• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 #include <trace/hooks/ipv4.h>
285 
286 /* Track pending CMSGs. */
287 enum {
288 	TCP_CMSG_INQ = 1,
289 	TCP_CMSG_TS = 2
290 };
291 
292 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
293 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
294 
295 long sysctl_tcp_mem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 
298 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
299 EXPORT_SYMBOL(tcp_memory_allocated);
300 
301 #if IS_ENABLED(CONFIG_SMC)
302 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
303 EXPORT_SYMBOL(tcp_have_smc);
304 #endif
305 
306 /*
307  * Current number of TCP sockets.
308  */
309 struct percpu_counter tcp_sockets_allocated;
310 EXPORT_SYMBOL(tcp_sockets_allocated);
311 
312 /*
313  * TCP splice context
314  */
315 struct tcp_splice_state {
316 	struct pipe_inode_info *pipe;
317 	size_t len;
318 	unsigned int flags;
319 };
320 
321 /*
322  * Pressure flag: try to collapse.
323  * Technical note: it is used by multiple contexts non atomically.
324  * All the __sk_mem_schedule() is of this nature: accounting
325  * is strict, actions are advisory and have some latency.
326  */
327 unsigned long tcp_memory_pressure __read_mostly;
328 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
329 
330 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
331 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
332 
333 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
334 
tcp_enter_memory_pressure(struct sock * sk)335 void tcp_enter_memory_pressure(struct sock *sk)
336 {
337 	unsigned long val;
338 
339 	if (READ_ONCE(tcp_memory_pressure))
340 		return;
341 	val = jiffies;
342 
343 	if (!val)
344 		val--;
345 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
346 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
347 }
348 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
349 
tcp_leave_memory_pressure(struct sock * sk)350 void tcp_leave_memory_pressure(struct sock *sk)
351 {
352 	unsigned long val;
353 
354 	if (!READ_ONCE(tcp_memory_pressure))
355 		return;
356 	val = xchg(&tcp_memory_pressure, 0);
357 	if (val)
358 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
359 			      jiffies_to_msecs(jiffies - val));
360 }
361 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
362 
363 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)364 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
365 {
366 	u8 res = 0;
367 
368 	if (seconds > 0) {
369 		int period = timeout;
370 
371 		res = 1;
372 		while (seconds > period && res < 255) {
373 			res++;
374 			timeout <<= 1;
375 			if (timeout > rto_max)
376 				timeout = rto_max;
377 			period += timeout;
378 		}
379 	}
380 	return res;
381 }
382 
383 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)384 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
385 {
386 	int period = 0;
387 
388 	if (retrans > 0) {
389 		period = timeout;
390 		while (--retrans) {
391 			timeout <<= 1;
392 			if (timeout > rto_max)
393 				timeout = rto_max;
394 			period += timeout;
395 		}
396 	}
397 	return period;
398 }
399 
tcp_compute_delivery_rate(const struct tcp_sock * tp)400 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
401 {
402 	u32 rate = READ_ONCE(tp->rate_delivered);
403 	u32 intv = READ_ONCE(tp->rate_interval_us);
404 	u64 rate64 = 0;
405 
406 	if (rate && intv) {
407 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
408 		do_div(rate64, intv);
409 	}
410 	return rate64;
411 }
412 
413 /* Address-family independent initialization for a tcp_sock.
414  *
415  * NOTE: A lot of things set to zero explicitly by call to
416  *       sk_alloc() so need not be done here.
417  */
tcp_init_sock(struct sock * sk)418 void tcp_init_sock(struct sock *sk)
419 {
420 	struct inet_connection_sock *icsk = inet_csk(sk);
421 	struct tcp_sock *tp = tcp_sk(sk);
422 
423 	tp->out_of_order_queue = RB_ROOT;
424 	sk->tcp_rtx_queue = RB_ROOT;
425 	tcp_init_xmit_timers(sk);
426 	INIT_LIST_HEAD(&tp->tsq_node);
427 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
428 
429 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
430 	icsk->icsk_rto_min = TCP_RTO_MIN;
431 	icsk->icsk_delack_max = TCP_DELACK_MAX;
432 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
433 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
434 
435 	/* So many TCP implementations out there (incorrectly) count the
436 	 * initial SYN frame in their delayed-ACK and congestion control
437 	 * algorithms that we must have the following bandaid to talk
438 	 * efficiently to them.  -DaveM
439 	 */
440 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
441 
442 	/* There's a bubble in the pipe until at least the first ACK. */
443 	tp->app_limited = ~0U;
444 	tp->rate_app_limited = 1;
445 
446 	/* See draft-stevens-tcpca-spec-01 for discussion of the
447 	 * initialization of these values.
448 	 */
449 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
450 	tp->snd_cwnd_clamp = ~0;
451 	tp->mss_cache = TCP_MSS_DEFAULT;
452 
453 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
454 	tcp_assign_congestion_control(sk);
455 
456 	tp->tsoffset = 0;
457 	tp->rack.reo_wnd_steps = 1;
458 
459 	sk->sk_write_space = sk_stream_write_space;
460 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
461 
462 	icsk->icsk_sync_mss = tcp_sync_mss;
463 
464 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
465 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
466 
467 	sk_sockets_allocated_inc(sk);
468 	sk->sk_route_forced_caps = NETIF_F_GSO;
469 }
470 EXPORT_SYMBOL(tcp_init_sock);
471 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
473 {
474 	struct sk_buff *skb = tcp_write_queue_tail(sk);
475 
476 	if (tsflags && skb) {
477 		struct skb_shared_info *shinfo = skb_shinfo(skb);
478 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
479 
480 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
481 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
482 			tcb->txstamp_ack = 1;
483 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
484 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
485 	}
486 }
487 
tcp_stream_is_readable(struct sock * sk,int target)488 static bool tcp_stream_is_readable(struct sock *sk, int target)
489 {
490 	if (tcp_epollin_ready(sk, target))
491 		return true;
492 	return sk_is_readable(sk);
493 }
494 
495 /*
496  *	Wait for a TCP event.
497  *
498  *	Note that we don't need to lock the socket, as the upper poll layers
499  *	take care of normal races (between the test and the event) and we don't
500  *	go look at any of the socket buffers directly.
501  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)502 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
503 {
504 	__poll_t mask;
505 	struct sock *sk = sock->sk;
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	u8 shutdown;
508 	int state;
509 
510 	sock_poll_wait(file, sock, wait);
511 
512 	state = inet_sk_state_load(sk);
513 	if (state == TCP_LISTEN)
514 		return inet_csk_listen_poll(sk);
515 
516 	/* Socket is not locked. We are protected from async events
517 	 * by poll logic and correct handling of state changes
518 	 * made by other threads is impossible in any case.
519 	 */
520 
521 	mask = 0;
522 
523 	/*
524 	 * EPOLLHUP is certainly not done right. But poll() doesn't
525 	 * have a notion of HUP in just one direction, and for a
526 	 * socket the read side is more interesting.
527 	 *
528 	 * Some poll() documentation says that EPOLLHUP is incompatible
529 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 	 * all. But careful, it tends to be safer to return too many
531 	 * bits than too few, and you can easily break real applications
532 	 * if you don't tell them that something has hung up!
533 	 *
534 	 * Check-me.
535 	 *
536 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 	 * our fs/select.c). It means that after we received EOF,
538 	 * poll always returns immediately, making impossible poll() on write()
539 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 	 * if and only if shutdown has been made in both directions.
541 	 * Actually, it is interesting to look how Solaris and DUX
542 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 	 * then we could set it on SND_SHUTDOWN. BTW examples given
544 	 * in Stevens' books assume exactly this behaviour, it explains
545 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
546 	 *
547 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 	 * blocking on fresh not-connected or disconnected socket. --ANK
549 	 */
550 	shutdown = READ_ONCE(sk->sk_shutdown);
551 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
552 		mask |= EPOLLHUP;
553 	if (shutdown & RCV_SHUTDOWN)
554 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
555 
556 	/* Connected or passive Fast Open socket? */
557 	if (state != TCP_SYN_SENT &&
558 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
559 		int target = sock_rcvlowat(sk, 0, INT_MAX);
560 
561 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
562 		    !sock_flag(sk, SOCK_URGINLINE) &&
563 		    tp->urg_data)
564 			target++;
565 
566 		if (tcp_stream_is_readable(sk, target))
567 			mask |= EPOLLIN | EPOLLRDNORM;
568 
569 		if (!(shutdown & SEND_SHUTDOWN)) {
570 			if (__sk_stream_is_writeable(sk, 1)) {
571 				mask |= EPOLLOUT | EPOLLWRNORM;
572 			} else {  /* send SIGIO later */
573 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
574 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
575 
576 				/* Race breaker. If space is freed after
577 				 * wspace test but before the flags are set,
578 				 * IO signal will be lost. Memory barrier
579 				 * pairs with the input side.
580 				 */
581 				smp_mb__after_atomic();
582 				if (__sk_stream_is_writeable(sk, 1))
583 					mask |= EPOLLOUT | EPOLLWRNORM;
584 			}
585 		} else
586 			mask |= EPOLLOUT | EPOLLWRNORM;
587 
588 		if (tp->urg_data & TCP_URG_VALID)
589 			mask |= EPOLLPRI;
590 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
591 		/* Active TCP fastopen socket with defer_connect
592 		 * Return EPOLLOUT so application can call write()
593 		 * in order for kernel to generate SYN+data
594 		 */
595 		mask |= EPOLLOUT | EPOLLWRNORM;
596 	}
597 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
598 	smp_rmb();
599 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
600 		mask |= EPOLLERR;
601 
602 	return mask;
603 }
604 EXPORT_SYMBOL(tcp_poll);
605 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)606 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
607 {
608 	struct tcp_sock *tp = tcp_sk(sk);
609 	int answ;
610 	bool slow;
611 
612 	switch (cmd) {
613 	case SIOCINQ:
614 		if (sk->sk_state == TCP_LISTEN)
615 			return -EINVAL;
616 
617 		slow = lock_sock_fast(sk);
618 		answ = tcp_inq(sk);
619 		unlock_sock_fast(sk, slow);
620 		break;
621 	case SIOCATMARK:
622 		answ = tp->urg_data &&
623 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
624 		break;
625 	case SIOCOUTQ:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
630 			answ = 0;
631 		else
632 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
633 		break;
634 	case SIOCOUTQNSD:
635 		if (sk->sk_state == TCP_LISTEN)
636 			return -EINVAL;
637 
638 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
639 			answ = 0;
640 		else
641 			answ = READ_ONCE(tp->write_seq) -
642 			       READ_ONCE(tp->snd_nxt);
643 		break;
644 	default:
645 		return -ENOIOCTLCMD;
646 	}
647 
648 	return put_user(answ, (int __user *)arg);
649 }
650 EXPORT_SYMBOL(tcp_ioctl);
651 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
653 {
654 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
655 	tp->pushed_seq = tp->write_seq;
656 }
657 
forced_push(const struct tcp_sock * tp)658 static inline bool forced_push(const struct tcp_sock *tp)
659 {
660 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
661 }
662 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)663 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
664 {
665 	struct tcp_sock *tp = tcp_sk(sk);
666 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
667 
668 	skb->csum    = 0;
669 	tcb->seq     = tcb->end_seq = tp->write_seq;
670 	tcb->tcp_flags = TCPHDR_ACK;
671 	tcb->sacked  = 0;
672 	__skb_header_release(skb);
673 	tcp_add_write_queue_tail(sk, skb);
674 	sk_wmem_queued_add(sk, skb->truesize);
675 	sk_mem_charge(sk, skb->truesize);
676 	if (tp->nonagle & TCP_NAGLE_PUSH)
677 		tp->nonagle &= ~TCP_NAGLE_PUSH;
678 
679 	tcp_slow_start_after_idle_check(sk);
680 }
681 
tcp_mark_urg(struct tcp_sock * tp,int flags)682 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
683 {
684 	if (flags & MSG_OOB)
685 		tp->snd_up = tp->write_seq;
686 }
687 
688 /* If a not yet filled skb is pushed, do not send it if
689  * we have data packets in Qdisc or NIC queues :
690  * Because TX completion will happen shortly, it gives a chance
691  * to coalesce future sendmsg() payload into this skb, without
692  * need for a timer, and with no latency trade off.
693  * As packets containing data payload have a bigger truesize
694  * than pure acks (dataless) packets, the last checks prevent
695  * autocorking if we only have an ACK in Qdisc/NIC queues,
696  * or if TX completion was delayed after we processed ACK packet.
697  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)698 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
699 				int size_goal)
700 {
701 	return skb->len < size_goal &&
702 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
703 	       !tcp_rtx_queue_empty(sk) &&
704 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
705 }
706 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)707 void tcp_push(struct sock *sk, int flags, int mss_now,
708 	      int nonagle, int size_goal)
709 {
710 	struct tcp_sock *tp = tcp_sk(sk);
711 	struct sk_buff *skb;
712 
713 	skb = tcp_write_queue_tail(sk);
714 	if (!skb)
715 		return;
716 	if (!(flags & MSG_MORE) || forced_push(tp))
717 		tcp_mark_push(tp, skb);
718 
719 	tcp_mark_urg(tp, flags);
720 
721 	if (tcp_should_autocork(sk, skb, size_goal)) {
722 
723 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
724 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
725 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
726 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
727 			smp_mb__after_atomic();
728 		}
729 		/* It is possible TX completion already happened
730 		 * before we set TSQ_THROTTLED.
731 		 */
732 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
733 			return;
734 	}
735 
736 	if (flags & MSG_MORE)
737 		nonagle = TCP_NAGLE_CORK;
738 
739 	__tcp_push_pending_frames(sk, mss_now, nonagle);
740 }
741 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)742 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
743 				unsigned int offset, size_t len)
744 {
745 	struct tcp_splice_state *tss = rd_desc->arg.data;
746 	int ret;
747 
748 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
749 			      min(rd_desc->count, len), tss->flags);
750 	if (ret > 0)
751 		rd_desc->count -= ret;
752 	return ret;
753 }
754 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)755 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
756 {
757 	/* Store TCP splice context information in read_descriptor_t. */
758 	read_descriptor_t rd_desc = {
759 		.arg.data = tss,
760 		.count	  = tss->len,
761 	};
762 
763 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
764 }
765 
766 /**
767  *  tcp_splice_read - splice data from TCP socket to a pipe
768  * @sock:	socket to splice from
769  * @ppos:	position (not valid)
770  * @pipe:	pipe to splice to
771  * @len:	number of bytes to splice
772  * @flags:	splice modifier flags
773  *
774  * Description:
775  *    Will read pages from given socket and fill them into a pipe.
776  *
777  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)778 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
779 			struct pipe_inode_info *pipe, size_t len,
780 			unsigned int flags)
781 {
782 	struct sock *sk = sock->sk;
783 	struct tcp_splice_state tss = {
784 		.pipe = pipe,
785 		.len = len,
786 		.flags = flags,
787 	};
788 	long timeo;
789 	ssize_t spliced;
790 	int ret;
791 
792 	sock_rps_record_flow(sk);
793 	/*
794 	 * We can't seek on a socket input
795 	 */
796 	if (unlikely(*ppos))
797 		return -ESPIPE;
798 
799 	ret = spliced = 0;
800 
801 	lock_sock(sk);
802 
803 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
804 	while (tss.len) {
805 		ret = __tcp_splice_read(sk, &tss);
806 		if (ret < 0)
807 			break;
808 		else if (!ret) {
809 			if (spliced)
810 				break;
811 			if (sock_flag(sk, SOCK_DONE))
812 				break;
813 			if (sk->sk_err) {
814 				ret = sock_error(sk);
815 				break;
816 			}
817 			if (sk->sk_shutdown & RCV_SHUTDOWN)
818 				break;
819 			if (sk->sk_state == TCP_CLOSE) {
820 				/*
821 				 * This occurs when user tries to read
822 				 * from never connected socket.
823 				 */
824 				ret = -ENOTCONN;
825 				break;
826 			}
827 			if (!timeo) {
828 				ret = -EAGAIN;
829 				break;
830 			}
831 			/* if __tcp_splice_read() got nothing while we have
832 			 * an skb in receive queue, we do not want to loop.
833 			 * This might happen with URG data.
