcp_mmap);
1776
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778 u32 *offset_frag)
1779 {
1780 skb_frag_t *frag;
1781
1782 if (unlikely(offset_skb >= skb->len))
1783 return NULL;
1784
1785 offset_skb -= skb_headlen(skb);
1786 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787 return NULL;
1788
1789 frag = skb_shinfo(skb)->frags;
1790 while (offset_skb) {
1791 if (skb_frag_size(frag) > offset_skb) {
1792 *offset_frag = offset_skb;
1793 return frag;
1794 }
1795 offset_skb -= skb_frag_size(frag);
1796 ++frag;
1797 }
1798 *offset_frag = 0;
1799 return frag;
1800 }
1801
can_map_frag(const skb_frag_t * frag)1802 static bool can_map_frag(const skb_frag_t *frag)
1803 {
1804 struct page *page;
1805
1806 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1807 return false;
1808
1809 page = skb_frag_page(frag);
1810
1811 if (PageCompound(page) || page->mapping)
1812 return false;
1813
1814 return true;
1815 }
1816
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1817 static int find_next_mappable_frag(const skb_frag_t *frag,
1818 int remaining_in_skb)
1819 {
1820 int offset = 0;
1821
1822 if (likely(can_map_frag(frag)))
1823 return 0;
1824
1825 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1826 offset += skb_frag_size(frag);
1827 ++frag;
1828 }
1829 return offset;
1830 }
1831
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1832 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1833 struct tcp_zerocopy_receive *zc,
1834 struct sk_buff *skb, u32 offset)
1835 {
1836 u32 frag_offset, partial_frag_remainder = 0;
1837 int mappable_offset;
1838 skb_frag_t *frag;
1839
1840 /* worst case: skip to next skb. try to improve on this case below */
1841 zc->recv_skip_hint = skb->len - offset;
1842
1843 /* Find the frag containing this offset (and how far into that frag) */
1844 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1845 if (!frag)
1846 return;
1847
1848 if (frag_offset) {
1849 struct skb_shared_info *info = skb_shinfo(skb);
1850
1851 /* We read part of the last frag, must recvmsg() rest of skb. */
1852 if (frag == &info->frags[info->nr_frags - 1])
1853 return;
1854
1855 /* Else, we must at least read the remainder in this frag. */
1856 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1857 zc->recv_skip_hint -= partial_frag_remainder;
1858 ++frag;
1859 }
1860
1861 /* partial_frag_remainder: If part way through a frag, must read rest.
1862 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1863 * in partial_frag_remainder.
1864 */
1865 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1866 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1867 }
1868
1869 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1870 int nonblock, int flags,
1871 struct scm_timestamping_internal *tss,
1872 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1873 static int receive_fallback_to_copy(struct sock *sk,
1874 struct tcp_zerocopy_receive *zc, int inq,
1875 struct scm_timestamping_internal *tss)
1876 {
1877 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1878 struct msghdr msg = {};
1879 struct iovec iov;
1880 int err;
1881
1882 zc->length = 0;
1883 zc->recv_skip_hint = 0;
1884
1885 if (copy_address != zc->copybuf_address)
1886 return -EINVAL;
1887
1888 err = import_single_range(READ, (void __user *)copy_address,
1889 inq, &iov, &msg.msg_iter);
1890 if (err)
1891 return err;
1892
1893 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1894 tss, &zc->msg_flags);
1895 if (err < 0)
1896 return err;
1897
1898 zc->copybuf_len = err;
1899 if (likely(zc->copybuf_len)) {
1900 struct sk_buff *skb;
1901 u32 offset;
1902
1903 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1904 if (skb)
1905 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1906 }
1907 return 0;
1908 }
1909
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1910 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1911 struct sk_buff *skb, u32 copylen,
1912 u32 *offset, u32 *seq)
1913 {
1914 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1915 struct msghdr msg = {};
1916 struct iovec iov;
1917 int err;
1918
1919 if (copy_address != zc->copybuf_address)
1920 return -EINVAL;
1921
1922 err = import_single_range(READ, (void __user *)copy_address,
1923 copylen, &iov, &msg.msg_iter);
1924 if (err)
1925 return err;
1926 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1927 if (err)
1928 return err;
1929 zc->recv_skip_hint -= copylen;
1930 *offset += copylen;
1931 *seq += copylen;
1932 return (__s32)copylen;
1933 }
1934
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1935 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1936 struct sock *sk,
1937 struct sk_buff *skb,
1938 u32 *seq,
1939 s32 copybuf_len,
1940 struct scm_timestamping_internal *tss)
1941 {
1942 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1943
1944 if (!copylen)
1945 return 0;
1946 /* skb is null if inq < PAGE_SIZE. */
1947 if (skb) {
1948 offset = *seq - TCP_SKB_CB(skb)->seq;
1949 } else {
1950 skb = tcp_recv_skb(sk, *seq, &offset);
1951 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1952 tcp_update_recv_tstamps(skb, tss);
1953 zc->msg_flags |= TCP_CMSG_TS;
1954 }
1955 }
1956
1957 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1958 seq);
1959 return zc->copybuf_len < 0 ? 0 : copylen;
1960 }
1961
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1962 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1963 struct page **pending_pages,
1964 unsigned long pages_remaining,
1965 unsigned long *address,
1966 u32 *length,
1967 u32 *seq,
1968 struct tcp_zerocopy_receive *zc,
1969 u32 total_bytes_to_map,
1970 int err)
1971 {
1972 /* At least one page did not map. Try zapping if we skipped earlier. */
1973 if (err == -EBUSY &&
1974 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1975 u32 maybe_zap_len;
1976
1977 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1978 *length + /* Mapped or pending */
1979 (pages_remaining * PAGE_SIZE); /* Failed map. */
1980 zap_page_range(vma, *address, maybe_zap_len);
1981 err = 0;
1982 }
1983
1984 if (!err) {
1985 unsigned long leftover_pages = pages_remaining;
1986 int bytes_mapped;
1987
1988 /* We called zap_page_range, try to reinsert. */
1989 err = vm_insert_pages(vma, *address,
1990 pending_pages,
1991 &pages_remaining);
1992 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1993 *seq += bytes_mapped;
1994 *address += bytes_mapped;
1995 }
1996 if (err) {
1997 /* Either we were unable to zap, OR we zapped, retried an
1998 * insert, and still had an issue. Either ways, pages_remaining
1999 * is the number of pages we were unable to map, and we unroll
2000 * some state we speculatively touched before.
2001 */
2002 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2003
2004 *length -= bytes_not_mapped;
2005 zc->recv_skip_hint += bytes_not_mapped;
2006 }
2007 return err;
2008 }
2009
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2010 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2011 struct page **pages,
2012 unsigned int pages_to_map,
2013 unsigned long *address,
2014 u32 *length,
2015 u32 *seq,
2016 struct tcp_zerocopy_receive *zc,
2017 u32 total_bytes_to_map)
2018 {
2019 unsigned long pages_remaining = pages_to_map;
2020 unsigned int pages_mapped;
2021 unsigned int bytes_mapped;
2022 int err;
2023
2024 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2025 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2026 bytes_mapped = PAGE_SIZE * pages_mapped;
2027 /* Even if vm_insert_pages fails, it may have partially succeeded in
2028 * mapping (some but not all of the pages).
2029 */
2030 *seq += bytes_mapped;
2031 *address += bytes_mapped;
2032
2033 if (likely(!err))
2034 return 0;
2035
2036 /* Error: maybe zap and retry + rollback state for failed inserts. */
2037 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2038 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2039 err);
2040 }
2041
2042 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2043 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2044 struct tcp_zerocopy_receive *zc,
2045 struct scm_timestamping_internal *tss)
2046 {
2047 unsigned long msg_control_addr;
2048 struct msghdr cmsg_dummy;
2049
2050 msg_control_addr = (unsigned long)zc->msg_control;
2051 cmsg_dummy.msg_control = (void *)msg_control_addr;
2052 cmsg_dummy.msg_controllen =
2053 (__kernel_size_t)zc->msg_controllen;
2054 cmsg_dummy.msg_flags = in_compat_syscall()
2055 ? MSG_CMSG_COMPAT : 0;
2056 cmsg_dummy.msg_control_is_user = true;
2057 zc->msg_flags = 0;
2058 if (zc->msg_control == msg_control_addr &&
2059 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2060 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2061 zc->msg_control = (__u64)
2062 ((uintptr_t)cmsg_dummy.msg_control);
2063 zc->msg_controllen =
2064 (__u64)cmsg_dummy.msg_controllen;
2065 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2066 }
2067 }
2068
2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2070 static int tcp_zerocopy_receive(struct sock *sk,
2071 struct tcp_zerocopy_receive *zc,
2072 struct scm_timestamping_internal *tss)
2073 {
2074 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2075 unsigned long address = (unsigned long)zc->address;
2076 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2077 s32 copybuf_len = zc->copybuf_len;
2078 struct tcp_sock *tp = tcp_sk(sk);
2079 const skb_frag_t *frags = NULL;
2080 unsigned int pages_to_map = 0;
2081 struct vm_area_struct *vma;
2082 struct sk_buff *skb = NULL;
2083 u32 seq = tp->copied_seq;
2084 u32 total_bytes_to_map;
2085 int inq = tcp_inq(sk);
2086 int ret;
2087
2088 zc->copybuf_len = 0;
2089 zc->msg_flags = 0;
2090
2091 if (address & (PAGE_SIZE - 1) || address != zc->address)
2092 return -EINVAL;
2093
2094 if (sk->sk_state == TCP_LISTEN)
2095 return -ENOTCONN;
2096
2097 sock_rps_record_flow(sk);
2098
2099 if (inq && inq <= copybuf_len)
2100 return receive_fallback_to_copy(sk, zc, inq, tss);
2101
2102 if (inq < PAGE_SIZE) {
2103 zc->length = 0;
2104 zc->recv_skip_hint = inq;
2105 if (!inq && sock_flag(sk, SOCK_DONE))
2106 return -EIO;
2107 return 0;
2108 }
2109
2110 mmap_read_lock(current->mm);
2111
2112 vma = vma_lookup(current->mm, address);
2113 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2114 mmap_read_unlock(current->mm);
2115 return -EINVAL;
2116 }
2117 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2118 avail_len = min_t(u32, vma_len, inq);
2119 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2120 if (total_bytes_to_map) {
2121 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2122 zap_page_range(vma, address, total_bytes_to_map);
2123 zc->length = total_bytes_to_map;
2124 zc->recv_skip_hint = 0;
2125 } else {
2126 zc->length = avail_len;
2127 zc->recv_skip_hint = avail_len;
2128 }
2129 ret = 0;
2130 while (length + PAGE_SIZE <= zc->length) {
2131 int mappable_offset;
2132 struct page *page;
2133
2134 if (zc->recv_skip_hint < PAGE_SIZE) {
2135 u32 offset_frag;
2136
2137 if (skb) {
2138 if (zc->recv_skip_hint > 0)
2139 break;
2140 skb = skb->next;
2141 offset = seq - TCP_SKB_CB(skb)->seq;
2142 } else {
2143 skb = tcp_recv_skb(sk, seq, &offset);
2144 }
2145
2146 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2147 tcp_update_recv_tstamps(skb, tss);
2148 zc->msg_flags |= TCP_CMSG_TS;
2149 }
2150 zc->recv_skip_hint = skb->len - offset;
2151 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2152 if (!frags || offset_frag)
2153 break;
2154 }
2155
2156 mappable_offset = find_next_mappable_frag(frags,
2157 zc->recv_skip_hint);
2158 if (mappable_offset) {
2159 zc->recv_skip_hint = mappable_offset;
2160 break;
2161 }
2162 page = skb_frag_page(frags);
2163 prefetchw(page);
2164 pages[pages_to_map++] = page;
2165 length += PAGE_SIZE;
2166 zc->recv_skip_hint -= PAGE_SIZE;
2167 frags++;
2168 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2169 zc->recv_skip_hint < PAGE_SIZE) {
2170 /* Either full batch, or we're about to go to next skb
2171 * (and we cannot unroll failed ops across skbs).
