1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - Core UDC Framework
4 *
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21
22 #include "trace.h"
23
24 /**
25 * struct usb_udc - describes one usb device controller
26 * @driver: the gadget driver pointer. For use by the class code
27 * @dev: the child device to the actual controller
28 * @gadget: the gadget. For use by the class code
29 * @list: for use by the udc class driver
30 * @vbus: for udcs who care about vbus status, this value is real vbus status;
31 * for udcs who do not care about vbus status, this value is always true
32 * @started: the UDC's started state. True if the UDC had started.
33 *
34 * This represents the internal data structure which is used by the UDC-class
35 * to hold information about udc driver and gadget together.
36 */
37 struct usb_udc {
38 struct usb_gadget_driver *driver;
39 struct usb_gadget *gadget;
40 struct device dev;
41 struct list_head list;
42 bool vbus;
43 bool started;
44 };
45
46 static struct class *udc_class;
47 static LIST_HEAD(udc_list);
48 static LIST_HEAD(gadget_driver_pending_list);
49 static DEFINE_MUTEX(udc_lock);
50 /**
51 * protects udc->vbus, udc->started, gadget->connect, gadget->deactivate related
52 * functions. usb_gadget_connect_locked, usb_gadget_disconnect_locked,
53 * usb_udc_connect_control_locked, usb_gadget_udc_start_locked, usb_gadget_udc_stop_locked are
54 * called with this lock held.
55 */
56 static DEFINE_MUTEX(connect_lock);
57
58 static int udc_bind_to_driver(struct usb_udc *udc,
59 struct usb_gadget_driver *driver);
60
61 /* ------------------------------------------------------------------------- */
62
63 /**
64 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
65 * @ep:the endpoint being configured
66 * @maxpacket_limit:value of maximum packet size limit
67 *
68 * This function should be used only in UDC drivers to initialize endpoint
69 * (usually in probe function).
70 */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)71 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
72 unsigned maxpacket_limit)
73 {
74 ep->maxpacket_limit = maxpacket_limit;
75 ep->maxpacket = maxpacket_limit;
76
77 trace_usb_ep_set_maxpacket_limit(ep, 0);
78 }
79 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
80
81 /**
82 * usb_ep_enable - configure endpoint, making it usable
83 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
84 * drivers discover endpoints through the ep_list of a usb_gadget.
85 *
86 * When configurations are set, or when interface settings change, the driver
87 * will enable or disable the relevant endpoints. while it is enabled, an
88 * endpoint may be used for i/o until the driver receives a disconnect() from
89 * the host or until the endpoint is disabled.
90 *
91 * the ep0 implementation (which calls this routine) must ensure that the
92 * hardware capabilities of each endpoint match the descriptor provided
93 * for it. for example, an endpoint named "ep2in-bulk" would be usable
94 * for interrupt transfers as well as bulk, but it likely couldn't be used
95 * for iso transfers or for endpoint 14. some endpoints are fully
96 * configurable, with more generic names like "ep-a". (remember that for
97 * USB, "in" means "towards the USB host".)
98 *
99 * This routine may be called in an atomic (interrupt) context.
100 *
101 * returns zero, or a negative error code.
102 */
usb_ep_enable(struct usb_ep * ep)103 int usb_ep_enable(struct usb_ep *ep)
104 {
105 int ret = 0;
106
107 if (ep->enabled)
108 goto out;
109
110 /* UDC drivers can't handle endpoints with maxpacket size 0 */
111 if (usb_endpoint_maxp(ep->desc) == 0) {
112 /*
113 * We should log an error message here, but we can't call
114 * dev_err() because there's no way to find the gadget
115 * given only ep.
116 */
117 ret = -EINVAL;
118 goto out;
119 }
120
121 ret = ep->ops->enable(ep, ep->desc);
122 if (ret)
123 goto out;
124
125 ep->enabled = true;
126
127 out:
128 trace_usb_ep_enable(ep, ret);
129
130 return ret;
131 }
132 EXPORT_SYMBOL_GPL(usb_ep_enable);
133
134 /**
135 * usb_ep_disable - endpoint is no longer usable
136 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
137 *
138 * no other task may be using this endpoint when this is called.
139 * any pending and uncompleted requests will complete with status
140 * indicating disconnect (-ESHUTDOWN) before this call returns.
141 * gadget drivers must call usb_ep_enable() again before queueing
142 * requests to the endpoint.
143 *
144 * This routine may be called in an atomic (interrupt) context.
145 *
146 * returns zero, or a negative error code.
147 */
usb_ep_disable(struct usb_ep * ep)148 int usb_ep_disable(struct usb_ep *ep)
149 {
150 int ret = 0;
151
152 if (!ep->enabled)
153 goto out;
154
155 ret = ep->ops->disable(ep);
156 if (ret)
157 goto out;
158
159 ep->enabled = false;
160
161 out:
162 trace_usb_ep_disable(ep, ret);
163
164 return ret;
165 }
166 EXPORT_SYMBOL_GPL(usb_ep_disable);
167
168 /**
169 * usb_ep_alloc_request - allocate a request object to use with this endpoint
170 * @ep:the endpoint to be used with with the request
171 * @gfp_flags:GFP_* flags to use
172 *
173 * Request objects must be allocated with this call, since they normally
174 * need controller-specific setup and may even need endpoint-specific
175 * resources such as allocation of DMA descriptors.
176 * Requests may be submitted with usb_ep_queue(), and receive a single
177 * completion callback. Free requests with usb_ep_free_request(), when
178 * they are no longer needed.
179 *
180 * Returns the request, or null if one could not be allocated.
181 */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)182 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
183 gfp_t gfp_flags)
184 {
185 struct usb_request *req = NULL;
186
187 req = ep->ops->alloc_request(ep, gfp_flags);
188
189 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
190
191 return req;
192 }
193 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
194
195 /**
196 * usb_ep_free_request - frees a request object
197 * @ep:the endpoint associated with the request
198 * @req:the request being freed
199 *
200 * Reverses the effect of usb_ep_alloc_request().
201 * Caller guarantees the request is not queued, and that it will
202 * no longer be requeued (or otherwise used).
203 */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)204 void usb_ep_free_request(struct usb_ep *ep,
205 struct usb_request *req)
206 {
207 trace_usb_ep_free_request(ep, req, 0);
208 ep->ops->free_request(ep, req);
209 }
210 EXPORT_SYMBOL_GPL(usb_ep_free_request);
211
212 /**
213 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
214 * @ep:the endpoint associated with the request
215 * @req:the request being submitted
216 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
217 * pre-allocate all necessary memory with the request.
218 *
219 * This tells the device controller to perform the specified request through
220 * that endpoint (reading or writing a buffer). When the request completes,
221 * including being canceled by usb_ep_dequeue(), the request's completion
222 * routine is called to return the request to the driver. Any endpoint
223 * (except control endpoints like ep0) may have more than one transfer
224 * request queued; they complete in FIFO order. Once a gadget driver
225 * submits a request, that request may not be examined or modified until it
226 * is given back to that driver through the completion callback.
227 *
228 * Each request is turned into one or more packets. The controller driver
229 * never merges adjacent requests into the same packet. OUT transfers
230 * will sometimes use data that's already buffered in the hardware.
231 * Drivers can rely on the fact that the first byte of the request's buffer
232 * always corresponds to the first byte of some USB packet, for both
233 * IN and OUT transfers.
