1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
44 #include <trace/hooks/fpsimd.h>
45 #include <trace/hooks/mpam.h>
46
47 #include <asm/alternative.h>
48 #include <asm/compat.h>
49 #include <asm/cpufeature.h>
50 #include <asm/cacheflush.h>
51 #include <asm/exec.h>
52 #include <asm/fpsimd.h>
53 #include <asm/mmu_context.h>
54 #include <asm/mte.h>
55 #include <asm/processor.h>
56 #include <asm/pointer_auth.h>
57 #include <asm/stacktrace.h>
58 #include <asm/switch_to.h>
59 #include <asm/system_misc.h>
60
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __ro_after_init;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
66
67 /*
68 * Function pointers to optional machine specific functions
69 */
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
72
73 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)74 void arch_cpu_idle_dead(void)
75 {
76 cpu_die();
77 }
78 #endif
79
80 /*
81 * Called by kexec, immediately prior to machine_kexec().
82 *
83 * This must completely disable all secondary CPUs; simply causing those CPUs
84 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
85 * kexec'd kernel to use any and all RAM as it sees fit, without having to
86 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
87 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88 */
machine_shutdown(void)89 void machine_shutdown(void)
90 {
91 smp_shutdown_nonboot_cpus(reboot_cpu);
92 }
93
94 /*
95 * Halting simply requires that the secondary CPUs stop performing any
96 * activity (executing tasks, handling interrupts). smp_send_stop()
97 * achieves this.
98 */
machine_halt(void)99 void machine_halt(void)
100 {
101 local_irq_disable();
102 smp_send_stop();
103 while (1);
104 }
105
106 /*
107 * Power-off simply requires that the secondary CPUs stop performing any
108 * activity (executing tasks, handling interrupts). smp_send_stop()
109 * achieves this. When the system power is turned off, it will take all CPUs
110 * with it.
111 */
machine_power_off(void)112 void machine_power_off(void)
113 {
114 local_irq_disable();
115 smp_send_stop();
116 if (pm_power_off)
117 pm_power_off();
118 }
119
120 /*
121 * Restart requires that the secondary CPUs stop performing any activity
122 * while the primary CPU resets the system. Systems with multiple CPUs must
123 * provide a HW restart implementation, to ensure that all CPUs reset at once.
124 * This is required so that any code running after reset on the primary CPU
125 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
126 * executing pre-reset code, and using RAM that the primary CPU's code wishes
127 * to use. Implementing such co-ordination would be essentially impossible.
128 */
machine_restart(char * cmd)129 void machine_restart(char *cmd)
130 {
131 /* Disable interrupts first */
132 local_irq_disable();
133 smp_send_stop();
134
135 /*
136 * UpdateCapsule() depends on the system being reset via
137 * ResetSystem().
138 */
139 if (efi_enabled(EFI_RUNTIME_SERVICES))
140 efi_reboot(reboot_mode, NULL);
141
142 /* Now call the architecture specific reboot code. */
143 do_kernel_restart(cmd);
144
145 /*
146 * Whoops - the architecture was unable to reboot.
147 */
148 printk("Reboot failed -- System halted\n");
149 while (1);
150 }
151
152 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
153 static const char *const btypes[] = {
154 bstr(NONE, "--"),
155 bstr( JC, "jc"),
156 bstr( C, "-c"),
157 bstr( J , "j-")
158 };
159 #undef bstr
160
print_pstate(struct pt_regs * regs)161 static void print_pstate(struct pt_regs *regs)
162 {
163 u64 pstate = regs->pstate;
164
165 if (compat_user_mode(regs)) {
166 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
167 pstate,
168 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
169 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
170 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
171 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
172 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
173 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
174 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
175 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
176 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
177 pstate & PSR_AA32_F_BIT ? 'F' : 'f',
178 pstate & PSR_AA32_DIT_BIT ? '+' : '-',
