• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/tcp.h>
3 #include <net/tcp.h>
4 
tcp_rack_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)5 static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
6 {
7 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
8 }
9 
tcp_rack_reo_wnd(const struct sock * sk)10 static u32 tcp_rack_reo_wnd(const struct sock *sk)
11 {
12 	struct tcp_sock *tp = tcp_sk(sk);
13 
14 	if (!tp->reord_seen) {
15 		/* If reordering has not been observed, be aggressive during
16 		 * the recovery or starting the recovery by DUPACK threshold.
17 		 */
18 		if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
19 			return 0;
20 
21 		if (tp->sacked_out >= tp->reordering &&
22 		    !(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
23 		      TCP_RACK_NO_DUPTHRESH))
24 			return 0;
25 	}
26 
27 	/* To be more reordering resilient, allow min_rtt/4 settling delay.
28 	 * Use min_rtt instead of the smoothed RTT because reordering is
29 	 * often a path property and less related to queuing or delayed ACKs.
30 	 * Upon receiving DSACKs, linearly increase the window up to the
31 	 * smoothed RTT.
32 	 */
33 	return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
34 		   tp->srtt_us >> 3);
35 }
36 
tcp_rack_skb_timeout(struct tcp_sock * tp,struct sk_buff * skb,u32 reo_wnd)37 s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
38 {
39 	return tp->rack.rtt_us + reo_wnd -
40 	       tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(skb));
41 }
42 
43 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
44  *
45  * Marks a packet lost, if some packet sent later has been (s)acked.
46  * The underlying idea is similar to the traditional dupthresh and FACK
47  * but they look at different metrics:
48  *
49  * dupthresh: 3 OOO packets delivered (packet count)
50  * FACK: sequence delta to highest sacked sequence (sequence space)
51  * RACK: sent time delta to the latest delivered packet (time domain)
52  *
53  * The advantage of RACK is it applies to both original and retransmitted
54  * packet and therefore is robust against tail losses. Another advantage
55  * is being more resilient to reordering by simply allowing some
56  * "settling delay", instead of tweaking the dupthresh.
57  *
58  * When tcp_rack_detect_loss() detects some packets are lost and we
59  * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
60  * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
61  * make us enter the CA_Recovery state.
62  */
tcp_rack_detect_loss(struct sock * sk,u32 * reo_timeout)63 static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
64 {
65 	struct tcp_sock *tp = tcp_sk(sk);
66 	struct sk_buff *skb, *n;
67 	u32 reo_wnd;
68 
69 	*reo_timeout = 0;
70 	reo_wnd = tcp_rack_reo_wnd(sk);
71 	list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
72 				 tcp_tsorted_anchor) {
73 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
74 		s32 remaining;
75 
76 		/* Skip ones marked lost but not yet retransmitted */
77 		if ((scb->sacked & TCPCB_LOST) &&
78 		    !(scb->sacked & TCPCB_SACKED_RETRANS))
79 			continue;
80 
81 		if (!tcp_rack_sent_after(tp->rack.mstamp,
82 					 tcp_skb_timestamp_us(skb),
83 					 tp->rack.end_seq, scb->end_seq))
84 			break;
85 
86 		/* A packet is lost if it has not been s/acked beyond
87 		 * the recent RTT plus the reordering window.
88 		 */
89 		remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
90 		if (remaining <= 0) {
91 			tcp_mark_skb_lost(sk, skb);
92 			list_del_init(&skb->tcp_tsorted_anchor);
93 		} else {
94 			/* Record maximum wait time */
95 			*reo_timeout = max_t(u32, *reo_timeout, remaining);
96 		}
97 	}
98 }
99 
tcp_rack_mark_lost(struct sock * sk)100 bool tcp_rack_mark_lost(struct sock *sk)
101 {
102 	struct tcp_sock *tp = tcp_sk(sk);
103 	u32 timeout;
104 
105 	if (!tp->rack.advanced)
106 		return false;
107 
108 	/* Reset the advanced flag to avoid unnecessary queue scanning */
109 	tp->rack.advanced = 0;
110 	tcp_rack_detect_loss(sk, &timeout);
111 	if (timeout) {
112 		timeout = usecs_to_jiffies(timeout + TCP_TIMEOUT_MIN_US);
113 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
114 					  timeout, inet_csk(sk)->icsk_rto);
115 	}
116 	return !!timeout;
117 }
118 
119 /* Record the most recently (re)sent time among the (s)acked packets
120  * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
121  * draft-cheng-tcpm-rack-00.txt
122  */
tcp_rack_advance(struct tcp_sock * tp,u8 sacked,u32 end_seq,u64 xmit_time)123 void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
124 		      u64 xmit_time)
125 {
126 	u32 rtt_us;
127 
128 	rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
129 	if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
130 		/* If the sacked packet was retransmitted, it's ambiguous
131 		 * whether the retransmission or the original (or the prior
132 		 * retransmission) was sacked.
