1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 static const struct v4l2_fwnode_bus_conv {
32 enum v4l2_fwnode_bus_type fwnode_bus_type;
33 enum v4l2_mbus_type mbus_type;
34 const char *name;
35 } buses[] = {
36 {
37 V4L2_FWNODE_BUS_TYPE_GUESS,
38 V4L2_MBUS_UNKNOWN,
39 "not specified",
40 }, {
41 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
42 V4L2_MBUS_CSI2_CPHY,
43 "MIPI CSI-2 C-PHY",
44 }, {
45 V4L2_FWNODE_BUS_TYPE_CSI1,
46 V4L2_MBUS_CSI1,
47 "MIPI CSI-1",
48 }, {
49 V4L2_FWNODE_BUS_TYPE_CCP2,
50 V4L2_MBUS_CCP2,
51 "compact camera port 2",
52 }, {
53 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
54 V4L2_MBUS_CSI2_DPHY,
55 "MIPI CSI-2 D-PHY",
56 }, {
57 V4L2_FWNODE_BUS_TYPE_PARALLEL,
58 V4L2_MBUS_PARALLEL,
59 "parallel",
60 }, {
61 V4L2_FWNODE_BUS_TYPE_BT656,
62 V4L2_MBUS_BT656,
63 "Bt.656",
64 }
65 };
66
67 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)68 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
69 {
70 unsigned int i;
71
72 for (i = 0; i < ARRAY_SIZE(buses); i++)
73 if (buses[i].fwnode_bus_type == type)
74 return &buses[i];
75
76 return NULL;
77 }
78
79 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)80 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
81 {
82 const struct v4l2_fwnode_bus_conv *conv =
83 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
84
85 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
86 }
87
88 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)89 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
90 {
91 const struct v4l2_fwnode_bus_conv *conv =
92 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
93
94 return conv ? conv->name : "not found";
95 }
96
97 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)98 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
99 {
100 unsigned int i;
101
102 for (i = 0; i < ARRAY_SIZE(buses); i++)
103 if (buses[i].mbus_type == type)
104 return &buses[i];
105
106 return NULL;
107 }
108
109 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)110 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
111 {
112 const struct v4l2_fwnode_bus_conv *conv =
113 get_v4l2_fwnode_bus_conv_by_mbus(type);
114
115 return conv ? conv->name : "not found";
116 }
117
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)118 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
119 struct v4l2_fwnode_endpoint *vep,
120 enum v4l2_mbus_type bus_type)
121 {
122 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
123 bool have_clk_lane = false, have_data_lanes = false,
124 have_lane_polarities = false;
125 unsigned int flags = 0, lanes_used = 0;
126 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
127 u32 clock_lane = 0;
128 unsigned int num_data_lanes = 0;
129 bool use_default_lane_mapping = false;
130 unsigned int i;
131 u32 v;
132 int rval;
133
134 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
135 bus_type == V4L2_MBUS_CSI2_CPHY) {
136 use_default_lane_mapping = true;
137
138 num_data_lanes = min_t(u32, bus->num_data_lanes,
139 V4L2_FWNODE_CSI2_MAX_DATA_LANES);
140
141 clock_lane = bus->clock_lane;
142 if (clock_lane)
143 use_default_lane_mapping = false;
144
145 for (i = 0; i < num_data_lanes; i++) {
146 array[i] = bus->data_lanes[i];
147 if (array[i])
148 use_default_lane_mapping = false;
149 }
150
151 if (use_default_lane_mapping)
152 pr_debug("no lane mapping given, using defaults\n");
153 }
154
155 rval = fwnode_property_count_u32(fwnode, "data-lanes");
156 if (rval > 0) {
157 num_data_lanes =
158 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
159
160 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
161 num_data_lanes);
162
163 have_data_lanes = true;
164 if (use_default_lane_mapping) {
165 pr_debug("data-lanes property exists; disabling default mapping\n");
166 use_default_lane_mapping = false;
167 }
168 }
169
170 for (i = 0; i < num_data_lanes; i++) {
171 if (lanes_used & BIT(array[i])) {
172 if (have_data_lanes || !use_default_lane_mapping)
173 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
174 array[i]);
175 use_default_lane_mapping = true;
176 }
177 lanes_used |= BIT(array[i]);
178
179 if (have_data_lanes)
180 pr_debug("lane %u position %u\n", i, array[i]);
181 }
182
183 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
184 if (rval > 0) {
185 if (rval != 1 + num_data_lanes /* clock+data */) {
186 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
187 1 + num_data_lanes, rval);
188 return -EINVAL;
189 }
190
191 have_lane_polarities = true;
192 }
193
194 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
195 clock_lane = v;
196 pr_debug("clock lane position %u\n", v);
197 have_clk_lane = true;
198 }
199
200 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
201 !use_default_lane_mapping) {
202 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
203 v);
204 use_default_lane_mapping = true;
205 }
206
207 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
208 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
209 pr_debug("non-continuous clock\n");
210 } else {
211 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
212 }
213
