1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Released under the GPLv2 only.
4 */
5
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/usb.h>
12 #include <linux/wait.h>
13 #include <linux/usb/hcd.h>
14 #include <linux/scatterlist.h>
15
16 #define to_urb(d) container_of(d, struct urb, kref)
17
18
urb_destroy(struct kref * kref)19 static void urb_destroy(struct kref *kref)
20 {
21 struct urb *urb = to_urb(kref);
22
23 if (urb->transfer_flags & URB_FREE_BUFFER)
24 kfree(urb->transfer_buffer);
25
26 kfree(urb);
27 }
28
29 /**
30 * usb_init_urb - initializes a urb so that it can be used by a USB driver
31 * @urb: pointer to the urb to initialize
32 *
33 * Initializes a urb so that the USB subsystem can use it properly.
34 *
35 * If a urb is created with a call to usb_alloc_urb() it is not
36 * necessary to call this function. Only use this if you allocate the
37 * space for a struct urb on your own. If you call this function, be
38 * careful when freeing the memory for your urb that it is no longer in
39 * use by the USB core.
40 *
41 * Only use this function if you _really_ understand what you are doing.
42 */
usb_init_urb(struct urb * urb)43 void usb_init_urb(struct urb *urb)
44 {
45 if (urb) {
46 memset(urb, 0, sizeof(*urb));
47 kref_init(&urb->kref);
48 INIT_LIST_HEAD(&urb->urb_list);
49 INIT_LIST_HEAD(&urb->anchor_list);
50 }
51 }
52 EXPORT_SYMBOL_GPL(usb_init_urb);
53
54 /**
55 * usb_alloc_urb - creates a new urb for a USB driver to use
56 * @iso_packets: number of iso packets for this urb
57 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
58 * valid options for this.
59 *
60 * Creates an urb for the USB driver to use, initializes a few internal
61 * structures, increments the usage counter, and returns a pointer to it.
62 *
63 * If the driver want to use this urb for interrupt, control, or bulk
64 * endpoints, pass '0' as the number of iso packets.
65 *
66 * The driver must call usb_free_urb() when it is finished with the urb.
67 *
68 * Return: A pointer to the new urb, or %NULL if no memory is available.
69 */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)70 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
71 {
72 struct urb *urb;
73
74 urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
75 mem_flags);
76 if (!urb)
77 return NULL;
78 usb_init_urb(urb);
79 return urb;
80 }
81 EXPORT_SYMBOL_GPL(usb_alloc_urb);
82
83 /**
84 * usb_free_urb - frees the memory used by a urb when all users of it are finished
85 * @urb: pointer to the urb to free, may be NULL
86 *
87 * Must be called when a user of a urb is finished with it. When the last user
88 * of the urb calls this function, the memory of the urb is freed.
89 *
90 * Note: The transfer buffer associated with the urb is not freed unless the
91 * URB_FREE_BUFFER transfer flag is set.
92 */
usb_free_urb(struct urb * urb)93 void usb_free_urb(struct urb *urb)
94 {
95 if (urb)
96 kref_put(&urb->kref, urb_destroy);
97 }
98 EXPORT_SYMBOL_GPL(usb_free_urb);
99
100 /**
101 * usb_get_urb - increments the reference count of the urb
102 * @urb: pointer to the urb to modify, may be NULL
103 *
104 * This must be called whenever a urb is transferred from a device driver to a
105 * host controller driver. This allows proper reference counting to happen
106 * for urbs.
107 *
108 * Return: A pointer to the urb with the incremented reference counter.