234 *
235 * Bulk endpoints can queue any amount of data; the transfer is packetized
236 * automatically. The last packet will be short if the request doesn't fill it
237 * out completely. Zero length packets (ZLPs) should be avoided in portable
238 * protocols since not all usb hardware can successfully handle zero length
239 * packets. (ZLPs may be explicitly written, and may be implicitly written if
240 * the request 'zero' flag is set.) Bulk endpoints may also be used
241 * for interrupt transfers; but the reverse is not true, and some endpoints
242 * won't support every interrupt transfer. (Such as 768 byte packets.)
243 *
244 * Interrupt-only endpoints are less functional than bulk endpoints, for
245 * example by not supporting queueing or not handling buffers that are
246 * larger than the endpoint's maxpacket size. They may also treat data
247 * toggle differently.
248 *
249 * Control endpoints ... after getting a setup() callback, the driver queues
250 * one response (even if it would be zero length). That enables the
251 * status ack, after transferring data as specified in the response. Setup
252 * functions may return negative error codes to generate protocol stalls.
253 * (Note that some USB device controllers disallow protocol stall responses
254 * in some cases.) When control responses are deferred (the response is
255 * written after the setup callback returns), then usb_ep_set_halt() may be
256 * used on ep0 to trigger protocol stalls. Depending on the controller,
257 * it may not be possible to trigger a status-stage protocol stall when the
258 * data stage is over, that is, from within the response's completion
259 * routine.
260 *
261 * For periodic endpoints, like interrupt or isochronous ones, the usb host
262 * arranges to poll once per interval, and the gadget driver usually will
263 * have queued some data to transfer at that time.
264 *
265 * Note that @req's ->complete() callback must never be called from
266 * within usb_ep_queue() as that can create deadlock situations.
267 *
268 * This routine may be called in interrupt context.
269 *
270 * Returns zero, or a negative error code. Endpoints that are not enabled
271 * report errors; errors will also be
272 * reported when the usb peripheral is disconnected.
273 *
274 * If and only if @req is successfully queued (the return value is zero),
275 * @req->complete() will be called exactly once, when the Gadget core and
276 * UDC are finished with the request. When the completion function is called,
277 * control of the request is returned to the device driver which submitted it.
278 * The completion handler may then immediately free or reuse @req.
279 */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)280 int usb_ep_queue(struct usb_ep *ep,
281 struct usb_request *req, gfp_t gfp_flags)
282 {
283 int ret = 0;
284
285 if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
286 ret = -ESHUTDOWN;
287 goto out;
288 }
289
290 ret = ep->ops->queue(ep, req, gfp_flags);
291
292 out:
293 trace_usb_ep_queue(ep, req, ret);
294
295 return ret;
296 }
297 EXPORT_SYMBOL_GPL(usb_ep_queue);
298
299 /**
300 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
301 * @ep:the endpoint associated with the request
302 * @req:the request being canceled
303 *
304 * If the request is still active on the endpoint, it is dequeued and
305 * eventually its completion routine is called (with status -ECONNRESET);
306 * else a negative error code is returned. This routine is asynchronous,
307 * that is, it may return before the completion routine runs.
308 *
309 * Note that some hardware can't clear out write fifos (to unlink the request
310 * at the head of the queue) except as part of disconnecting from usb. Such
311 * restrictions prevent drivers from supporting configuration changes,
312 * even to configuration zero (a "chapter 9" requirement).
313 *
314 * This routine may be called in interrupt context.
315 */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)316 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
317 {
318 int ret;
319
320 ret = ep->ops->dequeue(ep, req);
321 trace_usb_ep_dequeue(ep, req, ret);
322
323 return ret;
324 }
325 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
326
327 /**
328 * usb_ep_set_halt - sets the endpoint halt feature.
329 * @ep: the non-isochronous endpoint being stalled
330 *
331 * Use this to stall an endpoint, perhaps as an error report.
332 * Except for control endpoints,
333 * the endpoint stays halted (will not stream any data) until the host
334 * clears this feature; drivers may need to empty the endpoint's request
335 * queue first, to make sure no inappropriate transfers happen.
336 *
337 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
338 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
339 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
340 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
341 *
342 * This routine may be called in interrupt context.
343 *
344 * Returns zero, or a negative error code. On success, this call sets
345 * underlying hardware state that blocks data transfers.
346 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
347 * transfer requests are still queued, or if the controller hardware
348 * (usually a FIFO) still holds bytes that the host hasn't collected.
349 */
usb_ep_set_halt(struct usb_ep * ep)350 int usb_ep_set_halt(struct usb_ep *ep)
351 {
352 int ret;
353
354 ret = ep->ops->set_halt(ep, 1);
355 trace_usb_ep_set_halt(ep, ret);
356
357 return ret;
358 }
359 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
360
361 /**
362 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
363 * @ep:the bulk or interrupt endpoint being reset
364 *
365 * Use this when responding to the standard usb "set interface" request,
366 * for endpoints that aren't reconfigured, after clearing any other state
367 * in the endpoint's i/o queue.
368 *
369 * This routine may be called in interrupt context.
370 *
371 * Returns zero, or a negative error code. On success, this call clears
372 * the underlying hardware state reflecting endpoint halt and data toggle.
373 * Note that some hardware can't support this request (like pxa2xx_udc),
374 * and accordingly can't correctly implement interface altsettings.
375 */
usb_ep_clear_halt(struct usb_ep * ep)376 int usb_ep_clear_halt(struct usb_ep *ep)
377 {
378 int ret;
379
380 ret = ep->ops->set_halt(ep, 0);
381 trace_usb_ep_clear_halt(ep, ret);
382
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
386
387 /**
388 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
389 * @ep: the endpoint being wedged
390 *
391 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
392 * requests. If the gadget driver clears the halt status, it will
393 * automatically unwedge the endpoint.
394 *
395 * This routine may be called in interrupt context.
396 *
397 * Returns zero on success, else negative errno.
398 */
usb_ep_set_wedge(struct usb_ep * ep)399 int usb_ep_set_wedge(struct usb_ep *ep)
400 {
401 int ret;
402
403 if (ep->ops->set_wedge)
404 ret = ep->ops->set_wedge(ep);
405 else
406 ret = ep->ops->set_halt(ep, 1);
407
408 trace_usb_ep_set_wedge(ep, ret);
409
410 return ret;
411 }
412 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
413
414 /**
415 * usb_ep_fifo_status - returns number of bytes in fifo, or error
416 * @ep: the endpoint whose fifo status is being checked.
417 *
418 * FIFO endpoints may have "unclaimed data" in them in certain cases,
419 * such as after aborted transfers. Hosts may not have collected all
420 * the IN data written by the gadget driver (and reported by a request
421 * completion). The gadget driver may not have collected all the data
422 * written OUT to it by the host. Drivers that need precise handling for
423 * fault reporting or recovery may need to use this call.
424 *
425 * This routine may be called in interrupt context.
426 *
427 * This returns the number of such bytes in the fifo, or a negative
428 * errno if the endpoint doesn't use a FIFO or doesn't support such
429 * precise handling.
430 */
usb_ep_fifo_status(struct usb_ep * ep)431 int usb_ep_fifo_status(struct usb_ep *ep)
432 {
433 int ret;
434
435 if (ep->ops->fifo_status)
436 ret = ep->ops->fifo_status(ep);
437 else
438 ret = -EOPNOTSUPP;
439
440 trace_usb_ep_fifo_status(ep, ret);
441
442 return ret;
443 }
444 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
445
446 /**
447 * usb_ep_fifo_flush - flushes contents of a fifo
448 * @ep: the endpoint whose fifo is being flushed.
