1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110 * Sharable chunks of root hub code.
111 */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376 #define USB_AUTHORIZE_WIRED -1
377 #define USB_AUTHORIZE_NONE 0
378 #define USB_AUTHORIZE_ALL 1
379 #define USB_AUTHORIZE_INTERNAL 2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423 }
424
425 /**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663 nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691 error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754 struct urb *urb;
755 int length;
756 int status;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 if (urb->transfer_buffer_length >= length) {
775 status = 0;
776 } else {
777 status = -EOVERFLOW;
778 length = urb->transfer_buffer_length;
779 }
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, status);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802 /* timer callback */
rh_timer_func(struct timer_list * t)803 static void rh_timer_func (struct timer_list *t)
804 {
805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806
807 usb_hcd_poll_rh_status(_hcd);
808 }
809
810 /*-------------------------------------------------------------------------*/
811
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814 int retval;
815 unsigned long flags;
816 unsigned len = 1 + (urb->dev->maxchild / 8);
817
818 spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 retval = -EINVAL;
822 goto done;
823 }
824
825 retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 if (retval)
827 goto done;
828
829 hcd->status_urb = urb;
830 urb->hcpriv = hcd; /* indicate it's queued */
831 if (!hcd->uses_new_polling)
832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833
834 /* If a status change has already occurred, report it ASAP */
835 else if (HCD_POLL_PENDING(hcd))
836 mod_timer(&hcd->rh_timer, jiffies);
837 retval = 0;
838 done:
839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 return retval;
841 }
842
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845 if (usb_endpoint_xfer_int(&urb->ep->desc))
846 return rh_queue_status (hcd, urb);
847 if (usb_endpoint_xfer_control(&urb->ep->desc))
848 return rh_call_control (hcd, urb);
849 return -EINVAL;
850 }
851
852 /*-------------------------------------------------------------------------*/
853
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855 * since these URBs always execute synchronously.
856 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859 unsigned long flags;
860 int rc;
861
862 spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 if (rc)
865 goto done;
866
867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
868 ; /* Do nothing */
869
870 } else { /* Status URB */
871 if (!hcd->uses_new_polling)
872 del_timer (&hcd->rh_timer);
873 if (urb == hcd->status_urb) {
874 hcd->status_urb = NULL;
875 usb_hcd_unlink_urb_from_ep(hcd, urb);
876 usb_hcd_giveback_urb(hcd, urb, status);
877 }
878 }
879 done:
880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 return rc;
882 }
883
884
885 /*-------------------------------------------------------------------------*/
886
887 /**
888 * usb_bus_init - shared initialization code
889 * @bus: the bus structure being initialized
890 *
891 * This code is used to initialize a usb_bus structure, memory for which is
892 * separately managed.
893 */
usb_bus_init(struct usb_bus * bus)894 static void usb_bus_init (struct usb_bus *bus)
895 {
896 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897
898 bus->devnum_next = 1;
899
900 bus->root_hub = NULL;
901 bus->busnum = -1;
902 bus->bandwidth_allocated = 0;
903 bus->bandwidth_int_reqs = 0;
904 bus->bandwidth_isoc_reqs = 0;
905 mutex_init(&bus->devnum_next_mutex);
906 }
907
908 /*-------------------------------------------------------------------------*/
909
910 /**
911 * usb_register_bus - registers the USB host controller with the usb core
912 * @bus: pointer to the bus to register
913 *
914 * Context: task context, might sleep.
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941 error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944 }
945
946 /**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 *
950 * Context: task context, might sleep.
951 *
952 * Recycles the bus number, and unlinks the controller from usbcore data
953 * structures so that it won't be seen by scanning the bus list.
954 */
usb_deregister_bus(struct usb_bus * bus)955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958
959 /*
960 * NOTE: make sure that all the devices are removed by the
961 * controller code, as well as having it call this when cleaning
962 * itself up
963 */
964 mutex_lock(&usb_bus_idr_lock);
965 idr_remove(&usb_bus_idr, bus->busnum);
966 mutex_unlock(&usb_bus_idr_lock);
967
968 usb_notify_remove_bus(bus);
969 }
970
971 /**
972 * register_root_hub - called by usb_add_hcd() to register a root hub
973 * @hcd: host controller for this root hub
974 *
975 * This function registers the root hub with the USB subsystem. It sets up
976 * the device properly in the device tree and then calls usb_new_device()
977 * to register the usb device. It also assigns the root hub's USB address
978 * (always 1).
979 *
980 * Return: 0 if successful. A negative error code otherwise.
981 */
register_root_hub(struct usb_hcd * hcd)982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984 struct device *parent_dev = hcd->self.controller;
985 struct usb_device *usb_dev = hcd->self.root_hub;
986 struct usb_device_descriptor *descr;
987 const int devnum = 1;
988 int retval;
989
990 usb_dev->devnum = devnum;
991 usb_dev->bus->devnum_next = devnum + 1;
992 set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994
995 mutex_lock(&usb_bus_idr_lock);
996
997 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 descr = usb_get_device_descriptor(usb_dev);
999 if (IS_ERR(descr)) {
1000 retval = PTR_ERR(descr);
1001 mutex_unlock(&usb_bus_idr_lock);
1002 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1003 dev_name(&usb_dev->dev), retval);
1004 return retval;
1005 }
1006 usb_dev->descriptor = *descr;
1007 kfree(descr);
1008
1009 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1010 retval = usb_get_bos_descriptor(usb_dev);
1011 if (!retval) {
1012 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1013 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1014 mutex_unlock(&usb_bus_idr_lock);
1015 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1016 dev_name(&usb_dev->dev), retval);
1017 return retval;
1018 }
1019 }
1020
1021 retval = usb_new_device (usb_dev);
1022 if (retval) {
1023 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 } else {
1026 spin_lock_irq (&hcd_root_hub_lock);
1027 hcd->rh_registered = 1;
1028 spin_unlock_irq (&hcd_root_hub_lock);
1029
1030 /* Did the HC die before the root hub was registered? */
1031 if (HCD_DEAD(hcd))
1032 usb_hc_died (hcd); /* This time clean up */
1033 }
1034 mutex_unlock(&usb_bus_idr_lock);
1035
1036 return retval;
1037 }
1038
1039 /*
1040 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1041 * @bus: the bus which the root hub belongs to
1042 * @portnum: the port which is being resumed
1043 *
1044 * HCDs should call this function when they know that a resume signal is
1045 * being sent to a root-hub port. The root hub will be prevented from
1046 * going into autosuspend until usb_hcd_end_port_resume() is called.
1047 *
1048 * The bus's private lock must be held by the caller.
1049 */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1050 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1051 {
1052 unsigned bit = 1 << portnum;
1053
1054 if (!(bus->resuming_ports & bit)) {
1055 bus->resuming_ports |= bit;
1056 pm_runtime_get_noresume(&bus->root_hub->dev);
1057 }
1058 }
1059 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1060
1061 /*
1062 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1063 * @bus: the bus which the root hub belongs to
1064 * @portnum: the port which is being resumed
1065 *
1066 * HCDs should call this function when they know that a resume signal has
1067 * stopped being sent to a root-hub port. The root hub will be allowed to
1068 * autosuspend again.
1069 *
1070 * The bus's private lock must be held by the caller.
1071 */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1072 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1073 {
1074 unsigned bit = 1 << portnum;
1075
1076 if (bus->resuming_ports & bit) {
1077 bus->resuming_ports &= ~bit;
1078 pm_runtime_put_noidle(&bus->root_hub->dev);
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1082
1083 /*-------------------------------------------------------------------------*/
1084
1085 /**
1086 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1087 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1088 * @is_input: true iff the transaction sends data to the host
1089 * @isoc: true for isochronous transactions, false for interrupt ones
1090 * @bytecount: how many bytes in the transaction.
1091 *
1092 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1093 *
1094 * Note:
1095 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1096 * scheduled in software, this function is only used for such scheduling.
1097 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1098 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1099 {
1100 unsigned long tmp;
1101
1102 switch (speed) {
1103 case USB_SPEED_LOW: /* INTR only */
1104 if (is_input) {
1105 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1107 } else {
1108 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1110 }
1111 case USB_SPEED_FULL: /* ISOC or INTR */
1112 if (isoc) {
1113 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1114 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1115 } else {
1116 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1117 return 9107L + BW_HOST_DELAY + tmp;
1118 }
1119 case USB_SPEED_HIGH: /* ISOC or INTR */
1120 /* FIXME adjust for input vs output */
1121 if (isoc)
1122 tmp = HS_NSECS_ISO (bytecount);
1123 else
1124 tmp = HS_NSECS (bytecount);
1125 return tmp;
1126 default:
1127 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1128 return -1;
1129 }
1130 }
1131 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1132
1133
1134 /*-------------------------------------------------------------------------*/
1135
1136 /*
1137 * Generic HC operations.
1138 */
1139
1140 /*-------------------------------------------------------------------------*/
1141
1142 /**
1143 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1144 * @hcd: host controller to which @urb was submitted
1145 * @urb: URB being submitted
1146 *
1147 * Host controller drivers should call this routine in their enqueue()
1148 * method. The HCD's private spinlock must be held and interrupts must
1149 * be disabled. The actions carried out here are required for URB
1150 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1151 *
1152 * Return: 0 for no error, otherwise a negative error code (in which case
1153 * the enqueue() method must fail). If no error occurs but enqueue() fails
1154 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1155 * the private spinlock and returning.
