1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36 * because dependencies are tracked for both nvme-tcp and user contexts. Using
37 * a separate class prevents lockdep from conflating nvme-tcp socket use with
38 * user-space socket API use.
39 */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42
nvme_tcp_reclassify_socket(struct socket * sock)43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 struct sock *sk = sock->sk;
46
47 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 return;
49
50 switch (sk->sk_family) {
51 case AF_INET:
52 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 &nvme_tcp_slock_key[0],
54 "sk_lock-AF_INET-NVME",
55 &nvme_tcp_sk_key[0]);
56 break;
57 case AF_INET6:
58 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 &nvme_tcp_slock_key[1],
60 "sk_lock-AF_INET6-NVME",
61 &nvme_tcp_sk_key[1]);
62 break;
63 default:
64 WARN_ON_ONCE(1);
65 }
66 }
67 #else
nvme_tcp_reclassify_socket(struct socket * sock)68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70
71 enum nvme_tcp_send_state {
72 NVME_TCP_SEND_CMD_PDU = 0,
73 NVME_TCP_SEND_H2C_PDU,
74 NVME_TCP_SEND_DATA,
75 NVME_TCP_SEND_DDGST,
76 };
77
78 struct nvme_tcp_request {
79 struct nvme_request req;
80 void *pdu;
81 struct nvme_tcp_queue *queue;
82 u32 data_len;
83 u32 pdu_len;
84 u32 pdu_sent;
85 u16 ttag;
86 __le16 status;
87 struct list_head entry;
88 struct llist_node lentry;
89 __le32 ddgst;
90
91 struct bio *curr_bio;
92 struct iov_iter iter;
93
94 /* send state */
95 size_t offset;
96 size_t data_sent;
97 enum nvme_tcp_send_state state;
98 };
99
100 enum nvme_tcp_queue_flags {
101 NVME_TCP_Q_ALLOCATED = 0,
102 NVME_TCP_Q_LIVE = 1,
103 NVME_TCP_Q_POLLING = 2,
104 };
105
106 enum nvme_tcp_recv_state {
107 NVME_TCP_RECV_PDU = 0,
108 NVME_TCP_RECV_DATA,
109 NVME_TCP_RECV_DDGST,
110 };
111
112 struct nvme_tcp_ctrl;
113 struct nvme_tcp_queue {
114 struct socket *sock;
115 struct work_struct io_work;
116 int io_cpu;
117
118 struct mutex queue_lock;
119 struct mutex send_mutex;
120 struct llist_head req_list;
121 struct list_head send_list;
122
123 /* recv state */
124 void *pdu;
125 int pdu_remaining;
126 int pdu_offset;
127 size_t data_remaining;
128 size_t ddgst_remaining;
129 unsigned int nr_cqe;
130
131 /* send state */
132 struct nvme_tcp_request *request;
133
134 int queue_size;
135 size_t cmnd_capsule_len;
136 struct nvme_tcp_ctrl *ctrl;
137 unsigned long flags;
138 bool rd_enabled;
139
140 bool hdr_digest;
141 bool data_digest;
142 struct ahash_request *rcv_hash;
143 struct ahash_request *snd_hash;
144 __le32 exp_ddgst;
145 __le32 recv_ddgst;
146
147 struct page_frag_cache pf_cache;
148
149 void (*state_change)(struct sock *);
150 void (*data_ready)(struct sock *);
151 void (*write_space)(struct sock *);
152 };
153
154 struct nvme_tcp_ctrl {
155 /* read only in the hot path */
156 struct nvme_tcp_queue *queues;
157 struct blk_mq_tag_set tag_set;
158
159 /* other member variables */
160 struct list_head list;
161 struct blk_mq_tag_set admin_tag_set;
162 struct sockaddr_storage addr;
163 struct sockaddr_storage src_addr;
164 struct nvme_ctrl ctrl;
165
166 struct work_struct err_work;
167 struct delayed_work connect_work;
168 struct nvme_tcp_request async_req;
169 u32 io_queues[HCTX_MAX_TYPES];
170 };
171
172 static LIST_HEAD(nvme_tcp_ctrl_list);
173 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
174 static struct workqueue_struct *nvme_tcp_wq;
175 static const struct blk_mq_ops nvme_tcp_mq_ops;
176 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
177 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
178
to_tcp_ctrl(struct nvme_ctrl * ctrl)179 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
180 {
181 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
182 }
183
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)184 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
185 {
186 return queue - queue->ctrl->queues;
187 }
188
nvme_tcp_tagset(struct nvme_tcp_queue * queue)189 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
190 {
191 u32 queue_idx = nvme_tcp_queue_id(queue);
192
193 if (queue_idx == 0)
194 return queue->ctrl->admin_tag_set.tags[queue_idx];
195 return queue->ctrl->tag_set.tags[queue_idx - 1];
196 }
197
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)198 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
199 {
200 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
201 }
202
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)203 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
204 {
205 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
206 }
207
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)208 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
209 {
210 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
211 }
212
nvme_tcp_async_req(struct nvme_tcp_request * req)213 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
214 {
215 return req == &req->queue->ctrl->async_req;
216 }
217
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)218 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
219 {
220 struct request *rq;
221
222 if (unlikely(nvme_tcp_async_req(req)))
223 return false; /* async events don't have a request */
224
225 rq = blk_mq_rq_from_pdu(req);
226
227 return rq_data_dir(rq) == WRITE && req->data_len &&
228 req->data_len <= nvme_tcp_inline_data_size(req->queue);
229 }
230
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)231 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
232 {
233 return req->iter.bvec->bv_page;
234 }
235
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)236 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
237 {
238 return req->iter.bvec->bv_offset + req->iter.iov_offset;
239 }
240
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)241 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
242 {
243 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
244 req->pdu_len - req->pdu_sent);
245 }
246
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)247 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
248 {
249 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
250 req->pdu_len - req->pdu_sent : 0;
251 }
252
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)253 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
254 int len)
255 {
256 return nvme_tcp_pdu_data_left(req) <= len;
257 }
258
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)259 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
260 unsigned int dir)
261 {
262 struct request *rq = blk_mq_rq_from_pdu(req);
263 struct bio_vec *vec;
264 unsigned int size;
265 int nr_bvec;
266 size_t offset;
267
268 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
269 vec = &rq->special_vec;
270 nr_bvec = 1;
271 size = blk_rq_payload_bytes(rq);
272 offset = 0;
273 } else {
274 struct bio *bio = req->curr_bio;
275 struct bvec_iter bi;
276 struct bio_vec bv;
277
278 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
279 nr_bvec = 0;
280 bio_for_each_bvec(bv, bio, bi) {
281 nr_bvec++;
282 }
283 size = bio->bi_iter.bi_size;
284 offset = bio->bi_iter.bi_bvec_done;
285 }
286
287 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
288 req->iter.iov_offset = offset;
289 }
290
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)291 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
292 int len)
293 {
294 req->data_sent += len;
295 req->pdu_sent += len;
296 iov_iter_advance(&req->iter, len);
297 if (!iov_iter_count(&req->iter) &&
298 req->data_sent < req->data_len) {
299 req->curr_bio = req->curr_bio->bi_next;
300 nvme_tcp_init_iter(req, WRITE);
301 }
302 }
303
nvme_tcp_send_all(struct nvme_tcp_queue * queue)304 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
305 {
306 int ret;
307
308 /* drain the send queue as much as we can... */
309 do {
310 ret = nvme_tcp_try_send(queue);
311 } while (ret > 0);
312 }
313
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)314 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
315 {
316 return !list_empty(&queue->send_list) ||
317 !llist_empty(&queue->req_list);
318 }
319
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)320 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
321 bool sync, bool last)
322 {
323 struct nvme_tcp_queue *queue = req->queue;
324 bool empty;
325
326 empty = llist_add(&req->lentry, &queue->req_list) &&
327 list_empty(&queue->send_list) && !queue->request;
328
329 /*
330 * if we're the first on the send_list and we can try to send
331 * directly, otherwise queue io_work. Also, only do that if we
332 * are on the same cpu, so we don't introduce contention.
