• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver: the gadget driver pointer. For use by the class code
27  * @dev: the child device to the actual controller
28  * @gadget: the gadget. For use by the class code
29  * @list: for use by the udc class driver
30  * @vbus: for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  * @started: the UDC's started state. True if the UDC had started.
33  *
34  * This represents the internal data structure which is used by the UDC-class
35  * to hold information about udc driver and gadget together.
36  */
37 struct usb_udc {
38 	struct usb_gadget_driver	*driver;
39 	struct usb_gadget		*gadget;
40 	struct device			dev;
41 	struct list_head		list;
42 	bool				vbus;
43 	bool				started;
44 };
45 
46 static struct class *udc_class;
47 static LIST_HEAD(udc_list);
48 static LIST_HEAD(gadget_driver_pending_list);
49 static DEFINE_MUTEX(udc_lock);
50 /**
51  * protects udc->vbus, udc->started, gadget->connect, gadget->deactivate related
52  * functions. usb_gadget_connect_locked, usb_gadget_disconnect_locked,
53  * usb_udc_connect_control_locked, usb_gadget_udc_start_locked, usb_gadget_udc_stop_locked are
54  * called with this lock held.
55  */
56 static DEFINE_MUTEX(connect_lock);
57 
58 static int udc_bind_to_driver(struct usb_udc *udc,
59 		struct usb_gadget_driver *driver);
60 
61 /* ------------------------------------------------------------------------- */
62 
63 /**
64  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
65  * @ep:the endpoint being configured
66  * @maxpacket_limit:value of maximum packet size limit
67  *
68  * This function should be used only in UDC drivers to initialize endpoint
69  * (usually in probe function).
70  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)71 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
72 					      unsigned maxpacket_limit)
73 {
74 	ep->maxpacket_limit = maxpacket_limit;
75 	ep->maxpacket = maxpacket_limit;
76 
77 	trace_usb_ep_set_maxpacket_limit(ep, 0);
78 }
79 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
80 
81 /**
82  * usb_ep_enable - configure endpoint, making it usable
83  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
84  *	drivers discover endpoints through the ep_list of a usb_gadget.
85  *
86  * When configurations are set, or when interface settings change, the driver
87  * will enable or disable the relevant endpoints.  while it is enabled, an
88  * endpoint may be used for i/o until the driver receives a disconnect() from
89  * the host or until the endpoint is disabled.
90  *
91  * the ep0 implementation (which calls this routine) must ensure that the
92  * hardware capabilities of each endpoint match the descriptor provided
93  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
94  * for interrupt transfers as well as bulk, but it likely couldn't be used
95  * for iso transfers or for endpoint 14.  some endpoints are fully
96  * configurable, with more generic names like "ep-a".  (remember that for
97  * USB, "in" means "towards the USB host".)
98  *
99  * This routine may be called in an atomic (interrupt) context.
100  *
101  * returns zero, or a negative error code.
102  */
usb_ep_enable(struct usb_ep * ep)103 int usb_ep_enable(struct usb_ep *ep)
104 {
105 	int ret = 0;
106 
107 	if (ep->enabled)
108 		goto out;
109 
110 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
111 	if (usb_endpoint_maxp(ep->desc) == 0) {
112 		/*
113 		 * We should log an error message here, but we can't call
114 		 * dev_err() because there's no way to find the gadget
115 		 * given only ep.
116 		 */
117 		ret = -EINVAL;
118 		goto out;
119 	}
120 
121 	ret = ep->ops->enable(ep, ep->desc);
122 	if (ret)
123 		goto out;
124 
125 	ep->enabled = true;
126 
127 out:
128 	trace_usb_ep_enable(ep, ret);
129 
130 	return ret;
131 }
132 EXPORT_SYMBOL_GPL(usb_ep_enable);
133 
134 /**
135  * usb_ep_disable - endpoint is no longer usable
136  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
137  *
138  * no other task may be using this endpoint when this is called.
139  * any pending and uncompleted requests will complete with status
140  * indicating disconnect (-ESHUTDOWN) before this call returns.
141  * gadget drivers must call usb_ep_enable() again before queueing
142  * requests to the endpoint.
143  *
144  * This routine may be called in an atomic (interrupt) context.
145  *
146  * returns zero, or a negative error code.
147  */
usb_ep_disable(struct usb_ep * ep)148 int usb_ep_disable(struct usb_ep *ep)
149 {
150 	int ret = 0;
151 
152 	if (!ep->enabled)
153 		goto out;
154 
155 	ret = ep->ops->disable(ep);
156 	if (ret)
157 		goto out;
158 
159 	ep->enabled = false;
160 
161 out:
162 	trace_usb_ep_disable(ep, ret);
163 
164 	return ret;
165 }
166 EXPORT_SYMBOL_GPL(usb_ep_disable);
167 
168 /**
169  * usb_ep_alloc_request - allocate a request object to use with this endpoint
170  * @ep:the endpoint to be used with with the request
171  * @gfp_flags:GFP_* flags to use
172  *
173  * Request objects must be allocated with this call, since they normally
174  * need controller-specific setup and may even need endpoint-specific
175  * resources such as allocation of DMA descriptors.
176  * Requests may be submitted with usb_ep_queue(), and receive a single
177  * completion callback.  Free requests with usb_ep_free_request(), when
178  * they are no longer needed.
179  *
180  * Returns the request, or null if one could not be allocated.
181  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)182 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
183 						       gfp_t gfp_flags)
184 {
185 	struct usb_request *req = NULL;
186 
187 	req = ep->ops->alloc_request(ep, gfp_flags);
188 
189 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
190 
191 	return req;
192 }
193 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
194 
195 /**
196  * usb_ep_free_request - frees a request object
197  * @ep:the endpoint associated with the request
198  * @req:the request being freed
199  *
200  * Reverses the effect of usb_ep_alloc_request().
201  * Caller guarantees the request is not queued, and that it will
202  * no longer be requeued (or otherwise used).
203  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)204 void usb_ep_free_request(struct usb_ep *ep,
205 				       struct usb_request *req)
206 {
207 	trace_usb_ep_free_request(ep, req, 0);
208 	ep->ops->free_request(ep, req);
209 }
210 EXPORT_SYMBOL_GPL(usb_ep_free_request);
211 
212 /**
213  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
214  * @ep:the endpoint associated with the request
215  * @req:the request being submitted
216  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
217  *	pre-allocate all necessary memory with the request.
218  *
219  * This tells the device controller to perform the specified request through
220  * that endpoint (reading or writing a buffer).  When the request completes,
221  * including being canceled by usb_ep_dequeue(), the request's completion
222  * routine is called to return the request to the driver.  Any endpoint
223  * (except control endpoints like ep0) may have more than one transfer
224  * request queued; they complete in FIFO order.  Once a gadget driver
225  * submits a request, that request may not be examined or modified until it
226  * is given back to that driver through the completion callback.
227  *
228  * Each request is turned into one or more packets.  The controller driver
229  * never merges adjacent requests into the same packet.  OUT transfers
230  * will sometimes use data that's already buffered in the hardware.
231  * Drivers can rely on the fact that the first byte of the request's buffer
232  * always corresponds to the first byte of some USB packet, for both
233  * IN and OUT transfers.
