1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ppc64 code to implement the kexec_file_load syscall
4 *
5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
6 * Copyright (C) 2004 IBM Corp.
7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
10 * Copyright (C) 2020 IBM Corporation
11 *
12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13 * Heavily modified for the kernel by
14 * Hari Bathini, IBM Corporation.
15 */
16
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of_device.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/setup.h>
25 #include <asm/drmem.h>
26 #include <asm/kexec_ranges.h>
27 #include <asm/crashdump-ppc64.h>
28
29 struct umem_info {
30 u64 *buf; /* data buffer for usable-memory property */
31 u32 size; /* size allocated for the data buffer */
32 u32 max_entries; /* maximum no. of entries */
33 u32 idx; /* index of current entry */
34
35 /* usable memory ranges to look up */
36 unsigned int nr_ranges;
37 const struct crash_mem_range *ranges;
38 };
39
40 const struct kexec_file_ops * const kexec_file_loaders[] = {
41 &kexec_elf64_ops,
42 NULL
43 };
44
45 /**
46 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
47 * regions like opal/rtas, tce-table, initrd,
48 * kernel, htab which should be avoided while
49 * setting up kexec load segments.
50 * @mem_ranges: Range list to add the memory ranges to.
51 *
52 * Returns 0 on success, negative errno on error.
53 */
get_exclude_memory_ranges(struct crash_mem ** mem_ranges)54 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
55 {
56 int ret;
57
58 ret = add_tce_mem_ranges(mem_ranges);
59 if (ret)
60 goto out;
61
62 ret = add_initrd_mem_range(mem_ranges);
63 if (ret)
64 goto out;
65
66 ret = add_htab_mem_range(mem_ranges);
67 if (ret)
68 goto out;
69
70 ret = add_kernel_mem_range(mem_ranges);
71 if (ret)
72 goto out;
73
74 ret = add_rtas_mem_range(mem_ranges);
75 if (ret)
76 goto out;
77
78 ret = add_opal_mem_range(mem_ranges);
79 if (ret)
80 goto out;
81
82 ret = add_reserved_mem_ranges(mem_ranges);
83 if (ret)
84 goto out;
85
86 /* exclude memory ranges should be sorted for easy lookup */
87 sort_memory_ranges(*mem_ranges, true);
88 out:
89 if (ret)
90 pr_err("Failed to setup exclude memory ranges\n");
91 return ret;
92 }
93
94 /**
95 * get_usable_memory_ranges - Get usable memory ranges. This list includes
96 * regions like crashkernel, opal/rtas & tce-table,
97 * that kdump kernel could use.
98 * @mem_ranges: Range list to add the memory ranges to.
99 *
100 * Returns 0 on success, negative errno on error.
101 */
get_usable_memory_ranges(struct crash_mem ** mem_ranges)102 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
103 {
104 int ret;
105
106 /*
107 * Early boot failure observed on guests when low memory (first memory
108 * block?) is not added to usable memory. So, add [0, crashk_res.end]
109 * instead of [crashk_res.start, crashk_res.end] to workaround it.
110 * Also, crashed kernel's memory must be added to reserve map to
111 * avoid kdump kernel from using it.
112 */
113 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
114 if (ret)
115 goto out;
116
117 ret = add_rtas_mem_range(mem_ranges);
118 if (ret)
119 goto out;
120
121 ret = add_opal_mem_range(mem_ranges);
122 if (ret)
123 goto out;
124
125 ret = add_tce_mem_ranges(mem_ranges);
126 out:
127 if (ret)
128 pr_err("Failed to setup usable memory ranges\n");
129 return ret;
130 }
131
132 /**
133 * get_crash_memory_ranges - Get crash memory ranges. This list includes
134 * first/crashing kernel's memory regions that
135 * would be exported via an elfcore.
136 * @mem_ranges: Range list to add the memory ranges to.
137 *
138 * Returns 0 on success, negative errno on error.
139 */
get_crash_memory_ranges(struct crash_mem ** mem_ranges)140 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
141 {
142 phys_addr_t base, end;
143 struct crash_mem *tmem;
144 u64 i;
145 int ret;
146
147 for_each_mem_range(i, &base, &end) {
148 u64 size = end - base;
149
150 /* Skip backup memory region, which needs a separate entry */
151 if (base == BACKUP_SRC_START) {
152 if (size > BACKUP_SRC_SIZE) {
153 base = BACKUP_SRC_END + 1;
154 size -= BACKUP_SRC_SIZE;
155 } else
156 continue;
157 }
158
159 ret = add_mem_range(mem_ranges, base, size);
160 if (ret)
161 goto out;
162
163 /* Try merging adjacent ranges before reallocation attempt */
164 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
165 sort_memory_ranges(*mem_ranges, true);
166 }
167
168 /* Reallocate memory ranges if there is no space to split ranges */
169 tmem = *mem_ranges;
170 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
171 tmem = realloc_mem_ranges(mem_ranges);
172 if (!tmem)
173 goto out;
174 }
175
176 /* Exclude crashkernel region */
177 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
178 if (ret)
179 goto out;
180
181 /*
182 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
183 * regions are exported to save their context at the time of
184 * crash, they should actually be backed up just like the
185 * first 64K bytes of memory.