2172 */
2173 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2174 pages_to_map,
2175 &address, &length,
2176 &seq, zc,
2177 total_bytes_to_map);
2178 if (ret)
2179 goto out;
2180 pages_to_map = 0;
2181 }
2182 }
2183 if (pages_to_map) {
2184 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2185 &address, &length, &seq,
2186 zc, total_bytes_to_map);
2187 }
2188 out:
2189 mmap_read_unlock(current->mm);
2190 /* Try to copy straggler data. */
2191 if (!ret)
2192 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2193
2194 if (length + copylen) {
2195 WRITE_ONCE(tp->copied_seq, seq);
2196 tcp_rcv_space_adjust(sk);
2197
2198 /* Clean up data we have read: This will do ACK frames. */
2199 tcp_recv_skb(sk, seq, &offset);
2200 tcp_cleanup_rbuf(sk, length + copylen);
2201 ret = 0;
2202 if (length == zc->length)
2203 zc->recv_skip_hint = 0;
2204 } else {
2205 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2206 ret = -EIO;
2207 }
2208 zc->length = length;
2209 return ret;
2210 }
2211 #endif
2212
2213 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2214 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2215 struct scm_timestamping_internal *tss)
2216 {
2217 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2218 bool has_timestamping = false;
2219
2220 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2221 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2222 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2223 if (new_tstamp) {
2224 struct __kernel_timespec kts = {
2225 .tv_sec = tss->ts[0].tv_sec,
2226 .tv_nsec = tss->ts[0].tv_nsec,
2227 };
2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2229 sizeof(kts), &kts);
2230 } else {
2231 struct __kernel_old_timespec ts_old = {
2232 .tv_sec = tss->ts[0].tv_sec,
2233 .tv_nsec = tss->ts[0].tv_nsec,
2234 };
2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2236 sizeof(ts_old), &ts_old);
2237 }
2238 } else {
2239 if (new_tstamp) {
2240 struct __kernel_sock_timeval stv = {
2241 .tv_sec = tss->ts[0].tv_sec,
2242 .tv_usec = tss->ts[0].tv_nsec / 1000,
2243 };
2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2245 sizeof(stv), &stv);
2246 } else {
2247 struct __kernel_old_timeval tv = {
2248 .tv_sec = tss->ts[0].tv_sec,
2249 .tv_usec = tss->ts[0].tv_nsec / 1000,
2250 };
2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2252 sizeof(tv), &tv);
2253 }
2254 }
2255 }
2256
2257 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2258 has_timestamping = true;
2259 else
2260 tss->ts[0] = (struct timespec64) {0};
2261 }
2262
2263 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2264 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2265 has_timestamping = true;
2266 else
2267 tss->ts[2] = (struct timespec64) {0};
2268 }
2269
2270 if (has_timestamping) {
2271 tss->ts[1] = (struct timespec64) {0};
2272 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2273 put_cmsg_scm_timestamping64(msg, tss);
2274 else
2275 put_cmsg_scm_timestamping(msg, tss);
2276 }
2277 }
2278
tcp_inq_hint(struct sock * sk)2279 static int tcp_inq_hint(struct sock *sk)
2280 {
2281 const struct tcp_sock *tp = tcp_sk(sk);
2282 u32 copied_seq = READ_ONCE(tp->copied_seq);
2283 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2284 int inq;
2285
2286 inq = rcv_nxt - copied_seq;
2287 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2288 lock_sock(sk);
2289 inq = tp->rcv_nxt - tp->copied_seq;
2290 release_sock(sk);
2291 }
2292 /* After receiving a FIN, tell the user-space to continue reading
2293 * by returning a non-zero inq.
2294 */
2295 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2296 inq = 1;
2297 return inq;
2298 }
2299
2300 /*
2301 * This routine copies from a sock struct into the user buffer.
2302 *
2303 * Technical note: in 2.3 we work on _locked_ socket, so that
2304 * tricks with *seq access order and skb->users are not required.
2305 * Probably, code can be easily improved even more.
2306 */
2307
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2308 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2309 int nonblock, int flags,
2310 struct scm_timestamping_internal *tss,
2311 int *cmsg_flags)
2312 {
2313 struct tcp_sock *tp = tcp_sk(sk);
2314 int copied = 0;
2315 u32 peek_seq;
2316 u32 *seq;
2317 unsigned long used;
2318 int err;
2319 int target; /* Read at least this many bytes */
2320 long timeo;
2321 struct sk_buff *skb, *last;
2322 u32 urg_hole = 0;
2323
2324 err = -ENOTCONN;
2325 if (sk->sk_state == TCP_LISTEN)
2326 goto out;
2327
2328 if (tp->recvmsg_inq)
2329 *cmsg_flags = TCP_CMSG_INQ;
2330 timeo = sock_rcvtimeo(sk, nonblock);
2331
2332 /* Urgent data needs to be handled specially. */
2333 if (flags & MSG_OOB)
2334 goto recv_urg;
2335
2336 if (unlikely(tp->repair)) {
2337 err = -EPERM;
2338 if (!(flags & MSG_PEEK))
2339 goto out;
2340
2341 if (tp->repair_queue == TCP_SEND_QUEUE)
2342 goto recv_sndq;
2343
2344 err = -EINVAL;
2345 if (tp->repair_queue == TCP_NO_QUEUE)
2346 goto out;
2347
2348 /* 'common' recv queue MSG_PEEK-ing */
2349 }
2350
2351 seq = &tp->copied_seq;
2352 if (flags & MSG_PEEK) {
2353 peek_seq = tp->copied_seq;
2354 seq = &peek_seq;
2355 }
2356
2357 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2358
2359 do {
2360 u32 offset;
2361
2362 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2363 if (tp->urg_data && tp->urg_seq == *seq) {
2364 if (copied)
2365 break;
2366 if (signal_pending(current)) {
2367 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2368 break;
2369 }
2370 }
2371
2372 /* Next get a buffer. */
2373
2374 last = skb_peek_tail(&sk->sk_receive_queue);
2375 skb_queue_walk(&sk->sk_receive_queue, skb) {
2376 last = skb;
2377 /* Now that we have two receive queues this
2378 * shouldn't happen.
2379 */
2380 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2381 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2382 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2383 flags))
2384 break;
2385
2386 offset = *seq - TCP_SKB_CB(skb)->seq;
2387 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2388 pr_err_once("%s: found a SYN, please report !\n", __func__);
2389 offset--;
2390 }
2391 if (offset < skb->len)
2392 goto found_ok_skb;
2393 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2394 goto found_fin_ok;
2395 WARN(!(flags & MSG_PEEK),
2396 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2397 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2398 }
2399
2400 /* Well, if we have backlog, try to process it now yet. */
2401
2402 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2403 break;
2404
2405 if (copied) {
2406 if (sk->sk_err ||
2407 sk->sk_state == TCP_CLOSE ||
2408 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2409 !timeo ||
2410 signal_pending(current))
2411 break;
2412 } else {
2413 if (sock_flag(sk, SOCK_DONE))
2414 break;
2415
2416 if (sk->sk_err) {
2417 copied = sock_error(sk);
2418 break;
2419 }
2420
2421 if (sk->sk_shutdown & RCV_SHUTDOWN)
2422 break;
2423
2424 if (sk->sk_state == TCP_CLOSE) {
2425 /* This occurs when user tries to read
2426 * from never connected socket.