234  *
235  * Bulk endpoints can queue any amount of data; the transfer is packetized
236  * automatically.  The last packet will be short if the request doesn't fill it
237  * out completely.  Zero length packets (ZLPs) should be avoided in portable
238  * protocols since not all usb hardware can successfully handle zero length
239  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
240  * the request 'zero' flag is set.)  Bulk endpoints may also be used
241  * for interrupt transfers; but the reverse is not true, and some endpoints
242  * won't support every interrupt transfer.  (Such as 768 byte packets.)
243  *
244  * Interrupt-only endpoints are less functional than bulk endpoints, for
245  * example by not supporting queueing or not handling buffers that are
246  * larger than the endpoint's maxpacket size.  They may also treat data
247  * toggle differently.
248  *
249  * Control endpoints ... after getting a setup() callback, the driver queues
250  * one response (even if it would be zero length).  That enables the
251  * status ack, after transferring data as specified in the response.  Setup
252  * functions may return negative error codes to generate protocol stalls.
253  * (Note that some USB device controllers disallow protocol stall responses
254  * in some cases.)  When control responses are deferred (the response is
255  * written after the setup callback returns), then usb_ep_set_halt() may be
256  * used on ep0 to trigger protocol stalls.  Depending on the controller,
257  * it may not be possible to trigger a status-stage protocol stall when the
258  * data stage is over, that is, from within the response's completion
259  * routine.
260  *
261  * For periodic endpoints, like interrupt or isochronous ones, the usb host
262  * arranges to poll once per interval, and the gadget driver usually will
263  * have queued some data to transfer at that time.
264  *
265  * Note that @req's ->complete() callback must never be called from
266  * within usb_ep_queue() as that can create deadlock situations.
267  *
268  * This routine may be called in interrupt context.
269  *
270  * Returns zero, or a negative error code.  Endpoints that are not enabled
271  * report errors; errors will also be
272  * reported when the usb peripheral is disconnected.
273  *
274  * If and only if @req is successfully queued (the return value is zero),
275  * @req->complete() will be called exactly once, when the Gadget core and
276  * UDC are finished with the request.  When the completion function is called,
277  * control of the request is returned to the device driver which submitted it.
278  * The completion handler may then immediately free or reuse @req.
279  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)280 int usb_ep_queue(struct usb_ep *ep,
281 			       struct usb_request *req, gfp_t gfp_flags)
282 {
283 	int ret = 0;
284 
285 	if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
286 		ret = -ESHUTDOWN;
287 		goto out;
288 	}
289 
290 	ret = ep->ops->queue(ep, req, gfp_flags);
291 
292 out:
293 	trace_usb_ep_queue(ep, req, ret);
294 
295 	return ret;
296 }
297 EXPORT_SYMBOL_GPL(usb_ep_queue);
298 
299 /**
300  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
301  * @ep:the endpoint associated with the request
302  * @req:the request being canceled
303  *
304  * If the request is still active on the endpoint, it is dequeued and
305  * eventually its completion routine is called (with status -ECONNRESET);
306  * else a negative error code is returned.  This routine is asynchronous,
307  * that is, it may return before the completion routine runs.
308  *
309  * Note that some hardware can't clear out write fifos (to unlink the request
310  * at the head of the queue) except as part of disconnecting from usb. Such
311  * restrictions prevent drivers from supporting configuration changes,
312  * even to configuration zero (a "chapter 9" requirement).
313  *
314  * This routine may be called in interrupt context.
315  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)316 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
317 {
318 	int ret;
319 
320 	ret = ep->ops->dequeue(ep, req);
321 	trace_usb_ep_dequeue(ep, req, ret);
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
326 
327 /**
328  * usb_ep_set_halt - sets the endpoint halt feature.
329  * @ep: the non-isochronous endpoint being stalled
330  *
331  * Use this to stall an endpoint, perhaps as an error report.
332  * Except for control endpoints,
333  * the endpoint stays halted (will not stream any data) until the host
334  * clears this feature; drivers may need to empty the endpoint's request
335  * queue first, to make sure no inappropriate transfers happen.
336  *
337  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
338  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
339  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
340  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
341  *
342  * This routine may be called in interrupt context.
343  *
344  * Returns zero, or a negative error code.  On success, this call sets
345  * underlying hardware state that blocks data transfers.
346  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
347  * transfer requests are still queued, or if the controller hardware
348  * (usually a FIFO) still holds bytes that the host hasn't collected.
349  */
usb_ep_set_halt(struct usb_ep * ep)350 int usb_ep_set_halt(struct usb_ep *ep)
351 {
352 	int ret;
353 
354 	ret = ep->ops->set_halt(ep, 1);
355 	trace_usb_ep_set_halt(ep, ret);
356 
357 	return ret;
358 }
359 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
360 
361 /**
362  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
363  * @ep:the bulk or interrupt endpoint being reset
364  *
365  * Use this when responding to the standard usb "set interface" request,
366  * for endpoints that aren't reconfigured, after clearing any other state
367  * in the endpoint's i/o queue.
368  *
369  * This routine may be called in interrupt context.
370  *
371  * Returns zero, or a negative error code.  On success, this call clears
372  * the underlying hardware state reflecting endpoint halt and data toggle.
373  * Note that some hardware can't support this request (like pxa2xx_udc),
374  * and accordingly can't correctly implement interface altsettings.
375  */
usb_ep_clear_halt(struct usb_ep * ep)376 int usb_ep_clear_halt(struct usb_ep *ep)
377 {
378 	int ret;
379 
380 	ret = ep->ops->set_halt(ep, 0);
381 	trace_usb_ep_clear_halt(ep, ret);
382 
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
386 
387 /**
388  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
389  * @ep: the endpoint being wedged
390  *
391  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
392  * requests. If the gadget driver clears the halt status, it will
393  * automatically unwedge the endpoint.
394  *
395  * This routine may be called in interrupt context.
396  *
397  * Returns zero on success, else negative errno.
398  */
usb_ep_set_wedge(struct usb_ep * ep)399 int usb_ep_set_wedge(struct usb_ep *ep)
400 {
401 	int ret;
402 
403 	if (ep->ops->set_wedge)
404 		ret = ep->ops->set_wedge(ep);
405 	else
406 		ret = ep->ops->set_halt(ep, 1);
407 
408 	trace_usb_ep_set_wedge(ep, ret);
409 
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
413 
414 /**
415  * usb_ep_fifo_status - returns number of bytes in fifo, or error
416  * @ep: the endpoint whose fifo status is being checked.
417  *
418  * FIFO endpoints may have "unclaimed data" in them in certain cases,
419  * such as after aborted transfers.  Hosts may not have collected all
420  * the IN data written by the gadget driver (and reported by a request
421  * completion).  The gadget driver may not have collected all the data
422  * written OUT to it by the host.  Drivers that need precise handling for
423  * fault reporting or recovery may need to use this call.
424  *
425  * This routine may be called in interrupt context.
426  *
427  * This returns the number of such bytes in the fifo, or a negative
428  * errno if the endpoint doesn't use a FIFO or doesn't support such
429  * precise handling.
430  */
usb_ep_fifo_status(struct usb_ep * ep)431 int usb_ep_fifo_status(struct usb_ep *ep)
432 {
433 	int ret;
434 
435 	if (ep->ops->fifo_status)
436 		ret = ep->ops->fifo_status(ep);
437 	else
438 		ret = -EOPNOTSUPP;
439 
440 	trace_usb_ep_fifo_status(ep, ret);
441 
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
445 
446 /**
447  * usb_ep_fifo_flush - flushes contents of a fifo
448  * @ep: the endpoint whose fifo is being flushed.