449 *
450 * This call may be used to flush the "unclaimed data" that may exist in
451 * an endpoint fifo after abnormal transaction terminations. The call
452 * must never be used except when endpoint is not being used for any
453 * protocol translation.
454 *
455 * This routine may be called in interrupt context.
456 */
usb_ep_fifo_flush(struct usb_ep * ep)457 void usb_ep_fifo_flush(struct usb_ep *ep)
458 {
459 if (ep->ops->fifo_flush)
460 ep->ops->fifo_flush(ep);
461
462 trace_usb_ep_fifo_flush(ep, 0);
463 }
464 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
465
466 /* ------------------------------------------------------------------------- */
467
468 /**
469 * usb_gadget_frame_number - returns the current frame number
470 * @gadget: controller that reports the frame number
471 *
472 * Returns the usb frame number, normally eleven bits from a SOF packet,
473 * or negative errno if this device doesn't support this capability.
474 */
usb_gadget_frame_number(struct usb_gadget * gadget)475 int usb_gadget_frame_number(struct usb_gadget *gadget)
476 {
477 int ret;
478
479 ret = gadget->ops->get_frame(gadget);
480
481 trace_usb_gadget_frame_number(gadget, ret);
482
483 return ret;
484 }
485 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
486
487 /**
488 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
489 * @gadget: controller used to wake up the host
490 *
491 * Returns zero on success, else negative error code if the hardware
492 * doesn't support such attempts, or its support has not been enabled
493 * by the usb host. Drivers must return device descriptors that report
494 * their ability to support this, or hosts won't enable it.
495 *
496 * This may also try to use SRP to wake the host and start enumeration,
497 * even if OTG isn't otherwise in use. OTG devices may also start
498 * remote wakeup even when hosts don't explicitly enable it.
499 */
usb_gadget_wakeup(struct usb_gadget * gadget)500 int usb_gadget_wakeup(struct usb_gadget *gadget)
501 {
502 int ret = 0;
503
504 if (!gadget->ops->wakeup) {
505 ret = -EOPNOTSUPP;
506 goto out;
507 }
508
509 ret = gadget->ops->wakeup(gadget);
510
511 out:
512 trace_usb_gadget_wakeup(gadget, ret);
513
514 return ret;
515 }
516 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
517
518 /**
519 * usb_gadget_set_remote_wakeup - configures the device remote wakeup feature.
520 * @gadget:the device being configured for remote wakeup
521 * @set:value to be configured.
522 *
523 * set to one to enable remote wakeup feature and zero to disable it.
524 *
525 * returns zero on success, else negative errno.
526 */
usb_gadget_set_remote_wakeup(struct usb_gadget * gadget,int set)527 int usb_gadget_set_remote_wakeup(struct usb_gadget *gadget, int set)
528 {
529 int ret = 0;
530
531 if (!gadget->ops->set_remote_wakeup) {
532 ret = -EOPNOTSUPP;
533 goto out;
534 }
535
536 ret = gadget->ops->set_remote_wakeup(gadget, set);
537
538 out:
539 trace_usb_gadget_set_remote_wakeup(gadget, ret);
540
541 return ret;
542 }
543 EXPORT_SYMBOL_GPL(usb_gadget_set_remote_wakeup);
544
545 /**
546 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
547 * @gadget:the device being declared as self-powered
548 *
549 * this affects the device status reported by the hardware driver
550 * to reflect that it now has a local power supply.
551 *
552 * returns zero on success, else negative errno.
553 */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)554 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
555 {
556 int ret = 0;
557
558 if (!gadget->ops->set_selfpowered) {
559 ret = -EOPNOTSUPP;
560 goto out;
561 }
562
563 ret = gadget->ops->set_selfpowered(gadget, 1);
564
565 out:
566 trace_usb_gadget_set_selfpowered(gadget, ret);
567
568 return ret;
569 }
570 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
571
572 /**
573 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
574 * @gadget:the device being declared as bus-powered
575 *
576 * this affects the device status reported by the hardware driver.
577 * some hardware may not support bus-powered operation, in which
578 * case this feature's value can never change.
579 *
580 * returns zero on success, else negative errno.
581 */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)582 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
583 {
584 int ret = 0;
585
586 if (!gadget->ops->set_selfpowered) {
587 ret = -EOPNOTSUPP;
588 goto out;
589 }
590
591 ret = gadget->ops->set_selfpowered(gadget, 0);
592
593 out:
594 trace_usb_gadget_clear_selfpowered(gadget, ret);
595
596 return ret;
597 }
598 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
599
600 /**
601 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
602 * @gadget:The device which now has VBUS power.
603 * Context: can sleep
604 *
605 * This call is used by a driver for an external transceiver (or GPIO)
606 * that detects a VBUS power session starting. Common responses include
607 * resuming the controller, activating the D+ (or D-) pullup to let the
608 * host detect that a USB device is attached, and starting to draw power
609 * (8mA or possibly more, especially after SET_CONFIGURATION).
610 *
611 * Returns zero on success, else negative errno.
612 */
usb_gadget_vbus_connect(struct usb_gadget * gadget)613 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
614 {
615 int ret = 0;
616
617 if (!gadget->ops->vbus_session) {
618 ret = -EOPNOTSUPP;
619 goto out;
620 }
621
622 ret = gadget->ops->vbus_session(gadget, 1);
623
624 out:
625 trace_usb_gadget_vbus_connect(gadget, ret);
626
627 return ret;
628 }
629 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
630
631 /**
632 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
633 * @gadget:The device whose VBUS usage is being described
634 * @mA:How much current to draw, in milliAmperes. This should be twice
635 * the value listed in the configuration descriptor bMaxPower field.
636 *
637 * This call is used by gadget drivers during SET_CONFIGURATION calls,
638 * reporting how much power the device may consume. For example, this
639 * could affect how quickly batteries are recharged.
640 *
641 * Returns zero on success, else negative errno.
642 */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)643 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
644 {
645 int ret = 0;
646
647 if (!gadget->ops->vbus_draw) {
648 ret = -EOPNOTSUPP;
649 goto out;
650 }
651
652 ret = gadget->ops->vbus_draw(gadget, mA);
653 if (!ret)
654 gadget->mA = mA;
655
656 out:
657 trace_usb_gadget_vbus_draw(gadget, ret);
658
659 return ret;
660 }
661 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
662
663 /**
664 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
665 * @gadget:the device whose VBUS supply is being described
666 * Context: can sleep
667 *
668 * This call is used by a driver for an external transceiver (or GPIO)
669 * that detects a VBUS power session ending. Common responses include
670 * reversing everything done in usb_gadget_vbus_connect().
671 *
672 * Returns zero on success, else negative errno.
