• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * videobuf2-core.c - video buffer 2 core framework
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  *
6  * Author: Pawel Osciak <pawel@osciak.com>
7  *	   Marek Szyprowski <m.szyprowski@samsung.com>
8  *
9  * The vb2_thread implementation was based on code from videobuf-dvb.c:
10  *	(c) 2004 Gerd Knorr <kraxel@bytesex.org> [SUSE Labs]
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/poll.h>
24 #include <linux/slab.h>
25 #include <linux/sched.h>
26 #include <linux/freezer.h>
27 #include <linux/kthread.h>
28 
29 #include <media/videobuf2-core.h>
30 #include <media/v4l2-mc.h>
31 
32 #include <trace/events/vb2.h>
33 
34 static int debug;
35 module_param(debug, int, 0644);
36 
37 #define dprintk(q, level, fmt, arg...)					\
38 	do {								\
39 		if (debug >= level)					\
40 			pr_info("[%s] %s: " fmt, (q)->name, __func__,	\
41 				## arg);				\
42 	} while (0)
43 
44 #ifdef CONFIG_VIDEO_ADV_DEBUG
45 
46 /*
47  * If advanced debugging is on, then count how often each op is called
48  * successfully, which can either be per-buffer or per-queue.
49  *
50  * This makes it easy to check that the 'init' and 'cleanup'
51  * (and variations thereof) stay balanced.
52  */
53 
54 #define log_memop(vb, op)						\
55 	dprintk((vb)->vb2_queue, 2, "call_memop(%d, %s)%s\n",		\
56 		(vb)->index, #op,					\
57 		(vb)->vb2_queue->mem_ops->op ? "" : " (nop)")
58 
59 #define call_memop(vb, op, args...)					\
60 ({									\
61 	struct vb2_queue *_q = (vb)->vb2_queue;				\
62 	int err;							\
63 									\
64 	log_memop(vb, op);						\
65 	err = _q->mem_ops->op ? _q->mem_ops->op(args) : 0;		\
66 	if (!err)							\
67 		(vb)->cnt_mem_ ## op++;					\
68 	err;								\
69 })
70 
71 #define call_ptr_memop(op, vb, args...)					\
72 ({									\
73 	struct vb2_queue *_q = (vb)->vb2_queue;				\
74 	void *ptr;							\
75 									\
76 	log_memop(vb, op);						\
77 	ptr = _q->mem_ops->op ? _q->mem_ops->op(vb, args) : NULL;	\
78 	if (!IS_ERR_OR_NULL(ptr))					\
79 		(vb)->cnt_mem_ ## op++;					\
80 	ptr;								\
81 })
82 
83 #define call_void_memop(vb, op, args...)				\
84 ({									\
85 	struct vb2_queue *_q = (vb)->vb2_queue;				\
86 									\
87 	log_memop(vb, op);						\
88 	if (_q->mem_ops->op)						\
89 		_q->mem_ops->op(args);					\
90 	(vb)->cnt_mem_ ## op++;						\
91 })
92 
93 #define log_qop(q, op)							\
94 	dprintk(q, 2, "call_qop(%s)%s\n", #op,				\
95 		(q)->ops->op ? "" : " (nop)")
96 
97 #define call_qop(q, op, args...)					\
98 ({									\
99 	int err;							\
100 									\
101 	log_qop(q, op);							\
102 	err = (q)->ops->op ? (q)->ops->op(args) : 0;			\
103 	if (!err)							\
104 		(q)->cnt_ ## op++;					\
105 	err;								\
106 })
107 
108 #define call_void_qop(q, op, args...)					\
109 ({									\
110 	log_qop(q, op);							\
111 	if ((q)->ops->op)						\
112 		(q)->ops->op(args);					\
113 	(q)->cnt_ ## op++;						\
114 })
115 
116 #define log_vb_qop(vb, op, args...)					\
117 	dprintk((vb)->vb2_queue, 2, "call_vb_qop(%d, %s)%s\n",		\
118 		(vb)->index, #op,					\
119 		(vb)->vb2_queue->ops->op ? "" : " (nop)")
120 
121 #define call_vb_qop(vb, op, args...)					\
122 ({									\
123 	int err;							\
124 									\
125 	log_vb_qop(vb, op);						\
126 	err = (vb)->vb2_queue->ops->op ?				\
127 		(vb)->vb2_queue->ops->op(args) : 0;			\
128 	if (!err)							\