449  *
450  * This call may be used to flush the "unclaimed data" that may exist in
451  * an endpoint fifo after abnormal transaction terminations.  The call
452  * must never be used except when endpoint is not being used for any
453  * protocol translation.
454  *
455  * This routine may be called in interrupt context.
456  */
usb_ep_fifo_flush(struct usb_ep * ep)457 void usb_ep_fifo_flush(struct usb_ep *ep)
458 {
459 	if (ep->ops->fifo_flush)
460 		ep->ops->fifo_flush(ep);
461 
462 	trace_usb_ep_fifo_flush(ep, 0);
463 }
464 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
465 
466 /* ------------------------------------------------------------------------- */
467 
468 /**
469  * usb_gadget_frame_number - returns the current frame number
470  * @gadget: controller that reports the frame number
471  *
472  * Returns the usb frame number, normally eleven bits from a SOF packet,
473  * or negative errno if this device doesn't support this capability.
474  */
usb_gadget_frame_number(struct usb_gadget * gadget)475 int usb_gadget_frame_number(struct usb_gadget *gadget)
476 {
477 	int ret;
478 
479 	ret = gadget->ops->get_frame(gadget);
480 
481 	trace_usb_gadget_frame_number(gadget, ret);
482 
483 	return ret;
484 }
485 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
486 
487 /**
488  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
489  * @gadget: controller used to wake up the host
490  *
491  * Returns zero on success, else negative error code if the hardware
492  * doesn't support such attempts, or its support has not been enabled
493  * by the usb host.  Drivers must return device descriptors that report
494  * their ability to support this, or hosts won't enable it.
495  *
496  * This may also try to use SRP to wake the host and start enumeration,
497  * even if OTG isn't otherwise in use.  OTG devices may also start
498  * remote wakeup even when hosts don't explicitly enable it.
499  */
usb_gadget_wakeup(struct usb_gadget * gadget)500 int usb_gadget_wakeup(struct usb_gadget *gadget)
501 {
502 	int ret = 0;
503 
504 	if (!gadget->ops->wakeup) {
505 		ret = -EOPNOTSUPP;
506 		goto out;
507 	}
508 
509 	ret = gadget->ops->wakeup(gadget);
510 
511 out:
512 	trace_usb_gadget_wakeup(gadget, ret);
513 
514 	return ret;
515 }
516 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
517 
518 /**
519  * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature.
520  * @gadget:the device being configured for remote wakeup
521  * @set:value to be configured.
522  *
523  * set to one to enable remote wakeup feature and zero to disable it.
524  *
525  * returns zero on success, else negative errno.
526  */
usb_gadget_set_remote_wakeup(struct usb_gadget * gadget,int set)527 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
528 {
529 	int ret = 0;
530 
531 	if (!gadget->ops->set_remote_wakeup) {
532 		ret = -EOPNOTSUPP;
533 		goto out;
534 	}
535 
536 	ret = gadget->ops->set_remote_wakeup(gadget, set);
537 
538 out:
539 	trace_usb_gadget_set_remote_wakeup(gadget, ret);
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup);
544 
545 /**
546  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
547  * @gadget:the device being declared as self-powered
548  *
549  * this affects the device status reported by the hardware driver
550  * to reflect that it now has a local power supply.
551  *
552  * returns zero on success, else negative errno.
553  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)554 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
555 {
556 	int ret = 0;
557 
558 	if (!gadget->ops->set_selfpowered) {
559 		ret = -EOPNOTSUPP;
560 		goto out;
561 	}
562 
563 	ret = gadget->ops->set_selfpowered(gadget, 1);
564 
565 out:
566 	trace_usb_gadget_set_selfpowered(gadget, ret);
567 
568 	return ret;
569 }
570 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
571 
572 /**
573  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
574  * @gadget:the device being declared as bus-powered
575  *
576  * this affects the device status reported by the hardware driver.
577  * some hardware may not support bus-powered operation, in which
578  * case this feature's value can never change.
579  *
580  * returns zero on success, else negative errno.
581  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)582 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
583 {
584 	int ret = 0;
585 
586 	if (!gadget->ops->set_selfpowered) {
587 		ret = -EOPNOTSUPP;
588 		goto out;
589 	}
590 
591 	ret = gadget->ops->set_selfpowered(gadget, 0);
592 
593 out:
594 	trace_usb_gadget_clear_selfpowered(gadget, ret);
595 
596 	return ret;
597 }
598 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
599 
600 /**
601  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
602  * @gadget:The device which now has VBUS power.
603  * Context: can sleep
604  *
605  * This call is used by a driver for an external transceiver (or GPIO)
606  * that detects a VBUS power session starting.  Common responses include
607  * resuming the controller, activating the D+ (or D-) pullup to let the
608  * host detect that a USB device is attached, and starting to draw power
609  * (8mA or possibly more, especially after SET_CONFIGURATION).
610  *
611  * Returns zero on success, else negative errno.
612  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)613 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
614 {
615 	int ret = 0;
616 
617 	if (!gadget->ops->vbus_session) {
618 		ret = -EOPNOTSUPP;
619 		goto out;
620 	}
621 
622 	ret = gadget->ops->vbus_session(gadget, 1);
623 
624 out:
625 	trace_usb_gadget_vbus_connect(gadget, ret);
626 
627 	return ret;
628 }
629 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
630 
631 /**
632  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
633  * @gadget:The device whose VBUS usage is being described
634  * @mA:How much current to draw, in milliAmperes.  This should be twice
635  *	the value listed in the configuration descriptor bMaxPower field.
636  *
637  * This call is used by gadget drivers during SET_CONFIGURATION calls,
638  * reporting how much power the device may consume.  For example, this
639  * could affect how quickly batteries are recharged.
640  *
641  * Returns zero on success, else negative errno.
642  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)643 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
644 {
645 	int ret = 0;
646 
647 	if (!gadget->ops->vbus_draw) {
648 		ret = -EOPNOTSUPP;
649 		goto out;
650 	}
651 
652 	ret = gadget->ops->vbus_draw(gadget, mA);
653 	if (!ret)
654 		gadget->mA = mA;
655 
656 out:
657 	trace_usb_gadget_vbus_draw(gadget, ret);
658 
659 	return ret;
660 }
661 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
662 
663 /**
664  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
665  * @gadget:the device whose VBUS supply is being described
666  * Context: can sleep
667  *
668  * This call is used by a driver for an external transceiver (or GPIO)
669  * that detects a VBUS power session ending.  Common responses include
670  * reversing everything done in usb_gadget_vbus_connect().
671  *
672  * Returns zero on success, else negative errno.
673  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)674 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
675 {
676 	int ret = 0;
677 
678 	if (!gadget->ops->vbus_session) {
679 		ret = -EOPNOTSUPP;
680 		goto out;
681 	}
682 
683 	ret = gadget->ops->vbus_session(gadget, 0);
684 
685 out:
686 	trace_usb_gadget_vbus_disconnect(gadget, ret);
687 
688 	return ret;
689 }
690 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
691 
692 /* Internal version of usb_gadget_connect needs to be called with connect_lock held. */
usb_gadget_connect_locked(struct usb_gadget * gadget)693 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
694 	__must_hold(&connect_lock)
695 {
696 	int ret = 0;
697 
698 	if (!gadget->ops->pullup) {
699 		ret = -EOPNOTSUPP;
700 		goto out;
701 	}
702 
703 	if (gadget->deactivated || !gadget->udc->started) {
704 		/*
705 		 * If gadget is deactivated we only save new state.