333 */
334 if (queue->io_cpu == raw_smp_processor_id() &&
335 sync && empty && mutex_trylock(&queue->send_mutex)) {
336 nvme_tcp_send_all(queue);
337 mutex_unlock(&queue->send_mutex);
338 }
339
340 if (last && nvme_tcp_queue_more(queue))
341 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
342 }
343
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)344 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
345 {
346 struct nvme_tcp_request *req;
347 struct llist_node *node;
348
349 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
350 req = llist_entry(node, struct nvme_tcp_request, lentry);
351 list_add(&req->entry, &queue->send_list);
352 }
353 }
354
355 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)356 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
357 {
358 struct nvme_tcp_request *req;
359
360 req = list_first_entry_or_null(&queue->send_list,
361 struct nvme_tcp_request, entry);
362 if (!req) {
363 nvme_tcp_process_req_list(queue);
364 req = list_first_entry_or_null(&queue->send_list,
365 struct nvme_tcp_request, entry);
366 if (unlikely(!req))
367 return NULL;
368 }
369
370 list_del(&req->entry);
371 return req;
372 }
373
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)374 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
375 __le32 *dgst)
376 {
377 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
378 crypto_ahash_final(hash);
379 }
380
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)381 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
382 struct page *page, off_t off, size_t len)
383 {
384 struct scatterlist sg;
385
386 sg_init_marker(&sg, 1);
387 sg_set_page(&sg, page, len, off);
388 ahash_request_set_crypt(hash, &sg, NULL, len);
389 crypto_ahash_update(hash);
390 }
391
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)392 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
393 void *pdu, size_t len)
394 {
395 struct scatterlist sg;
396
397 sg_init_one(&sg, pdu, len);
398 ahash_request_set_crypt(hash, &sg, pdu + len, len);
399 crypto_ahash_digest(hash);
400 }
401
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)402 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
403 void *pdu, size_t pdu_len)
404 {
405 struct nvme_tcp_hdr *hdr = pdu;
406 __le32 recv_digest;
407 __le32 exp_digest;
408
409 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
410 dev_err(queue->ctrl->ctrl.device,
411 "queue %d: header digest flag is cleared\n",
412 nvme_tcp_queue_id(queue));
413 return -EPROTO;
414 }
415
416 recv_digest = *(__le32 *)(pdu + hdr->hlen);
417 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
418 exp_digest = *(__le32 *)(pdu + hdr->hlen);
419 if (recv_digest != exp_digest) {
420 dev_err(queue->ctrl->ctrl.device,
421 "header digest error: recv %#x expected %#x\n",
422 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
423 return -EIO;
424 }
425
426 return 0;
427 }
428
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)429 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
430 {
431 struct nvme_tcp_hdr *hdr = pdu;
432 u8 digest_len = nvme_tcp_hdgst_len(queue);
433 u32 len;
434
435 len = le32_to_cpu(hdr->plen) - hdr->hlen -
436 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
437
438 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
439 dev_err(queue->ctrl->ctrl.device,
440 "queue %d: data digest flag is cleared\n",
441 nvme_tcp_queue_id(queue));
442 return -EPROTO;
443 }
444 crypto_ahash_init(queue->rcv_hash);
445
446 return 0;
447 }
448
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)449 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
450 struct request *rq, unsigned int hctx_idx)
451 {
452 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
453
454 page_frag_free(req->pdu);
455 }
456
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)457 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
458 struct request *rq, unsigned int hctx_idx,
459 unsigned int numa_node)
460 {
461 struct nvme_tcp_ctrl *ctrl = set->driver_data;
462 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
463 struct nvme_tcp_cmd_pdu *pdu;
464 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
465 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
466 u8 hdgst = nvme_tcp_hdgst_len(queue);
467
468 req->pdu = page_frag_alloc(&queue->pf_cache,
469 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
470 GFP_KERNEL | __GFP_ZERO);
471 if (!req->pdu)
472 return -ENOMEM;
473
474 pdu = req->pdu;
475 req->queue = queue;
476 nvme_req(rq)->ctrl = &ctrl->ctrl;
477 nvme_req(rq)->cmd = &pdu->cmd;
478
479 return 0;
480 }
481
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)482 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
483 unsigned int hctx_idx)
484 {
485 struct nvme_tcp_ctrl *ctrl = data;
486 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
487
488 hctx->driver_data = queue;
489 return 0;
490 }
491
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)492 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
493 unsigned int hctx_idx)
494 {
495 struct nvme_tcp_ctrl *ctrl = data;
496 struct nvme_tcp_queue *queue = &ctrl->queues[0];
497
498 hctx->driver_data = queue;
499 return 0;
500 }
501
502 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)503 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
504 {
505 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
506 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
507 NVME_TCP_RECV_DATA;
508 }
509
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)510 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
511 {
512 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
513 nvme_tcp_hdgst_len(queue);
514 queue->pdu_offset = 0;
515 queue->data_remaining = -1;
516 queue->ddgst_remaining = 0;
517 }
518
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)519 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
520 {
521 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
522 return;
523
524 dev_warn(ctrl->device, "starting error recovery\n");
525 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
526 }
527
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)528 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
529 struct nvme_completion *cqe)
530 {
531 struct nvme_tcp_request *req;
532 struct request *rq;
533
534 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
535 if (!rq) {
536 dev_err(queue->ctrl->ctrl.device,
537 "got bad cqe.command_id %#x on queue %d\n",
538 cqe->command_id, nvme_tcp_queue_id(queue));
539 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
540 return -EINVAL;
541 }
542
543 req = blk_mq_rq_to_pdu(rq);
544 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
545 req->status = cqe->status;
546
547 if (!nvme_try_complete_req(rq, req->status, cqe->result))
548 nvme_complete_rq(rq);
549 queue->nr_cqe++;
550
551 return 0;
552 }
553
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)554 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
555 struct nvme_tcp_data_pdu *pdu)
556 {
557 struct request *rq;
558
559 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
560 if (!rq) {
561 dev_err(queue->ctrl->ctrl.device,
562 "got bad c2hdata.command_id %#x on queue %d\n",
563 pdu->command_id, nvme_tcp_queue_id(queue));
564 return -ENOENT;
565 }
566
567 if (!blk_rq_payload_bytes(rq)) {
568 dev_err(queue->ctrl->ctrl.device,
569 "queue %d tag %#x unexpected data\n",
570 nvme_tcp_queue_id(queue), rq->tag);
571 return -EIO;
572 }
573
574 queue->data_remaining = le32_to_cpu(pdu->data_length);
575
576 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
577 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
578 dev_err(queue->ctrl->ctrl.device,
579 "queue %d tag %#x SUCCESS set but not last PDU\n",
580 nvme_tcp_queue_id(queue), rq->tag);
581 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
582 return -EPROTO;
583 }
584
585 return 0;
586 }
587
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)588 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
589 struct nvme_tcp_rsp_pdu *pdu)
590 {
591 struct nvme_completion *cqe = &pdu->cqe;
592 int ret = 0;
593
594 /*
595 * AEN requests are special as they don't time out and can
596 * survive any kind of queue freeze and often don't respond to
597 * aborts. We don't even bother to allocate a struct request
598 * for them but rather special case them here.
599 */
600 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
601 cqe->command_id)))
602 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
603 &cqe->result);
604 else
605 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
606
607 return ret;
608 }
609
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)610 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
611 struct nvme_tcp_r2t_pdu *pdu)
612 {
613 struct nvme_tcp_data_pdu *data = req->pdu;
614 struct nvme_tcp_queue *queue = req->queue;
615 struct request *rq = blk_mq_rq_from_pdu(req);
616 u8 hdgst = nvme_tcp_hdgst_len(queue);
617 u8 ddgst = nvme_tcp_ddgst_len(queue);
618
619 req->pdu_len = le32_to_cpu(pdu->r2t_length);
620 req->pdu_sent = 0;
621
622 if (unlikely(!req->pdu_len)) {
623 dev_err(queue->ctrl->ctrl.device,
624 "req %d r2t len is %u, probably a bug...\n",
625 rq->tag, req->pdu_len);
626 return -EPROTO;
627 }
628
629 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
630 dev_err(queue->ctrl->ctrl.device,
631 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
632 rq->tag, req->pdu_len, req->data_len,
633 req->data_sent);
634 return -EPROTO;
635 }
636
637 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
638 dev_err(queue->ctrl->ctrl.device,
639 "req %d unexpected r2t offset %u (expected %zu)\n",
640 rq->tag, le32_to_cpu(pdu->r2t_offset),
641 req->data_sent);
642 return -EPROTO;
643 }
644
645 memset(data, 0, sizeof(*data));
646 data->hdr.type = nvme_tcp_h2c_data;
647 data->hdr.flags = NVME_TCP_F_DATA_LAST;
648 if (queue->hdr_digest)
649 data->hdr.flags |= NVME_TCP_F_HDGST;
650 if (queue->data_digest)
651 data->hdr.flags |= NVME_TCP_F_DDGST;
652 data->hdr.hlen = sizeof(*data);
653 data->hdr.pdo = data->hdr.hlen + hdgst;
654 data->hdr.plen =
655 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