834 			 */
835 			if (!skb_queue_empty(&sk->sk_receive_queue))
836 				break;
837 			sk_wait_data(sk, &timeo, NULL);
838 			if (signal_pending(current)) {
839 				ret = sock_intr_errno(timeo);
840 				break;
841 			}
842 			continue;
843 		}
844 		tss.len -= ret;
845 		spliced += ret;
846 
847 		if (!timeo)
848 			break;
849 		release_sock(sk);
850 		lock_sock(sk);
851 
852 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 		    signal_pending(current))
855 			break;
856 	}
857 
858 	release_sock(sk);
859 
860 	if (spliced)
861 		return spliced;
862 
863 	return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)867 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
868 				    bool force_schedule)
869 {
870 	struct sk_buff *skb;
871 
872 	if (likely(!size)) {
873 		skb = sk->sk_tx_skb_cache;
874 		if (skb) {
875 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
876 			sk->sk_tx_skb_cache = NULL;
877 			pskb_trim(skb, 0);
878 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
879 			skb_shinfo(skb)->tx_flags = 0;
880 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
881 			return skb;
882 		}
883 	}
884 	/* The TCP header must be at least 32-bit aligned.  */
885 	size = ALIGN(size, 4);
886 
887 	if (unlikely(tcp_under_memory_pressure(sk)))
888 		sk_mem_reclaim_partial(sk);
889 
890 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
891 	if (likely(skb)) {
892 		bool mem_scheduled;
893 
894 		if (force_schedule) {
895 			mem_scheduled = true;
896 			sk_forced_mem_schedule(sk, skb->truesize);
897 		} else {
898 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
899 		}
900 		if (likely(mem_scheduled)) {
901 			skb_reserve(skb, sk->sk_prot->max_header);
902 			/*
903 			 * Make sure that we have exactly size bytes
904 			 * available to the caller, no more, no less.
905 			 */
906 			skb->reserved_tailroom = skb->end - skb->tail - size;
907 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
908 			return skb;
909 		}
910 		__kfree_skb(skb);
911 	} else {
912 		sk->sk_prot->enter_memory_pressure(sk);
913 		sk_stream_moderate_sndbuf(sk);
914 	}
915 	return NULL;
916 }
917 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)918 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
919 				       int large_allowed)
920 {
921 	struct tcp_sock *tp = tcp_sk(sk);
922 	u32 new_size_goal, size_goal;
923 
924 	if (!large_allowed)
925 		return mss_now;
926 
927 	/* Note : tcp_tso_autosize() will eventually split this later */
928 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
929 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
930 
931 	/* We try hard to avoid divides here */
932 	size_goal = tp->gso_segs * mss_now;
933 	if (unlikely(new_size_goal < size_goal ||
934 		     new_size_goal >= size_goal + mss_now)) {
935 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 				     sk->sk_gso_max_segs);
937 		size_goal = tp->gso_segs * mss_now;
938 	}
939 
940 	return max(size_goal, mss_now);
941 }
942 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 	int mss_now;
946 
947 	mss_now = tcp_current_mss(sk);
948 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949 
950 	return mss_now;
951 }
952 
953 /* In some cases, both sendpage() and sendmsg() could have added
954  * an skb to the write queue, but failed adding payload on it.
955  * We need to remove it to consume less memory, but more
956  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
957  * users.
958  */
tcp_remove_empty_skb(struct sock * sk)959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 	struct sk_buff *skb = tcp_write_queue_tail(sk);
962 
963 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 		tcp_unlink_write_queue(skb, sk);
965 		if (tcp_write_queue_empty(sk))
966 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 		sk_wmem_free_skb(sk, skb);
968 	}
969 }
970 
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)971 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
972 			       struct page *page, int offset, size_t *size)
973 {
974 	struct sk_buff *skb = tcp_write_queue_tail(sk);
975 	struct tcp_sock *tp = tcp_sk(sk);
976 	bool can_coalesce;
977 	int copy, i;
978 
979 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
980 	    !tcp_skb_can_collapse_to(skb)) {
981 new_segment:
982 		if (!sk_stream_memory_free(sk))
983 			return NULL;
984 
985 		skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
986 					  tcp_rtx_and_write_queues_empty(sk));
987 		if (!skb)
988 			return NULL;
989 
990 #ifdef CONFIG_TLS_DEVICE
991 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
992 #endif
993 		tcp_skb_entail(sk, skb);
994 		copy = size_goal;
995 	}
996 
997 	if (copy > *size)
998 		copy = *size;
999 
1000 	i = skb_shinfo(skb)->nr_frags;
1001 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1002 	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1003 		tcp_mark_push(tp, skb);
1004 		goto new_segment;
1005 	}
1006 	if (!sk_wmem_schedule(sk, copy))
1007 		return NULL;
1008 
1009 	if (can_coalesce) {
1010 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1011 	} else {
1012 		get_page(page);
1013 		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1014 	}
1015 
1016 	if (!(flags & MSG_NO_SHARED_FRAGS))
1017 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1018 
1019 	skb->len += copy;
1020 	skb->data_len += copy;
1021 	skb->truesize += copy;
1022 	sk_wmem_queued_add(sk, copy);
1023 	sk_mem_charge(sk, copy);
1024 	skb->ip_summed = CHECKSUM_PARTIAL;
1025 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1026 	TCP_SKB_CB(skb)->end_seq += copy;
1027 	tcp_skb_pcount_set(skb, 0);
1028 
1029 	*size = copy;
1030 	return skb;
1031 }
1032 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1033 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1034 			 size_t size, int flags)
1035 {
1036 	struct tcp_sock *tp = tcp_sk(sk);
1037 	int mss_now, size_goal;
1038 	int err;
1039 	ssize_t copied;
1040 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1041 
1042 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1043 	    WARN_ONCE(!sendpage_ok(page),
1044 		      "page must not be a Slab one and have page_count > 0"))
1045 		return -EINVAL;
1046 
1047 	/* Wait for a connection to finish. One exception is TCP Fast Open
1048 	 * (passive side) where data is allowed to be sent before a connection
1049 	 * is fully established.
1050 	 */
1051 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1052 	    !tcp_passive_fastopen(sk)) {
1053 		err = sk_stream_wait_connect(sk, &timeo);
1054 		if (err != 0)
1055 			goto out_err;
1056 	}
1057 
1058 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1059 
1060 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1061 	copied = 0;
1062 
1063 	err = -EPIPE;
1064 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1065 		goto out_err;
1066 
1067 	while (size > 0) {
1068 		struct sk_buff *skb;
1069 		size_t copy = size;
1070 
1071 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1072 		if (!skb)
1073 			goto wait_for_space;
1074 
1075 		if (!copied)
1076 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1077 
1078 		copied += copy;
1079 		offset += copy;
1080 		size -= copy;
1081 		if (!size)
1082 			goto out;
1083 
1084 		if (skb->len < size_goal || (flags & MSG_OOB))
1085 			continue;
1086 
1087 		if (forced_push(tp)) {
1088 			tcp_mark_push(tp, skb);
1089 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1090 		} else if (skb == tcp_send_head(sk))
1091 			tcp_push_one(sk, mss_now);
1092 		continue;
1093 
1094 wait_for_space:
1095 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1096 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1097 			 TCP_NAGLE_PUSH, size_goal);
1098 
1099 		err = sk_stream_wait_memory(sk, &timeo);
1100 		if (err != 0)
1101 			goto do_error;
1102 
1103 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1104 	}
1105 
1106 out:
1107 	if (copied) {
1108 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1109 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1110 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1111 	}
1112 	return copied;
1113 
1114 do_error:
1115 	tcp_remove_empty_skb(sk);
1116 	if (copied)
1117 		goto out;
1118 out_err:
1119 	/* make sure we wake any epoll edge trigger waiter */
1120 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1121 		sk->sk_write_space(sk);
1122 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1123 	}
1124 	return sk_stream_error(sk, flags, err);
1125 }
1126 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1127 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1128 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1129 			size_t size, int flags)
1130 {
1131 	if (!(sk->sk_route_caps & NETIF_F_SG))
1132 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1133 
1134 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1135 
1136 	return do_tcp_sendpages(sk, page, offset, size, flags);
1137 }
1138 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1139 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1140 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1141 		 size_t size, int flags)
1142 {
1143 	int ret;
1144 
1145 	lock_sock(sk);
1146 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1147 	release_sock(sk);
1148 
1149 	return ret;
1150 }
1151 EXPORT_SYMBOL(tcp_sendpage);
1152 
tcp_free_fastopen_req(struct tcp_sock * tp)1153 void tcp_free_fastopen_req(struct tcp_sock *tp)
1154 {
1155 	if (tp->fastopen_req) {
1156 		kfree(tp->fastopen_req);
1157 		tp->fastopen_req = NULL;
1158 	}
1159 }
1160 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1161 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1162 				int *copied, size_t size,
1163 				struct ubuf_info *uarg)
1164 {
1165 	struct tcp_sock *tp = tcp_sk(sk);
1166 	struct inet_sock *inet = inet_sk(sk);
1167 	struct sockaddr *uaddr = msg->msg_name;
1168 	int err, flags;
1169 
1170 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1171 	      TFO_CLIENT_ENABLE) ||
1172 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1173 	     uaddr->sa_family == AF_UNSPEC))
1174 		return -EOPNOTSUPP;
1175 	if (tp->fastopen_req)
1176 		return -EALREADY; /* Another Fast Open is in progress */
1177 
1178 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1179 				   sk->sk_allocation);
1180 	if (unlikely(!tp->fastopen_req))
1181 		return -ENOBUFS;
1182 	tp->fastopen_req->data = msg;
1183 	tp->fastopen_req->size = size;
1184 	tp->fastopen_req->uarg = uarg;
1185 
1186 	if (inet->defer_connect) {
1187 		err = tcp_connect(sk);
1188 		/* Same failure procedure as in tcp_v4/6_connect */
1189 		if (err) {
1190 			tcp_set_state(sk, TCP_CLOSE);
1191 			inet->inet_dport = 0;
1192 			sk->sk_route_caps = 0;
1193 		}
1194 	}
1195 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1196 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1197 				    msg->msg_namelen, flags, 1);
1198 	/* fastopen_req could already be freed in __inet_stream_connect
1199 	 * if the connection times out or gets rst
1200 	 */
1201 	if (tp->fastopen_req) {
1202 		*copied = tp->fastopen_req->copied;
1203 		tcp_free_fastopen_req(tp);
1204 		inet->defer_connect = 0;
1205 	}
1206 	return err;
1207 }
1208 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1209 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1210 {
1211 	struct tcp_sock *tp = tcp_sk(sk);
1212 	struct ubuf_info *uarg = NULL;
1213 	struct sk_buff *skb;
1214 	struct sockcm_cookie sockc;
1215 	int flags, err, copied = 0;
1216 	int mss_now = 0, size_goal, copied_syn = 0;
1217 	int process_backlog = 0;
1218 	bool zc = false;
1219 	long timeo;
1220 
1221 	trace_android_rvh_tcp_sendmsg_locked(sk, size);
1222 	flags = msg->msg_flags;
1223 
1224 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1225 		skb = tcp_write_queue_tail(sk);
1226 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1227 		if (!uarg) {
1228 			err = -ENOBUFS;
1229 			goto out_err;
1230 		}
1231 
1232 		zc = sk->sk_route_caps & NETIF_F_SG;
1233 		if (!zc)
1234 			uarg->zerocopy = 0;
1235 	}
1236 
1237 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1238 	    !tp->repair) {
1239 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1240 		if (err == -EINPROGRESS && copied_syn > 0)
1241 			goto out;
1242 		else if (err)
1243 			goto out_err;
1244 	}
1245 
1246 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1247 
1248 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1249 
1250 	/* Wait for a connection to finish. One exception is TCP Fast Open
1251 	 * (passive side) where data is allowed to be sent before a connection
1252 	 * is fully established.
1253 	 */
1254 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1255 	    !tcp_passive_fastopen(sk)) {
1256 		err = sk_stream_wait_connect(sk, &timeo);
1257 		if (err != 0)
1258 			goto do_error;
1259 	}
1260 
1261 	if (unlikely(tp->repair)) {
1262 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1263 			copied = tcp_send_rcvq(sk, msg, size);
1264 			goto out_nopush;
1265 		}
1266 
1267 		err = -EINVAL;
1268 		if (tp->repair_queue == TCP_NO_QUEUE)
1269 			goto out_err;
1270 
1271 		/* 'common' sending to sendq */
1272 	}
1273 
1274 	sockcm_init(&sockc, sk);
1275 	if (msg->msg_controllen) {
1276 		err = sock_cmsg_send(sk, msg, &sockc);
1277 		if (unlikely(err)) {
1278 			err = -EINVAL;
1279 			goto out_err;
1280 		}
1281 	}
1282 
1283 	/* This should be in poll */
1284 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1285 
1286 	/* Ok commence sending. */
1287 	copied = 0;
1288 
1289 restart:
1290 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1291 
1292 	err = -EPIPE;
1293 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1294 		goto do_error;
1295 
1296 	while (msg_data_left(msg)) {
1297 		int copy = 0;
1298 
1299 		skb = tcp_write_queue_tail(sk);
1300 		if (skb)
1301 			copy = size_goal - skb->len;
1302 
1303 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1304 			bool first_skb;
1305 
1306 new_segment:
1307 			if (!sk_stream_memory_free(sk))
1308 				goto wait_for_space;
1309 
1310 			if (unlikely(process_backlog >= 16)) {
1311 				process_backlog = 0;
1312 				if (sk_flush_backlog(sk))
1313 					goto restart;
1314 			}
1315 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1316 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1317 						  first_skb);
1318 			if (!skb)
1319 				goto wait_for_space;
1320 
1321 			process_backlog++;
1322 			skb->ip_summed = CHECKSUM_PARTIAL;
1323 
1324 			tcp_skb_entail(sk, skb);
1325 			copy = size_goal;
1326 
1327 			/* All packets are restored as if they have
1328 			 * already been sent. skb_mstamp_ns isn't set to
1329 			 * avoid wrong rtt estimation.
1330 			 */
1331 			if (tp->repair)
1332 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1333 		}
1334 
1335 		/* Try to append data to the end of skb. */
1336 		if (copy > msg_data_left(msg))
1337 			copy = msg_data_left(msg);
1338 
1339 		if (!zc) {
1340 			bool merge = true;
1341 			int i = skb_shinfo(skb)->nr_frags;
1342 			struct page_frag *pfrag = sk_page_frag(sk);
1343 
1344 			if (!sk_page_frag_refill(sk, pfrag))
1345 				goto wait_for_space;
1346 
1347 			if (!skb_can_coalesce(skb, i, pfrag->page,
1348 					      pfrag->offset)) {
1349 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1350 					tcp_mark_push(tp, skb);
1351 					goto new_segment;
1352 				}
1353 				merge = false;
1354 			}
1355 
1356 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1357 
1358 			if (!sk_wmem_schedule(sk, copy))
1359 				goto wait_for_space;
1360 
1361 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1362 						       pfrag->page,
1363 						       pfrag->offset,
1364 						       copy);
1365 			if (err)
1366 				goto do_error;
1367 
1368 			/* Update the skb. */
1369 			if (merge) {
1370 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1371 			} else {
1372 				skb_fill_page_desc(skb, i, pfrag->page,
1373 						   pfrag->offset, copy);
1374 				page_ref_inc(pfrag->page);
1375 			}
1376 			pfrag->offset += copy;
1377 		} else {
1378 			if (!sk_wmem_schedule(sk, copy))
1379 				goto wait_for_space;
1380 
1381 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1382 			if (err == -EMSGSIZE || err == -EEXIST) {
1383 				tcp_mark_push(tp, skb);
1384 				goto new_segment;
1385 			}
1386 			if (err < 0)
1387 				goto do_error;
1388 			copy = err;
1389 		}
1390 
1391 		if (!copied)
1392 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1393 
1394 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1395 		TCP_SKB_CB(skb)->end_seq += copy;
1396 		tcp_skb_pcount_set(skb, 0);
1397 
1398 		copied += copy;
1399 		if (!msg_data_left(msg)) {
1400 			if (unlikely(flags & MSG_EOR))
1401 				TCP_SKB_CB(skb)->eor = 1;
1402 			goto out;
1403 		}
1404 
1405 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1406 			continue;
1407 
1408 		if (forced_push(tp)) {
1409 			tcp_mark_push(tp, skb);
1410 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1411 		} else if (skb == tcp_send_head(sk))
1412 			tcp_push_one(sk, mss_now);
1413 		continue;
1414 
1415 wait_for_space:
1416 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1417 		if (copied)
1418 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1419 				 TCP_NAGLE_PUSH, size_goal);
1420 
1421 		err = sk_stream_wait_memory(sk, &timeo);
1422 		if (err != 0)
1423 			goto do_error;
1424 
1425 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1426 	}
1427 
1428 out:
1429 	if (copied) {
1430 		tcp_tx_timestamp(sk, sockc.tsflags);
1431 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1432 	}
1433 out_nopush:
1434 	net_zcopy_put(uarg);
1435 	return copied + copied_syn;
1436 
1437 do_error:
1438 	tcp_remove_empty_skb(sk);
1439 
1440 	if (copied + copied_syn)
1441 		goto out;
1442 out_err:
1443 	net_zcopy_put_abort(uarg, true);
1444 	err = sk_stream_error(sk, flags, err);
1445 	/* make sure we wake any epoll edge trigger waiter */
1446 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1447 		sk->sk_write_space(sk);
1448 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1449 	}
1450 	return err;
1451 }
1452 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1453 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1454 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1455 {
1456 	int ret;
1457 
1458 	lock_sock(sk);
1459 	ret = tcp_sendmsg_locked(sk, msg, size);
1460 	release_sock(sk);
1461 
1462 	return ret;
1463 }
1464 EXPORT_SYMBOL(tcp_sendmsg);
1465 
1466 /*
1467  *	Handle reading urgent data. BSD has very simple semantics for
1468  *	this, no blocking and very strange errors 8)
1469  */
1470 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1471 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1472 {
1473 	struct tcp_sock *tp = tcp_sk(sk);
1474 
1475 	/* No URG data to read. */
1476 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1477 	    tp->urg_data == TCP_URG_READ)
1478 		return -EINVAL;	/* Yes this is right ! */
1479 
1480 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1481 		return -ENOTCONN;
1482 
1483 	if (tp->urg_data & TCP_URG_VALID) {
1484 		int err = 0;
1485 		char c = tp->urg_data;
1486 
1487 		if (!(flags & MSG_PEEK))
1488 			tp->urg_data = TCP_URG_READ;
1489 
1490 		/* Read urgent data. */
1491 		msg->msg_flags |= MSG_OOB;
1492 
1493 		if (len > 0) {
1494 			if (!(flags & MSG_TRUNC))
1495 				err = memcpy_to_msg(msg, &c, 1);
1496 			len = 1;
1497 		} else
1498 			msg->msg_flags |= MSG_TRUNC;
1499 
1500 		return err ? -EFAULT : len;
1501 	}
1502 
1503 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1504 		return 0;
1505 
1506 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1507 	 * the available implementations agree in this case:
1508 	 * this call should never block, independent of the
1509 	 * blocking state of the socket.