706 		 * Gadget will be connected automatically after activation.
707 		 *
708 		 * udc first needs to be started before gadget can be pulled up.
709 		 */
710 		gadget->connected = true;
711 		goto out;
712 	}
713 
714 	ret = gadget->ops->pullup(gadget, 1);
715 	if (!ret)
716 		gadget->connected = 1;
717 
718 out:
719 	trace_usb_gadget_connect(gadget, ret);
720 
721 	return ret;
722 }
723 
724 /**
725  * usb_gadget_connect - software-controlled connect to USB host
726  * @gadget:the peripheral being connected
727  *
728  * Enables the D+ (or potentially D-) pullup.  The host will start
729  * enumerating this gadget when the pullup is active and a VBUS session
730  * is active (the link is powered).
731  *
732  * Returns zero on success, else negative errno.
733  */
usb_gadget_connect(struct usb_gadget * gadget)734 int usb_gadget_connect(struct usb_gadget *gadget)
735 {
736 	int ret;
737 
738 	mutex_lock(&connect_lock);
739 	ret = usb_gadget_connect_locked(gadget);
740 	mutex_unlock(&connect_lock);
741 
742 	return ret;
743 }
744 EXPORT_SYMBOL_GPL(usb_gadget_connect);
745 
746 /* Internal version of usb_gadget_disconnect needs to be called with connect_lock held. */
usb_gadget_disconnect_locked(struct usb_gadget * gadget)747 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
748 	__must_hold(&connect_lock)
749 {
750 	int ret = 0;
751 
752 	if (!gadget->ops->pullup) {
753 		ret = -EOPNOTSUPP;
754 		goto out;
755 	}
756 
757 	if (!gadget->connected)
758 		goto out;
759 
760 	if (gadget->deactivated || !gadget->udc->started) {
761 		/*
762 		 * If gadget is deactivated we only save new state.
763 		 * Gadget will stay disconnected after activation.
764 		 *
765 		 * udc should have been started before gadget being pulled down.
766 		 */
767 		gadget->connected = false;
768 		goto out;
769 	}
770 
771 	ret = gadget->ops->pullup(gadget, 0);
772 	if (!ret)
773 		gadget->connected = 0;
774 
775 	if (gadget->udc->driver)
776 		gadget->udc->driver->disconnect(gadget);
777 
778 out:
779 	trace_usb_gadget_disconnect(gadget, ret);
780 
781 	return ret;
782 }
783 
784 /**
785  * usb_gadget_disconnect - software-controlled disconnect from USB host
786  * @gadget:the peripheral being disconnected
787  *
788  * Disables the D+ (or potentially D-) pullup, which the host may see
789  * as a disconnect (when a VBUS session is active).  Not all systems
790  * support software pullup controls.
791  *
792  * Following a successful disconnect, invoke the ->disconnect() callback
793  * for the current gadget driver so that UDC drivers don't need to.
794  *
795  * Returns zero on success, else negative errno.
796  */
usb_gadget_disconnect(struct usb_gadget * gadget)797 int usb_gadget_disconnect(struct usb_gadget *gadget)
798 {
799 	int ret;
800 
801 	mutex_lock(&connect_lock);
802 	ret = usb_gadget_disconnect_locked(gadget);
803 	mutex_unlock(&connect_lock);
804 
805 	return ret;
806 }
807 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
808 
809 /**
810  * usb_gadget_deactivate - deactivate function which is not ready to work
811  * @gadget: the peripheral being deactivated
812  *
813  * This routine may be used during the gadget driver bind() call to prevent
814  * the peripheral from ever being visible to the USB host, unless later
815  * usb_gadget_activate() is called.  For example, user mode components may
816  * need to be activated before the system can talk to hosts.
817  *
818  * This routine may sleep; it must not be called in interrupt context
819  * (such as from within a gadget driver's disconnect() callback).
820  *
821  * Returns zero on success, else negative errno.
822  */
usb_gadget_deactivate(struct usb_gadget * gadget)823 int usb_gadget_deactivate(struct usb_gadget *gadget)
824 {
825 	int ret = 0;
826 
827 	if (gadget->deactivated)
828 		goto out;
829 
830 	mutex_lock(&connect_lock);
831 	if (gadget->connected) {
832 		ret = usb_gadget_disconnect_locked(gadget);
833 		if (ret)
834 			goto unlock;
835 
836 		/*
837 		 * If gadget was being connected before deactivation, we want
838 		 * to reconnect it in usb_gadget_activate().
839 		 */
840 		gadget->connected = true;
841 	}
842 	gadget->deactivated = true;
843 
844 unlock:
845 	mutex_unlock(&connect_lock);
846 out:
847 	trace_usb_gadget_deactivate(gadget, ret);
848 
849 	return ret;
850 }
851 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
852 
853 /**
854  * usb_gadget_activate - activate function which is not ready to work
855  * @gadget: the peripheral being activated
856  *
857  * This routine activates gadget which was previously deactivated with
858  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
859  *
860  * This routine may sleep; it must not be called in interrupt context.
861  *
862  * Returns zero on success, else negative errno.
863  */
usb_gadget_activate(struct usb_gadget * gadget)864 int usb_gadget_activate(struct usb_gadget *gadget)
865 {
866 	int ret = 0;
867 
868 	if (!gadget->deactivated)
869 		goto out;
870 
871 	mutex_lock(&connect_lock);
872 	gadget->deactivated = false;
873 
874 	/*
875 	 * If gadget has been connected before deactivation, or became connected
876 	 * while it was being deactivated, we call usb_gadget_connect().
877 	 */
878 	if (gadget->connected)
879 		ret = usb_gadget_connect_locked(gadget);
880 	mutex_unlock(&connect_lock);
881 
882 out:
883 	trace_usb_gadget_activate(gadget, ret);
884 
885 	return ret;
886 }
887 EXPORT_SYMBOL_GPL(usb_gadget_activate);
888 
889 /* ------------------------------------------------------------------------- */
890 
891 #ifdef	CONFIG_HAS_DMA
892 
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)893 int usb_gadget_map_request_by_dev(struct device *dev,
894 		struct usb_request *req, int is_in)
895 {
896 	if (req->length == 0)
897 		return 0;
898 
899 	if (req->num_sgs) {
900 		int     mapped;
901 
902 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
903 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
904 		if (mapped == 0) {
905 			dev_err(dev, "failed to map SGs\n");
906 			return -EFAULT;
907 		}
908 
909 		req->num_mapped_sgs = mapped;
910 	} else {
911 		if (is_vmalloc_addr(req->buf)) {
912 			dev_err(dev, "buffer is not dma capable\n");
913 			return -EFAULT;
914 		} else if (object_is_on_stack(req->buf)) {
915 			dev_err(dev, "buffer is on stack\n");
916 			return -EFAULT;
917 		}
918 
919 		req->dma = dma_map_single(dev, req->buf, req->length,
920 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
921 
922 		if (dma_mapping_error(dev, req->dma)) {
923 			dev_err(dev, "failed to map buffer\n");
924 			return -EFAULT;
925 		}
926 
927 		req->dma_mapped = 1;
928 	}
929 
930 	return 0;
931 }
932 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
933 
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)934 int usb_gadget_map_request(struct usb_gadget *gadget,
935 		struct usb_request *req, int is_in)
936 {
937 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
938 }
939 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
940 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)941 void usb_gadget_unmap_request_by_dev(struct device *dev,
942 		struct usb_request *req, int is_in)
943 {
944 	if (req->length == 0)
945 		return;
946 
947 	if (req->num_mapped_sgs) {
948 		dma_unmap_sg(dev, req->sg, req->num_sgs,
949 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
950 
951 		req->num_mapped_sgs = 0;
952 	} else if (req->dma_mapped) {
953 		dma_unmap_single(dev, req->dma, req->length,
954 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
955 		req->dma_mapped = 0;
956 	}
957 }
958 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
959 
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)960 void usb_gadget_unmap_request(struct usb_gadget *gadget,
961 		struct usb_request *req, int is_in)
962 {
963 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
964 }
965 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
966 
967 #endif	/* CONFIG_HAS_DMA */
968 
969 /* ------------------------------------------------------------------------- */
970 
971 /**
972  * usb_gadget_giveback_request - give the request back to the gadget layer
973  * @ep: the endpoint to be used with with the request
974  * @req: the request being given back
975  *
976  * This is called by device controller drivers in order to return the
977  * completed request back to the gadget layer.