2427 */
2428 copied = -ENOTCONN;
2429 break;
2430 }
2431
2432 if (!timeo) {
2433 copied = -EAGAIN;
2434 break;
2435 }
2436
2437 if (signal_pending(current)) {
2438 copied = sock_intr_errno(timeo);
2439 break;
2440 }
2441 }
2442
2443 tcp_cleanup_rbuf(sk, copied);
2444
2445 if (copied >= target) {
2446 /* Do not sleep, just process backlog. */
2447 release_sock(sk);
2448 lock_sock(sk);
2449 } else {
2450 sk_wait_data(sk, &timeo, last);
2451 }
2452
2453 if ((flags & MSG_PEEK) &&
2454 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2455 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2456 current->comm,
2457 task_pid_nr(current));
2458 peek_seq = tp->copied_seq;
2459 }
2460 continue;
2461
2462 found_ok_skb:
2463 /* Ok so how much can we use? */
2464 used = skb->len - offset;
2465 if (len < used)
2466 used = len;
2467
2468 /* Do we have urgent data here? */
2469 if (tp->urg_data) {
2470 u32 urg_offset = tp->urg_seq - *seq;
2471 if (urg_offset < used) {
2472 if (!urg_offset) {
2473 if (!sock_flag(sk, SOCK_URGINLINE)) {
2474 WRITE_ONCE(*seq, *seq + 1);
2475 urg_hole++;
2476 offset++;
2477 used--;
2478 if (!used)
2479 goto skip_copy;
2480 }
2481 } else
2482 used = urg_offset;
2483 }
2484 }
2485
2486 if (!(flags & MSG_TRUNC)) {
2487 err = skb_copy_datagram_msg(skb, offset, msg, used);
2488 if (err) {
2489 /* Exception. Bailout! */
2490 if (!copied)
2491 copied = -EFAULT;
2492 break;
2493 }
2494 }
2495
2496 WRITE_ONCE(*seq, *seq + used);
2497 copied += used;
2498 len -= used;
2499
2500 tcp_rcv_space_adjust(sk);
2501
2502 skip_copy:
2503 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2504 tp->urg_data = 0;
2505 tcp_fast_path_check(sk);
2506 }
2507
2508 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2509 tcp_update_recv_tstamps(skb, tss);
2510 *cmsg_flags |= TCP_CMSG_TS;
2511 }
2512
2513 if (used + offset < skb->len)
2514 continue;
2515
2516 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2517 goto found_fin_ok;
2518 if (!(flags & MSG_PEEK))
2519 sk_eat_skb(sk, skb);
2520 continue;
2521
2522 found_fin_ok:
2523 /* Process the FIN. */
2524 WRITE_ONCE(*seq, *seq + 1);
2525 if (!(flags & MSG_PEEK))
2526 sk_eat_skb(sk, skb);
2527 break;
2528 } while (len > 0);
2529
2530 trace_android_rvh_tcp_recvmsg_stat(sk, copied);
2531 /* According to UNIX98, msg_name/msg_namelen are ignored
2532 * on connected socket. I was just happy when found this 8) --ANK
2533 */
2534
2535 /* Clean up data we have read: This will do ACK frames. */
2536 tcp_cleanup_rbuf(sk, copied);
2537 return copied;
2538
2539 out:
2540 return err;
2541
2542 recv_urg:
2543 err = tcp_recv_urg(sk, msg, len, flags);
2544 goto out;
2545
2546 recv_sndq:
2547 err = tcp_peek_sndq(sk, msg, len);
2548 goto out;
2549 }
2550
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2552 int flags, int *addr_len)
2553 {
2554 int cmsg_flags = 0, ret, inq;
2555 struct scm_timestamping_internal tss;
2556
2557 if (unlikely(flags & MSG_ERRQUEUE))
2558 return inet_recv_error(sk, msg, len, addr_len);
2559 trace_android_rvh_tcp_recvmsg(sk);
2560
2561 if (sk_can_busy_loop(sk) &&
2562 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2563 sk->sk_state == TCP_ESTABLISHED)
2564 sk_busy_loop(sk, nonblock);
2565
2566 lock_sock(sk);
2567 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2568 &cmsg_flags);
2569 release_sock(sk);
2570
2571 if (cmsg_flags && ret >= 0) {
2572 if (cmsg_flags & TCP_CMSG_TS)
2573 tcp_recv_timestamp(msg, sk, &tss);
2574 if (cmsg_flags & TCP_CMSG_INQ) {
2575 inq = tcp_inq_hint(sk);
2576 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2577 }
2578 }
2579 return ret;
2580 }
2581 EXPORT_SYMBOL(tcp_recvmsg);
2582
tcp_set_state(struct sock * sk,int state)2583 void tcp_set_state(struct sock *sk, int state)
2584 {
2585 int oldstate = sk->sk_state;
2586
2587 /* We defined a new enum for TCP states that are exported in BPF
2588 * so as not force the internal TCP states to be frozen. The
2589 * following checks will detect if an internal state value ever
2590 * differs from the BPF value. If this ever happens, then we will
2591 * need to remap the internal value to the BPF value before calling
2592 * tcp_call_bpf_2arg.
2593 */
2594 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2595 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2596 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2597 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2598 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2599 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2600 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2601 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2602 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2603 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2604 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2605 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2606 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2607
2608 /* bpf uapi header bpf.h defines an anonymous enum with values
2609 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2610 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2611 * But clang built vmlinux does not have this enum in DWARF
2612 * since clang removes the above code before generating IR/debuginfo.
2613 * Let us explicitly emit the type debuginfo to ensure the
2614 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2615 * regardless of which compiler is used.
2616 */
2617 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2618
2619 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2620 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2621
2622 switch (state) {
2623 case TCP_ESTABLISHED:
2624 if (oldstate != TCP_ESTABLISHED)
2625 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2626 break;
2627
2628 case TCP_CLOSE:
2629 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2630 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2631
2632 sk->sk_prot->unhash(sk);
2633 if (inet_csk(sk)->icsk_bind_hash &&
2634 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2635 inet_put_port(sk);
2636 fallthrough;
2637 default:
2638 if (oldstate == TCP_ESTABLISHED)
2639 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 }
2641
2642 /* Change state AFTER socket is unhashed to avoid closed
2643 * socket sitting in hash tables.
2644 */
2645 inet_sk_state_store(sk, state);
2646 }
2647 EXPORT_SYMBOL_GPL(tcp_set_state);
2648
2649 /*
2650 * State processing on a close. This implements the state shift for
2651 * sending our FIN frame. Note that we only send a FIN for some
2652 * states. A shutdown() may have already sent the FIN, or we may be
2653 * closed.
2654 */
2655
2656 static const unsigned char new_state[16] = {
2657 /* current state: new state: action: */
2658 [0 /* (Invalid) */] = TCP_CLOSE,
2659 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2660 [TCP_SYN_SENT] = TCP_CLOSE,
2661 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2663 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2664 [TCP_TIME_WAIT] = TCP_CLOSE,
2665 [TCP_CLOSE] = TCP_CLOSE,
2666 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2667 [TCP_LAST_ACK] = TCP_LAST_ACK,
2668 [TCP_LISTEN] = TCP_CLOSE,
2669 [TCP_CLOSING] = TCP_CLOSING,
2670 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2671 };
2672
tcp_close_state(struct sock * sk)2673 static int tcp_close_state(struct sock *sk)
2674 {
2675 int next = (int)new_state[sk->sk_state];
2676 int ns = next & TCP_STATE_MASK;
2677
2678 tcp_set_state(sk, ns);
2679
2680 return next & TCP_ACTION_FIN;
2681 }
2682
2683 /*
2684 * Shutdown the sending side of a connection. Much like close except
2685 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2686 */
2687
tcp_shutdown(struct sock * sk,int how)2688 void tcp_shutdown(struct sock *sk, int how)
2689 {
2690 /* We need to grab some memory, and put together a FIN,
2691 * and then put it into the queue to be sent.
2692 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2693 */
2694 if (!(how & SEND_SHUTDOWN))
2695 return;
2696
2697 /* If we've already sent a FIN, or it's a closed state, skip this. */
2698 if ((1 << sk->sk_state) &
2699 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2700 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2701 /* Clear out any half completed packets. FIN if needed. */
2702 if (tcp_close_state(sk))
2703 tcp_send_fin(sk);
2704 }
2705 }
2706 EXPORT_SYMBOL(tcp_shutdown);
2707
tcp_orphan_count_sum(void)2708 int tcp_orphan_count_sum(void)
2709 {
2710 int i, total = 0;
2711
2712 for_each_possible_cpu(i)
2713 total += per_cpu(tcp_orphan_count, i);
2714
2715 return max(total, 0);
2716 }
2717
2718 static int tcp_orphan_cache;
2719 static struct timer_list tcp_orphan_timer;
2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2721
tcp_orphan_update(struct timer_list * unused)2722 static void tcp_orphan_update(struct timer_list *unused)
2723 {
2724 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2725 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2726 }
2727
tcp_too_many_orphans(int shift)2728 static bool tcp_too_many_orphans(int shift)
2729 {
2730 return READ_ONCE(tcp_orphan_cache) << shift >
2731 READ_ONCE(sysctl_tcp_max_orphans);
2732 }
2733
tcp_check_oom(struct sock * sk,int shift)2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 bool too_many_orphans, out_of_socket_memory;
2737
2738 too_many_orphans = tcp_too_many_orphans(shift);
2739 out_of_socket_memory = tcp_out_of_memory(sk);
2740
2741 if (too_many_orphans)
2742 net_info_ratelimited("too many orphaned sockets\n");
2743 if (out_of_socket_memory)
2744 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 return too_many_orphans || out_of_socket_memory;
2746 }
2747
__tcp_close(struct sock * sk,long timeout)2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 struct sk_buff *skb;
2751 int data_was_unread = 0;
2752 int state;
2753
2754 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2755
2756 if (sk->sk_state == TCP_LISTEN) {
2757 tcp_set_state(sk, TCP_CLOSE);
2758
2759 /* Special case. */
2760 inet_csk_listen_stop(sk);
2761
2762 goto adjudge_to_death;
2763 }
2764
2765 /* We need to flush the recv. buffs. We do this only on the
2766 * descriptor close, not protocol-sourced closes, because the
2767 * reader process may not have drained the data yet!
2768 */
2769 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771
2772 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 len--;
2774 data_was_unread += len;
2775 __kfree_skb(skb);
2776 }
2777
2778 sk_mem_reclaim(sk);
2779
2780 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2781 if (sk->sk_state == TCP_CLOSE)
2782 goto adjudge_to_death;
2783
2784 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2785 * data was lost. To witness the awful effects of the old behavior of
2786 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2787 * GET in an FTP client, suspend the process, wait for the client to
2788 * advertise a zero window, then kill -9 the FTP client, wheee...
2789 * Note: timeout is always zero in such a case.
2790 */
2791 if (unlikely(tcp_sk(sk)->repair)) {
2792 sk->sk_prot->disconnect(sk, 0);
2793 } else if (data_was_unread) {
2794 /* Unread data was tossed, zap the connection. */
2795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2796 tcp_set_state(sk, TCP_CLOSE);
2797 tcp_send_active_reset(sk, sk->sk_allocation);
2798 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2799 /* Check zero linger _after_ checking for unread data. */
2800 sk->sk_prot->disconnect(sk, 0);
2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2802 } else if (tcp_close_state(sk)) {
2803 /* We FIN if the application ate all the data before
2804 * zapping the connection.
2805 */
2806
2807 /* RED-PEN. Formally speaking, we have broken TCP state
2808 * machine. State transitions:
2809 *
2810 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2811 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2812 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2813 *
2814 * are legal only when FIN has been sent (i.e. in window),
2815 * rather than queued out of window. Purists blame.
2816 *
2817 * F.e. "RFC state" is ESTABLISHED,
2818 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2819 *
2820 * The visible declinations are that sometimes
2821 * we enter time-wait state, when it is not required really
2822 * (harmless), do not send active resets, when they are
2823 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2824 * they look as CLOSING or LAST_ACK for Linux)
2825 * Probably, I missed some more holelets.
2826 * --ANK
2827 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2828 * in a single packet! (May consider it later but will
2829 * probably need API support or TCP_CORK SYN-ACK until
2830 * data is written and socket is closed.)
2831 */
2832 tcp_send_fin(sk);
2833 }
2834
2835 sk_stream_wait_close(sk, timeout);
2836
2837 adjudge_to_death:
2838 state = sk->sk_state;
2839 sock_hold(sk);
2840 sock_orphan(sk);
2841
2842 local_bh_disable();
2843 bh_lock_sock(sk);
2844 /* remove backlog if any, without releasing ownership. */
2845 __release_sock(sk);
2846
2847 this_cpu_inc(tcp_orphan_count);
2848
2849 /* Have we already been destroyed by a softirq or backlog? */
2850 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2851 goto out;
2852
2853 /* This is a (useful) BSD violating of the RFC. There is a
2854 * problem with TCP as specified in that the other end could
2855 * keep a socket open forever with no application left this end.
2856 * We use a 1 minute timeout (about the same as BSD) then kill
2857 * our end. If they send after that then tough - BUT: long enough
2858 * that we won't make the old 4*rto = almost no time - whoops
2859 * reset mistake.