673 */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)674 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
675 {
676 int ret = 0;
677
678 if (!gadget->ops->vbus_session) {
679 ret = -EOPNOTSUPP;
680 goto out;
681 }
682
683 ret = gadget->ops->vbus_session(gadget, 0);
684
685 out:
686 trace_usb_gadget_vbus_disconnect(gadget, ret);
687
688 return ret;
689 }
690 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
691
692 /* Internal version of usb_gadget_connect needs to be called with connect_lock held. */
usb_gadget_connect_locked(struct usb_gadget * gadget)693 static int usb_gadget_connect_locked(struct usb_gadget *gadget)
694 __must_hold(&connect_lock)
695 {
696 int ret = 0;
697
698 if (!gadget->ops->pullup) {
699 ret = -EOPNOTSUPP;
700 goto out;
701 }
702
703 if (gadget->deactivated || !gadget->udc->started) {
704 /*
705 * If gadget is deactivated we only save new state.
706 * Gadget will be connected automatically after activation.
707 *
708 * udc first needs to be started before gadget can be pulled up.
709 */
710 gadget->connected = true;
711 goto out;
712 }
713
714 ret = gadget->ops->pullup(gadget, 1);
715 if (!ret)
716 gadget->connected = 1;
717
718 out:
719 trace_usb_gadget_connect(gadget, ret);
720
721 return ret;
722 }
723
724 /**
725 * usb_gadget_connect - software-controlled connect to USB host
726 * @gadget:the peripheral being connected
727 *
728 * Enables the D+ (or potentially D-) pullup. The host will start
729 * enumerating this gadget when the pullup is active and a VBUS session
730 * is active (the link is powered).
731 *
732 * Returns zero on success, else negative errno.
733 */
usb_gadget_connect(struct usb_gadget * gadget)734 int usb_gadget_connect(struct usb_gadget *gadget)
735 {
736 int ret;
737
738 mutex_lock(&connect_lock);
739 ret = usb_gadget_connect_locked(gadget);
740 mutex_unlock(&connect_lock);
741
742 return ret;
743 }
744 EXPORT_SYMBOL_GPL(usb_gadget_connect);
745
746 /* Internal version of usb_gadget_disconnect needs to be called with connect_lock held. */
usb_gadget_disconnect_locked(struct usb_gadget * gadget)747 static int usb_gadget_disconnect_locked(struct usb_gadget *gadget)
748 __must_hold(&connect_lock)
749 {
750 int ret = 0;
751
752 if (!gadget->ops->pullup) {
753 ret = -EOPNOTSUPP;
754 goto out;
755 }
756
757 if (!gadget->connected)
758 goto out;
759
760 if (gadget->deactivated || !gadget->udc->started) {
761 /*
762 * If gadget is deactivated we only save new state.
763 * Gadget will stay disconnected after activation.
764 *
765 * udc should have been started before gadget being pulled down.
766 */
767 gadget->connected = false;
768 goto out;
769 }
770
771 ret = gadget->ops->pullup(gadget, 0);
772 if (!ret)
773 gadget->connected = 0;
774
775 if (gadget->udc->driver)
776 gadget->udc->driver->disconnect(gadget);
777
778 out:
779 trace_usb_gadget_disconnect(gadget, ret);
780
781 return ret;
782 }
783
784 /**
785 * usb_gadget_disconnect - software-controlled disconnect from USB host
786 * @gadget:the peripheral being disconnected
787 *
788 * Disables the D+ (or potentially D-) pullup, which the host may see
789 * as a disconnect (when a VBUS session is active). Not all systems
790 * support software pullup controls.
791 *
792 * Following a successful disconnect, invoke the ->disconnect() callback
793 * for the current gadget driver so that UDC drivers don't need to.
794 *
795 * Returns zero on success, else negative errno.
796 */
usb_gadget_disconnect(struct usb_gadget * gadget)797 int usb_gadget_disconnect(struct usb_gadget *gadget)
798 {
799 int ret;
800
801 mutex_lock(&connect_lock);
802 ret = usb_gadget_disconnect_locked(gadget);
803 mutex_unlock(&connect_lock);
804
805 return ret;
806 }
807 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
808
809 /**
810 * usb_gadget_deactivate - deactivate function which is not ready to work
811 * @gadget: the peripheral being deactivated
812 *
813 * This routine may be used during the gadget driver bind() call to prevent
814 * the peripheral from ever being visible to the USB host, unless later
815 * usb_gadget_activate() is called. For example, user mode components may
816 * need to be activated before the system can talk to hosts.
817 *
818 * This routine may sleep; it must not be called in interrupt context
819 * (such as from within a gadget driver's disconnect() callback).
820 *
821 * Returns zero on success, else negative errno.
822 */
usb_gadget_deactivate(struct usb_gadget * gadget)823 int usb_gadget_deactivate(struct usb_gadget *gadget)
824 {
825 int ret = 0;
826
827 if (gadget->deactivated)
828 goto out;
829
830 mutex_lock(&connect_lock);
831 if (gadget->connected) {
832 ret = usb_gadget_disconnect_locked(gadget);
833 if (ret)
834 goto unlock;
835
836 /*
837 * If gadget was being connected before deactivation, we want
838 * to reconnect it in usb_gadget_activate().
839 */
840 gadget->connected = true;
841 }
842 gadget->deactivated = true;
843
844 unlock:
845 mutex_unlock(&connect_lock);
846 out:
847 trace_usb_gadget_deactivate(gadget, ret);
848
849 return ret;
850 }
851 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
852
853 /**
854 * usb_gadget_activate - activate function which is not ready to work
855 * @gadget: the peripheral being activated
856 *
857 * This routine activates gadget which was previously deactivated with
858 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
859 *
860 * This routine may sleep; it must not be called in interrupt context.
861 *
862 * Returns zero on success, else negative errno.
863 */
usb_gadget_activate(struct usb_gadget * gadget)864 int usb_gadget_activate(struct usb_gadget *gadget)
865 {
866 int ret = 0;
867
868 if (!gadget->deactivated)
869 goto out;
870
871 mutex_lock(&connect_lock);
872 gadget->deactivated = false;
873
874 /*
875 * If gadget has been connected before deactivation, or became connected
876 * while it was being deactivated, we call usb_gadget_connect().
877 */
878 if (gadget->connected)
879 ret = usb_gadget_connect_locked(gadget);
880 mutex_unlock(&connect_lock);
881
882 out:
883 trace_usb_gadget_activate(gadget, ret);
884
885 return ret;
886 }
887 EXPORT_SYMBOL_GPL(usb_gadget_activate);
888
889 /* ------------------------------------------------------------------------- */
890
891 #ifdef CONFIG_HAS_DMA
892
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)893 int usb_gadget_map_request_by_dev(struct device *dev,
894 struct usb_request *req, int is_in)
895 {
896 if (req->length == 0)
897 return 0;
898
899 if (req->num_sgs) {
900 int mapped;
901
902 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
903 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
904 if (mapped == 0) {
905 dev_err(dev, "failed to map SGs\n");
906 return -EFAULT;
907 }
908
909 req->num_mapped_sgs = mapped;
910 } else {
911 if (is_vmalloc_addr(req->buf)) {
912 dev_err(dev, "buffer is not dma capable\n");
913 return -EFAULT;
914 } else if (object_is_on_stack(req->buf)) {
915 dev_err(dev, "buffer is on stack\n");
916 return -EFAULT;
917 }
918
919 req->dma = dma_map_single(dev, req->buf, req->length,
920 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
921
922 if (dma_mapping_error(dev, req->dma)) {
923 dev_err(dev, "failed to map buffer\n");
924 return -EFAULT;
925 }
926
927 req->dma_mapped = 1;
928 }
929
930 return 0;
931 }
932 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
933
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)934 int usb_gadget_map_request(struct usb_gadget *gadget,
935 struct usb_request *req, int is_in)
936 {
937 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
938 }
939 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
940
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)941 void usb_gadget_unmap_request_by_dev(struct device *dev,
942 struct usb_request *req, int is_in)
943 {
944 if (req->length == 0)
945 return;
946
947 if (req->num_mapped_sgs) {
948 dma_unmap_sg(dev, req->sg, req->num_sgs,
949 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
950
951 req->num_mapped_sgs = 0;
952 } else if (req->dma_mapped) {
953 dma_unmap_single(dev, req->dma, req->length,
954 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
955 req->dma_mapped = 0;
956 }
957 }
958 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
959
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)960 void usb_gadget_unmap_request(struct usb_gadget *gadget,
961 struct usb_request *req, int is_in)
962 {
963 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
964 }
965 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
966
967 #endif /* CONFIG_HAS_DMA */
968
969 /* ------------------------------------------------------------------------- */
970
971 /**
972 * usb_gadget_giveback_request - give the request back to the gadget layer
973 * @ep: the endpoint to be used with with the request
974 * @req: the request being given back
975 *
976 * This is called by device controller drivers in order to return the
977 * completed request back to the gadget layer.