1510 	 * Mike <pall@rz.uni-karlsruhe.de>
1511 	 */
1512 	return -EAGAIN;
1513 }
1514 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1515 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1516 {
1517 	struct sk_buff *skb;
1518 	int copied = 0, err = 0;
1519 
1520 	/* XXX -- need to support SO_PEEK_OFF */
1521 
1522 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1523 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1524 		if (err)
1525 			return err;
1526 		copied += skb->len;
1527 	}
1528 
1529 	skb_queue_walk(&sk->sk_write_queue, skb) {
1530 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1531 		if (err)
1532 			break;
1533 
1534 		copied += skb->len;
1535 	}
1536 
1537 	return err ?: copied;
1538 }
1539 
1540 /* Clean up the receive buffer for full frames taken by the user,
1541  * then send an ACK if necessary.  COPIED is the number of bytes
1542  * tcp_recvmsg has given to the user so far, it speeds up the
1543  * calculation of whether or not we must ACK for the sake of
1544  * a window update.
1545  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1546 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1547 {
1548 	struct tcp_sock *tp = tcp_sk(sk);
1549 	bool time_to_ack = false;
1550 
1551 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1552 
1553 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1554 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1555 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1556 
1557 	if (inet_csk_ack_scheduled(sk)) {
1558 		const struct inet_connection_sock *icsk = inet_csk(sk);
1559 
1560 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1561 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1562 		    /*
1563 		     * If this read emptied read buffer, we send ACK, if
1564 		     * connection is not bidirectional, user drained
1565 		     * receive buffer and there was a small segment
1566 		     * in queue.
1567 		     */
1568 		    (copied > 0 &&
1569 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1570 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1571 		       !inet_csk_in_pingpong_mode(sk))) &&
1572 		      !atomic_read(&sk->sk_rmem_alloc)))
1573 			time_to_ack = true;
1574 	}
1575 
1576 	/* We send an ACK if we can now advertise a non-zero window
1577 	 * which has been raised "significantly".
1578 	 *
1579 	 * Even if window raised up to infinity, do not send window open ACK
1580 	 * in states, where we will not receive more. It is useless.
1581 	 */
1582 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1583 		__u32 rcv_window_now = tcp_receive_window(tp);
1584 
1585 		/* Optimize, __tcp_select_window() is not cheap. */
1586 		if (2*rcv_window_now <= tp->window_clamp) {
1587 			__u32 new_window = __tcp_select_window(sk);
1588 
1589 			/* Send ACK now, if this read freed lots of space
1590 			 * in our buffer. Certainly, new_window is new window.
1591 			 * We can advertise it now, if it is not less than current one.
1592 			 * "Lots" means "at least twice" here.
1593 			 */
1594 			if (new_window && new_window >= 2 * rcv_window_now)
1595 				time_to_ack = true;
1596 		}
1597 	}
1598 	if (time_to_ack)
1599 		tcp_send_ack(sk);
1600 }
1601 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1602 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1603 {
1604 	struct sk_buff *skb;
1605 	u32 offset;
1606 
1607 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1608 		offset = seq - TCP_SKB_CB(skb)->seq;
1609 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1610 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1611 			offset--;
1612 		}
1613 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1614 			*off = offset;
1615 			return skb;
1616 		}
1617 		/* This looks weird, but this can happen if TCP collapsing
1618 		 * splitted a fat GRO packet, while we released socket lock
1619 		 * in skb_splice_bits()
1620 		 */
1621 		sk_eat_skb(sk, skb);
1622 	}
1623 	return NULL;
1624 }
1625 
1626 /*
1627  * This routine provides an alternative to tcp_recvmsg() for routines
1628  * that would like to handle copying from skbuffs directly in 'sendfile'
1629  * fashion.
1630  * Note:
1631  *	- It is assumed that the socket was locked by the caller.
1632  *	- The routine does not block.
1633  *	- At present, there is no support for reading OOB data
1634  *	  or for 'peeking' the socket using this routine
1635  *	  (although both would be easy to implement).
1636  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1637 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1638 		  sk_read_actor_t recv_actor)
1639 {
1640 	struct sk_buff *skb;
1641 	struct tcp_sock *tp = tcp_sk(sk);
1642 	u32 seq = tp->copied_seq;
1643 	u32 offset;
1644 	int copied = 0;
1645 
1646 	if (sk->sk_state == TCP_LISTEN)
1647 		return -ENOTCONN;
1648 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1649 		if (offset < skb->len) {
1650 			int used;
1651 			size_t len;
1652 
1653 			len = skb->len - offset;
1654 			/* Stop reading if we hit a patch of urgent data */
1655 			if (tp->urg_data) {
1656 				u32 urg_offset = tp->urg_seq - seq;
1657 				if (urg_offset < len)
1658 					len = urg_offset;
1659 				if (!len)
1660 					break;
1661 			}
1662 			used = recv_actor(desc, skb, offset, len);
1663 			if (used <= 0) {
1664 				if (!copied)
1665 					copied = used;
1666 				break;
1667 			}
1668 			if (WARN_ON_ONCE(used > len))
1669 				used = len;
1670 			seq += used;
1671 			copied += used;
1672 			offset += used;
1673 
1674 			/* If recv_actor drops the lock (e.g. TCP splice
1675 			 * receive) the skb pointer might be invalid when
1676 			 * getting here: tcp_collapse might have deleted it
1677 			 * while aggregating skbs from the socket queue.
1678 			 */
1679 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1680 			if (!skb)
1681 				break;
1682 			/* TCP coalescing might have appended data to the skb.
1683 			 * Try to splice more frags
1684 			 */
1685 			if (offset + 1 != skb->len)
1686 				continue;
1687 		}
1688 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1689 			sk_eat_skb(sk, skb);
1690 			++seq;
1691 			break;
1692 		}
1693 		sk_eat_skb(sk, skb);
1694 		if (!desc->count)
1695 			break;
1696 		WRITE_ONCE(tp->copied_seq, seq);
1697 	}
1698 	WRITE_ONCE(tp->copied_seq, seq);
1699 
1700 	tcp_rcv_space_adjust(sk);
1701 
1702 	/* Clean up data we have read: This will do ACK frames. */
1703 	if (copied > 0) {
1704 		tcp_recv_skb(sk, seq, &offset);
1705 		tcp_cleanup_rbuf(sk, copied);
1706 	}
1707 	return copied;
1708 }
1709 EXPORT_SYMBOL(tcp_read_sock);
1710 
tcp_peek_len(struct socket * sock)1711 int tcp_peek_len(struct socket *sock)
1712 {
1713 	return tcp_inq(sock->sk);
1714 }
1715 EXPORT_SYMBOL(tcp_peek_len);
1716 
1717 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1718 int tcp_set_rcvlowat(struct sock *sk, int val)
1719 {
1720 	int cap;
1721 
1722 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1723 		cap = sk->sk_rcvbuf >> 1;
1724 	else
1725 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1726 	val = min(val, cap);
1727 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1728 
1729 	/* Check if we need to signal EPOLLIN right now */
1730 	tcp_data_ready(sk);
1731 
1732 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1733 		return 0;
1734 
1735 	val <<= 1;
1736 	if (val > sk->sk_rcvbuf) {
1737 		WRITE_ONCE(sk->sk_rcvbuf, val);
1738 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1739 	}
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL(tcp_set_rcvlowat);
1743 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1744 void tcp_update_recv_tstamps(struct sk_buff *skb,
1745 			     struct scm_timestamping_internal *tss)
1746 {
1747 	if (skb->tstamp)
1748 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1749 	else
1750 		tss->ts[0] = (struct timespec64) {0};
1751 
1752 	if (skb_hwtstamps(skb)->hwtstamp)
1753 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1754 	else
1755 		tss->ts[2] = (struct timespec64) {0};
1756 }
1757 
1758 #ifdef CONFIG_MMU
1759 static const struct vm_operations_struct tcp_vm_ops = {
1760 };
1761 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1762 int tcp_mmap(struct file *file, struct socket *sock,
1763 	     struct vm_area_struct *vma)
1764 {
1765 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1766 		return -EPERM;
1767 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1768 
1769 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1770 	vma->vm_flags |= VM_MIXEDMAP;
1771 
1772 	vma->vm_ops = &tcp_vm_ops;
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(tcp_mmap);
1776 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1777 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1778 				       u32 *offset_frag)
1779 {
1780 	skb_frag_t *frag;
1781 
1782 	if (unlikely(offset_skb >= skb->len))
1783 		return NULL;
1784 
1785 	offset_skb -= skb_headlen(skb);
1786 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1787 		return NULL;
1788 
1789 	frag = skb_shinfo(skb)->frags;
1790 	while (offset_skb) {
1791 		if (skb_frag_size(frag) > offset_skb) {
1792 			*offset_frag = offset_skb;
1793 			return frag;
1794 		}
1795 		offset_skb -= skb_frag_size(frag);
1796 		++frag;
1797 	}
1798 	*offset_frag = 0;
1799 	return frag;
1800 }
1801 
can_map_frag(const skb_frag_t * frag)1802 static bool can_map_frag(const skb_frag_t *frag)
1803 {
1804 	struct page *page;
1805 
1806 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1807 		return false;
1808 
1809 	page = skb_frag_page(frag);
1810 
1811 	if (PageCompound(page) || page->mapping)
1812 		return false;
1813 
1814 	return true;
1815 }
1816 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1817 static int find_next_mappable_frag(const skb_frag_t *frag,
1818 				   int remaining_in_skb)
1819 {
1820 	int offset = 0;
1821 
1822 	if (likely(can_map_frag(frag)))
1823 		return 0;
1824 
1825 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1826 		offset += skb_frag_size(frag);
1827 		++frag;
1828 	}
1829 	return offset;
1830 }
1831 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1832 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1833 					  struct tcp_zerocopy_receive *zc,
1834 					  struct sk_buff *skb, u32 offset)
1835 {
1836 	u32 frag_offset, partial_frag_remainder = 0;
1837 	int mappable_offset;
1838 	skb_frag_t *frag;
1839 
1840 	/* worst case: skip to next skb. try to improve on this case below */
1841 	zc->recv_skip_hint = skb->len - offset;
1842 
1843 	/* Find the frag containing this offset (and how far into that frag) */
1844 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1845 	if (!frag)
1846 		return;
1847 
1848 	if (frag_offset) {
1849 		struct skb_shared_info *info = skb_shinfo(skb);
1850 
1851 		/* We read part of the last frag, must recvmsg() rest of skb. */
1852 		if (frag == &info->frags[info->nr_frags - 1])
1853 			return;
1854 
1855 		/* Else, we must at least read the remainder in this frag. */
1856 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1857 		zc->recv_skip_hint -= partial_frag_remainder;
1858 		++frag;
1859 	}
1860 
1861 	/* partial_frag_remainder: If part way through a frag, must read rest.
1862 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1863 	 * in partial_frag_remainder.
1864 	 */
1865 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1866 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1867 }
1868 
1869 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1870 			      int nonblock, int flags,
1871 			      struct scm_timestamping_internal *tss,
1872 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1873 static int receive_fallback_to_copy(struct sock *sk,
1874 				    struct tcp_zerocopy_receive *zc, int inq,
1875 				    struct scm_timestamping_internal *tss)
1876 {
1877 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1878 	struct msghdr msg = {};
1879 	struct iovec iov;
1880 	int err;
1881 
1882 	zc->length = 0;
1883 	zc->recv_skip_hint = 0;
1884 
1885 	if (copy_address != zc->copybuf_address)
1886 		return -EINVAL;
1887 
1888 	err = import_single_range(READ, (void __user *)copy_address,
1889 				  inq, &iov, &msg.msg_iter);
1890 	if (err)
1891 		return err;
1892 
1893 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1894 				 tss, &zc->msg_flags);
1895 	if (err < 0)
1896 		return err;
1897 
1898 	zc->copybuf_len = err;
1899 	if (likely(zc->copybuf_len)) {
1900 		struct sk_buff *skb;
1901 		u32 offset;
1902 
1903 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1904 		if (skb)
1905 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1906 	}
1907 	return 0;
1908 }
1909 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1910 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1911 				   struct sk_buff *skb, u32 copylen,
1912 				   u32 *offset, u32 *seq)
1913 {
1914 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1915 	struct msghdr msg = {};
1916 	struct iovec iov;
1917 	int err;
1918 
1919 	if (copy_address != zc->copybuf_address)
1920 		return -EINVAL;
1921 
1922 	err = import_single_range(READ, (void __user *)copy_address,
1923 				  copylen, &iov, &msg.msg_iter);
1924 	if (err)
1925 		return err;
1926 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1927 	if (err)
1928 		return err;
1929 	zc->recv_skip_hint -= copylen;
1930 	*offset += copylen;
1931 	*seq += copylen;
1932 	return (__s32)copylen;
1933 }
1934 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1935 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1936 				  struct sock *sk,
1937 				  struct sk_buff *skb,
1938 				  u32 *seq,
1939 				  s32 copybuf_len,
1940 				  struct scm_timestamping_internal *tss)
1941 {
1942 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1943 
1944 	if (!copylen)
1945 		return 0;
1946 	/* skb is null if inq < PAGE_SIZE. */
1947 	if (skb) {
1948 		offset = *seq - TCP_SKB_CB(skb)->seq;
1949 	} else {
1950 		skb = tcp_recv_skb(sk, *seq, &offset);
1951 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1952 			tcp_update_recv_tstamps(skb, tss);
1953 			zc->msg_flags |= TCP_CMSG_TS;
1954 		}
1955 	}
1956 
1957 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1958 						  seq);
1959 	return zc->copybuf_len < 0 ? 0 : copylen;
1960 }
1961 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1962 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1963 					      struct page **pending_pages,
1964 					      unsigned long pages_remaining,
1965 					      unsigned long *address,
1966 					      u32 *length,
1967 					      u32 *seq,
1968 					      struct tcp_zerocopy_receive *zc,
1969 					      u32 total_bytes_to_map,
1970 					      int err)
1971 {
1972 	/* At least one page did not map. Try zapping if we skipped earlier. */
1973 	if (err == -EBUSY &&
1974 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1975 		u32 maybe_zap_len;
1976 
1977 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1978 				*length + /* Mapped or pending */
1979 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1980 		zap_page_range(vma, *address, maybe_zap_len);
1981 		err = 0;
1982 	}
1983 
1984 	if (!err) {
1985 		unsigned long leftover_pages = pages_remaining;
1986 		int bytes_mapped;
1987 
1988 		/* We called zap_page_range, try to reinsert. */
1989 		err = vm_insert_pages(vma, *address,
1990 				      pending_pages,
1991 				      &pages_remaining);
1992 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1993 		*seq += bytes_mapped;
1994 		*address += bytes_mapped;
1995 	}
1996 	if (err) {
1997 		/* Either we were unable to zap, OR we zapped, retried an
1998 		 * insert, and still had an issue. Either ways, pages_remaining
1999 		 * is the number of pages we were unable to map, and we unroll
2000 		 * some state we speculatively touched before.