656 data->ttag = pdu->ttag;
657 data->command_id = nvme_cid(rq);
658 data->data_offset = pdu->r2t_offset;
659 data->data_length = cpu_to_le32(req->pdu_len);
660 return 0;
661 }
662
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)663 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
664 struct nvme_tcp_r2t_pdu *pdu)
665 {
666 struct nvme_tcp_request *req;
667 struct request *rq;
668 int ret;
669
670 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
671 if (!rq) {
672 dev_err(queue->ctrl->ctrl.device,
673 "got bad r2t.command_id %#x on queue %d\n",
674 pdu->command_id, nvme_tcp_queue_id(queue));
675 return -ENOENT;
676 }
677 req = blk_mq_rq_to_pdu(rq);
678
679 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
680 if (unlikely(ret))
681 return ret;
682
683 req->state = NVME_TCP_SEND_H2C_PDU;
684 req->offset = 0;
685
686 nvme_tcp_queue_request(req, false, true);
687
688 return 0;
689 }
690
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)691 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
692 unsigned int *offset, size_t *len)
693 {
694 struct nvme_tcp_hdr *hdr;
695 char *pdu = queue->pdu;
696 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
697 int ret;
698
699 ret = skb_copy_bits(skb, *offset,
700 &pdu[queue->pdu_offset], rcv_len);
701 if (unlikely(ret))
702 return ret;
703
704 queue->pdu_remaining -= rcv_len;
705 queue->pdu_offset += rcv_len;
706 *offset += rcv_len;
707 *len -= rcv_len;
708 if (queue->pdu_remaining)
709 return 0;
710
711 hdr = queue->pdu;
712 if (queue->hdr_digest) {
713 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
714 if (unlikely(ret))
715 return ret;
716 }
717
718
719 if (queue->data_digest) {
720 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
721 if (unlikely(ret))
722 return ret;
723 }
724
725 switch (hdr->type) {
726 case nvme_tcp_c2h_data:
727 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
728 case nvme_tcp_rsp:
729 nvme_tcp_init_recv_ctx(queue);
730 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
731 case nvme_tcp_r2t:
732 nvme_tcp_init_recv_ctx(queue);
733 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
734 default:
735 dev_err(queue->ctrl->ctrl.device,
736 "unsupported pdu type (%d)\n", hdr->type);
737 return -EINVAL;
738 }
739 }
740
nvme_tcp_end_request(struct request * rq,u16 status)741 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
742 {
743 union nvme_result res = {};
744
745 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
746 nvme_complete_rq(rq);
747 }
748
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)749 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
750 unsigned int *offset, size_t *len)
751 {
752 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
753 struct request *rq =
754 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
755 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
756
757 while (true) {
758 int recv_len, ret;
759
760 recv_len = min_t(size_t, *len, queue->data_remaining);
761 if (!recv_len)
762 break;
763
764 if (!iov_iter_count(&req->iter)) {
765 req->curr_bio = req->curr_bio->bi_next;
766
767 /*
768 * If we don`t have any bios it means that controller
769 * sent more data than we requested, hence error
770 */
771 if (!req->curr_bio) {
772 dev_err(queue->ctrl->ctrl.device,
773 "queue %d no space in request %#x",
774 nvme_tcp_queue_id(queue), rq->tag);
775 nvme_tcp_init_recv_ctx(queue);
776 return -EIO;
777 }
778 nvme_tcp_init_iter(req, READ);
779 }
780
781 /* we can read only from what is left in this bio */
782 recv_len = min_t(size_t, recv_len,
783 iov_iter_count(&req->iter));
784
785 if (queue->data_digest)
786 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
787 &req->iter, recv_len, queue->rcv_hash);
788 else
789 ret = skb_copy_datagram_iter(skb, *offset,
790 &req->iter, recv_len);
791 if (ret) {
792 dev_err(queue->ctrl->ctrl.device,
793 "queue %d failed to copy request %#x data",
794 nvme_tcp_queue_id(queue), rq->tag);
795 return ret;
796 }
797
798 *len -= recv_len;
799 *offset += recv_len;
800 queue->data_remaining -= recv_len;
801 }
802
803 if (!queue->data_remaining) {
804 if (queue->data_digest) {
805 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
806 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
807 } else {
808 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
809 nvme_tcp_end_request(rq,
810 le16_to_cpu(req->status));
811 queue->nr_cqe++;
812 }
813 nvme_tcp_init_recv_ctx(queue);
814 }
815 }
816
817 return 0;
818 }
819
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)820 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
821 struct sk_buff *skb, unsigned int *offset, size_t *len)
822 {
823 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
824 char *ddgst = (char *)&queue->recv_ddgst;
825 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
826 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
827 int ret;
828
829 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
830 if (unlikely(ret))
831 return ret;
832
833 queue->ddgst_remaining -= recv_len;
834 *offset += recv_len;
835 *len -= recv_len;
836 if (queue->ddgst_remaining)
837 return 0;
838
839 if (queue->recv_ddgst != queue->exp_ddgst) {
840 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
841 pdu->command_id);
842 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
843
844 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
845
846 dev_err(queue->ctrl->ctrl.device,
847 "data digest error: recv %#x expected %#x\n",
848 le32_to_cpu(queue->recv_ddgst),
849 le32_to_cpu(queue->exp_ddgst));
850 }
851
852 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
853 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
854 pdu->command_id);
855 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
856
857 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
858 queue->nr_cqe++;
859 }
860
861 nvme_tcp_init_recv_ctx(queue);
862 return 0;
863 }
864
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)865 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
866 unsigned int offset, size_t len)
867 {
868 struct nvme_tcp_queue *queue = desc->arg.data;
869 size_t consumed = len;
870 int result;
871
872 while (len) {
873 switch (nvme_tcp_recv_state(queue)) {
874 case NVME_TCP_RECV_PDU:
875 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
876 break;
877 case NVME_TCP_RECV_DATA:
878 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
879 break;
880 case NVME_TCP_RECV_DDGST:
881 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
882 break;
883 default:
884 result = -EFAULT;
885 }
886 if (result) {
887 dev_err(queue->ctrl->ctrl.device,
888 "receive failed: %d\n", result);
889 queue->rd_enabled = false;
890 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
891 return result;
892 }
893 }
894
895 return consumed;
896 }
897
nvme_tcp_data_ready(struct sock * sk)898 static void nvme_tcp_data_ready(struct sock *sk)
899 {
900 struct nvme_tcp_queue *queue;
901
902 read_lock_bh(&sk->sk_callback_lock);
903 queue = sk->sk_user_data;
904 if (likely(queue && queue->rd_enabled) &&
905 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
906 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
907 read_unlock_bh(&sk->sk_callback_lock);
908 }
909
nvme_tcp_write_space(struct sock * sk)910 static void nvme_tcp_write_space(struct sock *sk)
911 {
912 struct nvme_tcp_queue *queue;
913
914 read_lock_bh(&sk->sk_callback_lock);
915 queue = sk->sk_user_data;
916 if (likely(queue && sk_stream_is_writeable(sk))) {
917 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
918 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
919 }
920 read_unlock_bh(&sk->sk_callback_lock);
921 }
922
nvme_tcp_state_change(struct sock * sk)923 static void nvme_tcp_state_change(struct sock *sk)
924 {
925 struct nvme_tcp_queue *queue;
926
927 read_lock_bh(&sk->sk_callback_lock);
928 queue = sk->sk_user_data;
929 if (!queue)
930 goto done;
931
932 switch (sk->sk_state) {
933 case TCP_CLOSE:
934 case TCP_CLOSE_WAIT:
935 case TCP_LAST_ACK:
936 case TCP_FIN_WAIT1:
937 case TCP_FIN_WAIT2:
938 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
939 break;
940 default:
941 dev_info(queue->ctrl->ctrl.device,
942 "queue %d socket state %d\n",
943 nvme_tcp_queue_id(queue), sk->sk_state);
944 }
945
946 queue->state_change(sk);
947 done:
948 read_unlock_bh(&sk->sk_callback_lock);
949 }
950
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)951 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
952 {
953 queue->request = NULL;
954 }
955
nvme_tcp_fail_request(struct nvme_tcp_request * req)956 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
957 {
958 if (nvme_tcp_async_req(req)) {
959 union nvme_result res = {};
960
961 nvme_complete_async_event(&req->queue->ctrl->ctrl,
962 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
963 } else {
964 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
965 NVME_SC_HOST_PATH_ERROR);
966 }
967 }
968
nvme_tcp_try_send_data(struct nvme_tcp_request * req)969 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
970 {
971 struct nvme_tcp_queue *queue = req->queue;
972 int req_data_len = req->data_len;
973
974 while (true) {
975 struct page *page = nvme_tcp_req_cur_page(req);
976 size_t offset = nvme_tcp_req_cur_offset(req);
977 size_t len = nvme_tcp_req_cur_length(req);
978 bool last = nvme_tcp_pdu_last_send(req, len);
979 int req_data_sent = req->data_sent;
980 int ret, flags = MSG_DONTWAIT;
981
982 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
983 flags |= MSG_EOR;
984 else
985 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
986
987 if (sendpage_ok(page)) {
988 ret = kernel_sendpage(queue->sock, page, offset, len,
989 flags);
990 } else {
991 ret = sock_no_sendpage(queue->sock, page, offset, len,
992 flags);
993 }
994 if (ret <= 0)
995 return ret;
996
997 if (queue->data_digest)
998 nvme_tcp_ddgst_update(queue->snd_hash, page,
999 offset, ret);
1000
1001 /*
1002 * update the request iterator except for the last payload send
1003 * in the request where we don't want to modify it as we may
1004 * compete with the RX path completing the request.