179 pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
180 } else {
181 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
182 PSR_BTYPE_SHIFT];
183
184 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
185 pstate,
186 pstate & PSR_N_BIT ? 'N' : 'n',
187 pstate & PSR_Z_BIT ? 'Z' : 'z',
188 pstate & PSR_C_BIT ? 'C' : 'c',
189 pstate & PSR_V_BIT ? 'V' : 'v',
190 pstate & PSR_D_BIT ? 'D' : 'd',
191 pstate & PSR_A_BIT ? 'A' : 'a',
192 pstate & PSR_I_BIT ? 'I' : 'i',
193 pstate & PSR_F_BIT ? 'F' : 'f',
194 pstate & PSR_PAN_BIT ? '+' : '-',
195 pstate & PSR_UAO_BIT ? '+' : '-',
196 pstate & PSR_TCO_BIT ? '+' : '-',
197 pstate & PSR_DIT_BIT ? '+' : '-',
198 pstate & PSR_SSBS_BIT ? '+' : '-',
199 btype_str);
200 }
201 }
202
__show_regs(struct pt_regs * regs)203 void __show_regs(struct pt_regs *regs)
204 {
205 int i, top_reg;
206 u64 lr, sp;
207
208 if (compat_user_mode(regs)) {
209 lr = regs->compat_lr;
210 sp = regs->compat_sp;
211 top_reg = 12;
212 } else {
213 lr = regs->regs[30];
214 sp = regs->sp;
215 top_reg = 29;
216 }
217
218 show_regs_print_info(KERN_DEFAULT);
219 print_pstate(regs);
220
221 if (!user_mode(regs)) {
222 printk("pc : %pS\n", (void *)regs->pc);
223 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
224 } else {
225 printk("pc : %016llx\n", regs->pc);
226 printk("lr : %016llx\n", lr);
227 }
228
229 printk("sp : %016llx\n", sp);
230
231 if (system_uses_irq_prio_masking())
232 printk("pmr_save: %08llx\n", regs->pmr_save);
233
234 i = top_reg;
235
236 while (i >= 0) {
237 printk("x%-2d: %016llx", i, regs->regs[i]);
238
239 while (i-- % 3)
240 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
241
242 pr_cont("\n");
243 }
244 }
245
show_regs(struct pt_regs * regs)246 void show_regs(struct pt_regs *regs)
247 {
248 __show_regs(regs);
249 dump_backtrace(regs, NULL, KERN_DEFAULT);
250 }
251 EXPORT_SYMBOL_GPL(show_regs);
252
tls_thread_flush(void)253 static void tls_thread_flush(void)
254 {
255 write_sysreg(0, tpidr_el0);
256 if (system_supports_tpidr2())
257 write_sysreg_s(0, SYS_TPIDR2_EL0);
258
259 if (is_compat_task()) {
260 current->thread.uw.tp_value = 0;
261
262 /*
263 * We need to ensure ordering between the shadow state and the
264 * hardware state, so that we don't corrupt the hardware state
265 * with a stale shadow state during context switch.
266 */
267 barrier();
268 write_sysreg(0, tpidrro_el0);
269 }
270 }
271
flush_tagged_addr_state(void)272 static void flush_tagged_addr_state(void)
273 {
274 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
275 clear_thread_flag(TIF_TAGGED_ADDR);
276 }
277
flush_thread(void)278 void flush_thread(void)
279 {
280 fpsimd_flush_thread();
281 tls_thread_flush();
282 flush_ptrace_hw_breakpoint(current);
283 flush_tagged_addr_state();
284 }
285
release_thread(struct task_struct * dead_task)286 void release_thread(struct task_struct *dead_task)
287 {
288 }
289
arch_release_task_struct(struct task_struct * tsk)290 void arch_release_task_struct(struct task_struct *tsk)
291 {
292 fpsimd_release_task(tsk);
293 }
294
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)295 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
296 {
297 if (current->mm)
298 fpsimd_preserve_current_state();
299 *dst = *src;
300
301 /* We rely on the above assignment to initialize dst's thread_flags: */
302 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
303
304 /*
305 * Detach src's sve_state (if any) from dst so that it does not
306 * get erroneously used or freed prematurely. dst's copies
307 * will be allocated on demand later on if dst uses SVE.
308 * For consistency, also clear TIF_SVE here: this could be done
309 * later in copy_process(), but to avoid tripping up future
310 * maintainers it is best not to leave TIF flags and buffers in
311 * an inconsistent state, even temporarily.
312 */
313 dst->thread.sve_state = NULL;
314 clear_tsk_thread_flag(dst, TIF_SVE);
315
316 /*
317 * In the unlikely event that we create a new thread with ZA
318 * enabled we should retain the ZA state so duplicate it here.
319 * This may be shortly freed if we exec() or if CLONE_SETTLS
320 * but it's simpler to do it here. To avoid confusing the rest
321 * of the code ensure that we have a sve_state allocated
322 * whenever za_state is allocated.