2001 		 */
2002 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2003 
2004 		*length -= bytes_not_mapped;
2005 		zc->recv_skip_hint += bytes_not_mapped;
2006 	}
2007 	return err;
2008 }
2009 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2010 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2011 					struct page **pages,
2012 					unsigned int pages_to_map,
2013 					unsigned long *address,
2014 					u32 *length,
2015 					u32 *seq,
2016 					struct tcp_zerocopy_receive *zc,
2017 					u32 total_bytes_to_map)
2018 {
2019 	unsigned long pages_remaining = pages_to_map;
2020 	unsigned int pages_mapped;
2021 	unsigned int bytes_mapped;
2022 	int err;
2023 
2024 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2025 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2026 	bytes_mapped = PAGE_SIZE * pages_mapped;
2027 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2028 	 * mapping (some but not all of the pages).
2029 	 */
2030 	*seq += bytes_mapped;
2031 	*address += bytes_mapped;
2032 
2033 	if (likely(!err))
2034 		return 0;
2035 
2036 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2037 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2038 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2039 		err);
2040 }
2041 
2042 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2043 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2044 				      struct tcp_zerocopy_receive *zc,
2045 				      struct scm_timestamping_internal *tss)
2046 {
2047 	unsigned long msg_control_addr;
2048 	struct msghdr cmsg_dummy;
2049 
2050 	msg_control_addr = (unsigned long)zc->msg_control;
2051 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2052 	cmsg_dummy.msg_controllen =
2053 		(__kernel_size_t)zc->msg_controllen;
2054 	cmsg_dummy.msg_flags = in_compat_syscall()
2055 		? MSG_CMSG_COMPAT : 0;
2056 	cmsg_dummy.msg_control_is_user = true;
2057 	zc->msg_flags = 0;
2058 	if (zc->msg_control == msg_control_addr &&
2059 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2060 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2061 		zc->msg_control = (__u64)
2062 			((uintptr_t)cmsg_dummy.msg_control);
2063 		zc->msg_controllen =
2064 			(__u64)cmsg_dummy.msg_controllen;
2065 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2066 	}
2067 }
2068 
2069 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2070 static int tcp_zerocopy_receive(struct sock *sk,
2071 				struct tcp_zerocopy_receive *zc,
2072 				struct scm_timestamping_internal *tss)
2073 {
2074 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2075 	unsigned long address = (unsigned long)zc->address;
2076 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2077 	s32 copybuf_len = zc->copybuf_len;
2078 	struct tcp_sock *tp = tcp_sk(sk);
2079 	const skb_frag_t *frags = NULL;
2080 	unsigned int pages_to_map = 0;
2081 	struct vm_area_struct *vma;
2082 	struct sk_buff *skb = NULL;
2083 	u32 seq = tp->copied_seq;
2084 	u32 total_bytes_to_map;
2085 	int inq = tcp_inq(sk);
2086 	int ret;
2087 
2088 	zc->copybuf_len = 0;
2089 	zc->msg_flags = 0;
2090 
2091 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2092 		return -EINVAL;
2093 
2094 	if (sk->sk_state == TCP_LISTEN)
2095 		return -ENOTCONN;
2096 
2097 	sock_rps_record_flow(sk);
2098 
2099 	if (inq && inq <= copybuf_len)
2100 		return receive_fallback_to_copy(sk, zc, inq, tss);
2101 
2102 	if (inq < PAGE_SIZE) {
2103 		zc->length = 0;
2104 		zc->recv_skip_hint = inq;
2105 		if (!inq && sock_flag(sk, SOCK_DONE))
2106 			return -EIO;
2107 		return 0;
2108 	}
2109 
2110 	mmap_read_lock(current->mm);
2111 
2112 	vma = vma_lookup(current->mm, address);
2113 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2114 		mmap_read_unlock(current->mm);
2115 		return -EINVAL;
2116 	}
2117 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2118 	avail_len = min_t(u32, vma_len, inq);
2119 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2120 	if (total_bytes_to_map) {
2121 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2122 			zap_page_range(vma, address, total_bytes_to_map);
2123 		zc->length = total_bytes_to_map;
2124 		zc->recv_skip_hint = 0;
2125 	} else {
2126 		zc->length = avail_len;
2127 		zc->recv_skip_hint = avail_len;
2128 	}
2129 	ret = 0;
2130 	while (length + PAGE_SIZE <= zc->length) {
2131 		int mappable_offset;
2132 		struct page *page;
2133 
2134 		if (zc->recv_skip_hint < PAGE_SIZE) {
2135 			u32 offset_frag;
2136 
2137 			if (skb) {
2138 				if (zc->recv_skip_hint > 0)
2139 					break;
2140 				skb = skb->next;
2141 				offset = seq - TCP_SKB_CB(skb)->seq;
2142 			} else {
2143 				skb = tcp_recv_skb(sk, seq, &offset);
2144 			}
2145 
2146 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2147 				tcp_update_recv_tstamps(skb, tss);
2148 				zc->msg_flags |= TCP_CMSG_TS;
2149 			}
2150 			zc->recv_skip_hint = skb->len - offset;
2151 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2152 			if (!frags || offset_frag)
2153 				break;
2154 		}
2155 
2156 		mappable_offset = find_next_mappable_frag(frags,
2157 							  zc->recv_skip_hint);
2158 		if (mappable_offset) {
2159 			zc->recv_skip_hint = mappable_offset;
2160 			break;
2161 		}
2162 		page = skb_frag_page(frags);
2163 		prefetchw(page);
2164 		pages[pages_to_map++] = page;
2165 		length += PAGE_SIZE;
2166 		zc->recv_skip_hint -= PAGE_SIZE;
2167 		frags++;
2168 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2169 		    zc->recv_skip_hint < PAGE_SIZE) {
2170 			/* Either full batch, or we're about to go to next skb
2171 			 * (and we cannot unroll failed ops across skbs).
2172 			 */
2173 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2174 							   pages_to_map,
2175 							   &address, &length,
2176 							   &seq, zc,
2177 							   total_bytes_to_map);
2178 			if (ret)
2179 				goto out;
2180 			pages_to_map = 0;
2181 		}
2182 	}
2183 	if (pages_to_map) {
2184 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2185 						   &address, &length, &seq,
2186 						   zc, total_bytes_to_map);
2187 	}
2188 out:
2189 	mmap_read_unlock(current->mm);
2190 	/* Try to copy straggler data. */
2191 	if (!ret)
2192 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2193 
2194 	if (length + copylen) {
2195 		WRITE_ONCE(tp->copied_seq, seq);
2196 		tcp_rcv_space_adjust(sk);
2197 
2198 		/* Clean up data we have read: This will do ACK frames. */
2199 		tcp_recv_skb(sk, seq, &offset);
2200 		tcp_cleanup_rbuf(sk, length + copylen);
2201 		ret = 0;
2202 		if (length == zc->length)
2203 			zc->recv_skip_hint = 0;
2204 	} else {
2205 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2206 			ret = -EIO;
2207 	}
2208 	zc->length = length;
2209 	return ret;
2210 }
2211 #endif
2212 
2213 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2214 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2215 			struct scm_timestamping_internal *tss)
2216 {
2217 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2218 	bool has_timestamping = false;
2219 
2220 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2221 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2222 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2223 				if (new_tstamp) {
2224 					struct __kernel_timespec kts = {
2225 						.tv_sec = tss->ts[0].tv_sec,
2226 						.tv_nsec = tss->ts[0].tv_nsec,
2227 					};
2228 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2229 						 sizeof(kts), &kts);
2230 				} else {
2231 					struct __kernel_old_timespec ts_old = {
2232 						.tv_sec = tss->ts[0].tv_sec,
2233 						.tv_nsec = tss->ts[0].tv_nsec,
2234 					};
2235 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2236 						 sizeof(ts_old), &ts_old);
2237 				}
2238 			} else {
2239 				if (new_tstamp) {
2240 					struct __kernel_sock_timeval stv = {
2241 						.tv_sec = tss->ts[0].tv_sec,
2242 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2243 					};
2244 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2245 						 sizeof(stv), &stv);
2246 				} else {
2247 					struct __kernel_old_timeval tv = {
2248 						.tv_sec = tss->ts[0].tv_sec,
2249 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2250 					};
2251 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2252 						 sizeof(tv), &tv);
2253 				}
2254 			}
2255 		}
2256 
2257 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2258 			has_timestamping = true;
2259 		else
2260 			tss->ts[0] = (struct timespec64) {0};
2261 	}
2262 
2263 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2264 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2265 			has_timestamping = true;
2266 		else
2267 			tss->ts[2] = (struct timespec64) {0};
2268 	}
2269 
2270 	if (has_timestamping) {
2271 		tss->ts[1] = (struct timespec64) {0};
2272 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2273 			put_cmsg_scm_timestamping64(msg, tss);
2274 		else
2275 			put_cmsg_scm_timestamping(msg, tss);
2276 	}
2277 }
2278 
tcp_inq_hint(struct sock * sk)2279 static int tcp_inq_hint(struct sock *sk)
2280 {
2281 	const struct tcp_sock *tp = tcp_sk(sk);
2282 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2283 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2284 	int inq;
2285 
2286 	inq = rcv_nxt - copied_seq;
2287 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2288 		lock_sock(sk);
2289 		inq = tp->rcv_nxt - tp->copied_seq;
2290 		release_sock(sk);
2291 	}
2292 	/* After receiving a FIN, tell the user-space to continue reading
2293 	 * by returning a non-zero inq.
2294 	 */
2295 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2296 		inq = 1;
2297 	return inq;
2298 }
2299 
2300 /*
2301  *	This routine copies from a sock struct into the user buffer.
2302  *
2303  *	Technical note: in 2.3 we work on _locked_ socket, so that
2304  *	tricks with *seq access order and skb->users are not required.
2305  *	Probably, code can be easily improved even more.
2306  */
2307 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2308 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2309 			      int nonblock, int flags,
2310 			      struct scm_timestamping_internal *tss,
2311 			      int *cmsg_flags)
2312 {
2313 	struct tcp_sock *tp = tcp_sk(sk);
2314 	int copied = 0;
2315 	u32 peek_seq;
2316 	u32 *seq;
2317 	unsigned long used;
2318 	int err;
2319 	int target;		/* Read at least this many bytes */
2320 	long timeo;
2321 	struct sk_buff *skb, *last;
2322 	u32 urg_hole = 0;
2323 
2324 	err = -ENOTCONN;
2325 	if (sk->sk_state == TCP_LISTEN)
2326 		goto out;
2327 
2328 	if (tp->recvmsg_inq)
2329 		*cmsg_flags = TCP_CMSG_INQ;
2330 	timeo = sock_rcvtimeo(sk, nonblock);
2331 
2332 	/* Urgent data needs to be handled specially. */
2333 	if (flags & MSG_OOB)
2334 		goto recv_urg;
2335 
2336 	if (unlikely(tp->repair)) {
2337 		err = -EPERM;
2338 		if (!(flags & MSG_PEEK))
2339 			goto out;
2340 
2341 		if (tp->repair_queue == TCP_SEND_QUEUE)
2342 			goto recv_sndq;
2343 
2344 		err = -EINVAL;
2345 		if (tp->repair_queue == TCP_NO_QUEUE)
2346 			goto out;
2347 
2348 		/* 'common' recv queue MSG_PEEK-ing */
2349 	}
2350 
2351 	seq = &tp->copied_seq;
2352 	if (flags & MSG_PEEK) {
2353 		peek_seq = tp->copied_seq;
2354 		seq = &peek_seq;
2355 	}
2356 
2357 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2358 
2359 	do {
2360 		u32 offset;
2361 
2362 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2363 		if (tp->urg_data && tp->urg_seq == *seq) {
2364 			if (copied)
2365 				break;
2366 			if (signal_pending(current)) {
2367 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2368 				break;
2369 			}
2370 		}
2371 
2372 		/* Next get a buffer. */
2373 
2374 		last = skb_peek_tail(&sk->sk_receive_queue);
2375 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2376 			last = skb;
2377 			/* Now that we have two receive queues this
2378 			 * shouldn't happen.
2379 			 */
2380 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2381 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2382 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2383 				 flags))
2384 				break;
2385 
2386 			offset = *seq - TCP_SKB_CB(skb)->seq;
2387 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2388 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2389 				offset--;
2390 			}
2391 			if (offset < skb->len)
2392 				goto found_ok_skb;
2393 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2394 				goto found_fin_ok;
2395 			WARN(!(flags & MSG_PEEK),
2396 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2397 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2398 		}
2399 
2400 		/* Well, if we have backlog, try to process it now yet. */
2401 
2402 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2403 			break;
2404 
2405 		if (copied) {
2406 			if (sk->sk_err ||
2407 			    sk->sk_state == TCP_CLOSE ||
2408 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2409 			    !timeo ||
2410 			    signal_pending(current))
2411 				break;
2412 		} else {
2413 			if (sock_flag(sk, SOCK_DONE))
2414 				break;
2415 
2416 			if (sk->sk_err) {
2417 				copied = sock_error(sk);
2418 				break;
2419 			}
2420 
2421 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2422 				break;
2423 
2424 			if (sk->sk_state == TCP_CLOSE) {
2425 				/* This occurs when user tries to read
2426 				 * from never connected socket.
2427 				 */
2428 				copied = -ENOTCONN;
2429 				break;
2430 			}
2431 
2432 			if (!timeo) {
2433 				copied = -EAGAIN;
2434 				break;
2435 			}
2436 
2437 			if (signal_pending(current)) {
2438 				copied = sock_intr_errno(timeo);
2439 				break;
2440 			}
2441 		}
2442 
2443 		tcp_cleanup_rbuf(sk, copied);
2444 
2445 		if (copied >= target) {
2446 			/* Do not sleep, just process backlog. */
2447 			release_sock(sk);
2448 			lock_sock(sk);
2449 		} else {
2450 			sk_wait_data(sk, &timeo, last);
2451 		}
2452 
2453 		if ((flags & MSG_PEEK) &&
2454 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2455 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2456 					    current->comm,
2457 					    task_pid_nr(current));
2458 			peek_seq = tp->copied_seq;
2459 		}
2460 		continue;
2461 
2462 found_ok_skb:
2463 		/* Ok so how much can we use? */
2464 		used = skb->len - offset;
2465 		if (len < used)
2466 			used = len;
2467 
2468 		/* Do we have urgent data here? */
2469 		if (tp->urg_data) {
2470 			u32 urg_offset = tp->urg_seq - *seq;
2471 			if (urg_offset < used) {
2472 				if (!urg_offset) {
2473 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2474 						WRITE_ONCE(*seq, *seq + 1);
2475 						urg_hole++;
2476 						offset++;
2477 						used--;
2478 						if (!used)
2479 							goto skip_copy;
2480 					}
2481 				} else
2482 					used = urg_offset;
2483 			}
2484 		}
2485 
2486 		if (!(flags & MSG_TRUNC)) {
2487 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2488 			if (err) {
2489 				/* Exception. Bailout! */
2490 				if (!copied)
2491 					copied = -EFAULT;
2492 				break;
2493 			}
2494 		}
2495 
2496 		WRITE_ONCE(*seq, *seq + used);
2497 		copied += used;
2498 		len -= used;
2499 
2500 		tcp_rcv_space_adjust(sk);
2501 
2502 skip_copy:
2503 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2504 			tp->urg_data = 0;
2505 			tcp_fast_path_check(sk);
2506 		}
2507 
2508 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2509 			tcp_update_recv_tstamps(skb, tss);
2510 			*cmsg_flags |= TCP_CMSG_TS;
2511 		}
2512 
2513 		if (used + offset < skb->len)
2514 			continue;
2515 
2516 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2517 			goto found_fin_ok;
2518 		if (!(flags & MSG_PEEK))
2519 			sk_eat_skb(sk, skb);
2520 		continue;
2521 
2522 found_fin_ok:
2523 		/* Process the FIN. */
2524 		WRITE_ONCE(*seq, *seq + 1);
2525 		if (!(flags & MSG_PEEK))
2526 			sk_eat_skb(sk, skb);
2527 		break;
2528 	} while (len > 0);
2529 
2530 	trace_android_rvh_tcp_recvmsg_stat(sk, copied);
2531 	/* According to UNIX98, msg_name/msg_namelen are ignored
2532 	 * on connected socket. I was just happy when found this 8) --ANK
2533 	 */
2534 
2535 	/* Clean up data we have read: This will do ACK frames. */
2536 	tcp_cleanup_rbuf(sk, copied);
2537 	return copied;
2538 
2539 out:
2540 	return err;
2541 
2542 recv_urg:
2543 	err = tcp_recv_urg(sk, msg, len, flags);
2544 	goto out;
2545 
2546 recv_sndq:
2547 	err = tcp_peek_sndq(sk, msg, len);
2548 	goto out;
2549 }
2550 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2552 		int flags, int *addr_len)
2553 {
2554 	int cmsg_flags = 0, ret, inq;
2555 	struct scm_timestamping_internal tss;
2556 
2557 	if (unlikely(flags & MSG_ERRQUEUE))
2558 		return inet_recv_error(sk, msg, len, addr_len);
2559 	trace_android_rvh_tcp_recvmsg(sk);
2560 
2561 	if (sk_can_busy_loop(sk) &&
2562 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2563 	    sk->sk_state == TCP_ESTABLISHED)
2564 		sk_busy_loop(sk, nonblock);
2565 
2566 	lock_sock(sk);
2567 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2568 				 &cmsg_flags);
2569 	release_sock(sk);
2570 
2571 	if (cmsg_flags && ret >= 0) {
2572 		if (cmsg_flags & TCP_CMSG_TS)
2573 			tcp_recv_timestamp(msg, sk, &tss);
2574 		if (cmsg_flags & TCP_CMSG_INQ) {
2575 			inq = tcp_inq_hint(sk);
2576 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2577 		}
2578 	}
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(tcp_recvmsg);
2582 
tcp_set_state(struct sock * sk,int state)2583 void tcp_set_state(struct sock *sk, int state)
2584 {
2585 	int oldstate = sk->sk_state;
2586 
2587 	/* We defined a new enum for TCP states that are exported in BPF
2588 	 * so as not force the internal TCP states to be frozen. The
2589 	 * following checks will detect if an internal state value ever
2590 	 * differs from the BPF value. If this ever happens, then we will
2591 	 * need to remap the internal value to the BPF value before calling
2592 	 * tcp_call_bpf_2arg.
