• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11 
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35 
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40 
41 #include "usb.h"
42 #include "phy.h"
43 
44 
45 /*-------------------------------------------------------------------------*/
46 
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
74  *		associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
76  */
77 
78 /*-------------------------------------------------------------------------*/
79 
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83 
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87 
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS		64
90 
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94 
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97 
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100 
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103 
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106 
107 /*-------------------------------------------------------------------------*/
108 
109 /*
110  * Sharable chunks of root hub code.
111  */
112 
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
116 
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119 	0x12,       /*  __u8  bLength; */
120 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122 
123 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
124 	0x00,	    /*  __u8  bDeviceSubClass; */
125 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127 
128 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131 
132 	0x03,       /*  __u8  iManufacturer; */
133 	0x02,       /*  __u8  iProduct; */
134 	0x01,       /*  __u8  iSerialNumber; */
135 	0x01        /*  __u8  bNumConfigurations; */
136 };
137 
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140 	0x12,       /*  __u8  bLength; */
141 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143 
144 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
145 	0x00,	    /*  __u8  bDeviceSubClass; */
146 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148 
149 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152 
153 	0x03,       /*  __u8  iManufacturer; */
154 	0x02,       /*  __u8  iProduct; */
155 	0x01,       /*  __u8  iSerialNumber; */
156 	0x01        /*  __u8  bNumConfigurations; */
157 };
158 
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161 	0x12,       /*  __u8  bLength; */
162 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
164 
165 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
166 	0x00,	    /*  __u8  bDeviceSubClass; */
167 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169 
170 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173 
174 	0x03,       /*  __u8  iManufacturer; */
175 	0x02,       /*  __u8  iProduct; */
176 	0x01,       /*  __u8  iSerialNumber; */
177 	0x01        /*  __u8  bNumConfigurations; */
178 };
179 
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182 	0x12,       /*  __u8  bLength; */
183 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
185 
186 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
187 	0x00,	    /*  __u8  bDeviceSubClass; */
188 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
189 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
190 
191 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
192 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
193 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
194 
195 	0x03,       /*  __u8  iManufacturer; */
196 	0x02,       /*  __u8  iProduct; */
197 	0x01,       /*  __u8  iSerialNumber; */
198 	0x01        /*  __u8  bNumConfigurations; */
199 };
200 
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202 
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205 	0x12,       /*  __u8  bLength; */
206 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
208 
209 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
210 	0x00,	    /*  __u8  bDeviceSubClass; */
211 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
212 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
213 
214 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
215 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
216 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
217 
218 	0x03,       /*  __u8  iManufacturer; */
219 	0x02,       /*  __u8  iProduct; */
220 	0x01,       /*  __u8  iSerialNumber; */
221 	0x01        /*  __u8  bNumConfigurations; */
222 };
223 
224 
225 /*-------------------------------------------------------------------------*/
226 
227 /* Configuration descriptors for our root hubs */
228 
229 static const u8 fs_rh_config_descriptor[] = {
230 
231 	/* one configuration */
232 	0x09,       /*  __u8  bLength; */
233 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 	0x19, 0x00, /*  __le16 wTotalLength; */
235 	0x01,       /*  __u8  bNumInterfaces; (1) */
236 	0x01,       /*  __u8  bConfigurationValue; */
237 	0x00,       /*  __u8  iConfiguration; */
238 	0xc0,       /*  __u8  bmAttributes;
239 				 Bit 7: must be set,
240 				     6: Self-powered,
241 				     5: Remote wakeup,
242 				     4..0: resvd */
243 	0x00,       /*  __u8  MaxPower; */
244 
245 	/* USB 1.1:
246 	 * USB 2.0, single TT organization (mandatory):
247 	 *	one interface, protocol 0
248 	 *
249 	 * USB 2.0, multiple TT organization (optional):
250 	 *	two interfaces, protocols 1 (like single TT)
251 	 *	and 2 (multiple TT mode) ... config is
252 	 *	sometimes settable
253 	 *	NOT IMPLEMENTED
254 	 */
255 
256 	/* one interface */
257 	0x09,       /*  __u8  if_bLength; */
258 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
259 	0x00,       /*  __u8  if_bInterfaceNumber; */
260 	0x00,       /*  __u8  if_bAlternateSetting; */
261 	0x01,       /*  __u8  if_bNumEndpoints; */
262 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
263 	0x00,       /*  __u8  if_bInterfaceSubClass; */
264 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
265 	0x00,       /*  __u8  if_iInterface; */
266 
267 	/* one endpoint (status change endpoint) */
268 	0x07,       /*  __u8  ep_bLength; */
269 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
271 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
272 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275 
276 static const u8 hs_rh_config_descriptor[] = {
277 
278 	/* one configuration */
279 	0x09,       /*  __u8  bLength; */
280 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 	0x19, 0x00, /*  __le16 wTotalLength; */
282 	0x01,       /*  __u8  bNumInterfaces; (1) */
283 	0x01,       /*  __u8  bConfigurationValue; */
284 	0x00,       /*  __u8  iConfiguration; */
285 	0xc0,       /*  __u8  bmAttributes;
286 				 Bit 7: must be set,
287 				     6: Self-powered,
288 				     5: Remote wakeup,
289 				     4..0: resvd */
290 	0x00,       /*  __u8  MaxPower; */
291 
292 	/* USB 1.1:
293 	 * USB 2.0, single TT organization (mandatory):
294 	 *	one interface, protocol 0
295 	 *
296 	 * USB 2.0, multiple TT organization (optional):
297 	 *	two interfaces, protocols 1 (like single TT)
298 	 *	and 2 (multiple TT mode) ... config is
299 	 *	sometimes settable
300 	 *	NOT IMPLEMENTED
301 	 */
302 
303 	/* one interface */
304 	0x09,       /*  __u8  if_bLength; */
305 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 	0x00,       /*  __u8  if_bInterfaceNumber; */
307 	0x00,       /*  __u8  if_bAlternateSetting; */
308 	0x01,       /*  __u8  if_bNumEndpoints; */
309 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
310 	0x00,       /*  __u8  if_bInterfaceSubClass; */
311 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
312 	0x00,       /*  __u8  if_iInterface; */
313 
314 	/* one endpoint (status change endpoint) */
315 	0x07,       /*  __u8  ep_bLength; */
316 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
318 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
319 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 		     * see hub.c:hub_configure() for details. */
321 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324 
325 static const u8 ss_rh_config_descriptor[] = {
326 	/* one configuration */
327 	0x09,       /*  __u8  bLength; */
328 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 	0x1f, 0x00, /*  __le16 wTotalLength; */
330 	0x01,       /*  __u8  bNumInterfaces; (1) */
331 	0x01,       /*  __u8  bConfigurationValue; */
332 	0x00,       /*  __u8  iConfiguration; */
333 	0xc0,       /*  __u8  bmAttributes;
334 				 Bit 7: must be set,
335 				     6: Self-powered,
336 				     5: Remote wakeup,
337 				     4..0: resvd */
338 	0x00,       /*  __u8  MaxPower; */
339 
340 	/* one interface */
341 	0x09,       /*  __u8  if_bLength; */
342 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 	0x00,       /*  __u8  if_bInterfaceNumber; */
344 	0x00,       /*  __u8  if_bAlternateSetting; */
345 	0x01,       /*  __u8  if_bNumEndpoints; */
346 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
347 	0x00,       /*  __u8  if_bInterfaceSubClass; */
348 	0x00,       /*  __u8  if_bInterfaceProtocol; */
349 	0x00,       /*  __u8  if_iInterface; */
350 
351 	/* one endpoint (status change endpoint) */
352 	0x07,       /*  __u8  ep_bLength; */
353 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
355 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
356 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 		     * see hub.c:hub_configure() for details. */
358 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
360 
361 	/* one SuperSpeed endpoint companion descriptor */
362 	0x06,        /* __u8 ss_bLength */
363 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 		     /* Companion */
365 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
367 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369 
370 /* authorized_default behaviour:
371  * -1 is authorized for all devices except wireless (old behaviour)
372  * 0 is unauthorized for all devices
373  * 1 is authorized for all devices
374  * 2 is authorized for internal devices
375  */
376 #define USB_AUTHORIZE_WIRED	-1
377 #define USB_AUTHORIZE_NONE	0
378 #define USB_AUTHORIZE_ALL	1
379 #define USB_AUTHORIZE_INTERNAL	2
380 
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384 		"Default USB device authorization: 0 is not authorized, 1 is "
385 		"authorized, 2 is authorized for internal devices, -1 is "
386 		"authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388 
389 /**
390  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391  * @s: Null-terminated ASCII (actually ISO-8859-1) string
392  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393  * @len: Length (in bytes; may be odd) of descriptor buffer.
394  *
395  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396  * whichever is less.
397  *
398  * Note:
399  * USB String descriptors can contain at most 126 characters; input
400  * strings longer than that are truncated.
401  */
402 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405 	unsigned n, t = 2 + 2*strlen(s);
406 
407 	if (t > 254)
408 		t = 254;	/* Longest possible UTF string descriptor */
409 	if (len > t)
410 		len = t;
411 
412 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
413 
414 	n = len;
415 	while (n--) {
416 		*buf++ = t;
417 		if (!n--)
418 			break;
419 		*buf++ = t >> 8;
420 		t = (unsigned char)*s++;
421 	}
422 	return len;
423 }
424 
425 /**
426  * rh_string() - provides string descriptors for root hub
427  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428  * @hcd: the host controller for this root hub
429  * @data: buffer for output packet
430  * @len: length of the provided buffer
431  *
432  * Produces either a manufacturer, product or serial number string for the
433  * virtual root hub device.
434  *
435  * Return: The number of bytes filled in: the length of the descriptor or
436  * of the provided buffer, whichever is less.
437  */
438 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441 	char buf[100];
442 	char const *s;
443 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444 
445 	/* language ids */
446 	switch (id) {
447 	case 0:
448 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 		if (len > 4)
451 			len = 4;
452 		memcpy(data, langids, len);
453 		return len;
454 	case 1:
455 		/* Serial number */
456 		s = hcd->self.bus_name;
457 		break;
458 	case 2:
459 		/* Product name */
460 		s = hcd->product_desc;
461 		break;
462 	case 3:
463 		/* Manufacturer */
464 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 			init_utsname()->release, hcd->driver->description);
466 		s = buf;
467 		break;
468 	default:
469 		/* Can't happen; caller guarantees it */
470 		return 0;
471 	}
472 
473 	return ascii2desc(s, data, len);
474 }
475 
476 
477 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480 	struct usb_ctrlrequest *cmd;
481 	u16		typeReq, wValue, wIndex, wLength;
482 	u8		*ubuf = urb->transfer_buffer;
483 	unsigned	len = 0;
484 	int		status;
485 	u8		patch_wakeup = 0;
486 	u8		patch_protocol = 0;
487 	u16		tbuf_size;
488 	u8		*tbuf = NULL;
489 	const u8	*bufp;
490 
491 	might_sleep();
492 
493 	spin_lock_irq(&hcd_root_hub_lock);
494 	status = usb_hcd_link_urb_to_ep(hcd, urb);
495 	spin_unlock_irq(&hcd_root_hub_lock);
496 	if (status)
497 		return status;
498 	urb->hcpriv = hcd;	/* Indicate it's queued */
499 
500 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
502 	wValue   = le16_to_cpu (cmd->wValue);
503 	wIndex   = le16_to_cpu (cmd->wIndex);
504 	wLength  = le16_to_cpu (cmd->wLength);
505 
506 	if (wLength > urb->transfer_buffer_length)
507 		goto error;
508 
509 	/*
510 	 * tbuf should be at least as big as the
511 	 * USB hub descriptor.
512 	 */
513 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 	if (!tbuf) {
516 		status = -ENOMEM;
517 		goto err_alloc;
518 	}
519 
520 	bufp = tbuf;
521 
522 
523 	urb->actual_length = 0;
524 	switch (typeReq) {
525 
526 	/* DEVICE REQUESTS */
527 
528 	/* The root hub's remote wakeup enable bit is implemented using
529 	 * driver model wakeup flags.  If this system supports wakeup
530 	 * through USB, userspace may change the default "allow wakeup"
531 	 * policy through sysfs or these calls.