214 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
215 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
216 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
217 /* Only D-PHY has a clock lane. */
218 unsigned int dfl_data_lane_index =
219 bus_type == V4L2_MBUS_CSI2_DPHY;
220
221 bus->flags = flags;
222 if (bus_type == V4L2_MBUS_UNKNOWN)
223 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
224 bus->num_data_lanes = num_data_lanes;
225
226 if (use_default_lane_mapping) {
227 bus->clock_lane = 0;
228 for (i = 0; i < num_data_lanes; i++)
229 bus->data_lanes[i] = dfl_data_lane_index + i;
230 } else {
231 bus->clock_lane = clock_lane;
232 for (i = 0; i < num_data_lanes; i++)
233 bus->data_lanes[i] = array[i];
234 }
235
236 if (have_lane_polarities) {
237 fwnode_property_read_u32_array(fwnode,
238 "lane-polarities", array,
239 1 + num_data_lanes);
240
241 for (i = 0; i < 1 + num_data_lanes; i++) {
242 bus->lane_polarities[i] = array[i];
243 pr_debug("lane %u polarity %sinverted",
244 i, array[i] ? "" : "not ");
245 }
246 } else {
247 pr_debug("no lane polarities defined, assuming not inverted\n");
248 }
249 }
250
251 return 0;
252 }
253
254 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
255 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
256 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
257 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
258 V4L2_MBUS_FIELD_EVEN_HIGH | \
259 V4L2_MBUS_FIELD_EVEN_LOW)
260
261 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)262 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
263 struct v4l2_fwnode_endpoint *vep,
264 enum v4l2_mbus_type bus_type)
265 {
266 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
267 unsigned int flags = 0;
268 u32 v;
269
270 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
271 flags = bus->flags;
272
273 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
274 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
275 V4L2_MBUS_HSYNC_ACTIVE_LOW);
276 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
277 V4L2_MBUS_HSYNC_ACTIVE_LOW;
278 pr_debug("hsync-active %s\n", v ? "high" : "low");
279 }
280
281 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
282 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
283 V4L2_MBUS_VSYNC_ACTIVE_LOW);
284 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
285 V4L2_MBUS_VSYNC_ACTIVE_LOW;
286 pr_debug("vsync-active %s\n", v ? "high" : "low");
287 }
288
289 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
290 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
291 V4L2_MBUS_FIELD_EVEN_LOW);
292 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
293 V4L2_MBUS_FIELD_EVEN_LOW;
294 pr_debug("field-even-active %s\n", v ? "high" : "low");
295 }
296
297 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
298 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
299 V4L2_MBUS_PCLK_SAMPLE_FALLING);
300 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
301 V4L2_MBUS_PCLK_SAMPLE_FALLING;
302 pr_debug("pclk-sample %s\n", v ? "high" : "low");
303 }
304
305 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
306 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
307 V4L2_MBUS_DATA_ACTIVE_LOW);
308 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
309 V4L2_MBUS_DATA_ACTIVE_LOW;
310 pr_debug("data-active %s\n", v ? "high" : "low");
311 }
312
313 if (fwnode_property_present(fwnode, "slave-mode")) {
314 pr_debug("slave mode\n");
315 flags &= ~V4L2_MBUS_MASTER;
316 flags |= V4L2_MBUS_SLAVE;
317 } else {
318 flags &= ~V4L2_MBUS_SLAVE;
319 flags |= V4L2_MBUS_MASTER;
320 }
321
322 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
323 bus->bus_width = v;
324 pr_debug("bus-width %u\n", v);
325 }
326
327 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
328 bus->data_shift = v;
329 pr_debug("data-shift %u\n", v);
330 }
331
332 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
333 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
334 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
335 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
336 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
337 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
338 }
339
340 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
341 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
342 V4L2_MBUS_DATA_ENABLE_LOW);
343 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
344 V4L2_MBUS_DATA_ENABLE_LOW;
345 pr_debug("data-enable-active %s\n", v ? "high" : "low");
346 }
347
348 switch (bus_type) {
349 default:
350 bus->flags = flags;
351 if (flags & PARALLEL_MBUS_FLAGS)
352 vep->bus_type = V4L2_MBUS_PARALLEL;
353 else
354 vep->bus_type = V4L2_MBUS_BT656;
355 break;
356 case V4L2_MBUS_PARALLEL:
357 vep->bus_type = V4L2_MBUS_PARALLEL;
358 bus->flags = flags;
359 break;
360 case V4L2_MBUS_BT656:
361 vep->bus_type = V4L2_MBUS_BT656;
362 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
363 break;
364 }
365 }
366
367 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)368 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
369 struct v4l2_fwnode_endpoint *vep,