978  */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)979 void usb_gadget_giveback_request(struct usb_ep *ep,
980 		struct usb_request *req)
981 {
982 	if (likely(req->status == 0))
983 		usb_led_activity(USB_LED_EVENT_GADGET);
984 
985 	trace_usb_gadget_giveback_request(ep, req, 0);
986 
987 	req->complete(ep, req);
988 }
989 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
990 
991 /* ------------------------------------------------------------------------- */
992 
993 /**
994  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
995  *	in second parameter or NULL if searched endpoint not found
996  * @g: controller to check for quirk
997  * @name: name of searched endpoint
998  */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)999 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
1000 {
1001 	struct usb_ep *ep;
1002 
1003 	gadget_for_each_ep(ep, g) {
1004 		if (!strcmp(ep->name, name))
1005 			return ep;
1006 	}
1007 
1008 	return NULL;
1009 }
1010 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
1011 
1012 /* ------------------------------------------------------------------------- */
1013 
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)1014 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1015 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1016 		struct usb_ss_ep_comp_descriptor *ep_comp)
1017 {
1018 	u8		type;
1019 	u16		max;
1020 	int		num_req_streams = 0;
1021 
1022 	/* endpoint already claimed? */
1023 	if (ep->claimed)
1024 		return 0;
1025 
1026 	type = usb_endpoint_type(desc);
1027 	max = usb_endpoint_maxp(desc);
1028 
1029 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1030 		return 0;
1031 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1032 		return 0;
1033 
1034 	if (max > ep->maxpacket_limit)
1035 		return 0;
1036 
1037 	/* "high bandwidth" works only at high speed */
1038 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1039 		return 0;
1040 
1041 	switch (type) {
1042 	case USB_ENDPOINT_XFER_CONTROL:
1043 		/* only support ep0 for portable CONTROL traffic */
1044 		return 0;
1045 	case USB_ENDPOINT_XFER_ISOC:
1046 		if (!ep->caps.type_iso)
1047 			return 0;
1048 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
1049 		if (!gadget_is_dualspeed(gadget) && max > 1023)
1050 			return 0;
1051 		break;
1052 	case USB_ENDPOINT_XFER_BULK:
1053 		if (!ep->caps.type_bulk)
1054 			return 0;
1055 		if (ep_comp && gadget_is_superspeed(gadget)) {
1056 			/* Get the number of required streams from the
1057 			 * EP companion descriptor and see if the EP
1058 			 * matches it
1059 			 */
1060 			num_req_streams = ep_comp->bmAttributes & 0x1f;
1061 			if (num_req_streams > ep->max_streams)
1062 				return 0;
1063 		}
1064 		break;
1065 	case USB_ENDPOINT_XFER_INT:
1066 		/* Bulk endpoints handle interrupt transfers,
1067 		 * except the toggle-quirky iso-synch kind
1068 		 */
1069 		if (!ep->caps.type_int && !ep->caps.type_bulk)
1070 			return 0;
1071 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1072 		if (!gadget_is_dualspeed(gadget) && max > 64)
1073 			return 0;
1074 		break;
1075 	}
1076 
1077 	return 1;
1078 }
1079 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1080 
1081 /**
1082  * usb_gadget_check_config - checks if the UDC can support the binded
1083  *	configuration
1084  * @gadget: controller to check the USB configuration
1085  *
1086  * Ensure that a UDC is able to support the requested resources by a
1087  * configuration, and that there are no resource limitations, such as
1088  * internal memory allocated to all requested endpoints.
1089  *
1090  * Returns zero on success, else a negative errno.
1091  */
usb_gadget_check_config(struct usb_gadget * gadget)1092 int usb_gadget_check_config(struct usb_gadget *gadget)
1093 {
1094 	if (gadget->ops->check_config)
1095 		return gadget->ops->check_config(gadget);
1096 	return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1099 
1100 /* ------------------------------------------------------------------------- */
1101 
usb_gadget_state_work(struct work_struct * work)1102 static void usb_gadget_state_work(struct work_struct *work)
1103 {
1104 	struct usb_gadget *gadget = work_to_gadget(work);
1105 	struct usb_udc *udc = gadget->udc;
1106 
1107 	if (udc)
1108 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1109 }
1110 
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1111 void usb_gadget_set_state(struct usb_gadget *gadget,
1112 		enum usb_device_state state)
1113 {
1114 	gadget->state = state;
1115 	schedule_work(&gadget->work);
1116 }
1117 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1118 
1119 /* ------------------------------------------------------------------------- */
1120 
1121 /* Acquire connect_lock before calling this function. */
usb_udc_connect_control_locked(struct usb_udc * udc)1122 static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&connect_lock)
1123 {
1124 	if (udc->vbus && udc->started)
1125 		usb_gadget_connect_locked(udc->gadget);
1126 	else
1127 		usb_gadget_disconnect_locked(udc->gadget);
1128 }
1129 
1130 /**
1131  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1132  * connect or disconnect gadget
1133  * @gadget: The gadget which vbus change occurs
1134  * @status: The vbus status
1135  *
1136  * The udc driver calls it when it wants to connect or disconnect gadget
1137  * according to vbus status.
1138  */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1139 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1140 {
1141 	struct usb_udc *udc = gadget->udc;
1142 
1143 	mutex_lock(&connect_lock);
1144 	if (udc) {
1145 		udc->vbus = status;
1146 		usb_udc_connect_control_locked(udc);
1147 	}
1148 	mutex_unlock(&connect_lock);
1149 }
1150 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1151 
1152 /**
1153  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1154  * @gadget: The gadget which bus reset occurs
1155  * @driver: The gadget driver we want to notify
1156  *
1157  * If the udc driver has bus reset handler, it needs to call this when the bus
1158  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1159  * well as updates gadget state.
1160  */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1161 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1162 		struct usb_gadget_driver *driver)
1163 {
1164 	driver->reset(gadget);
1165 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1166 }
1167 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1168 
1169 /**
1170  * usb_gadget_udc_start_locked - tells usb device controller to start up
1171  * @udc: The UDC to be started
1172  *
1173  * This call is issued by the UDC Class driver when it's about
1174  * to register a gadget driver to the device controller, before
1175  * calling gadget driver's bind() method.
1176  *
1177  * It allows the controller to be powered off until strictly
1178  * necessary to have it powered on.
1179  *
1180  * Returns zero on success, else negative errno.
1181  *
1182  * Caller should acquire connect_lock before invoking this function.