2860 *
2861 * Nope, it was not mistake. It is really desired behaviour
2862 * f.e. on http servers, when such sockets are useless, but
2863 * consume significant resources. Let's do it with special
2864 * linger2 option. --ANK
2865 */
2866
2867 if (sk->sk_state == TCP_FIN_WAIT2) {
2868 struct tcp_sock *tp = tcp_sk(sk);
2869 if (tp->linger2 < 0) {
2870 tcp_set_state(sk, TCP_CLOSE);
2871 tcp_send_active_reset(sk, GFP_ATOMIC);
2872 __NET_INC_STATS(sock_net(sk),
2873 LINUX_MIB_TCPABORTONLINGER);
2874 } else {
2875 const int tmo = tcp_fin_time(sk);
2876
2877 if (tmo > TCP_TIMEWAIT_LEN) {
2878 inet_csk_reset_keepalive_timer(sk,
2879 tmo - TCP_TIMEWAIT_LEN);
2880 } else {
2881 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2882 goto out;
2883 }
2884 }
2885 }
2886 if (sk->sk_state != TCP_CLOSE) {
2887 sk_mem_reclaim(sk);
2888 if (tcp_check_oom(sk, 0)) {
2889 tcp_set_state(sk, TCP_CLOSE);
2890 tcp_send_active_reset(sk, GFP_ATOMIC);
2891 __NET_INC_STATS(sock_net(sk),
2892 LINUX_MIB_TCPABORTONMEMORY);
2893 } else if (!check_net(sock_net(sk))) {
2894 /* Not possible to send reset; just close */
2895 tcp_set_state(sk, TCP_CLOSE);
2896 }
2897 }
2898
2899 if (sk->sk_state == TCP_CLOSE) {
2900 struct request_sock *req;
2901
2902 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2903 lockdep_sock_is_held(sk));
2904 /* We could get here with a non-NULL req if the socket is
2905 * aborted (e.g., closed with unread data) before 3WHS
2906 * finishes.
2907 */
2908 if (req)
2909 reqsk_fastopen_remove(sk, req, false);
2910 inet_csk_destroy_sock(sk);
2911 }
2912 /* Otherwise, socket is reprieved until protocol close. */
2913
2914 out:
2915 bh_unlock_sock(sk);
2916 local_bh_enable();
2917 }
2918
tcp_close(struct sock * sk,long timeout)2919 void tcp_close(struct sock *sk, long timeout)
2920 {
2921 lock_sock(sk);
2922 __tcp_close(sk, timeout);
2923 release_sock(sk);
2924 sock_put(sk);
2925 }
2926 EXPORT_SYMBOL(tcp_close);
2927
2928 /* These states need RST on ABORT according to RFC793 */
2929
tcp_need_reset(int state)2930 static inline bool tcp_need_reset(int state)
2931 {
2932 return (1 << state) &
2933 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2934 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2935 }
2936
tcp_rtx_queue_purge(struct sock * sk)2937 static void tcp_rtx_queue_purge(struct sock *sk)
2938 {
2939 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2940
2941 tcp_sk(sk)->highest_sack = NULL;
2942 while (p) {
2943 struct sk_buff *skb = rb_to_skb(p);
2944
2945 p = rb_next(p);
2946 /* Since we are deleting whole queue, no need to
2947 * list_del(&skb->tcp_tsorted_anchor)
2948 */
2949 tcp_rtx_queue_unlink(skb, sk);
2950 sk_wmem_free_skb(sk, skb);
2951 }
2952 }
2953
tcp_write_queue_purge(struct sock * sk)2954 void tcp_write_queue_purge(struct sock *sk)
2955 {
2956 struct sk_buff *skb;
2957
2958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2959 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2960 tcp_skb_tsorted_anchor_cleanup(skb);
2961 sk_wmem_free_skb(sk, skb);
2962 }
2963 tcp_rtx_queue_purge(sk);
2964 skb = sk->sk_tx_skb_cache;
2965 if (skb) {
2966 __kfree_skb(skb);
2967 sk->sk_tx_skb_cache = NULL;
2968 }
2969 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2970 sk_mem_reclaim(sk);
2971 tcp_clear_all_retrans_hints(tcp_sk(sk));
2972 tcp_sk(sk)->packets_out = 0;
2973 inet_csk(sk)->icsk_backoff = 0;
2974 }
2975
tcp_disconnect(struct sock * sk,int flags)2976 int tcp_disconnect(struct sock *sk, int flags)
2977 {
2978 struct inet_sock *inet = inet_sk(sk);
2979 struct inet_connection_sock *icsk = inet_csk(sk);
2980 struct tcp_sock *tp = tcp_sk(sk);
2981 int old_state = sk->sk_state;
2982 u32 seq;
2983
2984 /* Deny disconnect if other threads are blocked in sk_wait_event()
2985 * or inet_wait_for_connect().
2986 */
2987 if (sk->sk_wait_pending)
2988 return -EBUSY;
2989
2990 if (old_state != TCP_CLOSE)
2991 tcp_set_state(sk, TCP_CLOSE);
2992
2993 /* ABORT function of RFC793 */
2994 if (old_state == TCP_LISTEN) {
2995 inet_csk_listen_stop(sk);
2996 } else if (unlikely(tp->repair)) {
2997 sk->sk_err = ECONNABORTED;
2998 } else if (tcp_need_reset(old_state) ||
2999 (tp->snd_nxt != tp->write_seq &&
3000 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3001 /* The last check adjusts for discrepancy of Linux wrt. RFC
3002 * states
3003 */
3004 tcp_send_active_reset(sk, gfp_any());
3005 sk->sk_err = ECONNRESET;
3006 } else if (old_state == TCP_SYN_SENT)
3007 sk->sk_err = ECONNRESET;
3008
3009 tcp_clear_xmit_timers(sk);
3010 __skb_queue_purge(&sk->sk_receive_queue);
3011 if (sk->sk_rx_skb_cache) {
3012 __kfree_skb(sk->sk_rx_skb_cache);
3013 sk->sk_rx_skb_cache = NULL;
3014 }
3015 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3016 tp->urg_data = 0;
3017 tcp_write_queue_purge(sk);
3018 tcp_fastopen_active_disable_ofo_check(sk);
3019 skb_rbtree_purge(&tp->out_of_order_queue);
3020
3021 inet->inet_dport = 0;
3022
3023 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3024 inet_reset_saddr(sk);
3025
3026 WRITE_ONCE(sk->sk_shutdown, 0);
3027 sock_reset_flag(sk, SOCK_DONE);
3028 tp->srtt_us = 0;
3029 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3030 tp->rcv_rtt_last_tsecr = 0;
3031
3032 seq = tp->write_seq + tp->max_window + 2;
3033 if (!seq)
3034 seq = 1;
3035 WRITE_ONCE(tp->write_seq, seq);
3036
3037 icsk->icsk_backoff = 0;
3038 icsk->icsk_probes_out = 0;
3039 icsk->icsk_probes_tstamp = 0;
3040 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3041 icsk->icsk_rto_min = TCP_RTO_MIN;
3042 icsk->icsk_delack_max = TCP_DELACK_MAX;
3043 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3044 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3045 tp->snd_cwnd_cnt = 0;
3046 tp->is_cwnd_limited = 0;
3047 tp->max_packets_out = 0;
3048 tp->window_clamp = 0;
3049 tp->delivered = 0;
3050 tp->delivered_ce = 0;
3051 if (icsk->icsk_ca_ops->release)
3052 icsk->icsk_ca_ops->release(sk);
3053 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3054 icsk->icsk_ca_initialized = 0;
3055 tcp_set_ca_state(sk, TCP_CA_Open);
3056 tp->is_sack_reneg = 0;
3057 tcp_clear_retrans(tp);
3058 tp->total_retrans = 0;
3059 inet_csk_delack_init(sk);
3060 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3061 * issue in __tcp_select_window()
3062 */
3063 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3064 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3065 __sk_dst_reset(sk);
3066 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3067 tcp_saved_syn_free(tp);
3068 tp->compressed_ack = 0;
3069 tp->segs_in = 0;
3070 tp->segs_out = 0;
3071 tp->bytes_sent = 0;
3072 tp->bytes_acked = 0;
3073 tp->bytes_received = 0;
3074 tp->bytes_retrans = 0;
3075 tp->data_segs_in = 0;
3076 tp->data_segs_out = 0;
3077 tp->duplicate_sack[0].start_seq = 0;
3078 tp->duplicate_sack[0].end_seq = 0;
3079 tp->dsack_dups = 0;
3080 tp->reord_seen = 0;
3081 tp->retrans_out = 0;
3082 tp->sacked_out = 0;
3083 tp->tlp_high_seq = 0;
3084 tp->last_oow_ack_time = 0;
3085 /* There's a bubble in the pipe until at least the first ACK. */
3086 tp->app_limited = ~0U;
3087 tp->rate_app_limited = 1;
3088 tp->rack.mstamp = 0;
3089 tp->rack.advanced = 0;
3090 tp->rack.reo_wnd_steps = 1;
3091 tp->rack.last_delivered = 0;
3092 tp->rack.reo_wnd_persist = 0;
3093 tp->rack.dsack_seen = 0;
3094 tp->syn_data_acked = 0;
3095 tp->rx_opt.saw_tstamp = 0;
3096 tp->rx_opt.dsack = 0;
3097 tp->rx_opt.num_sacks = 0;
3098 tp->rcv_ooopack = 0;
3099
3100
3101 /* Clean up fastopen related fields */
3102 tcp_free_fastopen_req(tp);
3103 inet->defer_connect = 0;
3104 tp->fastopen_client_fail = 0;
3105
3106 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3107
3108 if (sk->sk_frag.page) {
3109 put_page(sk->sk_frag.page);
3110 sk->sk_frag.page = NULL;
3111 sk->sk_frag.offset = 0;
3112 }
3113
3114 sk_error_report(sk);
3115 return 0;
3116 }
3117 EXPORT_SYMBOL(tcp_disconnect);
3118
tcp_can_repair_sock(const struct sock * sk)3119 static inline bool tcp_can_repair_sock(const struct sock *sk)
3120 {
3121 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3122 (sk->sk_state != TCP_LISTEN);
3123 }
3124
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3125 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3126 {
3127 struct tcp_repair_window opt;
3128
3129 if (!tp->repair)
3130 return -EPERM;
3131
3132 if (len != sizeof(opt))
3133 return -EINVAL;
3134
3135 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3136 return -EFAULT;
3137
3138 if (opt.max_window < opt.snd_wnd)
3139 return -EINVAL;
3140
3141 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3142 return -EINVAL;
3143
3144 if (after(opt.rcv_wup, tp->rcv_nxt))
3145 return -EINVAL;
3146
3147 tp->snd_wl1 = opt.snd_wl1;
3148 tp->snd_wnd = opt.snd_wnd;
3149 tp->max_window = opt.max_window;
3150
3151 tp->rcv_wnd = opt.rcv_wnd;
3152 tp->rcv_wup = opt.rcv_wup;
3153
3154 return 0;
3155 }
3156
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3157 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3158 unsigned int len)
3159 {
3160 struct tcp_sock *tp = tcp_sk(sk);
3161 struct tcp_repair_opt opt;
3162 size_t offset = 0;
3163
3164 while (len >= sizeof(opt)) {
3165 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3166 return -EFAULT;
3167
3168 offset += sizeof(opt);
3169 len -= sizeof(opt);
3170
3171 switch (opt.opt_code) {
3172 case TCPOPT_MSS:
3173 tp->rx_opt.mss_clamp = opt.opt_val;
3174 tcp_mtup_init(sk);
3175 break;
3176 case TCPOPT_WINDOW:
3177 {
3178 u16 snd_wscale = opt.opt_val & 0xFFFF;
3179 u16 rcv_wscale = opt.opt_val >> 16;
3180
3181 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3182 return -EFBIG;
3183
3184 tp->rx_opt.snd_wscale = snd_wscale;
3185 tp->rx_opt.rcv_wscale = rcv_wscale;
3186 tp->rx_opt.wscale_ok = 1;
3187 }
3188 break;
3189 case TCPOPT_SACK_PERM:
3190 if (opt.opt_val != 0)
3191 return -EINVAL;
3192
3193 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3194 break;
3195 case TCPOPT_TIMESTAMP:
3196 if (opt.opt_val != 0)
3197 return -EINVAL;
3198
3199 tp->rx_opt.tstamp_ok = 1;
3200 break;
3201 }
3202 }
3203
3204 return 0;
3205 }
3206
3207 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3208 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3209
tcp_enable_tx_delay(void)3210 static void tcp_enable_tx_delay(void)
3211 {
3212 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3213 static int __tcp_tx_delay_enabled = 0;
3214
3215 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3216 static_branch_enable(&tcp_tx_delay_enabled);
3217 pr_info("TCP_TX_DELAY enabled\n");
3218 }
3219 }
3220 }
3221
3222 /* When set indicates to always queue non-full frames. Later the user clears
3223 * this option and we transmit any pending partial frames in the queue. This is
3224 * meant to be used alongside sendfile() to get properly filled frames when the
3225 * user (for example) must write out headers with a write() call first and then
3226 * use sendfile to send out the data parts.