370 enum v4l2_mbus_type bus_type)
371 {
372 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
373 u32 v;
374
375 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
376 bus->clock_inv = v;
377 pr_debug("clock-inv %u\n", v);
378 }
379
380 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
381 bus->strobe = v;
382 pr_debug("strobe %u\n", v);
383 }
384
385 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
386 bus->data_lane = v;
387 pr_debug("data-lanes %u\n", v);
388 }
389
390 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
391 bus->clock_lane = v;
392 pr_debug("clock-lanes %u\n", v);
393 }
394
395 if (bus_type == V4L2_MBUS_CCP2)
396 vep->bus_type = V4L2_MBUS_CCP2;
397 else
398 vep->bus_type = V4L2_MBUS_CSI1;
399 }
400
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)401 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
402 struct v4l2_fwnode_endpoint *vep)
403 {
404 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
405 enum v4l2_mbus_type mbus_type;
406 int rval;
407
408 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
409
410 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
411 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
412 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
413 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
414 vep->bus_type);
415 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
416 if (mbus_type == V4L2_MBUS_INVALID) {
417 pr_debug("unsupported bus type %u\n", bus_type);
418 return -EINVAL;
419 }
420
421 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
422 if (mbus_type != V4L2_MBUS_UNKNOWN &&
423 vep->bus_type != mbus_type) {
424 pr_debug("expecting bus type %s\n",
425 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
426 return -ENXIO;
427 }
428 } else {
429 vep->bus_type = mbus_type;
430 }
431
432 switch (vep->bus_type) {
433 case V4L2_MBUS_UNKNOWN:
434 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
435 V4L2_MBUS_UNKNOWN);
436 if (rval)
437 return rval;
438
439 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
440 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
441 V4L2_MBUS_UNKNOWN);
442
443 pr_debug("assuming media bus type %s (%u)\n",
444 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
445 vep->bus_type);
446
447 break;
448 case V4L2_MBUS_CCP2:
449 case V4L2_MBUS_CSI1:
450 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
451
452 break;
453 case V4L2_MBUS_CSI2_DPHY:
454 case V4L2_MBUS_CSI2_CPHY:
455 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
456 vep->bus_type);
457 if (rval)
458 return rval;
459
460 break;
461 case V4L2_MBUS_PARALLEL:
462 case V4L2_MBUS_BT656:
463 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
464 vep->bus_type);
465
466 break;
467 default:
468 pr_warn("unsupported bus type %u\n", mbus_type);
469 return -EINVAL;
470 }
471
472 fwnode_graph_parse_endpoint(fwnode, &vep->base);
473
474 return 0;
475 }
476
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)477 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
478 struct v4l2_fwnode_endpoint *vep)
479 {
480 int ret;
481
482 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
483
484 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
485
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
489
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)490 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
491 {
492 if (IS_ERR_OR_NULL(vep))
493 return;
494
495 kfree(vep->link_frequencies);
496 vep->link_frequencies = NULL;
497 }
498 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
499
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)500 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
501 struct v4l2_fwnode_endpoint *vep)
502 {
503 int rval;
504
505 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
506 if (rval < 0)
507 return rval;
508
509 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
510 if (rval > 0) {
511 unsigned int i;
512
513 vep->link_frequencies =
514 kmalloc_array(rval, sizeof(*vep->link_frequencies),
515 GFP_KERNEL);
516 if (!vep->link_frequencies)
517 return -ENOMEM;
518
519 vep->nr_of_link_frequencies = rval;
520
521 rval = fwnode_property_read_u64_array(fwnode,
522 "link-frequencies",
523 vep->link_frequencies,
524 vep->nr_of_link_frequencies);
525 if (rval < 0) {
526 v4l2_fwnode_endpoint_free(vep);
527 return rval;
528 }
529
530 for (i = 0; i < vep->nr_of_link_frequencies; i++)
531 pr_debug("link-frequencies %u value %llu\n", i,
532 vep->link_frequencies[i]);
533 }
534
535 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
536
537 return 0;
538 }
539 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
540
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)541 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
542 struct v4l2_fwnode_link *link)
543 {
544 struct fwnode_endpoint fwep;
545
546 memset(link, 0, sizeof(*link));
547
548 fwnode_graph_parse_endpoint(fwnode, &fwep);
549 link->local_id = fwep.id;
550 link->local_port = fwep.port;
551 link->local_node = fwnode_graph_get_port_parent(fwnode);
552 if (!link->local_node)
553 return -ENOLINK;