532 	 *
533 	 * Most root hubs support wakeup from downstream devices, for
534 	 * runtime power management (disabling USB clocks and reducing
535 	 * VBUS power usage).  However, not all of them do so; silicon,
536 	 * board, and BIOS bugs here are not uncommon, so these can't
537 	 * be treated quite like external hubs.
538 	 *
539 	 * Likewise, not all root hubs will pass wakeup events upstream,
540 	 * to wake up the whole system.  So don't assume root hub and
541 	 * controller capabilities are identical.
542 	 */
543 
544 	case DeviceRequest | USB_REQ_GET_STATUS:
545 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 					<< USB_DEVICE_REMOTE_WAKEUP)
547 				| (1 << USB_DEVICE_SELF_POWERED);
548 		tbuf[1] = 0;
549 		len = 2;
550 		break;
551 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 		else
555 			goto error;
556 		break;
557 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 		if (device_can_wakeup(&hcd->self.root_hub->dev)
559 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
560 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 		else
562 			goto error;
563 		break;
564 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 		tbuf[0] = 1;
566 		len = 1;
567 		fallthrough;
568 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 		break;
570 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 		switch (wValue & 0xff00) {
572 		case USB_DT_DEVICE << 8:
573 			switch (hcd->speed) {
574 			case HCD_USB32:
575 			case HCD_USB31:
576 				bufp = usb31_rh_dev_descriptor;
577 				break;
578 			case HCD_USB3:
579 				bufp = usb3_rh_dev_descriptor;
580 				break;
581 			case HCD_USB25:
582 				bufp = usb25_rh_dev_descriptor;
583 				break;
584 			case HCD_USB2:
585 				bufp = usb2_rh_dev_descriptor;
586 				break;
587 			case HCD_USB11:
588 				bufp = usb11_rh_dev_descriptor;
589 				break;
590 			default:
591 				goto error;
592 			}
593 			len = 18;
594 			if (hcd->has_tt)
595 				patch_protocol = 1;
596 			break;
597 		case USB_DT_CONFIG << 8:
598 			switch (hcd->speed) {
599 			case HCD_USB32:
600 			case HCD_USB31:
601 			case HCD_USB3:
602 				bufp = ss_rh_config_descriptor;
603 				len = sizeof ss_rh_config_descriptor;
604 				break;
605 			case HCD_USB25:
606 			case HCD_USB2:
607 				bufp = hs_rh_config_descriptor;
608 				len = sizeof hs_rh_config_descriptor;
609 				break;
610 			case HCD_USB11:
611 				bufp = fs_rh_config_descriptor;
612 				len = sizeof fs_rh_config_descriptor;
613 				break;
614 			default:
615 				goto error;
616 			}
617 			if (device_can_wakeup(&hcd->self.root_hub->dev))
618 				patch_wakeup = 1;
619 			break;
620 		case USB_DT_STRING << 8:
621 			if ((wValue & 0xff) < 4)
622 				urb->actual_length = rh_string(wValue & 0xff,
623 						hcd, ubuf, wLength);
624 			else /* unsupported IDs --> "protocol stall" */
625 				goto error;
626 			break;
627 		case USB_DT_BOS << 8:
628 			goto nongeneric;
629 		default:
630 			goto error;
631 		}
632 		break;
633 	case DeviceRequest | USB_REQ_GET_INTERFACE:
634 		tbuf[0] = 0;
635 		len = 1;
636 		fallthrough;
637 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 		break;
639 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 		/* wValue == urb->dev->devaddr */
641 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 			wValue);
643 		break;
644 
645 	/* INTERFACE REQUESTS (no defined feature/status flags) */
646 
647 	/* ENDPOINT REQUESTS */
648 
649 	case EndpointRequest | USB_REQ_GET_STATUS:
650 		/* ENDPOINT_HALT flag */
651 		tbuf[0] = 0;
652 		tbuf[1] = 0;
653 		len = 2;
654 		fallthrough;
655 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 		break;
659 
660 	/* CLASS REQUESTS (and errors) */
661 
662 	default:
663 nongeneric:
664 		/* non-generic request */
665 		switch (typeReq) {
666 		case GetHubStatus:
667 			len = 4;
668 			break;
669 		case GetPortStatus:
670 			if (wValue == HUB_PORT_STATUS)
671 				len = 4;
672 			else
673 				/* other port status types return 8 bytes */
674 				len = 8;
675 			break;
676 		case GetHubDescriptor:
677 			len = sizeof (struct usb_hub_descriptor);
678 			break;
679 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 			/* len is returned by hub_control */
681 			break;
682 		}
683 		status = hcd->driver->hub_control (hcd,
684 			typeReq, wValue, wIndex,
685 			tbuf, wLength);
686 
687 		if (typeReq == GetHubDescriptor)
688 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 				(struct usb_hub_descriptor *)tbuf);
690 		break;
691 error:
692 		/* "protocol stall" on error */
693 		status = -EPIPE;
694 	}
695 
696 	if (status < 0) {
697 		len = 0;
698 		if (status != -EPIPE) {
699 			dev_dbg (hcd->self.controller,
700 				"CTRL: TypeReq=0x%x val=0x%x "
701 				"idx=0x%x len=%d ==> %d\n",
702 				typeReq, wValue, wIndex,
703 				wLength, status);
704 		}
705 	} else if (status > 0) {
706 		/* hub_control may return the length of data copied. */
707 		len = status;
708 		status = 0;
709 	}
710 	if (len) {
711 		if (urb->transfer_buffer_length < len)
712 			len = urb->transfer_buffer_length;
713 		urb->actual_length = len;
714 		/* always USB_DIR_IN, toward host */
715 		memcpy (ubuf, bufp, len);
716 
717 		/* report whether RH hardware supports remote wakeup */
718 		if (patch_wakeup &&
719 				len > offsetof (struct usb_config_descriptor,
720 						bmAttributes))
721 			((struct usb_config_descriptor *)ubuf)->bmAttributes
722 				|= USB_CONFIG_ATT_WAKEUP;
723 
724 		/* report whether RH hardware has an integrated TT */
725 		if (patch_protocol &&
726 				len > offsetof(struct usb_device_descriptor,
727 						bDeviceProtocol))
728 			((struct usb_device_descriptor *) ubuf)->
729 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 	}
731 
732 	kfree(tbuf);
733  err_alloc:
734 
735 	/* any errors get returned through the urb completion */
736 	spin_lock_irq(&hcd_root_hub_lock);
737 	usb_hcd_unlink_urb_from_ep(hcd, urb);
738 	usb_hcd_giveback_urb(hcd, urb, status);
739 	spin_unlock_irq(&hcd_root_hub_lock);
740 	return 0;
741 }
742 
743 /*-------------------------------------------------------------------------*/
744 
745 /*
746  * Root Hub interrupt transfers are polled using a timer if the
747  * driver requests it; otherwise the driver is responsible for
748  * calling usb_hcd_poll_rh_status() when an event occurs.
749  *
750  * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754 	struct urb	*urb;
755 	int		length;
756 	int		status;
757 	unsigned long	flags;
758 	char		buffer[6];	/* Any root hubs with > 31 ports? */
759 
760 	if (unlikely(!hcd->rh_pollable))
761 		return;
762 	if (!hcd->uses_new_polling && !hcd->status_urb)
763 		return;
764 
765 	length = hcd->driver->hub_status_data(hcd, buffer);
766 	if (length > 0) {
767 
768 		/* try to complete the status urb */
769 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 		urb = hcd->status_urb;
771 		if (urb) {
772 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 			hcd->status_urb = NULL;
774 			if (urb->transfer_buffer_length >= length) {
775 				status = 0;
776 			} else {
777 				status = -EOVERFLOW;
778 				length = urb->transfer_buffer_length;
779 			}
780 			urb->actual_length = length;
781 			memcpy(urb->transfer_buffer, buffer, length);
782 
783 			usb_hcd_unlink_urb_from_ep(hcd, urb);
784 			usb_hcd_giveback_urb(hcd, urb, status);
785 		} else {
786 			length = 0;
787 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 		}
789 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 	}
791 
792 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
793 	 * exceed that limit if HZ is 100. The math is more clunky than
794 	 * maybe expected, this is to make sure that all timers for USB devices
795 	 * fire at the same time to give the CPU a break in between */
796 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 			(length == 0 && hcd->status_urb != NULL))
798 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801 
802 /* timer callback */
rh_timer_func(struct timer_list * t)803 static void rh_timer_func (struct timer_list *t)
804 {
805 	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806 
807 	usb_hcd_poll_rh_status(_hcd);
808 }
809 
810 /*-------------------------------------------------------------------------*/
811 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814 	int		retval;
815 	unsigned long	flags;
816 	unsigned	len = 1 + (urb->dev->maxchild / 8);
817 
818 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 		retval = -EINVAL;
822 		goto done;
823 	}
824 
825 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 	if (retval)
827 		goto done;
828 
829 	hcd->status_urb = urb;
830 	urb->hcpriv = hcd;	/* indicate it's queued */
831 	if (!hcd->uses_new_polling)
832 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833 
834 	/* If a status change has already occurred, report it ASAP */
835 	else if (HCD_POLL_PENDING(hcd))
836 		mod_timer(&hcd->rh_timer, jiffies);
837 	retval = 0;
838  done:
839 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 	return retval;
841 }
842 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845 	if (usb_endpoint_xfer_int(&urb->ep->desc))
846 		return rh_queue_status (hcd, urb);
847 	if (usb_endpoint_xfer_control(&urb->ep->desc))
848 		return rh_call_control (hcd, urb);
849 	return -EINVAL;
850 }
851 
852 /*-------------------------------------------------------------------------*/
853 
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855  * since these URBs always execute synchronously.
856  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859 	unsigned long	flags;
860 	int		rc;
861 
862 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 	if (rc)
865 		goto done;
866 
867 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
868 		;	/* Do nothing */
869 
870 	} else {				/* Status URB */
871 		if (!hcd->uses_new_polling)
872 			del_timer (&hcd->rh_timer);
873 		if (urb == hcd->status_urb) {
874 			hcd->status_urb = NULL;
875 			usb_hcd_unlink_urb_from_ep(hcd, urb);
876 			usb_hcd_giveback_urb(hcd, urb, status);
877 		}
878 	}
879  done:
880 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 	return rc;
882 }
883 
884 
885 /*-------------------------------------------------------------------------*/
886 
887 /**
888  * usb_bus_init - shared initialization code
889  * @bus: the bus structure being initialized
890  *
891  * This code is used to initialize a usb_bus structure, memory for which is
892  * separately managed.
893  */
usb_bus_init(struct usb_bus * bus)894 static void usb_bus_init (struct usb_bus *bus)
895 {
896 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897 
898 	bus->devnum_next = 1;
899 
900 	bus->root_hub = NULL;
901 	bus->busnum = -1;
902 	bus->bandwidth_allocated = 0;
903 	bus->bandwidth_int_reqs  = 0;
904 	bus->bandwidth_isoc_reqs = 0;
905 	mutex_init(&bus->devnum_next_mutex);
906 }
907 
908 /*-------------------------------------------------------------------------*/
909 
910 /**
911  * usb_register_bus - registers the USB host controller with the usb core
912  * @bus: pointer to the bus to register
913  *
914  * Context: task context, might sleep.
915  *
916  * Assigns a bus number, and links the controller into usbcore data
917  * structures so that it can be seen by scanning the bus list.
918  *
919  * Return: 0 if successful. A negative error code otherwise.
920  */
usb_register_bus(struct usb_bus * bus)921 static int usb_register_bus(struct usb_bus *bus)
922 {
923 	int result = -E2BIG;
924 	int busnum;
925 
926 	mutex_lock(&usb_bus_idr_lock);
927 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 	if (busnum < 0) {
929 		pr_err("%s: failed to get bus number\n", usbcore_name);
930 		goto error_find_busnum;
931 	}
932 	bus->busnum = busnum;
933 	mutex_unlock(&usb_bus_idr_lock);
934 
935 	usb_notify_add_bus(bus);
936 
937 	dev_info (bus->controller, "new USB bus registered, assigned bus "
938 		  "number %d\n", bus->busnum);
939 	return 0;
940 
941 error_find_busnum:
942 	mutex_unlock(&usb_bus_idr_lock);
943 	return result;
944 }
945 
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  *
950  * Context: task context, might sleep.