1156 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1157 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1158 {
1159 int rc = 0;
1160
1161 spin_lock(&hcd_urb_list_lock);
1162
1163 /* Check that the URB isn't being killed */
1164 if (unlikely(atomic_read(&urb->reject))) {
1165 rc = -EPERM;
1166 goto done;
1167 }
1168
1169 if (unlikely(!urb->ep->enabled)) {
1170 rc = -ENOENT;
1171 goto done;
1172 }
1173
1174 if (unlikely(!urb->dev->can_submit)) {
1175 rc = -EHOSTUNREACH;
1176 goto done;
1177 }
1178
1179 /*
1180 * Check the host controller's state and add the URB to the
1181 * endpoint's queue.
1182 */
1183 if (HCD_RH_RUNNING(hcd)) {
1184 urb->unlinked = 0;
1185 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1186 } else {
1187 rc = -ESHUTDOWN;
1188 goto done;
1189 }
1190 done:
1191 spin_unlock(&hcd_urb_list_lock);
1192 return rc;
1193 }
1194 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1195
1196 /**
1197 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1198 * @hcd: host controller to which @urb was submitted
1199 * @urb: URB being checked for unlinkability
1200 * @status: error code to store in @urb if the unlink succeeds
1201 *
1202 * Host controller drivers should call this routine in their dequeue()
1203 * method. The HCD's private spinlock must be held and interrupts must
1204 * be disabled. The actions carried out here are required for making
1205 * sure than an unlink is valid.
1206 *
1207 * Return: 0 for no error, otherwise a negative error code (in which case
1208 * the dequeue() method must fail). The possible error codes are:
1209 *
1210 * -EIDRM: @urb was not submitted or has already completed.
1211 * The completion function may not have been called yet.
1212 *
1213 * -EBUSY: @urb has already been unlinked.
1214 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1215 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1216 int status)
1217 {
1218 struct list_head *tmp;
1219
1220 /* insist the urb is still queued */
1221 list_for_each(tmp, &urb->ep->urb_list) {
1222 if (tmp == &urb->urb_list)
1223 break;
1224 }
1225 if (tmp != &urb->urb_list)
1226 return -EIDRM;
1227
1228 /* Any status except -EINPROGRESS means something already started to
1229 * unlink this URB from the hardware. So there's no more work to do.
1230 */
1231 if (urb->unlinked)
1232 return -EBUSY;
1233 urb->unlinked = status;
1234 return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1237
1238 /**
1239 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1240 * @hcd: host controller to which @urb was submitted
1241 * @urb: URB being unlinked
1242 *
1243 * Host controller drivers should call this routine before calling
1244 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1245 * interrupts must be disabled. The actions carried out here are required
1246 * for URB completion.
1247 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1248 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1249 {
1250 /* clear all state linking urb to this dev (and hcd) */
1251 spin_lock(&hcd_urb_list_lock);
1252 list_del_init(&urb->urb_list);
1253 spin_unlock(&hcd_urb_list_lock);
1254 }
1255 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1256
1257 /*
1258 * Some usb host controllers can only perform dma using a small SRAM area.
1259 * The usb core itself is however optimized for host controllers that can dma
1260 * using regular system memory - like pci devices doing bus mastering.
1261 *
1262 * To support host controllers with limited dma capabilities we provide dma
1263 * bounce buffers. This feature can be enabled by initializing
1264 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1265 *
1266 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1267 * data for dma using the genalloc API.
1268 *
1269 * So, to summarize...
1270 *
1271 * - We need "local" memory, canonical example being
1272 * a small SRAM on a discrete controller being the
1273 * only memory that the controller can read ...
1274 * (a) "normal" kernel memory is no good, and
1275 * (b) there's not enough to share
1276 *
1277 * - So we use that, even though the primary requirement
1278 * is that the memory be "local" (hence addressable
1279 * by that device), not "coherent".
1280 *
1281 */
1282
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1283 static int hcd_alloc_coherent(struct usb_bus *bus,
1284 gfp_t mem_flags, dma_addr_t *dma_handle,
1285 void **vaddr_handle, size_t size,
1286 enum dma_data_direction dir)
1287 {
1288 unsigned char *vaddr;
1289
1290 if (*vaddr_handle == NULL) {
1291 WARN_ON_ONCE(1);
1292 return -EFAULT;
1293 }
1294
1295 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1296 mem_flags, dma_handle);
1297 if (!vaddr)
1298 return -ENOMEM;
1299
1300 /*
1301 * Store the virtual address of the buffer at the end
1302 * of the allocated dma buffer. The size of the buffer
1303 * may be uneven so use unaligned functions instead
1304 * of just rounding up. It makes sense to optimize for
1305 * memory footprint over access speed since the amount
1306 * of memory available for dma may be limited.
1307 */
1308 put_unaligned((unsigned long)*vaddr_handle,
1309 (unsigned long *)(vaddr + size));
1310
1311 if (dir == DMA_TO_DEVICE)
1312 memcpy(vaddr, *vaddr_handle, size);
1313
1314 *vaddr_handle = vaddr;
1315 return 0;
1316 }
1317
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1318 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1319 void **vaddr_handle, size_t size,
1320 enum dma_data_direction dir)
1321 {
1322 unsigned char *vaddr = *vaddr_handle;
1323
1324 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1325
1326 if (dir == DMA_FROM_DEVICE)
1327 memcpy(vaddr, *vaddr_handle, size);
1328
1329 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1330
1331 *vaddr_handle = vaddr;
1332 *dma_handle = 0;
1333 }
1334
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1335 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1336 {
1337 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1338 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1339 dma_unmap_single(hcd->self.sysdev,
1340 urb->setup_dma,
1341 sizeof(struct usb_ctrlrequest),
1342 DMA_TO_DEVICE);
1343 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1344 hcd_free_coherent(urb->dev->bus,
1345 &urb->setup_dma,
1346 (void **) &urb->setup_packet,
1347 sizeof(struct usb_ctrlrequest),
1348 DMA_TO_DEVICE);
1349
1350 /* Make it safe to call this routine more than once */
1351 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1352 }
1353 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1354
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1355 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1356 {
1357 if (hcd->driver->unmap_urb_for_dma)
1358 hcd->driver->unmap_urb_for_dma(hcd, urb);
1359 else
1360 usb_hcd_unmap_urb_for_dma(hcd, urb);
1361 }
1362
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1363 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1364 {
1365 enum dma_data_direction dir;
1366
1367 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1368
1369 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1370 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1371 (urb->transfer_flags & URB_DMA_MAP_SG))
1372 dma_unmap_sg(hcd->self.sysdev,
1373 urb->sg,
1374 urb->num_sgs,
1375 dir);
1376 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1377 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1378 dma_unmap_page(hcd->self.sysdev,
1379 urb->transfer_dma,
1380 urb->transfer_buffer_length,
1381 dir);
1382 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1383 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1384 dma_unmap_single(hcd->self.sysdev,
1385 urb->transfer_dma,
1386 urb->transfer_buffer_length,
1387 dir);
1388 else if (urb->transfer_flags & URB_MAP_LOCAL)
1389 hcd_free_coherent(urb->dev->bus,
1390 &urb->transfer_dma,
1391 &urb->transfer_buffer,
1392 urb->transfer_buffer_length,
1393 dir);
1394
1395 /* Make it safe to call this routine more than once */
1396 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1397 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1398 }
1399 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1400
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1401 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1402 gfp_t mem_flags)
1403 {
1404 if (hcd->driver->map_urb_for_dma)
1405 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1406 else
1407 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1408 }
1409
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1410 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1411 gfp_t mem_flags)
1412 {
1413 enum dma_data_direction dir;
1414 int ret = 0;
1415
1416 /* Map the URB's buffers for DMA access.
1417 * Lower level HCD code should use *_dma exclusively,
1418 * unless it uses pio or talks to another transport,
1419 * or uses the provided scatter gather list for bulk.