129 		(vb)->cnt_ ## op++;					\
130 	err;								\
131 })
132 
133 #define call_void_vb_qop(vb, op, args...)				\
134 ({									\
135 	log_vb_qop(vb, op);						\
136 	if ((vb)->vb2_queue->ops->op)					\
137 		(vb)->vb2_queue->ops->op(args);				\
138 	(vb)->cnt_ ## op++;						\
139 })
140 
141 #else
142 
143 #define call_memop(vb, op, args...)					\
144 	((vb)->vb2_queue->mem_ops->op ?					\
145 		(vb)->vb2_queue->mem_ops->op(args) : 0)
146 
147 #define call_ptr_memop(op, vb, args...)					\
148 	((vb)->vb2_queue->mem_ops->op ?					\
149 		(vb)->vb2_queue->mem_ops->op(vb, args) : NULL)
150 
151 #define call_void_memop(vb, op, args...)				\
152 	do {								\
153 		if ((vb)->vb2_queue->mem_ops->op)			\
154 			(vb)->vb2_queue->mem_ops->op(args);		\
155 	} while (0)
156 
157 #define call_qop(q, op, args...)					\
158 	((q)->ops->op ? (q)->ops->op(args) : 0)
159 
160 #define call_void_qop(q, op, args...)					\
161 	do {								\
162 		if ((q)->ops->op)					\
163 			(q)->ops->op(args);				\
164 	} while (0)
165 
166 #define call_vb_qop(vb, op, args...)					\
167 	((vb)->vb2_queue->ops->op ? (vb)->vb2_queue->ops->op(args) : 0)
168 
169 #define call_void_vb_qop(vb, op, args...)				\
170 	do {								\
171 		if ((vb)->vb2_queue->ops->op)				\
172 			(vb)->vb2_queue->ops->op(args);			\
173 	} while (0)
174 
175 #endif
176 
177 #define call_bufop(q, op, args...)					\
178 ({									\
179 	int ret = 0;							\
180 	if (q && q->buf_ops && q->buf_ops->op)				\
181 		ret = q->buf_ops->op(args);				\
182 	ret;								\
183 })
184 
185 #define call_void_bufop(q, op, args...)					\
186 ({									\
187 	if (q && q->buf_ops && q->buf_ops->op)				\
188 		q->buf_ops->op(args);					\
189 })
190 
191 static void __vb2_queue_cancel(struct vb2_queue *q);
192 static void __enqueue_in_driver(struct vb2_buffer *vb);
193 
vb2_state_name(enum vb2_buffer_state s)194 static const char *vb2_state_name(enum vb2_buffer_state s)
195 {
196 	static const char * const state_names[] = {
197 		[VB2_BUF_STATE_DEQUEUED] = "dequeued",
198 		[VB2_BUF_STATE_IN_REQUEST] = "in request",
199 		[VB2_BUF_STATE_PREPARING] = "preparing",
200 		[VB2_BUF_STATE_QUEUED] = "queued",
201 		[VB2_BUF_STATE_ACTIVE] = "active",
202 		[VB2_BUF_STATE_DONE] = "done",
203 		[VB2_BUF_STATE_ERROR] = "error",
204 	};
205 
206 	if ((unsigned int)(s) < ARRAY_SIZE(state_names))
207 		return state_names[s];
208 	return "unknown";
209 }
210 
211 /*
212  * __vb2_buf_mem_alloc() - allocate video memory for the given buffer
213  */
__vb2_buf_mem_alloc(struct vb2_buffer * vb)214 static int __vb2_buf_mem_alloc(struct vb2_buffer *vb)
215 {
216 	struct vb2_queue *q = vb->vb2_queue;
217 	void *mem_priv;
218 	int plane;
219 	int ret = -ENOMEM;
220 
221 	/*
222 	 * Allocate memory for all planes in this buffer
223 	 * NOTE: mmapped areas should be page aligned
224 	 */
225 	for (plane = 0; plane < vb->num_planes; ++plane) {
226 		/* Memops alloc requires size to be page aligned. */
227 		unsigned long size = PAGE_ALIGN(vb->planes[plane].length);
228 
229 		/* Did it wrap around? */
230 		if (size < vb->planes[plane].length)
231 			goto free;
232 
233 		mem_priv = call_ptr_memop(alloc,
234 					  vb,
235 					  q->alloc_devs[plane] ? : q->dev,
236 					  size);
237 		if (IS_ERR_OR_NULL(mem_priv)) {
238 			if (mem_priv)
239 				ret = PTR_ERR(mem_priv);
240 			goto free;
241 		}
242 