2593 	 */
2594 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2595 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2596 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2597 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2598 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2599 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2600 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2602 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2603 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2604 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2605 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2606 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2607 
2608 	/* bpf uapi header bpf.h defines an anonymous enum with values
2609 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2610 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2611 	 * But clang built vmlinux does not have this enum in DWARF
2612 	 * since clang removes the above code before generating IR/debuginfo.
2613 	 * Let us explicitly emit the type debuginfo to ensure the
2614 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2615 	 * regardless of which compiler is used.
2616 	 */
2617 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2618 
2619 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2620 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2621 
2622 	switch (state) {
2623 	case TCP_ESTABLISHED:
2624 		if (oldstate != TCP_ESTABLISHED)
2625 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2626 		break;
2627 
2628 	case TCP_CLOSE:
2629 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2630 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2631 
2632 		sk->sk_prot->unhash(sk);
2633 		if (inet_csk(sk)->icsk_bind_hash &&
2634 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2635 			inet_put_port(sk);
2636 		fallthrough;
2637 	default:
2638 		if (oldstate == TCP_ESTABLISHED)
2639 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 	}
2641 
2642 	/* Change state AFTER socket is unhashed to avoid closed
2643 	 * socket sitting in hash tables.
2644 	 */
2645 	inet_sk_state_store(sk, state);
2646 }
2647 EXPORT_SYMBOL_GPL(tcp_set_state);
2648 
2649 /*
2650  *	State processing on a close. This implements the state shift for
2651  *	sending our FIN frame. Note that we only send a FIN for some
2652  *	states. A shutdown() may have already sent the FIN, or we may be
2653  *	closed.
2654  */
2655 
2656 static const unsigned char new_state[16] = {
2657   /* current state:        new state:      action:	*/
2658   [0 /* (Invalid) */]	= TCP_CLOSE,
2659   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2660   [TCP_SYN_SENT]	= TCP_CLOSE,
2661   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2663   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2664   [TCP_TIME_WAIT]	= TCP_CLOSE,
2665   [TCP_CLOSE]		= TCP_CLOSE,
2666   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2667   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2668   [TCP_LISTEN]		= TCP_CLOSE,
2669   [TCP_CLOSING]		= TCP_CLOSING,
2670   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2671 };
2672 
tcp_close_state(struct sock * sk)2673 static int tcp_close_state(struct sock *sk)
2674 {
2675 	int next = (int)new_state[sk->sk_state];
2676 	int ns = next & TCP_STATE_MASK;
2677 
2678 	tcp_set_state(sk, ns);
2679 
2680 	return next & TCP_ACTION_FIN;
2681 }
2682 
2683 /*
2684  *	Shutdown the sending side of a connection. Much like close except
2685  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2686  */
2687 
tcp_shutdown(struct sock * sk,int how)2688 void tcp_shutdown(struct sock *sk, int how)
2689 {
2690 	/*	We need to grab some memory, and put together a FIN,
2691 	 *	and then put it into the queue to be sent.
2692 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2693 	 */
2694 	if (!(how & SEND_SHUTDOWN))
2695 		return;
2696 
2697 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2698 	if ((1 << sk->sk_state) &
2699 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2700 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2701 		/* Clear out any half completed packets.  FIN if needed. */
2702 		if (tcp_close_state(sk))
2703 			tcp_send_fin(sk);
2704 	}
2705 }
2706 EXPORT_SYMBOL(tcp_shutdown);
2707 
tcp_orphan_count_sum(void)2708 int tcp_orphan_count_sum(void)
2709 {
2710 	int i, total = 0;
2711 
2712 	for_each_possible_cpu(i)
2713 		total += per_cpu(tcp_orphan_count, i);
2714 
2715 	return max(total, 0);
2716 }
2717 
2718 static int tcp_orphan_cache;
2719 static struct timer_list tcp_orphan_timer;
2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2721 
tcp_orphan_update(struct timer_list * unused)2722 static void tcp_orphan_update(struct timer_list *unused)
2723 {
2724 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2725 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2726 }
2727 
tcp_too_many_orphans(int shift)2728 static bool tcp_too_many_orphans(int shift)
2729 {
2730 	return READ_ONCE(tcp_orphan_cache) << shift >
2731 		READ_ONCE(sysctl_tcp_max_orphans);
2732 }
2733 
tcp_check_oom(struct sock * sk,int shift)2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 	bool too_many_orphans, out_of_socket_memory;
2737 
2738 	too_many_orphans = tcp_too_many_orphans(shift);
2739 	out_of_socket_memory = tcp_out_of_memory(sk);
2740 
2741 	if (too_many_orphans)
2742 		net_info_ratelimited("too many orphaned sockets\n");
2743 	if (out_of_socket_memory)
2744 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 	return too_many_orphans || out_of_socket_memory;
2746 }
2747 
__tcp_close(struct sock * sk,long timeout)2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 	struct sk_buff *skb;
2751 	int data_was_unread = 0;
2752 	int state;
2753 
2754 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2755 
2756 	if (sk->sk_state == TCP_LISTEN) {
2757 		tcp_set_state(sk, TCP_CLOSE);
2758 
2759 		/* Special case. */
2760 		inet_csk_listen_stop(sk);
2761 
2762 		goto adjudge_to_death;
2763 	}
2764 
2765 	/*  We need to flush the recv. buffs.  We do this only on the
2766 	 *  descriptor close, not protocol-sourced closes, because the
2767 	 *  reader process may not have drained the data yet!
2768 	 */
2769 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771 
2772 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 			len--;
2774 		data_was_unread += len;
2775 		__kfree_skb(skb);
2776 	}
2777 
2778 	sk_mem_reclaim(sk);
2779 
2780 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2781 	if (sk->sk_state == TCP_CLOSE)
2782 		goto adjudge_to_death;
2783 
2784 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2785 	 * data was lost. To witness the awful effects of the old behavior of
2786 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2787 	 * GET in an FTP client, suspend the process, wait for the client to
2788 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2789 	 * Note: timeout is always zero in such a case.
2790 	 */
2791 	if (unlikely(tcp_sk(sk)->repair)) {
2792 		sk->sk_prot->disconnect(sk, 0);
2793 	} else if (data_was_unread) {
2794 		/* Unread data was tossed, zap the connection. */
2795 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2796 		tcp_set_state(sk, TCP_CLOSE);
2797 		tcp_send_active_reset(sk, sk->sk_allocation);
2798 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2799 		/* Check zero linger _after_ checking for unread data. */
2800 		sk->sk_prot->disconnect(sk, 0);
2801 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2802 	} else if (tcp_close_state(sk)) {
2803 		/* We FIN if the application ate all the data before
2804 		 * zapping the connection.
2805 		 */
2806 
2807 		/* RED-PEN. Formally speaking, we have broken TCP state
2808 		 * machine. State transitions:
2809 		 *
2810 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2811 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2812 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2813 		 *
2814 		 * are legal only when FIN has been sent (i.e. in window),
2815 		 * rather than queued out of window. Purists blame.
2816 		 *
2817 		 * F.e. "RFC state" is ESTABLISHED,
2818 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2819 		 *
2820 		 * The visible declinations are that sometimes
2821 		 * we enter time-wait state, when it is not required really
2822 		 * (harmless), do not send active resets, when they are
2823 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2824 		 * they look as CLOSING or LAST_ACK for Linux)
2825 		 * Probably, I missed some more holelets.
2826 		 * 						--ANK
2827 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2828 		 * in a single packet! (May consider it later but will
2829 		 * probably need API support or TCP_CORK SYN-ACK until
2830 		 * data is written and socket is closed.)
2831 		 */
2832 		tcp_send_fin(sk);
2833 	}
2834 
2835 	sk_stream_wait_close(sk, timeout);
2836 
2837 adjudge_to_death:
2838 	state = sk->sk_state;
2839 	sock_hold(sk);
2840 	sock_orphan(sk);
2841 
2842 	local_bh_disable();
2843 	bh_lock_sock(sk);
2844 	/* remove backlog if any, without releasing ownership. */
2845 	__release_sock(sk);
2846 
2847 	this_cpu_inc(tcp_orphan_count);
2848 
2849 	/* Have we already been destroyed by a softirq or backlog? */
2850 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2851 		goto out;
2852 
2853 	/*	This is a (useful) BSD violating of the RFC. There is a
2854 	 *	problem with TCP as specified in that the other end could
2855 	 *	keep a socket open forever with no application left this end.
2856 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2857 	 *	our end. If they send after that then tough - BUT: long enough
2858 	 *	that we won't make the old 4*rto = almost no time - whoops
2859 	 *	reset mistake.
2860 	 *
2861 	 *	Nope, it was not mistake. It is really desired behaviour
2862 	 *	f.e. on http servers, when such sockets are useless, but
2863 	 *	consume significant resources. Let's do it with special
2864 	 *	linger2	option.					--ANK
2865 	 */
2866 
2867 	if (sk->sk_state == TCP_FIN_WAIT2) {
2868 		struct tcp_sock *tp = tcp_sk(sk);
2869 		if (tp->linger2 < 0) {
2870 			tcp_set_state(sk, TCP_CLOSE);
2871 			tcp_send_active_reset(sk, GFP_ATOMIC);
2872 			__NET_INC_STATS(sock_net(sk),
2873 					LINUX_MIB_TCPABORTONLINGER);
2874 		} else {
2875 			const int tmo = tcp_fin_time(sk);
2876 
2877 			if (tmo > TCP_TIMEWAIT_LEN) {
2878 				inet_csk_reset_keepalive_timer(sk,
2879 						tmo - TCP_TIMEWAIT_LEN);
2880 			} else {
2881 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2882 				goto out;
2883 			}
2884 		}
2885 	}
2886 	if (sk->sk_state != TCP_CLOSE) {
2887 		sk_mem_reclaim(sk);
2888 		if (tcp_check_oom(sk, 0)) {
2889 			tcp_set_state(sk, TCP_CLOSE);
2890 			tcp_send_active_reset(sk, GFP_ATOMIC);
2891 			__NET_INC_STATS(sock_net(sk),
2892 					LINUX_MIB_TCPABORTONMEMORY);
2893 		} else if (!check_net(sock_net(sk))) {
2894 			/* Not possible to send reset; just close */
2895 			tcp_set_state(sk, TCP_CLOSE);
2896 		}
2897 	}
2898 
2899 	if (sk->sk_state == TCP_CLOSE) {
2900 		struct request_sock *req;
2901 
2902 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2903 						lockdep_sock_is_held(sk));
2904 		/* We could get here with a non-NULL req if the socket is
2905 		 * aborted (e.g., closed with unread data) before 3WHS
2906 		 * finishes.
2907 		 */
2908 		if (req)
2909 			reqsk_fastopen_remove(sk, req, false);
2910 		inet_csk_destroy_sock(sk);
2911 	}
2912 	/* Otherwise, socket is reprieved until protocol close. */
2913 
2914 out:
2915 	bh_unlock_sock(sk);
2916 	local_bh_enable();
2917 }
2918 
tcp_close(struct sock * sk,long timeout)2919 void tcp_close(struct sock *sk, long timeout)
2920 {
2921 	lock_sock(sk);
2922 	__tcp_close(sk, timeout);
2923 	release_sock(sk);
2924 	sock_put(sk);
2925 }
2926 EXPORT_SYMBOL(tcp_close);
2927 
2928 /* These states need RST on ABORT according to RFC793 */
2929 
tcp_need_reset(int state)2930 static inline bool tcp_need_reset(int state)
2931 {
2932 	return (1 << state) &
2933 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2934 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2935 }
2936 
tcp_rtx_queue_purge(struct sock * sk)2937 static void tcp_rtx_queue_purge(struct sock *sk)
2938 {
2939 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2940 
2941 	tcp_sk(sk)->highest_sack = NULL;
2942 	while (p) {
2943 		struct sk_buff *skb = rb_to_skb(p);
2944 
2945 		p = rb_next(p);
2946 		/* Since we are deleting whole queue, no need to
2947 		 * list_del(&skb->tcp_tsorted_anchor)
2948 		 */
2949 		tcp_rtx_queue_unlink(skb, sk);
2950 		sk_wmem_free_skb(sk, skb);
2951 	}
2952 }
2953 
tcp_write_queue_purge(struct sock * sk)2954 void tcp_write_queue_purge(struct sock *sk)
2955 {
2956 	struct sk_buff *skb;
2957 
2958 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2959 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2960 		tcp_skb_tsorted_anchor_cleanup(skb);
2961 		sk_wmem_free_skb(sk, skb);
2962 	}
2963 	tcp_rtx_queue_purge(sk);
2964 	skb = sk->sk_tx_skb_cache;
2965 	if (skb) {
2966 		__kfree_skb(skb);
2967 		sk->sk_tx_skb_cache = NULL;
2968 	}
2969 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2970 	sk_mem_reclaim(sk);
2971 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2972 	tcp_sk(sk)->packets_out = 0;
2973 	inet_csk(sk)->icsk_backoff = 0;
2974 }
2975 
tcp_disconnect(struct sock * sk,int flags)2976 int tcp_disconnect(struct sock *sk, int flags)
2977 {
2978 	struct inet_sock *inet = inet_sk(sk);
2979 	struct inet_connection_sock *icsk = inet_csk(sk);
2980 	struct tcp_sock *tp = tcp_sk(sk);
2981 	int old_state = sk->sk_state;
2982 	u32 seq;
2983 
2984 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2985 	 * or inet_wait_for_connect().