1420 */
1421
1422 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1423 if (hcd->self.uses_pio_for_control)
1424 return ret;
1425 if (hcd->localmem_pool) {
1426 ret = hcd_alloc_coherent(
1427 urb->dev->bus, mem_flags,
1428 &urb->setup_dma,
1429 (void **)&urb->setup_packet,
1430 sizeof(struct usb_ctrlrequest),
1431 DMA_TO_DEVICE);
1432 if (ret)
1433 return ret;
1434 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1435 } else if (hcd_uses_dma(hcd)) {
1436 if (object_is_on_stack(urb->setup_packet)) {
1437 WARN_ONCE(1, "setup packet is on stack\n");
1438 return -EAGAIN;
1439 }
1440
1441 urb->setup_dma = dma_map_single(
1442 hcd->self.sysdev,
1443 urb->setup_packet,
1444 sizeof(struct usb_ctrlrequest),
1445 DMA_TO_DEVICE);
1446 if (dma_mapping_error(hcd->self.sysdev,
1447 urb->setup_dma))
1448 return -EAGAIN;
1449 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1450 }
1451 }
1452
1453 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1454 if (urb->transfer_buffer_length != 0
1455 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1456 if (hcd->localmem_pool) {
1457 ret = hcd_alloc_coherent(
1458 urb->dev->bus, mem_flags,
1459 &urb->transfer_dma,
1460 &urb->transfer_buffer,
1461 urb->transfer_buffer_length,
1462 dir);
1463 if (ret == 0)
1464 urb->transfer_flags |= URB_MAP_LOCAL;
1465 } else if (hcd_uses_dma(hcd)) {
1466 if (urb->num_sgs) {
1467 int n;
1468
1469 /* We don't support sg for isoc transfers ! */
1470 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1471 WARN_ON(1);
1472 return -EINVAL;
1473 }
1474
1475 n = dma_map_sg(
1476 hcd->self.sysdev,
1477 urb->sg,
1478 urb->num_sgs,
1479 dir);
1480 if (n <= 0)
1481 ret = -EAGAIN;
1482 else
1483 urb->transfer_flags |= URB_DMA_MAP_SG;
1484 urb->num_mapped_sgs = n;
1485 if (n != urb->num_sgs)
1486 urb->transfer_flags |=
1487 URB_DMA_SG_COMBINED;
1488 } else if (urb->sg) {
1489 struct scatterlist *sg = urb->sg;
1490 urb->transfer_dma = dma_map_page(
1491 hcd->self.sysdev,
1492 sg_page(sg),
1493 sg->offset,
1494 urb->transfer_buffer_length,
1495 dir);
1496 if (dma_mapping_error(hcd->self.sysdev,
1497 urb->transfer_dma))
1498 ret = -EAGAIN;
1499 else
1500 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1501 } else if (object_is_on_stack(urb->transfer_buffer)) {
1502 WARN_ONCE(1, "transfer buffer is on stack\n");
1503 ret = -EAGAIN;
1504 } else {
1505 urb->transfer_dma = dma_map_single(
1506 hcd->self.sysdev,
1507 urb->transfer_buffer,
1508 urb->transfer_buffer_length,
1509 dir);
1510 if (dma_mapping_error(hcd->self.sysdev,
1511 urb->transfer_dma))
1512 ret = -EAGAIN;
1513 else
1514 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1515 }
1516 }
1517 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1518 URB_SETUP_MAP_LOCAL)))
1519 usb_hcd_unmap_urb_for_dma(hcd, urb);
1520 }
1521 return ret;
1522 }
1523 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1524
1525 /*-------------------------------------------------------------------------*/
1526
1527 /* may be called in any context with a valid urb->dev usecount
1528 * caller surrenders "ownership" of urb
1529 * expects usb_submit_urb() to have sanity checked and conditioned all
1530 * inputs in the urb
1531 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1532 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1533 {
1534 int status;
1535 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1536
1537 /* increment urb's reference count as part of giving it to the HCD
1538 * (which will control it). HCD guarantees that it either returns
1539 * an error or calls giveback(), but not both.
1540 */
1541 usb_get_urb(urb);
1542 atomic_inc(&urb->use_count);
1543 atomic_inc(&urb->dev->urbnum);
1544 usbmon_urb_submit(&hcd->self, urb);
1545
1546 /* NOTE requirements on root-hub callers (usbfs and the hub
1547 * driver, for now): URBs' urb->transfer_buffer must be
1548 * valid and usb_buffer_{sync,unmap}() not be needed, since
1549 * they could clobber root hub response data. Also, control
1550 * URBs must be submitted in process context with interrupts
1551 * enabled.
1552 */
1553
1554 if (is_root_hub(urb->dev)) {
1555 status = rh_urb_enqueue(hcd, urb);
1556 } else {
1557 status = map_urb_for_dma(hcd, urb, mem_flags);
1558 if (likely(status == 0)) {
1559 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1560 if (unlikely(status))
1561 unmap_urb_for_dma(hcd, urb);
1562 }
1563 }
1564
1565 if (unlikely(status)) {
1566 usbmon_urb_submit_error(&hcd->self, urb, status);
1567 urb->hcpriv = NULL;
1568 INIT_LIST_HEAD(&urb->urb_list);
1569 atomic_dec(&urb->use_count);
1570 /*
1571 * Order the write of urb->use_count above before the read
1572 * of urb->reject below. Pairs with the memory barriers in
1573 * usb_kill_urb() and usb_poison_urb().
1574 */
1575 smp_mb__after_atomic();
1576
1577 atomic_dec(&urb->dev->urbnum);
1578 if (atomic_read(&urb->reject))
1579 wake_up(&usb_kill_urb_queue);
1580 usb_put_urb(urb);
1581 }
1582 return status;
1583 }
1584
1585 /*-------------------------------------------------------------------------*/
1586
1587 /* this makes the hcd giveback() the urb more quickly, by kicking it
1588 * off hardware queues (which may take a while) and returning it as
1589 * soon as practical. we've already set up the urb's return status,
1590 * but we can't know if the callback completed already.
1591 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1592 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1593 {
1594 int value;
1595
1596 if (is_root_hub(urb->dev))
1597 value = usb_rh_urb_dequeue(hcd, urb, status);
1598 else {
1599
1600 /* The only reason an HCD might fail this call is if
1601 * it has not yet fully queued the urb to begin with.
1602 * Such failures should be harmless. */
1603 value = hcd->driver->urb_dequeue(hcd, urb, status);
1604 }
1605 return value;
1606 }
1607
1608 /*
1609 * called in any context
1610 *
1611 * caller guarantees urb won't be recycled till both unlink()
1612 * and the urb's completion function return
1613 */
usb_hcd_unlink_urb(struct urb * urb,int status)1614 int usb_hcd_unlink_urb (struct urb *urb, int status)
1615 {
1616 struct usb_hcd *hcd;
1617 struct usb_device *udev = urb->dev;
1618 int retval = -EIDRM;
1619 unsigned long flags;
1620
1621 /* Prevent the device and bus from going away while
1622 * the unlink is carried out. If they are already gone
1623 * then urb->use_count must be 0, since disconnected
1624 * devices can't have any active URBs.
1625 */
1626 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1627 if (atomic_read(&urb->use_count) > 0) {
1628 retval = 0;
1629 usb_get_dev(udev);
1630 }
1631 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1632 if (retval == 0) {
1633 hcd = bus_to_hcd(urb->dev->bus);
1634 retval = unlink1(hcd, urb, status);
1635 if (retval == 0)
1636 retval = -EINPROGRESS;
1637 else if (retval != -EIDRM && retval != -EBUSY)
1638 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1639 urb, retval);
1640 usb_put_dev(udev);
1641 }
1642 return retval;
1643 }
1644
1645 /*-------------------------------------------------------------------------*/
1646
__usb_hcd_giveback_urb(struct urb * urb)1647 static void __usb_hcd_giveback_urb(struct urb *urb)
1648 {
1649 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1650 struct usb_anchor *anchor = urb->anchor;
1651 int status = urb->unlinked;
1652
1653 urb->hcpriv = NULL;
1654 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1655 urb->actual_length < urb->transfer_buffer_length &&
1656 !status))
1657 status = -EREMOTEIO;
1658
1659 unmap_urb_for_dma(hcd, urb);
1660 usbmon_urb_complete(&hcd->self, urb, status);
1661 usb_anchor_suspend_wakeups(anchor);
1662 usb_unanchor_urb(urb);
1663 if (likely(status == 0))
1664 usb_led_activity(USB_LED_EVENT_HOST);
1665
1666 /* pass ownership to the completion handler */
1667 urb->status = status;
1668 /*
1669 * This function can be called in task context inside another remote
1670 * coverage collection section, but kcov doesn't support that kind of
1671 * recursion yet. Only collect coverage in softirq context for now.
1672 */
1673 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1674 urb->complete(urb);
1675 kcov_remote_stop_softirq();
1676
1677 usb_anchor_resume_wakeups(anchor);
1678 atomic_dec(&urb->use_count);
1679 /*
1680 * Order the write of urb->use_count above before the read
1681 * of urb->reject below. Pairs with the memory barriers in
1682 * usb_kill_urb() and usb_poison_urb().
1683 */
1684 smp_mb__after_atomic();
1685
1686 if (unlikely(atomic_read(&urb->reject)))
1687 wake_up(&usb_kill_urb_queue);
1688 usb_put_urb(urb);
1689 }
1690
usb_giveback_urb_bh(struct tasklet_struct * t)1691 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1692 {
1693 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1694 struct list_head local_list;
1695
1696 spin_lock_irq(&bh->lock);
1697 bh->running = true;
1698 list_replace_init(&bh->head, &local_list);
1699 spin_unlock_irq(&bh->lock);
1700
1701 while (!list_empty(&local_list)) {
1702 struct urb *urb;
1703
1704 urb = list_entry(local_list.next, struct urb, urb_list);
1705 list_del_init(&urb->urb_list);
1706 bh->completing_ep = urb->ep;
1707 __usb_hcd_giveback_urb(urb);
1708 bh->completing_ep = NULL;
1709 }
1710
1711 /*
1712 * giveback new URBs next time to prevent this function
1713 * from not exiting for a long time.
1714 */
1715 spin_lock_irq(&bh->lock);
1716 if (!list_empty(&bh->head)) {
1717 if (bh->high_prio)
1718 tasklet_hi_schedule(&bh->bh);
1719 else
1720 tasklet_schedule(&bh->bh);
1721 }
1722 bh->running = false;
1723 spin_unlock_irq(&bh->lock);
1724 }
1725
1726 /**
1727 * usb_hcd_giveback_urb - return URB from HCD to device driver
1728 * @hcd: host controller returning the URB
1729 * @urb: urb being returned to the USB device driver.
