• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42 
nvme_tcp_reclassify_socket(struct socket * sock)43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 	struct sock *sk = sock->sk;
46 
47 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 		return;
49 
50 	switch (sk->sk_family) {
51 	case AF_INET:
52 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 					      &nvme_tcp_slock_key[0],
54 					      "sk_lock-AF_INET-NVME",
55 					      &nvme_tcp_sk_key[0]);
56 		break;
57 	case AF_INET6:
58 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 					      &nvme_tcp_slock_key[1],
60 					      "sk_lock-AF_INET6-NVME",
61 					      &nvme_tcp_sk_key[1]);
62 		break;
63 	default:
64 		WARN_ON_ONCE(1);
65 	}
66 }
67 #else
nvme_tcp_reclassify_socket(struct socket * sock)68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70 
71 enum nvme_tcp_send_state {
72 	NVME_TCP_SEND_CMD_PDU = 0,
73 	NVME_TCP_SEND_H2C_PDU,
74 	NVME_TCP_SEND_DATA,
75 	NVME_TCP_SEND_DDGST,
76 };
77 
78 struct nvme_tcp_request {
79 	struct nvme_request	req;
80 	void			*pdu;
81 	struct nvme_tcp_queue	*queue;
82 	u32			data_len;
83 	u32			pdu_len;
84 	u32			pdu_sent;
85 	u16			ttag;
86 	__le16			status;
87 	struct list_head	entry;
88 	struct llist_node	lentry;
89 	__le32			ddgst;
90 
91 	struct bio		*curr_bio;
92 	struct iov_iter		iter;
93 
94 	/* send state */
95 	size_t			offset;
96 	size_t			data_sent;
97 	enum nvme_tcp_send_state state;
98 };
99 
100 enum nvme_tcp_queue_flags {
101 	NVME_TCP_Q_ALLOCATED	= 0,
102 	NVME_TCP_Q_LIVE		= 1,
103 	NVME_TCP_Q_POLLING	= 2,
104 };
105 
106 enum nvme_tcp_recv_state {
107 	NVME_TCP_RECV_PDU = 0,
108 	NVME_TCP_RECV_DATA,
109 	NVME_TCP_RECV_DDGST,
110 };
111 
112 struct nvme_tcp_ctrl;
113 struct nvme_tcp_queue {
114 	struct socket		*sock;
115 	struct work_struct	io_work;
116 	int			io_cpu;
117 
118 	struct mutex		queue_lock;
119 	struct mutex		send_mutex;
120 	struct llist_head	req_list;
121 	struct list_head	send_list;
122 
123 	/* recv state */
124 	void			*pdu;
125 	int			pdu_remaining;
126 	int			pdu_offset;
127 	size_t			data_remaining;
128 	size_t			ddgst_remaining;
129 	unsigned int		nr_cqe;
130 
131 	/* send state */
132 	struct nvme_tcp_request *request;
133 
134 	int			queue_size;
135 	size_t			cmnd_capsule_len;
136 	struct nvme_tcp_ctrl	*ctrl;
137 	unsigned long		flags;
138 	bool			rd_enabled;
139 
140 	bool			hdr_digest;
141 	bool			data_digest;
142 	struct ahash_request	*rcv_hash;
143 	struct ahash_request	*snd_hash;
144 	__le32			exp_ddgst;
145 	__le32			recv_ddgst;
146 
147 	struct page_frag_cache	pf_cache;
148 
149 	void (*state_change)(struct sock *);
150 	void (*data_ready)(struct sock *);
151 	void (*write_space)(struct sock *);
152 };
153 
154 struct nvme_tcp_ctrl {
155 	/* read only in the hot path */
156 	struct nvme_tcp_queue	*queues;
157 	struct blk_mq_tag_set	tag_set;
158 
159 	/* other member variables */
160 	struct list_head	list;
161 	struct blk_mq_tag_set	admin_tag_set;
162 	struct sockaddr_storage addr;
163 	struct sockaddr_storage src_addr;
164 	struct nvme_ctrl	ctrl;
165 
166 	struct work_struct	err_work;
167 	struct delayed_work	connect_work;
168 	struct nvme_tcp_request async_req;
169 	u32			io_queues[HCTX_MAX_TYPES];
170 };
171 
172 static LIST_HEAD(nvme_tcp_ctrl_list);
173 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
174 static struct workqueue_struct *nvme_tcp_wq;
175 static const struct blk_mq_ops nvme_tcp_mq_ops;
176 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
177 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
178 
to_tcp_ctrl(struct nvme_ctrl * ctrl)179 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
182 }
183 
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)184 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
185 {
186 	return queue - queue->ctrl->queues;
187 }
188 
nvme_tcp_tagset(struct nvme_tcp_queue * queue)189 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
190 {
191 	u32 queue_idx = nvme_tcp_queue_id(queue);
192 
193 	if (queue_idx == 0)
194 		return queue->ctrl->admin_tag_set.tags[queue_idx];
195 	return queue->ctrl->tag_set.tags[queue_idx - 1];
196 }
197 
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)198 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
199 {
200 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
201 }
202 
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)203 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
204 {
205 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
206 }
207 
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)208 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
209 {
210 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
211 }
212 
nvme_tcp_async_req(struct nvme_tcp_request * req)213 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
214 {
215 	return req == &req->queue->ctrl->async_req;
216 }
217 
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)218 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
219 {
220 	struct request *rq;
221 
222 	if (unlikely(nvme_tcp_async_req(req)))
223 		return false; /* async events don't have a request */
224 
225 	rq = blk_mq_rq_from_pdu(req);
226 
227 	return rq_data_dir(rq) == WRITE && req->data_len &&
228 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
229 }
230 
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)231 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
232 {
233 	return req->iter.bvec->bv_page;
234 }
235 
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)236 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
237 {
238 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
239 }
240 
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)241 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
242 {
243 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
244 			req->pdu_len - req->pdu_sent);
245 }
246 
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)247 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
248 {
249 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
250 			req->pdu_len - req->pdu_sent : 0;
251 }
252 
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)253 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	return nvme_tcp_pdu_data_left(req) <= len;
257 }
258 
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)259 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
260 		unsigned int dir)
261 {
262 	struct request *rq = blk_mq_rq_from_pdu(req);
263 	struct bio_vec *vec;
264 	unsigned int size;
265 	int nr_bvec;
266 	size_t offset;
267 
268 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
269 		vec = &rq->special_vec;
270 		nr_bvec = 1;
271 		size = blk_rq_payload_bytes(rq);
272 		offset = 0;
273 	} else {
274 		struct bio *bio = req->curr_bio;
275 		struct bvec_iter bi;
276 		struct bio_vec bv;
277 
278 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
279 		nr_bvec = 0;
280 		bio_for_each_bvec(bv, bio, bi) {
281 			nr_bvec++;
282 		}
283 		size = bio->bi_iter.bi_size;
284 		offset = bio->bi_iter.bi_bvec_done;
285 	}
286 
287 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
288 	req->iter.iov_offset = offset;
289 }
290 
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)291 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
292 		int len)
293 {
294 	req->data_sent += len;
295 	req->pdu_sent += len;
296 	iov_iter_advance(&req->iter, len);
297 	if (!iov_iter_count(&req->iter) &&
298 	    req->data_sent < req->data_len) {
299 		req->curr_bio = req->curr_bio->bi_next;
300 		nvme_tcp_init_iter(req, WRITE);
301 	}
302 }
303 
nvme_tcp_send_all(struct nvme_tcp_queue * queue)304 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
305 {
306 	int ret;
307 
308 	/* drain the send queue as much as we can... */
309 	do {
310 		ret = nvme_tcp_try_send(queue);
311 	} while (ret > 0);
312 }
313 
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)314 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
315 {
316 	return !list_empty(&queue->send_list) ||
317 		!llist_empty(&queue->req_list);
318 }
319 
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)320 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
321 		bool sync, bool last)
322 {
323 	struct nvme_tcp_queue *queue = req->queue;
324 	bool empty;
325 
326 	empty = llist_add(&req->lentry, &queue->req_list) &&
327 		list_empty(&queue->send_list) && !queue->request;
328 
329 	/*
330 	 * if we're the first on the send_list and we can try to send
331 	 * directly, otherwise queue io_work. Also, only do that if we
332 	 * are on the same cpu, so we don't introduce contention.