2986 	 */
2987 	if (sk->sk_wait_pending)
2988 		return -EBUSY;
2989 
2990 	if (old_state != TCP_CLOSE)
2991 		tcp_set_state(sk, TCP_CLOSE);
2992 
2993 	/* ABORT function of RFC793 */
2994 	if (old_state == TCP_LISTEN) {
2995 		inet_csk_listen_stop(sk);
2996 	} else if (unlikely(tp->repair)) {
2997 		sk->sk_err = ECONNABORTED;
2998 	} else if (tcp_need_reset(old_state) ||
2999 		   (tp->snd_nxt != tp->write_seq &&
3000 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3001 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3002 		 * states
3003 		 */
3004 		tcp_send_active_reset(sk, gfp_any());
3005 		sk->sk_err = ECONNRESET;
3006 	} else if (old_state == TCP_SYN_SENT)
3007 		sk->sk_err = ECONNRESET;
3008 
3009 	tcp_clear_xmit_timers(sk);
3010 	__skb_queue_purge(&sk->sk_receive_queue);
3011 	if (sk->sk_rx_skb_cache) {
3012 		__kfree_skb(sk->sk_rx_skb_cache);
3013 		sk->sk_rx_skb_cache = NULL;
3014 	}
3015 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3016 	tp->urg_data = 0;
3017 	tcp_write_queue_purge(sk);
3018 	tcp_fastopen_active_disable_ofo_check(sk);
3019 	skb_rbtree_purge(&tp->out_of_order_queue);
3020 
3021 	inet->inet_dport = 0;
3022 
3023 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3024 		inet_reset_saddr(sk);
3025 
3026 	WRITE_ONCE(sk->sk_shutdown, 0);
3027 	sock_reset_flag(sk, SOCK_DONE);
3028 	tp->srtt_us = 0;
3029 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3030 	tp->rcv_rtt_last_tsecr = 0;
3031 
3032 	seq = tp->write_seq + tp->max_window + 2;
3033 	if (!seq)
3034 		seq = 1;
3035 	WRITE_ONCE(tp->write_seq, seq);
3036 
3037 	icsk->icsk_backoff = 0;
3038 	icsk->icsk_probes_out = 0;
3039 	icsk->icsk_probes_tstamp = 0;
3040 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3041 	icsk->icsk_rto_min = TCP_RTO_MIN;
3042 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3043 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3044 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3045 	tp->snd_cwnd_cnt = 0;
3046 	tp->is_cwnd_limited = 0;
3047 	tp->max_packets_out = 0;
3048 	tp->window_clamp = 0;
3049 	tp->delivered = 0;
3050 	tp->delivered_ce = 0;
3051 	if (icsk->icsk_ca_ops->release)
3052 		icsk->icsk_ca_ops->release(sk);
3053 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3054 	icsk->icsk_ca_initialized = 0;
3055 	tcp_set_ca_state(sk, TCP_CA_Open);
3056 	tp->is_sack_reneg = 0;
3057 	tcp_clear_retrans(tp);
3058 	tp->total_retrans = 0;
3059 	inet_csk_delack_init(sk);
3060 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3061 	 * issue in __tcp_select_window()
3062 	 */
3063 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3064 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3065 	__sk_dst_reset(sk);
3066 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3067 	tcp_saved_syn_free(tp);
3068 	tp->compressed_ack = 0;
3069 	tp->segs_in = 0;
3070 	tp->segs_out = 0;
3071 	tp->bytes_sent = 0;
3072 	tp->bytes_acked = 0;
3073 	tp->bytes_received = 0;
3074 	tp->bytes_retrans = 0;
3075 	tp->data_segs_in = 0;
3076 	tp->data_segs_out = 0;
3077 	tp->duplicate_sack[0].start_seq = 0;
3078 	tp->duplicate_sack[0].end_seq = 0;
3079 	tp->dsack_dups = 0;
3080 	tp->reord_seen = 0;
3081 	tp->retrans_out = 0;
3082 	tp->sacked_out = 0;
3083 	tp->tlp_high_seq = 0;
3084 	tp->last_oow_ack_time = 0;
3085 	/* There's a bubble in the pipe until at least the first ACK. */
3086 	tp->app_limited = ~0U;
3087 	tp->rate_app_limited = 1;
3088 	tp->rack.mstamp = 0;
3089 	tp->rack.advanced = 0;
3090 	tp->rack.reo_wnd_steps = 1;
3091 	tp->rack.last_delivered = 0;
3092 	tp->rack.reo_wnd_persist = 0;
3093 	tp->rack.dsack_seen = 0;
3094 	tp->syn_data_acked = 0;
3095 	tp->rx_opt.saw_tstamp = 0;
3096 	tp->rx_opt.dsack = 0;
3097 	tp->rx_opt.num_sacks = 0;
3098 	tp->rcv_ooopack = 0;
3099 
3100 
3101 	/* Clean up fastopen related fields */
3102 	tcp_free_fastopen_req(tp);
3103 	inet->defer_connect = 0;
3104 	tp->fastopen_client_fail = 0;
3105 
3106 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3107 
3108 	if (sk->sk_frag.page) {
3109 		put_page(sk->sk_frag.page);
3110 		sk->sk_frag.page = NULL;
3111 		sk->sk_frag.offset = 0;
3112 	}
3113 
3114 	sk_error_report(sk);
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL(tcp_disconnect);
3118 
tcp_can_repair_sock(const struct sock * sk)3119 static inline bool tcp_can_repair_sock(const struct sock *sk)
3120 {
3121 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3122 		(sk->sk_state != TCP_LISTEN);
3123 }
3124 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3125 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3126 {
3127 	struct tcp_repair_window opt;
3128 
3129 	if (!tp->repair)
3130 		return -EPERM;
3131 
3132 	if (len != sizeof(opt))
3133 		return -EINVAL;
3134 
3135 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3136 		return -EFAULT;
3137 
3138 	if (opt.max_window < opt.snd_wnd)
3139 		return -EINVAL;
3140 
3141 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3142 		return -EINVAL;
3143 
3144 	if (after(opt.rcv_wup, tp->rcv_nxt))
3145 		return -EINVAL;
3146 
3147 	tp->snd_wl1	= opt.snd_wl1;
3148 	tp->snd_wnd	= opt.snd_wnd;
3149 	tp->max_window	= opt.max_window;
3150 
3151 	tp->rcv_wnd	= opt.rcv_wnd;
3152 	tp->rcv_wup	= opt.rcv_wup;
3153 
3154 	return 0;
3155 }
3156 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3157 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3158 		unsigned int len)
3159 {
3160 	struct tcp_sock *tp = tcp_sk(sk);
3161 	struct tcp_repair_opt opt;
3162 	size_t offset = 0;
3163 
3164 	while (len >= sizeof(opt)) {
3165 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3166 			return -EFAULT;
3167 
3168 		offset += sizeof(opt);
3169 		len -= sizeof(opt);
3170 
3171 		switch (opt.opt_code) {
3172 		case TCPOPT_MSS:
3173 			tp->rx_opt.mss_clamp = opt.opt_val;
3174 			tcp_mtup_init(sk);
3175 			break;
3176 		case TCPOPT_WINDOW:
3177 			{
3178 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3179 				u16 rcv_wscale = opt.opt_val >> 16;
3180 
3181 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3182 					return -EFBIG;
3183 
3184 				tp->rx_opt.snd_wscale = snd_wscale;
3185 				tp->rx_opt.rcv_wscale = rcv_wscale;
3186 				tp->rx_opt.wscale_ok = 1;
3187 			}
3188 			break;
3189 		case TCPOPT_SACK_PERM:
3190 			if (opt.opt_val != 0)
3191 				return -EINVAL;
3192 
3193 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3194 			break;
3195 		case TCPOPT_TIMESTAMP:
3196 			if (opt.opt_val != 0)
3197 				return -EINVAL;
3198 
3199 			tp->rx_opt.tstamp_ok = 1;
3200 			break;
3201 		}
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3208 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3209 
tcp_enable_tx_delay(void)3210 static void tcp_enable_tx_delay(void)
3211 {
3212 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3213 		static int __tcp_tx_delay_enabled = 0;
3214 
3215 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3216 			static_branch_enable(&tcp_tx_delay_enabled);
3217 			pr_info("TCP_TX_DELAY enabled\n");
3218 		}
3219 	}
3220 }
3221 
3222 /* When set indicates to always queue non-full frames.  Later the user clears
3223  * this option and we transmit any pending partial frames in the queue.  This is
3224  * meant to be used alongside sendfile() to get properly filled frames when the
3225  * user (for example) must write out headers with a write() call first and then
3226  * use sendfile to send out the data parts.
3227  *
3228  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3229  * TCP_NODELAY.
3230  */
__tcp_sock_set_cork(struct sock * sk,bool on)3231 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3232 {
3233 	struct tcp_sock *tp = tcp_sk(sk);
3234 
3235 	if (on) {
3236 		tp->nonagle |= TCP_NAGLE_CORK;
3237 	} else {
3238 		tp->nonagle &= ~TCP_NAGLE_CORK;
3239 		if (tp->nonagle & TCP_NAGLE_OFF)
3240 			tp->nonagle |= TCP_NAGLE_PUSH;
3241 		tcp_push_pending_frames(sk);
3242 	}
3243 }
3244 
tcp_sock_set_cork(struct sock * sk,bool on)3245 void tcp_sock_set_cork(struct sock *sk, bool on)
3246 {
3247 	lock_sock(sk);
3248 	__tcp_sock_set_cork(sk, on);
3249 	release_sock(sk);
3250 }
3251 EXPORT_SYMBOL(tcp_sock_set_cork);
3252 
3253 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3254  * remembered, but it is not activated until cork is cleared.
3255  *
3256  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3257  * even TCP_CORK for currently queued segments.
3258  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3259 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3260 {
3261 	if (on) {
3262 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3263 		tcp_push_pending_frames(sk);
3264 	} else {
3265 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3266 	}
3267 }
3268 
tcp_sock_set_nodelay(struct sock * sk)3269 void tcp_sock_set_nodelay(struct sock *sk)
3270 {
3271 	lock_sock(sk);
3272 	__tcp_sock_set_nodelay(sk, true);
3273 	release_sock(sk);
3274 }
3275 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3276 
__tcp_sock_set_quickack(struct sock * sk,int val)3277 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3278 {
3279 	if (!val) {
3280 		inet_csk_enter_pingpong_mode(sk);
3281 		return;
3282 	}
3283 
3284 	inet_csk_exit_pingpong_mode(sk);
3285 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3286 	    inet_csk_ack_scheduled(sk)) {
3287 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3288 		tcp_cleanup_rbuf(sk, 1);
3289 		if (!(val & 1))
3290 			inet_csk_enter_pingpong_mode(sk);
3291 	}
3292 }
3293 
tcp_sock_set_quickack(struct sock * sk,int val)3294 void tcp_sock_set_quickack(struct sock *sk, int val)
3295 {
3296 	lock_sock(sk);
3297 	__tcp_sock_set_quickack(sk, val);
3298 	release_sock(sk);
3299 }
3300 EXPORT_SYMBOL(tcp_sock_set_quickack);
3301 
tcp_sock_set_syncnt(struct sock * sk,int val)3302 int tcp_sock_set_syncnt(struct sock *sk, int val)
3303 {
3304 	if (val < 1 || val > MAX_TCP_SYNCNT)
3305 		return -EINVAL;
3306 
3307 	lock_sock(sk);
3308 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3309 	release_sock(sk);
3310 	return 0;
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3313 
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3314 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3315 {
3316 	lock_sock(sk);
3317 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3318 	release_sock(sk);
3319 }
3320 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3321 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3322 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3323 {
3324 	struct tcp_sock *tp = tcp_sk(sk);
3325 
3326 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3327 		return -EINVAL;
3328 
3329 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3330 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3331 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3332 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3333 		u32 elapsed = keepalive_time_elapsed(tp);
3334 
3335 		if (tp->keepalive_time > elapsed)
3336 			elapsed = tp->keepalive_time - elapsed;
3337 		else
3338 			elapsed = 0;
3339 		inet_csk_reset_keepalive_timer(sk, elapsed);
3340 	}
3341 
3342 	return 0;
3343 }
3344 
tcp_sock_set_keepidle(struct sock * sk,int val)3345 int tcp_sock_set_keepidle(struct sock *sk, int val)
3346 {
3347 	int err;
3348 
3349 	lock_sock(sk);
3350 	err = tcp_sock_set_keepidle_locked(sk, val);
3351 	release_sock(sk);
3352 	return err;
3353 }
3354 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3355 
tcp_sock_set_keepintvl(struct sock * sk,int val)3356 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3357 {
3358 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3359 		return -EINVAL;
3360 
3361 	lock_sock(sk);
3362 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3363 	release_sock(sk);
3364 	return 0;
3365 }
3366 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3367 
tcp_sock_set_keepcnt(struct sock * sk,int val)3368 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3369 {
3370 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3371 		return -EINVAL;
3372 
3373 	lock_sock(sk);
3374 	/* Paired with READ_ONCE() in keepalive_probes() */
3375 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3376 	release_sock(sk);
3377 	return 0;
3378 }
3379 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3380 
tcp_set_window_clamp(struct sock * sk,int val)3381 int tcp_set_window_clamp(struct sock *sk, int val)
3382 {
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 
3385 	if (!val) {
3386 		if (sk->sk_state != TCP_CLOSE)
3387 			return -EINVAL;
3388 		tp->window_clamp = 0;
3389 	} else {
3390 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3391 			SOCK_MIN_RCVBUF / 2 : val;
3392 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3393 	}
3394 	return 0;
3395 }
3396 
3397 /*
3398  *	Socket option code for TCP.
3399  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3400 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3401 		sockptr_t optval, unsigned int optlen)
3402 {
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	struct inet_connection_sock *icsk = inet_csk(sk);
3405 	struct net *net = sock_net(sk);
3406 	int val;
3407 	int err = 0;
3408 
3409 	/* These are data/string values, all the others are ints */
3410 	switch (optname) {
3411 	case TCP_CONGESTION: {
3412 		char name[TCP_CA_NAME_MAX];
3413 
3414 		if (optlen < 1)
3415 			return -EINVAL;
3416 
3417 		val = strncpy_from_sockptr(name, optval,
3418 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3419 		if (val < 0)
3420 			return -EFAULT;
3421 		name[val] = 0;
3422 
3423 		lock_sock(sk);
3424 		err = tcp_set_congestion_control(sk, name, true,
3425 						 ns_capable(sock_net(sk)->user_ns,
3426 							    CAP_NET_ADMIN));
3427 		release_sock(sk);
3428 		return err;
3429 	}
3430 	case TCP_ULP: {
3431 		char name[TCP_ULP_NAME_MAX];
3432 
3433 		if (optlen < 1)
3434 			return -EINVAL;
3435 
3436 		val = strncpy_from_sockptr(name, optval,
3437 					min_t(long, TCP_ULP_NAME_MAX - 1,
3438 					      optlen));
3439 		if (val < 0)
3440 			return -EFAULT;
3441 		name[val] = 0;
3442 
3443 		lock_sock(sk);
3444 		err = tcp_set_ulp(sk, name);
3445 		release_sock(sk);
3446 		return err;
3447 	}
3448 	case TCP_FASTOPEN_KEY: {
3449 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3450 		__u8 *backup_key = NULL;
3451 
3452 		/* Allow a backup key as well to facilitate key rotation
3453 		 * First key is the active one.