1183  */
usb_gadget_udc_start_locked(struct usb_udc * udc)1184 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1185 	__must_hold(&connect_lock)
1186 {
1187 	int ret;
1188 
1189 	if (udc->started) {
1190 		dev_err(&udc->dev, "UDC had already started\n");
1191 		return -EBUSY;
1192 	}
1193 
1194 	ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1195 	if (!ret)
1196 		udc->started = true;
1197 
1198 	return ret;
1199 }
1200 
1201 /**
1202  * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1203  * @udc: The UDC to be stopped
1204  *
1205  * This call is issued by the UDC Class driver after calling
1206  * gadget driver's unbind() method.
1207  *
1208  * The details are implementation specific, but it can go as
1209  * far as powering off UDC completely and disable its data
1210  * line pullups.
1211  *
1212  * Caller should acquire connect lock before invoking this function.
1213  */
usb_gadget_udc_stop_locked(struct usb_udc * udc)1214 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1215 	__must_hold(&connect_lock)
1216 {
1217 	if (!udc->started) {
1218 		dev_err(&udc->dev, "UDC had already stopped\n");
1219 		return;
1220 	}
1221 
1222 	udc->gadget->ops->udc_stop(udc->gadget);
1223 	udc->started = false;
1224 }
1225 
1226 /**
1227  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1228  *    current driver
1229  * @udc: The device we want to set maximum speed
1230  * @speed: The maximum speed to allowed to run
1231  *
1232  * This call is issued by the UDC Class driver before calling
1233  * usb_gadget_udc_start() in order to make sure that we don't try to
1234  * connect on speeds the gadget driver doesn't support.
1235  */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1236 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1237 					    enum usb_device_speed speed)
1238 {
1239 	struct usb_gadget *gadget = udc->gadget;
1240 	enum usb_device_speed s;
1241 
1242 	if (speed == USB_SPEED_UNKNOWN)
1243 		s = gadget->max_speed;
1244 	else
1245 		s = min(speed, gadget->max_speed);
1246 
1247 	if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1248 		gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1249 	else if (gadget->ops->udc_set_speed)
1250 		gadget->ops->udc_set_speed(gadget, s);
1251 }
1252 
1253 /**
1254  * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1255  * @udc: The UDC which should enable async callbacks
1256  *
1257  * This routine is used when binding gadget drivers.  It undoes the effect
1258  * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1259  * (if necessary) and resume issuing callbacks.
1260  *
1261  * This routine will always be called in process context.
1262  */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1263 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1264 {
1265 	struct usb_gadget *gadget = udc->gadget;
1266 
1267 	if (gadget->ops->udc_async_callbacks)
1268 		gadget->ops->udc_async_callbacks(gadget, true);
1269 }
1270 
1271 /**
1272  * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1273  * @udc: The UDC which should disable async callbacks
1274  *
1275  * This routine is used when unbinding gadget drivers.  It prevents a race:
1276  * The UDC driver doesn't know when the gadget driver's ->unbind callback
1277  * runs, so unless it is told to disable asynchronous callbacks, it might
1278  * issue a callback (such as ->disconnect) after the unbind has completed.
1279  *
1280  * After this function runs, the UDC driver must suppress all ->suspend,
1281  * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1282  * until async callbacks are again enabled.  A simple-minded but effective
1283  * way to accomplish this is to tell the UDC hardware not to generate any
1284  * more IRQs.
1285  *
1286  * Request completion callbacks must still be issued.  However, it's okay
1287  * to defer them until the request is cancelled, since the pull-up will be
1288  * turned off during the time period when async callbacks are disabled.
1289  *
1290  * This routine will always be called in process context.
1291  */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1292 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1293 {
1294 	struct usb_gadget *gadget = udc->gadget;
1295 
1296 	if (gadget->ops->udc_async_callbacks)
1297 		gadget->ops->udc_async_callbacks(gadget, false);
1298 }
1299 
1300 /**
1301  * usb_udc_release - release the usb_udc struct
1302  * @dev: the dev member within usb_udc
1303  *
1304  * This is called by driver's core in order to free memory once the last
1305  * reference is released.
1306  */
usb_udc_release(struct device * dev)1307 static void usb_udc_release(struct device *dev)
1308 {
1309 	struct usb_udc *udc;
1310 
1311 	udc = container_of(dev, struct usb_udc, dev);
1312 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1313 	kfree(udc);
1314 }
1315 
1316 static const struct attribute_group *usb_udc_attr_groups[];
1317 
usb_udc_nop_release(struct device * dev)1318 static void usb_udc_nop_release(struct device *dev)
1319 {
1320 	dev_vdbg(dev, "%s\n", __func__);
1321 }
1322 
1323 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1324 static int check_pending_gadget_drivers(struct usb_udc *udc)
1325 {
1326 	struct usb_gadget_driver *driver;
1327 	int ret = 0;
1328 
1329 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1330 		if (!driver->udc_name || strcmp(driver->udc_name,
1331 						dev_name(&udc->dev)) == 0) {
1332 			ret = udc_bind_to_driver(udc, driver);
1333 			if (ret != -EPROBE_DEFER)
1334 				list_del_init(&driver->pending);
1335 			break;
1336 		}
1337 
1338 	return ret;
1339 }
1340 
1341 /**
1342  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1343  * @parent: the parent device to this udc. Usually the controller driver's
1344  * device.
1345  * @gadget: the gadget to be initialized.
1346  * @release: a gadget release function.
1347  *
1348  * Returns zero on success, negative errno otherwise.
1349  * Calls the gadget release function in the latter case.
1350  */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1351 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1352 		void (*release)(struct device *dev))
1353 {
1354 	dev_set_name(&gadget->dev, "gadget");
1355 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1356 	gadget->dev.parent = parent;
1357 
1358 	if (release)
1359 		gadget->dev.release = release;
1360 	else
1361 		gadget->dev.release = usb_udc_nop_release;
1362 
1363 	device_initialize(&gadget->dev);
1364 }
1365 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1366 
1367 /**
1368  * usb_add_gadget - adds a new gadget to the udc class driver list
1369  * @gadget: the gadget to be added to the list.
1370  *
1371  * Returns zero on success, negative errno otherwise.
1372  * Does not do a final usb_put_gadget() if an error occurs.
1373  */
usb_add_gadget(struct usb_gadget * gadget)1374 int usb_add_gadget(struct usb_gadget *gadget)
1375 {
1376 	struct usb_udc		*udc;
1377 	int			ret = -ENOMEM;
1378 
1379 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1380 	if (!udc)
1381 		goto error;
1382 
1383 	device_initialize(&udc->dev);
1384 	udc->dev.release = usb_udc_release;
1385 	udc->dev.class = udc_class;
1386 	udc->dev.groups = usb_udc_attr_groups;
1387 	udc->dev.parent = gadget->dev.parent;
1388 	ret = dev_set_name(&udc->dev, "%s",
1389 			kobject_name(&gadget->dev.parent->kobj));
1390 	if (ret)
1391 		goto err_put_udc;
1392 
1393 	ret = device_add(&gadget->dev);
1394 	if (ret)
1395 		goto err_put_udc;
1396 
1397 	udc->gadget = gadget;
1398 	gadget->udc = udc;
1399 
1400 	udc->started = false;
1401 
1402 	mutex_lock(&udc_lock);
1403 	list_add_tail(&udc->list, &udc_list);
1404 
1405 	ret = device_add(&udc->dev);
1406 	if (ret)
1407 		goto err_unlist_udc;
1408 
1409 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1410 	udc->vbus = true;
1411 
1412 	/* pick up one of pending gadget drivers */
1413 	ret = check_pending_gadget_drivers(udc);
1414 	if (ret)
1415 		goto err_del_udc;
1416 
1417 	mutex_unlock(&udc_lock);
1418 
1419 	return 0;
1420 
1421  err_del_udc:
1422 	flush_work(&gadget->work);
1423 	device_del(&udc->dev);
1424 
1425  err_unlist_udc:
1426 	list_del(&udc->list);
1427 	mutex_unlock(&udc_lock);
1428 
1429 	device_del(&gadget->dev);
1430 
1431  err_put_udc:
1432 	put_device(&udc->dev);
1433 
1434  error:
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(usb_add_gadget);
1438 
1439 /**
1440  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1441  * @parent: the parent device to this udc. Usually the controller driver's
1442  * device.