109 */
usb_get_urb(struct urb * urb)110 struct urb *usb_get_urb(struct urb *urb)
111 {
112 if (urb)
113 kref_get(&urb->kref);
114 return urb;
115 }
116 EXPORT_SYMBOL_GPL(usb_get_urb);
117
118 /**
119 * usb_anchor_urb - anchors an URB while it is processed
120 * @urb: pointer to the urb to anchor
121 * @anchor: pointer to the anchor
122 *
123 * This can be called to have access to URBs which are to be executed
124 * without bothering to track them
125 */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)126 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
127 {
128 unsigned long flags;
129
130 spin_lock_irqsave(&anchor->lock, flags);
131 usb_get_urb(urb);
132 list_add_tail(&urb->anchor_list, &anchor->urb_list);
133 urb->anchor = anchor;
134
135 if (unlikely(anchor->poisoned))
136 atomic_inc(&urb->reject);
137
138 spin_unlock_irqrestore(&anchor->lock, flags);
139 }
140 EXPORT_SYMBOL_GPL(usb_anchor_urb);
141
usb_anchor_check_wakeup(struct usb_anchor * anchor)142 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
143 {
144 return atomic_read(&anchor->suspend_wakeups) == 0 &&
145 list_empty(&anchor->urb_list);
146 }
147
148 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)149 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
150 {
151 urb->anchor = NULL;
152 list_del(&urb->anchor_list);
153 usb_put_urb(urb);
154 if (usb_anchor_check_wakeup(anchor))
155 wake_up(&anchor->wait);
156 }
157
158 /**
159 * usb_unanchor_urb - unanchors an URB
160 * @urb: pointer to the urb to anchor
161 *
162 * Call this to stop the system keeping track of this URB
163 */
usb_unanchor_urb(struct urb * urb)164 void usb_unanchor_urb(struct urb *urb)
165 {
166 unsigned long flags;
167 struct usb_anchor *anchor;
168
169 if (!urb)
170 return;
171
172 anchor = urb->anchor;
173 if (!anchor)
174 return;
175
176 spin_lock_irqsave(&anchor->lock, flags);
177 /*
178 * At this point, we could be competing with another thread which
179 * has the same intention. To protect the urb from being unanchored
180 * twice, only the winner of the race gets the job.
181 */
182 if (likely(anchor == urb->anchor))
183 __usb_unanchor_urb(urb, anchor);
184 spin_unlock_irqrestore(&anchor->lock, flags);
185 }
186 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
187
188 /*-------------------------------------------------------------------*/
189
190 static const int pipetypes[4] = {
191 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
192 };
193
194 /**
195 * usb_pipe_type_check - sanity check of a specific pipe for a usb device
196 * @dev: struct usb_device to be checked
197 * @pipe: pipe to check
198 *
199 * This performs a light-weight sanity check for the endpoint in the
200 * given usb device. It returns 0 if the pipe is valid for the specific usb
201 * device, otherwise a negative error code.
202 */
usb_pipe_type_check(struct usb_device * dev,unsigned int pipe)203 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
204 {
205 const struct usb_host_endpoint *ep;
206
207 ep = usb_pipe_endpoint(dev, pipe);
208 if (!ep)
209 return -EINVAL;
210 if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
211 return -EINVAL;
212 return 0;
213 }
214 EXPORT_SYMBOL_GPL(usb_pipe_type_check);
215
216 /**
217 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
218 * @urb: urb to be checked
219 *
220 * This performs a light-weight sanity check for the endpoint in the
221 * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
222 * a negative error code.
223 */
usb_urb_ep_type_check(const struct urb * urb)224 int usb_urb_ep_type_check(const struct urb *urb)
225 {
226 return usb_pipe_type_check(urb->dev, urb->pipe);
227 }
228 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
229
230 /**
231 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
232 * @urb: pointer to the urb describing the request
233 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
234 * of valid options for this.
235 *
236 * This submits a transfer request, and transfers control of the URB
237 * describing that request to the USB subsystem. Request completion will
238 * be indicated later, asynchronously, by calling the completion handler.
239 * The three types of completion are success, error, and unlink
240 * (a software-induced fault, also called "request cancellation").
241 *
242 * URBs may be submitted in interrupt context.
243 *
244 * The caller must have correctly initialized the URB before submitting
245 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
246 * available to ensure that most fields are correctly initialized, for
247 * the particular kind of transfer, although they will not initialize
248 * any transfer flags.
249 *
250 * If the submission is successful, the complete() callback from the URB
251 * will be called exactly once, when the USB core and Host Controller Driver
252 * (HCD) are finished with the URB. When the completion function is called,
253 * control of the URB is returned to the device driver which issued the
254 * request. The completion handler may then immediately free or reuse that
255 * URB.
256 *
257 * With few exceptions, USB device drivers should never access URB fields
258 * provided by usbcore or the HCD until its complete() is called.
259 * The exceptions relate to periodic transfer scheduling. For both
260 * interrupt and isochronous urbs, as part of successful URB submission
261 * urb->interval is modified to reflect the actual transfer period used
262 * (normally some power of two units). And for isochronous urbs,
263 * urb->start_frame is modified to reflect when the URB's transfers were
264 * scheduled to start.