3227 *
3228 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3229 * TCP_NODELAY.
3230 */
__tcp_sock_set_cork(struct sock * sk,bool on)3231 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3232 {
3233 struct tcp_sock *tp = tcp_sk(sk);
3234
3235 if (on) {
3236 tp->nonagle |= TCP_NAGLE_CORK;
3237 } else {
3238 tp->nonagle &= ~TCP_NAGLE_CORK;
3239 if (tp->nonagle & TCP_NAGLE_OFF)
3240 tp->nonagle |= TCP_NAGLE_PUSH;
3241 tcp_push_pending_frames(sk);
3242 }
3243 }
3244
tcp_sock_set_cork(struct sock * sk,bool on)3245 void tcp_sock_set_cork(struct sock *sk, bool on)
3246 {
3247 lock_sock(sk);
3248 __tcp_sock_set_cork(sk, on);
3249 release_sock(sk);
3250 }
3251 EXPORT_SYMBOL(tcp_sock_set_cork);
3252
3253 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3254 * remembered, but it is not activated until cork is cleared.
3255 *
3256 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3257 * even TCP_CORK for currently queued segments.
3258 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3259 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3260 {
3261 if (on) {
3262 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3263 tcp_push_pending_frames(sk);
3264 } else {
3265 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3266 }
3267 }
3268
tcp_sock_set_nodelay(struct sock * sk)3269 void tcp_sock_set_nodelay(struct sock *sk)
3270 {
3271 lock_sock(sk);
3272 __tcp_sock_set_nodelay(sk, true);
3273 release_sock(sk);
3274 }
3275 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3276
__tcp_sock_set_quickack(struct sock * sk,int val)3277 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3278 {
3279 if (!val) {
3280 inet_csk_enter_pingpong_mode(sk);
3281 return;
3282 }
3283
3284 inet_csk_exit_pingpong_mode(sk);
3285 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3286 inet_csk_ack_scheduled(sk)) {
3287 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3288 tcp_cleanup_rbuf(sk, 1);
3289 if (!(val & 1))
3290 inet_csk_enter_pingpong_mode(sk);
3291 }
3292 }
3293
tcp_sock_set_quickack(struct sock * sk,int val)3294 void tcp_sock_set_quickack(struct sock *sk, int val)
3295 {
3296 lock_sock(sk);
3297 __tcp_sock_set_quickack(sk, val);
3298 release_sock(sk);
3299 }
3300 EXPORT_SYMBOL(tcp_sock_set_quickack);
3301
tcp_sock_set_syncnt(struct sock * sk,int val)3302 int tcp_sock_set_syncnt(struct sock *sk, int val)
3303 {
3304 if (val < 1 || val > MAX_TCP_SYNCNT)
3305 return -EINVAL;
3306
3307 lock_sock(sk);
3308 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3309 release_sock(sk);
3310 return 0;
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3313
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3314 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3315 {
3316 lock_sock(sk);
3317 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3318 release_sock(sk);
3319 }
3320 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3321
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3322 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3323 {
3324 struct tcp_sock *tp = tcp_sk(sk);
3325
3326 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3327 return -EINVAL;
3328
3329 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3330 WRITE_ONCE(tp->keepalive_time, val * HZ);
3331 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3332 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3333 u32 elapsed = keepalive_time_elapsed(tp);
3334
3335 if (tp->keepalive_time > elapsed)
3336 elapsed = tp->keepalive_time - elapsed;
3337 else
3338 elapsed = 0;
3339 inet_csk_reset_keepalive_timer(sk, elapsed);
3340 }
3341
3342 return 0;
3343 }
3344
tcp_sock_set_keepidle(struct sock * sk,int val)3345 int tcp_sock_set_keepidle(struct sock *sk, int val)
3346 {
3347 int err;
3348
3349 lock_sock(sk);
3350 err = tcp_sock_set_keepidle_locked(sk, val);
3351 release_sock(sk);
3352 return err;
3353 }
3354 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3355
tcp_sock_set_keepintvl(struct sock * sk,int val)3356 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3357 {
3358 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3359 return -EINVAL;
3360
3361 lock_sock(sk);
3362 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3363 release_sock(sk);
3364 return 0;
3365 }
3366 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3367
tcp_sock_set_keepcnt(struct sock * sk,int val)3368 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3369 {
3370 if (val < 1 || val > MAX_TCP_KEEPCNT)
3371 return -EINVAL;
3372
3373 lock_sock(sk);
3374 /* Paired with READ_ONCE() in keepalive_probes() */
3375 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3376 release_sock(sk);
3377 return 0;
3378 }
3379 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3380
tcp_set_window_clamp(struct sock * sk,int val)3381 int tcp_set_window_clamp(struct sock *sk, int val)
3382 {
3383 struct tcp_sock *tp = tcp_sk(sk);
3384
3385 if (!val) {
3386 if (sk->sk_state != TCP_CLOSE)
3387 return -EINVAL;
3388 tp->window_clamp = 0;
3389 } else {
3390 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3391 SOCK_MIN_RCVBUF / 2 : val;
3392 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3393 }
3394 return 0;
3395 }
3396
3397 /*
3398 * Socket option code for TCP.
3399 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3400 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3401 sockptr_t optval, unsigned int optlen)
3402 {
3403 struct tcp_sock *tp = tcp_sk(sk);
3404 struct inet_connection_sock *icsk = inet_csk(sk);
3405 struct net *net = sock_net(sk);
3406 int val;
3407 int err = 0;
3408
3409 /* These are data/string values, all the others are ints */
3410 switch (optname) {
3411 case TCP_CONGESTION: {
3412 char name[TCP_CA_NAME_MAX];
3413
3414 if (optlen < 1)
3415 return -EINVAL;
3416
3417 val = strncpy_from_sockptr(name, optval,
3418 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3419 if (val < 0)
3420 return -EFAULT;
3421 name[val] = 0;
3422
3423 lock_sock(sk);
3424 err = tcp_set_congestion_control(sk, name, true,
3425 ns_capable(sock_net(sk)->user_ns,
3426 CAP_NET_ADMIN));
3427 release_sock(sk);
3428 return err;
3429 }
3430 case TCP_ULP: {
3431 char name[TCP_ULP_NAME_MAX];
3432
3433 if (optlen < 1)
3434 return -EINVAL;
3435
3436 val = strncpy_from_sockptr(name, optval,
3437 min_t(long, TCP_ULP_NAME_MAX - 1,
3438 optlen));
3439 if (val < 0)
3440 return -EFAULT;
3441 name[val] = 0;
3442
3443 lock_sock(sk);
3444 err = tcp_set_ulp(sk, name);
3445 release_sock(sk);
3446 return err;
3447 }
3448 case TCP_FASTOPEN_KEY: {
3449 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3450 __u8 *backup_key = NULL;
3451
3452 /* Allow a backup key as well to facilitate key rotation
3453 * First key is the active one.