1005 */
1006 if (req_data_sent + ret < req_data_len)
1007 nvme_tcp_advance_req(req, ret);
1008
1009 /* fully successful last send in current PDU */
1010 if (last && ret == len) {
1011 if (queue->data_digest) {
1012 nvme_tcp_ddgst_final(queue->snd_hash,
1013 &req->ddgst);
1014 req->state = NVME_TCP_SEND_DDGST;
1015 req->offset = 0;
1016 } else {
1017 nvme_tcp_done_send_req(queue);
1018 }
1019 return 1;
1020 }
1021 }
1022 return -EAGAIN;
1023 }
1024
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1025 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1026 {
1027 struct nvme_tcp_queue *queue = req->queue;
1028 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1029 bool inline_data = nvme_tcp_has_inline_data(req);
1030 u8 hdgst = nvme_tcp_hdgst_len(queue);
1031 int len = sizeof(*pdu) + hdgst - req->offset;
1032 int flags = MSG_DONTWAIT;
1033 int ret;
1034
1035 if (inline_data || nvme_tcp_queue_more(queue))
1036 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1037 else
1038 flags |= MSG_EOR;
1039
1040 if (queue->hdr_digest && !req->offset)
1041 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1042
1043 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1044 offset_in_page(pdu) + req->offset, len, flags);
1045 if (unlikely(ret <= 0))
1046 return ret;
1047
1048 len -= ret;
1049 if (!len) {
1050 if (inline_data) {
1051 req->state = NVME_TCP_SEND_DATA;
1052 if (queue->data_digest)
1053 crypto_ahash_init(queue->snd_hash);
1054 } else {
1055 nvme_tcp_done_send_req(queue);
1056 }
1057 return 1;
1058 }
1059 req->offset += ret;
1060
1061 return -EAGAIN;
1062 }
1063
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1064 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1065 {
1066 struct nvme_tcp_queue *queue = req->queue;
1067 struct nvme_tcp_data_pdu *pdu = req->pdu;
1068 u8 hdgst = nvme_tcp_hdgst_len(queue);
1069 int len = sizeof(*pdu) - req->offset + hdgst;
1070 int ret;
1071
1072 if (queue->hdr_digest && !req->offset)
1073 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1074
1075 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1076 offset_in_page(pdu) + req->offset, len,
1077 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1078 if (unlikely(ret <= 0))
1079 return ret;
1080
1081 len -= ret;
1082 if (!len) {
1083 req->state = NVME_TCP_SEND_DATA;
1084 if (queue->data_digest)
1085 crypto_ahash_init(queue->snd_hash);
1086 return 1;
1087 }
1088 req->offset += ret;
1089
1090 return -EAGAIN;
1091 }
1092
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1093 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1094 {
1095 struct nvme_tcp_queue *queue = req->queue;
1096 size_t offset = req->offset;
1097 int ret;
1098 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1099 struct kvec iov = {
1100 .iov_base = (u8 *)&req->ddgst + req->offset,
1101 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1102 };
1103
1104 if (nvme_tcp_queue_more(queue))
1105 msg.msg_flags |= MSG_MORE;
1106 else
1107 msg.msg_flags |= MSG_EOR;
1108
1109 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1110 if (unlikely(ret <= 0))
1111 return ret;
1112
1113 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1114 nvme_tcp_done_send_req(queue);
1115 return 1;
1116 }
1117
1118 req->offset += ret;
1119 return -EAGAIN;
1120 }
1121
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1122 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1123 {
1124 struct nvme_tcp_request *req;
1125 int ret = 1;
1126
1127 if (!queue->request) {
1128 queue->request = nvme_tcp_fetch_request(queue);
1129 if (!queue->request)
1130 return 0;
1131 }
1132 req = queue->request;
1133
1134 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1135 ret = nvme_tcp_try_send_cmd_pdu(req);
1136 if (ret <= 0)
1137 goto done;
1138 if (!nvme_tcp_has_inline_data(req))
1139 return ret;
1140 }
1141
1142 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1143 ret = nvme_tcp_try_send_data_pdu(req);
1144 if (ret <= 0)
1145 goto done;
1146 }
1147
1148 if (req->state == NVME_TCP_SEND_DATA) {
1149 ret = nvme_tcp_try_send_data(req);
1150 if (ret <= 0)
1151 goto done;
1152 }
1153
1154 if (req->state == NVME_TCP_SEND_DDGST)
1155 ret = nvme_tcp_try_send_ddgst(req);
1156 done:
1157 if (ret == -EAGAIN) {
1158 ret = 0;
1159 } else if (ret < 0) {
1160 dev_err(queue->ctrl->ctrl.device,
1161 "failed to send request %d\n", ret);
1162 nvme_tcp_fail_request(queue->request);
1163 nvme_tcp_done_send_req(queue);
1164 }
1165 return ret;
1166 }
1167
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1168 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1169 {
1170 struct socket *sock = queue->sock;
1171 struct sock *sk = sock->sk;
1172 read_descriptor_t rd_desc;
1173 int consumed;
1174
1175 rd_desc.arg.data = queue;
1176 rd_desc.count = 1;
1177 lock_sock(sk);
1178 queue->nr_cqe = 0;
1179 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1180 release_sock(sk);
1181 return consumed;
1182 }
1183
nvme_tcp_io_work(struct work_struct * w)1184 static void nvme_tcp_io_work(struct work_struct *w)
1185 {
1186 struct nvme_tcp_queue *queue =
1187 container_of(w, struct nvme_tcp_queue, io_work);
1188 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1189
1190 do {
1191 bool pending = false;
1192 int result;
1193
1194 if (mutex_trylock(&queue->send_mutex)) {
1195 result = nvme_tcp_try_send(queue);
1196 mutex_unlock(&queue->send_mutex);
1197 if (result > 0)
1198 pending = true;
1199 else if (unlikely(result < 0))
1200 break;
1201 }
1202
1203 result = nvme_tcp_try_recv(queue);
1204 if (result > 0)
1205 pending = true;
1206 else if (unlikely(result < 0))
1207 return;
1208
1209 if (!pending || !queue->rd_enabled)
1210 return;
1211
1212 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1213
1214 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1215 }
1216
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1217 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1218 {
1219 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1220
1221 ahash_request_free(queue->rcv_hash);
1222 ahash_request_free(queue->snd_hash);
1223 crypto_free_ahash(tfm);
1224 }
1225
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1226 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1227 {
1228 struct crypto_ahash *tfm;
1229
1230 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1231 if (IS_ERR(tfm))
1232 return PTR_ERR(tfm);
1233
1234 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1235 if (!queue->snd_hash)
1236 goto free_tfm;
1237 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1238
1239 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1240 if (!queue->rcv_hash)
1241 goto free_snd_hash;
1242 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1243
1244 return 0;
1245 free_snd_hash:
1246 ahash_request_free(queue->snd_hash);
1247 free_tfm:
1248 crypto_free_ahash(tfm);
1249 return -ENOMEM;
1250 }
1251
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1252 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1253 {
1254 struct nvme_tcp_request *async = &ctrl->async_req;
1255
1256 page_frag_free(async->pdu);
1257 }
1258
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1259 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1260 {
1261 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1262 struct nvme_tcp_request *async = &ctrl->async_req;
1263 u8 hdgst = nvme_tcp_hdgst_len(queue);
1264
1265 async->pdu = page_frag_alloc(&queue->pf_cache,
1266 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1267 GFP_KERNEL | __GFP_ZERO);
1268 if (!async->pdu)
1269 return -ENOMEM;
1270
1271 async->queue = &ctrl->queues[0];
1272 return 0;
1273 }
1274
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1275 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1276 {
1277 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1278 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1279
1280 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1281 return;
1282
1283 if (queue->hdr_digest || queue->data_digest)
1284 nvme_tcp_free_crypto(queue);
1285
1286 sock_release(queue->sock);
1287 kfree(queue->pdu);
1288 mutex_destroy(&queue->send_mutex);
1289 mutex_destroy(&queue->queue_lock);
1290 }
1291
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1292 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1293 {
1294 struct nvme_tcp_icreq_pdu *icreq;
1295 struct nvme_tcp_icresp_pdu *icresp;
1296 struct msghdr msg = {};
1297 struct kvec iov;
1298 bool ctrl_hdgst, ctrl_ddgst;
1299 int ret;
1300
1301 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1302 if (!icreq)
1303 return -ENOMEM;
1304
1305 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1306 if (!icresp) {
1307 ret = -ENOMEM;
1308 goto free_icreq;
1309 }
1310
1311 icreq->hdr.type = nvme_tcp_icreq;
1312 icreq->hdr.hlen = sizeof(*icreq);
1313 icreq->hdr.pdo = 0;
1314 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1315 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1316 icreq->maxr2t = 0; /* single inflight r2t supported */
1317 icreq->hpda = 0; /* no alignment constraint */
1318 if (queue->hdr_digest)
1319 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1320 if (queue->data_digest)
1321 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1322
1323 iov.iov_base = icreq;
1324 iov.iov_len = sizeof(*icreq);
1325 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1326 if (ret < 0)
1327 goto free_icresp;
1328
1329 memset(&msg, 0, sizeof(msg));
1330 iov.iov_base = icresp;
1331 iov.iov_len = sizeof(*icresp);
1332 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1333 iov.iov_len, msg.msg_flags);
1334 if (ret < 0)
1335 goto free_icresp;
1336
1337 ret = -EINVAL;
1338 if (icresp->hdr.type != nvme_tcp_icresp) {
1339 pr_err("queue %d: bad type returned %d\n",
1340 nvme_tcp_queue_id(queue), icresp->hdr.type);
1341 goto free_icresp;
1342 }
1343
1344 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1345 pr_err("queue %d: bad pdu length returned %d\n",
1346 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1347 goto free_icresp;
1348 }
1349
1350 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1351 pr_err("queue %d: bad pfv returned %d\n",
1352 nvme_tcp_queue_id(queue), icresp->pfv);
1353 goto free_icresp;
1354 }
1355
1356 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1357 if ((queue->data_digest && !ctrl_ddgst) ||
1358 (!queue->data_digest && ctrl_ddgst)) {
1359 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1360 nvme_tcp_queue_id(queue),
1361 queue->data_digest ? "enabled" : "disabled",
1362 ctrl_ddgst ? "enabled" : "disabled");
1363 goto free_icresp;
1364 }
1365
1366 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1367 if ((queue->hdr_digest && !ctrl_hdgst) ||
1368 (!queue->hdr_digest && ctrl_hdgst)) {
1369 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1370 nvme_tcp_queue_id(queue),
1371 queue->hdr_digest ? "enabled" : "disabled",
1372 ctrl_hdgst ? "enabled" : "disabled");
1373 goto free_icresp;
1374 }
1375
1376 if (icresp->cpda != 0) {
1377 pr_err("queue %d: unsupported cpda returned %d\n",
1378 nvme_tcp_queue_id(queue), icresp->cpda);
1379 goto free_icresp;
1380 }
1381
1382 ret = 0;
1383 free_icresp:
1384 kfree(icresp);
1385 free_icreq:
1386 kfree(icreq);
1387 return ret;
1388 }
1389
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1390 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1391 {
1392 return nvme_tcp_queue_id(queue) == 0;
1393 }
1394
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1395 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1396 {
1397 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1398 int qid = nvme_tcp_queue_id(queue);
1399
1400 return !nvme_tcp_admin_queue(queue) &&
1401 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1402 }
1403
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1404 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1405 {
1406 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1407 int qid = nvme_tcp_queue_id(queue);
1408
1409 return !nvme_tcp_admin_queue(queue) &&
1410 !nvme_tcp_default_queue(queue) &&
1411 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1412 ctrl->io_queues[HCTX_TYPE_READ];
1413 }
1414
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1415 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1416 {
1417 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1418 int qid = nvme_tcp_queue_id(queue);
1419
1420 return !nvme_tcp_admin_queue(queue) &&
1421 !nvme_tcp_default_queue(queue) &&
1422 !nvme_tcp_read_queue(queue) &&
1423 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1424 ctrl->io_queues[HCTX_TYPE_READ] +
1425 ctrl->io_queues[HCTX_TYPE_POLL];
1426 }
1427
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1428 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1429 {
1430 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1431 int qid = nvme_tcp_queue_id(queue);
1432 int n = 0;
1433
1434 if (nvme_tcp_default_queue(queue))
1435 n = qid - 1;
1436 else if (nvme_tcp_read_queue(queue))
1437 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1438 else if (nvme_tcp_poll_queue(queue))
1439 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1440 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1441 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1442 }
1443
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1444 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1445 int qid, size_t queue_size)
1446 {
1447 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1448 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1449 int ret, rcv_pdu_size;
1450
1451 mutex_init(&queue->queue_lock);
1452 queue->ctrl = ctrl;
1453 init_llist_head(&queue->req_list);
1454 INIT_LIST_HEAD(&queue->send_list);
1455 mutex_init(&queue->send_mutex);
1456 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1457 queue->queue_size = queue_size;
1458
1459 if (qid > 0)
1460 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1461 else
1462 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1463 NVME_TCP_ADMIN_CCSZ;
1464
1465 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1466 IPPROTO_TCP, &queue->sock);
1467 if (ret) {
1468 dev_err(nctrl->device,
1469 "failed to create socket: %d\n", ret);
1470 goto err_destroy_mutex;
1471 }
1472
1473 nvme_tcp_reclassify_socket(queue->sock);
1474
1475 /* Single syn retry */
1476 tcp_sock_set_syncnt(queue->sock->sk, 1);
1477
1478 /* Set TCP no delay */
1479 tcp_sock_set_nodelay(queue->sock->sk);
1480
1481 /*
1482 * Cleanup whatever is sitting in the TCP transmit queue on socket
1483 * close. This is done to prevent stale data from being sent should
1484 * the network connection be restored before TCP times out.