243 		/* Associate allocator private data with this plane */
244 		vb->planes[plane].mem_priv = mem_priv;
245 	}
246 
247 	return 0;
248 free:
249 	/* Free already allocated memory if one of the allocations failed */
250 	for (; plane > 0; --plane) {
251 		call_void_memop(vb, put, vb->planes[plane - 1].mem_priv);
252 		vb->planes[plane - 1].mem_priv = NULL;
253 	}
254 
255 	return ret;
256 }
257 
258 /*
259  * __vb2_buf_mem_free() - free memory of the given buffer
260  */
__vb2_buf_mem_free(struct vb2_buffer * vb)261 static void __vb2_buf_mem_free(struct vb2_buffer *vb)
262 {
263 	unsigned int plane;
264 
265 	for (plane = 0; plane < vb->num_planes; ++plane) {
266 		call_void_memop(vb, put, vb->planes[plane].mem_priv);
267 		vb->planes[plane].mem_priv = NULL;
268 		dprintk(vb->vb2_queue, 3, "freed plane %d of buffer %d\n",
269 			plane, vb->index);
270 	}
271 }
272 
273 /*
274  * __vb2_buf_userptr_put() - release userspace memory associated with
275  * a USERPTR buffer
276  */
__vb2_buf_userptr_put(struct vb2_buffer * vb)277 static void __vb2_buf_userptr_put(struct vb2_buffer *vb)
278 {
279 	unsigned int plane;
280 
281 	for (plane = 0; plane < vb->num_planes; ++plane) {
282 		if (vb->planes[plane].mem_priv)
283 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
284 		vb->planes[plane].mem_priv = NULL;
285 	}
286 }
287 
288 /*
289  * __vb2_plane_dmabuf_put() - release memory associated with
290  * a DMABUF shared plane
291  */
__vb2_plane_dmabuf_put(struct vb2_buffer * vb,struct vb2_plane * p)292 static void __vb2_plane_dmabuf_put(struct vb2_buffer *vb, struct vb2_plane *p)
293 {
294 	if (!p->mem_priv)
295 		return;
296 
297 	if (p->dbuf_mapped)
298 		call_void_memop(vb, unmap_dmabuf, p->mem_priv);
299 
300 	call_void_memop(vb, detach_dmabuf, p->mem_priv);
301 	dma_buf_put(p->dbuf);
302 	p->mem_priv = NULL;
303 	p->dbuf = NULL;
304 	p->dbuf_mapped = 0;
305 }
306 
307 /*
308  * __vb2_buf_dmabuf_put() - release memory associated with
309  * a DMABUF shared buffer
310  */
__vb2_buf_dmabuf_put(struct vb2_buffer * vb)311 static void __vb2_buf_dmabuf_put(struct vb2_buffer *vb)
312 {
313 	unsigned int plane;
314 
315 	for (plane = 0; plane < vb->num_planes; ++plane)
316 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
317 }
318 
319 /*
320  * __vb2_buf_mem_prepare() - call ->prepare() on buffer's private memory
321  * to sync caches
322  */
__vb2_buf_mem_prepare(struct vb2_buffer * vb)323 static void __vb2_buf_mem_prepare(struct vb2_buffer *vb)
324 {
325 	unsigned int plane;
326 
327 	if (vb->synced)
328 		return;
329 
330 	if (vb->need_cache_sync_on_prepare) {
331 		for (plane = 0; plane < vb->num_planes; ++plane)
332 			call_void_memop(vb, prepare,
333 					vb->planes[plane].mem_priv);
334 	}
335 	vb->synced = 1;
336 }
337 
338 /*
339  * __vb2_buf_mem_finish() - call ->finish on buffer's private memory
340  * to sync caches
341  */
__vb2_buf_mem_finish(struct vb2_buffer * vb)342 static void __vb2_buf_mem_finish(struct vb2_buffer *vb)
343 {
344 	unsigned int plane;
345 
346 	if (!vb->synced)
347 		return;
348 
349 	if (vb->need_cache_sync_on_finish) {
350 		for (plane = 0; plane < vb->num_planes; ++plane)
351 			call_void_memop(vb, finish,
352 					vb->planes[plane].mem_priv);
353 	}
354 	vb->synced = 0;
355 }
356 
357 /*
358  * __setup_offsets() - setup unique offsets ("cookies") for every plane in
359  * the buffer.