333 	 */
334 	if (queue->io_cpu == raw_smp_processor_id() &&
335 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
336 		nvme_tcp_send_all(queue);
337 		mutex_unlock(&queue->send_mutex);
338 	}
339 
340 	if (last && nvme_tcp_queue_more(queue))
341 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
342 }
343 
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)344 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
345 {
346 	struct nvme_tcp_request *req;
347 	struct llist_node *node;
348 
349 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
350 		req = llist_entry(node, struct nvme_tcp_request, lentry);
351 		list_add(&req->entry, &queue->send_list);
352 	}
353 }
354 
355 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)356 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
357 {
358 	struct nvme_tcp_request *req;
359 
360 	req = list_first_entry_or_null(&queue->send_list,
361 			struct nvme_tcp_request, entry);
362 	if (!req) {
363 		nvme_tcp_process_req_list(queue);
364 		req = list_first_entry_or_null(&queue->send_list,
365 				struct nvme_tcp_request, entry);
366 		if (unlikely(!req))
367 			return NULL;
368 	}
369 
370 	list_del(&req->entry);
371 	return req;
372 }
373 
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)374 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
375 		__le32 *dgst)
376 {
377 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
378 	crypto_ahash_final(hash);
379 }
380 
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)381 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
382 		struct page *page, off_t off, size_t len)
383 {
384 	struct scatterlist sg;
385 
386 	sg_init_marker(&sg, 1);
387 	sg_set_page(&sg, page, len, off);
388 	ahash_request_set_crypt(hash, &sg, NULL, len);
389 	crypto_ahash_update(hash);
390 }
391 
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)392 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
393 		void *pdu, size_t len)
394 {
395 	struct scatterlist sg;
396 
397 	sg_init_one(&sg, pdu, len);
398 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
399 	crypto_ahash_digest(hash);
400 }
401 
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)402 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
403 		void *pdu, size_t pdu_len)
404 {
405 	struct nvme_tcp_hdr *hdr = pdu;
406 	__le32 recv_digest;
407 	__le32 exp_digest;
408 
409 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
410 		dev_err(queue->ctrl->ctrl.device,
411 			"queue %d: header digest flag is cleared\n",
412 			nvme_tcp_queue_id(queue));
413 		return -EPROTO;
414 	}
415 
416 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
417 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
418 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
419 	if (recv_digest != exp_digest) {
420 		dev_err(queue->ctrl->ctrl.device,
421 			"header digest error: recv %#x expected %#x\n",
422 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
423 		return -EIO;
424 	}
425 
426 	return 0;
427 }
428 
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)429 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
430 {
431 	struct nvme_tcp_hdr *hdr = pdu;
432 	u8 digest_len = nvme_tcp_hdgst_len(queue);
433 	u32 len;
434 
435 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
436 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
437 
438 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
439 		dev_err(queue->ctrl->ctrl.device,
440 			"queue %d: data digest flag is cleared\n",
441 		nvme_tcp_queue_id(queue));
442 		return -EPROTO;
443 	}
444 	crypto_ahash_init(queue->rcv_hash);
445 
446 	return 0;
447 }
448 
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)449 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
450 		struct request *rq, unsigned int hctx_idx)
451 {
452 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
453 
454 	page_frag_free(req->pdu);
455 }
456 
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)457 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
458 		struct request *rq, unsigned int hctx_idx,
459 		unsigned int numa_node)
460 {
461 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
462 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
463 	struct nvme_tcp_cmd_pdu *pdu;
464 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
465 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
466 	u8 hdgst = nvme_tcp_hdgst_len(queue);
467 
468 	req->pdu = page_frag_alloc(&queue->pf_cache,
469 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
470 		GFP_KERNEL | __GFP_ZERO);
471 	if (!req->pdu)
472 		return -ENOMEM;
473 
474 	pdu = req->pdu;
475 	req->queue = queue;
476 	nvme_req(rq)->ctrl = &ctrl->ctrl;
477 	nvme_req(rq)->cmd = &pdu->cmd;
478 
479 	return 0;
480 }
481 
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)482 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
483 		unsigned int hctx_idx)
484 {
485 	struct nvme_tcp_ctrl *ctrl = data;
486 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
487 
488 	hctx->driver_data = queue;
489 	return 0;
490 }
491 
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)492 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
493 		unsigned int hctx_idx)
494 {
495 	struct nvme_tcp_ctrl *ctrl = data;
496 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
497 
498 	hctx->driver_data = queue;
499 	return 0;
500 }
501 
502 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)503 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
504 {
505 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
506 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
507 		NVME_TCP_RECV_DATA;
508 }
509 
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)510 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
511 {
512 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
513 				nvme_tcp_hdgst_len(queue);
514 	queue->pdu_offset = 0;
515 	queue->data_remaining = -1;
516 	queue->ddgst_remaining = 0;
517 }
518 
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)519 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
520 {
521 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
522 		return;
523 
524 	dev_warn(ctrl->device, "starting error recovery\n");
525 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
526 }
527 
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)528 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
529 		struct nvme_completion *cqe)
530 {
531 	struct nvme_tcp_request *req;
532 	struct request *rq;
533 
534 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
535 	if (!rq) {
536 		dev_err(queue->ctrl->ctrl.device,
537 			"got bad cqe.command_id %#x on queue %d\n",
538 			cqe->command_id, nvme_tcp_queue_id(queue));
539 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
540 		return -EINVAL;
541 	}
542 
543 	req = blk_mq_rq_to_pdu(rq);
544 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
545 		req->status = cqe->status;
546 
547 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
548 		nvme_complete_rq(rq);
549 	queue->nr_cqe++;
550 
551 	return 0;
552 }
553 
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)554 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
555 		struct nvme_tcp_data_pdu *pdu)
556 {
557 	struct request *rq;
558 
559 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
560 	if (!rq) {
561 		dev_err(queue->ctrl->ctrl.device,
562 			"got bad c2hdata.command_id %#x on queue %d\n",
563 			pdu->command_id, nvme_tcp_queue_id(queue));
564 		return -ENOENT;
565 	}
566 
567 	if (!blk_rq_payload_bytes(rq)) {
568 		dev_err(queue->ctrl->ctrl.device,
569 			"queue %d tag %#x unexpected data\n",
570 			nvme_tcp_queue_id(queue), rq->tag);
571 		return -EIO;
572 	}
573 
574 	queue->data_remaining = le32_to_cpu(pdu->data_length);
575 
576 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
577 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
578 		dev_err(queue->ctrl->ctrl.device,
579 			"queue %d tag %#x SUCCESS set but not last PDU\n",
580 			nvme_tcp_queue_id(queue), rq->tag);
581 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
582 		return -EPROTO;
583 	}
584 
585 	return 0;
586 }
587 
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)588 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
589 		struct nvme_tcp_rsp_pdu *pdu)
590 {
591 	struct nvme_completion *cqe = &pdu->cqe;
592 	int ret = 0;
593 
594 	/*
595 	 * AEN requests are special as they don't time out and can
596 	 * survive any kind of queue freeze and often don't respond to
597 	 * aborts.  We don't even bother to allocate a struct request
598 	 * for them but rather special case them here.
599 	 */
600 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
601 				     cqe->command_id)))
602 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
603 				&cqe->result);
604 	else
605 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
606 
607 	return ret;
608 }
609 
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)610 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
611 		struct nvme_tcp_r2t_pdu *pdu)
612 {
613 	struct nvme_tcp_data_pdu *data = req->pdu;
614 	struct nvme_tcp_queue *queue = req->queue;
615 	struct request *rq = blk_mq_rq_from_pdu(req);
616 	u8 hdgst = nvme_tcp_hdgst_len(queue);
617 	u8 ddgst = nvme_tcp_ddgst_len(queue);
618 
619 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
620 	req->pdu_sent = 0;
621 
622 	if (unlikely(!req->pdu_len)) {
623 		dev_err(queue->ctrl->ctrl.device,
624 			"req %d r2t len is %u, probably a bug...\n",
625 			rq->tag, req->pdu_len);
626 		return -EPROTO;
627 	}
628 
629 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
630 		dev_err(queue->ctrl->ctrl.device,
631 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
632 			rq->tag, req->pdu_len, req->data_len,
633 			req->data_sent);
634 		return -EPROTO;
635 	}
636 
637 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
638 		dev_err(queue->ctrl->ctrl.device,
639 			"req %d unexpected r2t offset %u (expected %zu)\n",
640 			rq->tag, le32_to_cpu(pdu->r2t_offset),
641 			req->data_sent);
642 		return -EPROTO;
643 	}
644 
645 	memset(data, 0, sizeof(*data));
646 	data->hdr.type = nvme_tcp_h2c_data;
647 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
648 	if (queue->hdr_digest)
649 		data->hdr.flags |= NVME_TCP_F_HDGST;
650 	if (queue->data_digest)
651 		data->hdr.flags |= NVME_TCP_F_DDGST;
652 	data->hdr.hlen = sizeof(*data);
653 	data->hdr.pdo = data->hdr.hlen + hdgst;
654 	data->hdr.plen =
655 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
656 	data->ttag = pdu->ttag;