978 */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)979 void usb_gadget_giveback_request(struct usb_ep *ep,
980 struct usb_request *req)
981 {
982 if (likely(req->status == 0))
983 usb_led_activity(USB_LED_EVENT_GADGET);
984
985 trace_usb_gadget_giveback_request(ep, req, 0);
986
987 req->complete(ep, req);
988 }
989 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
990
991 /* ------------------------------------------------------------------------- */
992
993 /**
994 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
995 * in second parameter or NULL if searched endpoint not found
996 * @g: controller to check for quirk
997 * @name: name of searched endpoint
998 */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)999 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
1000 {
1001 struct usb_ep *ep;
1002
1003 gadget_for_each_ep(ep, g) {
1004 if (!strcmp(ep->name, name))
1005 return ep;
1006 }
1007
1008 return NULL;
1009 }
1010 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
1011
1012 /* ------------------------------------------------------------------------- */
1013
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)1014 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1015 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1016 struct usb_ss_ep_comp_descriptor *ep_comp)
1017 {
1018 u8 type;
1019 u16 max;
1020 int num_req_streams = 0;
1021
1022 /* endpoint already claimed? */
1023 if (ep->claimed)
1024 return 0;
1025
1026 type = usb_endpoint_type(desc);
1027 max = usb_endpoint_maxp(desc);
1028
1029 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
1030 return 0;
1031 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
1032 return 0;
1033
1034 if (max > ep->maxpacket_limit)
1035 return 0;
1036
1037 /* "high bandwidth" works only at high speed */
1038 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
1039 return 0;
1040
1041 switch (type) {
1042 case USB_ENDPOINT_XFER_CONTROL:
1043 /* only support ep0 for portable CONTROL traffic */
1044 return 0;
1045 case USB_ENDPOINT_XFER_ISOC:
1046 if (!ep->caps.type_iso)
1047 return 0;
1048 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
1049 if (!gadget_is_dualspeed(gadget) && max > 1023)
1050 return 0;
1051 break;
1052 case USB_ENDPOINT_XFER_BULK:
1053 if (!ep->caps.type_bulk)
1054 return 0;
1055 if (ep_comp && gadget_is_superspeed(gadget)) {
1056 /* Get the number of required streams from the
1057 * EP companion descriptor and see if the EP
1058 * matches it
1059 */
1060 num_req_streams = ep_comp->bmAttributes & 0x1f;
1061 if (num_req_streams > ep->max_streams)
1062 return 0;
1063 }
1064 break;
1065 case USB_ENDPOINT_XFER_INT:
1066 /* Bulk endpoints handle interrupt transfers,
1067 * except the toggle-quirky iso-synch kind
1068 */
1069 if (!ep->caps.type_int && !ep->caps.type_bulk)
1070 return 0;
1071 /* INT: limit 64 bytes full speed, 1024 high/super speed */
1072 if (!gadget_is_dualspeed(gadget) && max > 64)
1073 return 0;
1074 break;
1075 }
1076
1077 return 1;
1078 }
1079 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1080
1081 /**
1082 * usb_gadget_check_config - checks if the UDC can support the binded
1083 * configuration
1084 * @gadget: controller to check the USB configuration
1085 *
1086 * Ensure that a UDC is able to support the requested resources by a
1087 * configuration, and that there are no resource limitations, such as
1088 * internal memory allocated to all requested endpoints.
1089 *
1090 * Returns zero on success, else a negative errno.
1091 */
usb_gadget_check_config(struct usb_gadget * gadget)1092 int usb_gadget_check_config(struct usb_gadget *gadget)
1093 {
1094 if (gadget->ops->check_config)
1095 return gadget->ops->check_config(gadget);
1096 return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1099
1100 /* ------------------------------------------------------------------------- */
1101
usb_gadget_state_work(struct work_struct * work)1102 static void usb_gadget_state_work(struct work_struct *work)
1103 {
1104 struct usb_gadget *gadget = work_to_gadget(work);
1105 struct usb_udc *udc = gadget->udc;
1106
1107 if (udc)
1108 sysfs_notify(&udc->dev.kobj, NULL, "state");
1109 }
1110
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1111 void usb_gadget_set_state(struct usb_gadget *gadget,
1112 enum usb_device_state state)
1113 {
1114 gadget->state = state;
1115 schedule_work(&gadget->work);
1116 }
1117 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1118
1119 /* ------------------------------------------------------------------------- */
1120
1121 /* Acquire connect_lock before calling this function. */
usb_udc_connect_control_locked(struct usb_udc * udc)1122 static void usb_udc_connect_control_locked(struct usb_udc *udc) __must_hold(&connect_lock)
1123 {
1124 if (udc->vbus && udc->started)
1125 usb_gadget_connect_locked(udc->gadget);
1126 else
1127 usb_gadget_disconnect_locked(udc->gadget);
1128 }
1129
1130 /**
1131 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1132 * connect or disconnect gadget
1133 * @gadget: The gadget which vbus change occurs
1134 * @status: The vbus status
1135 *
1136 * The udc driver calls it when it wants to connect or disconnect gadget
1137 * according to vbus status.
1138 */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1139 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1140 {
1141 struct usb_udc *udc = gadget->udc;
1142
1143 mutex_lock(&connect_lock);
1144 if (udc) {
1145 udc->vbus = status;
1146 usb_udc_connect_control_locked(udc);
1147 }
1148 mutex_unlock(&connect_lock);
1149 }
1150 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1151
1152 /**
1153 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1154 * @gadget: The gadget which bus reset occurs
1155 * @driver: The gadget driver we want to notify
1156 *
1157 * If the udc driver has bus reset handler, it needs to call this when the bus
1158 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1159 * well as updates gadget state.
1160 */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1161 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1162 struct usb_gadget_driver *driver)
1163 {
1164 driver->reset(gadget);
1165 usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1166 }
1167 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1168
1169 /**
1170 * usb_gadget_udc_start_locked - tells usb device controller to start up
1171 * @udc: The UDC to be started
1172 *
1173 * This call is issued by the UDC Class driver when it's about
1174 * to register a gadget driver to the device controller, before
1175 * calling gadget driver's bind() method.
1176 *
1177 * It allows the controller to be powered off until strictly
1178 * necessary to have it powered on.