3454 		 */
3455 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3456 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3457 			return -EINVAL;
3458 
3459 		if (copy_from_sockptr(key, optval, optlen))
3460 			return -EFAULT;
3461 
3462 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3463 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3464 
3465 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3466 	}
3467 	default:
3468 		/* fallthru */
3469 		break;
3470 	}
3471 
3472 	if (optlen < sizeof(int))
3473 		return -EINVAL;
3474 
3475 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3476 		return -EFAULT;
3477 
3478 	lock_sock(sk);
3479 
3480 	switch (optname) {
3481 	case TCP_MAXSEG:
3482 		/* Values greater than interface MTU won't take effect. However
3483 		 * at the point when this call is done we typically don't yet
3484 		 * know which interface is going to be used
3485 		 */
3486 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3487 			err = -EINVAL;
3488 			break;
3489 		}
3490 		tp->rx_opt.user_mss = val;
3491 		break;
3492 
3493 	case TCP_NODELAY:
3494 		__tcp_sock_set_nodelay(sk, val);
3495 		break;
3496 
3497 	case TCP_THIN_LINEAR_TIMEOUTS:
3498 		if (val < 0 || val > 1)
3499 			err = -EINVAL;
3500 		else
3501 			tp->thin_lto = val;
3502 		break;
3503 
3504 	case TCP_THIN_DUPACK:
3505 		if (val < 0 || val > 1)
3506 			err = -EINVAL;
3507 		break;
3508 
3509 	case TCP_REPAIR:
3510 		if (!tcp_can_repair_sock(sk))
3511 			err = -EPERM;
3512 		else if (val == TCP_REPAIR_ON) {
3513 			tp->repair = 1;
3514 			sk->sk_reuse = SK_FORCE_REUSE;
3515 			tp->repair_queue = TCP_NO_QUEUE;
3516 		} else if (val == TCP_REPAIR_OFF) {
3517 			tp->repair = 0;
3518 			sk->sk_reuse = SK_NO_REUSE;
3519 			tcp_send_window_probe(sk);
3520 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3521 			tp->repair = 0;
3522 			sk->sk_reuse = SK_NO_REUSE;
3523 		} else
3524 			err = -EINVAL;
3525 
3526 		break;
3527 
3528 	case TCP_REPAIR_QUEUE:
3529 		if (!tp->repair)
3530 			err = -EPERM;
3531 		else if ((unsigned int)val < TCP_QUEUES_NR)
3532 			tp->repair_queue = val;
3533 		else
3534 			err = -EINVAL;
3535 		break;
3536 
3537 	case TCP_QUEUE_SEQ:
3538 		if (sk->sk_state != TCP_CLOSE) {
3539 			err = -EPERM;
3540 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3541 			if (!tcp_rtx_queue_empty(sk))
3542 				err = -EPERM;
3543 			else
3544 				WRITE_ONCE(tp->write_seq, val);
3545 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3546 			if (tp->rcv_nxt != tp->copied_seq) {
3547 				err = -EPERM;
3548 			} else {
3549 				WRITE_ONCE(tp->rcv_nxt, val);
3550 				WRITE_ONCE(tp->copied_seq, val);
3551 			}
3552 		} else {
3553 			err = -EINVAL;
3554 		}
3555 		break;
3556 
3557 	case TCP_REPAIR_OPTIONS:
3558 		if (!tp->repair)
3559 			err = -EINVAL;
3560 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3561 			err = tcp_repair_options_est(sk, optval, optlen);
3562 		else
3563 			err = -EPERM;
3564 		break;
3565 
3566 	case TCP_CORK:
3567 		__tcp_sock_set_cork(sk, val);
3568 		break;
3569 
3570 	case TCP_KEEPIDLE:
3571 		err = tcp_sock_set_keepidle_locked(sk, val);
3572 		break;
3573 	case TCP_KEEPINTVL:
3574 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3575 			err = -EINVAL;
3576 		else
3577 			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3578 		break;
3579 	case TCP_KEEPCNT:
3580 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3581 			err = -EINVAL;
3582 		else
3583 			WRITE_ONCE(tp->keepalive_probes, val);
3584 		break;
3585 	case TCP_SYNCNT:
3586 		if (val < 1 || val > MAX_TCP_SYNCNT)
3587 			err = -EINVAL;
3588 		else
3589 			WRITE_ONCE(icsk->icsk_syn_retries, val);
3590 		break;
3591 
3592 	case TCP_SAVE_SYN:
3593 		/* 0: disable, 1: enable, 2: start from ether_header */
3594 		if (val < 0 || val > 2)
3595 			err = -EINVAL;
3596 		else
3597 			tp->save_syn = val;
3598 		break;
3599 
3600 	case TCP_LINGER2:
3601 		if (val < 0)
3602 			WRITE_ONCE(tp->linger2, -1);
3603 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3604 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3605 		else
3606 			WRITE_ONCE(tp->linger2, val * HZ);
3607 		break;
3608 
3609 	case TCP_DEFER_ACCEPT:
3610 		/* Translate value in seconds to number of retransmits */
3611 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3612 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3613 					   TCP_RTO_MAX / HZ));
3614 		break;
3615 
3616 	case TCP_WINDOW_CLAMP:
3617 		err = tcp_set_window_clamp(sk, val);
3618 		break;
3619 
3620 	case TCP_QUICKACK:
3621 		__tcp_sock_set_quickack(sk, val);
3622 		break;
3623 
3624 #ifdef CONFIG_TCP_MD5SIG
3625 	case TCP_MD5SIG:
3626 	case TCP_MD5SIG_EXT:
3627 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3628 		break;
3629 #endif
3630 	case TCP_USER_TIMEOUT:
3631 		/* Cap the max time in ms TCP will retry or probe the window
3632 		 * before giving up and aborting (ETIMEDOUT) a connection.
3633 		 */
3634 		if (val < 0)
3635 			err = -EINVAL;
3636 		else
3637 			WRITE_ONCE(icsk->icsk_user_timeout, val);
3638 		break;
3639 
3640 	case TCP_FASTOPEN:
3641 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3642 		    TCPF_LISTEN))) {
3643 			tcp_fastopen_init_key_once(net);
3644 
3645 			fastopen_queue_tune(sk, val);
3646 		} else {
3647 			err = -EINVAL;
3648 		}
3649 		break;
3650 	case TCP_FASTOPEN_CONNECT:
3651 		if (val > 1 || val < 0) {
3652 			err = -EINVAL;
3653 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3654 			   TFO_CLIENT_ENABLE) {
3655 			if (sk->sk_state == TCP_CLOSE)
3656 				tp->fastopen_connect = val;
3657 			else
3658 				err = -EINVAL;
3659 		} else {
3660 			err = -EOPNOTSUPP;
3661 		}
3662 		break;
3663 	case TCP_FASTOPEN_NO_COOKIE:
3664 		if (val > 1 || val < 0)
3665 			err = -EINVAL;
3666 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3667 			err = -EINVAL;
3668 		else
3669 			tp->fastopen_no_cookie = val;
3670 		break;
3671 	case TCP_TIMESTAMP:
3672 		if (!tp->repair)
3673 			err = -EPERM;
3674 		else
3675 			tp->tsoffset = val - tcp_time_stamp_raw();
3676 		break;
3677 	case TCP_REPAIR_WINDOW:
3678 		err = tcp_repair_set_window(tp, optval, optlen);
3679 		break;
3680 	case TCP_NOTSENT_LOWAT:
3681 		WRITE_ONCE(tp->notsent_lowat, val);
3682 		sk->sk_write_space(sk);
3683 		break;
3684 	case TCP_INQ:
3685 		if (val > 1 || val < 0)
3686 			err = -EINVAL;
3687 		else
3688 			tp->recvmsg_inq = val;
3689 		break;
3690 	case TCP_TX_DELAY:
3691 		if (val)
3692 			tcp_enable_tx_delay();
3693 		WRITE_ONCE(tp->tcp_tx_delay, val);
3694 		break;
3695 	default:
3696 		err = -ENOPROTOOPT;
3697 		break;
3698 	}
3699 
3700 	release_sock(sk);
3701 	return err;
3702 }
3703 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3704 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3705 		   unsigned int optlen)
3706 {
3707 	const struct inet_connection_sock *icsk = inet_csk(sk);
3708 
3709 	if (level != SOL_TCP)
3710 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3711 						     optval, optlen);
3712 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3713 }
3714 EXPORT_SYMBOL(tcp_setsockopt);
3715 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3716 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3717 				      struct tcp_info *info)
3718 {
3719 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3720 	enum tcp_chrono i;
3721 
3722 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3723 		stats[i] = tp->chrono_stat[i - 1];
3724 		if (i == tp->chrono_type)
3725 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3726 		stats[i] *= USEC_PER_SEC / HZ;
3727 		total += stats[i];
3728 	}
3729 
3730 	info->tcpi_busy_time = total;
3731 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3732 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3733 }
3734 
3735 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3736 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3737 {
3738 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3739 	const struct inet_connection_sock *icsk = inet_csk(sk);
3740 	unsigned long rate;
3741 	u32 now;
3742 	u64 rate64;
3743 	bool slow;
3744 
3745 	memset(info, 0, sizeof(*info));
3746 	if (sk->sk_type != SOCK_STREAM)
3747 		return;
3748 
3749 	info->tcpi_state = inet_sk_state_load(sk);
3750 
3751 	/* Report meaningful fields for all TCP states, including listeners */
3752 	rate = READ_ONCE(sk->sk_pacing_rate);
3753 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3754 	info->tcpi_pacing_rate = rate64;
3755 
3756 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3757 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3758 	info->tcpi_max_pacing_rate = rate64;
3759 
3760 	info->tcpi_reordering = tp->reordering;
3761 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3762 
3763 	if (info->tcpi_state == TCP_LISTEN) {
3764 		/* listeners aliased fields :
3765 		 * tcpi_unacked -> Number of children ready for accept()
3766 		 * tcpi_sacked  -> max backlog
3767 		 */
3768 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3769 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3770 		return;
3771 	}
3772 
3773 	slow = lock_sock_fast(sk);
3774 
3775 	info->tcpi_ca_state = icsk->icsk_ca_state;
3776 	info->tcpi_retransmits = icsk->icsk_retransmits;
3777 	info->tcpi_probes = icsk->icsk_probes_out;
3778 	info->tcpi_backoff = icsk->icsk_backoff;
3779 
3780 	if (tp->rx_opt.tstamp_ok)
3781 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3782 	if (tcp_is_sack(tp))
3783 		info->tcpi_options |= TCPI_OPT_SACK;
3784 	if (tp->rx_opt.wscale_ok) {
3785 		info->tcpi_options |= TCPI_OPT_WSCALE;
3786 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3787 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3788 	}
3789 
3790 	if (tp->ecn_flags & TCP_ECN_OK)
3791 		info->tcpi_options |= TCPI_OPT_ECN;
3792 	if (tp->ecn_flags & TCP_ECN_SEEN)
3793 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3794 	if (tp->syn_data_acked)
3795 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3796 
3797 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3798 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3799 	info->tcpi_snd_mss = tp->mss_cache;
3800 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3801 
3802 	info->tcpi_unacked = tp->packets_out;
3803 	info->tcpi_sacked = tp->sacked_out;
3804 
3805 	info->tcpi_lost = tp->lost_out;
3806 	info->tcpi_retrans = tp->retrans_out;
3807 
3808 	now = tcp_jiffies32;
3809 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3810 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3811 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3812 
3813 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3814 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3815 	info->tcpi_rtt = tp->srtt_us >> 3;
3816 	info->tcpi_rttvar = tp->mdev_us >> 2;
3817 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3818 	info->tcpi_advmss = tp->advmss;
3819 
3820 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3821 	info->tcpi_rcv_space = tp->rcvq_space.space;
3822 
3823 	info->tcpi_total_retrans = tp->total_retrans;
3824 
3825 	info->tcpi_bytes_acked = tp->bytes_acked;
3826 	info->tcpi_bytes_received = tp->bytes_received;
3827 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3828 	tcp_get_info_chrono_stats(tp, info);
3829 
3830 	info->tcpi_segs_out = tp->segs_out;
3831 	info->tcpi_segs_in = tp->segs_in;
3832 
3833 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3834 	info->tcpi_data_segs_in = tp->data_segs_in;
3835 	info->tcpi_data_segs_out = tp->data_segs_out;
3836 
3837 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3838 	rate64 = tcp_compute_delivery_rate(tp);
3839 	if (rate64)
3840 		info->tcpi_delivery_rate = rate64;
3841 	info->tcpi_delivered = tp->delivered;
3842 	info->tcpi_delivered_ce = tp->delivered_ce;
3843 	info->tcpi_bytes_sent = tp->bytes_sent;
3844 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3845 	info->tcpi_dsack_dups = tp->dsack_dups;
3846 	info->tcpi_reord_seen = tp->reord_seen;
3847 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3848 	info->tcpi_snd_wnd = tp->snd_wnd;
3849 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3850 	unlock_sock_fast(sk, slow);
3851 }
3852 EXPORT_SYMBOL_GPL(tcp_get_info);
3853 
tcp_opt_stats_get_size(void)3854 static size_t tcp_opt_stats_get_size(void)
3855 {
3856 	return
3857 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3858 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3859 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3860 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3861 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3862 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3863 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3865 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3866 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3867 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3868 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3869 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3870 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3871 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3872 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3873 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3874 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3875 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3876 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3877 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3878 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3879 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3880 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3881 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3882 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3883 		0;
3884 }
3885 
3886 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3887 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3888 {
3889 	if (skb->protocol == htons(ETH_P_IP))
3890 		return ip_hdr(skb)->ttl;
3891 	else if (skb->protocol == htons(ETH_P_IPV6))
3892 		return ipv6_hdr(skb)->hop_limit;
3893 	else
3894 		return 0;
3895 }
3896 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3897 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3898 					       const struct sk_buff *orig_skb,
3899 					       const struct sk_buff *ack_skb)
3900 {
3901 	const struct tcp_sock *tp = tcp_sk(sk);
3902 	struct sk_buff *stats;
3903 	struct tcp_info info;
3904 	unsigned long rate;
3905 	u64 rate64;
3906 
3907 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3908 	if (!stats)
3909 		return NULL;
3910 
3911 	tcp_get_info_chrono_stats(tp, &info);
3912 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3913 			  info.tcpi_busy_time, TCP_NLA_PAD);
3914 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3915 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3916 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3917 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3918 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3919 			  tp->data_segs_out, TCP_NLA_PAD);
3920 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3921 			  tp->total_retrans, TCP_NLA_PAD);
3922 
3923 	rate = READ_ONCE(sk->sk_pacing_rate);
3924 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3925 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3926 
3927 	rate64 = tcp_compute_delivery_rate(tp);
3928 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3929 
3930 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3931 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3932 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3933 
3934 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3935 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3936 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3937 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3938 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3939 
3940 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3941 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3942 
3943 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3944 			  TCP_NLA_PAD);
3945 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3946 			  TCP_NLA_PAD);
3947 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3948 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3949 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3950 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3951 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3952 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3953 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3954 			  TCP_NLA_PAD);
3955 	if (ack_skb)
3956 		nla_put_u8(stats, TCP_NLA_TTL,
3957 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3958 
3959 	return stats;
3960 }
3961 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3962 static int do_tcp_getsockopt(struct sock *sk, int level,
3963 		int optname, char __user *optval, int __user *optlen)
3964 {
3965 	struct inet_connection_sock *icsk = inet_csk(sk);
3966 	struct tcp_sock *tp = tcp_sk(sk);
3967 	struct net *net = sock_net(sk);
3968 	int val, len;
3969 
3970 	if (get_user(len, optlen))
3971 		return -EFAULT;
3972 
3973 	len = min_t(unsigned int, len, sizeof(int));
3974 
3975 	if (len < 0)
3976 		return -EINVAL;
3977 
3978 	switch (optname) {
3979 	case TCP_MAXSEG:
3980 		val = tp->mss_cache;
3981 		if (tp->rx_opt.user_mss &&
3982 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3983 			val = tp->rx_opt.user_mss;
3984 		if (tp->repair)
3985 			val = tp->rx_opt.mss_clamp;
3986 		break;
3987 	case TCP_NODELAY:
3988 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3989 		break;
3990 	case TCP_CORK:
3991 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3992 		break;
3993 	case TCP_KEEPIDLE:
3994 		val = keepalive_time_when(tp) / HZ;
3995 		break;
3996 	case TCP_KEEPINTVL:
3997 		val = keepalive_intvl_when(tp) / HZ;
3998 		break;
3999 	case TCP_KEEPCNT:
4000 		val = keepalive_probes(tp);
4001 		break;
4002 	case TCP_SYNCNT:
4003 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4004 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4005 		break;
4006 	case TCP_LINGER2:
4007 		val = READ_ONCE(tp->linger2);
4008 		if (val >= 0)
4009 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4010 		break;
4011 	case TCP_DEFER_ACCEPT:
4012 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4013 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4014 				      TCP_RTO_MAX / HZ);
4015 		break;
4016 	case TCP_WINDOW_CLAMP:
4017 		val = tp->window_clamp;
4018 		break;
4019 	case TCP_INFO: {
4020 		struct tcp_info info;
4021 
4022 		if (get_user(len, optlen))
4023 			return -EFAULT;
4024 
4025 		tcp_get_info(sk, &info);
4026 