657 	data->command_id = nvme_cid(rq);
658 	data->data_offset = pdu->r2t_offset;
659 	data->data_length = cpu_to_le32(req->pdu_len);
660 	return 0;
661 }
662 
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)663 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
664 		struct nvme_tcp_r2t_pdu *pdu)
665 {
666 	struct nvme_tcp_request *req;
667 	struct request *rq;
668 	int ret;
669 
670 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
671 	if (!rq) {
672 		dev_err(queue->ctrl->ctrl.device,
673 			"got bad r2t.command_id %#x on queue %d\n",
674 			pdu->command_id, nvme_tcp_queue_id(queue));
675 		return -ENOENT;
676 	}
677 	req = blk_mq_rq_to_pdu(rq);
678 
679 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
680 	if (unlikely(ret))
681 		return ret;
682 
683 	req->state = NVME_TCP_SEND_H2C_PDU;
684 	req->offset = 0;
685 
686 	nvme_tcp_queue_request(req, false, true);
687 
688 	return 0;
689 }
690 
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)691 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
692 		unsigned int *offset, size_t *len)
693 {
694 	struct nvme_tcp_hdr *hdr;
695 	char *pdu = queue->pdu;
696 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
697 	int ret;
698 
699 	ret = skb_copy_bits(skb, *offset,
700 		&pdu[queue->pdu_offset], rcv_len);
701 	if (unlikely(ret))
702 		return ret;
703 
704 	queue->pdu_remaining -= rcv_len;
705 	queue->pdu_offset += rcv_len;
706 	*offset += rcv_len;
707 	*len -= rcv_len;
708 	if (queue->pdu_remaining)
709 		return 0;
710 
711 	hdr = queue->pdu;
712 	if (queue->hdr_digest) {
713 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
714 		if (unlikely(ret))
715 			return ret;
716 	}
717 
718 
719 	if (queue->data_digest) {
720 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
721 		if (unlikely(ret))
722 			return ret;
723 	}
724 
725 	switch (hdr->type) {
726 	case nvme_tcp_c2h_data:
727 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
728 	case nvme_tcp_rsp:
729 		nvme_tcp_init_recv_ctx(queue);
730 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
731 	case nvme_tcp_r2t:
732 		nvme_tcp_init_recv_ctx(queue);
733 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
734 	default:
735 		dev_err(queue->ctrl->ctrl.device,
736 			"unsupported pdu type (%d)\n", hdr->type);
737 		return -EINVAL;
738 	}
739 }
740 
nvme_tcp_end_request(struct request * rq,u16 status)741 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
742 {
743 	union nvme_result res = {};
744 
745 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
746 		nvme_complete_rq(rq);
747 }
748 
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)749 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
750 			      unsigned int *offset, size_t *len)
751 {
752 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
753 	struct request *rq =
754 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
755 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
756 
757 	while (true) {
758 		int recv_len, ret;
759 
760 		recv_len = min_t(size_t, *len, queue->data_remaining);
761 		if (!recv_len)
762 			break;
763 
764 		if (!iov_iter_count(&req->iter)) {
765 			req->curr_bio = req->curr_bio->bi_next;
766 
767 			/*
768 			 * If we don`t have any bios it means that controller
769 			 * sent more data than we requested, hence error
770 			 */
771 			if (!req->curr_bio) {
772 				dev_err(queue->ctrl->ctrl.device,
773 					"queue %d no space in request %#x",
774 					nvme_tcp_queue_id(queue), rq->tag);
775 				nvme_tcp_init_recv_ctx(queue);
776 				return -EIO;
777 			}
778 			nvme_tcp_init_iter(req, READ);
779 		}
780 
781 		/* we can read only from what is left in this bio */
782 		recv_len = min_t(size_t, recv_len,
783 				iov_iter_count(&req->iter));
784 
785 		if (queue->data_digest)
786 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
787 				&req->iter, recv_len, queue->rcv_hash);
788 		else
789 			ret = skb_copy_datagram_iter(skb, *offset,
790 					&req->iter, recv_len);
791 		if (ret) {
792 			dev_err(queue->ctrl->ctrl.device,
793 				"queue %d failed to copy request %#x data",
794 				nvme_tcp_queue_id(queue), rq->tag);
795 			return ret;
796 		}
797 
798 		*len -= recv_len;
799 		*offset += recv_len;
800 		queue->data_remaining -= recv_len;
801 	}
802 
803 	if (!queue->data_remaining) {
804 		if (queue->data_digest) {
805 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
806 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
807 		} else {
808 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
809 				nvme_tcp_end_request(rq,
810 						le16_to_cpu(req->status));
811 				queue->nr_cqe++;
812 			}
813 			nvme_tcp_init_recv_ctx(queue);
814 		}
815 	}
816 
817 	return 0;
818 }
819 
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)820 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
821 		struct sk_buff *skb, unsigned int *offset, size_t *len)
822 {
823 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
824 	char *ddgst = (char *)&queue->recv_ddgst;
825 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
826 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
827 	int ret;
828 
829 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
830 	if (unlikely(ret))
831 		return ret;
832 
833 	queue->ddgst_remaining -= recv_len;
834 	*offset += recv_len;
835 	*len -= recv_len;
836 	if (queue->ddgst_remaining)
837 		return 0;
838 
839 	if (queue->recv_ddgst != queue->exp_ddgst) {
840 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
841 					pdu->command_id);
842 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
843 
844 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
845 
846 		dev_err(queue->ctrl->ctrl.device,
847 			"data digest error: recv %#x expected %#x\n",
848 			le32_to_cpu(queue->recv_ddgst),
849 			le32_to_cpu(queue->exp_ddgst));
850 	}
851 
852 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
853 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
854 					pdu->command_id);
855 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
856 
857 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
858 		queue->nr_cqe++;
859 	}
860 
861 	nvme_tcp_init_recv_ctx(queue);
862 	return 0;
863 }
864 
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)865 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
866 			     unsigned int offset, size_t len)
867 {
868 	struct nvme_tcp_queue *queue = desc->arg.data;
869 	size_t consumed = len;
870 	int result;
871 
872 	while (len) {
873 		switch (nvme_tcp_recv_state(queue)) {
874 		case NVME_TCP_RECV_PDU:
875 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
876 			break;
877 		case NVME_TCP_RECV_DATA:
878 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
879 			break;
880 		case NVME_TCP_RECV_DDGST:
881 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
882 			break;
883 		default:
884 			result = -EFAULT;
885 		}
886 		if (result) {
887 			dev_err(queue->ctrl->ctrl.device,
888 				"receive failed:  %d\n", result);
889 			queue->rd_enabled = false;
890 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
891 			return result;
892 		}
893 	}
894 
895 	return consumed;
896 }
897 
nvme_tcp_data_ready(struct sock * sk)898 static void nvme_tcp_data_ready(struct sock *sk)
899 {
900 	struct nvme_tcp_queue *queue;
901 
902 	read_lock_bh(&sk->sk_callback_lock);
903 	queue = sk->sk_user_data;
904 	if (likely(queue && queue->rd_enabled) &&
905 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
906 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
907 	read_unlock_bh(&sk->sk_callback_lock);
908 }
909 
nvme_tcp_write_space(struct sock * sk)910 static void nvme_tcp_write_space(struct sock *sk)
911 {
912 	struct nvme_tcp_queue *queue;
913 
914 	read_lock_bh(&sk->sk_callback_lock);
915 	queue = sk->sk_user_data;
916 	if (likely(queue && sk_stream_is_writeable(sk))) {
917 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
918 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
919 	}
920 	read_unlock_bh(&sk->sk_callback_lock);
921 }
922 
nvme_tcp_state_change(struct sock * sk)923 static void nvme_tcp_state_change(struct sock *sk)
924 {
925 	struct nvme_tcp_queue *queue;
926 
927 	read_lock_bh(&sk->sk_callback_lock);
928 	queue = sk->sk_user_data;
929 	if (!queue)
930 		goto done;
931 
932 	switch (sk->sk_state) {
933 	case TCP_CLOSE:
934 	case TCP_CLOSE_WAIT:
935 	case TCP_LAST_ACK:
936 	case TCP_FIN_WAIT1:
937 	case TCP_FIN_WAIT2:
938 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
939 		break;
940 	default:
941 		dev_info(queue->ctrl->ctrl.device,
942 			"queue %d socket state %d\n",
943 			nvme_tcp_queue_id(queue), sk->sk_state);
944 	}
945 
946 	queue->state_change(sk);
947 done:
948 	read_unlock_bh(&sk->sk_callback_lock);
949 }
950 
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)951 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
952 {
953 	queue->request = NULL;
954 }
955 
nvme_tcp_fail_request(struct nvme_tcp_request * req)956 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
957 {
958 	if (nvme_tcp_async_req(req)) {
959 		union nvme_result res = {};
960 
961 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
962 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
963 	} else {
964 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
965 				NVME_SC_HOST_PATH_ERROR);
966 	}
967 }
968 
nvme_tcp_try_send_data(struct nvme_tcp_request * req)969 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
970 {
971 	struct nvme_tcp_queue *queue = req->queue;
972 	int req_data_len = req->data_len;
973 
974 	while (true) {
975 		struct page *page = nvme_tcp_req_cur_page(req);
976 		size_t offset = nvme_tcp_req_cur_offset(req);
977 		size_t len = nvme_tcp_req_cur_length(req);
978 		bool last = nvme_tcp_pdu_last_send(req, len);
979 		int req_data_sent = req->data_sent;
980 		int ret, flags = MSG_DONTWAIT;
981 
982 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
983 			flags |= MSG_EOR;
984 		else
985 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
986 
987 		if (sendpage_ok(page)) {
988 			ret = kernel_sendpage(queue->sock, page, offset, len,
989 					flags);
990 		} else {
991 			ret = sock_no_sendpage(queue->sock, page, offset, len,
992 					flags);
993 		}
994 		if (ret <= 0)
995 			return ret;
996 
997 		if (queue->data_digest)
998 			nvme_tcp_ddgst_update(queue->snd_hash, page,
999 					offset, ret);
1000 
1001 		/*
1002 		 * update the request iterator except for the last payload send
1003 		 * in the request where we don't want to modify it as we may
1004 		 * compete with the RX path completing the request.