186 */
187 ret = add_rtas_mem_range(mem_ranges);
188 if (ret)
189 goto out;
190
191 ret = add_opal_mem_range(mem_ranges);
192 if (ret)
193 goto out;
194
195 /* create a separate program header for the backup region */
196 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
197 if (ret)
198 goto out;
199
200 sort_memory_ranges(*mem_ranges, false);
201 out:
202 if (ret)
203 pr_err("Failed to setup crash memory ranges\n");
204 return ret;
205 }
206
207 /**
208 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
209 * memory regions that should be added to the
210 * memory reserve map to ensure the region is
211 * protected from any mischief.
212 * @mem_ranges: Range list to add the memory ranges to.
213 *
214 * Returns 0 on success, negative errno on error.
215 */
get_reserved_memory_ranges(struct crash_mem ** mem_ranges)216 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
217 {
218 int ret;
219
220 ret = add_rtas_mem_range(mem_ranges);
221 if (ret)
222 goto out;
223
224 ret = add_tce_mem_ranges(mem_ranges);
225 if (ret)
226 goto out;
227
228 ret = add_reserved_mem_ranges(mem_ranges);
229 out:
230 if (ret)
231 pr_err("Failed to setup reserved memory ranges\n");
232 return ret;
233 }
234
235 /**
236 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
237 * in the memory regions between buf_min & buf_max
238 * for the buffer. If found, sets kbuf->mem.
239 * @kbuf: Buffer contents and memory parameters.
240 * @buf_min: Minimum address for the buffer.
241 * @buf_max: Maximum address for the buffer.
242 *
243 * Returns 0 on success, negative errno on error.
244 */
__locate_mem_hole_top_down(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)245 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
246 u64 buf_min, u64 buf_max)
247 {
248 int ret = -EADDRNOTAVAIL;
249 phys_addr_t start, end;
250 u64 i;
251
252 for_each_mem_range_rev(i, &start, &end) {
253 /*
254 * memblock uses [start, end) convention while it is
255 * [start, end] here. Fix the off-by-one to have the
256 * same convention.
257 */
258 end -= 1;
259
260 if (start > buf_max)
261 continue;
262
263 /* Memory hole not found */
264 if (end < buf_min)
265 break;
266
267 /* Adjust memory region based on the given range */
268 if (start < buf_min)
269 start = buf_min;
270 if (end > buf_max)
271 end = buf_max;
272
273 start = ALIGN(start, kbuf->buf_align);
274 if (start < end && (end - start + 1) >= kbuf->memsz) {
275 /* Suitable memory range found. Set kbuf->mem */
276 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
277 kbuf->buf_align);
278 ret = 0;
279 break;
280 }
281 }
282
283 return ret;
284 }
285
286 /**
287 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
288 * suitable buffer with top down approach.
289 * @kbuf: Buffer contents and memory parameters.
290 * @buf_min: Minimum address for the buffer.
291 * @buf_max: Maximum address for the buffer.
292 * @emem: Exclude memory ranges.
293 *
294 * Returns 0 on success, negative errno on error.
295 */
locate_mem_hole_top_down_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)296 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
297 u64 buf_min, u64 buf_max,
298 const struct crash_mem *emem)
299 {
300 int i, ret = 0, err = -EADDRNOTAVAIL;
301 u64 start, end, tmin, tmax;
302
303 tmax = buf_max;
304 for (i = (emem->nr_ranges - 1); i >= 0; i--) {
305 start = emem->ranges[i].start;
306 end = emem->ranges[i].end;
307
308 if (start > tmax)
309 continue;
310
311 if (end < tmax) {
312 tmin = (end < buf_min ? buf_min : end + 1);
313 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
314 if (!ret)
315 return 0;
316 }
317
318 tmax = start - 1;
319
320 if (tmax < buf_min) {
321 ret = err;
322 break;
323 }
324 ret = 0;
325 }
326
327 if (!ret) {
328 tmin = buf_min;
329 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
330 }
331 return ret;
332 }
333
334 /**
335 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
336 * in the memory regions between buf_min & buf_max
337 * for the buffer. If found, sets kbuf->mem.