1730 * @status: completion status code for the URB.
1731 *
1732 * Context: atomic. The completion callback is invoked in caller's context.
1733 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1734 * context (except for URBs submitted to the root hub which always complete in
1735 * caller's context).
1736 *
1737 * This hands the URB from HCD to its USB device driver, using its
1738 * completion function. The HCD has freed all per-urb resources
1739 * (and is done using urb->hcpriv). It also released all HCD locks;
1740 * the device driver won't cause problems if it frees, modifies,
1741 * or resubmits this URB.
1742 *
1743 * If @urb was unlinked, the value of @status will be overridden by
1744 * @urb->unlinked. Erroneous short transfers are detected in case
1745 * the HCD hasn't checked for them.
1746 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1747 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1748 {
1749 struct giveback_urb_bh *bh;
1750 bool running;
1751
1752 /* pass status to tasklet via unlinked */
1753 if (likely(!urb->unlinked))
1754 urb->unlinked = status;
1755
1756 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1757 __usb_hcd_giveback_urb(urb);
1758 return;
1759 }
1760
1761 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1762 bh = &hcd->high_prio_bh;
1763 else
1764 bh = &hcd->low_prio_bh;
1765
1766 spin_lock(&bh->lock);
1767 list_add_tail(&urb->urb_list, &bh->head);
1768 running = bh->running;
1769 spin_unlock(&bh->lock);
1770
1771 if (running)
1772 ;
1773 else if (bh->high_prio)
1774 tasklet_hi_schedule(&bh->bh);
1775 else
1776 tasklet_schedule(&bh->bh);
1777 }
1778 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1779
1780 /*-------------------------------------------------------------------------*/
1781
1782 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1783 * queue to drain completely. The caller must first insure that no more
1784 * URBs can be submitted for this endpoint.
1785 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1786 void usb_hcd_flush_endpoint(struct usb_device *udev,
1787 struct usb_host_endpoint *ep)
1788 {
1789 struct usb_hcd *hcd;
1790 struct urb *urb;
1791
1792 if (!ep)
1793 return;
1794 might_sleep();
1795 hcd = bus_to_hcd(udev->bus);
1796
1797 /* No more submits can occur */
1798 spin_lock_irq(&hcd_urb_list_lock);
1799 rescan:
1800 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1801 int is_in;
1802
1803 if (urb->unlinked)
1804 continue;
1805 usb_get_urb (urb);
1806 is_in = usb_urb_dir_in(urb);
1807 spin_unlock(&hcd_urb_list_lock);
1808
1809 /* kick hcd */
1810 unlink1(hcd, urb, -ESHUTDOWN);
1811 dev_dbg (hcd->self.controller,
1812 "shutdown urb %pK ep%d%s-%s\n",
1813 urb, usb_endpoint_num(&ep->desc),
1814 is_in ? "in" : "out",
1815 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1816 usb_put_urb (urb);
1817
1818 /* list contents may have changed */
1819 spin_lock(&hcd_urb_list_lock);
1820 goto rescan;
1821 }
1822 spin_unlock_irq(&hcd_urb_list_lock);
1823
1824 /* Wait until the endpoint queue is completely empty */
1825 while (!list_empty (&ep->urb_list)) {
1826 spin_lock_irq(&hcd_urb_list_lock);
1827
1828 /* The list may have changed while we acquired the spinlock */
1829 urb = NULL;
1830 if (!list_empty (&ep->urb_list)) {
1831 urb = list_entry (ep->urb_list.prev, struct urb,
1832 urb_list);
1833 usb_get_urb (urb);
1834 }
1835 spin_unlock_irq(&hcd_urb_list_lock);
1836
1837 if (urb) {
1838 usb_kill_urb (urb);
1839 usb_put_urb (urb);
1840 }
1841 }
1842 }
1843
1844 /**
1845 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1846 * the bus bandwidth
1847 * @udev: target &usb_device
1848 * @new_config: new configuration to install
1849 * @cur_alt: the current alternate interface setting
1850 * @new_alt: alternate interface setting that is being installed
1851 *
1852 * To change configurations, pass in the new configuration in new_config,
1853 * and pass NULL for cur_alt and new_alt.
1854 *
1855 * To reset a device's configuration (put the device in the ADDRESSED state),
1856 * pass in NULL for new_config, cur_alt, and new_alt.
1857 *
1858 * To change alternate interface settings, pass in NULL for new_config,
1859 * pass in the current alternate interface setting in cur_alt,
1860 * and pass in the new alternate interface setting in new_alt.
1861 *
1862 * Return: An error if the requested bandwidth change exceeds the
1863 * bus bandwidth or host controller internal resources.
1864 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1865 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1866 struct usb_host_config *new_config,
1867 struct usb_host_interface *cur_alt,
1868 struct usb_host_interface *new_alt)
1869 {
1870 int num_intfs, i, j;
1871 struct usb_host_interface *alt = NULL;
1872 int ret = 0;
1873 struct usb_hcd *hcd;
1874 struct usb_host_endpoint *ep;
1875
1876 hcd = bus_to_hcd(udev->bus);
1877 if (!hcd->driver->check_bandwidth)
1878 return 0;
1879
1880 /* Configuration is being removed - set configuration 0 */
1881 if (!new_config && !cur_alt) {
1882 for (i = 1; i < 16; ++i) {
1883 ep = udev->ep_out[i];
1884 if (ep)
1885 hcd->driver->drop_endpoint(hcd, udev, ep);
1886 ep = udev->ep_in[i];
1887 if (ep)
1888 hcd->driver->drop_endpoint(hcd, udev, ep);
1889 }
1890 hcd->driver->check_bandwidth(hcd, udev);
1891 return 0;
1892 }
1893 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1894 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1895 * of the bus. There will always be bandwidth for endpoint 0, so it's
1896 * ok to exclude it.
1897 */
1898 if (new_config) {
1899 num_intfs = new_config->desc.bNumInterfaces;
1900 /* Remove endpoints (except endpoint 0, which is always on the
1901 * schedule) from the old config from the schedule
1902 */
1903 for (i = 1; i < 16; ++i) {
1904 ep = udev->ep_out[i];
1905 if (ep) {
1906 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1907 if (ret < 0)
1908 goto reset;
1909 }
1910 ep = udev->ep_in[i];
1911 if (ep) {
1912 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1913 if (ret < 0)
1914 goto reset;
1915 }
1916 }
1917 for (i = 0; i < num_intfs; ++i) {
1918 struct usb_host_interface *first_alt;
1919 int iface_num;
1920
1921 first_alt = &new_config->intf_cache[i]->altsetting[0];
1922 iface_num = first_alt->desc.bInterfaceNumber;
1923 /* Set up endpoints for alternate interface setting 0 */
1924 alt = usb_find_alt_setting(new_config, iface_num, 0);
1925 if (!alt)
1926 /* No alt setting 0? Pick the first setting. */
1927 alt = first_alt;
1928
1929 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1930 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1931 if (ret < 0)
1932 goto reset;
1933 }
1934 }
1935 }
1936 if (cur_alt && new_alt) {
1937 struct usb_interface *iface = usb_ifnum_to_if(udev,
1938 cur_alt->desc.bInterfaceNumber);
1939
1940 if (!iface)
1941 return -EINVAL;
1942 if (iface->resetting_device) {
1943 /*
1944 * The USB core just reset the device, so the xHCI host
1945 * and the device will think alt setting 0 is installed.
1946 * However, the USB core will pass in the alternate
1947 * setting installed before the reset as cur_alt. Dig
1948 * out the alternate setting 0 structure, or the first
1949 * alternate setting if a broken device doesn't have alt
1950 * setting 0.
1951 */
1952 cur_alt = usb_altnum_to_altsetting(iface, 0);
1953 if (!cur_alt)
1954 cur_alt = &iface->altsetting[0];
1955 }
1956
1957 /* Drop all the endpoints in the current alt setting */
1958 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1959 ret = hcd->driver->drop_endpoint(hcd, udev,
1960 &cur_alt->endpoint[i]);
1961 if (ret < 0)
1962 goto reset;
1963 }
1964 /* Add all the endpoints in the new alt setting */
1965 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1966 ret = hcd->driver->add_endpoint(hcd, udev,
1967 &new_alt->endpoint[i]);
1968 if (ret < 0)
1969 goto reset;
1970 }
1971 }
1972 ret = hcd->driver->check_bandwidth(hcd, udev);
1973 reset:
1974 if (ret < 0)
1975 hcd->driver->reset_bandwidth(hcd, udev);
1976 return ret;
1977 }
1978
1979 /* Disables the endpoint: synchronizes with the hcd to make sure all
1980 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1981 * have been called previously. Use for set_configuration, set_interface,
1982 * driver removal, physical disconnect.
1983 *
1984 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1985 * type, maxpacket size, toggle, halt status, and scheduling.
1986 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1987 void usb_hcd_disable_endpoint(struct usb_device *udev,
1988 struct usb_host_endpoint *ep)
1989 {
1990 struct usb_hcd *hcd;
1991
1992 might_sleep();
1993 hcd = bus_to_hcd(udev->bus);
1994 if (hcd->driver->endpoint_disable)
1995 hcd->driver->endpoint_disable(hcd, ep);
1996 }
1997
1998 /**
1999 * usb_hcd_reset_endpoint - reset host endpoint state
2000 * @udev: USB device.