1005 		 */
1006 		if (req_data_sent + ret < req_data_len)
1007 			nvme_tcp_advance_req(req, ret);
1008 
1009 		/* fully successful last send in current PDU */
1010 		if (last && ret == len) {
1011 			if (queue->data_digest) {
1012 				nvme_tcp_ddgst_final(queue->snd_hash,
1013 					&req->ddgst);
1014 				req->state = NVME_TCP_SEND_DDGST;
1015 				req->offset = 0;
1016 			} else {
1017 				nvme_tcp_done_send_req(queue);
1018 			}
1019 			return 1;
1020 		}
1021 	}
1022 	return -EAGAIN;
1023 }
1024 
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1025 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1026 {
1027 	struct nvme_tcp_queue *queue = req->queue;
1028 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1029 	bool inline_data = nvme_tcp_has_inline_data(req);
1030 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1031 	int len = sizeof(*pdu) + hdgst - req->offset;
1032 	int flags = MSG_DONTWAIT;
1033 	int ret;
1034 
1035 	if (inline_data || nvme_tcp_queue_more(queue))
1036 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1037 	else
1038 		flags |= MSG_EOR;
1039 
1040 	if (queue->hdr_digest && !req->offset)
1041 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1042 
1043 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1044 			offset_in_page(pdu) + req->offset, len,  flags);
1045 	if (unlikely(ret <= 0))
1046 		return ret;
1047 
1048 	len -= ret;
1049 	if (!len) {
1050 		if (inline_data) {
1051 			req->state = NVME_TCP_SEND_DATA;
1052 			if (queue->data_digest)
1053 				crypto_ahash_init(queue->snd_hash);
1054 		} else {
1055 			nvme_tcp_done_send_req(queue);
1056 		}
1057 		return 1;
1058 	}
1059 	req->offset += ret;
1060 
1061 	return -EAGAIN;
1062 }
1063 
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1064 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1065 {
1066 	struct nvme_tcp_queue *queue = req->queue;
1067 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1068 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1069 	int len = sizeof(*pdu) - req->offset + hdgst;
1070 	int ret;
1071 
1072 	if (queue->hdr_digest && !req->offset)
1073 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1074 
1075 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1076 			offset_in_page(pdu) + req->offset, len,
1077 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1078 	if (unlikely(ret <= 0))
1079 		return ret;
1080 
1081 	len -= ret;
1082 	if (!len) {
1083 		req->state = NVME_TCP_SEND_DATA;
1084 		if (queue->data_digest)
1085 			crypto_ahash_init(queue->snd_hash);
1086 		return 1;
1087 	}
1088 	req->offset += ret;
1089 
1090 	return -EAGAIN;
1091 }
1092 
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1093 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1094 {
1095 	struct nvme_tcp_queue *queue = req->queue;
1096 	size_t offset = req->offset;
1097 	int ret;
1098 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1099 	struct kvec iov = {
1100 		.iov_base = (u8 *)&req->ddgst + req->offset,
1101 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1102 	};
1103 
1104 	if (nvme_tcp_queue_more(queue))
1105 		msg.msg_flags |= MSG_MORE;
1106 	else
1107 		msg.msg_flags |= MSG_EOR;
1108 
1109 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1110 	if (unlikely(ret <= 0))
1111 		return ret;
1112 
1113 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1114 		nvme_tcp_done_send_req(queue);
1115 		return 1;
1116 	}
1117 
1118 	req->offset += ret;
1119 	return -EAGAIN;
1120 }
1121 
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1122 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1123 {
1124 	struct nvme_tcp_request *req;
1125 	int ret = 1;
1126 
1127 	if (!queue->request) {
1128 		queue->request = nvme_tcp_fetch_request(queue);
1129 		if (!queue->request)
1130 			return 0;
1131 	}
1132 	req = queue->request;
1133 
1134 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1135 		ret = nvme_tcp_try_send_cmd_pdu(req);
1136 		if (ret <= 0)
1137 			goto done;
1138 		if (!nvme_tcp_has_inline_data(req))
1139 			return ret;
1140 	}
1141 
1142 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1143 		ret = nvme_tcp_try_send_data_pdu(req);
1144 		if (ret <= 0)
1145 			goto done;
1146 	}
1147 
1148 	if (req->state == NVME_TCP_SEND_DATA) {
1149 		ret = nvme_tcp_try_send_data(req);
1150 		if (ret <= 0)
1151 			goto done;
1152 	}
1153 
1154 	if (req->state == NVME_TCP_SEND_DDGST)
1155 		ret = nvme_tcp_try_send_ddgst(req);
1156 done:
1157 	if (ret == -EAGAIN) {
1158 		ret = 0;
1159 	} else if (ret < 0) {
1160 		dev_err(queue->ctrl->ctrl.device,
1161 			"failed to send request %d\n", ret);
1162 		nvme_tcp_fail_request(queue->request);
1163 		nvme_tcp_done_send_req(queue);
1164 	}
1165 	return ret;
1166 }
1167 
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1168 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1169 {
1170 	struct socket *sock = queue->sock;
1171 	struct sock *sk = sock->sk;
1172 	read_descriptor_t rd_desc;
1173 	int consumed;
1174 
1175 	rd_desc.arg.data = queue;
1176 	rd_desc.count = 1;
1177 	lock_sock(sk);
1178 	queue->nr_cqe = 0;
1179 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1180 	release_sock(sk);
1181 	return consumed;
1182 }
1183 
nvme_tcp_io_work(struct work_struct * w)1184 static void nvme_tcp_io_work(struct work_struct *w)
1185 {
1186 	struct nvme_tcp_queue *queue =
1187 		container_of(w, struct nvme_tcp_queue, io_work);
1188 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1189 
1190 	do {
1191 		bool pending = false;
1192 		int result;
1193 
1194 		if (mutex_trylock(&queue->send_mutex)) {
1195 			result = nvme_tcp_try_send(queue);
1196 			mutex_unlock(&queue->send_mutex);
1197 			if (result > 0)
1198 				pending = true;
1199 			else if (unlikely(result < 0))
1200 				break;
1201 		}
1202 
1203 		result = nvme_tcp_try_recv(queue);
1204 		if (result > 0)
1205 			pending = true;
1206 		else if (unlikely(result < 0))
1207 			return;
1208 
1209 		if (!pending || !queue->rd_enabled)
1210 			return;
1211 
1212 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1213 
1214 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1215 }
1216 
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1217 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1218 {
1219 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1220 
1221 	ahash_request_free(queue->rcv_hash);
1222 	ahash_request_free(queue->snd_hash);
1223 	crypto_free_ahash(tfm);
1224 }
1225 
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1226 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1227 {
1228 	struct crypto_ahash *tfm;
1229 
1230 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1231 	if (IS_ERR(tfm))
1232 		return PTR_ERR(tfm);
1233 
1234 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1235 	if (!queue->snd_hash)
1236 		goto free_tfm;
1237 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1238 
1239 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1240 	if (!queue->rcv_hash)
1241 		goto free_snd_hash;
1242 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1243 
1244 	return 0;
1245 free_snd_hash:
1246 	ahash_request_free(queue->snd_hash);
1247 free_tfm:
1248 	crypto_free_ahash(tfm);
1249 	return -ENOMEM;
1250 }
1251 
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1252 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1253 {
1254 	struct nvme_tcp_request *async = &ctrl->async_req;
1255 
1256 	page_frag_free(async->pdu);
1257 }
1258 
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1259 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1260 {
1261 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1262 	struct nvme_tcp_request *async = &ctrl->async_req;
1263 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1264 
1265 	async->pdu = page_frag_alloc(&queue->pf_cache,
1266 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1267 		GFP_KERNEL | __GFP_ZERO);
1268 	if (!async->pdu)
1269 		return -ENOMEM;
1270 
1271 	async->queue = &ctrl->queues[0];
1272 	return 0;
1273 }
1274 
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1275 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1276 {
1277 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1278 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1279 
1280 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1281 		return;
1282 
1283 	if (queue->hdr_digest || queue->data_digest)
1284 		nvme_tcp_free_crypto(queue);
1285 
1286 	sock_release(queue->sock);
1287 	kfree(queue->pdu);
1288 	mutex_destroy(&queue->send_mutex);
1289 	mutex_destroy(&queue->queue_lock);
1290 }
1291 
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1292 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1293 {
1294 	struct nvme_tcp_icreq_pdu *icreq;
1295 	struct nvme_tcp_icresp_pdu *icresp;
1296 	struct msghdr msg = {};
1297 	struct kvec iov;
1298 	bool ctrl_hdgst, ctrl_ddgst;
1299 	int ret;
1300 
1301 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1302 	if (!icreq)
1303 		return -ENOMEM;
1304 
1305 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1306 	if (!icresp) {
1307 		ret = -ENOMEM;
1308 		goto free_icreq;
1309 	}
1310 
1311 	icreq->hdr.type = nvme_tcp_icreq;
1312 	icreq->hdr.hlen = sizeof(*icreq);
1313 	icreq->hdr.pdo = 0;
1314 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1315 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1316 	icreq->maxr2t = 0; /* single inflight r2t supported */
1317 	icreq->hpda = 0; /* no alignment constraint */
1318 	if (queue->hdr_digest)
1319 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1320 	if (queue->data_digest)
1321 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1322 
1323 	iov.iov_base = icreq;
1324 	iov.iov_len = sizeof(*icreq);
1325 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1326 	if (ret < 0)
1327 		goto free_icresp;
1328 
1329 	memset(&msg, 0, sizeof(msg));
1330 	iov.iov_base = icresp;
1331 	iov.iov_len = sizeof(*icresp);
1332 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1333 			iov.iov_len, msg.msg_flags);
1334 	if (ret < 0)
1335 		goto free_icresp;
1336 
1337 	ret = -EINVAL;
1338 	if (icresp->hdr.type != nvme_tcp_icresp) {
1339 		pr_err("queue %d: bad type returned %d\n",
1340 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1341 		goto free_icresp;
1342 	}
1343 
1344 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1345 		pr_err("queue %d: bad pdu length returned %d\n",
1346 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1347 		goto free_icresp;
1348 	}
1349 
1350 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1351 		pr_err("queue %d: bad pfv returned %d\n",
1352 			nvme_tcp_queue_id(queue), icresp->pfv);
1353 		goto free_icresp;
1354 	}
1355 
1356 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1357 	if ((queue->data_digest && !ctrl_ddgst) ||
1358 	    (!queue->data_digest && ctrl_ddgst)) {
1359 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1360 			nvme_tcp_queue_id(queue),
1361 			queue->data_digest ? "enabled" : "disabled",
1362 			ctrl_ddgst ? "enabled" : "disabled");
1363 		goto free_icresp;
1364 	}
1365 
1366 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1367 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1368 	    (!queue->hdr_digest && ctrl_hdgst)) {
1369 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1370 			nvme_tcp_queue_id(queue),
1371 			queue->hdr_digest ? "enabled" : "disabled",
1372 			ctrl_hdgst ? "enabled" : "disabled");
1373 		goto free_icresp;
1374 	}
1375 
1376 	if (icresp->cpda != 0) {
1377 		pr_err("queue %d: unsupported cpda returned %d\n",
1378 			nvme_tcp_queue_id(queue), icresp->cpda);
1379 		goto free_icresp;
1380 	}
1381 
1382 	ret = 0;
1383 free_icresp:
1384 	kfree(icresp);
1385 free_icreq:
1386 	kfree(icreq);
1387 	return ret;
1388 }
1389 
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1390 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1391 {
1392 	return nvme_tcp_queue_id(queue) == 0;
1393 }
1394 
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1395 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1396 {
1397 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1398 	int qid = nvme_tcp_queue_id(queue);
1399 
1400 	return !nvme_tcp_admin_queue(queue) &&
1401 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1402 }
1403 
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1404 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1405 {
1406 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1407 	int qid = nvme_tcp_queue_id(queue);
1408 
1409 	return !nvme_tcp_admin_queue(queue) &&
1410 		!nvme_tcp_default_queue(queue) &&
1411 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1412 			  ctrl->io_queues[HCTX_TYPE_READ];
1413 }
1414 
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1415 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1416 {
1417 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1418 	int qid = nvme_tcp_queue_id(queue);
1419 
1420 	return !nvme_tcp_admin_queue(queue) &&
1421 		!nvme_tcp_default_queue(queue) &&
1422 		!nvme_tcp_read_queue(queue) &&
1423 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1424 			  ctrl->io_queues[HCTX_TYPE_READ] +
1425 			  ctrl->io_queues[HCTX_TYPE_POLL];
1426 }
1427 
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1428 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1429 {
1430 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1431 	int qid = nvme_tcp_queue_id(queue);
1432 	int n = 0;
1433 
1434 	if (nvme_tcp_default_queue(queue))
1435 		n = qid - 1;
1436 	else if (nvme_tcp_read_queue(queue))
1437 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1438 	else if (nvme_tcp_poll_queue(queue))
1439 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1440 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1441 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1442 }
1443 
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1444 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1445 		int qid, size_t queue_size)
1446 {
1447 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1448 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1449 	int ret, rcv_pdu_size;
1450 
1451 	mutex_init(&queue->queue_lock);
1452 	queue->ctrl = ctrl;
1453 	init_llist_head(&queue->req_list);
1454 	INIT_LIST_HEAD(&queue->send_list);
1455 	mutex_init(&queue->send_mutex);
1456 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1457 	queue->queue_size = queue_size;
1458 
1459 	if (qid > 0)
1460 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1461 	else
1462 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1463 						NVME_TCP_ADMIN_CCSZ;
1464 
1465 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1466 			IPPROTO_TCP, &queue->sock);
1467 	if (ret) {
1468 		dev_err(nctrl->device,
1469 			"failed to create socket: %d\n", ret);
1470 		goto err_destroy_mutex;
1471 	}
1472 
1473 	nvme_tcp_reclassify_socket(queue->sock);
1474 
1475 	/* Single syn retry */
1476 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1477 
1478 	/* Set TCP no delay */
1479 	tcp_sock_set_nodelay(queue->sock->sk);
1480 
1481 	/*
1482 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1483 	 * close. This is done to prevent stale data from being sent should
1484 	 * the network connection be restored before TCP times out.