338 * @kbuf: Buffer contents and memory parameters.
339 * @buf_min: Minimum address for the buffer.
340 * @buf_max: Maximum address for the buffer.
341 *
342 * Returns 0 on success, negative errno on error.
343 */
__locate_mem_hole_bottom_up(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)344 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
345 u64 buf_min, u64 buf_max)
346 {
347 int ret = -EADDRNOTAVAIL;
348 phys_addr_t start, end;
349 u64 i;
350
351 for_each_mem_range(i, &start, &end) {
352 /*
353 * memblock uses [start, end) convention while it is
354 * [start, end] here. Fix the off-by-one to have the
355 * same convention.
356 */
357 end -= 1;
358
359 if (end < buf_min)
360 continue;
361
362 /* Memory hole not found */
363 if (start > buf_max)
364 break;
365
366 /* Adjust memory region based on the given range */
367 if (start < buf_min)
368 start = buf_min;
369 if (end > buf_max)
370 end = buf_max;
371
372 start = ALIGN(start, kbuf->buf_align);
373 if (start < end && (end - start + 1) >= kbuf->memsz) {
374 /* Suitable memory range found. Set kbuf->mem */
375 kbuf->mem = start;
376 ret = 0;
377 break;
378 }
379 }
380
381 return ret;
382 }
383
384 /**
385 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
386 * suitable buffer with bottom up approach.
387 * @kbuf: Buffer contents and memory parameters.
388 * @buf_min: Minimum address for the buffer.
389 * @buf_max: Maximum address for the buffer.
390 * @emem: Exclude memory ranges.
391 *
392 * Returns 0 on success, negative errno on error.
393 */
locate_mem_hole_bottom_up_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)394 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
395 u64 buf_min, u64 buf_max,
396 const struct crash_mem *emem)
397 {
398 int i, ret = 0, err = -EADDRNOTAVAIL;
399 u64 start, end, tmin, tmax;
400
401 tmin = buf_min;
402 for (i = 0; i < emem->nr_ranges; i++) {
403 start = emem->ranges[i].start;
404 end = emem->ranges[i].end;
405
406 if (end < tmin)
407 continue;
408
409 if (start > tmin) {
410 tmax = (start > buf_max ? buf_max : start - 1);
411 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
412 if (!ret)
413 return 0;
414 }
415
416 tmin = end + 1;
417
418 if (tmin > buf_max) {
419 ret = err;
420 break;
421 }
422 ret = 0;
423 }
424
425 if (!ret) {
426 tmax = buf_max;
427 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
428 }
429 return ret;
430 }
431
432 /**
433 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
434 * @um_info: Usable memory buffer and ranges info.
435 * @cnt: No. of entries to accommodate.
436 *
437 * Frees up the old buffer if memory reallocation fails.
438 *
439 * Returns buffer on success, NULL on error.
440 */
check_realloc_usable_mem(struct umem_info * um_info,int cnt)441 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
442 {
443 u32 new_size;
444 u64 *tbuf;
445
446 if ((um_info->idx + cnt) <= um_info->max_entries)
447 return um_info->buf;
448
449 new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
450 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
451 if (tbuf) {
452 um_info->buf = tbuf;
453 um_info->size = new_size;
454 um_info->max_entries = (um_info->size / sizeof(u64));
455 }
456
457 return tbuf;
458 }
459
460 /**
461 * add_usable_mem - Add the usable memory ranges within the given memory range
462 * to the buffer
463 * @um_info: Usable memory buffer and ranges info.
464 * @base: Base address of memory range to look for.
465 * @end: End address of memory range to look for.
466 *
467 * Returns 0 on success, negative errno on error.
468 */
add_usable_mem(struct umem_info * um_info,u64 base,u64 end)469 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
470 {
471 u64 loc_base, loc_end;
472 bool add;
473 int i;
474
475 for (i = 0; i < um_info->nr_ranges; i++) {
476 add = false;
477 loc_base = um_info->ranges[i].start;
478 loc_end = um_info->ranges[i].end;
479 if (loc_base >= base && loc_end <= end)
480 add = true;
481 else if (base < loc_end && end > loc_base) {
482 if (loc_base < base)
483 loc_base = base;
484 if (loc_end > end)
485 loc_end = end;
486 add = true;
487 }
488
489 if (add) {
490 if (!check_realloc_usable_mem(um_info, 2))
491 return -ENOMEM;
492
493 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
494 um_info->buf[um_info->idx++] =
495 cpu_to_be64(loc_end - loc_base + 1);
496 }
497 }
498
499 return 0;
500 }
501
502 /**
503 * kdump_setup_usable_lmb - This is a callback function that gets called by
504 * walk_drmem_lmbs for every LMB to set its
505 * usable memory ranges.