1485 */
1486 sock_no_linger(queue->sock->sk);
1487
1488 if (so_priority > 0)
1489 sock_set_priority(queue->sock->sk, so_priority);
1490
1491 /* Set socket type of service */
1492 if (nctrl->opts->tos >= 0)
1493 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1494
1495 /* Set 10 seconds timeout for icresp recvmsg */
1496 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1497
1498 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1499 nvme_tcp_set_queue_io_cpu(queue);
1500 queue->request = NULL;
1501 queue->data_remaining = 0;
1502 queue->ddgst_remaining = 0;
1503 queue->pdu_remaining = 0;
1504 queue->pdu_offset = 0;
1505 sk_set_memalloc(queue->sock->sk);
1506
1507 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1508 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1509 sizeof(ctrl->src_addr));
1510 if (ret) {
1511 dev_err(nctrl->device,
1512 "failed to bind queue %d socket %d\n",
1513 qid, ret);
1514 goto err_sock;
1515 }
1516 }
1517
1518 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1519 char *iface = nctrl->opts->host_iface;
1520 sockptr_t optval = KERNEL_SOCKPTR(iface);
1521
1522 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1523 optval, strlen(iface));
1524 if (ret) {
1525 dev_err(nctrl->device,
1526 "failed to bind to interface %s queue %d err %d\n",
1527 iface, qid, ret);
1528 goto err_sock;
1529 }
1530 }
1531
1532 queue->hdr_digest = nctrl->opts->hdr_digest;
1533 queue->data_digest = nctrl->opts->data_digest;
1534 if (queue->hdr_digest || queue->data_digest) {
1535 ret = nvme_tcp_alloc_crypto(queue);
1536 if (ret) {
1537 dev_err(nctrl->device,
1538 "failed to allocate queue %d crypto\n", qid);
1539 goto err_sock;
1540 }
1541 }
1542
1543 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1544 nvme_tcp_hdgst_len(queue);
1545 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1546 if (!queue->pdu) {
1547 ret = -ENOMEM;
1548 goto err_crypto;
1549 }
1550
1551 dev_dbg(nctrl->device, "connecting queue %d\n",
1552 nvme_tcp_queue_id(queue));
1553
1554 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1555 sizeof(ctrl->addr), 0);
1556 if (ret) {
1557 dev_err(nctrl->device,
1558 "failed to connect socket: %d\n", ret);
1559 goto err_rcv_pdu;
1560 }
1561
1562 ret = nvme_tcp_init_connection(queue);
1563 if (ret)
1564 goto err_init_connect;
1565
1566 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1567
1568 return 0;
1569
1570 err_init_connect:
1571 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1572 err_rcv_pdu:
1573 kfree(queue->pdu);
1574 err_crypto:
1575 if (queue->hdr_digest || queue->data_digest)
1576 nvme_tcp_free_crypto(queue);
1577 err_sock:
1578 sock_release(queue->sock);
1579 queue->sock = NULL;
1580 err_destroy_mutex:
1581 mutex_destroy(&queue->send_mutex);
1582 mutex_destroy(&queue->queue_lock);
1583 return ret;
1584 }
1585
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1586 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1587 {
1588 struct socket *sock = queue->sock;
1589
1590 write_lock_bh(&sock->sk->sk_callback_lock);
1591 sock->sk->sk_user_data = NULL;
1592 sock->sk->sk_data_ready = queue->data_ready;
1593 sock->sk->sk_state_change = queue->state_change;
1594 sock->sk->sk_write_space = queue->write_space;
1595 write_unlock_bh(&sock->sk->sk_callback_lock);
1596 }
1597
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1598 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1599 {
1600 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1601 nvme_tcp_restore_sock_ops(queue);
1602 cancel_work_sync(&queue->io_work);
1603 }
1604
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1605 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1606 {
1607 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1608 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1609
1610 mutex_lock(&queue->queue_lock);
1611 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1612 __nvme_tcp_stop_queue(queue);
1613 mutex_unlock(&queue->queue_lock);
1614 }
1615
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1616 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1617 {
1618 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1619 queue->sock->sk->sk_user_data = queue;
1620 queue->state_change = queue->sock->sk->sk_state_change;
1621 queue->data_ready = queue->sock->sk->sk_data_ready;
1622 queue->write_space = queue->sock->sk->sk_write_space;
1623 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1624 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1625 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1626 #ifdef CONFIG_NET_RX_BUSY_POLL
1627 queue->sock->sk->sk_ll_usec = 1;
1628 #endif
1629 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1630 }
1631
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1632 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1633 {
1634 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1635 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1636 int ret;
1637
1638 queue->rd_enabled = true;
1639 nvme_tcp_init_recv_ctx(queue);
1640 nvme_tcp_setup_sock_ops(queue);
1641
1642 if (idx)
1643 ret = nvmf_connect_io_queue(nctrl, idx);
1644 else
1645 ret = nvmf_connect_admin_queue(nctrl);
1646
1647 if (!ret) {
1648 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1649 } else {
1650 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1651 __nvme_tcp_stop_queue(queue);
1652 dev_err(nctrl->device,
1653 "failed to connect queue: %d ret=%d\n", idx, ret);
1654 }
1655 return ret;
1656 }
1657
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1658 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1659 bool admin)
1660 {
1661 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1662 struct blk_mq_tag_set *set;
1663 int ret;
1664
1665 if (admin) {
1666 set = &ctrl->admin_tag_set;
1667 memset(set, 0, sizeof(*set));
1668 set->ops = &nvme_tcp_admin_mq_ops;
1669 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1670 set->reserved_tags = NVMF_RESERVED_TAGS;
1671 set->numa_node = nctrl->numa_node;
1672 set->flags = BLK_MQ_F_BLOCKING;
1673 set->cmd_size = sizeof(struct nvme_tcp_request);
1674 set->driver_data = ctrl;
1675 set->nr_hw_queues = 1;
1676 set->timeout = NVME_ADMIN_TIMEOUT;
1677 } else {
1678 set = &ctrl->tag_set;
1679 memset(set, 0, sizeof(*set));
1680 set->ops = &nvme_tcp_mq_ops;
1681 set->queue_depth = nctrl->sqsize + 1;
1682 set->reserved_tags = NVMF_RESERVED_TAGS;
1683 set->numa_node = nctrl->numa_node;
1684 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1685 set->cmd_size = sizeof(struct nvme_tcp_request);
1686 set->driver_data = ctrl;
1687 set->nr_hw_queues = nctrl->queue_count - 1;
1688 set->timeout = NVME_IO_TIMEOUT;
1689 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1690 }
1691
1692 ret = blk_mq_alloc_tag_set(set);
1693 if (ret)
1694 return ERR_PTR(ret);
1695
1696 return set;
1697 }
1698
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1699 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1700 {
1701 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1702 cancel_work_sync(&ctrl->async_event_work);
1703 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1704 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1705 }
1706
1707 nvme_tcp_free_queue(ctrl, 0);
1708 }
1709
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1710 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1711 {
1712 int i;
1713
1714 for (i = 1; i < ctrl->queue_count; i++)
1715 nvme_tcp_free_queue(ctrl, i);
1716 }
1717
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1718 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1719 {
1720 int i;
1721
1722 for (i = 1; i < ctrl->queue_count; i++)
1723 nvme_tcp_stop_queue(ctrl, i);
1724 }
1725
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1726 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1727 {
1728 int i, ret = 0;
1729
1730 for (i = 1; i < ctrl->queue_count; i++) {
1731 ret = nvme_tcp_start_queue(ctrl, i);
1732 if (ret)
1733 goto out_stop_queues;
1734 }
1735
1736 return 0;
1737
1738 out_stop_queues:
1739 for (i--; i >= 1; i--)
1740 nvme_tcp_stop_queue(ctrl, i);
1741 return ret;
1742 }
1743
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1744 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1745 {
1746 int ret;
1747
1748 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1749 if (ret)
1750 return ret;
1751
1752 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1753 if (ret)
1754 goto out_free_queue;
1755
1756 return 0;
1757
1758 out_free_queue:
1759 nvme_tcp_free_queue(ctrl, 0);
1760 return ret;
1761 }
1762
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1763 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1764 {
1765 int i, ret;
1766
1767 for (i = 1; i < ctrl->queue_count; i++) {
1768 ret = nvme_tcp_alloc_queue(ctrl, i,
1769 ctrl->sqsize + 1);
1770 if (ret)
1771 goto out_free_queues;
1772 }
1773
1774 return 0;
1775
1776 out_free_queues:
1777 for (i--; i >= 1; i--)
1778 nvme_tcp_free_queue(ctrl, i);
1779
1780 return ret;
1781 }
1782
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1783 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1784 {
1785 unsigned int nr_io_queues;
1786
1787 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1788 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1789 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1790
1791 return nr_io_queues;
1792 }
1793
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1794 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1795 unsigned int nr_io_queues)
1796 {
1797 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1798 struct nvmf_ctrl_options *opts = nctrl->opts;
1799
1800 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1801 /*
1802 * separate read/write queues
1803 * hand out dedicated default queues only after we have
1804 * sufficient read queues.