951  *
952  * Recycles the bus number, and unlinks the controller from usbcore data
953  * structures so that it won't be seen by scanning the bus list.
954  */
usb_deregister_bus(struct usb_bus * bus)955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958 
959 	/*
960 	 * NOTE: make sure that all the devices are removed by the
961 	 * controller code, as well as having it call this when cleaning
962 	 * itself up
963 	 */
964 	mutex_lock(&usb_bus_idr_lock);
965 	idr_remove(&usb_bus_idr, bus->busnum);
966 	mutex_unlock(&usb_bus_idr_lock);
967 
968 	usb_notify_remove_bus(bus);
969 }
970 
971 /**
972  * register_root_hub - called by usb_add_hcd() to register a root hub
973  * @hcd: host controller for this root hub
974  *
975  * This function registers the root hub with the USB subsystem.  It sets up
976  * the device properly in the device tree and then calls usb_new_device()
977  * to register the usb device.  It also assigns the root hub's USB address
978  * (always 1).
979  *
980  * Return: 0 if successful. A negative error code otherwise.
981  */
register_root_hub(struct usb_hcd * hcd)982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984 	struct device *parent_dev = hcd->self.controller;
985 	struct usb_device *usb_dev = hcd->self.root_hub;
986 	struct usb_device_descriptor *descr;
987 	const int devnum = 1;
988 	int retval;
989 
990 	usb_dev->devnum = devnum;
991 	usb_dev->bus->devnum_next = devnum + 1;
992 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
993 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
994 
995 	mutex_lock(&usb_bus_idr_lock);
996 
997 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
998 	descr = usb_get_device_descriptor(usb_dev);
999 	if (IS_ERR(descr)) {
1000 		retval = PTR_ERR(descr);
1001 		mutex_unlock(&usb_bus_idr_lock);
1002 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1003 				dev_name(&usb_dev->dev), retval);
1004 		return retval;
1005 	}
1006 	usb_dev->descriptor = *descr;
1007 	kfree(descr);
1008 
1009 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1010 		retval = usb_get_bos_descriptor(usb_dev);
1011 		if (!retval) {
1012 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1013 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1014 			mutex_unlock(&usb_bus_idr_lock);
1015 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1016 					dev_name(&usb_dev->dev), retval);
1017 			return retval;
1018 		}
1019 	}
1020 
1021 	retval = usb_new_device (usb_dev);
1022 	if (retval) {
1023 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1024 				dev_name(&usb_dev->dev), retval);
1025 	} else {
1026 		spin_lock_irq (&hcd_root_hub_lock);
1027 		hcd->rh_registered = 1;
1028 		spin_unlock_irq (&hcd_root_hub_lock);
1029 
1030 		/* Did the HC die before the root hub was registered? */
1031 		if (HCD_DEAD(hcd))
1032 			usb_hc_died (hcd);	/* This time clean up */
1033 	}
1034 	mutex_unlock(&usb_bus_idr_lock);
1035 
1036 	return retval;
1037 }
1038 
1039 /*
1040  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1041  * @bus: the bus which the root hub belongs to
1042  * @portnum: the port which is being resumed
1043  *
1044  * HCDs should call this function when they know that a resume signal is
1045  * being sent to a root-hub port.  The root hub will be prevented from
1046  * going into autosuspend until usb_hcd_end_port_resume() is called.
1047  *
1048  * The bus's private lock must be held by the caller.
1049  */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1050 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1051 {
1052 	unsigned bit = 1 << portnum;
1053 
1054 	if (!(bus->resuming_ports & bit)) {
1055 		bus->resuming_ports |= bit;
1056 		pm_runtime_get_noresume(&bus->root_hub->dev);
1057 	}
1058 }
1059 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1060 
1061 /*
1062  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1063  * @bus: the bus which the root hub belongs to
1064  * @portnum: the port which is being resumed
1065  *
1066  * HCDs should call this function when they know that a resume signal has
1067  * stopped being sent to a root-hub port.  The root hub will be allowed to
1068  * autosuspend again.
1069  *
1070  * The bus's private lock must be held by the caller.
1071  */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1072 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1073 {
1074 	unsigned bit = 1 << portnum;
1075 
1076 	if (bus->resuming_ports & bit) {
1077 		bus->resuming_ports &= ~bit;
1078 		pm_runtime_put_noidle(&bus->root_hub->dev);
1079 	}
1080 }
1081 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1082 
1083 /*-------------------------------------------------------------------------*/
1084 
1085 /**
1086  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1087  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1088  * @is_input: true iff the transaction sends data to the host
1089  * @isoc: true for isochronous transactions, false for interrupt ones
1090  * @bytecount: how many bytes in the transaction.
1091  *
1092  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1093  *
1094  * Note:
1095  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1096  * scheduled in software, this function is only used for such scheduling.
1097  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1098 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1099 {
1100 	unsigned long	tmp;
1101 
1102 	switch (speed) {
1103 	case USB_SPEED_LOW: 	/* INTR only */
1104 		if (is_input) {
1105 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1107 		} else {
1108 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1109 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1110 		}
1111 	case USB_SPEED_FULL:	/* ISOC or INTR */
1112 		if (isoc) {
1113 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1114 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1115 		} else {
1116 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1117 			return 9107L + BW_HOST_DELAY + tmp;
1118 		}
1119 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1120 		/* FIXME adjust for input vs output */
1121 		if (isoc)
1122 			tmp = HS_NSECS_ISO (bytecount);
1123 		else
1124 			tmp = HS_NSECS (bytecount);
1125 		return tmp;
1126 	default:
1127 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1128 		return -1;
1129 	}
1130 }
1131 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1132 
1133 
1134 /*-------------------------------------------------------------------------*/
1135 
1136 /*
1137  * Generic HC operations.
1138  */
1139 
1140 /*-------------------------------------------------------------------------*/
1141 
1142 /**
1143  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1144  * @hcd: host controller to which @urb was submitted
1145  * @urb: URB being submitted
1146  *
1147  * Host controller drivers should call this routine in their enqueue()
1148  * method.  The HCD's private spinlock must be held and interrupts must
1149  * be disabled.  The actions carried out here are required for URB
1150  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1151  *
1152  * Return: 0 for no error, otherwise a negative error code (in which case
1153  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1154  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1155  * the private spinlock and returning.
1156  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1157 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1158 {
1159 	int		rc = 0;
1160 
1161 	spin_lock(&hcd_urb_list_lock);
1162 
1163 	/* Check that the URB isn't being killed */
1164 	if (unlikely(atomic_read(&urb->reject))) {
1165 		rc = -EPERM;
1166 		goto done;
1167 	}
1168 
1169 	if (unlikely(!urb->ep->enabled)) {
1170 		rc = -ENOENT;
1171 		goto done;
1172 	}
1173 
1174 	if (unlikely(!urb->dev->can_submit)) {
1175 		rc = -EHOSTUNREACH;
1176 		goto done;
1177 	}
1178 
1179 	/*
1180 	 * Check the host controller's state and add the URB to the
1181 	 * endpoint's queue.
1182 	 */
1183 	if (HCD_RH_RUNNING(hcd)) {
1184 		urb->unlinked = 0;
1185 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1186 	} else {
1187 		rc = -ESHUTDOWN;
1188 		goto done;
1189 	}
1190  done:
1191 	spin_unlock(&hcd_urb_list_lock);
1192 	return rc;
1193 }
1194 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1195 
1196 /**
1197  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1198  * @hcd: host controller to which @urb was submitted
1199  * @urb: URB being checked for unlinkability
1200  * @status: error code to store in @urb if the unlink succeeds
1201  *
1202  * Host controller drivers should call this routine in their dequeue()
1203  * method.  The HCD's private spinlock must be held and interrupts must
1204  * be disabled.  The actions carried out here are required for making
1205  * sure than an unlink is valid.
1206  *
1207  * Return: 0 for no error, otherwise a negative error code (in which case
1208  * the dequeue() method must fail).  The possible error codes are:
1209  *
1210  *	-EIDRM: @urb was not submitted or has already completed.
1211  *		The completion function may not have been called yet.
1212  *
1213  *	-EBUSY: @urb has already been unlinked.
1214  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1215 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1216 		int status)
1217 {
1218 	struct list_head	*tmp;
1219 
1220 	/* insist the urb is still queued */
1221 	list_for_each(tmp, &urb->ep->urb_list) {
1222 		if (tmp == &urb->urb_list)
1223 			break;
1224 	}
1225 	if (tmp != &urb->urb_list)
1226 		return -EIDRM;
1227 
1228 	/* Any status except -EINPROGRESS means something already started to
1229 	 * unlink this URB from the hardware.  So there's no more work to do.
1230 	 */
1231 	if (urb->unlinked)
1232 		return -EBUSY;
1233 	urb->unlinked = status;
1234 	return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1237 
1238 /**
1239  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1240  * @hcd: host controller to which @urb was submitted
1241  * @urb: URB being unlinked
1242  *
1243  * Host controller drivers should call this routine before calling
1244  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1245  * interrupts must be disabled.  The actions carried out here are required
1246  * for URB completion.
1247  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1248 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1249 {
1250 	/* clear all state linking urb to this dev (and hcd) */
1251 	spin_lock(&hcd_urb_list_lock);
1252 	list_del_init(&urb->urb_list);
1253 	spin_unlock(&hcd_urb_list_lock);
1254 }
1255 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1256 
1257 /*
1258  * Some usb host controllers can only perform dma using a small SRAM area.
1259  * The usb core itself is however optimized for host controllers that can dma
1260  * using regular system memory - like pci devices doing bus mastering.
1261  *
1262  * To support host controllers with limited dma capabilities we provide dma
1263  * bounce buffers. This feature can be enabled by initializing
1264  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1265  *
1266  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1267  * data for dma using the genalloc API.
1268  *
1269  * So, to summarize...
1270  *
1271  * - We need "local" memory, canonical example being
1272  *   a small SRAM on a discrete controller being the
1273  *   only memory that the controller can read ...
1274  *   (a) "normal" kernel memory is no good, and
1275  *   (b) there's not enough to share
1276  *
1277  * - So we use that, even though the primary requirement
1278  *   is that the memory be "local" (hence addressable
1279  *   by that device), not "coherent".
1280  *
1281  */
1282 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1283 static int hcd_alloc_coherent(struct usb_bus *bus,
1284 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1285 			      void **vaddr_handle, size_t size,
1286 			      enum dma_data_direction dir)
1287 {
1288 	unsigned char *vaddr;
1289 
1290 	if (*vaddr_handle == NULL) {
1291 		WARN_ON_ONCE(1);
1292 		return -EFAULT;
1293 	}
1294 
1295 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1296 				 mem_flags, dma_handle);
1297 	if (!vaddr)
1298 		return -ENOMEM;
1299 
1300 	/*
1301 	 * Store the virtual address of the buffer at the end
1302 	 * of the allocated dma buffer. The size of the buffer
1303 	 * may be uneven so use unaligned functions instead
1304 	 * of just rounding up. It makes sense to optimize for
1305 	 * memory footprint over access speed since the amount
1306 	 * of memory available for dma may be limited.