506 * @lmb: LMB info.
507 * @usm: linux,drconf-usable-memory property value.
508 * @data: Pointer to usable memory buffer and ranges info.
509 *
510 * Returns 0 on success, negative errno on error.
511 */
kdump_setup_usable_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)512 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
513 void *data)
514 {
515 struct umem_info *um_info;
516 int tmp_idx, ret;
517 u64 base, end;
518
519 /*
520 * kdump load isn't supported on kernels already booted with
521 * linux,drconf-usable-memory property.
522 */
523 if (*usm) {
524 pr_err("linux,drconf-usable-memory property already exists!");
525 return -EINVAL;
526 }
527
528 um_info = data;
529 tmp_idx = um_info->idx;
530 if (!check_realloc_usable_mem(um_info, 1))
531 return -ENOMEM;
532
533 um_info->idx++;
534 base = lmb->base_addr;
535 end = base + drmem_lmb_size() - 1;
536 ret = add_usable_mem(um_info, base, end);
537 if (!ret) {
538 /*
539 * Update the no. of ranges added. Two entries (base & size)
540 * for every range added.
541 */
542 um_info->buf[tmp_idx] =
543 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
544 }
545
546 return ret;
547 }
548
549 #define NODE_PATH_LEN 256
550 /**
551 * add_usable_mem_property - Add usable memory property for the given
552 * memory node.
553 * @fdt: Flattened device tree for the kdump kernel.
554 * @dn: Memory node.
555 * @um_info: Usable memory buffer and ranges info.
556 *
557 * Returns 0 on success, negative errno on error.
558 */
add_usable_mem_property(void * fdt,struct device_node * dn,struct umem_info * um_info)559 static int add_usable_mem_property(void *fdt, struct device_node *dn,
560 struct umem_info *um_info)
561 {
562 int n_mem_addr_cells, n_mem_size_cells, node;
563 char path[NODE_PATH_LEN];
564 int i, len, ranges, ret;
565 const __be32 *prop;
566 u64 base, end;
567
568 of_node_get(dn);
569
570 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
571 pr_err("Buffer (%d) too small for memory node: %pOF\n",
572 NODE_PATH_LEN, dn);
573 return -EOVERFLOW;
574 }
575 pr_debug("Memory node path: %s\n", path);
576
577 /* Now that we know the path, find its offset in kdump kernel's fdt */
578 node = fdt_path_offset(fdt, path);
579 if (node < 0) {
580 pr_err("Malformed device tree: error reading %s\n", path);
581 ret = -EINVAL;
582 goto out;
583 }
584
585 /* Get the address & size cells */
586 n_mem_addr_cells = of_n_addr_cells(dn);
587 n_mem_size_cells = of_n_size_cells(dn);
588 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
589 n_mem_size_cells);
590
591 um_info->idx = 0;
592 if (!check_realloc_usable_mem(um_info, 2)) {
593 ret = -ENOMEM;
594 goto out;
595 }
596
597 prop = of_get_property(dn, "reg", &len);
598 if (!prop || len <= 0) {
599 ret = 0;
600 goto out;
601 }
602
603 /*
604 * "reg" property represents sequence of (addr,size) tuples
605 * each representing a memory range.
606 */
607 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
608
609 for (i = 0; i < ranges; i++) {
610 base = of_read_number(prop, n_mem_addr_cells);
611 prop += n_mem_addr_cells;
612 end = base + of_read_number(prop, n_mem_size_cells) - 1;
613 prop += n_mem_size_cells;
614
615 ret = add_usable_mem(um_info, base, end);
616 if (ret)
617 goto out;
618 }
619
620 /*
621 * No kdump kernel usable memory found in this memory node.
622 * Write (0,0) tuple in linux,usable-memory property for
623 * this region to be ignored.
624 */
625 if (um_info->idx == 0) {
626 um_info->buf[0] = 0;
627 um_info->buf[1] = 0;
628 um_info->idx = 2;
629 }
630
631 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
632 (um_info->idx * sizeof(u64)));
633
634 out:
635 of_node_put(dn);
636 return ret;
637 }
638
639
640 /**
641 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
642 * and linux,drconf-usable-memory DT properties as
643 * appropriate to restrict its memory usage.
644 * @fdt: Flattened device tree for the kdump kernel.
645 * @usable_mem: Usable memory ranges for kdump kernel.