554
555 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
556 if (!fwnode)
557 goto err_put_local_node;
558
559 fwnode_graph_parse_endpoint(fwnode, &fwep);
560 link->remote_id = fwep.id;
561 link->remote_port = fwep.port;
562 link->remote_node = fwnode_graph_get_port_parent(fwnode);
563 if (!link->remote_node)
564 goto err_put_remote_endpoint;
565
566 return 0;
567
568 err_put_remote_endpoint:
569 fwnode_handle_put(fwnode);
570
571 err_put_local_node:
572 fwnode_handle_put(link->local_node);
573
574 return -ENOLINK;
575 }
576 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
577
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)578 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
579 {
580 fwnode_handle_put(link->local_node);
581 fwnode_handle_put(link->remote_node);
582 }
583 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
584
585 static const struct v4l2_fwnode_connector_conv {
586 enum v4l2_connector_type type;
587 const char *compatible;
588 } connectors[] = {
589 {
590 .type = V4L2_CONN_COMPOSITE,
591 .compatible = "composite-video-connector",
592 }, {
593 .type = V4L2_CONN_SVIDEO,
594 .compatible = "svideo-connector",
595 },
596 };
597
598 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)599 v4l2_fwnode_string_to_connector_type(const char *con_str)
600 {
601 unsigned int i;
602
603 for (i = 0; i < ARRAY_SIZE(connectors); i++)
604 if (!strcmp(con_str, connectors[i].compatible))
605 return connectors[i].type;
606
607 return V4L2_CONN_UNKNOWN;
608 }
609
610 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)611 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
612 struct v4l2_fwnode_connector *vc)
613 {
614 u32 stds;
615 int ret;
616
617 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
618
619 /* The property is optional. */
620 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
621 }
622
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)623 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
624 {
625 struct v4l2_connector_link *link, *tmp;
626
627 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
628 return;
629
630 list_for_each_entry_safe(link, tmp, &connector->links, head) {
631 v4l2_fwnode_put_link(&link->fwnode_link);
632 list_del(&link->head);
633 kfree(link);
634 }
635
636 kfree(connector->label);
637 connector->label = NULL;
638 connector->type = V4L2_CONN_UNKNOWN;
639 }
640 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
641
642 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)643 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
644 {
645 const char *type_name;
646 int err;
647
648 if (!fwnode)
649 return V4L2_CONN_UNKNOWN;
650
651 /* The connector-type is stored within the compatible string. */
652 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
653 if (err)
654 return V4L2_CONN_UNKNOWN;
655
656 return v4l2_fwnode_string_to_connector_type(type_name);
657 }
658
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)659 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
660 struct v4l2_fwnode_connector *connector)
661 {
662 struct fwnode_handle *connector_node;
663 enum v4l2_connector_type connector_type;
664 const char *label;
665 int err;
666
667 if (!fwnode)
668 return -EINVAL;
669
670 memset(connector, 0, sizeof(*connector));
671
672 INIT_LIST_HEAD(&connector->links);
673
674 connector_node = fwnode_graph_get_port_parent(fwnode);
675 connector_type = v4l2_fwnode_get_connector_type(connector_node);
676 if (connector_type == V4L2_CONN_UNKNOWN) {
677 fwnode_handle_put(connector_node);
678 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
679 connector_type = v4l2_fwnode_get_connector_type(connector_node);
680 }
681
682 if (connector_type == V4L2_CONN_UNKNOWN) {
683 pr_err("Unknown connector type\n");
684 err = -ENOTCONN;
685 goto out;
686 }
687
688 connector->type = connector_type;
689 connector->name = fwnode_get_name(connector_node);
690 err = fwnode_property_read_string(connector_node, "label", &label);
691 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
692
693 /* Parse the connector specific properties. */
694 switch (connector->type) {
695 case V4L2_CONN_COMPOSITE:
696 case V4L2_CONN_SVIDEO:
697 v4l2_fwnode_connector_parse_analog(connector_node, connector);
698 break;
699 /* Avoid compiler warnings */
700 case V4L2_CONN_UNKNOWN:
701 break;
702 }
703
704 out:
705 fwnode_handle_put(connector_node);
706
707 return err;
708 }
709 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
710
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)711 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
712 struct v4l2_fwnode_connector *connector)
713 {
714 struct fwnode_handle *connector_ep;
715 struct v4l2_connector_link *link;
716 int err;
717
718 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
719 return -EINVAL;
720
721 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
722 if (!connector_ep)
723 return -ENOTCONN;
724
725 link = kzalloc(sizeof(*link), GFP_KERNEL);
726 if (!link) {
727 err = -ENOMEM;
728 goto err;
729 }
730
731 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
732 if (err)
733 goto err;