1805 */
1806 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1807 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1808 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1809 min(opts->nr_write_queues, nr_io_queues);
1810 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811 } else {
1812 /*
1813 * shared read/write queues
1814 * either no write queues were requested, or we don't have
1815 * sufficient queue count to have dedicated default queues.
1816 */
1817 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1818 min(opts->nr_io_queues, nr_io_queues);
1819 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1820 }
1821
1822 if (opts->nr_poll_queues && nr_io_queues) {
1823 /* map dedicated poll queues only if we have queues left */
1824 ctrl->io_queues[HCTX_TYPE_POLL] =
1825 min(opts->nr_poll_queues, nr_io_queues);
1826 }
1827 }
1828
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1829 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1830 {
1831 unsigned int nr_io_queues;
1832 int ret;
1833
1834 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1835 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1836 if (ret)
1837 return ret;
1838
1839 if (nr_io_queues == 0) {
1840 dev_err(ctrl->device,
1841 "unable to set any I/O queues\n");
1842 return -ENOMEM;
1843 }
1844
1845 ctrl->queue_count = nr_io_queues + 1;
1846 dev_info(ctrl->device,
1847 "creating %d I/O queues.\n", nr_io_queues);
1848
1849 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1850
1851 return __nvme_tcp_alloc_io_queues(ctrl);
1852 }
1853
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1854 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1855 {
1856 nvme_tcp_stop_io_queues(ctrl);
1857 if (remove) {
1858 blk_cleanup_queue(ctrl->connect_q);
1859 blk_mq_free_tag_set(ctrl->tagset);
1860 }
1861 nvme_tcp_free_io_queues(ctrl);
1862 }
1863
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1864 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1865 {
1866 int ret;
1867
1868 ret = nvme_tcp_alloc_io_queues(ctrl);
1869 if (ret)
1870 return ret;
1871
1872 if (new) {
1873 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1874 if (IS_ERR(ctrl->tagset)) {
1875 ret = PTR_ERR(ctrl->tagset);
1876 goto out_free_io_queues;
1877 }
1878
1879 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1880 if (IS_ERR(ctrl->connect_q)) {
1881 ret = PTR_ERR(ctrl->connect_q);
1882 goto out_free_tag_set;
1883 }
1884 }
1885
1886 ret = nvme_tcp_start_io_queues(ctrl);
1887 if (ret)
1888 goto out_cleanup_connect_q;
1889
1890 if (!new) {
1891 nvme_start_freeze(ctrl);
1892 nvme_start_queues(ctrl);
1893 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1894 /*
1895 * If we timed out waiting for freeze we are likely to
1896 * be stuck. Fail the controller initialization just
1897 * to be safe.
1898 */
1899 ret = -ENODEV;
1900 nvme_unfreeze(ctrl);
1901 goto out_wait_freeze_timed_out;
1902 }
1903 blk_mq_update_nr_hw_queues(ctrl->tagset,
1904 ctrl->queue_count - 1);
1905 nvme_unfreeze(ctrl);
1906 }
1907
1908 return 0;
1909
1910 out_wait_freeze_timed_out:
1911 nvme_stop_queues(ctrl);
1912 nvme_sync_io_queues(ctrl);
1913 nvme_tcp_stop_io_queues(ctrl);
1914 out_cleanup_connect_q:
1915 nvme_cancel_tagset(ctrl);
1916 if (new)
1917 blk_cleanup_queue(ctrl->connect_q);
1918 out_free_tag_set:
1919 if (new)
1920 blk_mq_free_tag_set(ctrl->tagset);
1921 out_free_io_queues:
1922 nvme_tcp_free_io_queues(ctrl);
1923 return ret;
1924 }
1925
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1926 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1927 {
1928 nvme_tcp_stop_queue(ctrl, 0);
1929 if (remove) {
1930 blk_cleanup_queue(ctrl->admin_q);
1931 blk_cleanup_queue(ctrl->fabrics_q);
1932 blk_mq_free_tag_set(ctrl->admin_tagset);
1933 }
1934 nvme_tcp_free_admin_queue(ctrl);
1935 }
1936
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1937 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1938 {
1939 int error;
1940
1941 error = nvme_tcp_alloc_admin_queue(ctrl);
1942 if (error)
1943 return error;
1944
1945 if (new) {
1946 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1947 if (IS_ERR(ctrl->admin_tagset)) {
1948 error = PTR_ERR(ctrl->admin_tagset);
1949 goto out_free_queue;
1950 }
1951
1952 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1953 if (IS_ERR(ctrl->fabrics_q)) {
1954 error = PTR_ERR(ctrl->fabrics_q);
1955 goto out_free_tagset;
1956 }
1957
1958 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1959 if (IS_ERR(ctrl->admin_q)) {
1960 error = PTR_ERR(ctrl->admin_q);
1961 goto out_cleanup_fabrics_q;
1962 }
1963 }
1964
1965 error = nvme_tcp_start_queue(ctrl, 0);
1966 if (error)
1967 goto out_cleanup_queue;
1968
1969 error = nvme_enable_ctrl(ctrl);
1970 if (error)
1971 goto out_stop_queue;
1972
1973 blk_mq_unquiesce_queue(ctrl->admin_q);
1974
1975 error = nvme_init_ctrl_finish(ctrl);
1976 if (error)
1977 goto out_quiesce_queue;
1978
1979 return 0;
1980
1981 out_quiesce_queue:
1982 blk_mq_quiesce_queue(ctrl->admin_q);
1983 blk_sync_queue(ctrl->admin_q);
1984 out_stop_queue:
1985 nvme_tcp_stop_queue(ctrl, 0);
1986 nvme_cancel_admin_tagset(ctrl);
1987 out_cleanup_queue:
1988 if (new)
1989 blk_cleanup_queue(ctrl->admin_q);
1990 out_cleanup_fabrics_q:
1991 if (new)
1992 blk_cleanup_queue(ctrl->fabrics_q);
1993 out_free_tagset:
1994 if (new)
1995 blk_mq_free_tag_set(ctrl->admin_tagset);
1996 out_free_queue:
1997 nvme_tcp_free_admin_queue(ctrl);
1998 return error;
1999 }
2000
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2001 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2002 bool remove)
2003 {
2004 blk_mq_quiesce_queue(ctrl->admin_q);
2005 blk_sync_queue(ctrl->admin_q);
2006 nvme_tcp_stop_queue(ctrl, 0);
2007 nvme_cancel_admin_tagset(ctrl);
2008 if (remove)
2009 blk_mq_unquiesce_queue(ctrl->admin_q);
2010 nvme_tcp_destroy_admin_queue(ctrl, remove);
2011 }
2012
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2013 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2014 bool remove)
2015 {
2016 if (ctrl->queue_count <= 1)
2017 return;
2018 blk_mq_quiesce_queue(ctrl->admin_q);
2019 nvme_stop_queues(ctrl);
2020 nvme_sync_io_queues(ctrl);
2021 nvme_tcp_stop_io_queues(ctrl);
2022 nvme_cancel_tagset(ctrl);
2023 if (remove)
2024 nvme_start_queues(ctrl);
2025 nvme_tcp_destroy_io_queues(ctrl, remove);
2026 }
2027
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)2028 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2029 {
2030 /* If we are resetting/deleting then do nothing */
2031 if (ctrl->state != NVME_CTRL_CONNECTING) {
2032 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2033 ctrl->state == NVME_CTRL_LIVE);
2034 return;
2035 }
2036
2037 if (nvmf_should_reconnect(ctrl)) {
2038 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2039 ctrl->opts->reconnect_delay);
2040 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2041 ctrl->opts->reconnect_delay * HZ);
2042 } else {
2043 dev_info(ctrl->device, "Removing controller...\n");
2044 nvme_delete_ctrl(ctrl);
2045 }
2046 }
2047
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2048 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2049 {
2050 struct nvmf_ctrl_options *opts = ctrl->opts;
2051 int ret;
2052
2053 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2054 if (ret)
2055 return ret;
2056
2057 if (ctrl->icdoff) {
2058 ret = -EOPNOTSUPP;
2059 dev_err(ctrl->device, "icdoff is not supported!\n");
2060 goto destroy_admin;
2061 }
2062
2063 if (!nvme_ctrl_sgl_supported(ctrl)) {
2064 ret = -EOPNOTSUPP;
2065 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2066 goto destroy_admin;
2067 }
2068
2069 if (opts->queue_size > ctrl->sqsize + 1)
2070 dev_warn(ctrl->device,
2071 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2072 opts->queue_size, ctrl->sqsize + 1);
2073
2074 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2075 dev_warn(ctrl->device,
2076 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2077 ctrl->sqsize + 1, ctrl->maxcmd);
2078 ctrl->sqsize = ctrl->maxcmd - 1;
2079 }
2080
2081 if (ctrl->queue_count > 1) {
2082 ret = nvme_tcp_configure_io_queues(ctrl, new);
2083 if (ret)
2084 goto destroy_admin;
2085 }
2086
2087 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2088 /*
2089 * state change failure is ok if we started ctrl delete,
2090 * unless we're during creation of a new controller to
2091 * avoid races with teardown flow.