1307 	 */
1308 	put_unaligned((unsigned long)*vaddr_handle,
1309 		      (unsigned long *)(vaddr + size));
1310 
1311 	if (dir == DMA_TO_DEVICE)
1312 		memcpy(vaddr, *vaddr_handle, size);
1313 
1314 	*vaddr_handle = vaddr;
1315 	return 0;
1316 }
1317 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1318 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1319 			      void **vaddr_handle, size_t size,
1320 			      enum dma_data_direction dir)
1321 {
1322 	unsigned char *vaddr = *vaddr_handle;
1323 
1324 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1325 
1326 	if (dir == DMA_FROM_DEVICE)
1327 		memcpy(vaddr, *vaddr_handle, size);
1328 
1329 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1330 
1331 	*vaddr_handle = vaddr;
1332 	*dma_handle = 0;
1333 }
1334 
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1335 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1336 {
1337 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1338 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1339 		dma_unmap_single(hcd->self.sysdev,
1340 				urb->setup_dma,
1341 				sizeof(struct usb_ctrlrequest),
1342 				DMA_TO_DEVICE);
1343 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1344 		hcd_free_coherent(urb->dev->bus,
1345 				&urb->setup_dma,
1346 				(void **) &urb->setup_packet,
1347 				sizeof(struct usb_ctrlrequest),
1348 				DMA_TO_DEVICE);
1349 
1350 	/* Make it safe to call this routine more than once */
1351 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1352 }
1353 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1354 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1355 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1356 {
1357 	if (hcd->driver->unmap_urb_for_dma)
1358 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1359 	else
1360 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1361 }
1362 
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1363 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1364 {
1365 	enum dma_data_direction dir;
1366 
1367 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1368 
1369 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1370 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1371 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1372 		dma_unmap_sg(hcd->self.sysdev,
1373 				urb->sg,
1374 				urb->num_sgs,
1375 				dir);
1376 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1377 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1378 		dma_unmap_page(hcd->self.sysdev,
1379 				urb->transfer_dma,
1380 				urb->transfer_buffer_length,
1381 				dir);
1382 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1383 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1384 		dma_unmap_single(hcd->self.sysdev,
1385 				urb->transfer_dma,
1386 				urb->transfer_buffer_length,
1387 				dir);
1388 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1389 		hcd_free_coherent(urb->dev->bus,
1390 				&urb->transfer_dma,
1391 				&urb->transfer_buffer,
1392 				urb->transfer_buffer_length,
1393 				dir);
1394 
1395 	/* Make it safe to call this routine more than once */
1396 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1397 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1398 }
1399 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1400 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1401 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1402 			   gfp_t mem_flags)
1403 {
1404 	if (hcd->driver->map_urb_for_dma)
1405 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1406 	else
1407 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1408 }
1409 
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1410 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1411 			    gfp_t mem_flags)
1412 {
1413 	enum dma_data_direction dir;
1414 	int ret = 0;
1415 
1416 	/* Map the URB's buffers for DMA access.
1417 	 * Lower level HCD code should use *_dma exclusively,
1418 	 * unless it uses pio or talks to another transport,
1419 	 * or uses the provided scatter gather list for bulk.
1420 	 */
1421 
1422 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1423 		if (hcd->self.uses_pio_for_control)
1424 			return ret;
1425 		if (hcd->localmem_pool) {
1426 			ret = hcd_alloc_coherent(
1427 					urb->dev->bus, mem_flags,
1428 					&urb->setup_dma,
1429 					(void **)&urb->setup_packet,
1430 					sizeof(struct usb_ctrlrequest),
1431 					DMA_TO_DEVICE);
1432 			if (ret)
1433 				return ret;
1434 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1435 		} else if (hcd_uses_dma(hcd)) {
1436 			if (object_is_on_stack(urb->setup_packet)) {
1437 				WARN_ONCE(1, "setup packet is on stack\n");
1438 				return -EAGAIN;
1439 			}
1440 
1441 			urb->setup_dma = dma_map_single(
1442 					hcd->self.sysdev,
1443 					urb->setup_packet,
1444 					sizeof(struct usb_ctrlrequest),
1445 					DMA_TO_DEVICE);
1446 			if (dma_mapping_error(hcd->self.sysdev,
1447 						urb->setup_dma))
1448 				return -EAGAIN;
1449 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1450 		}
1451 	}
1452 
1453 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1454 	if (urb->transfer_buffer_length != 0
1455 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1456 		if (hcd->localmem_pool) {
1457 			ret = hcd_alloc_coherent(
1458 					urb->dev->bus, mem_flags,
1459 					&urb->transfer_dma,
1460 					&urb->transfer_buffer,
1461 					urb->transfer_buffer_length,
1462 					dir);
1463 			if (ret == 0)
1464 				urb->transfer_flags |= URB_MAP_LOCAL;
1465 		} else if (hcd_uses_dma(hcd)) {
1466 			if (urb->num_sgs) {
1467 				int n;
1468 
1469 				/* We don't support sg for isoc transfers ! */
1470 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1471 					WARN_ON(1);
1472 					return -EINVAL;
1473 				}
1474 
1475 				n = dma_map_sg(
1476 						hcd->self.sysdev,
1477 						urb->sg,
1478 						urb->num_sgs,
1479 						dir);
1480 				if (n <= 0)
1481 					ret = -EAGAIN;
1482 				else
1483 					urb->transfer_flags |= URB_DMA_MAP_SG;
1484 				urb->num_mapped_sgs = n;
1485 				if (n != urb->num_sgs)
1486 					urb->transfer_flags |=
1487 							URB_DMA_SG_COMBINED;
1488 			} else if (urb->sg) {
1489 				struct scatterlist *sg = urb->sg;
1490 				urb->transfer_dma = dma_map_page(
1491 						hcd->self.sysdev,
1492 						sg_page(sg),
1493 						sg->offset,
1494 						urb->transfer_buffer_length,
1495 						dir);
1496 				if (dma_mapping_error(hcd->self.sysdev,
1497 						urb->transfer_dma))
1498 					ret = -EAGAIN;
1499 				else
1500 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1501 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1502 				WARN_ONCE(1, "transfer buffer is on stack\n");
1503 				ret = -EAGAIN;
1504 			} else {
1505 				urb->transfer_dma = dma_map_single(
1506 						hcd->self.sysdev,
1507 						urb->transfer_buffer,
1508 						urb->transfer_buffer_length,
1509 						dir);
1510 				if (dma_mapping_error(hcd->self.sysdev,
1511 						urb->transfer_dma))
1512 					ret = -EAGAIN;
1513 				else
1514 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1515 			}
1516 		}
1517 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1518 				URB_SETUP_MAP_LOCAL)))
1519 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1520 	}
1521 	return ret;
1522 }
1523 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1524 
1525 /*-------------------------------------------------------------------------*/
1526 
1527 /* may be called in any context with a valid urb->dev usecount
1528  * caller surrenders "ownership" of urb
1529  * expects usb_submit_urb() to have sanity checked and conditioned all
1530  * inputs in the urb
1531  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1532 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1533 {
1534 	int			status;
1535 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1536 
1537 	/* increment urb's reference count as part of giving it to the HCD
1538 	 * (which will control it).  HCD guarantees that it either returns
1539 	 * an error or calls giveback(), but not both.
1540 	 */
1541 	usb_get_urb(urb);
1542 	atomic_inc(&urb->use_count);
1543 	atomic_inc(&urb->dev->urbnum);
1544 	usbmon_urb_submit(&hcd->self, urb);
1545 
1546 	/* NOTE requirements on root-hub callers (usbfs and the hub
1547 	 * driver, for now):  URBs' urb->transfer_buffer must be
1548 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1549 	 * they could clobber root hub response data.  Also, control
1550 	 * URBs must be submitted in process context with interrupts
1551 	 * enabled.
1552 	 */
1553 
1554 	if (is_root_hub(urb->dev)) {
1555 		status = rh_urb_enqueue(hcd, urb);
1556 	} else {
1557 		status = map_urb_for_dma(hcd, urb, mem_flags);
1558 		if (likely(status == 0)) {
1559 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1560 			if (unlikely(status))
1561 				unmap_urb_for_dma(hcd, urb);
1562 		}
1563 	}
1564 
1565 	if (unlikely(status)) {
1566 		usbmon_urb_submit_error(&hcd->self, urb, status);
1567 		urb->hcpriv = NULL;
1568 		INIT_LIST_HEAD(&urb->urb_list);
1569 		atomic_dec(&urb->use_count);
1570 		/*
1571 		 * Order the write of urb->use_count above before the read
1572 		 * of urb->reject below.  Pairs with the memory barriers in
1573 		 * usb_kill_urb() and usb_poison_urb().
1574 		 */
1575 		smp_mb__after_atomic();
1576 
1577 		atomic_dec(&urb->dev->urbnum);
1578 		if (atomic_read(&urb->reject))
1579 			wake_up(&usb_kill_urb_queue);
1580 		usb_put_urb(urb);
1581 	}
1582 	return status;
1583 }
1584 
1585 /*-------------------------------------------------------------------------*/
1586 
1587 /* this makes the hcd giveback() the urb more quickly, by kicking it
1588  * off hardware queues (which may take a while) and returning it as
1589  * soon as practical.  we've already set up the urb's return status,
1590  * but we can't know if the callback completed already.
1591  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1592 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1593 {
1594 	int		value;
1595 
1596 	if (is_root_hub(urb->dev))
1597 		value = usb_rh_urb_dequeue(hcd, urb, status);
1598 	else {
1599 
1600 		/* The only reason an HCD might fail this call is if
1601 		 * it has not yet fully queued the urb to begin with.
1602 		 * Such failures should be harmless. */
1603 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1604 	}
1605 	return value;
1606 }
1607 
1608 /*
1609  * called in any context
1610  *
1611  * caller guarantees urb won't be recycled till both unlink()
1612  * and the urb's completion function return
1613  */
usb_hcd_unlink_urb(struct urb * urb,int status)1614 int usb_hcd_unlink_urb (struct urb *urb, int status)
1615 {
1616 	struct usb_hcd		*hcd;
1617 	struct usb_device	*udev = urb->dev;
1618 	int			retval = -EIDRM;
1619 	unsigned long		flags;
1620 
1621 	/* Prevent the device and bus from going away while
1622 	 * the unlink is carried out.  If they are already gone
1623 	 * then urb->use_count must be 0, since disconnected
1624 	 * devices can't have any active URBs.
1625 	 */
1626 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1627 	if (atomic_read(&urb->use_count) > 0) {
1628 		retval = 0;
1629 		usb_get_dev(udev);
1630 	}
1631 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1632 	if (retval == 0) {
1633 		hcd = bus_to_hcd(urb->dev->bus);
1634 		retval = unlink1(hcd, urb, status);
1635 		if (retval == 0)
1636 			retval = -EINPROGRESS;
1637 		else if (retval != -EIDRM && retval != -EBUSY)
1638 			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1639 					urb, retval);
1640 		usb_put_dev(udev);
1641 	}
1642 	return retval;
1643 }
1644 
1645 /*-------------------------------------------------------------------------*/
1646 
__usb_hcd_giveback_urb(struct urb * urb)1647 static void __usb_hcd_giveback_urb(struct urb *urb)
1648 {
1649 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1650 	struct usb_anchor *anchor = urb->anchor;
1651 	int status = urb->unlinked;
1652 
1653 	urb->hcpriv = NULL;
1654 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1655 	    urb->actual_length < urb->transfer_buffer_length &&
1656 	    !status))
1657 		status = -EREMOTEIO;
1658 
1659 	unmap_urb_for_dma(hcd, urb);
1660 	usbmon_urb_complete(&hcd->self, urb, status);
1661 	usb_anchor_suspend_wakeups(anchor);
1662 	usb_unanchor_urb(urb);
1663 	if (likely(status == 0))
1664 		usb_led_activity(USB_LED_EVENT_HOST);
1665 
1666 	/* pass ownership to the completion handler */
1667 	urb->status = status;
1668 	/*
1669 	 * This function can be called in task context inside another remote
1670 	 * coverage collection section, but kcov doesn't support that kind of
1671 	 * recursion yet. Only collect coverage in softirq context for now.
1672 	 */
1673 	kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1674 	urb->complete(urb);
1675 	kcov_remote_stop_softirq();
1676 
1677 	usb_anchor_resume_wakeups(anchor);
1678 	atomic_dec(&urb->use_count);
1679 	/*
1680 	 * Order the write of urb->use_count above before the read
1681 	 * of urb->reject below.  Pairs with the memory barriers in
1682 	 * usb_kill_urb() and usb_poison_urb().
1683 	 */
1684 	smp_mb__after_atomic();
1685 
1686 	if (unlikely(atomic_read(&urb->reject)))
1687 		wake_up(&usb_kill_urb_queue);
1688 	usb_put_urb(urb);
1689 }
1690 
usb_giveback_urb_bh(struct tasklet_struct * t)1691 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1692 {
1693 	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1694 	struct list_head local_list;
1695 
1696 	spin_lock_irq(&bh->lock);
1697 	bh->running = true;
1698 	list_replace_init(&bh->head, &local_list);
1699 	spin_unlock_irq(&bh->lock);
1700 
1701 	while (!list_empty(&local_list)) {
1702 		struct urb *urb;
1703 
1704 		urb = list_entry(local_list.next, struct urb, urb_list);
1705 		list_del_init(&urb->urb_list);
1706 		bh->completing_ep = urb->ep;
1707 		__usb_hcd_giveback_urb(urb);
1708 		bh->completing_ep = NULL;
1709 	}
1710 
1711 	/*
1712 	 * giveback new URBs next time to prevent this function
1713 	 * from not exiting for a long time.