734
735 fwnode_handle_put(connector_ep);
736
737 list_add(&link->head, &connector->links);
738 connector->nr_of_links++;
739
740 return 0;
741
742 err:
743 kfree(link);
744 fwnode_handle_put(connector_ep);
745
746 return err;
747 }
748 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
749
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)750 int v4l2_fwnode_device_parse(struct device *dev,
751 struct v4l2_fwnode_device_properties *props)
752 {
753 struct fwnode_handle *fwnode = dev_fwnode(dev);
754 u32 val;
755 int ret;
756
757 memset(props, 0, sizeof(*props));
758
759 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
760 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
761 if (!ret) {
762 switch (val) {
763 case V4L2_FWNODE_ORIENTATION_FRONT:
764 case V4L2_FWNODE_ORIENTATION_BACK:
765 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
766 break;
767 default:
768 dev_warn(dev, "Unsupported device orientation: %u\n", val);
769 return -EINVAL;
770 }
771
772 props->orientation = val;
773 dev_dbg(dev, "device orientation: %u\n", val);
774 }
775
776 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
777 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
778 if (!ret) {
779 if (val >= 360) {
780 dev_warn(dev, "Unsupported device rotation: %u\n", val);
781 return -EINVAL;
782 }
783
784 props->rotation = val;
785 dev_dbg(dev, "device rotation: %u\n", val);
786 }
787
788 return 0;
789 }
790 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
791
792 static int
v4l2_async_notifier_fwnode_parse_endpoint(struct device * dev,struct v4l2_async_notifier * notifier,struct fwnode_handle * endpoint,unsigned int asd_struct_size,parse_endpoint_func parse_endpoint)793 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
794 struct v4l2_async_notifier *notifier,
795 struct fwnode_handle *endpoint,
796 unsigned int asd_struct_size,
797 parse_endpoint_func parse_endpoint)
798 {
799 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
800 struct v4l2_async_subdev *asd;
801 int ret;
802
803 asd = kzalloc(asd_struct_size, GFP_KERNEL);
804 if (!asd)
805 return -ENOMEM;
806
807 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
808 asd->match.fwnode =
809 fwnode_graph_get_remote_port_parent(endpoint);
810 if (!asd->match.fwnode) {
811 dev_dbg(dev, "no remote endpoint found\n");
812 ret = -ENOTCONN;
813 goto out_err;
814 }
815
816 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
817 if (ret) {
818 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
819 ret);
820 goto out_err;
821 }
822
823 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
824 if (ret == -ENOTCONN)
825 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
826 vep.base.id);
827 else if (ret < 0)
828 dev_warn(dev,
829 "driver could not parse port@%u/endpoint@%u (%d)\n",
830 vep.base.port, vep.base.id, ret);
831 v4l2_fwnode_endpoint_free(&vep);
832 if (ret < 0)
833 goto out_err;
834
835 ret = __v4l2_async_notifier_add_subdev(notifier, asd);
836 if (ret < 0) {
837 /* not an error if asd already exists */
838 if (ret == -EEXIST)
839 ret = 0;
840 goto out_err;
841 }
842
843 return 0;
844
845 out_err:
846 fwnode_handle_put(asd->match.fwnode);
847 kfree(asd);
848
849 return ret == -ENOTCONN ? 0 : ret;
850 }
851
852 static int
__v4l2_async_notifier_parse_fwnode_ep(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,bool has_port,parse_endpoint_func parse_endpoint)853 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
854 struct v4l2_async_notifier *notifier,
855 size_t asd_struct_size,
856 unsigned int port,
857 bool has_port,
858 parse_endpoint_func parse_endpoint)
859 {
860 struct fwnode_handle *fwnode;
861 int ret = 0;
862
863 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
864 return -EINVAL;
865
866 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
867 struct fwnode_handle *dev_fwnode;
868 bool is_available;
869
870 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
871 is_available = fwnode_device_is_available(dev_fwnode);
872 fwnode_handle_put(dev_fwnode);
873 if (!is_available)
874 continue;
875
876 if (has_port) {
877 struct fwnode_endpoint ep;
878
879 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
880 if (ret)
881 break;
882
883 if (ep.port != port)
884 continue;
885 }
886
887 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
888 notifier,
889 fwnode,
890 asd_struct_size,
891 parse_endpoint);
892 if (ret < 0)
893 break;
894 }
895
896 fwnode_handle_put(fwnode);
897
898 return ret;
899 }
900
901 int
v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,parse_endpoint_func parse_endpoint)902 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
903 struct v4l2_async_notifier *notifier,
904 size_t asd_struct_size,
905 parse_endpoint_func parse_endpoint)
906 {
907 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
908 asd_struct_size, 0,
909 false, parse_endpoint);
910 }
911 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
912
913 /*
914 * v4l2_fwnode_reference_parse - parse references for async sub-devices
915 * @dev: the device node the properties of which are parsed for references