1485 	 */
1486 	sock_no_linger(queue->sock->sk);
1487 
1488 	if (so_priority > 0)
1489 		sock_set_priority(queue->sock->sk, so_priority);
1490 
1491 	/* Set socket type of service */
1492 	if (nctrl->opts->tos >= 0)
1493 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1494 
1495 	/* Set 10 seconds timeout for icresp recvmsg */
1496 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1497 
1498 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1499 	nvme_tcp_set_queue_io_cpu(queue);
1500 	queue->request = NULL;
1501 	queue->data_remaining = 0;
1502 	queue->ddgst_remaining = 0;
1503 	queue->pdu_remaining = 0;
1504 	queue->pdu_offset = 0;
1505 	sk_set_memalloc(queue->sock->sk);
1506 
1507 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1508 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1509 			sizeof(ctrl->src_addr));
1510 		if (ret) {
1511 			dev_err(nctrl->device,
1512 				"failed to bind queue %d socket %d\n",
1513 				qid, ret);
1514 			goto err_sock;
1515 		}
1516 	}
1517 
1518 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1519 		char *iface = nctrl->opts->host_iface;
1520 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1521 
1522 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1523 				      optval, strlen(iface));
1524 		if (ret) {
1525 			dev_err(nctrl->device,
1526 			  "failed to bind to interface %s queue %d err %d\n",
1527 			  iface, qid, ret);
1528 			goto err_sock;
1529 		}
1530 	}
1531 
1532 	queue->hdr_digest = nctrl->opts->hdr_digest;
1533 	queue->data_digest = nctrl->opts->data_digest;
1534 	if (queue->hdr_digest || queue->data_digest) {
1535 		ret = nvme_tcp_alloc_crypto(queue);
1536 		if (ret) {
1537 			dev_err(nctrl->device,
1538 				"failed to allocate queue %d crypto\n", qid);
1539 			goto err_sock;
1540 		}
1541 	}
1542 
1543 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1544 			nvme_tcp_hdgst_len(queue);
1545 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1546 	if (!queue->pdu) {
1547 		ret = -ENOMEM;
1548 		goto err_crypto;
1549 	}
1550 
1551 	dev_dbg(nctrl->device, "connecting queue %d\n",
1552 			nvme_tcp_queue_id(queue));
1553 
1554 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1555 		sizeof(ctrl->addr), 0);
1556 	if (ret) {
1557 		dev_err(nctrl->device,
1558 			"failed to connect socket: %d\n", ret);
1559 		goto err_rcv_pdu;
1560 	}
1561 
1562 	ret = nvme_tcp_init_connection(queue);
1563 	if (ret)
1564 		goto err_init_connect;
1565 
1566 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1567 
1568 	return 0;
1569 
1570 err_init_connect:
1571 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1572 err_rcv_pdu:
1573 	kfree(queue->pdu);
1574 err_crypto:
1575 	if (queue->hdr_digest || queue->data_digest)
1576 		nvme_tcp_free_crypto(queue);
1577 err_sock:
1578 	sock_release(queue->sock);
1579 	queue->sock = NULL;
1580 err_destroy_mutex:
1581 	mutex_destroy(&queue->send_mutex);
1582 	mutex_destroy(&queue->queue_lock);
1583 	return ret;
1584 }
1585 
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1586 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1587 {
1588 	struct socket *sock = queue->sock;
1589 
1590 	write_lock_bh(&sock->sk->sk_callback_lock);
1591 	sock->sk->sk_user_data  = NULL;
1592 	sock->sk->sk_data_ready = queue->data_ready;
1593 	sock->sk->sk_state_change = queue->state_change;
1594 	sock->sk->sk_write_space  = queue->write_space;
1595 	write_unlock_bh(&sock->sk->sk_callback_lock);
1596 }
1597 
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1598 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1599 {
1600 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1601 	nvme_tcp_restore_sock_ops(queue);
1602 	cancel_work_sync(&queue->io_work);
1603 }
1604 
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1605 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1606 {
1607 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1608 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1609 
1610 	mutex_lock(&queue->queue_lock);
1611 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1612 		__nvme_tcp_stop_queue(queue);
1613 	mutex_unlock(&queue->queue_lock);
1614 }
1615 
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1616 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1617 {
1618 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1619 	queue->sock->sk->sk_user_data = queue;
1620 	queue->state_change = queue->sock->sk->sk_state_change;
1621 	queue->data_ready = queue->sock->sk->sk_data_ready;
1622 	queue->write_space = queue->sock->sk->sk_write_space;
1623 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1624 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1625 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1626 #ifdef CONFIG_NET_RX_BUSY_POLL
1627 	queue->sock->sk->sk_ll_usec = 1;
1628 #endif
1629 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1630 }
1631 
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1632 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1633 {
1634 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1635 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1636 	int ret;
1637 
1638 	queue->rd_enabled = true;
1639 	nvme_tcp_init_recv_ctx(queue);
1640 	nvme_tcp_setup_sock_ops(queue);
1641 
1642 	if (idx)
1643 		ret = nvmf_connect_io_queue(nctrl, idx);
1644 	else
1645 		ret = nvmf_connect_admin_queue(nctrl);
1646 
1647 	if (!ret) {
1648 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1649 	} else {
1650 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1651 			__nvme_tcp_stop_queue(queue);
1652 		dev_err(nctrl->device,
1653 			"failed to connect queue: %d ret=%d\n", idx, ret);
1654 	}
1655 	return ret;
1656 }
1657 
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1658 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1659 		bool admin)
1660 {
1661 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1662 	struct blk_mq_tag_set *set;
1663 	int ret;
1664 
1665 	if (admin) {
1666 		set = &ctrl->admin_tag_set;
1667 		memset(set, 0, sizeof(*set));
1668 		set->ops = &nvme_tcp_admin_mq_ops;
1669 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1670 		set->reserved_tags = NVMF_RESERVED_TAGS;
1671 		set->numa_node = nctrl->numa_node;
1672 		set->flags = BLK_MQ_F_BLOCKING;
1673 		set->cmd_size = sizeof(struct nvme_tcp_request);
1674 		set->driver_data = ctrl;
1675 		set->nr_hw_queues = 1;
1676 		set->timeout = NVME_ADMIN_TIMEOUT;
1677 	} else {
1678 		set = &ctrl->tag_set;
1679 		memset(set, 0, sizeof(*set));
1680 		set->ops = &nvme_tcp_mq_ops;
1681 		set->queue_depth = nctrl->sqsize + 1;
1682 		set->reserved_tags = NVMF_RESERVED_TAGS;
1683 		set->numa_node = nctrl->numa_node;
1684 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1685 		set->cmd_size = sizeof(struct nvme_tcp_request);
1686 		set->driver_data = ctrl;
1687 		set->nr_hw_queues = nctrl->queue_count - 1;
1688 		set->timeout = NVME_IO_TIMEOUT;
1689 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1690 	}
1691 
1692 	ret = blk_mq_alloc_tag_set(set);
1693 	if (ret)
1694 		return ERR_PTR(ret);
1695 
1696 	return set;
1697 }
1698 
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1699 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1700 {
1701 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1702 		cancel_work_sync(&ctrl->async_event_work);
1703 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1704 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1705 	}
1706 
1707 	nvme_tcp_free_queue(ctrl, 0);
1708 }
1709 
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1710 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1711 {
1712 	int i;
1713 
1714 	for (i = 1; i < ctrl->queue_count; i++)
1715 		nvme_tcp_free_queue(ctrl, i);
1716 }
1717 
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1718 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1719 {
1720 	int i;
1721 
1722 	for (i = 1; i < ctrl->queue_count; i++)
1723 		nvme_tcp_stop_queue(ctrl, i);
1724 }
1725 
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1726 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1727 {
1728 	int i, ret = 0;
1729 
1730 	for (i = 1; i < ctrl->queue_count; i++) {
1731 		ret = nvme_tcp_start_queue(ctrl, i);
1732 		if (ret)
1733 			goto out_stop_queues;
1734 	}
1735 
1736 	return 0;
1737 
1738 out_stop_queues:
1739 	for (i--; i >= 1; i--)
1740 		nvme_tcp_stop_queue(ctrl, i);
1741 	return ret;
1742 }
1743 
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1744 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1745 {
1746 	int ret;
1747 
1748 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1749 	if (ret)
1750 		return ret;
1751 
1752 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1753 	if (ret)
1754 		goto out_free_queue;
1755 
1756 	return 0;
1757 
1758 out_free_queue:
1759 	nvme_tcp_free_queue(ctrl, 0);
1760 	return ret;
1761 }
1762 
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1763 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1764 {
1765 	int i, ret;
1766 
1767 	for (i = 1; i < ctrl->queue_count; i++) {
1768 		ret = nvme_tcp_alloc_queue(ctrl, i,
1769 				ctrl->sqsize + 1);
1770 		if (ret)
1771 			goto out_free_queues;
1772 	}
1773 
1774 	return 0;
1775 
1776 out_free_queues:
1777 	for (i--; i >= 1; i--)
1778 		nvme_tcp_free_queue(ctrl, i);
1779 
1780 	return ret;
1781 }
1782 
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1783 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1784 {
1785 	unsigned int nr_io_queues;
1786 
1787 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1788 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1789 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1790 
1791 	return nr_io_queues;
1792 }
1793 
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1794 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1795 		unsigned int nr_io_queues)
1796 {
1797 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1798 	struct nvmf_ctrl_options *opts = nctrl->opts;
1799 
1800 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1801 		/*
1802 		 * separate read/write queues
1803 		 * hand out dedicated default queues only after we have
1804 		 * sufficient read queues.