323 */
324 if (thread_za_enabled(&src->thread)) {
325 dst->thread.sve_state = kzalloc(sve_state_size(src),
326 GFP_KERNEL);
327 if (!dst->thread.sve_state)
328 return -ENOMEM;
329 dst->thread.za_state = kmemdup(src->thread.za_state,
330 za_state_size(src),
331 GFP_KERNEL);
332 if (!dst->thread.za_state) {
333 kfree(dst->thread.sve_state);
334 dst->thread.sve_state = NULL;
335 return -ENOMEM;
336 }
337 } else {
338 dst->thread.za_state = NULL;
339 clear_tsk_thread_flag(dst, TIF_SME);
340 }
341
342 /* clear any pending asynchronous tag fault raised by the parent */
343 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
344
345 return 0;
346 }
347
348 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
349
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p,unsigned long tls)350 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
351 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
352 {
353 struct pt_regs *childregs = task_pt_regs(p);
354
355 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
356
357 /*
358 * In case p was allocated the same task_struct pointer as some
359 * other recently-exited task, make sure p is disassociated from
360 * any cpu that may have run that now-exited task recently.
361 * Otherwise we could erroneously skip reloading the FPSIMD
362 * registers for p.
363 */
364 fpsimd_flush_task_state(p);
365
366 ptrauth_thread_init_kernel(p);
367
368 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
369 *childregs = *current_pt_regs();
370 childregs->regs[0] = 0;
371
372 /*
373 * Read the current TLS pointer from tpidr_el0 as it may be
374 * out-of-sync with the saved value.
375 */
376 *task_user_tls(p) = read_sysreg(tpidr_el0);
377 if (system_supports_tpidr2())
378 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
379
380 if (stack_start) {
381 if (is_compat_thread(task_thread_info(p)))
382 childregs->compat_sp = stack_start;
383 else
384 childregs->sp = stack_start;
385 }
386
387 /*
388 * If a TLS pointer was passed to clone, use it for the new
389 * thread. We also reset TPIDR2 if it's in use.
390 */
391 if (clone_flags & CLONE_SETTLS) {
392 p->thread.uw.tp_value = tls;
393 p->thread.tpidr2_el0 = 0;
394 }
395 } else {
396 /*
397 * A kthread has no context to ERET to, so ensure any buggy
398 * ERET is treated as an illegal exception return.
399 *
400 * When a user task is created from a kthread, childregs will
401 * be initialized by start_thread() or start_compat_thread().
402 */
403 memset(childregs, 0, sizeof(struct pt_regs));
404 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
405
406 p->thread.cpu_context.x19 = stack_start;
407 p->thread.cpu_context.x20 = stk_sz;
408 }
409 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
410 p->thread.cpu_context.sp = (unsigned long)childregs;
411 /*
412 * For the benefit of the unwinder, set up childregs->stackframe
413 * as the final frame for the new task.
414 */
415 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
416
417 ptrace_hw_copy_thread(p);
418
419 return 0;
420 }
421
tls_preserve_current_state(void)422 void tls_preserve_current_state(void)
423 {
424 *task_user_tls(current) = read_sysreg(tpidr_el0);
425 if (system_supports_tpidr2() && !is_compat_task())
426 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
427 }
428
tls_thread_switch(struct task_struct * next)429 static void tls_thread_switch(struct task_struct *next)
430 {
431 tls_preserve_current_state();
432
433 if (is_compat_thread(task_thread_info(next)))
434 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
435 else if (!arm64_kernel_unmapped_at_el0())
436 write_sysreg(0, tpidrro_el0);
437
438 write_sysreg(*task_user_tls(next), tpidr_el0);
439 if (system_supports_tpidr2())
440 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
441 }
442
443 /*
444 * Force SSBS state on context-switch, since it may be lost after migrating
445 * from a CPU which treats the bit as RES0 in a heterogeneous system.
446 */
ssbs_thread_switch(struct task_struct * next)447 static void ssbs_thread_switch(struct task_struct *next)
448 {
449 /*
450 * Nothing to do for kernel threads, but 'regs' may be junk
451 * (e.g. idle task) so check the flags and bail early.
452 */
453 if (unlikely(next->flags & PF_KTHREAD))
454 return;
455
456 /*
457 * If all CPUs implement the SSBS extension, then we just need to
458 * context-switch the PSTATE field.
459 */
460 if (cpus_have_const_cap(ARM64_SSBS))
461 return;
462
463 spectre_v4_enable_task_mitigation(next);
464 }
465
466 /*
467 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
468 * shadow copy so that we can restore this upon entry from userspace.