1443  * @gadget: the gadget to be added to the list.
1444  * @release: a gadget release function.
1445  *
1446  * Returns zero on success, negative errno otherwise.
1447  * Calls the gadget release function in the latter case.
1448  */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1449 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1450 		void (*release)(struct device *dev))
1451 {
1452 	int	ret;
1453 
1454 	usb_initialize_gadget(parent, gadget, release);
1455 	ret = usb_add_gadget(gadget);
1456 	if (ret)
1457 		usb_put_gadget(gadget);
1458 	return ret;
1459 }
1460 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1461 
1462 /**
1463  * usb_get_gadget_udc_name - get the name of the first UDC controller
1464  * This functions returns the name of the first UDC controller in the system.
1465  * Please note that this interface is usefull only for legacy drivers which
1466  * assume that there is only one UDC controller in the system and they need to
1467  * get its name before initialization. There is no guarantee that the UDC
1468  * of the returned name will be still available, when gadget driver registers
1469  * itself.
1470  *
1471  * Returns pointer to string with UDC controller name on success, NULL
1472  * otherwise. Caller should kfree() returned string.
1473  */
usb_get_gadget_udc_name(void)1474 char *usb_get_gadget_udc_name(void)
1475 {
1476 	struct usb_udc *udc;
1477 	char *name = NULL;
1478 
1479 	/* For now we take the first available UDC */
1480 	mutex_lock(&udc_lock);
1481 	list_for_each_entry(udc, &udc_list, list) {
1482 		if (!udc->driver) {
1483 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1484 			break;
1485 		}
1486 	}
1487 	mutex_unlock(&udc_lock);
1488 	return name;
1489 }
1490 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1491 
1492 /**
1493  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1494  * @parent: the parent device to this udc. Usually the controller
1495  * driver's device.
1496  * @gadget: the gadget to be added to the list
1497  *
1498  * Returns zero on success, negative errno otherwise.
1499  */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1500 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1501 {
1502 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1503 }
1504 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1505 
usb_gadget_remove_driver(struct usb_udc * udc)1506 static void usb_gadget_remove_driver(struct usb_udc *udc)
1507 {
1508 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1509 			udc->driver->function);
1510 
1511 	mutex_lock(&connect_lock);
1512 	usb_gadget_disconnect_locked(udc->gadget);
1513 	usb_gadget_disable_async_callbacks(udc);
1514 	if (udc->gadget->irq)
1515 		synchronize_irq(udc->gadget->irq);
1516 	mutex_unlock(&connect_lock);
1517 
1518 	udc->driver->unbind(udc->gadget);
1519 
1520 	mutex_lock(&connect_lock);
1521 	usb_gadget_udc_stop_locked(udc);
1522 	mutex_unlock(&connect_lock);
1523 
1524 	udc->driver = NULL;
1525 	udc->gadget->dev.driver = NULL;
1526 
1527 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1528 }
1529 
1530 /**
1531  * usb_del_gadget - deletes @udc from udc_list
1532  * @gadget: the gadget to be removed.
1533  *
1534  * This will call usb_gadget_unregister_driver() if
1535  * the @udc is still busy.
1536  * It will not do a final usb_put_gadget().
1537  */
usb_del_gadget(struct usb_gadget * gadget)1538 void usb_del_gadget(struct usb_gadget *gadget)
1539 {
1540 	struct usb_udc *udc = gadget->udc;
1541 
1542 	if (!udc)
1543 		return;
1544 
1545 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1546 
1547 	mutex_lock(&udc_lock);
1548 	list_del(&udc->list);
1549 
1550 	if (udc->driver) {
1551 		struct usb_gadget_driver *driver = udc->driver;
1552 
1553 		usb_gadget_remove_driver(udc);
1554 		list_add(&driver->pending, &gadget_driver_pending_list);
1555 	}
1556 	mutex_unlock(&udc_lock);
1557 
1558 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1559 	flush_work(&gadget->work);
1560 	device_unregister(&udc->dev);
1561 	device_del(&gadget->dev);
1562 }
1563 EXPORT_SYMBOL_GPL(usb_del_gadget);
1564 
1565 /**
1566  * usb_del_gadget_udc - deletes @udc from udc_list
1567  * @gadget: the gadget to be removed.
1568  *
1569  * Calls usb_del_gadget() and does a final usb_put_gadget().
1570  */
usb_del_gadget_udc(struct usb_gadget * gadget)1571 void usb_del_gadget_udc(struct usb_gadget *gadget)
1572 {
1573 	usb_del_gadget(gadget);
1574 	usb_put_gadget(gadget);
1575 }
1576 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1577 
1578 /* ------------------------------------------------------------------------- */
1579 
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1580 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1581 {
1582 	int ret;
1583 
1584 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1585 			driver->function);
1586 
1587 	udc->driver = driver;
1588 	udc->gadget->dev.driver = &driver->driver;
1589 
1590 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1591 
1592 	ret = driver->bind(udc->gadget, driver);
1593 	if (ret)
1594 		goto err1;
1595 	mutex_lock(&connect_lock);
1596 	ret = usb_gadget_udc_start_locked(udc);
1597 	if (ret) {
1598 		mutex_unlock(&connect_lock);
1599 		driver->unbind(udc->gadget);
1600 		goto err1;
1601 	}
1602 	usb_gadget_enable_async_callbacks(udc);
1603 	usb_udc_connect_control_locked(udc);
1604 	mutex_unlock(&connect_lock);
1605 
1606 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1607 	return 0;
1608 err1:
1609 	if (ret != -EISNAM)
1610 		dev_err(&udc->dev, "failed to start %s: %d\n",
1611 			udc->driver->function, ret);
1612 	udc->driver = NULL;
1613 	udc->gadget->dev.driver = NULL;
1614 	return ret;
1615 }
1616 
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1617 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1618 {
1619 	struct usb_udc		*udc = NULL;
1620 	int			ret = -ENODEV;
1621 
1622 	if (!driver || !driver->bind || !driver->setup)
1623 		return -EINVAL;
1624 
1625 	mutex_lock(&udc_lock);
1626 	if (driver->udc_name) {
1627 		list_for_each_entry(udc, &udc_list, list) {
1628 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1629 			if (!ret)
1630 				break;
1631 		}
1632 		if (ret)
1633 			ret = -ENODEV;
1634 		else if (udc->driver)
1635 			ret = -EBUSY;
1636 		else
1637 			goto found;
1638 	} else {
1639 		list_for_each_entry(udc, &udc_list, list) {
1640 			/* For now we take the first one */
1641 			if (!udc->driver)
1642 				goto found;
1643 		}
1644 	}
1645 
1646 	if (!driver->match_existing_only) {
1647 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1648 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1649 			driver->function);
1650 		ret = 0;
1651 	}
1652 
1653 	mutex_unlock(&udc_lock);
1654 	if (ret)