265 *
266 * Not all isochronous transfer scheduling policies will work, but most
267 * host controller drivers should easily handle ISO queues going from now
268 * until 10-200 msec into the future. Drivers should try to keep at
269 * least one or two msec of data in the queue; many controllers require
270 * that new transfers start at least 1 msec in the future when they are
271 * added. If the driver is unable to keep up and the queue empties out,
272 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
273 * If the flag is set, or if the queue is idle, then the URB is always
274 * assigned to the first available (and not yet expired) slot in the
275 * endpoint's schedule. If the flag is not set and the queue is active
276 * then the URB is always assigned to the next slot in the schedule
277 * following the end of the endpoint's previous URB, even if that slot is
278 * in the past. When a packet is assigned in this way to a slot that has
279 * already expired, the packet is not transmitted and the corresponding
280 * usb_iso_packet_descriptor's status field will return -EXDEV. If this
281 * would happen to all the packets in the URB, submission fails with a
282 * -EXDEV error code.
283 *
284 * For control endpoints, the synchronous usb_control_msg() call is
285 * often used (in non-interrupt context) instead of this call.
286 * That is often used through convenience wrappers, for the requests
287 * that are standardized in the USB 2.0 specification. For bulk
288 * endpoints, a synchronous usb_bulk_msg() call is available.
289 *
290 * Return:
291 * 0 on successful submissions. A negative error number otherwise.
292 *
293 * Request Queuing:
294 *
295 * URBs may be submitted to endpoints before previous ones complete, to
296 * minimize the impact of interrupt latencies and system overhead on data
297 * throughput. With that queuing policy, an endpoint's queue would never
298 * be empty. This is required for continuous isochronous data streams,
299 * and may also be required for some kinds of interrupt transfers. Such
300 * queuing also maximizes bandwidth utilization by letting USB controllers
301 * start work on later requests before driver software has finished the
302 * completion processing for earlier (successful) requests.
303 *
304 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
305 * than one. This was previously a HCD-specific behavior, except for ISO
306 * transfers. Non-isochronous endpoint queues are inactive during cleanup
307 * after faults (transfer errors or cancellation).
308 *
309 * Reserved Bandwidth Transfers:
310 *
311 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
312 * using the interval specified in the urb. Submitting the first urb to
313 * the endpoint reserves the bandwidth necessary to make those transfers.
314 * If the USB subsystem can't allocate sufficient bandwidth to perform
315 * the periodic request, submitting such a periodic request should fail.
316 *
317 * For devices under xHCI, the bandwidth is reserved at configuration time, or
318 * when the alt setting is selected. If there is not enough bus bandwidth, the
319 * configuration/alt setting request will fail. Therefore, submissions to
320 * periodic endpoints on devices under xHCI should never fail due to bandwidth
321 * constraints.
322 *
323 * Device drivers must explicitly request that repetition, by ensuring that
324 * some URB is always on the endpoint's queue (except possibly for short
325 * periods during completion callbacks). When there is no longer an urb
326 * queued, the endpoint's bandwidth reservation is canceled. This means
327 * drivers can use their completion handlers to ensure they keep bandwidth
328 * they need, by reinitializing and resubmitting the just-completed urb
329 * until the driver longer needs that periodic bandwidth.
330 *
331 * Memory Flags:
332 *
333 * The general rules for how to decide which mem_flags to use
334 * are the same as for kmalloc. There are four
335 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
336 * GFP_ATOMIC.
337 *
338 * GFP_NOFS is not ever used, as it has not been implemented yet.
339 *
340 * GFP_ATOMIC is used when
341 * (a) you are inside a completion handler, an interrupt, bottom half,
342 * tasklet or timer, or
343 * (b) you are holding a spinlock or rwlock (does not apply to
344 * semaphores), or
345 * (c) current->state != TASK_RUNNING, this is the case only after
346 * you've changed it.
347 *
348 * GFP_NOIO is used in the block io path and error handling of storage
349 * devices.
350 *
351 * All other situations use GFP_KERNEL.
352 *
353 * Some more specific rules for mem_flags can be inferred, such as
354 * (1) start_xmit, timeout, and receive methods of network drivers must
355 * use GFP_ATOMIC (they are called with a spinlock held);
356 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
357 * called with a spinlock held);
358 * (3) If you use a kernel thread with a network driver you must use
359 * GFP_NOIO, unless (b) or (c) apply;
360 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
361 * apply or your are in a storage driver's block io path;
362 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
363 * (6) changing firmware on a running storage or net device uses
364 * GFP_NOIO, unless b) or c) apply
365 *
366 */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)367 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
368 {
369 int xfertype, max;
370 struct usb_device *dev;
371 struct usb_host_endpoint *ep;
372 int is_out;
373 unsigned int allowed;
374
375 if (!urb || !urb->complete)
376 return -EINVAL;
377 if (urb->hcpriv) {
378 WARN_ONCE(1, "URB %pK submitted while active\n", urb);
379 return -EBUSY;
380 }
381
382 dev = urb->dev;
383 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
384 return -ENODEV;
385
386 /* For now, get the endpoint from the pipe. Eventually drivers
387 * will be required to set urb->ep directly and we will eliminate
388 * urb->pipe.