1179 *
1180 * Returns zero on success, else negative errno.
1181 *
1182 * Caller should acquire connect_lock before invoking this function.
1183 */
usb_gadget_udc_start_locked(struct usb_udc * udc)1184 static inline int usb_gadget_udc_start_locked(struct usb_udc *udc)
1185 __must_hold(&connect_lock)
1186 {
1187 int ret;
1188
1189 if (udc->started) {
1190 dev_err(&udc->dev, "UDC had already started\n");
1191 return -EBUSY;
1192 }
1193
1194 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1195 if (!ret)
1196 udc->started = true;
1197
1198 return ret;
1199 }
1200
1201 /**
1202 * usb_gadget_udc_stop_locked - tells usb device controller we don't need it anymore
1203 * @udc: The UDC to be stopped
1204 *
1205 * This call is issued by the UDC Class driver after calling
1206 * gadget driver's unbind() method.
1207 *
1208 * The details are implementation specific, but it can go as
1209 * far as powering off UDC completely and disable its data
1210 * line pullups.
1211 *
1212 * Caller should acquire connect lock before invoking this function.
1213 */
usb_gadget_udc_stop_locked(struct usb_udc * udc)1214 static inline void usb_gadget_udc_stop_locked(struct usb_udc *udc)
1215 __must_hold(&connect_lock)
1216 {
1217 if (!udc->started) {
1218 dev_err(&udc->dev, "UDC had already stopped\n");
1219 return;
1220 }
1221
1222 udc->gadget->ops->udc_stop(udc->gadget);
1223 udc->started = false;
1224 }
1225
1226 /**
1227 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1228 * current driver
1229 * @udc: The device we want to set maximum speed
1230 * @speed: The maximum speed to allowed to run
1231 *
1232 * This call is issued by the UDC Class driver before calling
1233 * usb_gadget_udc_start() in order to make sure that we don't try to
1234 * connect on speeds the gadget driver doesn't support.
1235 */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1236 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1237 enum usb_device_speed speed)
1238 {
1239 struct usb_gadget *gadget = udc->gadget;
1240 enum usb_device_speed s;
1241
1242 if (speed == USB_SPEED_UNKNOWN)
1243 s = gadget->max_speed;
1244 else
1245 s = min(speed, gadget->max_speed);
1246
1247 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1248 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1249 else if (gadget->ops->udc_set_speed)
1250 gadget->ops->udc_set_speed(gadget, s);
1251 }
1252
1253 /**
1254 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1255 * @udc: The UDC which should enable async callbacks
1256 *
1257 * This routine is used when binding gadget drivers. It undoes the effect
1258 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1259 * (if necessary) and resume issuing callbacks.
1260 *
1261 * This routine will always be called in process context.
1262 */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1263 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1264 {
1265 struct usb_gadget *gadget = udc->gadget;
1266
1267 if (gadget->ops->udc_async_callbacks)
1268 gadget->ops->udc_async_callbacks(gadget, true);
1269 }
1270
1271 /**
1272 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1273 * @udc: The UDC which should disable async callbacks
1274 *
1275 * This routine is used when unbinding gadget drivers. It prevents a race:
1276 * The UDC driver doesn't know when the gadget driver's ->unbind callback
1277 * runs, so unless it is told to disable asynchronous callbacks, it might
1278 * issue a callback (such as ->disconnect) after the unbind has completed.
1279 *
1280 * After this function runs, the UDC driver must suppress all ->suspend,
1281 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1282 * until async callbacks are again enabled. A simple-minded but effective
1283 * way to accomplish this is to tell the UDC hardware not to generate any
1284 * more IRQs.
1285 *
1286 * Request completion callbacks must still be issued. However, it's okay
1287 * to defer them until the request is cancelled, since the pull-up will be
1288 * turned off during the time period when async callbacks are disabled.
1289 *
1290 * This routine will always be called in process context.
1291 */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1292 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1293 {
1294 struct usb_gadget *gadget = udc->gadget;
1295
1296 if (gadget->ops->udc_async_callbacks)
1297 gadget->ops->udc_async_callbacks(gadget, false);
1298 }
1299
1300 /**
1301 * usb_udc_release - release the usb_udc struct
1302 * @dev: the dev member within usb_udc
1303 *
1304 * This is called by driver's core in order to free memory once the last
1305 * reference is released.
1306 */
usb_udc_release(struct device * dev)1307 static void usb_udc_release(struct device *dev)
1308 {
1309 struct usb_udc *udc;
1310
1311 udc = container_of(dev, struct usb_udc, dev);
1312 dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1313 kfree(udc);
1314 }
1315
1316 static const struct attribute_group *usb_udc_attr_groups[];
1317
usb_udc_nop_release(struct device * dev)1318 static void usb_udc_nop_release(struct device *dev)
1319 {
1320 dev_vdbg(dev, "%s\n", __func__);
1321 }
1322
1323 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1324 static int check_pending_gadget_drivers(struct usb_udc *udc)
1325 {
1326 struct usb_gadget_driver *driver;
1327 int ret = 0;
1328
1329 list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1330 if (!driver->udc_name || strcmp(driver->udc_name,
1331 dev_name(&udc->dev)) == 0) {
1332 ret = udc_bind_to_driver(udc, driver);
1333 if (ret != -EPROBE_DEFER)
1334 list_del_init(&driver->pending);
1335 break;
1336 }
1337
1338 return ret;
1339 }
1340
1341 /**
1342 * usb_initialize_gadget - initialize a gadget and its embedded struct device
1343 * @parent: the parent device to this udc. Usually the controller driver's
1344 * device.
1345 * @gadget: the gadget to be initialized.
1346 * @release: a gadget release function.
1347 *
1348 * Returns zero on success, negative errno otherwise.
1349 * Calls the gadget release function in the latter case.
1350 */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1351 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1352 void (*release)(struct device *dev))
1353 {
1354 dev_set_name(&gadget->dev, "gadget");
1355 INIT_WORK(&gadget->work, usb_gadget_state_work);
1356 gadget->dev.parent = parent;
1357
1358 if (release)
1359 gadget->dev.release = release;
1360 else
1361 gadget->dev.release = usb_udc_nop_release;
1362
1363 device_initialize(&gadget->dev);
1364 }
1365 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1366
1367 /**
1368 * usb_add_gadget - adds a new gadget to the udc class driver list
1369 * @gadget: the gadget to be added to the list.
1370 *
1371 * Returns zero on success, negative errno otherwise.
1372 * Does not do a final usb_put_gadget() if an error occurs.