2001 * @ep: the endpoint to reset.
2002 *
2003 * Resets any host endpoint state such as the toggle bit, sequence
2004 * number and current window.
2005 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2006 void usb_hcd_reset_endpoint(struct usb_device *udev,
2007 struct usb_host_endpoint *ep)
2008 {
2009 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2010
2011 if (hcd->driver->endpoint_reset)
2012 hcd->driver->endpoint_reset(hcd, ep);
2013 else {
2014 int epnum = usb_endpoint_num(&ep->desc);
2015 int is_out = usb_endpoint_dir_out(&ep->desc);
2016 int is_control = usb_endpoint_xfer_control(&ep->desc);
2017
2018 usb_settoggle(udev, epnum, is_out, 0);
2019 if (is_control)
2020 usb_settoggle(udev, epnum, !is_out, 0);
2021 }
2022 }
2023
2024 /**
2025 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2026 * @interface: alternate setting that includes all endpoints.
2027 * @eps: array of endpoints that need streams.
2028 * @num_eps: number of endpoints in the array.
2029 * @num_streams: number of streams to allocate.
2030 * @mem_flags: flags hcd should use to allocate memory.
2031 *
2032 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2033 * Drivers may queue multiple transfers to different stream IDs, which may
2034 * complete in a different order than they were queued.
2035 *
2036 * Return: On success, the number of allocated streams. On failure, a negative
2037 * error code.
2038 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2039 int usb_alloc_streams(struct usb_interface *interface,
2040 struct usb_host_endpoint **eps, unsigned int num_eps,
2041 unsigned int num_streams, gfp_t mem_flags)
2042 {
2043 struct usb_hcd *hcd;
2044 struct usb_device *dev;
2045 int i, ret;
2046
2047 dev = interface_to_usbdev(interface);
2048 hcd = bus_to_hcd(dev->bus);
2049 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2050 return -EINVAL;
2051 if (dev->speed < USB_SPEED_SUPER)
2052 return -EINVAL;
2053 if (dev->state < USB_STATE_CONFIGURED)
2054 return -ENODEV;
2055
2056 for (i = 0; i < num_eps; i++) {
2057 /* Streams only apply to bulk endpoints. */
2058 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2059 return -EINVAL;
2060 /* Re-alloc is not allowed */
2061 if (eps[i]->streams)
2062 return -EINVAL;
2063 }
2064
2065 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2066 num_streams, mem_flags);
2067 if (ret < 0)
2068 return ret;
2069
2070 for (i = 0; i < num_eps; i++)
2071 eps[i]->streams = ret;
2072
2073 return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2076
2077 /**
2078 * usb_free_streams - free bulk endpoint stream IDs.
2079 * @interface: alternate setting that includes all endpoints.
2080 * @eps: array of endpoints to remove streams from.
2081 * @num_eps: number of endpoints in the array.
2082 * @mem_flags: flags hcd should use to allocate memory.
2083 *
2084 * Reverts a group of bulk endpoints back to not using stream IDs.
2085 * Can fail if we are given bad arguments, or HCD is broken.
2086 *
2087 * Return: 0 on success. On failure, a negative error code.
2088 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2089 int usb_free_streams(struct usb_interface *interface,
2090 struct usb_host_endpoint **eps, unsigned int num_eps,
2091 gfp_t mem_flags)
2092 {
2093 struct usb_hcd *hcd;
2094 struct usb_device *dev;
2095 int i, ret;
2096
2097 dev = interface_to_usbdev(interface);
2098 hcd = bus_to_hcd(dev->bus);
2099 if (dev->speed < USB_SPEED_SUPER)
2100 return -EINVAL;
2101
2102 /* Double-free is not allowed */
2103 for (i = 0; i < num_eps; i++)
2104 if (!eps[i] || !eps[i]->streams)
2105 return -EINVAL;
2106
2107 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2108 if (ret < 0)
2109 return ret;
2110
2111 for (i = 0; i < num_eps; i++)
2112 eps[i]->streams = 0;
2113
2114 return ret;
2115 }
2116 EXPORT_SYMBOL_GPL(usb_free_streams);
2117
2118 /* Protect against drivers that try to unlink URBs after the device
2119 * is gone, by waiting until all unlinks for @udev are finished.
2120 * Since we don't currently track URBs by device, simply wait until
2121 * nothing is running in the locked region of usb_hcd_unlink_urb().
2122 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2123 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2124 {
2125 spin_lock_irq(&hcd_urb_unlink_lock);
2126 spin_unlock_irq(&hcd_urb_unlink_lock);
2127 }
2128
2129 /*-------------------------------------------------------------------------*/
2130
2131 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2132 int usb_hcd_get_frame_number (struct usb_device *udev)
2133 {
2134 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2135
2136 if (!HCD_RH_RUNNING(hcd))
2137 return -ESHUTDOWN;
2138 return hcd->driver->get_frame_number (hcd);
2139 }
2140
2141 /*-------------------------------------------------------------------------*/
2142 #ifdef CONFIG_USB_HCD_TEST_MODE
2143
usb_ehset_completion(struct urb * urb)2144 static void usb_ehset_completion(struct urb *urb)
2145 {
2146 struct completion *done = urb->context;
2147
2148 complete(done);
2149 }
2150 /*
2151 * Allocate and initialize a control URB. This request will be used by the
2152 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2153 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2154 * Return NULL if failed.
2155 */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2156 static struct urb *request_single_step_set_feature_urb(
2157 struct usb_device *udev,
2158 void *dr,
2159 void *buf,
2160 struct completion *done)
2161 {
2162 struct urb *urb;
2163 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2164 struct usb_host_endpoint *ep;
2165
2166 urb = usb_alloc_urb(0, GFP_KERNEL);
2167 if (!urb)
2168 return NULL;
2169
2170 urb->pipe = usb_rcvctrlpipe(udev, 0);
2171 ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2172 [usb_pipeendpoint(urb->pipe)];
2173 if (!ep) {
2174 usb_free_urb(urb);
2175 return NULL;
2176 }
2177
2178 urb->ep = ep;
2179 urb->dev = udev;
2180 urb->setup_packet = (void *)dr;
2181 urb->transfer_buffer = buf;
2182 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2183 urb->complete = usb_ehset_completion;
2184 urb->status = -EINPROGRESS;
2185 urb->actual_length = 0;
2186 urb->transfer_flags = URB_DIR_IN;
2187 usb_get_urb(urb);
2188 atomic_inc(&urb->use_count);
2189 atomic_inc(&urb->dev->urbnum);
2190 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2191 usb_put_urb(urb);
2192 usb_free_urb(urb);
2193 return NULL;
2194 }
2195
2196 urb->context = done;
2197 return urb;
2198 }
2199
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2200 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2201 {
2202 int retval = -ENOMEM;
2203 struct usb_ctrlrequest *dr;
2204 struct urb *urb;
2205 struct usb_device *udev;
2206 struct usb_device_descriptor *buf;
2207 DECLARE_COMPLETION_ONSTACK(done);
2208
2209 /* Obtain udev of the rhub's child port */
2210 udev = usb_hub_find_child(hcd->self.root_hub, port);
2211 if (!udev) {
2212 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2213 return -ENODEV;
2214 }
2215 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2216 if (!buf)
2217 return -ENOMEM;
2218
2219 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2220 if (!dr) {
2221 kfree(buf);
2222 return -ENOMEM;
2223 }
2224
2225 /* Fill Setup packet for GetDescriptor */
2226 dr->bRequestType = USB_DIR_IN;
2227 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2228 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2229 dr->wIndex = 0;
2230 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2231 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2232 if (!urb)
2233 goto cleanup;
2234
2235 /* Submit just the SETUP stage */
2236 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2237 if (retval)
2238 goto out1;
2239 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2240 usb_kill_urb(urb);
2241 retval = -ETIMEDOUT;
2242 dev_err(hcd->self.controller,
2243 "%s SETUP stage timed out on ep0\n", __func__);
2244 goto out1;
2245 }
2246 msleep(15 * 1000);
2247
2248 /* Complete remaining DATA and STATUS stages using the same URB */
2249 urb->status = -EINPROGRESS;
2250 usb_get_urb(urb);
2251 atomic_inc(&urb->use_count);
2252 atomic_inc(&urb->dev->urbnum);
2253 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2254 if (!retval && !wait_for_completion_timeout(&done,
2255 msecs_to_jiffies(2000))) {
2256 usb_kill_urb(urb);
2257 retval = -ETIMEDOUT;
2258 dev_err(hcd->self.controller,
2259 "%s IN stage timed out on ep0\n", __func__);
2260 }
2261 out1:
2262 usb_free_urb(urb);
2263 cleanup:
2264 kfree(dr);
2265 kfree(buf);
2266 return retval;
2267 }
2268 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2269 #endif /* CONFIG_USB_HCD_TEST_MODE */
2270
2271 /*-------------------------------------------------------------------------*/
2272
2273 #ifdef CONFIG_PM
2274
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2275 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2276 {
2277 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2278 int status;
2279 int old_state = hcd->state;
2280
2281 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2282 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2283 rhdev->do_remote_wakeup);
2284 if (HCD_DEAD(hcd)) {
2285 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2286 return 0;
2287 }
2288
2289 if (!hcd->driver->bus_suspend) {
2290 status = -ENOENT;
2291 } else {
2292 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2293 hcd->state = HC_STATE_QUIESCING;
2294 status = hcd->driver->bus_suspend(hcd);
2295 }
2296 if (status == 0) {
2297 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2298 hcd->state = HC_STATE_SUSPENDED;
2299
2300 if (!PMSG_IS_AUTO(msg))
2301 usb_phy_roothub_suspend(hcd->self.sysdev,
2302 hcd->phy_roothub);
2303
2304 /* Did we race with a root-hub wakeup event? */
2305 if (rhdev->do_remote_wakeup) {
2306 char buffer[6];
2307
2308 status = hcd->driver->hub_status_data(hcd, buffer);
2309 if (status != 0) {
2310 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2311 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2312 status = -EBUSY;
2313 }
2314 }
2315 } else {
2316 spin_lock_irq(&hcd_root_hub_lock);
2317 if (!HCD_DEAD(hcd)) {
2318 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2319 hcd->state = old_state;
2320 }
2321 spin_unlock_irq(&hcd_root_hub_lock);
2322 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2323 "suspend", status);
2324 }
2325 return status;
2326 }
2327
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2328 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2329 {
2330 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2331 int status;
2332 int old_state = hcd->state;
2333
2334 dev_dbg(&rhdev->dev, "usb %sresume\n",
2335 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2336 if (HCD_DEAD(hcd)) {
2337 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2338 return 0;
2339 }
2340
2341 if (!PMSG_IS_AUTO(msg)) {
2342 status = usb_phy_roothub_resume(hcd->self.sysdev,
2343 hcd->phy_roothub);
2344 if (status)
2345 return status;
2346 }
2347
2348 if (!hcd->driver->bus_resume)
2349 return -ENOENT;
2350 if (HCD_RH_RUNNING(hcd))
2351 return 0;
2352
2353 hcd->state = HC_STATE_RESUMING;
2354 status = hcd->driver->bus_resume(hcd);
2355 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2356 if (status == 0)
2357 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2358
2359 if (status == 0) {
2360 struct usb_device *udev;
2361 int port1;
2362
2363 spin_lock_irq(&hcd_root_hub_lock);
2364 if (!HCD_DEAD(hcd)) {
2365 usb_set_device_state(rhdev, rhdev->actconfig
2366 ? USB_STATE_CONFIGURED
2367 : USB_STATE_ADDRESS);
2368 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2369 hcd->state = HC_STATE_RUNNING;
2370 }
2371 spin_unlock_irq(&hcd_root_hub_lock);
2372
2373 /*
2374 * Check whether any of the enabled ports on the root hub are
2375 * unsuspended. If they are then a TRSMRCY delay is needed
2376 * (this is what the USB-2 spec calls a "global resume").