389 */
390 ep = usb_pipe_endpoint(dev, urb->pipe);
391 if (!ep)
392 return -ENOENT;
393
394 urb->ep = ep;
395 urb->status = -EINPROGRESS;
396 urb->actual_length = 0;
397
398 /* Lots of sanity checks, so HCDs can rely on clean data
399 * and don't need to duplicate tests
400 */
401 xfertype = usb_endpoint_type(&ep->desc);
402 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
403 struct usb_ctrlrequest *setup =
404 (struct usb_ctrlrequest *) urb->setup_packet;
405
406 if (!setup)
407 return -ENOEXEC;
408 is_out = !(setup->bRequestType & USB_DIR_IN) ||
409 !setup->wLength;
410 dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
411 "BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
412 urb->pipe, setup->bRequestType);
413 if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
414 dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
415 le16_to_cpu(setup->wLength),
416 urb->transfer_buffer_length);
417 return -EBADR;
418 }
419 } else {
420 is_out = usb_endpoint_dir_out(&ep->desc);
421 }
422
423 /* Clear the internal flags and cache the direction for later use */
424 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
425 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
426 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
427 URB_DMA_SG_COMBINED);
428 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
429
430 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
431 dev->state < USB_STATE_CONFIGURED)
432 return -ENODEV;
433
434 max = usb_endpoint_maxp(&ep->desc);
435 if (max <= 0) {
436 dev_dbg(&dev->dev,
437 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
438 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
439 __func__, max);
440 return -EMSGSIZE;
441 }
442
443 /* periodic transfers limit size per frame/uframe,
444 * but drivers only control those sizes for ISO.
445 * while we're checking, initialize return status.
446 */
447 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
448 int n, len;
449
450 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
451 * 3 packets each
452 */
453 if (dev->speed >= USB_SPEED_SUPER) {
454 int burst = 1 + ep->ss_ep_comp.bMaxBurst;
455 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
456 max *= burst;
457 max *= mult;
458 }
459
460 if (dev->speed == USB_SPEED_SUPER_PLUS &&
461 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
462 struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
463
464 isoc_ep_comp = &ep->ssp_isoc_ep_comp;
465 max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
466 }
467
468 /* "high bandwidth" mode, 1-3 packets/uframe? */
469 if (dev->speed == USB_SPEED_HIGH)
470 max *= usb_endpoint_maxp_mult(&ep->desc);
471
472 if (urb->number_of_packets <= 0)
473 return -EINVAL;
474 for (n = 0; n < urb->number_of_packets; n++) {
475 len = urb->iso_frame_desc[n].length;
476 if (len < 0 || len > max)
477 return -EMSGSIZE;
478 urb->iso_frame_desc[n].status = -EXDEV;
479 urb->iso_frame_desc[n].actual_length = 0;
480 }
481 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
482 dev->speed != USB_SPEED_WIRELESS) {
483 struct scatterlist *sg;
484 int i;
485
486 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
487 if (sg->length % max)
488 return -EINVAL;
489 }
490
491 /* the I/O buffer must be mapped/unmapped, except when length=0 */
492 if (urb->transfer_buffer_length > INT_MAX)
493 return -EMSGSIZE;
494
495 /*
496 * stuff that drivers shouldn't do, but which shouldn't
497 * cause problems in HCDs if they get it wrong.
498 */
499
500 /* Check that the pipe's type matches the endpoint's type */
501 if (usb_pipe_type_check(urb->dev, urb->pipe))
502 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
503 usb_pipetype(urb->pipe), pipetypes[xfertype]);
504
505 /* Check against a simple/standard policy */
506 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
507 URB_FREE_BUFFER);
508 switch (xfertype) {
509 case USB_ENDPOINT_XFER_BULK:
510 case USB_ENDPOINT_XFER_INT:
511 if (is_out)
512 allowed |= URB_ZERO_PACKET;
513 fallthrough;
514 default: /* all non-iso endpoints */
515 if (!is_out)
516 allowed |= URB_SHORT_NOT_OK;
517 break;
518 case USB_ENDPOINT_XFER_ISOC:
519 allowed |= URB_ISO_ASAP;
520 break;
521 }
522 allowed &= urb->transfer_flags;
523
524 /* warn if submitter gave bogus flags */
525 if (allowed != urb->transfer_flags)
526 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
527 urb->transfer_flags, allowed);
528
529 /*
530 * Force periodic transfer intervals to be legal values that are
531 * a power of two (so HCDs don't need to).