469 *
470 * This is *only* for exception entry from EL0, and is not valid until we
471 * __switch_to() a user task.
472 */
473 DEFINE_PER_CPU(struct task_struct *, __entry_task);
474
entry_task_switch(struct task_struct * next)475 static void entry_task_switch(struct task_struct *next)
476 {
477 __this_cpu_write(__entry_task, next);
478 }
479
480 /*
481 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
482 * Ensure access is disabled when switching to a 32bit task, ensure
483 * access is enabled when switching to a 64bit task.
484 */
erratum_1418040_thread_switch(struct task_struct * next)485 static void erratum_1418040_thread_switch(struct task_struct *next)
486 {
487 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) ||
488 !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
489 return;
490
491 if (is_compat_thread(task_thread_info(next)))
492 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
493 else
494 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
495 }
496
erratum_1418040_new_exec(void)497 static void erratum_1418040_new_exec(void)
498 {
499 preempt_disable();
500 erratum_1418040_thread_switch(current);
501 preempt_enable();
502 }
503
504 /*
505 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
506 * this function must be called with preemption disabled and the update to
507 * sctlr_user must be made in the same preemption disabled block so that
508 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
509 */
update_sctlr_el1(u64 sctlr)510 void update_sctlr_el1(u64 sctlr)
511 {
512 /*
513 * EnIA must not be cleared while in the kernel as this is necessary for
514 * in-kernel PAC. It will be cleared on kernel exit if needed.
515 */
516 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
517
518 /* ISB required for the kernel uaccess routines when setting TCF0. */
519 isb();
520 }
521
522 /*
523 * Thread switching.
524 */
525 __notrace_funcgraph __sched
__switch_to(struct task_struct * prev,struct task_struct * next)526 struct task_struct *__switch_to(struct task_struct *prev,
527 struct task_struct *next)
528 {
529 struct task_struct *last;
530
531 fpsimd_thread_switch(next);
532 tls_thread_switch(next);
533 hw_breakpoint_thread_switch(next);
534 contextidr_thread_switch(next);
535 entry_task_switch(next);
536 ssbs_thread_switch(next);
537 erratum_1418040_thread_switch(next);
538 ptrauth_thread_switch_user(next);
539
540 /*
541 * vendor hook is needed before the dsb(),
542 * because MPAM is related to cache maintenance.
543 */
544 trace_android_vh_mpam_set(prev, next);
545
546 /*
547 * Complete any pending TLB or cache maintenance on this CPU in case
548 * the thread migrates to a different CPU.
549 * This full barrier is also required by the membarrier system
550 * call.
551 */
552 dsb(ish);
553
554 /*
555 * MTE thread switching must happen after the DSB above to ensure that
556 * any asynchronous tag check faults have been logged in the TFSR*_EL1
557 * registers.
558 */
559 mte_thread_switch(next);
560 /* avoid expensive SCTLR_EL1 accesses if no change */
561 if (prev->thread.sctlr_user != next->thread.sctlr_user)
562 update_sctlr_el1(next->thread.sctlr_user);
563
564 trace_android_vh_is_fpsimd_save(prev, next);
565
566 /* the actual thread switch */
567 last = cpu_switch_to(prev, next);
568
569 return last;
570 }
571
572 struct wchan_info {
573 unsigned long pc;
574 int count;
575 };
576
get_wchan_cb(void * arg,unsigned long pc)577 static bool get_wchan_cb(void *arg, unsigned long pc)
578 {
579 struct wchan_info *wchan_info = arg;
580
581 if (!in_sched_functions(pc)) {
582 wchan_info->pc = pc;
583 return false;
584 }
585 return wchan_info->count++ < 16;
586 }
587
get_wchan(struct task_struct * p)588 unsigned long get_wchan(struct task_struct *p)
589 {
590 struct wchan_info wchan_info = {
591 .pc = 0,
592 .count = 0,
593 };
594
595 if (!p || p == current || task_is_running(p))
596 return 0;
597
598 if (!try_get_task_stack(p))
599 return 0;
600
601 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
602
603 put_task_stack(p);
604
605 return wchan_info.pc;
606 }
607 EXPORT_SYMBOL_GPL(get_wchan);
608
arch_align_stack(unsigned long sp)609 unsigned long arch_align_stack(unsigned long sp)
610 {
611 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
612 sp -= get_random_int() & ~PAGE_MASK;
613 return sp & ~0xf;
614 }
615
616 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)617 int compat_elf_check_arch(const struct elf32_hdr *hdr)
618 {
619 if (!system_supports_32bit_el0())
620 return false;
621
622 if ((hdr)->e_machine != EM_ARM)
623 return false;
624
625 if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
626 return false;
627
628 /*
629 * Prevent execve() of a 32-bit program from a deadline task
630 * if the restricted affinity mask would be inadmissible on an
631 * asymmetric system.