1655 		pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1656 	return ret;
1657 found:
1658 	ret = udc_bind_to_driver(udc, driver);
1659 	mutex_unlock(&udc_lock);
1660 	return ret;
1661 }
1662 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1663 
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1664 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1665 {
1666 	struct usb_udc		*udc = NULL;
1667 	int			ret = -ENODEV;
1668 
1669 	if (!driver || !driver->unbind)
1670 		return -EINVAL;
1671 
1672 	mutex_lock(&udc_lock);
1673 	list_for_each_entry(udc, &udc_list, list) {
1674 		if (udc->driver == driver) {
1675 			usb_gadget_remove_driver(udc);
1676 			usb_gadget_set_state(udc->gadget,
1677 					     USB_STATE_NOTATTACHED);
1678 
1679 			/* Maybe there is someone waiting for this UDC? */
1680 			check_pending_gadget_drivers(udc);
1681 			/*
1682 			 * For now we ignore bind errors as probably it's
1683 			 * not a valid reason to fail other's gadget unbind
1684 			 */
1685 			ret = 0;
1686 			break;
1687 		}
1688 	}
1689 
1690 	if (ret) {
1691 		list_del(&driver->pending);
1692 		ret = 0;
1693 	}
1694 	mutex_unlock(&udc_lock);
1695 	return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1698 
1699 /* ------------------------------------------------------------------------- */
1700 
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1701 static ssize_t srp_store(struct device *dev,
1702 		struct device_attribute *attr, const char *buf, size_t n)
1703 {
1704 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1705 
1706 	if (sysfs_streq(buf, "1"))
1707 		usb_gadget_wakeup(udc->gadget);
1708 
1709 	return n;
1710 }
1711 static DEVICE_ATTR_WO(srp);
1712 
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1713 static ssize_t soft_connect_store(struct device *dev,
1714 		struct device_attribute *attr, const char *buf, size_t n)
1715 {
1716 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1717 	ssize_t			ret;
1718 
1719 	mutex_lock(&udc_lock);
1720 	if (!udc->driver) {
1721 		dev_err(dev, "soft-connect without a gadget driver\n");
1722 		ret = -EOPNOTSUPP;
1723 		goto out;
1724 	}
1725 
1726 	if (sysfs_streq(buf, "connect")) {
1727 		mutex_lock(&connect_lock);
1728 		usb_gadget_udc_start_locked(udc);
1729 		usb_gadget_connect_locked(udc->gadget);
1730 		mutex_unlock(&connect_lock);
1731 	} else if (sysfs_streq(buf, "disconnect")) {
1732 		mutex_lock(&connect_lock);
1733 		usb_gadget_disconnect_locked(udc->gadget);
1734 		usb_gadget_udc_stop_locked(udc);
1735 		mutex_unlock(&connect_lock);
1736 	} else {
1737 		dev_err(dev, "unsupported command '%s'\n", buf);
1738 		ret = -EINVAL;
1739 		goto out;
1740 	}
1741 
1742 	ret = n;
1743 out:
1744 	mutex_unlock(&udc_lock);
1745 	return ret;
1746 }
1747 static DEVICE_ATTR_WO(soft_connect);
1748 
state_show(struct device * dev,struct device_attribute * attr,char * buf)1749 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1750 			  char *buf)
1751 {
1752 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1753 	struct usb_gadget	*gadget = udc->gadget;
1754 
1755 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1756 }
1757 static DEVICE_ATTR_RO(state);
1758 
function_show(struct device * dev,struct device_attribute * attr,char * buf)1759 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1760 			     char *buf)
1761 {
1762 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1763 	struct usb_gadget_driver *drv = udc->driver;
1764 
1765 	if (!drv || !drv->function)
1766 		return 0;
1767 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1768 }
1769 static DEVICE_ATTR_RO(function);
1770 
1771 #define USB_UDC_SPEED_ATTR(name, param)					\
1772 ssize_t name##_show(struct device *dev,					\
1773 		struct device_attribute *attr, char *buf)		\
1774 {									\
1775 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1776 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1777 			usb_speed_string(udc->gadget->param));		\
1778 }									\
1779 static DEVICE_ATTR_RO(name)
1780 
1781 static USB_UDC_SPEED_ATTR(current_speed, speed);
1782 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1783 
1784 #define USB_UDC_ATTR(name)					\
1785 ssize_t name##_show(struct device *dev,				\
1786 		struct device_attribute *attr, char *buf)	\
1787 {								\
1788 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1789 	struct usb_gadget	*gadget = udc->gadget;		\
1790 								\
1791 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1792 }								\
1793 static DEVICE_ATTR_RO(name)
1794 
1795 static USB_UDC_ATTR(is_otg);
1796 static USB_UDC_ATTR(is_a_peripheral);
1797 static USB_UDC_ATTR(b_hnp_enable);
1798 static USB_UDC_ATTR(a_hnp_support);
1799 static USB_UDC_ATTR(a_alt_hnp_support);
1800 static USB_UDC_ATTR(is_selfpowered);
1801 
1802 static struct attribute *usb_udc_attrs[] = {
1803 	&dev_attr_srp.attr,
1804 	&dev_attr_soft_connect.attr,
1805 	&dev_attr_state.attr,
1806 	&dev_attr_function.attr,
1807 	&dev_attr_current_speed.attr,
1808 	&dev_attr_maximum_speed.attr,
1809 
1810 	&dev_attr_is_otg.attr,
1811 	&dev_attr_is_a_peripheral.attr,
1812 	&dev_attr_b_hnp_enable.attr,
1813 	&dev_attr_a_hnp_support.attr,
1814 	&dev_attr_a_alt_hnp_support.attr,
1815 	&dev_attr_is_selfpowered.attr,
1816 	NULL,
1817 };
1818 
1819 static const struct attribute_group usb_udc_attr_group = {
1820 	.attrs = usb_udc_attrs,
1821 };
1822 
1823 static const struct attribute_group *usb_udc_attr_groups[] = {
1824 	&usb_udc_attr_group,
1825 	NULL,
1826 };
1827 
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1828 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1829 {
1830 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1831 	int			ret;
1832 
1833 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1834 	if (ret) {
1835 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1836 		return ret;
1837 	}
1838 
1839 	if (udc->driver) {
1840 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1841 				udc->driver->function);
1842 		if (ret) {
1843 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1844 			return ret;
1845 		}
1846 	}
1847 
1848 	return 0;
1849 }
1850 
usb_udc_init(void)1851 static int __init usb_udc_init(void)
1852 {
1853 	udc_class = class_create(THIS_MODULE, "udc");
1854 	if (IS_ERR(udc_class)) {
1855 		pr_err("failed to create udc class --> %ld\n",
1856 				PTR_ERR(udc_class));
1857 		return PTR_ERR(udc_class);
1858 	}
1859 
1860 	udc_class->dev_uevent = usb_udc_uevent;
1861 	return 0;
1862 }
1863 subsys_initcall(usb_udc_init);
1864 
usb_udc_exit(void)1865 static void __exit usb_udc_exit(void)
1866 {
1867 	class_destroy(udc_class);
1868 }
1869 module_exit(usb_udc_exit);
1870 
1871 MODULE_DESCRIPTION("UDC Framework");
1872 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1873 MODULE_LICENSE("GPL v2");
1874