532 *
533 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
534 * supports different values... this uses EHCI/UHCI defaults (and
535 * EHCI can use smaller non-default values).
536 */
537 switch (xfertype) {
538 case USB_ENDPOINT_XFER_ISOC:
539 case USB_ENDPOINT_XFER_INT:
540 /* too small? */
541 switch (dev->speed) {
542 case USB_SPEED_WIRELESS:
543 if ((urb->interval < 6)
544 && (xfertype == USB_ENDPOINT_XFER_INT))
545 return -EINVAL;
546 fallthrough;
547 default:
548 if (urb->interval <= 0)
549 return -EINVAL;
550 break;
551 }
552 /* too big? */
553 switch (dev->speed) {
554 case USB_SPEED_SUPER_PLUS:
555 case USB_SPEED_SUPER: /* units are 125us */
556 /* Handle up to 2^(16-1) microframes */
557 if (urb->interval > (1 << 15))
558 return -EINVAL;
559 max = 1 << 15;
560 break;
561 case USB_SPEED_WIRELESS:
562 if (urb->interval > 16)
563 return -EINVAL;
564 break;
565 case USB_SPEED_HIGH: /* units are microframes */
566 /* NOTE usb handles 2^15 */
567 if (urb->interval > (1024 * 8))
568 urb->interval = 1024 * 8;
569 max = 1024 * 8;
570 break;
571 case USB_SPEED_FULL: /* units are frames/msec */
572 case USB_SPEED_LOW:
573 if (xfertype == USB_ENDPOINT_XFER_INT) {
574 if (urb->interval > 255)
575 return -EINVAL;
576 /* NOTE ohci only handles up to 32 */
577 max = 128;
578 } else {
579 if (urb->interval > 1024)
580 urb->interval = 1024;
581 /* NOTE usb and ohci handle up to 2^15 */
582 max = 1024;
583 }
584 break;
585 default:
586 return -EINVAL;
587 }
588 if (dev->speed != USB_SPEED_WIRELESS) {
589 /* Round down to a power of 2, no more than max */
590 urb->interval = min(max, 1 << ilog2(urb->interval));
591 }
592 }
593
594 return usb_hcd_submit_urb(urb, mem_flags);
595 }
596 EXPORT_SYMBOL_GPL(usb_submit_urb);
597
598 /*-------------------------------------------------------------------*/
599
600 /**
601 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
602 * @urb: pointer to urb describing a previously submitted request,
603 * may be NULL
604 *
605 * This routine cancels an in-progress request. URBs complete only once
606 * per submission, and may be canceled only once per submission.
607 * Successful cancellation means termination of @urb will be expedited
608 * and the completion handler will be called with a status code
609 * indicating that the request has been canceled (rather than any other
610 * code).
611 *
612 * Drivers should not call this routine or related routines, such as
613 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
614 * method has returned. The disconnect function should synchronize with
615 * a driver's I/O routines to insure that all URB-related activity has
616 * completed before it returns.
617 *
618 * This request is asynchronous, however the HCD might call the ->complete()
619 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
620 * must not hold any locks that may be taken by the completion function.
621 * Success is indicated by returning -EINPROGRESS, at which time the URB will
622 * probably not yet have been given back to the device driver. When it is
623 * eventually called, the completion function will see @urb->status ==
624 * -ECONNRESET.
625 * Failure is indicated by usb_unlink_urb() returning any other value.
626 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
627 * never submitted, or it was unlinked before, or the hardware is already
628 * finished with it), even if the completion handler has not yet run.
629 *
630 * The URB must not be deallocated while this routine is running. In
631 * particular, when a driver calls this routine, it must insure that the
632 * completion handler cannot deallocate the URB.
633 *
634 * Return: -EINPROGRESS on success. See description for other values on
635 * failure.
636 *
637 * Unlinking and Endpoint Queues:
638 *
639 * [The behaviors and guarantees described below do not apply to virtual
640 * root hubs but only to endpoint queues for physical USB devices.]