1714 	 */
1715 	spin_lock_irq(&bh->lock);
1716 	if (!list_empty(&bh->head)) {
1717 		if (bh->high_prio)
1718 			tasklet_hi_schedule(&bh->bh);
1719 		else
1720 			tasklet_schedule(&bh->bh);
1721 	}
1722 	bh->running = false;
1723 	spin_unlock_irq(&bh->lock);
1724 }
1725 
1726 /**
1727  * usb_hcd_giveback_urb - return URB from HCD to device driver
1728  * @hcd: host controller returning the URB
1729  * @urb: urb being returned to the USB device driver.
1730  * @status: completion status code for the URB.
1731  *
1732  * Context: atomic. The completion callback is invoked in caller's context.
1733  * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1734  * context (except for URBs submitted to the root hub which always complete in
1735  * caller's context).
1736  *
1737  * This hands the URB from HCD to its USB device driver, using its
1738  * completion function.  The HCD has freed all per-urb resources
1739  * (and is done using urb->hcpriv).  It also released all HCD locks;
1740  * the device driver won't cause problems if it frees, modifies,
1741  * or resubmits this URB.
1742  *
1743  * If @urb was unlinked, the value of @status will be overridden by
1744  * @urb->unlinked.  Erroneous short transfers are detected in case
1745  * the HCD hasn't checked for them.
1746  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1747 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1748 {
1749 	struct giveback_urb_bh *bh;
1750 	bool running;
1751 
1752 	/* pass status to tasklet via unlinked */
1753 	if (likely(!urb->unlinked))
1754 		urb->unlinked = status;
1755 
1756 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1757 		__usb_hcd_giveback_urb(urb);
1758 		return;
1759 	}
1760 
1761 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1762 		bh = &hcd->high_prio_bh;
1763 	else
1764 		bh = &hcd->low_prio_bh;
1765 
1766 	spin_lock(&bh->lock);
1767 	list_add_tail(&urb->urb_list, &bh->head);
1768 	running = bh->running;
1769 	spin_unlock(&bh->lock);
1770 
1771 	if (running)
1772 		;
1773 	else if (bh->high_prio)
1774 		tasklet_hi_schedule(&bh->bh);
1775 	else
1776 		tasklet_schedule(&bh->bh);
1777 }
1778 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1779 
1780 /*-------------------------------------------------------------------------*/
1781 
1782 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1783  * queue to drain completely.  The caller must first insure that no more
1784  * URBs can be submitted for this endpoint.
1785  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1786 void usb_hcd_flush_endpoint(struct usb_device *udev,
1787 		struct usb_host_endpoint *ep)
1788 {
1789 	struct usb_hcd		*hcd;
1790 	struct urb		*urb;
1791 
1792 	if (!ep)
1793 		return;
1794 	might_sleep();
1795 	hcd = bus_to_hcd(udev->bus);
1796 
1797 	/* No more submits can occur */
1798 	spin_lock_irq(&hcd_urb_list_lock);
1799 rescan:
1800 	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1801 		int	is_in;
1802 
1803 		if (urb->unlinked)
1804 			continue;
1805 		usb_get_urb (urb);
1806 		is_in = usb_urb_dir_in(urb);
1807 		spin_unlock(&hcd_urb_list_lock);
1808 
1809 		/* kick hcd */
1810 		unlink1(hcd, urb, -ESHUTDOWN);
1811 		dev_dbg (hcd->self.controller,
1812 			"shutdown urb %pK ep%d%s-%s\n",
1813 			urb, usb_endpoint_num(&ep->desc),
1814 			is_in ? "in" : "out",
1815 			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1816 		usb_put_urb (urb);
1817 
1818 		/* list contents may have changed */
1819 		spin_lock(&hcd_urb_list_lock);
1820 		goto rescan;
1821 	}
1822 	spin_unlock_irq(&hcd_urb_list_lock);
1823 
1824 	/* Wait until the endpoint queue is completely empty */
1825 	while (!list_empty (&ep->urb_list)) {
1826 		spin_lock_irq(&hcd_urb_list_lock);
1827 
1828 		/* The list may have changed while we acquired the spinlock */
1829 		urb = NULL;
1830 		if (!list_empty (&ep->urb_list)) {
1831 			urb = list_entry (ep->urb_list.prev, struct urb,
1832 					urb_list);
1833 			usb_get_urb (urb);
1834 		}
1835 		spin_unlock_irq(&hcd_urb_list_lock);
1836 
1837 		if (urb) {
1838 			usb_kill_urb (urb);
1839 			usb_put_urb (urb);
1840 		}
1841 	}
1842 }
1843 
1844 /**
1845  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1846  *				the bus bandwidth
1847  * @udev: target &usb_device
1848  * @new_config: new configuration to install
1849  * @cur_alt: the current alternate interface setting
1850  * @new_alt: alternate interface setting that is being installed
1851  *
1852  * To change configurations, pass in the new configuration in new_config,
1853  * and pass NULL for cur_alt and new_alt.
1854  *
1855  * To reset a device's configuration (put the device in the ADDRESSED state),
1856  * pass in NULL for new_config, cur_alt, and new_alt.
1857  *
1858  * To change alternate interface settings, pass in NULL for new_config,
1859  * pass in the current alternate interface setting in cur_alt,
1860  * and pass in the new alternate interface setting in new_alt.
1861  *
1862  * Return: An error if the requested bandwidth change exceeds the
1863  * bus bandwidth or host controller internal resources.
1864  */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1865 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1866 		struct usb_host_config *new_config,
1867 		struct usb_host_interface *cur_alt,
1868 		struct usb_host_interface *new_alt)
1869 {
1870 	int num_intfs, i, j;
1871 	struct usb_host_interface *alt = NULL;
1872 	int ret = 0;
1873 	struct usb_hcd *hcd;
1874 	struct usb_host_endpoint *ep;
1875 
1876 	hcd = bus_to_hcd(udev->bus);
1877 	if (!hcd->driver->check_bandwidth)
1878 		return 0;
1879 
1880 	/* Configuration is being removed - set configuration 0 */
1881 	if (!new_config && !cur_alt) {
1882 		for (i = 1; i < 16; ++i) {
1883 			ep = udev->ep_out[i];
1884 			if (ep)
1885 				hcd->driver->drop_endpoint(hcd, udev, ep);
1886 			ep = udev->ep_in[i];
1887 			if (ep)
1888 				hcd->driver->drop_endpoint(hcd, udev, ep);
1889 		}
1890 		hcd->driver->check_bandwidth(hcd, udev);
1891 		return 0;
1892 	}
1893 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1894 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1895 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1896 	 * ok to exclude it.
1897 	 */
1898 	if (new_config) {
1899 		num_intfs = new_config->desc.bNumInterfaces;
1900 		/* Remove endpoints (except endpoint 0, which is always on the
1901 		 * schedule) from the old config from the schedule
1902 		 */
1903 		for (i = 1; i < 16; ++i) {
1904 			ep = udev->ep_out[i];
1905 			if (ep) {
1906 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1907 				if (ret < 0)
1908 					goto reset;
1909 			}
1910 			ep = udev->ep_in[i];
1911 			if (ep) {
1912 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1913 				if (ret < 0)
1914 					goto reset;
1915 			}
1916 		}
1917 		for (i = 0; i < num_intfs; ++i) {
1918 			struct usb_host_interface *first_alt;
1919 			int iface_num;
1920 
1921 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1922 			iface_num = first_alt->desc.bInterfaceNumber;
1923 			/* Set up endpoints for alternate interface setting 0 */
1924 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1925 			if (!alt)
1926 				/* No alt setting 0? Pick the first setting. */
1927 				alt = first_alt;
1928 
1929 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1930 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1931 				if (ret < 0)
1932 					goto reset;
1933 			}
1934 		}
1935 	}
1936 	if (cur_alt && new_alt) {
1937 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1938 				cur_alt->desc.bInterfaceNumber);
1939 
1940 		if (!iface)
1941 			return -EINVAL;
1942 		if (iface->resetting_device) {
1943 			/*
1944 			 * The USB core just reset the device, so the xHCI host
1945 			 * and the device will think alt setting 0 is installed.
1946 			 * However, the USB core will pass in the alternate
1947 			 * setting installed before the reset as cur_alt.  Dig
1948 			 * out the alternate setting 0 structure, or the first
1949 			 * alternate setting if a broken device doesn't have alt
1950 			 * setting 0.
1951 			 */
1952 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1953 			if (!cur_alt)
1954 				cur_alt = &iface->altsetting[0];
1955 		}
1956 
1957 		/* Drop all the endpoints in the current alt setting */
1958 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1959 			ret = hcd->driver->drop_endpoint(hcd, udev,
1960 					&cur_alt->endpoint[i]);
1961 			if (ret < 0)
1962 				goto reset;
1963 		}
1964 		/* Add all the endpoints in the new alt setting */
1965 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1966 			ret = hcd->driver->add_endpoint(hcd, udev,
1967 					&new_alt->endpoint[i]);
1968 			if (ret < 0)
1969 				goto reset;
1970 		}
1971 	}
1972 	ret = hcd->driver->check_bandwidth(hcd, udev);
1973 reset:
1974 	if (ret < 0)
1975 		hcd->driver->reset_bandwidth(hcd, udev);
1976 	return ret;
1977 }
1978 
1979 /* Disables the endpoint: synchronizes with the hcd to make sure all
1980  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1981  * have been called previously.  Use for set_configuration, set_interface,
1982  * driver removal, physical disconnect.
1983  *
1984  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1985  * type, maxpacket size, toggle, halt status, and scheduling.
1986  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1987 void usb_hcd_disable_endpoint(struct usb_device *udev,
1988 		struct usb_host_endpoint *ep)
1989 {
1990 	struct usb_hcd		*hcd;
1991 
1992 	might_sleep();
1993 	hcd = bus_to_hcd(udev->bus);
1994 	if (hcd->driver->endpoint_disable)
1995 		hcd->driver->endpoint_disable(hcd, ep);
1996 }
1997 
1998 /**
1999  * usb_hcd_reset_endpoint - reset host endpoint state
2000  * @udev: USB device.
2001  * @ep:   the endpoint to reset.
2002  *
2003  * Resets any host endpoint state such as the toggle bit, sequence
2004  * number and current window.
2005  */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2006 void usb_hcd_reset_endpoint(struct usb_device *udev,
2007 			    struct usb_host_endpoint *ep)
2008 {
2009 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2010 
2011 	if (hcd->driver->endpoint_reset)
2012 		hcd->driver->endpoint_reset(hcd, ep);
2013 	else {
2014 		int epnum = usb_endpoint_num(&ep->desc);
2015 		int is_out = usb_endpoint_dir_out(&ep->desc);
2016 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2017 
2018 		usb_settoggle(udev, epnum, is_out, 0);
2019 		if (is_control)
2020 			usb_settoggle(udev, epnum, !is_out, 0);
2021 	}
2022 }
2023 
2024 /**
2025  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2026  * @interface:		alternate setting that includes all endpoints.
2027  * @eps:		array of endpoints that need streams.
2028  * @num_eps:		number of endpoints in the array.
2029  * @num_streams:	number of streams to allocate.
2030  * @mem_flags:		flags hcd should use to allocate memory.
2031  *
2032  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2033  * Drivers may queue multiple transfers to different stream IDs, which may
2034  * complete in a different order than they were queued.
2035  *
2036  * Return: On success, the number of allocated streams. On failure, a negative
2037  * error code.
2038  */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2039 int usb_alloc_streams(struct usb_interface *interface,
2040 		struct usb_host_endpoint **eps, unsigned int num_eps,
2041 		unsigned int num_streams, gfp_t mem_flags)
2042 {
2043 	struct usb_hcd *hcd;
2044 	struct usb_device *dev;
2045 	int i, ret;
2046 
2047 	dev = interface_to_usbdev(interface);
2048 	hcd = bus_to_hcd(dev->bus);
2049 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2050 		return -EINVAL;
2051 	if (dev->speed < USB_SPEED_SUPER)
2052 		return -EINVAL;
2053 	if (dev->state < USB_STATE_CONFIGURED)
2054 		return -ENODEV;
2055 
2056 	for (i = 0; i < num_eps; i++) {
2057 		/* Streams only apply to bulk endpoints. */
2058 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2059 			return -EINVAL;
2060 		/* Re-alloc is not allowed */
2061 		if (eps[i]->streams)
2062 			return -EINVAL;
2063 	}
2064 
2065 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2066 			num_streams, mem_flags);
2067 	if (ret < 0)
2068 		return ret;
2069 
2070 	for (i = 0; i < num_eps; i++)
2071 		eps[i]->streams = ret;
2072 
2073 	return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2076 
2077 /**
2078  * usb_free_streams - free bulk endpoint stream IDs.