2377 * Otherwise we can skip the delay.
2378 */
2379 usb_hub_for_each_child(rhdev, port1, udev) {
2380 if (udev->state != USB_STATE_NOTATTACHED &&
2381 !udev->port_is_suspended) {
2382 usleep_range(10000, 11000); /* TRSMRCY */
2383 break;
2384 }
2385 }
2386 } else {
2387 hcd->state = old_state;
2388 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2389 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2390 "resume", status);
2391 if (status != -ESHUTDOWN)
2392 usb_hc_died(hcd);
2393 }
2394 return status;
2395 }
2396
2397 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2398 static void hcd_resume_work(struct work_struct *work)
2399 {
2400 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2401 struct usb_device *udev = hcd->self.root_hub;
2402
2403 usb_remote_wakeup(udev);
2404 }
2405
2406 /**
2407 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2408 * @hcd: host controller for this root hub
2409 *
2410 * The USB host controller calls this function when its root hub is
2411 * suspended (with the remote wakeup feature enabled) and a remote
2412 * wakeup request is received. The routine submits a workqueue request
2413 * to resume the root hub (that is, manage its downstream ports again).
2414 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2415 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2416 {
2417 unsigned long flags;
2418
2419 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2420 if (hcd->rh_registered) {
2421 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2422 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2423 queue_work(pm_wq, &hcd->wakeup_work);
2424 }
2425 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2426 }
2427 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2428
2429 #endif /* CONFIG_PM */
2430
2431 /*-------------------------------------------------------------------------*/
2432
2433 #ifdef CONFIG_USB_OTG
2434
2435 /**
2436 * usb_bus_start_enum - start immediate enumeration (for OTG)
2437 * @bus: the bus (must use hcd framework)
2438 * @port_num: 1-based number of port; usually bus->otg_port
2439 * Context: atomic
2440 *
2441 * Starts enumeration, with an immediate reset followed later by
2442 * hub_wq identifying and possibly configuring the device.
2443 * This is needed by OTG controller drivers, where it helps meet
2444 * HNP protocol timing requirements for starting a port reset.
2445 *
2446 * Return: 0 if successful.
2447 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2448 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2449 {
2450 struct usb_hcd *hcd;
2451 int status = -EOPNOTSUPP;
2452
2453 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2454 * boards with root hubs hooked up to internal devices (instead of
2455 * just the OTG port) may need more attention to resetting...
2456 */
2457 hcd = bus_to_hcd(bus);
2458 if (port_num && hcd->driver->start_port_reset)
2459 status = hcd->driver->start_port_reset(hcd, port_num);
2460
2461 /* allocate hub_wq shortly after (first) root port reset finishes;
2462 * it may issue others, until at least 50 msecs have passed.
2463 */
2464 if (status == 0)
2465 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2466 return status;
2467 }
2468 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2469
2470 #endif
2471
2472 /*-------------------------------------------------------------------------*/
2473
2474 /**
2475 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2476 * @irq: the IRQ being raised
2477 * @__hcd: pointer to the HCD whose IRQ is being signaled
2478 *
2479 * If the controller isn't HALTed, calls the driver's irq handler.
2480 * Checks whether the controller is now dead.
2481 *
2482 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2483 */
usb_hcd_irq(int irq,void * __hcd)2484 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2485 {
2486 struct usb_hcd *hcd = __hcd;
2487 irqreturn_t rc;
2488
2489 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2490 rc = IRQ_NONE;
2491 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2492 rc = IRQ_NONE;
2493 else
2494 rc = IRQ_HANDLED;
2495
2496 return rc;
2497 }
2498 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2499
2500 /*-------------------------------------------------------------------------*/
2501
2502 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2503 static void hcd_died_work(struct work_struct *work)
2504 {
2505 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2506 static char *env[] = {
2507 "ERROR=DEAD",
2508 NULL
2509 };
2510
2511 /* Notify user space that the host controller has died */
2512 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2513 }
2514
2515 /**
2516 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2517 * @hcd: pointer to the HCD representing the controller
2518 *
2519 * This is called by bus glue to report a USB host controller that died
2520 * while operations may still have been pending. It's called automatically
2521 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2522 *
2523 * Only call this function with the primary HCD.
2524 */
usb_hc_died(struct usb_hcd * hcd)2525 void usb_hc_died (struct usb_hcd *hcd)
2526 {
2527 unsigned long flags;
2528
2529 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2530
2531 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2532 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2533 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2534 if (hcd->rh_registered) {
2535 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2536
2537 /* make hub_wq clean up old urbs and devices */
2538 usb_set_device_state (hcd->self.root_hub,
2539 USB_STATE_NOTATTACHED);
2540 usb_kick_hub_wq(hcd->self.root_hub);
2541 }
2542 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2543 hcd = hcd->shared_hcd;
2544 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2545 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2546 if (hcd->rh_registered) {
2547 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2548
2549 /* make hub_wq clean up old urbs and devices */
2550 usb_set_device_state(hcd->self.root_hub,
2551 USB_STATE_NOTATTACHED);
2552 usb_kick_hub_wq(hcd->self.root_hub);
2553 }
2554 }
2555
2556 /* Handle the case where this function gets called with a shared HCD */
2557 if (usb_hcd_is_primary_hcd(hcd))
2558 schedule_work(&hcd->died_work);
2559 else
2560 schedule_work(&hcd->primary_hcd->died_work);
2561
2562 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2563 /* Make sure that the other roothub is also deallocated. */
2564 }
2565 EXPORT_SYMBOL_GPL (usb_hc_died);
2566
2567 /*-------------------------------------------------------------------------*/
2568
init_giveback_urb_bh(struct giveback_urb_bh * bh)2569 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2570 {
2571
2572 spin_lock_init(&bh->lock);
2573 INIT_LIST_HEAD(&bh->head);
2574 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2575 }
2576
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2577 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2578 struct device *sysdev, struct device *dev, const char *bus_name,
2579 struct usb_hcd *primary_hcd)
2580 {
2581 struct usb_hcd *hcd;
2582
2583 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2584 if (!hcd)
2585 return NULL;
2586 if (primary_hcd == NULL) {
2587 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2588 GFP_KERNEL);
2589 if (!hcd->address0_mutex) {
2590 kfree(hcd);
2591 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2592 return NULL;
2593 }
2594 mutex_init(hcd->address0_mutex);
2595 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2596 GFP_KERNEL);
2597 if (!hcd->bandwidth_mutex) {
2598 kfree(hcd->address0_mutex);
2599 kfree(hcd);
2600 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2601 return NULL;
2602 }
2603 mutex_init(hcd->bandwidth_mutex);
2604 dev_set_drvdata(dev, hcd);
2605 } else {
2606 mutex_lock(&usb_port_peer_mutex);
2607 hcd->address0_mutex = primary_hcd->address0_mutex;
2608 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2609 hcd->primary_hcd = primary_hcd;
2610 primary_hcd->primary_hcd = primary_hcd;
2611 hcd->shared_hcd = primary_hcd;
2612 primary_hcd->shared_hcd = hcd;
2613 mutex_unlock(&usb_port_peer_mutex);
2614 }
2615
2616 kref_init(&hcd->kref);
2617
2618 usb_bus_init(&hcd->self);
2619 hcd->self.controller = dev;
2620 hcd->self.sysdev = sysdev;
2621 hcd->self.bus_name = bus_name;
2622
2623 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2624 #ifdef CONFIG_PM
2625 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2626 #endif
2627
2628 INIT_WORK(&hcd->died_work, hcd_died_work);
2629
2630 hcd->driver = driver;
2631 hcd->speed = driver->flags & HCD_MASK;
2632 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2633 "USB Host Controller";
2634 return hcd;
2635 }
2636 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2637
2638 /**
2639 * usb_create_shared_hcd - create and initialize an HCD structure
2640 * @driver: HC driver that will use this hcd
2641 * @dev: device for this HC, stored in hcd->self.controller
2642 * @bus_name: value to store in hcd->self.bus_name
2643 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2644 * PCI device. Only allocate certain resources for the primary HCD
2645 *
2646 * Context: task context, might sleep.