641 *
642 * Host Controller Drivers (HCDs) place all the URBs for a particular
643 * endpoint in a queue. Normally the queue advances as the controller
644 * hardware processes each request. But when an URB terminates with an
645 * error its queue generally stops (see below), at least until that URB's
646 * completion routine returns. It is guaranteed that a stopped queue
647 * will not restart until all its unlinked URBs have been fully retired,
648 * with their completion routines run, even if that's not until some time
649 * after the original completion handler returns. The same behavior and
650 * guarantee apply when an URB terminates because it was unlinked.
651 *
652 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
653 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
654 * and -EREMOTEIO. Control endpoint queues behave the same way except
655 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
656 * for isochronous endpoints are treated differently, because they must
657 * advance at fixed rates. Such queues do not stop when an URB
658 * encounters an error or is unlinked. An unlinked isochronous URB may
659 * leave a gap in the stream of packets; it is undefined whether such
660 * gaps can be filled in.
661 *
662 * Note that early termination of an URB because a short packet was
663 * received will generate a -EREMOTEIO error if and only if the
664 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
665 * drivers can build deep queues for large or complex bulk transfers
666 * and clean them up reliably after any sort of aborted transfer by
667 * unlinking all pending URBs at the first fault.
668 *
669 * When a control URB terminates with an error other than -EREMOTEIO, it
670 * is quite likely that the status stage of the transfer will not take
671 * place.
672 */
usb_unlink_urb(struct urb * urb)673 int usb_unlink_urb(struct urb *urb)
674 {
675 if (!urb)
676 return -EINVAL;
677 if (!urb->dev)
678 return -ENODEV;
679 if (!urb->ep)
680 return -EIDRM;
681 return usb_hcd_unlink_urb(urb, -ECONNRESET);
682 }
683 EXPORT_SYMBOL_GPL(usb_unlink_urb);
684
685 /**
686 * usb_kill_urb - cancel a transfer request and wait for it to finish
687 * @urb: pointer to URB describing a previously submitted request,
688 * may be NULL
689 *
690 * This routine cancels an in-progress request. It is guaranteed that
691 * upon return all completion handlers will have finished and the URB
692 * will be totally idle and available for reuse. These features make
693 * this an ideal way to stop I/O in a disconnect() callback or close()
694 * function. If the request has not already finished or been unlinked
695 * the completion handler will see urb->status == -ENOENT.
696 *
697 * While the routine is running, attempts to resubmit the URB will fail
698 * with error -EPERM. Thus even if the URB's completion handler always
699 * tries to resubmit, it will not succeed and the URB will become idle.
700 *
701 * The URB must not be deallocated while this routine is running. In
702 * particular, when a driver calls this routine, it must insure that the
703 * completion handler cannot deallocate the URB.
704 *
705 * This routine may not be used in an interrupt context (such as a bottom
706 * half or a completion handler), or when holding a spinlock, or in other
707 * situations where the caller can't schedule().
708 *
709 * This routine should not be called by a driver after its disconnect
710 * method has returned.
711 */
usb_kill_urb(struct urb * urb)712 void usb_kill_urb(struct urb *urb)
713 {
714 might_sleep();
715 if (!(urb && urb->dev && urb->ep))
716 return;
717 atomic_inc(&urb->reject);
718 /*
719 * Order the write of urb->reject above before the read
720 * of urb->use_count below. Pairs with the barriers in
721 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
722 */
723 smp_mb__after_atomic();
724
725 usb_hcd_unlink_urb(urb, -ENOENT);
726 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
727
728 atomic_dec(&urb->reject);
729 }
730 EXPORT_SYMBOL_GPL(usb_kill_urb);
731
732 /**
733 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
734 * @urb: pointer to URB describing a previously submitted request,
735 * may be NULL
736 *
737 * This routine cancels an in-progress request. It is guaranteed that
738 * upon return all completion handlers will have finished and the URB
739 * will be totally idle and cannot be reused. These features make
740 * this an ideal way to stop I/O in a disconnect() callback.
741 * If the request has not already finished or been unlinked
742 * the completion handler will see urb->status == -ENOENT.
743 *
744 * After and while the routine runs, attempts to resubmit the URB will fail
745 * with error -EPERM. Thus even if the URB's completion handler always
746 * tries to resubmit, it will not succeed and the URB will become idle.
747 *
748 * The URB must not be deallocated while this routine is running. In
749 * particular, when a driver calls this routine, it must insure that the
750 * completion handler cannot deallocate the URB.
751 *
752 * This routine may not be used in an interrupt context (such as a bottom
753 * half or a completion handler), or when holding a spinlock, or in other
754 * situations where the caller can't schedule().