646 *
647 * Returns 0 on success, negative errno on error.
648 */
update_usable_mem_fdt(void * fdt,struct crash_mem * usable_mem)649 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
650 {
651 struct umem_info um_info;
652 struct device_node *dn;
653 int node, ret = 0;
654
655 if (!usable_mem) {
656 pr_err("Usable memory ranges for kdump kernel not found\n");
657 return -ENOENT;
658 }
659
660 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
661 if (node == -FDT_ERR_NOTFOUND)
662 pr_debug("No dynamic reconfiguration memory found\n");
663 else if (node < 0) {
664 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
665 return -EINVAL;
666 }
667
668 um_info.buf = NULL;
669 um_info.size = 0;
670 um_info.max_entries = 0;
671 um_info.idx = 0;
672 /* Memory ranges to look up */
673 um_info.ranges = &(usable_mem->ranges[0]);
674 um_info.nr_ranges = usable_mem->nr_ranges;
675
676 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
677 if (dn) {
678 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
679 of_node_put(dn);
680
681 if (ret) {
682 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
683 goto out;
684 }
685
686 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
687 um_info.buf, (um_info.idx * sizeof(u64)));
688 if (ret) {
689 pr_err("Failed to update fdt with linux,drconf-usable-memory property");
690 goto out;
691 }
692 }
693
694 /*
695 * Walk through each memory node and set linux,usable-memory property
696 * for the corresponding node in kdump kernel's fdt.
697 */
698 for_each_node_by_type(dn, "memory") {
699 ret = add_usable_mem_property(fdt, dn, &um_info);
700 if (ret) {
701 pr_err("Failed to set linux,usable-memory property for %s node",
702 dn->full_name);
703 goto out;
704 }
705 }
706
707 out:
708 kfree(um_info.buf);
709 return ret;
710 }
711
712 /**
713 * load_backup_segment - Locate a memory hole to place the backup region.
714 * @image: Kexec image.
715 * @kbuf: Buffer contents and memory parameters.
716 *
717 * Returns 0 on success, negative errno on error.
718 */
load_backup_segment(struct kimage * image,struct kexec_buf * kbuf)719 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
720 {
721 void *buf;
722 int ret;
723
724 /*
725 * Setup a source buffer for backup segment.
726 *
727 * A source buffer has no meaning for backup region as data will
728 * be copied from backup source, after crash, in the purgatory.
729 * But as load segment code doesn't recognize such segments,
730 * setup a dummy source buffer to keep it happy for now.
731 */
732 buf = vzalloc(BACKUP_SRC_SIZE);
733 if (!buf)
734 return -ENOMEM;
735
736 kbuf->buffer = buf;
737 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
738 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
739 kbuf->top_down = false;
740
741 ret = kexec_add_buffer(kbuf);
742 if (ret) {
743 vfree(buf);
744 return ret;
745 }
746
747 image->arch.backup_buf = buf;
748 image->arch.backup_start = kbuf->mem;
749 return 0;
750 }
751
752 /**
753 * update_backup_region_phdr - Update backup region's offset for the core to
754 * export the region appropriately.
755 * @image: Kexec image.
756 * @ehdr: ELF core header.
757 *
758 * Assumes an exclusive program header is setup for the backup region
759 * in the ELF headers
760 *
761 * Returns nothing.
762 */
update_backup_region_phdr(struct kimage * image,Elf64_Ehdr * ehdr)763 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
764 {
765 Elf64_Phdr *phdr;
766 unsigned int i;
767
768 phdr = (Elf64_Phdr *)(ehdr + 1);
769 for (i = 0; i < ehdr->e_phnum; i++) {
770 if (phdr->p_paddr == BACKUP_SRC_START) {
771 phdr->p_offset = image->arch.backup_start;
772 pr_debug("Backup region offset updated to 0x%lx\n",
773 image->arch.backup_start);
774 return;
775 }
776 }
777 }
778
779 /**
780 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
781 * segment needed to load kdump kernel.
782 * @image: Kexec image.
783 * @kbuf: Buffer contents and memory parameters.
784 *
785 * Returns 0 on success, negative errno on error.