4027 		len = min_t(unsigned int, len, sizeof(info));
4028 		if (put_user(len, optlen))
4029 			return -EFAULT;
4030 		if (copy_to_user(optval, &info, len))
4031 			return -EFAULT;
4032 		return 0;
4033 	}
4034 	case TCP_CC_INFO: {
4035 		const struct tcp_congestion_ops *ca_ops;
4036 		union tcp_cc_info info;
4037 		size_t sz = 0;
4038 		int attr;
4039 
4040 		if (get_user(len, optlen))
4041 			return -EFAULT;
4042 
4043 		ca_ops = icsk->icsk_ca_ops;
4044 		if (ca_ops && ca_ops->get_info)
4045 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4046 
4047 		len = min_t(unsigned int, len, sz);
4048 		if (put_user(len, optlen))
4049 			return -EFAULT;
4050 		if (copy_to_user(optval, &info, len))
4051 			return -EFAULT;
4052 		return 0;
4053 	}
4054 	case TCP_QUICKACK:
4055 		val = !inet_csk_in_pingpong_mode(sk);
4056 		break;
4057 
4058 	case TCP_CONGESTION:
4059 		if (get_user(len, optlen))
4060 			return -EFAULT;
4061 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4062 		if (put_user(len, optlen))
4063 			return -EFAULT;
4064 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4065 			return -EFAULT;
4066 		return 0;
4067 
4068 	case TCP_ULP:
4069 		if (get_user(len, optlen))
4070 			return -EFAULT;
4071 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4072 		if (!icsk->icsk_ulp_ops) {
4073 			if (put_user(0, optlen))
4074 				return -EFAULT;
4075 			return 0;
4076 		}
4077 		if (put_user(len, optlen))
4078 			return -EFAULT;
4079 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4080 			return -EFAULT;
4081 		return 0;
4082 
4083 	case TCP_FASTOPEN_KEY: {
4084 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4085 		unsigned int key_len;
4086 
4087 		if (get_user(len, optlen))
4088 			return -EFAULT;
4089 
4090 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4091 				TCP_FASTOPEN_KEY_LENGTH;
4092 		len = min_t(unsigned int, len, key_len);
4093 		if (put_user(len, optlen))
4094 			return -EFAULT;
4095 		if (copy_to_user(optval, key, len))
4096 			return -EFAULT;
4097 		return 0;
4098 	}
4099 	case TCP_THIN_LINEAR_TIMEOUTS:
4100 		val = tp->thin_lto;
4101 		break;
4102 
4103 	case TCP_THIN_DUPACK:
4104 		val = 0;
4105 		break;
4106 
4107 	case TCP_REPAIR:
4108 		val = tp->repair;
4109 		break;
4110 
4111 	case TCP_REPAIR_QUEUE:
4112 		if (tp->repair)
4113 			val = tp->repair_queue;
4114 		else
4115 			return -EINVAL;
4116 		break;
4117 
4118 	case TCP_REPAIR_WINDOW: {
4119 		struct tcp_repair_window opt;
4120 
4121 		if (get_user(len, optlen))
4122 			return -EFAULT;
4123 
4124 		if (len != sizeof(opt))
4125 			return -EINVAL;
4126 
4127 		if (!tp->repair)
4128 			return -EPERM;
4129 
4130 		opt.snd_wl1	= tp->snd_wl1;
4131 		opt.snd_wnd	= tp->snd_wnd;
4132 		opt.max_window	= tp->max_window;
4133 		opt.rcv_wnd	= tp->rcv_wnd;
4134 		opt.rcv_wup	= tp->rcv_wup;
4135 
4136 		if (copy_to_user(optval, &opt, len))
4137 			return -EFAULT;
4138 		return 0;
4139 	}
4140 	case TCP_QUEUE_SEQ:
4141 		if (tp->repair_queue == TCP_SEND_QUEUE)
4142 			val = tp->write_seq;
4143 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4144 			val = tp->rcv_nxt;
4145 		else
4146 			return -EINVAL;
4147 		break;
4148 
4149 	case TCP_USER_TIMEOUT:
4150 		val = READ_ONCE(icsk->icsk_user_timeout);
4151 		break;
4152 
4153 	case TCP_FASTOPEN:
4154 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4155 		break;
4156 
4157 	case TCP_FASTOPEN_CONNECT:
4158 		val = tp->fastopen_connect;
4159 		break;
4160 
4161 	case TCP_FASTOPEN_NO_COOKIE:
4162 		val = tp->fastopen_no_cookie;
4163 		break;
4164 
4165 	case TCP_TX_DELAY:
4166 		val = READ_ONCE(tp->tcp_tx_delay);
4167 		break;
4168 
4169 	case TCP_TIMESTAMP:
4170 		val = tcp_time_stamp_raw() + tp->tsoffset;
4171 		break;
4172 	case TCP_NOTSENT_LOWAT:
4173 		val = READ_ONCE(tp->notsent_lowat);
4174 		break;
4175 	case TCP_INQ:
4176 		val = tp->recvmsg_inq;
4177 		break;
4178 	case TCP_SAVE_SYN:
4179 		val = tp->save_syn;
4180 		break;
4181 	case TCP_SAVED_SYN: {
4182 		if (get_user(len, optlen))
4183 			return -EFAULT;
4184 
4185 		lock_sock(sk);
4186 		if (tp->saved_syn) {
4187 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4188 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4189 					     optlen)) {
4190 					release_sock(sk);
4191 					return -EFAULT;
4192 				}
4193 				release_sock(sk);
4194 				return -EINVAL;
4195 			}
4196 			len = tcp_saved_syn_len(tp->saved_syn);
4197 			if (put_user(len, optlen)) {
4198 				release_sock(sk);
4199 				return -EFAULT;
4200 			}
4201 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4202 				release_sock(sk);
4203 				return -EFAULT;
4204 			}
4205 			tcp_saved_syn_free(tp);
4206 			release_sock(sk);
4207 		} else {
4208 			release_sock(sk);
4209 			len = 0;
4210 			if (put_user(len, optlen))
4211 				return -EFAULT;
4212 		}
4213 		return 0;
4214 	}
4215 #ifdef CONFIG_MMU
4216 	case TCP_ZEROCOPY_RECEIVE: {
4217 		struct scm_timestamping_internal tss;
4218 		struct tcp_zerocopy_receive zc = {};
4219 		int err;
4220 
4221 		if (get_user(len, optlen))
4222 			return -EFAULT;
4223 		if (len < 0 ||
4224 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4225 			return -EINVAL;
4226 		if (unlikely(len > sizeof(zc))) {
4227 			err = check_zeroed_user(optval + sizeof(zc),
4228 						len - sizeof(zc));
4229 			if (err < 1)
4230 				return err == 0 ? -EINVAL : err;
4231 			len = sizeof(zc);
4232 			if (put_user(len, optlen))
4233 				return -EFAULT;
4234 		}
4235 		if (copy_from_user(&zc, optval, len))
4236 			return -EFAULT;
4237 		if (zc.reserved)
4238 			return -EINVAL;
4239 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4240 			return -EINVAL;
4241 		lock_sock(sk);
4242 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4243 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4244 							  &zc, &len, err);
4245 		release_sock(sk);
4246 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4247 			goto zerocopy_rcv_cmsg;
4248 		switch (len) {
4249 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4250 			goto zerocopy_rcv_cmsg;
4251 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4252 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4253 		case offsetofend(struct tcp_zerocopy_receive, flags):
4254 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4255 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4256 		case offsetofend(struct tcp_zerocopy_receive, err):
4257 			goto zerocopy_rcv_sk_err;
4258 		case offsetofend(struct tcp_zerocopy_receive, inq):
4259 			goto zerocopy_rcv_inq;
4260 		case offsetofend(struct tcp_zerocopy_receive, length):
4261 		default:
4262 			goto zerocopy_rcv_out;
4263 		}
4264 zerocopy_rcv_cmsg:
4265 		if (zc.msg_flags & TCP_CMSG_TS)
4266 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4267 		else
4268 			zc.msg_flags = 0;
4269 zerocopy_rcv_sk_err:
4270 		if (!err)
4271 			zc.err = sock_error(sk);
4272 zerocopy_rcv_inq:
4273 		zc.inq = tcp_inq_hint(sk);
4274 zerocopy_rcv_out:
4275 		if (!err && copy_to_user(optval, &zc, len))
4276 			err = -EFAULT;
4277 		return err;
4278 	}
4279 #endif
4280 	default:
4281 		return -ENOPROTOOPT;
4282 	}
4283 
4284 	if (put_user(len, optlen))
4285 		return -EFAULT;
4286 	if (copy_to_user(optval, &val, len))
4287 		return -EFAULT;
4288 	return 0;
4289 }
4290 
tcp_bpf_bypass_getsockopt(int level,int optname)4291 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4292 {
4293 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4294 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4295 	 */
4296 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4297 		return true;
4298 
4299 	return false;
4300 }
4301 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4302 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4303 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4304 		   int __user *optlen)
4305 {
4306 	struct inet_connection_sock *icsk = inet_csk(sk);
4307 
4308 	if (level != SOL_TCP)
4309 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4310 						     optval, optlen);
4311 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4312 }
4313 EXPORT_SYMBOL(tcp_getsockopt);
4314 
4315 #ifdef CONFIG_TCP_MD5SIG
4316 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4317 static DEFINE_MUTEX(tcp_md5sig_mutex);
4318 static bool tcp_md5sig_pool_populated = false;
4319 
__tcp_alloc_md5sig_pool(void)4320 static void __tcp_alloc_md5sig_pool(void)
4321 {
4322 	struct crypto_ahash *hash;
4323 	int cpu;
4324 
4325 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4326 	if (IS_ERR(hash))
4327 		return;
4328 
4329 	for_each_possible_cpu(cpu) {
4330 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4331 		struct ahash_request *req;
4332 
4333 		if (!scratch) {
4334 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4335 					       sizeof(struct tcphdr),
4336 					       GFP_KERNEL,
4337 					       cpu_to_node(cpu));
4338 			if (!scratch)
4339 				return;
4340 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4341 		}
4342 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4343 			continue;
4344 
4345 		req = ahash_request_alloc(hash, GFP_KERNEL);
4346 		if (!req)
4347 			return;
4348 
4349 		ahash_request_set_callback(req, 0, NULL, NULL);
4350 
4351 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4352 	}
4353 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4354 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4355 	 */
4356 	smp_wmb();
4357 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4358 	 * and tcp_get_md5sig_pool().
4359 	*/
4360 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4361 }
4362 
tcp_alloc_md5sig_pool(void)4363 bool tcp_alloc_md5sig_pool(void)
4364 {
4365 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4366 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4367 		mutex_lock(&tcp_md5sig_mutex);
4368 
4369 		if (!tcp_md5sig_pool_populated) {
4370 			__tcp_alloc_md5sig_pool();
4371 			if (tcp_md5sig_pool_populated)
4372 				static_branch_inc(&tcp_md5_needed);
4373 		}
4374 
4375 		mutex_unlock(&tcp_md5sig_mutex);
4376 	}
4377 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4378 	return READ_ONCE(tcp_md5sig_pool_populated);
4379 }
4380 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4381 
4382 
4383 /**
4384  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4385  *
4386  *	We use percpu structure, so if we succeed, we exit with preemption
4387  *	and BH disabled, to make sure another thread or softirq handling
4388  *	wont try to get same context.
4389  */
tcp_get_md5sig_pool(void)4390 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4391 {
4392 	local_bh_disable();
4393 
4394 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4395 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4396 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4397 		smp_rmb();
4398 		return this_cpu_ptr(&tcp_md5sig_pool);
4399 	}
4400 	local_bh_enable();
4401 	return NULL;
4402 }
4403 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4404 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4405 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4406 			  const struct sk_buff *skb, unsigned int header_len)
4407 {
4408 	struct scatterlist sg;
4409 	const struct tcphdr *tp = tcp_hdr(skb);
4410 	struct ahash_request *req = hp->md5_req;
4411 	unsigned int i;
4412 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4413 					   skb_headlen(skb) - header_len : 0;
4414 	const struct skb_shared_info *shi = skb_shinfo(skb);
4415 	struct sk_buff *frag_iter;
4416 
4417 	sg_init_table(&sg, 1);
4418 
4419 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4420 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4421 	if (crypto_ahash_update(req))
4422 		return 1;
4423 
4424 	for (i = 0; i < shi->nr_frags; ++i) {
4425 		const skb_frag_t *f = &shi->frags[i];
4426 		unsigned int offset = skb_frag_off(f);
4427 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4428 
4429 		sg_set_page(&sg, page, skb_frag_size(f),
4430 			    offset_in_page(offset));
4431 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4432 		if (crypto_ahash_update(req))
4433 			return 1;
4434 	}
4435 
4436 	skb_walk_frags(skb, frag_iter)
4437 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4438 			return 1;
4439 
4440 	return 0;
4441 }
4442 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4443 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4444 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4445 {
4446 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4447 	struct scatterlist sg;
4448 
4449 	sg_init_one(&sg, key->key, keylen);
4450 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4451 
4452 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4453 	return data_race(crypto_ahash_update(hp->md5_req));
4454 }
4455 EXPORT_SYMBOL(tcp_md5_hash_key);
4456 
4457 #endif
4458 
tcp_done(struct sock * sk)4459 void tcp_done(struct sock *sk)
4460 {
4461 	struct request_sock *req;
4462 
4463 	/* We might be called with a new socket, after
4464 	 * inet_csk_prepare_forced_close() has been called
4465 	 * so we can not use lockdep_sock_is_held(sk)
4466 	 */
4467 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4468 
4469 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4470 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4471 
4472 	tcp_set_state(sk, TCP_CLOSE);
4473 	tcp_clear_xmit_timers(sk);
4474 	if (req)
4475 		reqsk_fastopen_remove(sk, req, false);
4476 
4477 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4478 
4479 	if (!sock_flag(sk, SOCK_DEAD))
4480 		sk->sk_state_change(sk);
4481 	else
4482 		inet_csk_destroy_sock(sk);
4483 }
4484 EXPORT_SYMBOL_GPL(tcp_done);
4485 
tcp_abort(struct sock * sk,int err)4486 int tcp_abort(struct sock *sk, int err)
4487 {
4488 	if (!sk_fullsock(sk)) {
4489 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4490 			struct request_sock *req = inet_reqsk(sk);
4491 
4492 			local_bh_disable();
4493 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4494 			local_bh_enable();
4495 			return 0;
4496 		}
4497 		return -EOPNOTSUPP;
4498 	}
4499 
4500 	/* Don't race with userspace socket closes such as tcp_close. */
4501 	lock_sock(sk);
4502 
4503 	if (sk->sk_state == TCP_LISTEN) {
4504 		tcp_set_state(sk, TCP_CLOSE);
4505 		inet_csk_listen_stop(sk);
4506 	}
4507 
4508 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4509 	local_bh_disable();
4510 	bh_lock_sock(sk);
4511 
4512 	if (!sock_flag(sk, SOCK_DEAD)) {
4513 		sk->sk_err = err;
4514 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4515 		smp_wmb();
4516 		sk_error_report(sk);
4517 		if (tcp_need_reset(sk->sk_state))
4518 			tcp_send_active_reset(sk, GFP_ATOMIC);
4519 		tcp_done(sk);
4520 	}
4521 
4522 	bh_unlock_sock(sk);
4523 	local_bh_enable();
4524 	tcp_write_queue_purge(sk);
4525 	release_sock(sk);
4526 	return 0;
4527 }
4528 EXPORT_SYMBOL_GPL(tcp_abort);
4529 
4530 extern struct tcp_congestion_ops tcp_reno;
4531 
4532 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4533 static int __init set_thash_entries(char *str)
4534 {
4535 	ssize_t ret;
4536 
4537 	if (!str)
4538 		return 0;
4539 
4540 	ret = kstrtoul(str, 0, &thash_entries);
4541 	if (ret)
4542 		return 0;
4543 
4544 	return 1;
4545 }
4546 __setup("thash_entries=", set_thash_entries);
4547 
tcp_init_mem(void)4548 static void __init tcp_init_mem(void)
4549 {
4550 	unsigned long limit = nr_free_buffer_pages() / 16;
4551 
4552 	limit = max(limit, 128UL);
4553 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4554 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4555 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4556 }
4557 
tcp_init(void)4558 void __init tcp_init(void)
4559 {
4560 	int max_rshare, max_wshare, cnt;
4561 	unsigned long limit;
4562 	unsigned int i;
4563 
4564 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4565 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4566 		     sizeof_field(struct sk_buff, cb));
4567 
4568 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4569 
4570 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4571 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4572 
4573 	inet_hashinfo_init(&tcp_hashinfo);
4574 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4575 			    thash_entries, 21,  /* one slot per 2 MB*/
4576 			    0, 64 * 1024);
4577 	tcp_hashinfo.bind_bucket_cachep =
4578 		kmem_cache_create("tcp_bind_bucket",
4579 				  sizeof(struct inet_bind_bucket), 0,
4580 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4581 				  SLAB_ACCOUNT,
4582 				  NULL);
4583 
4584 	/* Size and allocate the main established and bind bucket
4585 	 * hash tables.
4586 	 *
4587 	 * The methodology is similar to that of the buffer cache.
4588 	 */
4589 	tcp_hashinfo.ehash =
4590 		alloc_large_system_hash("TCP established",
4591 					sizeof(struct inet_ehash_bucket),
4592 					thash_entries,
4593 					17, /* one slot per 128 KB of memory */
4594 					0,
4595 					NULL,
4596 					&tcp_hashinfo.ehash_mask,
4597 					0,
4598 					thash_entries ? 0 : 512 * 1024);
4599 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4600 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4601 
4602 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4603 		panic("TCP: failed to alloc ehash_locks");
4604 	tcp_hashinfo.bhash =
4605 		alloc_large_system_hash("TCP bind",
4606 					sizeof(struct inet_bind_hashbucket),
4607 					tcp_hashinfo.ehash_mask + 1,
4608 					17, /* one slot per 128 KB of memory */
4609 					0,
4610 					&tcp_hashinfo.bhash_size,
4611 					NULL,
4612 					0,
4613 					64 * 1024);
4614 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4615 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4616 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4617 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4618 	}
4619 
4620 
4621 	cnt = tcp_hashinfo.ehash_mask + 1;
4622 	sysctl_tcp_max_orphans = cnt / 2;
4623 
4624 	tcp_init_mem();
4625 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4626 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4627 	max_wshare = min(4UL*1024*1024, limit);
4628 	max_rshare = min(6UL*1024*1024, limit);
4629 
4630 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4631 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4632 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4633 
4634 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4635 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4636 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4637 
4638 	pr_info("Hash tables configured (established %u bind %u)\n",
4639 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4640 
4641 	tcp_v4_init();
4642 	tcp_metrics_init();
4643 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4644 	tcp_tasklet_init();
4645 	mptcp_init();
4646 }
4647