2079  * @interface:	alternate setting that includes all endpoints.
2080  * @eps:	array of endpoints to remove streams from.
2081  * @num_eps:	number of endpoints in the array.
2082  * @mem_flags:	flags hcd should use to allocate memory.
2083  *
2084  * Reverts a group of bulk endpoints back to not using stream IDs.
2085  * Can fail if we are given bad arguments, or HCD is broken.
2086  *
2087  * Return: 0 on success. On failure, a negative error code.
2088  */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2089 int usb_free_streams(struct usb_interface *interface,
2090 		struct usb_host_endpoint **eps, unsigned int num_eps,
2091 		gfp_t mem_flags)
2092 {
2093 	struct usb_hcd *hcd;
2094 	struct usb_device *dev;
2095 	int i, ret;
2096 
2097 	dev = interface_to_usbdev(interface);
2098 	hcd = bus_to_hcd(dev->bus);
2099 	if (dev->speed < USB_SPEED_SUPER)
2100 		return -EINVAL;
2101 
2102 	/* Double-free is not allowed */
2103 	for (i = 0; i < num_eps; i++)
2104 		if (!eps[i] || !eps[i]->streams)
2105 			return -EINVAL;
2106 
2107 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2108 	if (ret < 0)
2109 		return ret;
2110 
2111 	for (i = 0; i < num_eps; i++)
2112 		eps[i]->streams = 0;
2113 
2114 	return ret;
2115 }
2116 EXPORT_SYMBOL_GPL(usb_free_streams);
2117 
2118 /* Protect against drivers that try to unlink URBs after the device
2119  * is gone, by waiting until all unlinks for @udev are finished.
2120  * Since we don't currently track URBs by device, simply wait until
2121  * nothing is running in the locked region of usb_hcd_unlink_urb().
2122  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2123 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2124 {
2125 	spin_lock_irq(&hcd_urb_unlink_lock);
2126 	spin_unlock_irq(&hcd_urb_unlink_lock);
2127 }
2128 
2129 /*-------------------------------------------------------------------------*/
2130 
2131 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2132 int usb_hcd_get_frame_number (struct usb_device *udev)
2133 {
2134 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2135 
2136 	if (!HCD_RH_RUNNING(hcd))
2137 		return -ESHUTDOWN;
2138 	return hcd->driver->get_frame_number (hcd);
2139 }
2140 
2141 /*-------------------------------------------------------------------------*/
2142 #ifdef CONFIG_USB_HCD_TEST_MODE
2143 
usb_ehset_completion(struct urb * urb)2144 static void usb_ehset_completion(struct urb *urb)
2145 {
2146 	struct completion  *done = urb->context;
2147 
2148 	complete(done);
2149 }
2150 /*
2151  * Allocate and initialize a control URB. This request will be used by the
2152  * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2153  * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2154  * Return NULL if failed.
2155  */
request_single_step_set_feature_urb(struct usb_device * udev,void * dr,void * buf,struct completion * done)2156 static struct urb *request_single_step_set_feature_urb(
2157 	struct usb_device	*udev,
2158 	void			*dr,
2159 	void			*buf,
2160 	struct completion	*done)
2161 {
2162 	struct urb *urb;
2163 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2164 	struct usb_host_endpoint *ep;
2165 
2166 	urb = usb_alloc_urb(0, GFP_KERNEL);
2167 	if (!urb)
2168 		return NULL;
2169 
2170 	urb->pipe = usb_rcvctrlpipe(udev, 0);
2171 	ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2172 				[usb_pipeendpoint(urb->pipe)];
2173 	if (!ep) {
2174 		usb_free_urb(urb);
2175 		return NULL;
2176 	}
2177 
2178 	urb->ep = ep;
2179 	urb->dev = udev;
2180 	urb->setup_packet = (void *)dr;
2181 	urb->transfer_buffer = buf;
2182 	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2183 	urb->complete = usb_ehset_completion;
2184 	urb->status = -EINPROGRESS;
2185 	urb->actual_length = 0;
2186 	urb->transfer_flags = URB_DIR_IN;
2187 	usb_get_urb(urb);
2188 	atomic_inc(&urb->use_count);
2189 	atomic_inc(&urb->dev->urbnum);
2190 	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2191 		usb_put_urb(urb);
2192 		usb_free_urb(urb);
2193 		return NULL;
2194 	}
2195 
2196 	urb->context = done;
2197 	return urb;
2198 }
2199 
ehset_single_step_set_feature(struct usb_hcd * hcd,int port)2200 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2201 {
2202 	int retval = -ENOMEM;
2203 	struct usb_ctrlrequest *dr;
2204 	struct urb *urb;
2205 	struct usb_device *udev;
2206 	struct usb_device_descriptor *buf;
2207 	DECLARE_COMPLETION_ONSTACK(done);
2208 
2209 	/* Obtain udev of the rhub's child port */
2210 	udev = usb_hub_find_child(hcd->self.root_hub, port);
2211 	if (!udev) {
2212 		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2213 		return -ENODEV;
2214 	}
2215 	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2216 	if (!buf)
2217 		return -ENOMEM;
2218 
2219 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2220 	if (!dr) {
2221 		kfree(buf);
2222 		return -ENOMEM;
2223 	}
2224 
2225 	/* Fill Setup packet for GetDescriptor */
2226 	dr->bRequestType = USB_DIR_IN;
2227 	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2228 	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2229 	dr->wIndex = 0;
2230 	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2231 	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2232 	if (!urb)
2233 		goto cleanup;
2234 
2235 	/* Submit just the SETUP stage */
2236 	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2237 	if (retval)
2238 		goto out1;
2239 	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2240 		usb_kill_urb(urb);
2241 		retval = -ETIMEDOUT;
2242 		dev_err(hcd->self.controller,
2243 			"%s SETUP stage timed out on ep0\n", __func__);
2244 		goto out1;
2245 	}
2246 	msleep(15 * 1000);
2247 
2248 	/* Complete remaining DATA and STATUS stages using the same URB */
2249 	urb->status = -EINPROGRESS;
2250 	usb_get_urb(urb);
2251 	atomic_inc(&urb->use_count);
2252 	atomic_inc(&urb->dev->urbnum);
2253 	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2254 	if (!retval && !wait_for_completion_timeout(&done,
2255 						msecs_to_jiffies(2000))) {
2256 		usb_kill_urb(urb);
2257 		retval = -ETIMEDOUT;
2258 		dev_err(hcd->self.controller,
2259 			"%s IN stage timed out on ep0\n", __func__);
2260 	}
2261 out1:
2262 	usb_free_urb(urb);
2263 cleanup:
2264 	kfree(dr);
2265 	kfree(buf);
2266 	return retval;
2267 }
2268 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2269 #endif /* CONFIG_USB_HCD_TEST_MODE */
2270 
2271 /*-------------------------------------------------------------------------*/
2272 
2273 #ifdef	CONFIG_PM
2274 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2275 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2276 {
2277 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2278 	int		status;
2279 	int		old_state = hcd->state;
2280 
2281 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2282 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2283 			rhdev->do_remote_wakeup);
2284 	if (HCD_DEAD(hcd)) {
2285 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2286 		return 0;
2287 	}
2288 
2289 	if (!hcd->driver->bus_suspend) {
2290 		status = -ENOENT;
2291 	} else {
2292 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2293 		hcd->state = HC_STATE_QUIESCING;
2294 		status = hcd->driver->bus_suspend(hcd);
2295 	}
2296 	if (status == 0) {
2297 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2298 		hcd->state = HC_STATE_SUSPENDED;
2299 
2300 		if (!PMSG_IS_AUTO(msg))
2301 			usb_phy_roothub_suspend(hcd->self.sysdev,
2302 						hcd->phy_roothub);
2303 
2304 		/* Did we race with a root-hub wakeup event? */
2305 		if (rhdev->do_remote_wakeup) {
2306 			char	buffer[6];
2307 
2308 			status = hcd->driver->hub_status_data(hcd, buffer);
2309 			if (status != 0) {
2310 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2311 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2312 				status = -EBUSY;
2313 			}
2314 		}
2315 	} else {
2316 		spin_lock_irq(&hcd_root_hub_lock);
2317 		if (!HCD_DEAD(hcd)) {
2318 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2319 			hcd->state = old_state;
2320 		}
2321 		spin_unlock_irq(&hcd_root_hub_lock);
2322 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2323 				"suspend", status);
2324 	}
2325 	return status;
2326 }
2327 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2328 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2329 {
2330 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2331 	int		status;
2332 	int		old_state = hcd->state;
2333 
2334 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2335 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2336 	if (HCD_DEAD(hcd)) {
2337 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2338 		return 0;
2339 	}
2340 
2341 	if (!PMSG_IS_AUTO(msg)) {
2342 		status = usb_phy_roothub_resume(hcd->self.sysdev,
2343 						hcd->phy_roothub);
2344 		if (status)
2345 			return status;
2346 	}
2347 
2348 	if (!hcd->driver->bus_resume)
2349 		return -ENOENT;
2350 	if (HCD_RH_RUNNING(hcd))
2351 		return 0;
2352 
2353 	hcd->state = HC_STATE_RESUMING;
2354 	status = hcd->driver->bus_resume(hcd);
2355 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2356 	if (status == 0)
2357 		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2358 
2359 	if (status == 0) {
2360 		struct usb_device *udev;
2361 		int port1;
2362 
2363 		spin_lock_irq(&hcd_root_hub_lock);
2364 		if (!HCD_DEAD(hcd)) {
2365 			usb_set_device_state(rhdev, rhdev->actconfig
2366 					? USB_STATE_CONFIGURED
2367 					: USB_STATE_ADDRESS);
2368 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2369 			hcd->state = HC_STATE_RUNNING;
2370 		}
2371 		spin_unlock_irq(&hcd_root_hub_lock);
2372 
2373 		/*
2374 		 * Check whether any of the enabled ports on the root hub are
2375 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2376 		 * (this is what the USB-2 spec calls a "global resume").
2377 		 * Otherwise we can skip the delay.
2378 		 */
2379 		usb_hub_for_each_child(rhdev, port1, udev) {
2380 			if (udev->state != USB_STATE_NOTATTACHED &&
2381 					!udev->port_is_suspended) {
2382 				usleep_range(10000, 11000);	/* TRSMRCY */
2383 				break;
2384 			}
2385 		}
2386 	} else {
2387 		hcd->state = old_state;
2388 		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2389 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2390 				"resume", status);
2391 		if (status != -ESHUTDOWN)
2392 			usb_hc_died(hcd);
2393 	}
2394 	return status;
2395 }
2396 
2397 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2398 static void hcd_resume_work(struct work_struct *work)
2399 {
2400 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2401 	struct usb_device *udev = hcd->self.root_hub;
2402 
2403 	usb_remote_wakeup(udev);
2404 }
2405 
2406 /**
2407  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2408  * @hcd: host controller for this root hub
2409  *
2410  * The USB host controller calls this function when its root hub is
2411  * suspended (with the remote wakeup feature enabled) and a remote
2412  * wakeup request is received.  The routine submits a workqueue request
2413  * to resume the root hub (that is, manage its downstream ports again).
2414  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2415 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2416 {
2417 	unsigned long flags;
2418 
2419 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2420 	if (hcd->rh_registered) {
2421 		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2422 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2423 		queue_work(pm_wq, &hcd->wakeup_work);
2424 	}
2425 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2426 }
2427 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2428 
2429 #endif	/* CONFIG_PM */
2430 
2431 /*-------------------------------------------------------------------------*/
2432 
2433 #ifdef	CONFIG_USB_OTG
2434 
2435 /**
2436  * usb_bus_start_enum - start immediate enumeration (for OTG)
2437  * @bus: the bus (must use hcd framework)
2438  * @port_num: 1-based number of port; usually bus->otg_port
2439  * Context: atomic
2440  *
2441  * Starts enumeration, with an immediate reset followed later by
2442  * hub_wq identifying and possibly configuring the device.