786 */
load_elfcorehdr_segment(struct kimage * image,struct kexec_buf * kbuf)787 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
788 {
789 struct crash_mem *cmem = NULL;
790 unsigned long headers_sz;
791 void *headers = NULL;
792 int ret;
793
794 ret = get_crash_memory_ranges(&cmem);
795 if (ret)
796 goto out;
797
798 /* Setup elfcorehdr segment */
799 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
800 if (ret) {
801 pr_err("Failed to prepare elf headers for the core\n");
802 goto out;
803 }
804
805 /* Fix the offset for backup region in the ELF header */
806 update_backup_region_phdr(image, headers);
807
808 kbuf->buffer = headers;
809 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
810 kbuf->bufsz = kbuf->memsz = headers_sz;
811 kbuf->top_down = false;
812
813 ret = kexec_add_buffer(kbuf);
814 if (ret) {
815 vfree(headers);
816 goto out;
817 }
818
819 image->elf_load_addr = kbuf->mem;
820 image->elf_headers_sz = headers_sz;
821 image->elf_headers = headers;
822 out:
823 kfree(cmem);
824 return ret;
825 }
826
827 /**
828 * load_crashdump_segments_ppc64 - Initialize the additional segements needed
829 * to load kdump kernel.
830 * @image: Kexec image.
831 * @kbuf: Buffer contents and memory parameters.
832 *
833 * Returns 0 on success, negative errno on error.
834 */
load_crashdump_segments_ppc64(struct kimage * image,struct kexec_buf * kbuf)835 int load_crashdump_segments_ppc64(struct kimage *image,
836 struct kexec_buf *kbuf)
837 {
838 int ret;
839
840 /* Load backup segment - first 64K bytes of the crashing kernel */
841 ret = load_backup_segment(image, kbuf);
842 if (ret) {
843 pr_err("Failed to load backup segment\n");
844 return ret;
845 }
846 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
847
848 /* Load elfcorehdr segment - to export crashing kernel's vmcore */
849 ret = load_elfcorehdr_segment(image, kbuf);
850 if (ret) {
851 pr_err("Failed to load elfcorehdr segment\n");
852 return ret;
853 }
854 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
855 image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
856
857 return 0;
858 }
859
860 /**
861 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
862 * variables and call setup_purgatory() to initialize
863 * common global variable.
864 * @image: kexec image.
865 * @slave_code: Slave code for the purgatory.
866 * @fdt: Flattened device tree for the next kernel.
867 * @kernel_load_addr: Address where the kernel is loaded.
868 * @fdt_load_addr: Address where the flattened device tree is loaded.
869 *
870 * Returns 0 on success, negative errno on error.
871 */
setup_purgatory_ppc64(struct kimage * image,const void * slave_code,const void * fdt,unsigned long kernel_load_addr,unsigned long fdt_load_addr)872 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
873 const void *fdt, unsigned long kernel_load_addr,
874 unsigned long fdt_load_addr)
875 {
876 struct device_node *dn = NULL;
877 int ret;
878
879 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
880 fdt_load_addr);
881 if (ret)
882 goto out;
883
884 if (image->type == KEXEC_TYPE_CRASH) {
885 u32 my_run_at_load = 1;
886
887 /*
888 * Tell relocatable kernel to run at load address
889 * via the word meant for that at 0x5c.
890 */
891 ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
892 &my_run_at_load,
893 sizeof(my_run_at_load),
894 false);
895 if (ret)
896 goto out;
897 }
898
899 /* Tell purgatory where to look for backup region */
900 ret = kexec_purgatory_get_set_symbol(image, "backup_start",
901 &image->arch.backup_start,
902 sizeof(image->arch.backup_start),
903 false);
904 if (ret)
905 goto out;
906
907 /* Setup OPAL base & entry values */
908 dn = of_find_node_by_path("/ibm,opal");
909 if (dn) {
910 u64 val;
911
912 of_property_read_u64(dn, "opal-base-address", &val);
913 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
914 sizeof(val), false);
915 if (ret)
916 goto out;
917
918 of_property_read_u64(dn, "opal-entry-address", &val);
919 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
920 sizeof(val), false);
921 }
922 out:
923 if (ret)
924 pr_err("Failed to setup purgatory symbols");
925 of_node_put(dn);
926 return ret;
927 }
928
929 /**
930 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
931 * setup FDT for kexec/kdump kernel.
932 * @image: kexec image being loaded.
933 *
934 * Returns the estimated extra size needed for kexec/kdump kernel FDT.
935 */
kexec_extra_fdt_size_ppc64(struct kimage * image)936 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
937 {
938 u64 usm_entries;
939
940 if (image->type != KEXEC_TYPE_CRASH)
941 return 0;
942
943 /*
944 * For kdump kernel, account for linux,usable-memory and
945 * linux,drconf-usable-memory properties. Get an approximate on the
946 * number of usable memory entries and use for FDT size estimation.
947 */
948 usm_entries = ((memblock_end_of_DRAM() / drmem_lmb_size()) +
949 (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
950 return (unsigned int)(usm_entries * sizeof(u64));
951 }
952
953 /**
954 * add_node_props - Reads node properties from device node structure and add
955 * them to fdt.