1805 		 */
1806 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1807 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1808 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1809 			min(opts->nr_write_queues, nr_io_queues);
1810 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811 	} else {
1812 		/*
1813 		 * shared read/write queues
1814 		 * either no write queues were requested, or we don't have
1815 		 * sufficient queue count to have dedicated default queues.
1816 		 */
1817 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1818 			min(opts->nr_io_queues, nr_io_queues);
1819 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1820 	}
1821 
1822 	if (opts->nr_poll_queues && nr_io_queues) {
1823 		/* map dedicated poll queues only if we have queues left */
1824 		ctrl->io_queues[HCTX_TYPE_POLL] =
1825 			min(opts->nr_poll_queues, nr_io_queues);
1826 	}
1827 }
1828 
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1829 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1830 {
1831 	unsigned int nr_io_queues;
1832 	int ret;
1833 
1834 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1835 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1836 	if (ret)
1837 		return ret;
1838 
1839 	if (nr_io_queues == 0) {
1840 		dev_err(ctrl->device,
1841 			"unable to set any I/O queues\n");
1842 		return -ENOMEM;
1843 	}
1844 
1845 	ctrl->queue_count = nr_io_queues + 1;
1846 	dev_info(ctrl->device,
1847 		"creating %d I/O queues.\n", nr_io_queues);
1848 
1849 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1850 
1851 	return __nvme_tcp_alloc_io_queues(ctrl);
1852 }
1853 
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1854 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1855 {
1856 	nvme_tcp_stop_io_queues(ctrl);
1857 	if (remove) {
1858 		blk_cleanup_queue(ctrl->connect_q);
1859 		blk_mq_free_tag_set(ctrl->tagset);
1860 	}
1861 	nvme_tcp_free_io_queues(ctrl);
1862 }
1863 
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1864 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1865 {
1866 	int ret;
1867 
1868 	ret = nvme_tcp_alloc_io_queues(ctrl);
1869 	if (ret)
1870 		return ret;
1871 
1872 	if (new) {
1873 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1874 		if (IS_ERR(ctrl->tagset)) {
1875 			ret = PTR_ERR(ctrl->tagset);
1876 			goto out_free_io_queues;
1877 		}
1878 
1879 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1880 		if (IS_ERR(ctrl->connect_q)) {
1881 			ret = PTR_ERR(ctrl->connect_q);
1882 			goto out_free_tag_set;
1883 		}
1884 	}
1885 
1886 	ret = nvme_tcp_start_io_queues(ctrl);
1887 	if (ret)
1888 		goto out_cleanup_connect_q;
1889 
1890 	if (!new) {
1891 		nvme_start_freeze(ctrl);
1892 		nvme_start_queues(ctrl);
1893 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1894 			/*
1895 			 * If we timed out waiting for freeze we are likely to
1896 			 * be stuck.  Fail the controller initialization just
1897 			 * to be safe.
1898 			 */
1899 			ret = -ENODEV;
1900 			nvme_unfreeze(ctrl);
1901 			goto out_wait_freeze_timed_out;
1902 		}
1903 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1904 			ctrl->queue_count - 1);
1905 		nvme_unfreeze(ctrl);
1906 	}
1907 
1908 	return 0;
1909 
1910 out_wait_freeze_timed_out:
1911 	nvme_stop_queues(ctrl);
1912 	nvme_sync_io_queues(ctrl);
1913 	nvme_tcp_stop_io_queues(ctrl);
1914 out_cleanup_connect_q:
1915 	nvme_cancel_tagset(ctrl);
1916 	if (new)
1917 		blk_cleanup_queue(ctrl->connect_q);
1918 out_free_tag_set:
1919 	if (new)
1920 		blk_mq_free_tag_set(ctrl->tagset);
1921 out_free_io_queues:
1922 	nvme_tcp_free_io_queues(ctrl);
1923 	return ret;
1924 }
1925 
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1926 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1927 {
1928 	nvme_tcp_stop_queue(ctrl, 0);
1929 	if (remove) {
1930 		blk_cleanup_queue(ctrl->admin_q);
1931 		blk_cleanup_queue(ctrl->fabrics_q);
1932 		blk_mq_free_tag_set(ctrl->admin_tagset);
1933 	}
1934 	nvme_tcp_free_admin_queue(ctrl);
1935 }
1936 
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1937 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1938 {
1939 	int error;
1940 
1941 	error = nvme_tcp_alloc_admin_queue(ctrl);
1942 	if (error)
1943 		return error;
1944 
1945 	if (new) {
1946 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1947 		if (IS_ERR(ctrl->admin_tagset)) {
1948 			error = PTR_ERR(ctrl->admin_tagset);
1949 			goto out_free_queue;
1950 		}
1951 
1952 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1953 		if (IS_ERR(ctrl->fabrics_q)) {
1954 			error = PTR_ERR(ctrl->fabrics_q);
1955 			goto out_free_tagset;
1956 		}
1957 
1958 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1959 		if (IS_ERR(ctrl->admin_q)) {
1960 			error = PTR_ERR(ctrl->admin_q);
1961 			goto out_cleanup_fabrics_q;
1962 		}
1963 	}
1964 
1965 	error = nvme_tcp_start_queue(ctrl, 0);
1966 	if (error)
1967 		goto out_cleanup_queue;
1968 
1969 	error = nvme_enable_ctrl(ctrl);
1970 	if (error)
1971 		goto out_stop_queue;
1972 
1973 	blk_mq_unquiesce_queue(ctrl->admin_q);
1974 
1975 	error = nvme_init_ctrl_finish(ctrl);
1976 	if (error)
1977 		goto out_quiesce_queue;
1978 
1979 	return 0;
1980 
1981 out_quiesce_queue:
1982 	blk_mq_quiesce_queue(ctrl->admin_q);
1983 	blk_sync_queue(ctrl->admin_q);
1984 out_stop_queue:
1985 	nvme_tcp_stop_queue(ctrl, 0);
1986 	nvme_cancel_admin_tagset(ctrl);
1987 out_cleanup_queue:
1988 	if (new)
1989 		blk_cleanup_queue(ctrl->admin_q);
1990 out_cleanup_fabrics_q:
1991 	if (new)
1992 		blk_cleanup_queue(ctrl->fabrics_q);
1993 out_free_tagset:
1994 	if (new)
1995 		blk_mq_free_tag_set(ctrl->admin_tagset);
1996 out_free_queue:
1997 	nvme_tcp_free_admin_queue(ctrl);
1998 	return error;
1999 }
2000 
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2001 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2002 		bool remove)
2003 {
2004 	blk_mq_quiesce_queue(ctrl->admin_q);
2005 	blk_sync_queue(ctrl->admin_q);
2006 	nvme_tcp_stop_queue(ctrl, 0);
2007 	nvme_cancel_admin_tagset(ctrl);
2008 	if (remove)
2009 		blk_mq_unquiesce_queue(ctrl->admin_q);
2010 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2011 }
2012 
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2013 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2014 		bool remove)
2015 {
2016 	if (ctrl->queue_count <= 1)
2017 		return;
2018 	blk_mq_quiesce_queue(ctrl->admin_q);
2019 	nvme_stop_queues(ctrl);
2020 	nvme_sync_io_queues(ctrl);
2021 	nvme_tcp_stop_io_queues(ctrl);
2022 	nvme_cancel_tagset(ctrl);
2023 	if (remove)
2024 		nvme_start_queues(ctrl);
2025 	nvme_tcp_destroy_io_queues(ctrl, remove);
2026 }
2027 
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)2028 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2029 {
2030 	/* If we are resetting/deleting then do nothing */
2031 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2032 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2033 			ctrl->state == NVME_CTRL_LIVE);
2034 		return;
2035 	}
2036 
2037 	if (nvmf_should_reconnect(ctrl)) {
2038 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2039 			ctrl->opts->reconnect_delay);
2040 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2041 				ctrl->opts->reconnect_delay * HZ);
2042 	} else {
2043 		dev_info(ctrl->device, "Removing controller...\n");
2044 		nvme_delete_ctrl(ctrl);
2045 	}
2046 }
2047 
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2048 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2049 {
2050 	struct nvmf_ctrl_options *opts = ctrl->opts;
2051 	int ret;
2052 
2053 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2054 	if (ret)
2055 		return ret;
2056 
2057 	if (ctrl->icdoff) {
2058 		ret = -EOPNOTSUPP;
2059 		dev_err(ctrl->device, "icdoff is not supported!\n");
2060 		goto destroy_admin;
2061 	}
2062 
2063 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2064 		ret = -EOPNOTSUPP;
2065 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2066 		goto destroy_admin;
2067 	}
2068 
2069 	if (opts->queue_size > ctrl->sqsize + 1)
2070 		dev_warn(ctrl->device,
2071 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2072 			opts->queue_size, ctrl->sqsize + 1);
2073 
2074 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2075 		dev_warn(ctrl->device,
2076 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2077 			ctrl->sqsize + 1, ctrl->maxcmd);
2078 		ctrl->sqsize = ctrl->maxcmd - 1;
2079 	}
2080 
2081 	if (ctrl->queue_count > 1) {
2082 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2083 		if (ret)
2084 			goto destroy_admin;
2085 	}
2086 
2087 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2088 		/*
2089 		 * state change failure is ok if we started ctrl delete,
2090 		 * unless we're during creation of a new controller to
2091 		 * avoid races with teardown flow.