133 		 *
134 		 * If the original is lost, there is no ambiguity. Otherwise
135 		 * we assume the original can be delayed up to aRTT + min_rtt.
136 		 * the aRTT term is bounded by the fast recovery or timeout,
137 		 * so it's at least one RTT (i.e., retransmission is at least
138 		 * an RTT later).
139 		 */
140 		return;
141 	}
142 	tp->rack.advanced = 1;
143 	tp->rack.rtt_us = rtt_us;
144 	if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp,
145 				end_seq, tp->rack.end_seq)) {
146 		tp->rack.mstamp = xmit_time;
147 		tp->rack.end_seq = end_seq;
148 	}
149 }
150 
151 /* We have waited long enough to accommodate reordering. Mark the expired
152  * packets lost and retransmit them.
153  */
tcp_rack_reo_timeout(struct sock * sk)154 void tcp_rack_reo_timeout(struct sock *sk)
155 {
156 	struct tcp_sock *tp = tcp_sk(sk);
157 	u32 timeout, prior_inflight;
158 	u32 lost = tp->lost;
159 
160 	prior_inflight = tcp_packets_in_flight(tp);
161 	tcp_rack_detect_loss(sk, &timeout);
162 	if (prior_inflight != tcp_packets_in_flight(tp)) {
163 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
164 			tcp_enter_recovery(sk, false);
165 			if (!inet_csk(sk)->icsk_ca_ops->cong_control)
166 				tcp_cwnd_reduction(sk, 1, tp->lost - lost, 0);
167 		}
168 		tcp_xmit_retransmit_queue(sk);
169 	}
170 	if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
171 		tcp_rearm_rto(sk);
172 }
173 
174 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
175  *
176  * If a DSACK is received that seems like it may have been due to reordering
177  * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded
178  * by srtt), since there is possibility that spurious retransmission was
179  * due to reordering delay longer than reo_wnd.
180  *
181  * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
182  * no. of successful recoveries (accounts for full DSACK-based loss
183  * recovery undo). After that, reset it to default (min_rtt/4).
184  *
185  * At max, reo_wnd is incremented only once per rtt. So that the new
186  * DSACK on which we are reacting, is due to the spurious retx (approx)
187  * after the reo_wnd has been updated last time.
188  *
189  * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
190  * absolute value to account for change in rtt.
191  */
tcp_rack_update_reo_wnd(struct sock * sk,struct rate_sample * rs)192 void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
193 {
194 	struct tcp_sock *tp = tcp_sk(sk);
195 
196 	if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
197 	     TCP_RACK_STATIC_REO_WND) ||
198 	    !rs->prior_delivered)
199 		return;
200 
201 	/* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
202 	if (before(rs->prior_delivered, tp->rack.last_delivered))
203 		tp->rack.dsack_seen = 0;
204 
205 	/* Adjust the reo_wnd if update is pending */
206 	if (tp->rack.dsack_seen) {
207 		tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
208 					       tp->rack.reo_wnd_steps + 1);
209 		tp->rack.dsack_seen = 0;
210 		tp->rack.last_delivered = tp->delivered;
211 		tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
212 	} else if (!tp->rack.reo_wnd_persist) {
213 		tp->rack.reo_wnd_steps = 1;
214 	}
215 }
216 
217 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
218  * the next unacked packet upon receiving
219  * a) three or more DUPACKs to start the fast recovery
220  * b) an ACK acknowledging new data during the fast recovery.
221  */
tcp_newreno_mark_lost(struct sock * sk,bool snd_una_advanced)222 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
223 {
224 	const u8 state = inet_csk(sk)->icsk_ca_state;
225 	struct tcp_sock *tp = tcp_sk(sk);
226 
227 	if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
228 	    (state == TCP_CA_Recovery && snd_una_advanced)) {
229 		struct sk_buff *skb = tcp_rtx_queue_head(sk);
230 		u32 mss;
231 
232 		if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
233 			return;
234 
235 		mss = tcp_skb_mss(skb);
236 		if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
237 			tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
238 				     mss, mss, GFP_ATOMIC);
239 
240 		tcp_mark_skb_lost(sk, skb);
241 	}
242 }
243