1373 */
usb_add_gadget(struct usb_gadget * gadget)1374 int usb_add_gadget(struct usb_gadget *gadget)
1375 {
1376 struct usb_udc *udc;
1377 int ret = -ENOMEM;
1378
1379 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1380 if (!udc)
1381 goto error;
1382
1383 device_initialize(&udc->dev);
1384 udc->dev.release = usb_udc_release;
1385 udc->dev.class = udc_class;
1386 udc->dev.groups = usb_udc_attr_groups;
1387 udc->dev.parent = gadget->dev.parent;
1388 ret = dev_set_name(&udc->dev, "%s",
1389 kobject_name(&gadget->dev.parent->kobj));
1390 if (ret)
1391 goto err_put_udc;
1392
1393 ret = device_add(&gadget->dev);
1394 if (ret)
1395 goto err_put_udc;
1396
1397 udc->gadget = gadget;
1398 gadget->udc = udc;
1399
1400 udc->started = false;
1401
1402 mutex_lock(&udc_lock);
1403 list_add_tail(&udc->list, &udc_list);
1404
1405 ret = device_add(&udc->dev);
1406 if (ret)
1407 goto err_unlist_udc;
1408
1409 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1410 udc->vbus = true;
1411
1412 /* pick up one of pending gadget drivers */
1413 ret = check_pending_gadget_drivers(udc);
1414 if (ret)
1415 goto err_del_udc;
1416
1417 mutex_unlock(&udc_lock);
1418
1419 return 0;
1420
1421 err_del_udc:
1422 flush_work(&gadget->work);
1423 device_del(&udc->dev);
1424
1425 err_unlist_udc:
1426 list_del(&udc->list);
1427 mutex_unlock(&udc_lock);
1428
1429 device_del(&gadget->dev);
1430
1431 err_put_udc:
1432 put_device(&udc->dev);
1433
1434 error:
1435 return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(usb_add_gadget);
1438
1439 /**
1440 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1441 * @parent: the parent device to this udc. Usually the controller driver's
1442 * device.
1443 * @gadget: the gadget to be added to the list.
1444 * @release: a gadget release function.
1445 *
1446 * Returns zero on success, negative errno otherwise.
1447 * Calls the gadget release function in the latter case.
1448 */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1449 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1450 void (*release)(struct device *dev))
1451 {
1452 int ret;
1453
1454 usb_initialize_gadget(parent, gadget, release);
1455 ret = usb_add_gadget(gadget);
1456 if (ret)
1457 usb_put_gadget(gadget);
1458 return ret;
1459 }
1460 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1461
1462 /**
1463 * usb_get_gadget_udc_name - get the name of the first UDC controller
1464 * This functions returns the name of the first UDC controller in the system.
1465 * Please note that this interface is usefull only for legacy drivers which
1466 * assume that there is only one UDC controller in the system and they need to
1467 * get its name before initialization. There is no guarantee that the UDC
1468 * of the returned name will be still available, when gadget driver registers
1469 * itself.
1470 *
1471 * Returns pointer to string with UDC controller name on success, NULL
1472 * otherwise. Caller should kfree() returned string.
1473 */
usb_get_gadget_udc_name(void)1474 char *usb_get_gadget_udc_name(void)
1475 {
1476 struct usb_udc *udc;
1477 char *name = NULL;
1478
1479 /* For now we take the first available UDC */
1480 mutex_lock(&udc_lock);
1481 list_for_each_entry(udc, &udc_list, list) {
1482 if (!udc->driver) {
1483 name = kstrdup(udc->gadget->name, GFP_KERNEL);
1484 break;
1485 }
1486 }
1487 mutex_unlock(&udc_lock);
1488 return name;
1489 }
1490 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1491
1492 /**
1493 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1494 * @parent: the parent device to this udc. Usually the controller
1495 * driver's device.
1496 * @gadget: the gadget to be added to the list
1497 *
1498 * Returns zero on success, negative errno otherwise.
1499 */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1500 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1501 {
1502 return usb_add_gadget_udc_release(parent, gadget, NULL);
1503 }
1504 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1505
usb_gadget_remove_driver(struct usb_udc * udc)1506 static void usb_gadget_remove_driver(struct usb_udc *udc)
1507 {
1508 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1509 udc->driver->function);
1510
1511 mutex_lock(&connect_lock);
1512 usb_gadget_disconnect_locked(udc->gadget);
1513 usb_gadget_disable_async_callbacks(udc);
1514 if (udc->gadget->irq)
1515 synchronize_irq(udc->gadget->irq);
1516 mutex_unlock(&connect_lock);
1517
1518 udc->driver->unbind(udc->gadget);
1519
1520 mutex_lock(&connect_lock);
1521 usb_gadget_udc_stop_locked(udc);
1522 mutex_unlock(&connect_lock);
1523
1524 udc->driver = NULL;
1525 udc->gadget->dev.driver = NULL;
1526
1527 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1528 }
1529
1530 /**
1531 * usb_del_gadget - deletes @udc from udc_list
1532 * @gadget: the gadget to be removed.
1533 *
1534 * This will call usb_gadget_unregister_driver() if
1535 * the @udc is still busy.
1536 * It will not do a final usb_put_gadget().
1537 */
usb_del_gadget(struct usb_gadget * gadget)1538 void usb_del_gadget(struct usb_gadget *gadget)
1539 {
1540 struct usb_udc *udc = gadget->udc;
1541
1542 if (!udc)
1543 return;
1544
1545 dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1546
1547 mutex_lock(&udc_lock);
1548 list_del(&udc->list);
1549
1550 if (udc->driver) {
1551 struct usb_gadget_driver *driver = udc->driver;
1552
1553 usb_gadget_remove_driver(udc);
1554 list_add(&driver->pending, &gadget_driver_pending_list);
1555 }
1556 mutex_unlock(&udc_lock);
1557
1558 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1559 flush_work(&gadget->work);
1560 device_unregister(&udc->dev);
1561 device_del(&gadget->dev);
1562 }
1563 EXPORT_SYMBOL_GPL(usb_del_gadget);
1564
1565 /**
1566 * usb_del_gadget_udc - deletes @udc from udc_list
1567 * @gadget: the gadget to be removed.
1568 *
1569 * Calls usb_del_gadget() and does a final usb_put_gadget().