2092 		 */
2093 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2094 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2095 		WARN_ON_ONCE(new);
2096 		ret = -EINVAL;
2097 		goto destroy_io;
2098 	}
2099 
2100 	nvme_start_ctrl(ctrl);
2101 	return 0;
2102 
2103 destroy_io:
2104 	if (ctrl->queue_count > 1) {
2105 		nvme_stop_queues(ctrl);
2106 		nvme_sync_io_queues(ctrl);
2107 		nvme_tcp_stop_io_queues(ctrl);
2108 		nvme_cancel_tagset(ctrl);
2109 		nvme_tcp_destroy_io_queues(ctrl, new);
2110 	}
2111 destroy_admin:
2112 	blk_mq_quiesce_queue(ctrl->admin_q);
2113 	blk_sync_queue(ctrl->admin_q);
2114 	nvme_tcp_stop_queue(ctrl, 0);
2115 	nvme_cancel_admin_tagset(ctrl);
2116 	nvme_tcp_destroy_admin_queue(ctrl, new);
2117 	return ret;
2118 }
2119 
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2120 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2121 {
2122 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2123 			struct nvme_tcp_ctrl, connect_work);
2124 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2125 
2126 	++ctrl->nr_reconnects;
2127 
2128 	if (nvme_tcp_setup_ctrl(ctrl, false))
2129 		goto requeue;
2130 
2131 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2132 			ctrl->nr_reconnects);
2133 
2134 	ctrl->nr_reconnects = 0;
2135 
2136 	return;
2137 
2138 requeue:
2139 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2140 			ctrl->nr_reconnects);
2141 	nvme_tcp_reconnect_or_remove(ctrl);
2142 }
2143 
nvme_tcp_error_recovery_work(struct work_struct * work)2144 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2145 {
2146 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2147 				struct nvme_tcp_ctrl, err_work);
2148 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2149 
2150 	nvme_stop_keep_alive(ctrl);
2151 	flush_work(&ctrl->async_event_work);
2152 	nvme_tcp_teardown_io_queues(ctrl, false);
2153 	/* unquiesce to fail fast pending requests */
2154 	nvme_start_queues(ctrl);
2155 	nvme_tcp_teardown_admin_queue(ctrl, false);
2156 	blk_mq_unquiesce_queue(ctrl->admin_q);
2157 
2158 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2159 		/* state change failure is ok if we started ctrl delete */
2160 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2161 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2162 		return;
2163 	}
2164 
2165 	nvme_tcp_reconnect_or_remove(ctrl);
2166 }
2167 
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2168 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2169 {
2170 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2171 	blk_mq_quiesce_queue(ctrl->admin_q);
2172 	if (shutdown)
2173 		nvme_shutdown_ctrl(ctrl);
2174 	else
2175 		nvme_disable_ctrl(ctrl);
2176 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2177 }
2178 
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2179 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2180 {
2181 	nvme_tcp_teardown_ctrl(ctrl, true);
2182 }
2183 
nvme_reset_ctrl_work(struct work_struct * work)2184 static void nvme_reset_ctrl_work(struct work_struct *work)
2185 {
2186 	struct nvme_ctrl *ctrl =
2187 		container_of(work, struct nvme_ctrl, reset_work);
2188 
2189 	nvme_stop_ctrl(ctrl);
2190 	nvme_tcp_teardown_ctrl(ctrl, false);
2191 
2192 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2193 		/* state change failure is ok if we started ctrl delete */
2194 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2195 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2196 		return;
2197 	}
2198 
2199 	if (nvme_tcp_setup_ctrl(ctrl, false))
2200 		goto out_fail;
2201 
2202 	return;
2203 
2204 out_fail:
2205 	++ctrl->nr_reconnects;
2206 	nvme_tcp_reconnect_or_remove(ctrl);
2207 }
2208 
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2209 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2210 {
2211 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2212 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2213 }
2214 
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2215 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2216 {
2217 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2218 
2219 	if (list_empty(&ctrl->list))
2220 		goto free_ctrl;
2221 
2222 	mutex_lock(&nvme_tcp_ctrl_mutex);
2223 	list_del(&ctrl->list);
2224 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2225 
2226 	nvmf_free_options(nctrl->opts);
2227 free_ctrl:
2228 	kfree(ctrl->queues);
2229 	kfree(ctrl);
2230 }
2231 
nvme_tcp_set_sg_null(struct nvme_command * c)2232 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2233 {
2234 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2235 
2236 	sg->addr = 0;
2237 	sg->length = 0;
2238 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2239 			NVME_SGL_FMT_TRANSPORT_A;
2240 }
2241 
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2242 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2243 		struct nvme_command *c, u32 data_len)
2244 {
2245 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2246 
2247 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2248 	sg->length = cpu_to_le32(data_len);
2249 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2250 }
2251 
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2252 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2253 		u32 data_len)
2254 {
2255 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2256 
2257 	sg->addr = 0;
2258 	sg->length = cpu_to_le32(data_len);
2259 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2260 			NVME_SGL_FMT_TRANSPORT_A;
2261 }
2262 
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2263 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2264 {
2265 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2266 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2267 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2268 	struct nvme_command *cmd = &pdu->cmd;
2269 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2270 
2271 	memset(pdu, 0, sizeof(*pdu));
2272 	pdu->hdr.type = nvme_tcp_cmd;
2273 	if (queue->hdr_digest)
2274 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2275 	pdu->hdr.hlen = sizeof(*pdu);
2276 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2277 
2278 	cmd->common.opcode = nvme_admin_async_event;
2279 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2280 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2281 	nvme_tcp_set_sg_null(cmd);
2282 
2283 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2284 	ctrl->async_req.offset = 0;
2285 	ctrl->async_req.curr_bio = NULL;
2286 	ctrl->async_req.data_len = 0;
2287 
2288 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2289 }
2290 
nvme_tcp_complete_timed_out(struct request * rq)2291 static void nvme_tcp_complete_timed_out(struct request *rq)
2292 {
2293 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2294 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2295 
2296 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2297 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2298 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2299 		blk_mq_complete_request(rq);
2300 	}
2301 }
2302 
2303 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2304 nvme_tcp_timeout(struct request *rq, bool reserved)
2305 {
2306 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2307 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2308 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2309 
2310 	dev_warn(ctrl->device,
2311 		"queue %d: timeout request %#x type %d\n",
2312 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2313 
2314 	if (ctrl->state != NVME_CTRL_LIVE) {
2315 		/*
2316 		 * If we are resetting, connecting or deleting we should
2317 		 * complete immediately because we may block controller
2318 		 * teardown or setup sequence
2319 		 * - ctrl disable/shutdown fabrics requests
2320 		 * - connect requests
2321 		 * - initialization admin requests
2322 		 * - I/O requests that entered after unquiescing and
2323 		 *   the controller stopped responding
2324 		 *
2325 		 * All other requests should be cancelled by the error
2326 		 * recovery work, so it's fine that we fail it here.
2327 		 */
2328 		nvme_tcp_complete_timed_out(rq);
2329 		return BLK_EH_DONE;
2330 	}
2331 
2332 	/*
2333 	 * LIVE state should trigger the normal error recovery which will
2334 	 * handle completing this request.