2647 *
2648 * Allocate a struct usb_hcd, with extra space at the end for the
2649 * HC driver's private data. Initialize the generic members of the
2650 * hcd structure.
2651 *
2652 * Return: On success, a pointer to the created and initialized HCD structure.
2653 * On failure (e.g. if memory is unavailable), %NULL.
2654 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2655 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2656 struct device *dev, const char *bus_name,
2657 struct usb_hcd *primary_hcd)
2658 {
2659 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2660 }
2661 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2662
2663 /**
2664 * usb_create_hcd - create and initialize an HCD structure
2665 * @driver: HC driver that will use this hcd
2666 * @dev: device for this HC, stored in hcd->self.controller
2667 * @bus_name: value to store in hcd->self.bus_name
2668 *
2669 * Context: task context, might sleep.
2670 *
2671 * Allocate a struct usb_hcd, with extra space at the end for the
2672 * HC driver's private data. Initialize the generic members of the
2673 * hcd structure.
2674 *
2675 * Return: On success, a pointer to the created and initialized HCD
2676 * structure. On failure (e.g. if memory is unavailable), %NULL.
2677 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2678 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2679 struct device *dev, const char *bus_name)
2680 {
2681 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2682 }
2683 EXPORT_SYMBOL_GPL(usb_create_hcd);
2684
2685 /*
2686 * Roothubs that share one PCI device must also share the bandwidth mutex.
2687 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2688 * deallocated.
2689 *
2690 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2691 * freed. When hcd_release() is called for either hcd in a peer set,
2692 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2693 */
hcd_release(struct kref * kref)2694 static void hcd_release(struct kref *kref)
2695 {
2696 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2697
2698 mutex_lock(&usb_port_peer_mutex);
2699 if (hcd->shared_hcd) {
2700 struct usb_hcd *peer = hcd->shared_hcd;
2701
2702 peer->shared_hcd = NULL;
2703 peer->primary_hcd = NULL;
2704 } else {
2705 kfree(hcd->address0_mutex);
2706 kfree(hcd->bandwidth_mutex);
2707 }
2708 mutex_unlock(&usb_port_peer_mutex);
2709 kfree(hcd);
2710 }
2711
usb_get_hcd(struct usb_hcd * hcd)2712 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2713 {
2714 if (hcd)
2715 kref_get (&hcd->kref);
2716 return hcd;
2717 }
2718 EXPORT_SYMBOL_GPL(usb_get_hcd);
2719
usb_put_hcd(struct usb_hcd * hcd)2720 void usb_put_hcd (struct usb_hcd *hcd)
2721 {
2722 if (hcd)
2723 kref_put (&hcd->kref, hcd_release);
2724 }
2725 EXPORT_SYMBOL_GPL(usb_put_hcd);
2726
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2727 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2728 {
2729 if (!hcd->primary_hcd)
2730 return 1;
2731 return hcd == hcd->primary_hcd;
2732 }
2733 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2734
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2735 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2736 {
2737 if (!hcd->driver->find_raw_port_number)
2738 return port1;
2739
2740 return hcd->driver->find_raw_port_number(hcd, port1);
2741 }
2742
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2743 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2744 unsigned int irqnum, unsigned long irqflags)
2745 {
2746 int retval;
2747
2748 if (hcd->driver->irq) {
2749
2750 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2751 hcd->driver->description, hcd->self.busnum);
2752 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2753 hcd->irq_descr, hcd);
2754 if (retval != 0) {
2755 dev_err(hcd->self.controller,
2756 "request interrupt %d failed\n",
2757 irqnum);
2758 return retval;
2759 }
2760 hcd->irq = irqnum;
2761 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2762 (hcd->driver->flags & HCD_MEMORY) ?
2763 "io mem" : "io base",
2764 (unsigned long long)hcd->rsrc_start);
2765 } else {
2766 hcd->irq = 0;
2767 if (hcd->rsrc_start)
2768 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2769 (hcd->driver->flags & HCD_MEMORY) ?
2770 "io mem" : "io base",
2771 (unsigned long long)hcd->rsrc_start);
2772 }
2773 return 0;
2774 }
2775
2776 /*
2777 * Before we free this root hub, flush in-flight peering attempts
2778 * and disable peer lookups
2779 */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2780 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2781 {
2782 struct usb_device *rhdev;
2783
2784 mutex_lock(&usb_port_peer_mutex);
2785 rhdev = hcd->self.root_hub;
2786 hcd->self.root_hub = NULL;
2787 mutex_unlock(&usb_port_peer_mutex);
2788 usb_put_dev(rhdev);
2789 }
2790
2791 /**
2792 * usb_stop_hcd - Halt the HCD
2793 * @hcd: the usb_hcd that has to be halted
2794 *
2795 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2796 */
usb_stop_hcd(struct usb_hcd * hcd)2797 static void usb_stop_hcd(struct usb_hcd *hcd)
2798 {
2799 hcd->rh_pollable = 0;
2800 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2801 del_timer_sync(&hcd->rh_timer);
2802
2803 hcd->driver->stop(hcd);
2804 hcd->state = HC_STATE_HALT;
2805
2806 /* In case the HCD restarted the timer, stop it again. */
2807 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808 del_timer_sync(&hcd->rh_timer);
2809 }
2810
2811 /**
2812 * usb_add_hcd - finish generic HCD structure initialization and register
2813 * @hcd: the usb_hcd structure to initialize
2814 * @irqnum: Interrupt line to allocate
2815 * @irqflags: Interrupt type flags
2816 *
2817 * Finish the remaining parts of generic HCD initialization: allocate the
2818 * buffers of consistent memory, register the bus, request the IRQ line,
2819 * and call the driver's reset() and start() routines.
2820 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2821 int usb_add_hcd(struct usb_hcd *hcd,
2822 unsigned int irqnum, unsigned long irqflags)
2823 {
2824 int retval;
2825 struct usb_device *rhdev;
2826 struct usb_hcd *shared_hcd;
2827
2828 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2829 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2830 if (IS_ERR(hcd->phy_roothub))
2831 return PTR_ERR(hcd->phy_roothub);
2832
2833 retval = usb_phy_roothub_init(hcd->phy_roothub);
2834 if (retval)
2835 return retval;
2836
2837 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2838 PHY_MODE_USB_HOST_SS);
2839 if (retval)
2840 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2841 PHY_MODE_USB_HOST);
2842 if (retval)
2843 goto err_usb_phy_roothub_power_on;
2844
2845 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2846 if (retval)
2847 goto err_usb_phy_roothub_power_on;
2848 }
2849
2850 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2851
2852 switch (authorized_default) {
2853 case USB_AUTHORIZE_NONE:
2854 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2855 break;
2856
2857 case USB_AUTHORIZE_ALL:
2858 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2859 break;
2860
2861 case USB_AUTHORIZE_INTERNAL:
2862 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2863 break;
2864
2865 case USB_AUTHORIZE_WIRED:
2866 default:
2867 hcd->dev_policy = hcd->wireless ?
2868 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2869 break;
2870 }
2871
2872 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2873
2874 /* per default all interfaces are authorized */
2875 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2876
2877 /* HC is in reset state, but accessible. Now do the one-time init,
2878 * bottom up so that hcds can customize the root hubs before hub_wq
2879 * starts talking to them. (Note, bus id is assigned early too.)