1570 */
usb_del_gadget_udc(struct usb_gadget * gadget)1571 void usb_del_gadget_udc(struct usb_gadget *gadget)
1572 {
1573 usb_del_gadget(gadget);
1574 usb_put_gadget(gadget);
1575 }
1576 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1577
1578 /* ------------------------------------------------------------------------- */
1579
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1580 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1581 {
1582 int ret;
1583
1584 dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1585 driver->function);
1586
1587 udc->driver = driver;
1588 udc->gadget->dev.driver = &driver->driver;
1589
1590 usb_gadget_udc_set_speed(udc, driver->max_speed);
1591
1592 ret = driver->bind(udc->gadget, driver);
1593 if (ret)
1594 goto err1;
1595 mutex_lock(&connect_lock);
1596 ret = usb_gadget_udc_start_locked(udc);
1597 if (ret) {
1598 mutex_unlock(&connect_lock);
1599 driver->unbind(udc->gadget);
1600 goto err1;
1601 }
1602 usb_gadget_enable_async_callbacks(udc);
1603 usb_udc_connect_control_locked(udc);
1604 mutex_unlock(&connect_lock);
1605
1606 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1607 return 0;
1608 err1:
1609 if (ret != -EISNAM)
1610 dev_err(&udc->dev, "failed to start %s: %d\n",
1611 udc->driver->function, ret);
1612 udc->driver = NULL;
1613 udc->gadget->dev.driver = NULL;
1614 return ret;
1615 }
1616
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1617 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1618 {
1619 struct usb_udc *udc = NULL;
1620 int ret = -ENODEV;
1621
1622 if (!driver || !driver->bind || !driver->setup)
1623 return -EINVAL;
1624
1625 mutex_lock(&udc_lock);
1626 if (driver->udc_name) {
1627 list_for_each_entry(udc, &udc_list, list) {
1628 ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1629 if (!ret)
1630 break;
1631 }
1632 if (ret)
1633 ret = -ENODEV;
1634 else if (udc->driver)
1635 ret = -EBUSY;
1636 else
1637 goto found;
1638 } else {
1639 list_for_each_entry(udc, &udc_list, list) {
1640 /* For now we take the first one */
1641 if (!udc->driver)
1642 goto found;
1643 }
1644 }
1645
1646 if (!driver->match_existing_only) {
1647 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1648 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1649 driver->function);
1650 ret = 0;
1651 }
1652
1653 mutex_unlock(&udc_lock);
1654 if (ret)
1655 pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1656 return ret;
1657 found:
1658 ret = udc_bind_to_driver(udc, driver);
1659 mutex_unlock(&udc_lock);
1660 return ret;
1661 }
1662 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1663
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1664 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1665 {
1666 struct usb_udc *udc = NULL;
1667 int ret = -ENODEV;
1668
1669 if (!driver || !driver->unbind)
1670 return -EINVAL;
1671
1672 mutex_lock(&udc_lock);
1673 list_for_each_entry(udc, &udc_list, list) {
1674 if (udc->driver == driver) {
1675 usb_gadget_remove_driver(udc);
1676 usb_gadget_set_state(udc->gadget,
1677 USB_STATE_NOTATTACHED);
1678
1679 /* Maybe there is someone waiting for this UDC? */
1680 check_pending_gadget_drivers(udc);
1681 /*
1682 * For now we ignore bind errors as probably it's
1683 * not a valid reason to fail other's gadget unbind
1684 */
1685 ret = 0;
1686 break;
1687 }
1688 }
1689
1690 if (ret) {
1691 list_del(&driver->pending);
1692 ret = 0;
1693 }
1694 mutex_unlock(&udc_lock);
1695 return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1698
1699 /* ------------------------------------------------------------------------- */
1700
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1701 static ssize_t srp_store(struct device *dev,
1702 struct device_attribute *attr, const char *buf, size_t n)
1703 {
1704 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1705
1706 if (sysfs_streq(buf, "1"))
1707 usb_gadget_wakeup(udc->gadget);
1708
1709 return n;
1710 }
1711 static DEVICE_ATTR_WO(srp);
1712
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1713 static ssize_t soft_connect_store(struct device *dev,
1714 struct device_attribute *attr, const char *buf, size_t n)
1715 {
1716 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1717 ssize_t ret;
1718
1719 mutex_lock(&udc_lock);
1720 if (!udc->driver) {
1721 dev_err(dev, "soft-connect without a gadget driver\n");
1722 ret = -EOPNOTSUPP;
1723 goto out;
1724 }
1725
1726 if (sysfs_streq(buf, "connect")) {
1727 mutex_lock(&connect_lock);
1728 usb_gadget_udc_start_locked(udc);
1729 usb_gadget_connect_locked(udc->gadget);
1730 mutex_unlock(&connect_lock);
1731 } else if (sysfs_streq(buf, "disconnect")) {
1732 mutex_lock(&connect_lock);
1733 usb_gadget_disconnect_locked(udc->gadget);
1734 usb_gadget_udc_stop_locked(udc);
1735 mutex_unlock(&connect_lock);
1736 } else {
1737 dev_err(dev, "unsupported command '%s'\n", buf);
1738 ret = -EINVAL;
1739 goto out;
1740 }
1741
1742 ret = n;
1743 out:
1744 mutex_unlock(&udc_lock);
1745 return ret;
1746 }
1747 static DEVICE_ATTR_WO(soft_connect);
1748
state_show(struct device * dev,struct device_attribute * attr,char * buf)1749 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1750 char *buf)
1751 {
1752 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1753 struct usb_gadget *gadget = udc->gadget;
1754
1755 return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1756 }
1757 static DEVICE_ATTR_RO(state);
1758
function_show(struct device * dev,struct device_attribute * attr,char * buf)1759 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1760 char *buf)
1761 {
1762 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1763 struct usb_gadget_driver *drv = udc->driver;
1764
1765 if (!drv || !drv->function)
1766 return 0;
1767 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1768 }
1769 static DEVICE_ATTR_RO(function);
1770
1771 #define USB_UDC_SPEED_ATTR(name, param) \
1772 ssize_t name##_show(struct device *dev, \
1773 struct device_attribute *attr, char *buf) \
1774 { \
1775 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1776 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1777 usb_speed_string(udc->gadget->param)); \
1778 } \
1779 static DEVICE_ATTR_RO(name)
1780
1781 static USB_UDC_SPEED_ATTR(current_speed, speed);
1782 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1783
1784 #define USB_UDC_ATTR(name) \
1785 ssize_t name##_show(struct device *dev, \
1786 struct device_attribute *attr, char *buf) \
1787 { \
1788 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1789 struct usb_gadget *gadget = udc->gadget; \
1790 \
1791 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1792 } \
1793 static DEVICE_ATTR_RO(name)
1794
1795 static USB_UDC_ATTR(is_otg);
1796 static USB_UDC_ATTR(is_a_peripheral);
1797 static USB_UDC_ATTR(b_hnp_enable);
1798 static USB_UDC_ATTR(a_hnp_support);
1799 static USB_UDC_ATTR(a_alt_hnp_support);
1800 static USB_UDC_ATTR(is_selfpowered);
1801
1802 static struct attribute *usb_udc_attrs[] = {
1803 &dev_attr_srp.attr,
1804 &dev_attr_soft_connect.attr,
1805 &dev_attr_state.attr,
1806 &dev_attr_function.attr,
1807 &dev_attr_current_speed.attr,
1808 &dev_attr_maximum_speed.attr,
1809
1810 &dev_attr_is_otg.attr,
1811 &dev_attr_is_a_peripheral.attr,
1812 &dev_attr_b_hnp_enable.attr,
1813 &dev_attr_a_hnp_support.attr,
1814 &dev_attr_a_alt_hnp_support.attr,
1815 &dev_attr_is_selfpowered.attr,
1816 NULL,
1817 };
1818
1819 static const struct attribute_group usb_udc_attr_group = {
1820 .attrs = usb_udc_attrs,
1821 };
1822
1823 static const struct attribute_group *usb_udc_attr_groups[] = {
1824 &usb_udc_attr_group,
1825 NULL,
1826 };
1827
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1828 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1829 {
1830 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1831 int ret;
1832
1833 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1834 if (ret) {
1835 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1836 return ret;
1837 }
1838
1839 if (udc->driver) {
1840 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1841 udc->driver->function);
1842 if (ret) {
1843 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1844 return ret;
1845 }
1846 }
1847
1848 return 0;
1849 }
1850
usb_udc_init(void)1851 static int __init usb_udc_init(void)
1852 {
1853 udc_class = class_create(THIS_MODULE, "udc");
1854 if (IS_ERR(udc_class)) {
1855 pr_err("failed to create udc class --> %ld\n",
1856 PTR_ERR(udc_class));
1857 return PTR_ERR(udc_class);
1858 }
1859
1860 udc_class->dev_uevent = usb_udc_uevent;
1861 return 0;
1862 }
1863 subsys_initcall(usb_udc_init);
1864
usb_udc_exit(void)1865 static void __exit usb_udc_exit(void)
1866 {
1867 class_destroy(udc_class);
1868 }
1869 module_exit(usb_udc_exit);
1870
1871 MODULE_DESCRIPTION("UDC Framework");
1872 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1873 MODULE_LICENSE("GPL v2");
1874