3454 */
3455 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3456 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3457 return -EINVAL;
3458
3459 if (copy_from_sockptr(key, optval, optlen))
3460 return -EFAULT;
3461
3462 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3463 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3464
3465 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3466 }
3467 default:
3468 /* fallthru */
3469 break;
3470 }
3471
3472 if (optlen < sizeof(int))
3473 return -EINVAL;
3474
3475 if (copy_from_sockptr(&val, optval, sizeof(val)))
3476 return -EFAULT;
3477
3478 lock_sock(sk);
3479
3480 switch (optname) {
3481 case TCP_MAXSEG:
3482 /* Values greater than interface MTU won't take effect. However
3483 * at the point when this call is done we typically don't yet
3484 * know which interface is going to be used
3485 */
3486 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3487 err = -EINVAL;
3488 break;
3489 }
3490 tp->rx_opt.user_mss = val;
3491 break;
3492
3493 case TCP_NODELAY:
3494 __tcp_sock_set_nodelay(sk, val);
3495 break;
3496
3497 case TCP_THIN_LINEAR_TIMEOUTS:
3498 if (val < 0 || val > 1)
3499 err = -EINVAL;
3500 else
3501 tp->thin_lto = val;
3502 break;
3503
3504 case TCP_THIN_DUPACK:
3505 if (val < 0 || val > 1)
3506 err = -EINVAL;
3507 break;
3508
3509 case TCP_REPAIR:
3510 if (!tcp_can_repair_sock(sk))
3511 err = -EPERM;
3512 else if (val == TCP_REPAIR_ON) {
3513 tp->repair = 1;
3514 sk->sk_reuse = SK_FORCE_REUSE;
3515 tp->repair_queue = TCP_NO_QUEUE;
3516 } else if (val == TCP_REPAIR_OFF) {
3517 tp->repair = 0;
3518 sk->sk_reuse = SK_NO_REUSE;
3519 tcp_send_window_probe(sk);
3520 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3521 tp->repair = 0;
3522 sk->sk_reuse = SK_NO_REUSE;
3523 } else
3524 err = -EINVAL;
3525
3526 break;
3527
3528 case TCP_REPAIR_QUEUE:
3529 if (!tp->repair)
3530 err = -EPERM;
3531 else if ((unsigned int)val < TCP_QUEUES_NR)
3532 tp->repair_queue = val;
3533 else
3534 err = -EINVAL;
3535 break;
3536
3537 case TCP_QUEUE_SEQ:
3538 if (sk->sk_state != TCP_CLOSE) {
3539 err = -EPERM;
3540 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3541 if (!tcp_rtx_queue_empty(sk))
3542 err = -EPERM;
3543 else
3544 WRITE_ONCE(tp->write_seq, val);
3545 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3546 if (tp->rcv_nxt != tp->copied_seq) {
3547 err = -EPERM;
3548 } else {
3549 WRITE_ONCE(tp->rcv_nxt, val);
3550 WRITE_ONCE(tp->copied_seq, val);
3551 }
3552 } else {
3553 err = -EINVAL;
3554 }
3555 break;
3556
3557 case TCP_REPAIR_OPTIONS:
3558 if (!tp->repair)
3559 err = -EINVAL;
3560 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3561 err = tcp_repair_options_est(sk, optval, optlen);
3562 else
3563 err = -EPERM;
3564 break;
3565
3566 case TCP_CORK:
3567 __tcp_sock_set_cork(sk, val);
3568 break;
3569
3570 case TCP_KEEPIDLE:
3571 err = tcp_sock_set_keepidle_locked(sk, val);
3572 break;
3573 case TCP_KEEPINTVL:
3574 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3575 err = -EINVAL;
3576 else
3577 WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3578 break;
3579 case TCP_KEEPCNT:
3580 if (val < 1 || val > MAX_TCP_KEEPCNT)
3581 err = -EINVAL;
3582 else
3583 WRITE_ONCE(tp->keepalive_probes, val);
3584 break;
3585 case TCP_SYNCNT:
3586 if (val < 1 || val > MAX_TCP_SYNCNT)
3587 err = -EINVAL;
3588 else
3589 WRITE_ONCE(icsk->icsk_syn_retries, val);
3590 break;
3591
3592 case TCP_SAVE_SYN:
3593 /* 0: disable, 1: enable, 2: start from ether_header */
3594 if (val < 0 || val > 2)
3595 err = -EINVAL;
3596 else
3597 tp->save_syn = val;
3598 break;
3599
3600 case TCP_LINGER2:
3601 if (val < 0)
3602 WRITE_ONCE(tp->linger2, -1);
3603 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3604 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3605 else
3606 WRITE_ONCE(tp->linger2, val * HZ);
3607 break;
3608
3609 case TCP_DEFER_ACCEPT:
3610 /* Translate value in seconds to number of retransmits */
3611 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3612 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3613 TCP_RTO_MAX / HZ));
3614 break;
3615
3616 case TCP_WINDOW_CLAMP:
3617 err = tcp_set_window_clamp(sk, val);
3618 break;
3619
3620 case TCP_QUICKACK:
3621 __tcp_sock_set_quickack(sk, val);
3622 break;
3623
3624 #ifdef CONFIG_TCP_MD5SIG
3625 case TCP_MD5SIG:
3626 case TCP_MD5SIG_EXT:
3627 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3628 break;
3629 #endif
3630 case TCP_USER_TIMEOUT:
3631 /* Cap the max time in ms TCP will retry or probe the window
3632 * before giving up and aborting (ETIMEDOUT) a connection.
3633 */
3634 if (val < 0)
3635 err = -EINVAL;
3636 else
3637 WRITE_ONCE(icsk->icsk_user_timeout, val);
3638 break;
3639
3640 case TCP_FASTOPEN:
3641 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3642 TCPF_LISTEN))) {
3643 tcp_fastopen_init_key_once(net);
3644
3645 fastopen_queue_tune(sk, val);
3646 } else {
3647 err = -EINVAL;
3648 }
3649 break;
3650 case TCP_FASTOPEN_CONNECT:
3651 if (val > 1 || val < 0) {
3652 err = -EINVAL;
3653 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3654 TFO_CLIENT_ENABLE) {
3655 if (sk->sk_state == TCP_CLOSE)
3656 tp->fastopen_connect = val;
3657 else
3658 err = -EINVAL;
3659 } else {
3660 err = -EOPNOTSUPP;
3661 }
3662 break;
3663 case TCP_FASTOPEN_NO_COOKIE:
3664 if (val > 1 || val < 0)
3665 err = -EINVAL;
3666 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3667 err = -EINVAL;
3668 else
3669 tp->fastopen_no_cookie = val;
3670 break;
3671 case TCP_TIMESTAMP:
3672 if (!tp->repair)
3673 err = -EPERM;
3674 else
3675 tp->tsoffset = val - tcp_time_stamp_raw();
3676 break;
3677 case TCP_REPAIR_WINDOW:
3678 err = tcp_repair_set_window(tp, optval, optlen);
3679 break;
3680 case TCP_NOTSENT_LOWAT:
3681 WRITE_ONCE(tp->notsent_lowat, val);
3682 sk->sk_write_space(sk);
3683 break;
3684 case TCP_INQ:
3685 if (val > 1 || val < 0)
3686 err = -EINVAL;
3687 else
3688 tp->recvmsg_inq = val;
3689 break;
3690 case TCP_TX_DELAY:
3691 if (val)
3692 tcp_enable_tx_delay();
3693 WRITE_ONCE(tp->tcp_tx_delay, val);
3694 break;
3695 default:
3696 err = -ENOPROTOOPT;
3697 break;
3698 }
3699
3700 release_sock(sk);
3701 return err;
3702 }
3703
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3704 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3705 unsigned int optlen)
3706 {
3707 const struct inet_connection_sock *icsk = inet_csk(sk);
3708
3709 if (level != SOL_TCP)
3710 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3711 optval, optlen);
3712 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3713 }
3714 EXPORT_SYMBOL(tcp_setsockopt);
3715
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3716 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3717 struct tcp_info *info)
3718 {
3719 u64 stats[__TCP_CHRONO_MAX], total = 0;
3720 enum tcp_chrono i;
3721
3722 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3723 stats[i] = tp->chrono_stat[i - 1];
3724 if (i == tp->chrono_type)
3725 stats[i] += tcp_jiffies32 - tp->chrono_start;
3726 stats[i] *= USEC_PER_SEC / HZ;
3727 total += stats[i];
3728 }
3729
3730 info->tcpi_busy_time = total;
3731 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3732 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3733 }
3734
3735 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3736 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3737 {
3738 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3739 const struct inet_connection_sock *icsk = inet_csk(sk);
3740 unsigned long rate;
3741 u32 now;
3742 u64 rate64;
3743 bool slow;
3744
3745 memset(info, 0, sizeof(*info));
3746 if (sk->sk_type != SOCK_STREAM)
3747 return;
3748
3749 info->tcpi_state = inet_sk_state_load(sk);
3750
3751 /* Report meaningful fields for all TCP states, including listeners */
3752 rate = READ_ONCE(sk->sk_pacing_rate);
3753 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3754 info->tcpi_pacing_rate = rate64;
3755
3756 rate = READ_ONCE(sk->sk_max_pacing_rate);
3757 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3758 info->tcpi_max_pacing_rate = rate64;
3759
3760 info->tcpi_reordering = tp->reordering;
3761 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3762
3763 if (info->tcpi_state == TCP_LISTEN) {
3764 /* listeners aliased fields :
3765 * tcpi_unacked -> Number of children ready for accept()
3766 * tcpi_sacked -> max backlog
3767 */
3768 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3769 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3770 return;
3771 }
3772
3773 slow = lock_sock_fast(sk);
3774
3775 info->tcpi_ca_state = icsk->icsk_ca_state;
3776 info->tcpi_retransmits = icsk->icsk_retransmits;
3777 info->tcpi_probes = icsk->icsk_probes_out;
3778 info->tcpi_backoff = icsk->icsk_backoff;
3779
3780 if (tp->rx_opt.tstamp_ok)
3781 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3782 if (tcp_is_sack(tp))
3783 info->tcpi_options |= TCPI_OPT_SACK;
3784 if (tp->rx_opt.wscale_ok) {
3785 info->tcpi_options |= TCPI_OPT_WSCALE;
3786 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3787 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3788 }
3789
3790 if (tp->ecn_flags & TCP_ECN_OK)
3791 info->tcpi_options |= TCPI_OPT_ECN;
3792 if (tp->ecn_flags & TCP_ECN_SEEN)
3793 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3794 if (tp->syn_data_acked)
3795 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3796
3797 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3798 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3799 info->tcpi_snd_mss = tp->mss_cache;
3800 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3801
3802 info->tcpi_unacked = tp->packets_out;
3803 info->tcpi_sacked = tp->sacked_out;
3804
3805 info->tcpi_lost = tp->lost_out;
3806 info->tcpi_retrans = tp->retrans_out;
3807
3808 now = tcp_jiffies32;
3809 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3810 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3811 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3812
3813 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3814 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3815 info->tcpi_rtt = tp->srtt_us >> 3;
3816 info->tcpi_rttvar = tp->mdev_us >> 2;
3817 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3818 info->tcpi_advmss = tp->advmss;
3819
3820 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3821 info->tcpi_rcv_space = tp->rcvq_space.space;
3822
3823 info->tcpi_total_retrans = tp->total_retrans;
3824
3825 info->tcpi_bytes_acked = tp->bytes_acked;
3826 info->tcpi_bytes_received = tp->bytes_received;
3827 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3828 tcp_get_info_chrono_stats(tp, info);
3829
3830 info->tcpi_segs_out = tp->segs_out;
3831 info->tcpi_segs_in = tp->segs_in;
3832
3833 info->tcpi_min_rtt = tcp_min_rtt(tp);
3834 info->tcpi_data_segs_in = tp->data_segs_in;
3835 info->tcpi_data_segs_out = tp->data_segs_out;
3836
3837 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3838 rate64 = tcp_compute_delivery_rate(tp);
3839 if (rate64)
3840 info->tcpi_delivery_rate = rate64;
3841 info->tcpi_delivered = tp->delivered;
3842 info->tcpi_delivered_ce = tp->delivered_ce;
3843 info->tcpi_bytes_sent = tp->bytes_sent;
3844 info->tcpi_bytes_retrans = tp->bytes_retrans;
3845 info->tcpi_dsack_dups = tp->dsack_dups;
3846 info->tcpi_reord_seen = tp->reord_seen;
3847 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3848 info->tcpi_snd_wnd = tp->snd_wnd;
3849 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3850 unlock_sock_fast(sk, slow);
3851 }
3852 EXPORT_SYMBOL_GPL(tcp_get_info);
3853
tcp_opt_stats_get_size(void)3854 static size_t tcp_opt_stats_get_size(void)
3855 {
3856 return
3857 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3858 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3859 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3860 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3861 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3862 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3863 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3864 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3866 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3867 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3868 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3869 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3870 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3871 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3872 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3873 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3874 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3875 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3876 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3877 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3878 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3879 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3880 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3881 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3882 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3883 0;
3884 }
3885
3886 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3887 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3888 {
3889 if (skb->protocol == htons(ETH_P_IP))
3890 return ip_hdr(skb)->ttl;
3891 else if (skb->protocol == htons(ETH_P_IPV6))