2092 */
2093 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2094 ctrl->state != NVME_CTRL_DELETING_NOIO);
2095 WARN_ON_ONCE(new);
2096 ret = -EINVAL;
2097 goto destroy_io;
2098 }
2099
2100 nvme_start_ctrl(ctrl);
2101 return 0;
2102
2103 destroy_io:
2104 if (ctrl->queue_count > 1) {
2105 nvme_stop_queues(ctrl);
2106 nvme_sync_io_queues(ctrl);
2107 nvme_tcp_stop_io_queues(ctrl);
2108 nvme_cancel_tagset(ctrl);
2109 nvme_tcp_destroy_io_queues(ctrl, new);
2110 }
2111 destroy_admin:
2112 blk_mq_quiesce_queue(ctrl->admin_q);
2113 blk_sync_queue(ctrl->admin_q);
2114 nvme_tcp_stop_queue(ctrl, 0);
2115 nvme_cancel_admin_tagset(ctrl);
2116 nvme_tcp_destroy_admin_queue(ctrl, new);
2117 return ret;
2118 }
2119
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2120 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2121 {
2122 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2123 struct nvme_tcp_ctrl, connect_work);
2124 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2125
2126 ++ctrl->nr_reconnects;
2127
2128 if (nvme_tcp_setup_ctrl(ctrl, false))
2129 goto requeue;
2130
2131 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2132 ctrl->nr_reconnects);
2133
2134 ctrl->nr_reconnects = 0;
2135
2136 return;
2137
2138 requeue:
2139 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2140 ctrl->nr_reconnects);
2141 nvme_tcp_reconnect_or_remove(ctrl);
2142 }
2143
nvme_tcp_error_recovery_work(struct work_struct * work)2144 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2145 {
2146 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2147 struct nvme_tcp_ctrl, err_work);
2148 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2149
2150 nvme_stop_keep_alive(ctrl);
2151 flush_work(&ctrl->async_event_work);
2152 nvme_tcp_teardown_io_queues(ctrl, false);
2153 /* unquiesce to fail fast pending requests */
2154 nvme_start_queues(ctrl);
2155 nvme_tcp_teardown_admin_queue(ctrl, false);
2156 blk_mq_unquiesce_queue(ctrl->admin_q);
2157
2158 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2159 /* state change failure is ok if we started ctrl delete */
2160 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2161 ctrl->state != NVME_CTRL_DELETING_NOIO);
2162 return;
2163 }
2164
2165 nvme_tcp_reconnect_or_remove(ctrl);
2166 }
2167
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2168 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2169 {
2170 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2171 blk_mq_quiesce_queue(ctrl->admin_q);
2172 if (shutdown)
2173 nvme_shutdown_ctrl(ctrl);
2174 else
2175 nvme_disable_ctrl(ctrl);
2176 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2177 }
2178
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2179 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2180 {
2181 nvme_tcp_teardown_ctrl(ctrl, true);
2182 }
2183
nvme_reset_ctrl_work(struct work_struct * work)2184 static void nvme_reset_ctrl_work(struct work_struct *work)
2185 {
2186 struct nvme_ctrl *ctrl =
2187 container_of(work, struct nvme_ctrl, reset_work);
2188
2189 nvme_stop_ctrl(ctrl);
2190 nvme_tcp_teardown_ctrl(ctrl, false);
2191
2192 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2193 /* state change failure is ok if we started ctrl delete */
2194 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2195 ctrl->state != NVME_CTRL_DELETING_NOIO);
2196 return;
2197 }
2198
2199 if (nvme_tcp_setup_ctrl(ctrl, false))
2200 goto out_fail;
2201
2202 return;
2203
2204 out_fail:
2205 ++ctrl->nr_reconnects;
2206 nvme_tcp_reconnect_or_remove(ctrl);
2207 }
2208
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2209 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2210 {
2211 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2212 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2213 }
2214
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2215 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2216 {
2217 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2218
2219 if (list_empty(&ctrl->list))
2220 goto free_ctrl;
2221
2222 mutex_lock(&nvme_tcp_ctrl_mutex);
2223 list_del(&ctrl->list);
2224 mutex_unlock(&nvme_tcp_ctrl_mutex);
2225
2226 nvmf_free_options(nctrl->opts);
2227 free_ctrl:
2228 kfree(ctrl->queues);
2229 kfree(ctrl);
2230 }
2231
nvme_tcp_set_sg_null(struct nvme_command * c)2232 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2233 {
2234 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2235
2236 sg->addr = 0;
2237 sg->length = 0;
2238 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2239 NVME_SGL_FMT_TRANSPORT_A;
2240 }
2241
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2242 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2243 struct nvme_command *c, u32 data_len)
2244 {
2245 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2246
2247 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2248 sg->length = cpu_to_le32(data_len);
2249 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2250 }
2251
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2252 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2253 u32 data_len)
2254 {
2255 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2256
2257 sg->addr = 0;
2258 sg->length = cpu_to_le32(data_len);
2259 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2260 NVME_SGL_FMT_TRANSPORT_A;
2261 }
2262
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2263 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2264 {
2265 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2266 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2267 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2268 struct nvme_command *cmd = &pdu->cmd;
2269 u8 hdgst = nvme_tcp_hdgst_len(queue);
2270
2271 memset(pdu, 0, sizeof(*pdu));
2272 pdu->hdr.type = nvme_tcp_cmd;
2273 if (queue->hdr_digest)
2274 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2275 pdu->hdr.hlen = sizeof(*pdu);
2276 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2277
2278 cmd->common.opcode = nvme_admin_async_event;
2279 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2280 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2281 nvme_tcp_set_sg_null(cmd);
2282
2283 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2284 ctrl->async_req.offset = 0;
2285 ctrl->async_req.curr_bio = NULL;
2286 ctrl->async_req.data_len = 0;
2287
2288 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2289 }
2290
nvme_tcp_complete_timed_out(struct request * rq)2291 static void nvme_tcp_complete_timed_out(struct request *rq)
2292 {
2293 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2294 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2295
2296 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2297 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2298 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2299 blk_mq_complete_request(rq);
2300 }
2301 }
2302
2303 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2304 nvme_tcp_timeout(struct request *rq, bool reserved)
2305 {
2306 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2307 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2308 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2309
2310 dev_warn(ctrl->device,
2311 "queue %d: timeout request %#x type %d\n",
2312 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2313
2314 if (ctrl->state != NVME_CTRL_LIVE) {
2315 /*
2316 * If we are resetting, connecting or deleting we should
2317 * complete immediately because we may block controller
2318 * teardown or setup sequence
2319 * - ctrl disable/shutdown fabrics requests
2320 * - connect requests
2321 * - initialization admin requests
2322 * - I/O requests that entered after unquiescing and
2323 * the controller stopped responding
2324 *
2325 * All other requests should be cancelled by the error
2326 * recovery work, so it's fine that we fail it here.
2327 */
2328 nvme_tcp_complete_timed_out(rq);
2329 return BLK_EH_DONE;
2330 }
2331
2332 /*
2333 * LIVE state should trigger the normal error recovery which will
2334 * handle completing this request.
2335 */
2336 nvme_tcp_error_recovery(ctrl);
2337 return BLK_EH_RESET_TIMER;
2338 }
2339
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2340 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2341 struct request *rq)
2342 {
2343 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2344 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2345 struct nvme_command *c = &pdu->cmd;
2346
2347 c->common.flags |= NVME_CMD_SGL_METABUF;
2348
2349 if (!blk_rq_nr_phys_segments(rq))
2350 nvme_tcp_set_sg_null(c);
2351 else if (rq_data_dir(rq) == WRITE &&
2352 req->data_len <= nvme_tcp_inline_data_size(queue))
2353 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2354 else
2355 nvme_tcp_set_sg_host_data(c, req->data_len);
2356
2357 return 0;
2358 }
2359
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2360 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2361 struct request *rq)
2362 {
2363 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2364 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2365 struct nvme_tcp_queue *queue = req->queue;
2366 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2367 blk_status_t ret;
2368
2369 ret = nvme_setup_cmd(ns, rq);
2370 if (ret)
2371 return ret;
2372
2373 req->state = NVME_TCP_SEND_CMD_PDU;
2374 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2375 req->offset = 0;
2376 req->data_sent = 0;
2377 req->pdu_len = 0;
2378 req->pdu_sent = 0;
2379 req->data_len = blk_rq_nr_phys_segments(rq) ?