2443  * This is needed by OTG controller drivers, where it helps meet
2444  * HNP protocol timing requirements for starting a port reset.
2445  *
2446  * Return: 0 if successful.
2447  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2448 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2449 {
2450 	struct usb_hcd		*hcd;
2451 	int			status = -EOPNOTSUPP;
2452 
2453 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2454 	 * boards with root hubs hooked up to internal devices (instead of
2455 	 * just the OTG port) may need more attention to resetting...
2456 	 */
2457 	hcd = bus_to_hcd(bus);
2458 	if (port_num && hcd->driver->start_port_reset)
2459 		status = hcd->driver->start_port_reset(hcd, port_num);
2460 
2461 	/* allocate hub_wq shortly after (first) root port reset finishes;
2462 	 * it may issue others, until at least 50 msecs have passed.
2463 	 */
2464 	if (status == 0)
2465 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2466 	return status;
2467 }
2468 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2469 
2470 #endif
2471 
2472 /*-------------------------------------------------------------------------*/
2473 
2474 /**
2475  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2476  * @irq: the IRQ being raised
2477  * @__hcd: pointer to the HCD whose IRQ is being signaled
2478  *
2479  * If the controller isn't HALTed, calls the driver's irq handler.
2480  * Checks whether the controller is now dead.
2481  *
2482  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2483  */
usb_hcd_irq(int irq,void * __hcd)2484 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2485 {
2486 	struct usb_hcd		*hcd = __hcd;
2487 	irqreturn_t		rc;
2488 
2489 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2490 		rc = IRQ_NONE;
2491 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2492 		rc = IRQ_NONE;
2493 	else
2494 		rc = IRQ_HANDLED;
2495 
2496 	return rc;
2497 }
2498 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2499 
2500 /*-------------------------------------------------------------------------*/
2501 
2502 /* Workqueue routine for when the root-hub has died. */
hcd_died_work(struct work_struct * work)2503 static void hcd_died_work(struct work_struct *work)
2504 {
2505 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2506 	static char *env[] = {
2507 		"ERROR=DEAD",
2508 		NULL
2509 	};
2510 
2511 	/* Notify user space that the host controller has died */
2512 	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2513 }
2514 
2515 /**
2516  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2517  * @hcd: pointer to the HCD representing the controller
2518  *
2519  * This is called by bus glue to report a USB host controller that died
2520  * while operations may still have been pending.  It's called automatically
2521  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2522  *
2523  * Only call this function with the primary HCD.
2524  */
usb_hc_died(struct usb_hcd * hcd)2525 void usb_hc_died (struct usb_hcd *hcd)
2526 {
2527 	unsigned long flags;
2528 
2529 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2530 
2531 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2532 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2533 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2534 	if (hcd->rh_registered) {
2535 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2536 
2537 		/* make hub_wq clean up old urbs and devices */
2538 		usb_set_device_state (hcd->self.root_hub,
2539 				USB_STATE_NOTATTACHED);
2540 		usb_kick_hub_wq(hcd->self.root_hub);
2541 	}
2542 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2543 		hcd = hcd->shared_hcd;
2544 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2545 		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2546 		if (hcd->rh_registered) {
2547 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2548 
2549 			/* make hub_wq clean up old urbs and devices */
2550 			usb_set_device_state(hcd->self.root_hub,
2551 					USB_STATE_NOTATTACHED);
2552 			usb_kick_hub_wq(hcd->self.root_hub);
2553 		}
2554 	}
2555 
2556 	/* Handle the case where this function gets called with a shared HCD */
2557 	if (usb_hcd_is_primary_hcd(hcd))
2558 		schedule_work(&hcd->died_work);
2559 	else
2560 		schedule_work(&hcd->primary_hcd->died_work);
2561 
2562 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2563 	/* Make sure that the other roothub is also deallocated. */
2564 }
2565 EXPORT_SYMBOL_GPL (usb_hc_died);
2566 
2567 /*-------------------------------------------------------------------------*/
2568 
init_giveback_urb_bh(struct giveback_urb_bh * bh)2569 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2570 {
2571 
2572 	spin_lock_init(&bh->lock);
2573 	INIT_LIST_HEAD(&bh->head);
2574 	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2575 }
2576 
__usb_create_hcd(const struct hc_driver * driver,struct device * sysdev,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2577 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2578 		struct device *sysdev, struct device *dev, const char *bus_name,
2579 		struct usb_hcd *primary_hcd)
2580 {
2581 	struct usb_hcd *hcd;
2582 
2583 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2584 	if (!hcd)
2585 		return NULL;
2586 	if (primary_hcd == NULL) {
2587 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2588 				GFP_KERNEL);
2589 		if (!hcd->address0_mutex) {
2590 			kfree(hcd);
2591 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2592 			return NULL;
2593 		}
2594 		mutex_init(hcd->address0_mutex);
2595 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2596 				GFP_KERNEL);
2597 		if (!hcd->bandwidth_mutex) {
2598 			kfree(hcd->address0_mutex);
2599 			kfree(hcd);
2600 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2601 			return NULL;
2602 		}
2603 		mutex_init(hcd->bandwidth_mutex);
2604 		dev_set_drvdata(dev, hcd);
2605 	} else {
2606 		mutex_lock(&usb_port_peer_mutex);
2607 		hcd->address0_mutex = primary_hcd->address0_mutex;
2608 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2609 		hcd->primary_hcd = primary_hcd;
2610 		primary_hcd->primary_hcd = primary_hcd;
2611 		hcd->shared_hcd = primary_hcd;
2612 		primary_hcd->shared_hcd = hcd;
2613 		mutex_unlock(&usb_port_peer_mutex);
2614 	}
2615 
2616 	kref_init(&hcd->kref);
2617 
2618 	usb_bus_init(&hcd->self);
2619 	hcd->self.controller = dev;
2620 	hcd->self.sysdev = sysdev;
2621 	hcd->self.bus_name = bus_name;
2622 
2623 	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2624 #ifdef CONFIG_PM
2625 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2626 #endif
2627 
2628 	INIT_WORK(&hcd->died_work, hcd_died_work);
2629 
2630 	hcd->driver = driver;
2631 	hcd->speed = driver->flags & HCD_MASK;
2632 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2633 			"USB Host Controller";
2634 	return hcd;
2635 }
2636 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2637 
2638 /**
2639  * usb_create_shared_hcd - create and initialize an HCD structure
2640  * @driver: HC driver that will use this hcd
2641  * @dev: device for this HC, stored in hcd->self.controller
2642  * @bus_name: value to store in hcd->self.bus_name
2643  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2644  *              PCI device.  Only allocate certain resources for the primary HCD
2645  *
2646  * Context: task context, might sleep.
2647  *
2648  * Allocate a struct usb_hcd, with extra space at the end for the
2649  * HC driver's private data.  Initialize the generic members of the
2650  * hcd structure.
2651  *
2652  * Return: On success, a pointer to the created and initialized HCD structure.
2653  * On failure (e.g. if memory is unavailable), %NULL.
2654  */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2655 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2656 		struct device *dev, const char *bus_name,
2657 		struct usb_hcd *primary_hcd)
2658 {
2659 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2660 }
2661 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2662 
2663 /**
2664  * usb_create_hcd - create and initialize an HCD structure
2665  * @driver: HC driver that will use this hcd
2666  * @dev: device for this HC, stored in hcd->self.controller
2667  * @bus_name: value to store in hcd->self.bus_name
2668  *
2669  * Context: task context, might sleep.
2670  *
2671  * Allocate a struct usb_hcd, with extra space at the end for the
2672  * HC driver's private data.  Initialize the generic members of the
2673  * hcd structure.
2674  *
2675  * Return: On success, a pointer to the created and initialized HCD
2676  * structure. On failure (e.g. if memory is unavailable), %NULL.
2677  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2678 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2679 		struct device *dev, const char *bus_name)
2680 {
2681 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2682 }
2683 EXPORT_SYMBOL_GPL(usb_create_hcd);
2684 
2685 /*
2686  * Roothubs that share one PCI device must also share the bandwidth mutex.
2687  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2688  * deallocated.
2689  *
2690  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2691  * freed.  When hcd_release() is called for either hcd in a peer set,
2692  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2693  */
hcd_release(struct kref * kref)2694 static void hcd_release(struct kref *kref)
2695 {
2696 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2697 
2698 	mutex_lock(&usb_port_peer_mutex);
2699 	if (hcd->shared_hcd) {
2700 		struct usb_hcd *peer = hcd->shared_hcd;
2701 
2702 		peer->shared_hcd = NULL;
2703 		peer->primary_hcd = NULL;
2704 	} else {
2705 		kfree(hcd->address0_mutex);
2706 		kfree(hcd->bandwidth_mutex);
2707 	}
2708 	mutex_unlock(&usb_port_peer_mutex);
2709 	kfree(hcd);
2710 }
2711 
usb_get_hcd(struct usb_hcd * hcd)2712 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2713 {
2714 	if (hcd)
2715 		kref_get (&hcd->kref);
2716 	return hcd;
2717 }
2718 EXPORT_SYMBOL_GPL(usb_get_hcd);
2719 
usb_put_hcd(struct usb_hcd * hcd)2720 void usb_put_hcd (struct usb_hcd *hcd)
2721 {
2722 	if (hcd)
2723 		kref_put (&hcd->kref, hcd_release);
2724 }
2725 EXPORT_SYMBOL_GPL(usb_put_hcd);
2726 
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2727 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2728 {
2729 	if (!hcd->primary_hcd)
2730 		return 1;
2731 	return hcd == hcd->primary_hcd;
2732 }
2733 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2734 
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2735 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2736 {
2737 	if (!hcd->driver->find_raw_port_number)
2738 		return port1;
2739 
2740 	return hcd->driver->find_raw_port_number(hcd, port1);
2741 }
2742 
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2743 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2744 		unsigned int irqnum, unsigned long irqflags)
2745 {
2746 	int retval;
2747 
2748 	if (hcd->driver->irq) {
2749 
2750 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2751 				hcd->driver->description, hcd->self.busnum);
2752 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2753 				hcd->irq_descr, hcd);
2754 		if (retval != 0) {
2755 			dev_err(hcd->self.controller,
2756 					"request interrupt %d failed\n",
2757 					irqnum);
2758 			return retval;
2759 		}
2760 		hcd->irq = irqnum;
2761 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2762 				(hcd->driver->flags & HCD_MEMORY) ?
2763 					"io mem" : "io base",
2764 					(unsigned long long)hcd->rsrc_start);
2765 	} else {
2766 		hcd->irq = 0;
2767 		if (hcd->rsrc_start)
2768 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2769 					(hcd->driver->flags & HCD_MEMORY) ?
2770 					"io mem" : "io base",
2771 					(unsigned long long)hcd->rsrc_start);
2772 	}
2773 	return 0;
2774 }
2775 
2776 /*
2777  * Before we free this root hub, flush in-flight peering attempts
2778  * and disable peer lookups
2779  */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2780 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2781 {
2782 	struct usb_device *rhdev;
2783 
2784 	mutex_lock(&usb_port_peer_mutex);
2785 	rhdev = hcd->self.root_hub;
2786 	hcd->self.root_hub = NULL;
2787 	mutex_unlock(&usb_port_peer_mutex);
2788 	usb_put_dev(rhdev);
2789 }
2790 
2791 /**
2792  * usb_stop_hcd - Halt the HCD
2793  * @hcd: the usb_hcd that has to be halted
2794  *
2795  * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2796  */
usb_stop_hcd(struct usb_hcd * hcd)2797 static void usb_stop_hcd(struct usb_hcd *hcd)
2798 {
2799 	hcd->rh_pollable = 0;
2800 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2801 	del_timer_sync(&hcd->rh_timer);
2802 
2803 	hcd->driver->stop(hcd);
2804 	hcd->state = HC_STATE_HALT;
2805 
2806 	/* In case the HCD restarted the timer, stop it again. */
2807 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808 	del_timer_sync(&hcd->rh_timer);
2809 }
2810 
2811 /**
2812  * usb_add_hcd - finish generic HCD structure initialization and register
2813  * @hcd: the usb_hcd structure to initialize
2814  * @irqnum: Interrupt line to allocate
2815  * @irqflags: Interrupt type flags
2816  *
2817  * Finish the remaining parts of generic HCD initialization: allocate the
2818  * buffers of consistent memory, register the bus, request the IRQ line,
2819  * and call the driver's reset() and start() routines.