3892 return ipv6_hdr(skb)->hop_limit;
3893 else
3894 return 0;
3895 }
3896
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3897 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3898 const struct sk_buff *orig_skb,
3899 const struct sk_buff *ack_skb)
3900 {
3901 const struct tcp_sock *tp = tcp_sk(sk);
3902 struct sk_buff *stats;
3903 struct tcp_info info;
3904 unsigned long rate;
3905 u64 rate64;
3906
3907 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3908 if (!stats)
3909 return NULL;
3910
3911 tcp_get_info_chrono_stats(tp, &info);
3912 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3913 info.tcpi_busy_time, TCP_NLA_PAD);
3914 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3915 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3916 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3917 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3918 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3919 tp->data_segs_out, TCP_NLA_PAD);
3920 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3921 tp->total_retrans, TCP_NLA_PAD);
3922
3923 rate = READ_ONCE(sk->sk_pacing_rate);
3924 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3925 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3926
3927 rate64 = tcp_compute_delivery_rate(tp);
3928 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3929
3930 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3931 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3932 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3933
3934 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3935 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3936 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3937 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3938 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3939
3940 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3941 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3942
3943 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3944 TCP_NLA_PAD);
3945 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3946 TCP_NLA_PAD);
3947 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3948 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3949 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3950 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3951 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3952 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3953 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3954 TCP_NLA_PAD);
3955 if (ack_skb)
3956 nla_put_u8(stats, TCP_NLA_TTL,
3957 tcp_skb_ttl_or_hop_limit(ack_skb));
3958
3959 return stats;
3960 }
3961
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3962 static int do_tcp_getsockopt(struct sock *sk, int level,
3963 int optname, char __user *optval, int __user *optlen)
3964 {
3965 struct inet_connection_sock *icsk = inet_csk(sk);
3966 struct tcp_sock *tp = tcp_sk(sk);
3967 struct net *net = sock_net(sk);
3968 int val, len;
3969
3970 if (get_user(len, optlen))
3971 return -EFAULT;
3972
3973 len = min_t(unsigned int, len, sizeof(int));
3974
3975 if (len < 0)
3976 return -EINVAL;
3977
3978 switch (optname) {
3979 case TCP_MAXSEG:
3980 val = tp->mss_cache;
3981 if (tp->rx_opt.user_mss &&
3982 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3983 val = tp->rx_opt.user_mss;
3984 if (tp->repair)
3985 val = tp->rx_opt.mss_clamp;
3986 break;
3987 case TCP_NODELAY:
3988 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3989 break;
3990 case TCP_CORK:
3991 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3992 break;
3993 case TCP_KEEPIDLE:
3994 val = keepalive_time_when(tp) / HZ;
3995 break;
3996 case TCP_KEEPINTVL:
3997 val = keepalive_intvl_when(tp) / HZ;
3998 break;
3999 case TCP_KEEPCNT:
4000 val = keepalive_probes(tp);
4001 break;
4002 case TCP_SYNCNT:
4003 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4004 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4005 break;
4006 case TCP_LINGER2:
4007 val = READ_ONCE(tp->linger2);
4008 if (val >= 0)
4009 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4010 break;
4011 case TCP_DEFER_ACCEPT:
4012 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4013 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4014 TCP_RTO_MAX / HZ);
4015 break;
4016 case TCP_WINDOW_CLAMP:
4017 val = tp->window_clamp;
4018 break;
4019 case TCP_INFO: {
4020 struct tcp_info info;
4021
4022 if (get_user(len, optlen))
4023 return -EFAULT;
4024
4025 tcp_get_info(sk, &info);
4026
4027 len = min_t(unsigned int, len, sizeof(info));
4028 if (put_user(len, optlen))
4029 return -EFAULT;
4030 if (copy_to_user(optval, &info, len))
4031 return -EFAULT;
4032 return 0;
4033 }
4034 case TCP_CC_INFO: {
4035 const struct tcp_congestion_ops *ca_ops;
4036 union tcp_cc_info info;
4037 size_t sz = 0;
4038 int attr;
4039
4040 if (get_user(len, optlen))
4041 return -EFAULT;
4042
4043 ca_ops = icsk->icsk_ca_ops;
4044 if (ca_ops && ca_ops->get_info)
4045 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4046
4047 len = min_t(unsigned int, len, sz);
4048 if (put_user(len, optlen))
4049 return -EFAULT;
4050 if (copy_to_user(optval, &info, len))
4051 return -EFAULT;
4052 return 0;
4053 }
4054 case TCP_QUICKACK:
4055 val = !inet_csk_in_pingpong_mode(sk);
4056 break;
4057
4058 case TCP_CONGESTION:
4059 if (get_user(len, optlen))
4060 return -EFAULT;
4061 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4062 if (put_user(len, optlen))
4063 return -EFAULT;
4064 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4065 return -EFAULT;
4066 return 0;
4067
4068 case TCP_ULP:
4069 if (get_user(len, optlen))
4070 return -EFAULT;
4071 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4072 if (!icsk->icsk_ulp_ops) {
4073 if (put_user(0, optlen))
4074 return -EFAULT;
4075 return 0;
4076 }
4077 if (put_user(len, optlen))
4078 return -EFAULT;
4079 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4080 return -EFAULT;
4081 return 0;
4082
4083 case TCP_FASTOPEN_KEY: {
4084 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4085 unsigned int key_len;
4086
4087 if (get_user(len, optlen))
4088 return -EFAULT;
4089
4090 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4091 TCP_FASTOPEN_KEY_LENGTH;
4092 len = min_t(unsigned int, len, key_len);
4093 if (put_user(len, optlen))
4094 return -EFAULT;
4095 if (copy_to_user(optval, key, len))
4096 return -EFAULT;
4097 return 0;
4098 }
4099 case TCP_THIN_LINEAR_TIMEOUTS:
4100 val = tp->thin_lto;
4101 break;
4102
4103 case TCP_THIN_DUPACK:
4104 val = 0;
4105 break;
4106
4107 case TCP_REPAIR:
4108 val = tp->repair;
4109 break;
4110
4111 case TCP_REPAIR_QUEUE:
4112 if (tp->repair)
4113 val = tp->repair_queue;
4114 else
4115 return -EINVAL;
4116 break;
4117
4118 case TCP_REPAIR_WINDOW: {
4119 struct tcp_repair_window opt;
4120
4121 if (get_user(len, optlen))
4122 return -EFAULT;
4123
4124 if (len != sizeof(opt))
4125 return -EINVAL;
4126
4127 if (!tp->repair)
4128 return -EPERM;
4129
4130 opt.snd_wl1 = tp->snd_wl1;
4131 opt.snd_wnd = tp->snd_wnd;
4132 opt.max_window = tp->max_window;
4133 opt.rcv_wnd = tp->rcv_wnd;
4134 opt.rcv_wup = tp->rcv_wup;
4135
4136 if (copy_to_user(optval, &opt, len))
4137 return -EFAULT;
4138 return 0;
4139 }
4140 case TCP_QUEUE_SEQ:
4141 if (tp->repair_queue == TCP_SEND_QUEUE)
4142 val = tp->write_seq;
4143 else if (tp->repair_queue == TCP_RECV_QUEUE)
4144 val = tp->rcv_nxt;
4145 else
4146 return -EINVAL;
4147 break;
4148
4149 case TCP_USER_TIMEOUT:
4150 val = READ_ONCE(icsk->icsk_user_timeout);
4151 break;
4152
4153 case TCP_FASTOPEN:
4154 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4155 break;
4156
4157 case TCP_FASTOPEN_CONNECT:
4158 val = tp->fastopen_connect;
4159 break;
4160
4161 case TCP_FASTOPEN_NO_COOKIE:
4162 val = tp->fastopen_no_cookie;
4163 break;
4164
4165 case TCP_TX_DELAY:
4166 val = READ_ONCE(tp->tcp_tx_delay);
4167 break;
4168
4169 case TCP_TIMESTAMP:
4170 val = tcp_time_stamp_raw() + tp->tsoffset;
4171 break;
4172 case TCP_NOTSENT_LOWAT:
4173 val = READ_ONCE(tp->notsent_lowat);
4174 break;
4175 case TCP_INQ:
4176 val = tp->recvmsg_inq;
4177 break;
4178 case TCP_SAVE_SYN:
4179 val = tp->save_syn;
4180 break;
4181 case TCP_SAVED_SYN: {
4182 if (get_user(len, optlen))
4183 return -EFAULT;
4184
4185 lock_sock(sk);
4186 if (tp->saved_syn) {
4187 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4188 if (put_user(tcp_saved_syn_len(tp->saved_syn),
4189 optlen)) {
4190 release_sock(sk);
4191 return -EFAULT;
4192 }
4193 release_sock(sk);
4194 return -EINVAL;
4195 }
4196 len = tcp_saved_syn_len(tp->saved_syn);
4197 if (put_user(len, optlen)) {
4198 release_sock(sk);
4199 return -EFAULT;
4200 }
4201 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4202 release_sock(sk);
4203 return -EFAULT;
4204 }
4205 tcp_saved_syn_free(tp);
4206 release_sock(sk);
4207 } else {
4208 release_sock(sk);
4209 len = 0;
4210 if (put_user(len, optlen))
4211 return -EFAULT;
4212 }
4213 return 0;
4214 }
4215 #ifdef CONFIG_MMU
4216 case TCP_ZEROCOPY_RECEIVE: {
4217 struct scm_timestamping_internal tss;
4218 struct tcp_zerocopy_receive zc = {};
4219 int err;
4220
4221 if (get_user(len, optlen))
4222 return -EFAULT;
4223 if (len < 0 ||
4224 len < offsetofend(struct tcp_zerocopy_receive, length))
4225 return -EINVAL;
4226 if (unlikely(len > sizeof(zc))) {
4227 err = check_zeroed_user(optval + sizeof(zc),
4228 len - sizeof(zc));
4229 if (err < 1)
4230 return err == 0 ? -EINVAL : err;
4231 len = sizeof(zc);
4232 if (put_user(len, optlen))
4233 return -EFAULT;
4234 }
4235 if (copy_from_user(&zc, optval, len))
4236 return -EFAULT;
4237 if (zc.reserved)
4238 return -EINVAL;
4239 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4240 return -EINVAL;
4241 lock_sock(sk);
4242 err = tcp_zerocopy_receive(sk, &zc, &tss);
4243 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4244 &zc, &len, err);
4245 release_sock(sk);
4246 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4247 goto zerocopy_rcv_cmsg;
4248 switch (len) {
4249 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4250 goto zerocopy_rcv_cmsg;
4251 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4252 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4253 case offsetofend(struct tcp_zerocopy_receive, flags):
4254 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4255 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4256 case offsetofend(struct tcp_zerocopy_receive, err):
4257 goto zerocopy_rcv_sk_err;
4258 case offsetofend(struct tcp_zerocopy_receive, inq):
4259 goto zerocopy_rcv_inq;
4260 case offsetofend(struct tcp_zerocopy_receive, length):
4261 default:
4262 goto zerocopy_rcv_out;
4263 }
4264 zerocopy_rcv_cmsg:
4265 if (zc.msg_flags & TCP_CMSG_TS)
4266 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4267 else
4268 zc.msg_flags = 0;
4269 zerocopy_rcv_sk_err:
4270 if (!err)
4271 zc.err = sock_error(sk);
4272 zerocopy_rcv_inq:
4273 zc.inq = tcp_inq_hint(sk);
4274 zerocopy_rcv_out:
4275 if (!err && copy_to_user(optval, &zc, len))
4276 err = -EFAULT;
4277 return err;
4278 }
4279 #endif
4280 default:
4281 return -ENOPROTOOPT;
4282 }
4283
4284 if (put_user(len, optlen))
4285 return -EFAULT;
4286 if (copy_to_user(optval, &val, len))
4287 return -EFAULT;
4288 return 0;
4289 }
4290
tcp_bpf_bypass_getsockopt(int level,int optname)4291 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4292 {
4293 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4294 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4295 */
4296 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4297 return true;
4298
4299 return false;
4300 }
4301 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4302
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4303 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4304 int __user *optlen)
4305 {
4306 struct inet_connection_sock *icsk = inet_csk(sk);
4307
4308 if (level != SOL_TCP)
4309 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4310 optval, optlen);
4311 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4312 }
4313 EXPORT_SYMBOL(tcp_getsockopt);
4314
4315 #ifdef CONFIG_TCP_MD5SIG
4316 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4317 static DEFINE_MUTEX(tcp_md5sig_mutex);
4318 static bool tcp_md5sig_pool_populated = false;
4319
__tcp_alloc_md5sig_pool(void)4320 static void __tcp_alloc_md5sig_pool(void)
4321 {
4322 struct crypto_ahash *hash;
4323 int cpu;
4324
4325 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4326 if (IS_ERR(hash))
4327 return;
4328
4329 for_each_possible_cpu(cpu) {
4330 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4331 struct ahash_request *req;
4332
4333 if (!scratch) {
4334 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4335 sizeof(struct tcphdr),
4336 GFP_KERNEL,
4337 cpu_to_node(cpu));
4338 if (!scratch)
4339 return;
4340 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4341 }
4342 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4343 continue;
4344
4345 req = ahash_request_alloc(hash, GFP_KERNEL);
4346 if (!req)
4347 return;
4348
4349 ahash_request_set_callback(req, 0, NULL, NULL);
4350
4351 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4352 }
4353 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4354 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4355 */
4356 smp_wmb();
4357 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4358 * and tcp_get_md5sig_pool().