2880 */
2881 retval = hcd_buffer_create(hcd);
2882 if (retval != 0) {
2883 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2884 goto err_create_buf;
2885 }
2886
2887 retval = usb_register_bus(&hcd->self);
2888 if (retval < 0)
2889 goto err_register_bus;
2890
2891 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2892 if (rhdev == NULL) {
2893 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2894 retval = -ENOMEM;
2895 goto err_allocate_root_hub;
2896 }
2897 mutex_lock(&usb_port_peer_mutex);
2898 hcd->self.root_hub = rhdev;
2899 mutex_unlock(&usb_port_peer_mutex);
2900
2901 rhdev->rx_lanes = 1;
2902 rhdev->tx_lanes = 1;
2903 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2904
2905 switch (hcd->speed) {
2906 case HCD_USB11:
2907 rhdev->speed = USB_SPEED_FULL;
2908 break;
2909 case HCD_USB2:
2910 rhdev->speed = USB_SPEED_HIGH;
2911 break;
2912 case HCD_USB25:
2913 rhdev->speed = USB_SPEED_WIRELESS;
2914 break;
2915 case HCD_USB3:
2916 rhdev->speed = USB_SPEED_SUPER;
2917 break;
2918 case HCD_USB32:
2919 rhdev->rx_lanes = 2;
2920 rhdev->tx_lanes = 2;
2921 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2922 rhdev->speed = USB_SPEED_SUPER_PLUS;
2923 break;
2924 case HCD_USB31:
2925 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2926 rhdev->speed = USB_SPEED_SUPER_PLUS;
2927 break;
2928 default:
2929 retval = -EINVAL;
2930 goto err_set_rh_speed;
2931 }
2932
2933 /* wakeup flag init defaults to "everything works" for root hubs,
2934 * but drivers can override it in reset() if needed, along with
2935 * recording the overall controller's system wakeup capability.
2936 */
2937 device_set_wakeup_capable(&rhdev->dev, 1);
2938
2939 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2940 * registered. But since the controller can die at any time,
2941 * let's initialize the flag before touching the hardware.
2942 */
2943 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2944
2945 /* "reset" is misnamed; its role is now one-time init. the controller
2946 * should already have been reset (and boot firmware kicked off etc).
2947 */
2948 if (hcd->driver->reset) {
2949 retval = hcd->driver->reset(hcd);
2950 if (retval < 0) {
2951 dev_err(hcd->self.controller, "can't setup: %d\n",
2952 retval);
2953 goto err_hcd_driver_setup;
2954 }
2955 }
2956 hcd->rh_pollable = 1;
2957
2958 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2959 if (retval)
2960 goto err_hcd_driver_setup;
2961
2962 /* NOTE: root hub and controller capabilities may not be the same */
2963 if (device_can_wakeup(hcd->self.controller)
2964 && device_can_wakeup(&hcd->self.root_hub->dev))
2965 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2966
2967 /* initialize tasklets */
2968 init_giveback_urb_bh(&hcd->high_prio_bh);
2969 hcd->high_prio_bh.high_prio = true;
2970 init_giveback_urb_bh(&hcd->low_prio_bh);
2971
2972 /* enable irqs just before we start the controller,
2973 * if the BIOS provides legacy PCI irqs.
2974 */
2975 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2976 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2977 if (retval)
2978 goto err_request_irq;
2979 }
2980
2981 hcd->state = HC_STATE_RUNNING;
2982 retval = hcd->driver->start(hcd);
2983 if (retval < 0) {
2984 dev_err(hcd->self.controller, "startup error %d\n", retval);
2985 goto err_hcd_driver_start;
2986 }
2987
2988 /* starting here, usbcore will pay attention to the shared HCD roothub */
2989 shared_hcd = hcd->shared_hcd;
2990 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2991 retval = register_root_hub(shared_hcd);
2992 if (retval != 0)
2993 goto err_register_root_hub;
2994
2995 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2996 usb_hcd_poll_rh_status(shared_hcd);
2997 }
2998
2999 /* starting here, usbcore will pay attention to this root hub */
3000 if (!HCD_DEFER_RH_REGISTER(hcd)) {
3001 retval = register_root_hub(hcd);
3002 if (retval != 0)
3003 goto err_register_root_hub;
3004
3005 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3006 usb_hcd_poll_rh_status(hcd);
3007 }
3008
3009 return retval;
3010
3011 err_register_root_hub:
3012 usb_stop_hcd(hcd);
3013 err_hcd_driver_start:
3014 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3015 free_irq(irqnum, hcd);
3016 err_request_irq:
3017 err_hcd_driver_setup:
3018 err_set_rh_speed:
3019 usb_put_invalidate_rhdev(hcd);
3020 err_allocate_root_hub:
3021 usb_deregister_bus(&hcd->self);
3022 err_register_bus:
3023 hcd_buffer_destroy(hcd);
3024 err_create_buf:
3025 usb_phy_roothub_power_off(hcd->phy_roothub);
3026 err_usb_phy_roothub_power_on:
3027 usb_phy_roothub_exit(hcd->phy_roothub);
3028
3029 return retval;
3030 }
3031 EXPORT_SYMBOL_GPL(usb_add_hcd);
3032
3033 /**
3034 * usb_remove_hcd - shutdown processing for generic HCDs
3035 * @hcd: the usb_hcd structure to remove
3036 *
3037 * Context: task context, might sleep.
3038 *
3039 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3040 * invoking the HCD's stop() method.
3041 */
usb_remove_hcd(struct usb_hcd * hcd)3042 void usb_remove_hcd(struct usb_hcd *hcd)
3043 {
3044 struct usb_device *rhdev = hcd->self.root_hub;
3045 bool rh_registered;
3046
3047 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3048
3049 usb_get_dev(rhdev);
3050 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3051 if (HC_IS_RUNNING (hcd->state))
3052 hcd->state = HC_STATE_QUIESCING;
3053
3054 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3055 spin_lock_irq (&hcd_root_hub_lock);
3056 rh_registered = hcd->rh_registered;
3057 hcd->rh_registered = 0;
3058 spin_unlock_irq (&hcd_root_hub_lock);
3059
3060 #ifdef CONFIG_PM
3061 cancel_work_sync(&hcd->wakeup_work);
3062 #endif
3063 cancel_work_sync(&hcd->died_work);
3064
3065 mutex_lock(&usb_bus_idr_lock);
3066 if (rh_registered)
3067 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3068 mutex_unlock(&usb_bus_idr_lock);
3069
3070 /*
3071 * tasklet_kill() isn't needed here because:
3072 * - driver's disconnect() called from usb_disconnect() should
3073 * make sure its URBs are completed during the disconnect()
3074 * callback
3075 *
3076 * - it is too late to run complete() here since driver may have
3077 * been removed already now
3078 */
3079
3080 /* Prevent any more root-hub status calls from the timer.
3081 * The HCD might still restart the timer (if a port status change
3082 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3083 * the hub_status_data() callback.
3084 */
3085 usb_stop_hcd(hcd);
3086
3087 if (usb_hcd_is_primary_hcd(hcd)) {
3088 if (hcd->irq > 0)
3089 free_irq(hcd->irq, hcd);
3090 }
3091
3092 usb_deregister_bus(&hcd->self);
3093 hcd_buffer_destroy(hcd);
3094
3095 usb_phy_roothub_power_off(hcd->phy_roothub);
3096 usb_phy_roothub_exit(hcd->phy_roothub);
3097
3098 usb_put_invalidate_rhdev(hcd);
3099 hcd->flags = 0;
3100 }
3101 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3102
3103 void
usb_hcd_platform_shutdown(struct platform_device * dev)3104 usb_hcd_platform_shutdown(struct platform_device *dev)
3105 {
3106 struct usb_hcd *hcd = platform_get_drvdata(dev);
3107
3108 /* No need for pm_runtime_put(), we're shutting down */
3109 pm_runtime_get_sync(&dev->dev);
3110
3111 if (hcd->driver->shutdown)
3112 hcd->driver->shutdown(hcd);
3113 }
3114 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3115
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3116 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3117 dma_addr_t dma, size_t size)
3118 {
3119 int err;
3120 void *local_mem;
3121
3122 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3123 dev_to_node(hcd->self.sysdev),
3124 dev_name(hcd->self.sysdev));
3125 if (IS_ERR(hcd->localmem_pool))
3126 return PTR_ERR(hcd->localmem_pool);
3127
3128 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3129 size, MEMREMAP_WC);
3130 if (IS_ERR(local_mem))
3131 return PTR_ERR(local_mem);
3132
3133 /*
3134 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3135 * It's not backed by system memory and thus there's no kernel mapping
3136 * for it.
3137 */
3138 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3139 dma, size, dev_to_node(hcd->self.sysdev));
3140 if (err < 0) {
3141 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3142 err);
3143 return err;
3144 }
3145
3146 return 0;
3147 }
3148 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3149
3150 /*-------------------------------------------------------------------------*/
3151
3152 const struct usb_mon_operations *mon_ops;
3153
3154 /*
3155 * The registration is unlocked.
3156 * We do it this way because we do not want to lock in hot paths.
3157 *
3158 * Notice that the code is minimally error-proof. Because usbmon needs
3159 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3160 */
3161
usb_mon_register(const struct usb_mon_operations * ops)3162 int usb_mon_register(const struct usb_mon_operations *ops)
3163 {
3164
3165 if (mon_ops)
3166 return -EBUSY;
3167
3168 mon_ops = ops;
3169 mb();
3170 return 0;
3171 }
3172 EXPORT_SYMBOL_GPL (usb_mon_register);
3173
usb_mon_deregister(void)3174 void usb_mon_deregister (void)
3175 {
3176
3177 if (mon_ops == NULL) {
3178 printk(KERN_ERR "USB: monitor was not registered\n");
3179 return;
3180 }
3181 mon_ops = NULL;
3182 mb();
3183 }
3184 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3185