956 * @fdt: Flattened device tree of the kernel
957 * @node_offset: offset of the node to add a property at
958 * @dn: device node pointer
959 *
960 * Returns 0 on success, negative errno on error.
961 */
add_node_props(void * fdt,int node_offset,const struct device_node * dn)962 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
963 {
964 int ret = 0;
965 struct property *pp;
966
967 if (!dn)
968 return -EINVAL;
969
970 for_each_property_of_node(dn, pp) {
971 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
972 if (ret < 0) {
973 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
974 return ret;
975 }
976 }
977 return ret;
978 }
979
980 /**
981 * update_cpus_node - Update cpus node of flattened device tree using of_root
982 * device node.
983 * @fdt: Flattened device tree of the kernel.
984 *
985 * Returns 0 on success, negative errno on error.
986 */
update_cpus_node(void * fdt)987 static int update_cpus_node(void *fdt)
988 {
989 struct device_node *cpus_node, *dn;
990 int cpus_offset, cpus_subnode_offset, ret = 0;
991
992 cpus_offset = fdt_path_offset(fdt, "/cpus");
993 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
994 pr_err("Malformed device tree: error reading /cpus node: %s\n",
995 fdt_strerror(cpus_offset));
996 return cpus_offset;
997 }
998
999 if (cpus_offset > 0) {
1000 ret = fdt_del_node(fdt, cpus_offset);
1001 if (ret < 0) {
1002 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
1003 return -EINVAL;
1004 }
1005 }
1006
1007 /* Add cpus node to fdt */
1008 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
1009 if (cpus_offset < 0) {
1010 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
1011 return -EINVAL;
1012 }
1013
1014 /* Add cpus node properties */
1015 cpus_node = of_find_node_by_path("/cpus");
1016 ret = add_node_props(fdt, cpus_offset, cpus_node);
1017 of_node_put(cpus_node);
1018 if (ret < 0)
1019 return ret;
1020
1021 /* Loop through all subnodes of cpus and add them to fdt */
1022 for_each_node_by_type(dn, "cpu") {
1023 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
1024 if (cpus_subnode_offset < 0) {
1025 pr_err("Unable to add %s subnode: %s\n", dn->full_name,
1026 fdt_strerror(cpus_subnode_offset));
1027 ret = cpus_subnode_offset;
1028 goto out;
1029 }
1030
1031 ret = add_node_props(fdt, cpus_subnode_offset, dn);
1032 if (ret < 0)
1033 goto out;
1034 }
1035 out:
1036 of_node_put(dn);
1037 return ret;
1038 }
1039
1040 /**
1041 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
1042 * being loaded.
1043 * @image: kexec image being loaded.
1044 * @fdt: Flattened device tree for the next kernel.
1045 * @initrd_load_addr: Address where the next initrd will be loaded.
1046 * @initrd_len: Size of the next initrd, or 0 if there will be none.
1047 * @cmdline: Command line for the next kernel, or NULL if there will
1048 * be none.
1049 *
1050 * Returns 0 on success, negative errno on error.
1051 */
setup_new_fdt_ppc64(const struct kimage * image,void * fdt,unsigned long initrd_load_addr,unsigned long initrd_len,const char * cmdline)1052 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
1053 unsigned long initrd_load_addr,
1054 unsigned long initrd_len, const char *cmdline)
1055 {
1056 struct crash_mem *umem = NULL, *rmem = NULL;
1057 int i, nr_ranges, ret;
1058
1059 /*
1060 * Restrict memory usage for kdump kernel by setting up
1061 * usable memory ranges and memory reserve map.
1062 */
1063 if (image->type == KEXEC_TYPE_CRASH) {
1064 ret = get_usable_memory_ranges(&umem);
1065 if (ret)
1066 goto out;
1067
1068 ret = update_usable_mem_fdt(fdt, umem);
1069 if (ret) {
1070 pr_err("Error setting up usable-memory property for kdump kernel\n");
1071 goto out;
1072 }
1073
1074 /*
1075 * Ensure we don't touch crashed kernel's memory except the
1076 * first 64K of RAM, which will be backed up.