4359 */
4360 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4361 }
4362
tcp_alloc_md5sig_pool(void)4363 bool tcp_alloc_md5sig_pool(void)
4364 {
4365 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4366 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4367 mutex_lock(&tcp_md5sig_mutex);
4368
4369 if (!tcp_md5sig_pool_populated) {
4370 __tcp_alloc_md5sig_pool();
4371 if (tcp_md5sig_pool_populated)
4372 static_branch_inc(&tcp_md5_needed);
4373 }
4374
4375 mutex_unlock(&tcp_md5sig_mutex);
4376 }
4377 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4378 return READ_ONCE(tcp_md5sig_pool_populated);
4379 }
4380 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4381
4382
4383 /**
4384 * tcp_get_md5sig_pool - get md5sig_pool for this user
4385 *
4386 * We use percpu structure, so if we succeed, we exit with preemption
4387 * and BH disabled, to make sure another thread or softirq handling
4388 * wont try to get same context.
4389 */
tcp_get_md5sig_pool(void)4390 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4391 {
4392 local_bh_disable();
4393
4394 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4395 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4396 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4397 smp_rmb();
4398 return this_cpu_ptr(&tcp_md5sig_pool);
4399 }
4400 local_bh_enable();
4401 return NULL;
4402 }
4403 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4404
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4405 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4406 const struct sk_buff *skb, unsigned int header_len)
4407 {
4408 struct scatterlist sg;
4409 const struct tcphdr *tp = tcp_hdr(skb);
4410 struct ahash_request *req = hp->md5_req;
4411 unsigned int i;
4412 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4413 skb_headlen(skb) - header_len : 0;
4414 const struct skb_shared_info *shi = skb_shinfo(skb);
4415 struct sk_buff *frag_iter;
4416
4417 sg_init_table(&sg, 1);
4418
4419 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4420 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4421 if (crypto_ahash_update(req))
4422 return 1;
4423
4424 for (i = 0; i < shi->nr_frags; ++i) {
4425 const skb_frag_t *f = &shi->frags[i];
4426 unsigned int offset = skb_frag_off(f);
4427 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4428
4429 sg_set_page(&sg, page, skb_frag_size(f),
4430 offset_in_page(offset));
4431 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4432 if (crypto_ahash_update(req))
4433 return 1;
4434 }
4435
4436 skb_walk_frags(skb, frag_iter)
4437 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4438 return 1;
4439
4440 return 0;
4441 }
4442 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4443
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4444 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4445 {
4446 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4447 struct scatterlist sg;
4448
4449 sg_init_one(&sg, key->key, keylen);
4450 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4451
4452 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4453 return data_race(crypto_ahash_update(hp->md5_req));
4454 }
4455 EXPORT_SYMBOL(tcp_md5_hash_key);
4456
4457 #endif
4458
tcp_done(struct sock * sk)4459 void tcp_done(struct sock *sk)
4460 {
4461 struct request_sock *req;
4462
4463 /* We might be called with a new socket, after
4464 * inet_csk_prepare_forced_close() has been called
4465 * so we can not use lockdep_sock_is_held(sk)
4466 */
4467 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4468
4469 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4470 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4471
4472 tcp_set_state(sk, TCP_CLOSE);
4473 tcp_clear_xmit_timers(sk);
4474 if (req)
4475 reqsk_fastopen_remove(sk, req, false);
4476
4477 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4478
4479 if (!sock_flag(sk, SOCK_DEAD))
4480 sk->sk_state_change(sk);
4481 else
4482 inet_csk_destroy_sock(sk);
4483 }
4484 EXPORT_SYMBOL_GPL(tcp_done);
4485
tcp_abort(struct sock * sk,int err)4486 int tcp_abort(struct sock *sk, int err)
4487 {
4488 if (!sk_fullsock(sk)) {
4489 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4490 struct request_sock *req = inet_reqsk(sk);
4491
4492 local_bh_disable();
4493 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4494 local_bh_enable();
4495 return 0;
4496 }
4497 return -EOPNOTSUPP;
4498 }
4499
4500 /* Don't race with userspace socket closes such as tcp_close. */
4501 lock_sock(sk);
4502
4503 if (sk->sk_state == TCP_LISTEN) {
4504 tcp_set_state(sk, TCP_CLOSE);
4505 inet_csk_listen_stop(sk);
4506 }
4507
4508 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4509 local_bh_disable();
4510 bh_lock_sock(sk);
4511
4512 if (!sock_flag(sk, SOCK_DEAD)) {
4513 sk->sk_err = err;
4514 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4515 smp_wmb();
4516 sk_error_report(sk);
4517 if (tcp_need_reset(sk->sk_state))
4518 tcp_send_active_reset(sk, GFP_ATOMIC);
4519 tcp_done(sk);
4520 }
4521
4522 bh_unlock_sock(sk);
4523 local_bh_enable();
4524 tcp_write_queue_purge(sk);
4525 release_sock(sk);
4526 return 0;
4527 }
4528 EXPORT_SYMBOL_GPL(tcp_abort);
4529
4530 extern struct tcp_congestion_ops tcp_reno;
4531
4532 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4533 static int __init set_thash_entries(char *str)
4534 {
4535 ssize_t ret;
4536
4537 if (!str)
4538 return 0;
4539
4540 ret = kstrtoul(str, 0, &thash_entries);
4541 if (ret)
4542 return 0;
4543
4544 return 1;
4545 }
4546 __setup("thash_entries=", set_thash_entries);
4547
tcp_init_mem(void)4548 static void __init tcp_init_mem(void)
4549 {
4550 unsigned long limit = nr_free_buffer_pages() / 16;
4551
4552 limit = max(limit, 128UL);
4553 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4554 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4555 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4556 }
4557
tcp_init(void)4558 void __init tcp_init(void)
4559 {
4560 int max_rshare, max_wshare, cnt;
4561 unsigned long limit;
4562 unsigned int i;
4563
4564 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4565 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4566 sizeof_field(struct sk_buff, cb));
4567
4568 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4569
4570 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4571 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4572
4573 inet_hashinfo_init(&tcp_hashinfo);
4574 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4575 thash_entries, 21, /* one slot per 2 MB*/
4576 0, 64 * 1024);
4577 tcp_hashinfo.bind_bucket_cachep =
4578 kmem_cache_create("tcp_bind_bucket",
4579 sizeof(struct inet_bind_bucket), 0,
4580 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4581 SLAB_ACCOUNT,
4582 NULL);
4583
4584 /* Size and allocate the main established and bind bucket
4585 * hash tables.
4586 *
4587 * The methodology is similar to that of the buffer cache.
4588 */
4589 tcp_hashinfo.ehash =
4590 alloc_large_system_hash("TCP established",
4591 sizeof(struct inet_ehash_bucket),
4592 thash_entries,
4593 17, /* one slot per 128 KB of memory */
4594 0,
4595 NULL,
4596 &tcp_hashinfo.ehash_mask,
4597 0,
4598 thash_entries ? 0 : 512 * 1024);
4599 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4600 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4601
4602 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4603 panic("TCP: failed to alloc ehash_locks");
4604 tcp_hashinfo.bhash =
4605 alloc_large_system_hash("TCP bind",
4606 sizeof(struct inet_bind_hashbucket),
4607 tcp_hashinfo.ehash_mask + 1,
4608 17, /* one slot per 128 KB of memory */
4609 0,
4610 &tcp_hashinfo.bhash_size,
4611 NULL,
4612 0,
4613 64 * 1024);
4614 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4615 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4616 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4617 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4618 }
4619
4620
4621 cnt = tcp_hashinfo.ehash_mask + 1;
4622 sysctl_tcp_max_orphans = cnt / 2;
4623
4624 tcp_init_mem();
4625 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4626 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4627 max_wshare = min(4UL*1024*1024, limit);
4628 max_rshare = min(6UL*1024*1024, limit);
4629
4630 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4631 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4632 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4633
4634 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4635 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4636 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4637
4638 pr_info("Hash tables configured (established %u bind %u)\n",
4639 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4640
4641 tcp_v4_init();
4642 tcp_metrics_init();
4643 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4644 tcp_tasklet_init();
4645 mptcp_init();
4646 }
4647