916 * @notifier: the async notifier where the async subdevs will be added
917 * @prop: the name of the property
918 *
919 * Return: 0 on success
920 * -ENOENT if no entries were found
921 * -ENOMEM if memory allocation failed
922 * -EINVAL if property parsing failed
923 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)924 static int v4l2_fwnode_reference_parse(struct device *dev,
925 struct v4l2_async_notifier *notifier,
926 const char *prop)
927 {
928 struct fwnode_reference_args args;
929 unsigned int index;
930 int ret;
931
932 for (index = 0;
933 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
934 prop, NULL, 0,
935 index, &args));
936 index++)
937 fwnode_handle_put(args.fwnode);
938
939 if (!index)
940 return -ENOENT;
941
942 /*
943 * Note that right now both -ENODATA and -ENOENT may signal
944 * out-of-bounds access. Return the error in cases other than that.
945 */
946 if (ret != -ENOENT && ret != -ENODATA)
947 return ret;
948
949 for (index = 0;
950 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
951 0, index, &args);
952 index++) {
953 struct v4l2_async_subdev *asd;
954
955 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
956 args.fwnode,
957 struct v4l2_async_subdev);
958 fwnode_handle_put(args.fwnode);
959 if (IS_ERR(asd)) {
960 /* not an error if asd already exists */
961 if (PTR_ERR(asd) == -EEXIST)
962 continue;
963
964 return PTR_ERR(asd);
965 }
966 }
967
968 return 0;
969 }
970
971 /*
972 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
973 * arguments
974 * @fwnode: fwnode to read @prop from
975 * @notifier: notifier for @dev
976 * @prop: the name of the property
977 * @index: the index of the reference to get
978 * @props: the array of integer property names
979 * @nprops: the number of integer property names in @nprops
980 *
981 * First find an fwnode referred to by the reference at @index in @prop.
982 *
983 * Then under that fwnode, @nprops times, for each property in @props,
984 * iteratively follow child nodes starting from fwnode such that they have the
985 * property in @props array at the index of the child node distance from the
986 * root node and the value of that property matching with the integer argument
987 * of the reference, at the same index.
988 *
989 * The child fwnode reached at the end of the iteration is then returned to the
990 * caller.
991 *
992 * The core reason for this is that you cannot refer to just any node in ACPI.
993 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
994 * provide a list of (property name, property value) tuples where each tuple
995 * uniquely identifies a child node. The first tuple identifies a child directly
996 * underneath the device fwnode, the next tuple identifies a child node
997 * underneath the fwnode identified by the previous tuple, etc. until you
998 * reached the fwnode you need.
999 *
1000 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
1001 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
1002 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
1003 * data-node-references.txt and leds.txt .
1004 *
1005 * Scope (\_SB.PCI0.I2C2)
1006 * {
1007 * Device (CAM0)
1008 * {
1009 * Name (_DSD, Package () {
1010 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1011 * Package () {
1012 * Package () {
1013 * "compatible",
1014 * Package () { "nokia,smia" }
1015 * },
1016 * },
1017 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1018 * Package () {
1019 * Package () { "port0", "PRT0" },
1020 * }
1021 * })
1022 * Name (PRT0, Package() {
1023 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1024 * Package () {
1025 * Package () { "port", 0 },
1026 * },
1027 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1028 * Package () {
1029 * Package () { "endpoint0", "EP00" },
1030 * }
1031 * })
1032 * Name (EP00, Package() {
1033 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1034 * Package () {
1035 * Package () { "endpoint", 0 },
1036 * Package () {
1037 * "remote-endpoint",
1038 * Package() {
1039 * \_SB.PCI0.ISP, 4, 0
1040 * }
1041 * },
1042 * }
1043 * })
1044 * }
1045 * }
1046 *
1047 * Scope (\_SB.PCI0)
1048 * {
1049 * Device (ISP)
1050 * {
1051 * Name (_DSD, Package () {
1052 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1053 * Package () {
1054 * Package () { "port4", "PRT4" },
1055 * }
1056 * })
1057 *
1058 * Name (PRT4, Package() {
1059 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1060 * Package () {
1061 * Package () { "port", 4 },
1062 * },
1063 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1064 * Package () {
1065 * Package () { "endpoint0", "EP40" },
1066 * }
1067 * })
1068 *
1069 * Name (EP40, Package() {
1070 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1071 * Package () {
1072 * Package () { "endpoint", 0 },
1073 * Package () {
1074 * "remote-endpoint",
1075 * Package () {
1076 * \_SB.PCI0.I2C2.CAM0,
1077 * 0, 0
1078 * }
1079 * },
1080 * }
1081 * })
1082 * }
1083 * }
1084 *
1085 * From the EP40 node under ISP device, you could parse the graph remote
1086 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1087 *
1088 * @fwnode: fwnode referring to EP40 under ISP.