2820  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2821 int usb_add_hcd(struct usb_hcd *hcd,
2822 		unsigned int irqnum, unsigned long irqflags)
2823 {
2824 	int retval;
2825 	struct usb_device *rhdev;
2826 	struct usb_hcd *shared_hcd;
2827 
2828 	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2829 		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2830 		if (IS_ERR(hcd->phy_roothub))
2831 			return PTR_ERR(hcd->phy_roothub);
2832 
2833 		retval = usb_phy_roothub_init(hcd->phy_roothub);
2834 		if (retval)
2835 			return retval;
2836 
2837 		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2838 						  PHY_MODE_USB_HOST_SS);
2839 		if (retval)
2840 			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2841 							  PHY_MODE_USB_HOST);
2842 		if (retval)
2843 			goto err_usb_phy_roothub_power_on;
2844 
2845 		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2846 		if (retval)
2847 			goto err_usb_phy_roothub_power_on;
2848 	}
2849 
2850 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2851 
2852 	switch (authorized_default) {
2853 	case USB_AUTHORIZE_NONE:
2854 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2855 		break;
2856 
2857 	case USB_AUTHORIZE_ALL:
2858 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2859 		break;
2860 
2861 	case USB_AUTHORIZE_INTERNAL:
2862 		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2863 		break;
2864 
2865 	case USB_AUTHORIZE_WIRED:
2866 	default:
2867 		hcd->dev_policy = hcd->wireless ?
2868 			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2869 		break;
2870 	}
2871 
2872 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2873 
2874 	/* per default all interfaces are authorized */
2875 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2876 
2877 	/* HC is in reset state, but accessible.  Now do the one-time init,
2878 	 * bottom up so that hcds can customize the root hubs before hub_wq
2879 	 * starts talking to them.  (Note, bus id is assigned early too.)
2880 	 */
2881 	retval = hcd_buffer_create(hcd);
2882 	if (retval != 0) {
2883 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2884 		goto err_create_buf;
2885 	}
2886 
2887 	retval = usb_register_bus(&hcd->self);
2888 	if (retval < 0)
2889 		goto err_register_bus;
2890 
2891 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2892 	if (rhdev == NULL) {
2893 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2894 		retval = -ENOMEM;
2895 		goto err_allocate_root_hub;
2896 	}
2897 	mutex_lock(&usb_port_peer_mutex);
2898 	hcd->self.root_hub = rhdev;
2899 	mutex_unlock(&usb_port_peer_mutex);
2900 
2901 	rhdev->rx_lanes = 1;
2902 	rhdev->tx_lanes = 1;
2903 	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2904 
2905 	switch (hcd->speed) {
2906 	case HCD_USB11:
2907 		rhdev->speed = USB_SPEED_FULL;
2908 		break;
2909 	case HCD_USB2:
2910 		rhdev->speed = USB_SPEED_HIGH;
2911 		break;
2912 	case HCD_USB25:
2913 		rhdev->speed = USB_SPEED_WIRELESS;
2914 		break;
2915 	case HCD_USB3:
2916 		rhdev->speed = USB_SPEED_SUPER;
2917 		break;
2918 	case HCD_USB32:
2919 		rhdev->rx_lanes = 2;
2920 		rhdev->tx_lanes = 2;
2921 		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2922 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2923 		break;
2924 	case HCD_USB31:
2925 		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2926 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2927 		break;
2928 	default:
2929 		retval = -EINVAL;
2930 		goto err_set_rh_speed;
2931 	}
2932 
2933 	/* wakeup flag init defaults to "everything works" for root hubs,
2934 	 * but drivers can override it in reset() if needed, along with
2935 	 * recording the overall controller's system wakeup capability.
2936 	 */
2937 	device_set_wakeup_capable(&rhdev->dev, 1);
2938 
2939 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2940 	 * registered.  But since the controller can die at any time,
2941 	 * let's initialize the flag before touching the hardware.
2942 	 */
2943 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2944 
2945 	/* "reset" is misnamed; its role is now one-time init. the controller
2946 	 * should already have been reset (and boot firmware kicked off etc).
2947 	 */
2948 	if (hcd->driver->reset) {
2949 		retval = hcd->driver->reset(hcd);
2950 		if (retval < 0) {
2951 			dev_err(hcd->self.controller, "can't setup: %d\n",
2952 					retval);
2953 			goto err_hcd_driver_setup;
2954 		}
2955 	}
2956 	hcd->rh_pollable = 1;
2957 
2958 	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2959 	if (retval)
2960 		goto err_hcd_driver_setup;
2961 
2962 	/* NOTE: root hub and controller capabilities may not be the same */
2963 	if (device_can_wakeup(hcd->self.controller)
2964 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2965 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2966 
2967 	/* initialize tasklets */
2968 	init_giveback_urb_bh(&hcd->high_prio_bh);
2969 	hcd->high_prio_bh.high_prio = true;
2970 	init_giveback_urb_bh(&hcd->low_prio_bh);
2971 
2972 	/* enable irqs just before we start the controller,
2973 	 * if the BIOS provides legacy PCI irqs.
2974 	 */
2975 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2976 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2977 		if (retval)
2978 			goto err_request_irq;
2979 	}
2980 
2981 	hcd->state = HC_STATE_RUNNING;
2982 	retval = hcd->driver->start(hcd);
2983 	if (retval < 0) {
2984 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2985 		goto err_hcd_driver_start;
2986 	}
2987 
2988 	/* starting here, usbcore will pay attention to the shared HCD roothub */
2989 	shared_hcd = hcd->shared_hcd;
2990 	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2991 		retval = register_root_hub(shared_hcd);
2992 		if (retval != 0)
2993 			goto err_register_root_hub;
2994 
2995 		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2996 			usb_hcd_poll_rh_status(shared_hcd);
2997 	}
2998 
2999 	/* starting here, usbcore will pay attention to this root hub */
3000 	if (!HCD_DEFER_RH_REGISTER(hcd)) {
3001 		retval = register_root_hub(hcd);
3002 		if (retval != 0)
3003 			goto err_register_root_hub;
3004 
3005 		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
3006 			usb_hcd_poll_rh_status(hcd);
3007 	}
3008 
3009 	return retval;
3010 
3011 err_register_root_hub:
3012 	usb_stop_hcd(hcd);
3013 err_hcd_driver_start:
3014 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3015 		free_irq(irqnum, hcd);
3016 err_request_irq:
3017 err_hcd_driver_setup:
3018 err_set_rh_speed:
3019 	usb_put_invalidate_rhdev(hcd);
3020 err_allocate_root_hub:
3021 	usb_deregister_bus(&hcd->self);
3022 err_register_bus:
3023 	hcd_buffer_destroy(hcd);
3024 err_create_buf:
3025 	usb_phy_roothub_power_off(hcd->phy_roothub);
3026 err_usb_phy_roothub_power_on:
3027 	usb_phy_roothub_exit(hcd->phy_roothub);
3028 
3029 	return retval;
3030 }
3031 EXPORT_SYMBOL_GPL(usb_add_hcd);
3032 
3033 /**
3034  * usb_remove_hcd - shutdown processing for generic HCDs
3035  * @hcd: the usb_hcd structure to remove
3036  *
3037  * Context: task context, might sleep.
3038  *
3039  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3040  * invoking the HCD's stop() method.
3041  */
usb_remove_hcd(struct usb_hcd * hcd)3042 void usb_remove_hcd(struct usb_hcd *hcd)
3043 {
3044 	struct usb_device *rhdev = hcd->self.root_hub;
3045 	bool rh_registered;
3046 
3047 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3048 
3049 	usb_get_dev(rhdev);
3050 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3051 	if (HC_IS_RUNNING (hcd->state))
3052 		hcd->state = HC_STATE_QUIESCING;
3053 
3054 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3055 	spin_lock_irq (&hcd_root_hub_lock);
3056 	rh_registered = hcd->rh_registered;
3057 	hcd->rh_registered = 0;
3058 	spin_unlock_irq (&hcd_root_hub_lock);
3059 
3060 #ifdef CONFIG_PM
3061 	cancel_work_sync(&hcd->wakeup_work);
3062 #endif
3063 	cancel_work_sync(&hcd->died_work);
3064 
3065 	mutex_lock(&usb_bus_idr_lock);
3066 	if (rh_registered)
3067 		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3068 	mutex_unlock(&usb_bus_idr_lock);
3069 
3070 	/*
3071 	 * tasklet_kill() isn't needed here because:
3072 	 * - driver's disconnect() called from usb_disconnect() should
3073 	 *   make sure its URBs are completed during the disconnect()
3074 	 *   callback
3075 	 *
3076 	 * - it is too late to run complete() here since driver may have
3077 	 *   been removed already now
3078 	 */
3079 
3080 	/* Prevent any more root-hub status calls from the timer.
3081 	 * The HCD might still restart the timer (if a port status change
3082 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3083 	 * the hub_status_data() callback.
3084 	 */
3085 	usb_stop_hcd(hcd);
3086 
3087 	if (usb_hcd_is_primary_hcd(hcd)) {
3088 		if (hcd->irq > 0)
3089 			free_irq(hcd->irq, hcd);
3090 	}
3091 
3092 	usb_deregister_bus(&hcd->self);
3093 	hcd_buffer_destroy(hcd);
3094 
3095 	usb_phy_roothub_power_off(hcd->phy_roothub);
3096 	usb_phy_roothub_exit(hcd->phy_roothub);
3097 
3098 	usb_put_invalidate_rhdev(hcd);
3099 	hcd->flags = 0;
3100 }
3101 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3102 
3103 void
usb_hcd_platform_shutdown(struct platform_device * dev)3104 usb_hcd_platform_shutdown(struct platform_device *dev)
3105 {
3106 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3107 
3108 	/* No need for pm_runtime_put(), we're shutting down */
3109 	pm_runtime_get_sync(&dev->dev);
3110 
3111 	if (hcd->driver->shutdown)
3112 		hcd->driver->shutdown(hcd);
3113 }
3114 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3115 
usb_hcd_setup_local_mem(struct usb_hcd * hcd,phys_addr_t phys_addr,dma_addr_t dma,size_t size)3116 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3117 			    dma_addr_t dma, size_t size)
3118 {
3119 	int err;
3120 	void *local_mem;
3121 
3122 	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3123 						  dev_to_node(hcd->self.sysdev),
3124 						  dev_name(hcd->self.sysdev));
3125 	if (IS_ERR(hcd->localmem_pool))
3126 		return PTR_ERR(hcd->localmem_pool);
3127 
3128 	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3129 				  size, MEMREMAP_WC);
3130 	if (IS_ERR(local_mem))
3131 		return PTR_ERR(local_mem);
3132 
3133 	/*
3134 	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3135 	 * It's not backed by system memory and thus there's no kernel mapping
3136 	 * for it.
3137 	 */
3138 	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3139 				dma, size, dev_to_node(hcd->self.sysdev));
3140 	if (err < 0) {
3141 		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3142 			err);
3143 		return err;
3144 	}
3145 
3146 	return 0;
3147 }
3148 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3149 
3150 /*-------------------------------------------------------------------------*/
3151 
3152 const struct usb_mon_operations *mon_ops;
3153 
3154 /*
3155  * The registration is unlocked.
3156  * We do it this way because we do not want to lock in hot paths.
3157  *
3158  * Notice that the code is minimally error-proof. Because usbmon needs
3159  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3160  */
3161 
usb_mon_register(const struct usb_mon_operations * ops)3162 int usb_mon_register(const struct usb_mon_operations *ops)
3163 {
3164 
3165 	if (mon_ops)
3166 		return -EBUSY;
3167 
3168 	mon_ops = ops;
3169 	mb();
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL_GPL (usb_mon_register);
3173 
usb_mon_deregister(void)3174 void usb_mon_deregister (void)
3175 {
3176 
3177 	if (mon_ops == NULL) {
3178 		printk(KERN_ERR "USB: monitor was not registered\n");
3179 		return;
3180 	}
3181 	mon_ops = NULL;
3182 	mb();
3183 }
3184 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3185