2335 	 */
2336 	nvme_tcp_error_recovery(ctrl);
2337 	return BLK_EH_RESET_TIMER;
2338 }
2339 
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2340 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2341 			struct request *rq)
2342 {
2343 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2344 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2345 	struct nvme_command *c = &pdu->cmd;
2346 
2347 	c->common.flags |= NVME_CMD_SGL_METABUF;
2348 
2349 	if (!blk_rq_nr_phys_segments(rq))
2350 		nvme_tcp_set_sg_null(c);
2351 	else if (rq_data_dir(rq) == WRITE &&
2352 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2353 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2354 	else
2355 		nvme_tcp_set_sg_host_data(c, req->data_len);
2356 
2357 	return 0;
2358 }
2359 
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2360 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2361 		struct request *rq)
2362 {
2363 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2364 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2365 	struct nvme_tcp_queue *queue = req->queue;
2366 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2367 	blk_status_t ret;
2368 
2369 	ret = nvme_setup_cmd(ns, rq);
2370 	if (ret)
2371 		return ret;
2372 
2373 	req->state = NVME_TCP_SEND_CMD_PDU;
2374 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2375 	req->offset = 0;
2376 	req->data_sent = 0;
2377 	req->pdu_len = 0;
2378 	req->pdu_sent = 0;
2379 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2380 				blk_rq_payload_bytes(rq) : 0;
2381 	req->curr_bio = rq->bio;
2382 	if (req->curr_bio && req->data_len)
2383 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2384 
2385 	if (rq_data_dir(rq) == WRITE &&
2386 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2387 		req->pdu_len = req->data_len;
2388 
2389 	pdu->hdr.type = nvme_tcp_cmd;
2390 	pdu->hdr.flags = 0;
2391 	if (queue->hdr_digest)
2392 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2393 	if (queue->data_digest && req->pdu_len) {
2394 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2395 		ddgst = nvme_tcp_ddgst_len(queue);
2396 	}
2397 	pdu->hdr.hlen = sizeof(*pdu);
2398 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2399 	pdu->hdr.plen =
2400 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2401 
2402 	ret = nvme_tcp_map_data(queue, rq);
2403 	if (unlikely(ret)) {
2404 		nvme_cleanup_cmd(rq);
2405 		dev_err(queue->ctrl->ctrl.device,
2406 			"Failed to map data (%d)\n", ret);
2407 		return ret;
2408 	}
2409 
2410 	return 0;
2411 }
2412 
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2413 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2414 {
2415 	struct nvme_tcp_queue *queue = hctx->driver_data;
2416 
2417 	if (!llist_empty(&queue->req_list))
2418 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2419 }
2420 
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2421 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2422 		const struct blk_mq_queue_data *bd)
2423 {
2424 	struct nvme_ns *ns = hctx->queue->queuedata;
2425 	struct nvme_tcp_queue *queue = hctx->driver_data;
2426 	struct request *rq = bd->rq;
2427 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2428 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2429 	blk_status_t ret;
2430 
2431 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2432 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2433 
2434 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2435 	if (unlikely(ret))
2436 		return ret;
2437 
2438 	blk_mq_start_request(rq);
2439 
2440 	nvme_tcp_queue_request(req, true, bd->last);
2441 
2442 	return BLK_STS_OK;
2443 }
2444 
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2445 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2446 {
2447 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2448 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2449 
2450 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2451 		/* separate read/write queues */
2452 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2453 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2454 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2455 		set->map[HCTX_TYPE_READ].nr_queues =
2456 			ctrl->io_queues[HCTX_TYPE_READ];
2457 		set->map[HCTX_TYPE_READ].queue_offset =
2458 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2459 	} else {
2460 		/* shared read/write queues */
2461 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2462 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2463 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2464 		set->map[HCTX_TYPE_READ].nr_queues =
2465 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2466 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2467 	}
2468 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2469 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2470 
2471 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2472 		/* map dedicated poll queues only if we have queues left */
2473 		set->map[HCTX_TYPE_POLL].nr_queues =
2474 				ctrl->io_queues[HCTX_TYPE_POLL];
2475 		set->map[HCTX_TYPE_POLL].queue_offset =
2476 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2477 			ctrl->io_queues[HCTX_TYPE_READ];
2478 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2479 	}
2480 
2481 	dev_info(ctrl->ctrl.device,
2482 		"mapped %d/%d/%d default/read/poll queues.\n",
2483 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2484 		ctrl->io_queues[HCTX_TYPE_READ],
2485 		ctrl->io_queues[HCTX_TYPE_POLL]);
2486 
2487 	return 0;
2488 }
2489 
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2490 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2491 {
2492 	struct nvme_tcp_queue *queue = hctx->driver_data;
2493 	struct sock *sk = queue->sock->sk;
2494 
2495 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2496 		return 0;
2497 
2498 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2499 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2500 		sk_busy_loop(sk, true);
2501 	nvme_tcp_try_recv(queue);
2502 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2503 	return queue->nr_cqe;
2504 }
2505 
2506 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2507 	.queue_rq	= nvme_tcp_queue_rq,
2508 	.commit_rqs	= nvme_tcp_commit_rqs,
2509 	.complete	= nvme_complete_rq,
2510 	.init_request	= nvme_tcp_init_request,
2511 	.exit_request	= nvme_tcp_exit_request,
2512 	.init_hctx	= nvme_tcp_init_hctx,
2513 	.timeout	= nvme_tcp_timeout,
2514 	.map_queues	= nvme_tcp_map_queues,
2515 	.poll		= nvme_tcp_poll,
2516 };
2517 
2518 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2519 	.queue_rq	= nvme_tcp_queue_rq,
2520 	.complete	= nvme_complete_rq,
2521 	.init_request	= nvme_tcp_init_request,
2522 	.exit_request	= nvme_tcp_exit_request,
2523 	.init_hctx	= nvme_tcp_init_admin_hctx,
2524 	.timeout	= nvme_tcp_timeout,
2525 };
2526 
2527 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2528 	.name			= "tcp",
2529 	.module			= THIS_MODULE,
2530 	.flags			= NVME_F_FABRICS,
2531 	.reg_read32		= nvmf_reg_read32,
2532 	.reg_read64		= nvmf_reg_read64,
2533 	.reg_write32		= nvmf_reg_write32,
2534 	.free_ctrl		= nvme_tcp_free_ctrl,
2535 	.submit_async_event	= nvme_tcp_submit_async_event,
2536 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2537 	.get_address		= nvmf_get_address,
2538 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2539 };
2540 
2541 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2542 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2543 {
2544 	struct nvme_tcp_ctrl *ctrl;
2545 	bool found = false;
2546 
2547 	mutex_lock(&nvme_tcp_ctrl_mutex);
2548 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2549 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2550 		if (found)
2551 			break;
2552 	}
2553 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2554 
2555 	return found;
2556 }
2557 
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2558 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2559 		struct nvmf_ctrl_options *opts)
2560 {
2561 	struct nvme_tcp_ctrl *ctrl;
2562 	int ret;
2563 
2564 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2565 	if (!ctrl)
2566 		return ERR_PTR(-ENOMEM);
2567 
2568 	INIT_LIST_HEAD(&ctrl->list);
2569 	ctrl->ctrl.opts = opts;
2570 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2571 				opts->nr_poll_queues + 1;
2572 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2573 	ctrl->ctrl.kato = opts->kato;
2574 
2575 	INIT_DELAYED_WORK(&ctrl->connect_work,
2576 			nvme_tcp_reconnect_ctrl_work);
2577 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2578 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2579 
2580 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2581 		opts->trsvcid =
2582 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2583 		if (!opts->trsvcid) {
2584 			ret = -ENOMEM;
2585 			goto out_free_ctrl;
2586 		}
2587 		opts->mask |= NVMF_OPT_TRSVCID;
2588 	}
2589 
2590 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2591 			opts->traddr, opts->trsvcid, &ctrl->addr);
2592 	if (ret) {
2593 		pr_err("malformed address passed: %s:%s\n",
2594 			opts->traddr, opts->trsvcid);
2595 		goto out_free_ctrl;
2596 	}
2597 
2598 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2599 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2600 			opts->host_traddr, NULL, &ctrl->src_addr);
2601 		if (ret) {
2602 			pr_err("malformed src address passed: %s\n",
2603 			       opts->host_traddr);
2604 			goto out_free_ctrl;
2605 		}
2606 	}
2607 
2608 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2609 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2610 			pr_err("invalid interface passed: %s\n",
2611 			       opts->host_iface);
2612 			ret = -ENODEV;
2613 			goto out_free_ctrl;
2614 		}
2615 	}
2616 
2617 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2618 		ret = -EALREADY;
2619 		goto out_free_ctrl;
2620 	}
2621 
2622 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2623 				GFP_KERNEL);
2624 	if (!ctrl->queues) {
2625 		ret = -ENOMEM;
2626 		goto out_free_ctrl;
2627 	}
2628 
2629 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2630 	if (ret)
2631 		goto out_kfree_queues;
2632 
2633 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2634 		WARN_ON_ONCE(1);
2635 		ret = -EINTR;
2636 		goto out_uninit_ctrl;
2637 	}
2638 
2639 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2640 	if (ret)
2641 		goto out_uninit_ctrl;
2642 
2643 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2644 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2645 
2646 	mutex_lock(&nvme_tcp_ctrl_mutex);
2647 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2648 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2649 
2650 	return &ctrl->ctrl;
2651 
2652 out_uninit_ctrl:
2653 	nvme_uninit_ctrl(&ctrl->ctrl);
2654 	nvme_put_ctrl(&ctrl->ctrl);
2655 	if (ret > 0)
2656 		ret = -EIO;
2657 	return ERR_PTR(ret);
2658 out_kfree_queues:
2659 	kfree(ctrl->queues);
2660 out_free_ctrl:
2661 	kfree(ctrl);
2662 	return ERR_PTR(ret);
2663 }
2664 
2665 static struct nvmf_transport_ops nvme_tcp_transport = {
2666 	.name		= "tcp",
2667 	.module		= THIS_MODULE,
2668 	.required_opts	= NVMF_OPT_TRADDR,
2669 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2670 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2671 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2672 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2673 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2674 	.create_ctrl	= nvme_tcp_create_ctrl,
2675 };
2676 
nvme_tcp_init_module(void)2677 static int __init nvme_tcp_init_module(void)
2678 {
2679 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2680 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2681 	if (!nvme_tcp_wq)
2682 		return -ENOMEM;
2683 
2684 	nvmf_register_transport(&nvme_tcp_transport);
2685 	return 0;
2686 }
2687 
nvme_tcp_cleanup_module(void)2688 static void __exit nvme_tcp_cleanup_module(void)
2689 {
2690 	struct nvme_tcp_ctrl *ctrl;
2691 
2692 	nvmf_unregister_transport(&nvme_tcp_transport);
2693 
2694 	mutex_lock(&nvme_tcp_ctrl_mutex);
2695 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2696 		nvme_delete_ctrl(&ctrl->ctrl);
2697 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2698 	flush_workqueue(nvme_delete_wq);
2699 
2700 	destroy_workqueue(nvme_tcp_wq);
2701 }
2702 
2703 module_init(nvme_tcp_init_module);
2704 module_exit(nvme_tcp_cleanup_module);
2705 
2706 MODULE_LICENSE("GPL v2");
2707