1089 * @prop: "remote-endpoint"
1090 * @index: 0
1091 * @props: "port", "endpoint"
1092 * @nprops: 2
1093 *
1094 * And you'd get back fwnode referring to EP00 under CAM0.
1095 *
1096 * The same works the other way around: if you use EP00 under CAM0 as the
1097 * fwnode, you'll get fwnode referring to EP40 under ISP.
1098 *
1099 * The same example in DT syntax would look like this:
1100 *
1101 * cam: cam0 {
1102 * compatible = "nokia,smia";
1103 *
1104 * port {
1105 * port = <0>;
1106 * endpoint {
1107 * endpoint = <0>;
1108 * remote-endpoint = <&isp 4 0>;
1109 * };
1110 * };
1111 * };
1112 *
1113 * isp: isp {
1114 * ports {
1115 * port@4 {
1116 * port = <4>;
1117 * endpoint {
1118 * endpoint = <0>;
1119 * remote-endpoint = <&cam 0 0>;
1120 * };
1121 * };
1122 * };
1123 * };
1124 *
1125 * Return: 0 on success
1126 * -ENOENT if no entries (or the property itself) were found
1127 * -EINVAL if property parsing otherwise failed
1128 * -ENOMEM if memory allocation failed
1129 */
1130 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1131 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1132 const char *prop,
1133 unsigned int index,
1134 const char * const *props,
1135 unsigned int nprops)
1136 {
1137 struct fwnode_reference_args fwnode_args;
1138 u64 *args = fwnode_args.args;
1139 struct fwnode_handle *child;
1140 int ret;
1141
1142 /*
1143 * Obtain remote fwnode as well as the integer arguments.
1144 *
1145 * Note that right now both -ENODATA and -ENOENT may signal
1146 * out-of-bounds access. Return -ENOENT in that case.
1147 */
1148 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1149 index, &fwnode_args);
1150 if (ret)
1151 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1152
1153 /*
1154 * Find a node in the tree under the referred fwnode corresponding to
1155 * the integer arguments.
1156 */
1157 fwnode = fwnode_args.fwnode;
1158 while (nprops--) {
1159 u32 val;
1160
1161 /* Loop over all child nodes under fwnode. */
1162 fwnode_for_each_child_node(fwnode, child) {
1163 if (fwnode_property_read_u32(child, *props, &val))
1164 continue;
1165
1166 /* Found property, see if its value matches. */
1167 if (val == *args)
1168 break;
1169 }
1170
1171 fwnode_handle_put(fwnode);
1172
1173 /* No property found; return an error here. */
1174 if (!child) {
1175 fwnode = ERR_PTR(-ENOENT);
1176 break;
1177 }
1178
1179 props++;
1180 args++;
1181 fwnode = child;
1182 }
1183
1184 return fwnode;
1185 }
1186
1187 struct v4l2_fwnode_int_props {
1188 const char *name;
1189 const char * const *props;
1190 unsigned int nprops;
1191 };
1192
1193 /*
1194 * v4l2_fwnode_reference_parse_int_props - parse references for async
1195 * sub-devices
1196 * @dev: struct device pointer
1197 * @notifier: notifier for @dev
1198 * @prop: the name of the property
1199 * @props: the array of integer property names
1200 * @nprops: the number of integer properties
1201 *
1202 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1203 * property @prop with integer arguments with child nodes matching in properties
1204 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1205 * accordingly.
1206 *
1207 * While it is technically possible to use this function on DT, it is only
1208 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1209 * on ACPI the references are limited to devices.