2380 blk_rq_payload_bytes(rq) : 0;
2381 req->curr_bio = rq->bio;
2382 if (req->curr_bio && req->data_len)
2383 nvme_tcp_init_iter(req, rq_data_dir(rq));
2384
2385 if (rq_data_dir(rq) == WRITE &&
2386 req->data_len <= nvme_tcp_inline_data_size(queue))
2387 req->pdu_len = req->data_len;
2388
2389 pdu->hdr.type = nvme_tcp_cmd;
2390 pdu->hdr.flags = 0;
2391 if (queue->hdr_digest)
2392 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2393 if (queue->data_digest && req->pdu_len) {
2394 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2395 ddgst = nvme_tcp_ddgst_len(queue);
2396 }
2397 pdu->hdr.hlen = sizeof(*pdu);
2398 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2399 pdu->hdr.plen =
2400 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2401
2402 ret = nvme_tcp_map_data(queue, rq);
2403 if (unlikely(ret)) {
2404 nvme_cleanup_cmd(rq);
2405 dev_err(queue->ctrl->ctrl.device,
2406 "Failed to map data (%d)\n", ret);
2407 return ret;
2408 }
2409
2410 return 0;
2411 }
2412
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2413 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2414 {
2415 struct nvme_tcp_queue *queue = hctx->driver_data;
2416
2417 if (!llist_empty(&queue->req_list))
2418 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2419 }
2420
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2421 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2422 const struct blk_mq_queue_data *bd)
2423 {
2424 struct nvme_ns *ns = hctx->queue->queuedata;
2425 struct nvme_tcp_queue *queue = hctx->driver_data;
2426 struct request *rq = bd->rq;
2427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2428 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2429 blk_status_t ret;
2430
2431 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2432 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2433
2434 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2435 if (unlikely(ret))
2436 return ret;
2437
2438 blk_mq_start_request(rq);
2439
2440 nvme_tcp_queue_request(req, true, bd->last);
2441
2442 return BLK_STS_OK;
2443 }
2444
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2445 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2446 {
2447 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2448 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2449
2450 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2451 /* separate read/write queues */
2452 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2453 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2454 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2455 set->map[HCTX_TYPE_READ].nr_queues =
2456 ctrl->io_queues[HCTX_TYPE_READ];
2457 set->map[HCTX_TYPE_READ].queue_offset =
2458 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2459 } else {
2460 /* shared read/write queues */
2461 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2462 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2463 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2464 set->map[HCTX_TYPE_READ].nr_queues =
2465 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2466 set->map[HCTX_TYPE_READ].queue_offset = 0;
2467 }
2468 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2469 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2470
2471 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2472 /* map dedicated poll queues only if we have queues left */
2473 set->map[HCTX_TYPE_POLL].nr_queues =
2474 ctrl->io_queues[HCTX_TYPE_POLL];
2475 set->map[HCTX_TYPE_POLL].queue_offset =
2476 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2477 ctrl->io_queues[HCTX_TYPE_READ];
2478 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2479 }
2480
2481 dev_info(ctrl->ctrl.device,
2482 "mapped %d/%d/%d default/read/poll queues.\n",
2483 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2484 ctrl->io_queues[HCTX_TYPE_READ],
2485 ctrl->io_queues[HCTX_TYPE_POLL]);
2486
2487 return 0;
2488 }
2489
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2490 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2491 {
2492 struct nvme_tcp_queue *queue = hctx->driver_data;
2493 struct sock *sk = queue->sock->sk;
2494
2495 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2496 return 0;
2497
2498 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2499 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2500 sk_busy_loop(sk, true);
2501 nvme_tcp_try_recv(queue);
2502 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2503 return queue->nr_cqe;
2504 }
2505
2506 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2507 .queue_rq = nvme_tcp_queue_rq,
2508 .commit_rqs = nvme_tcp_commit_rqs,
2509 .complete = nvme_complete_rq,
2510 .init_request = nvme_tcp_init_request,
2511 .exit_request = nvme_tcp_exit_request,
2512 .init_hctx = nvme_tcp_init_hctx,
2513 .timeout = nvme_tcp_timeout,
2514 .map_queues = nvme_tcp_map_queues,
2515 .poll = nvme_tcp_poll,
2516 };
2517
2518 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2519 .queue_rq = nvme_tcp_queue_rq,
2520 .complete = nvme_complete_rq,
2521 .init_request = nvme_tcp_init_request,
2522 .exit_request = nvme_tcp_exit_request,
2523 .init_hctx = nvme_tcp_init_admin_hctx,
2524 .timeout = nvme_tcp_timeout,
2525 };
2526
2527 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2528 .name = "tcp",
2529 .module = THIS_MODULE,
2530 .flags = NVME_F_FABRICS,
2531 .reg_read32 = nvmf_reg_read32,
2532 .reg_read64 = nvmf_reg_read64,
2533 .reg_write32 = nvmf_reg_write32,
2534 .free_ctrl = nvme_tcp_free_ctrl,
2535 .submit_async_event = nvme_tcp_submit_async_event,
2536 .delete_ctrl = nvme_tcp_delete_ctrl,
2537 .get_address = nvmf_get_address,
2538 .stop_ctrl = nvme_tcp_stop_ctrl,
2539 };
2540
2541 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2542 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2543 {
2544 struct nvme_tcp_ctrl *ctrl;
2545 bool found = false;
2546
2547 mutex_lock(&nvme_tcp_ctrl_mutex);
2548 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2549 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2550 if (found)
2551 break;
2552 }
2553 mutex_unlock(&nvme_tcp_ctrl_mutex);
2554
2555 return found;
2556 }
2557
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2558 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2559 struct nvmf_ctrl_options *opts)
2560 {
2561 struct nvme_tcp_ctrl *ctrl;
2562 int ret;
2563
2564 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2565 if (!ctrl)
2566 return ERR_PTR(-ENOMEM);
2567
2568 INIT_LIST_HEAD(&ctrl->list);
2569 ctrl->ctrl.opts = opts;
2570 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2571 opts->nr_poll_queues + 1;
2572 ctrl->ctrl.sqsize = opts->queue_size - 1;
2573 ctrl->ctrl.kato = opts->kato;
2574
2575 INIT_DELAYED_WORK(&ctrl->connect_work,
2576 nvme_tcp_reconnect_ctrl_work);
2577 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2578 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2579
2580 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2581 opts->trsvcid =
2582 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2583 if (!opts->trsvcid) {
2584 ret = -ENOMEM;
2585 goto out_free_ctrl;
2586 }
2587 opts->mask |= NVMF_OPT_TRSVCID;
2588 }
2589
2590 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2591 opts->traddr, opts->trsvcid, &ctrl->addr);
2592 if (ret) {
2593 pr_err("malformed address passed: %s:%s\n",
2594 opts->traddr, opts->trsvcid);
2595 goto out_free_ctrl;
2596 }
2597
2598 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2599 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2600 opts->host_traddr, NULL, &ctrl->src_addr);
2601 if (ret) {
2602 pr_err("malformed src address passed: %s\n",
2603 opts->host_traddr);
2604 goto out_free_ctrl;
2605 }
2606 }
2607
2608 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2609 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2610 pr_err("invalid interface passed: %s\n",
2611 opts->host_iface);
2612 ret = -ENODEV;
2613 goto out_free_ctrl;
2614 }
2615 }
2616
2617 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2618 ret = -EALREADY;
2619 goto out_free_ctrl;
2620 }
2621
2622 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2623 GFP_KERNEL);
2624 if (!ctrl->queues) {
2625 ret = -ENOMEM;
2626 goto out_free_ctrl;
2627 }
2628
2629 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2630 if (ret)
2631 goto out_kfree_queues;
2632
2633 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2634 WARN_ON_ONCE(1);
2635 ret = -EINTR;
2636 goto out_uninit_ctrl;
2637 }
2638
2639 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2640 if (ret)
2641 goto out_uninit_ctrl;
2642
2643 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2644 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2645
2646 mutex_lock(&nvme_tcp_ctrl_mutex);
2647 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2648 mutex_unlock(&nvme_tcp_ctrl_mutex);
2649
2650 return &ctrl->ctrl;
2651
2652 out_uninit_ctrl:
2653 nvme_uninit_ctrl(&ctrl->ctrl);
2654 nvme_put_ctrl(&ctrl->ctrl);
2655 if (ret > 0)
2656 ret = -EIO;
2657 return ERR_PTR(ret);
2658 out_kfree_queues:
2659 kfree(ctrl->queues);
2660 out_free_ctrl:
2661 kfree(ctrl);
2662 return ERR_PTR(ret);
2663 }
2664
2665 static struct nvmf_transport_ops nvme_tcp_transport = {
2666 .name = "tcp",
2667 .module = THIS_MODULE,
2668 .required_opts = NVMF_OPT_TRADDR,
2669 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2670 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2671 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2672 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2673 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2674 .create_ctrl = nvme_tcp_create_ctrl,
2675 };
2676
nvme_tcp_init_module(void)2677 static int __init nvme_tcp_init_module(void)
2678 {
2679 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2680 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2681 if (!nvme_tcp_wq)
2682 return -ENOMEM;
2683
2684 nvmf_register_transport(&nvme_tcp_transport);
2685 return 0;
2686 }
2687
nvme_tcp_cleanup_module(void)2688 static void __exit nvme_tcp_cleanup_module(void)
2689 {
2690 struct nvme_tcp_ctrl *ctrl;
2691
2692 nvmf_unregister_transport(&nvme_tcp_transport);
2693
2694 mutex_lock(&nvme_tcp_ctrl_mutex);
2695 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2696 nvme_delete_ctrl(&ctrl->ctrl);
2697 mutex_unlock(&nvme_tcp_ctrl_mutex);
2698 flush_workqueue(nvme_delete_wq);
2699
2700 destroy_workqueue(nvme_tcp_wq);
2701 }
2702
2703 module_init(nvme_tcp_init_module);
2704 module_exit(nvme_tcp_cleanup_module);
2705
2706 MODULE_LICENSE("GPL v2");
2707