632 */
633 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
634 !dl_task_check_affinity(current, system_32bit_el0_cpumask());
635 }
636 #endif
637
638 /*
639 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
640 */
arch_setup_new_exec(void)641 void arch_setup_new_exec(void)
642 {
643 unsigned long mmflags = 0;
644
645 if (is_compat_task()) {
646 mmflags = MMCF_AARCH32;
647
648 /*
649 * Restrict the CPU affinity mask for a 32-bit task so that
650 * it contains only 32-bit-capable CPUs.
651 *
652 * From the perspective of the task, this looks similar to
653 * what would happen if the 64-bit-only CPUs were hot-unplugged
654 * at the point of execve(), although we try a bit harder to
655 * honour the cpuset hierarchy.
656 */
657 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
658 force_compatible_cpus_allowed_ptr(current);
659 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
660 relax_compatible_cpus_allowed_ptr(current);
661 }
662
663 current->mm->context.flags = mmflags;
664 ptrauth_thread_init_user();
665 mte_thread_init_user();
666 erratum_1418040_new_exec();
667
668 if (task_spec_ssb_noexec(current)) {
669 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
670 PR_SPEC_ENABLE);
671 }
672 }
673
674 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
675 /*
676 * Control the relaxed ABI allowing tagged user addresses into the kernel.
677 */
678 static unsigned int tagged_addr_disabled;
679
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)680 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
681 {
682 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
683 struct thread_info *ti = task_thread_info(task);
684
685 if (is_compat_thread(ti))
686 return -EINVAL;
687
688 if (system_supports_mte())
689 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
690 | PR_MTE_TAG_MASK;
691
692 if (arg & ~valid_mask)
693 return -EINVAL;
694
695 /*
696 * Do not allow the enabling of the tagged address ABI if globally
697 * disabled via sysctl abi.tagged_addr_disabled.
698 */
699 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
700 return -EINVAL;
701
702 if (set_mte_ctrl(task, arg) != 0)
703 return -EINVAL;
704
705 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
706
707 return 0;
708 }
709
get_tagged_addr_ctrl(struct task_struct * task)710 long get_tagged_addr_ctrl(struct task_struct *task)
711 {
712 long ret = 0;
713 struct thread_info *ti = task_thread_info(task);
714
715 if (is_compat_thread(ti))
716 return -EINVAL;
717
718 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
719 ret = PR_TAGGED_ADDR_ENABLE;
720
721 ret |= get_mte_ctrl(task);
722
723 return ret;
724 }
725
726 /*
727 * Global sysctl to disable the tagged user addresses support. This control
728 * only prevents the tagged address ABI enabling via prctl() and does not
729 * disable it for tasks that already opted in to the relaxed ABI.
730 */
731
732 static struct ctl_table tagged_addr_sysctl_table[] = {
733 {
734 .procname = "tagged_addr_disabled",
735 .mode = 0644,
736 .data = &tagged_addr_disabled,
737 .maxlen = sizeof(int),
738 .proc_handler = proc_dointvec_minmax,
739 .extra1 = SYSCTL_ZERO,
740 .extra2 = SYSCTL_ONE,
741 },
742 { }
743 };
744
tagged_addr_init(void)745 static int __init tagged_addr_init(void)
746 {
747 if (!register_sysctl("abi", tagged_addr_sysctl_table))
748 return -EINVAL;
749 return 0;
750 }
751
752 core_initcall(tagged_addr_init);
753 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
754
755 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)756 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
757 bool has_interp, bool is_interp)
758 {
759 /*
760 * For dynamically linked executables the interpreter is
761 * responsible for setting PROT_BTI on everything except
762 * itself.
763 */
764 if (is_interp != has_interp)
765 return prot;
766
767 if (!(state->flags & ARM64_ELF_BTI))
768 return prot;
769
770 if (prot & PROT_EXEC)
771 prot |= PROT_BTI;
772
773 return prot;
774 }
775 #endif
776