755 *
756 * This routine should not be called by a driver after its disconnect
757 * method has returned.
758 */
usb_poison_urb(struct urb * urb)759 void usb_poison_urb(struct urb *urb)
760 {
761 might_sleep();
762 if (!urb)
763 return;
764 atomic_inc(&urb->reject);
765 /*
766 * Order the write of urb->reject above before the read
767 * of urb->use_count below. Pairs with the barriers in
768 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
769 */
770 smp_mb__after_atomic();
771
772 if (!urb->dev || !urb->ep)
773 return;
774
775 usb_hcd_unlink_urb(urb, -ENOENT);
776 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
777 }
778 EXPORT_SYMBOL_GPL(usb_poison_urb);
779
usb_unpoison_urb(struct urb * urb)780 void usb_unpoison_urb(struct urb *urb)
781 {
782 if (!urb)
783 return;
784
785 atomic_dec(&urb->reject);
786 }
787 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
788
789 /**
790 * usb_block_urb - reliably prevent further use of an URB
791 * @urb: pointer to URB to be blocked, may be NULL
792 *
793 * After the routine has run, attempts to resubmit the URB will fail
794 * with error -EPERM. Thus even if the URB's completion handler always
795 * tries to resubmit, it will not succeed and the URB will become idle.
796 *
797 * The URB must not be deallocated while this routine is running. In
798 * particular, when a driver calls this routine, it must insure that the
799 * completion handler cannot deallocate the URB.
800 */
usb_block_urb(struct urb * urb)801 void usb_block_urb(struct urb *urb)
802 {
803 if (!urb)
804 return;
805
806 atomic_inc(&urb->reject);
807 }
808 EXPORT_SYMBOL_GPL(usb_block_urb);
809
810 /**
811 * usb_kill_anchored_urbs - kill all URBs associated with an anchor
812 * @anchor: anchor the requests are bound to
813 *
814 * This kills all outstanding URBs starting from the back of the queue,
815 * with guarantee that no completer callbacks will take place from the
816 * anchor after this function returns.
817 *
818 * This routine should not be called by a driver after its disconnect
819 * method has returned.
820 */
usb_kill_anchored_urbs(struct usb_anchor * anchor)821 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
822 {
823 struct urb *victim;
824 int surely_empty;
825
826 do {
827 spin_lock_irq(&anchor->lock);
828 while (!list_empty(&anchor->urb_list)) {
829 victim = list_entry(anchor->urb_list.prev,
830 struct urb, anchor_list);
831 /* make sure the URB isn't freed before we kill it */
832 usb_get_urb(victim);
833 spin_unlock_irq(&anchor->lock);
834 /* this will unanchor the URB */
835 usb_kill_urb(victim);
836 usb_put_urb(victim);
837 spin_lock_irq(&anchor->lock);
838 }
839 surely_empty = usb_anchor_check_wakeup(anchor);
840
841 spin_unlock_irq(&anchor->lock);
842 cpu_relax();
843 } while (!surely_empty);
844 }
845 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
846
847
848 /**
849 * usb_poison_anchored_urbs - cease all traffic from an anchor
850 * @anchor: anchor the requests are bound to
851 *
852 * this allows all outstanding URBs to be poisoned starting
853 * from the back of the queue. Newly added URBs will also be
854 * poisoned
855 *
856 * This routine should not be called by a driver after its disconnect
857 * method has returned.
858 */
usb_poison_anchored_urbs(struct usb_anchor * anchor)859 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
860 {
861 struct urb *victim;
862 int surely_empty;
863
864 do {
865 spin_lock_irq(&anchor->lock);
866 anchor->poisoned = 1;
867 while (!list_empty(&anchor->urb_list)) {
868 victim = list_entry(anchor->urb_list.prev,
869 struct urb, anchor_list);
870 /* make sure the URB isn't freed before we kill it */
871 usb_get_urb(victim);
872 spin_unlock_irq(&anchor->lock);
873 /* this will unanchor the URB */
874 usb_poison_urb(victim);
875 usb_put_urb(victim);
876 spin_lock_irq(&anchor->lock);
877 }
878 surely_empty = usb_anchor_check_wakeup(anchor);
879
880 spin_unlock_irq(&anchor->lock);
881 cpu_relax();
882 } while (!surely_empty);
883 }
884 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
885
886 /**
887 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
888 * @anchor: anchor the requests are bound to
889 *
890 * Reverses the effect of usb_poison_anchored_urbs
891 * the anchor can be used normally after it returns
892 */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)893 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
894 {
895 unsigned long flags;
896 struct urb *lazarus;
897
898 spin_lock_irqsave(&anchor->lock, flags);
899 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
900 usb_unpoison_urb(lazarus);
901 }
902 anchor->poisoned = 0;
903 spin_unlock_irqrestore(&anchor->lock, flags);
904 }
905 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
906 /**
907 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
908 * @anchor: anchor the requests are bound to
909 *
910 * this allows all outstanding URBs to be unlinked starting
911 * from the back of the queue. This function is asynchronous.