1210 *
1211 * Return: 0 on success
1212 * -ENOENT if no entries (or the property itself) were found
1213 * -EINVAL if property parsing otherwisefailed
1214 * -ENOMEM if memory allocation failed
1215 */
1216 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1217 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1218 struct v4l2_async_notifier *notifier,
1219 const struct v4l2_fwnode_int_props *p)
1220 {
1221 struct fwnode_handle *fwnode;
1222 unsigned int index;
1223 int ret;
1224 const char *prop = p->name;
1225 const char * const *props = p->props;
1226 unsigned int nprops = p->nprops;
1227
1228 index = 0;
1229 do {
1230 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1231 prop, index,
1232 props, nprops);
1233 if (IS_ERR(fwnode)) {
1234 /*
1235 * Note that right now both -ENODATA and -ENOENT may
1236 * signal out-of-bounds access. Return the error in
1237 * cases other than that.
1238 */
1239 if (PTR_ERR(fwnode) != -ENOENT &&
1240 PTR_ERR(fwnode) != -ENODATA)
1241 return PTR_ERR(fwnode);
1242 break;
1243 }
1244 fwnode_handle_put(fwnode);
1245 index++;
1246 } while (1);
1247
1248 for (index = 0;
1249 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1250 prop, index,
1251 props,
1252 nprops)));
1253 index++) {
1254 struct v4l2_async_subdev *asd;
1255
1256 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1257 struct v4l2_async_subdev);
1258 fwnode_handle_put(fwnode);
1259 if (IS_ERR(asd)) {
1260 ret = PTR_ERR(asd);
1261 /* not an error if asd already exists */
1262 if (ret == -EEXIST)
1263 continue;
1264
1265 return PTR_ERR(asd);
1266 }
1267 }
1268
1269 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1270 }
1271
1272 /**
1273 * v4l2_async_notifier_parse_fwnode_sensor - parse common references on
1274 * sensors for async sub-devices
1275 * @dev: the device node the properties of which are parsed for references
1276 * @notifier: the async notifier where the async subdevs will be added
1277 *
1278 * Parse common sensor properties for remote devices related to the
1279 * sensor and set up async sub-devices for them.
1280 *
1281 * Any notifier populated using this function must be released with a call to
1282 * v4l2_async_notifier_release() after it has been unregistered and the async
1283 * sub-devices are no longer in use, even in the case the function returned an
1284 * error.
1285 *
1286 * Return: 0 on success
1287 * -ENOMEM if memory allocation failed
1288 * -EINVAL if property parsing failed
1289 */
1290 static int
v4l2_async_notifier_parse_fwnode_sensor(struct device * dev,struct v4l2_async_notifier * notifier)1291 v4l2_async_notifier_parse_fwnode_sensor(struct device *dev,
1292 struct v4l2_async_notifier *notifier)
1293 {
1294 static const char * const led_props[] = { "led" };
1295 static const struct v4l2_fwnode_int_props props[] = {
1296 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1297 { "lens-focus", NULL, 0 },
1298 };
1299 unsigned int i;
1300
1301 for (i = 0; i < ARRAY_SIZE(props); i++) {
1302 int ret;
1303
1304 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1305 ret = v4l2_fwnode_reference_parse_int_props(dev,
1306 notifier,
1307 &props[i]);
1308 else
1309 ret = v4l2_fwnode_reference_parse(dev, notifier,
1310 props[i].name);
1311 if (ret && ret != -ENOENT) {
1312 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1313 props[i].name, ret);
1314 return ret;
1315 }
1316 }
1317
1318 return 0;
1319 }
1320
v4l2_async_register_subdev_sensor(struct v4l2_subdev * sd)1321 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1322 {
1323 struct v4l2_async_notifier *notifier;
1324 int ret;
1325
1326 if (WARN_ON(!sd->dev))
1327 return -ENODEV;
1328
1329 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1330 if (!notifier)
1331 return -ENOMEM;
1332
1333 v4l2_async_notifier_init(notifier);
1334
1335 ret = v4l2_async_notifier_parse_fwnode_sensor(sd->dev, notifier);
1336 if (ret < 0)
1337 goto out_cleanup;
1338
1339 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1340 if (ret < 0)
1341 goto out_cleanup;
1342
1343 ret = v4l2_async_register_subdev(sd);
1344 if (ret < 0)
1345 goto out_unregister;
1346
1347 sd->subdev_notifier = notifier;
1348
1349 return 0;
1350
1351 out_unregister:
1352 v4l2_async_notifier_unregister(notifier);
1353
1354 out_cleanup:
1355 v4l2_async_notifier_cleanup(notifier);
1356 kfree(notifier);
1357
1358 return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1361
1362 MODULE_LICENSE("GPL");
1363 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1364 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1365 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1366