1077 */
1078 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
1079 crashk_res.start - BACKUP_SRC_SIZE);
1080 if (ret) {
1081 pr_err("Error reserving crash memory: %s\n",
1082 fdt_strerror(ret));
1083 goto out;
1084 }
1085
1086 /* Ensure backup region is not used by kdump/capture kernel */
1087 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
1088 BACKUP_SRC_SIZE);
1089 if (ret) {
1090 pr_err("Error reserving memory for backup: %s\n",
1091 fdt_strerror(ret));
1092 goto out;
1093 }
1094 }
1095
1096 /* Update cpus nodes information to account hotplug CPUs. */
1097 ret = update_cpus_node(fdt);
1098 if (ret < 0)
1099 goto out;
1100
1101 /* Update memory reserve map */
1102 ret = get_reserved_memory_ranges(&rmem);
1103 if (ret)
1104 goto out;
1105
1106 nr_ranges = rmem ? rmem->nr_ranges : 0;
1107 for (i = 0; i < nr_ranges; i++) {
1108 u64 base, size;
1109
1110 base = rmem->ranges[i].start;
1111 size = rmem->ranges[i].end - base + 1;
1112 ret = fdt_add_mem_rsv(fdt, base, size);
1113 if (ret) {
1114 pr_err("Error updating memory reserve map: %s\n",
1115 fdt_strerror(ret));
1116 goto out;
1117 }
1118 }
1119
1120 out:
1121 kfree(rmem);
1122 kfree(umem);
1123 return ret;
1124 }
1125
1126 /**
1127 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1128 * tce-table, reserved-ranges & such (exclude
1129 * memory ranges) as they can't be used for kexec
1130 * segment buffer. Sets kbuf->mem when a suitable
1131 * memory hole is found.
1132 * @kbuf: Buffer contents and memory parameters.
1133 *
1134 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1135 *
1136 * Returns 0 on success, negative errno on error.
1137 */
arch_kexec_locate_mem_hole(struct kexec_buf * kbuf)1138 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1139 {
1140 struct crash_mem **emem;
1141 u64 buf_min, buf_max;
1142 int ret;
1143
1144 /* Look up the exclude ranges list while locating the memory hole */
1145 emem = &(kbuf->image->arch.exclude_ranges);
1146 if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1147 pr_warn("No exclude range list. Using the default locate mem hole method\n");
1148 return kexec_locate_mem_hole(kbuf);
1149 }
1150
1151 buf_min = kbuf->buf_min;
1152 buf_max = kbuf->buf_max;
1153 /* Segments for kdump kernel should be within crashkernel region */
1154 if (kbuf->image->type == KEXEC_TYPE_CRASH) {
1155 buf_min = (buf_min < crashk_res.start ?
1156 crashk_res.start : buf_min);
1157 buf_max = (buf_max > crashk_res.end ?
1158 crashk_res.end : buf_max);
1159 }
1160
1161 if (buf_min > buf_max) {
1162 pr_err("Invalid buffer min and/or max values\n");
1163 return -EINVAL;
1164 }
1165
1166 if (kbuf->top_down)
1167 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1168 *emem);
1169 else
1170 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1171 *emem);
1172
1173 /* Add the buffer allocated to the exclude list for the next lookup */
1174 if (!ret) {
1175 add_mem_range(emem, kbuf->mem, kbuf->memsz);
1176 sort_memory_ranges(*emem, true);
1177 } else {
1178 pr_err("Failed to locate memory buffer of size %lu\n",
1179 kbuf->memsz);
1180 }
1181 return ret;
1182 }
1183
1184 /**
1185 * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1186 * kexec segments.
1187 * @image: kexec image being loaded.
1188 * @buf: Buffer pointing to elf data.
1189 * @buf_len: Length of the buffer.
1190 *
1191 * Returns 0 on success, negative errno on error.
1192 */
arch_kexec_kernel_image_probe(struct kimage * image,void * buf,unsigned long buf_len)1193 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1194 unsigned long buf_len)
1195 {
1196 int ret;
1197
1198 /* Get exclude memory ranges needed for setting up kexec segments */
1199 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1200 if (ret) {
1201 pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1202 return ret;
1203 }
1204
1205 return kexec_image_probe_default(image, buf, buf_len);
1206 }
1207
1208 /**
1209 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1210 * while loading the image.
1211 * @image: kexec image being loaded.
1212 *
1213 * Returns 0 on success, negative errno on error.
1214 */
arch_kimage_file_post_load_cleanup(struct kimage * image)1215 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1216 {
1217 kfree(image->arch.exclude_ranges);
1218 image->arch.exclude_ranges = NULL;
1219
1220 vfree(image->arch.backup_buf);
1221 image->arch.backup_buf = NULL;
1222
1223 vfree(image->elf_headers);
1224 image->elf_headers = NULL;
1225 image->elf_headers_sz = 0;
1226
1227 kvfree(image->arch.fdt);
1228 image->arch.fdt = NULL;
1229
1230 return kexec_image_post_load_cleanup_default(image);
1231 }
1232