912 * The unlinking is just triggered. It may happen after this
913 * function has returned.
914 *
915 * This routine should not be called by a driver after its disconnect
916 * method has returned.
917 */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)918 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
919 {
920 struct urb *victim;
921
922 while ((victim = usb_get_from_anchor(anchor)) != NULL) {
923 usb_unlink_urb(victim);
924 usb_put_urb(victim);
925 }
926 }
927 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
928
929 /**
930 * usb_anchor_suspend_wakeups
931 * @anchor: the anchor you want to suspend wakeups on
932 *
933 * Call this to stop the last urb being unanchored from waking up any
934 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
935 * back path to delay waking up until after the completion handler has run.
936 */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)937 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
938 {
939 if (anchor)
940 atomic_inc(&anchor->suspend_wakeups);
941 }
942 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
943
944 /**
945 * usb_anchor_resume_wakeups
946 * @anchor: the anchor you want to resume wakeups on
947 *
948 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
949 * wake up any current waiters if the anchor is empty.
950 */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)951 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
952 {
953 if (!anchor)
954 return;
955
956 atomic_dec(&anchor->suspend_wakeups);
957 if (usb_anchor_check_wakeup(anchor))
958 wake_up(&anchor->wait);
959 }
960 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
961
962 /**
963 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
964 * @anchor: the anchor you want to become unused
965 * @timeout: how long you are willing to wait in milliseconds
966 *
967 * Call this is you want to be sure all an anchor's
968 * URBs have finished
969 *
970 * Return: Non-zero if the anchor became unused. Zero on timeout.
971 */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)972 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
973 unsigned int timeout)
974 {
975 return wait_event_timeout(anchor->wait,
976 usb_anchor_check_wakeup(anchor),
977 msecs_to_jiffies(timeout));
978 }
979 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
980
981 /**
982 * usb_get_from_anchor - get an anchor's oldest urb
983 * @anchor: the anchor whose urb you want
984 *
985 * This will take the oldest urb from an anchor,
986 * unanchor and return it
987 *
988 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
989 * urbs associated with it.
990 */
usb_get_from_anchor(struct usb_anchor * anchor)991 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
992 {
993 struct urb *victim;
994 unsigned long flags;
995
996 spin_lock_irqsave(&anchor->lock, flags);
997 if (!list_empty(&anchor->urb_list)) {
998 victim = list_entry(anchor->urb_list.next, struct urb,
999 anchor_list);
1000 usb_get_urb(victim);
1001 __usb_unanchor_urb(victim, anchor);
1002 } else {
1003 victim = NULL;
1004 }
1005 spin_unlock_irqrestore(&anchor->lock, flags);
1006
1007 return victim;
1008 }
1009
1010 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
1011
1012 /**
1013 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
1014 * @anchor: the anchor whose urbs you want to unanchor
1015 *
1016 * use this to get rid of all an anchor's urbs
1017 */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)1018 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
1019 {
1020 struct urb *victim;
1021 unsigned long flags;
1022 int surely_empty;
1023
1024 do {
1025 spin_lock_irqsave(&anchor->lock, flags);
1026 while (!list_empty(&anchor->urb_list)) {
1027 victim = list_entry(anchor->urb_list.prev,
1028 struct urb, anchor_list);
1029 __usb_unanchor_urb(victim, anchor);
1030 }
1031 surely_empty = usb_anchor_check_wakeup(anchor);
1032
1033 spin_unlock_irqrestore(&anchor->lock, flags);
1034 cpu_relax();
1035 } while (!surely_empty);
1036 }
1037
1038 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1039
1040 /**
1041 * usb_anchor_empty - is an anchor empty
1042 * @anchor: the anchor you want to query
1043 *
1044 * Return: 1 if the anchor has no urbs associated with it.
1045 */
usb_anchor_empty(struct usb_anchor * anchor)1046 int usb_anchor_empty(struct usb_anchor *anchor)
1047 {
1048 return list_empty(&anchor->urb_list);
1049 }
1050
1051 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1052
1053