360  */
__setup_offsets(struct vb2_buffer * vb)361 static void __setup_offsets(struct vb2_buffer *vb)
362 {
363 	struct vb2_queue *q = vb->vb2_queue;
364 	unsigned int plane;
365 	unsigned long off = 0;
366 
367 	if (vb->index) {
368 		struct vb2_buffer *prev = q->bufs[vb->index - 1];
369 		struct vb2_plane *p = &prev->planes[prev->num_planes - 1];
370 
371 		off = PAGE_ALIGN(p->m.offset + p->length);
372 	}
373 
374 	for (plane = 0; plane < vb->num_planes; ++plane) {
375 		vb->planes[plane].m.offset = off;
376 
377 		dprintk(q, 3, "buffer %d, plane %d offset 0x%08lx\n",
378 				vb->index, plane, off);
379 
380 		off += vb->planes[plane].length;
381 		off = PAGE_ALIGN(off);
382 	}
383 }
384 
385 /*
386  * __vb2_queue_alloc() - allocate videobuf buffer structures and (for MMAP type)
387  * video buffer memory for all buffers/planes on the queue and initializes the
388  * queue
389  *
390  * Returns the number of buffers successfully allocated.
391  */
__vb2_queue_alloc(struct vb2_queue * q,enum vb2_memory memory,unsigned int num_buffers,unsigned int num_planes,const unsigned plane_sizes[VB2_MAX_PLANES])392 static int __vb2_queue_alloc(struct vb2_queue *q, enum vb2_memory memory,
393 			     unsigned int num_buffers, unsigned int num_planes,
394 			     const unsigned plane_sizes[VB2_MAX_PLANES])
395 {
396 	unsigned int buffer, plane;
397 	struct vb2_buffer *vb;
398 	int ret;
399 
400 	/* Ensure that q->num_buffers+num_buffers is below VB2_MAX_FRAME */
401 	num_buffers = min_t(unsigned int, num_buffers,
402 			    VB2_MAX_FRAME - q->num_buffers);
403 
404 	for (buffer = 0; buffer < num_buffers; ++buffer) {
405 		/* Allocate videobuf buffer structures */
406 		vb = kzalloc(q->buf_struct_size, GFP_KERNEL);
407 		if (!vb) {
408 			dprintk(q, 1, "memory alloc for buffer struct failed\n");
409 			break;
410 		}
411 
412 		vb->state = VB2_BUF_STATE_DEQUEUED;
413 		vb->vb2_queue = q;
414 		vb->num_planes = num_planes;
415 		vb->index = q->num_buffers + buffer;
416 		vb->type = q->type;
417 		vb->memory = memory;
418 		/*
419 		 * We need to set these flags here so that the videobuf2 core
420 		 * will call ->prepare()/->finish() cache sync/flush on vb2
421 		 * buffers when appropriate. However, we can avoid explicit
422 		 * ->prepare() and ->finish() cache sync for DMABUF buffers,
423 		 * because DMA exporter takes care of it.
424 		 */
425 		if (q->memory != VB2_MEMORY_DMABUF) {
426 			vb->need_cache_sync_on_prepare = 1;
427 			vb->need_cache_sync_on_finish = 1;
428 		}
429 		for (plane = 0; plane < num_planes; ++plane) {
430 			vb->planes[plane].length = plane_sizes[plane];
431 			vb->planes[plane].min_length = plane_sizes[plane];
432 		}
433 		call_void_bufop(q, init_buffer, vb);
434 
435 		q->bufs[vb->index] = vb;
436 
437 		/* Allocate video buffer memory for the MMAP type */
438 		if (memory == VB2_MEMORY_MMAP) {
439 			ret = __vb2_buf_mem_alloc(vb);
440 			if (ret) {
441 				dprintk(q, 1, "failed allocating memory for buffer %d\n",
442 					buffer);
443 				q->bufs[vb->index] = NULL;
444 				kfree(vb);
445 				break;
446 			}
447 			__setup_offsets(vb);
448 			/*
449 			 * Call the driver-provided buffer initialization
450 			 * callback, if given. An error in initialization
451 			 * results in queue setup failure.
452 			 */
453 			ret = call_vb_qop(vb, buf_init, vb);
454 			if (ret) {
455 				dprintk(q, 1, "buffer %d %p initialization failed\n",
456 					buffer, vb);
457 				__vb2_buf_mem_free(vb);
458 				q->bufs[vb->index] = NULL;
459 				kfree(vb);
460 				break;
461 			}
462 		}
463 	}
464 
465 	dprintk(q, 3, "allocated %d buffers, %d plane(s) each\n",
466 		buffer, num_planes);
467 
468 	return buffer;
469 }
470 
471 /*
472  * __vb2_free_mem() - release all video buffer memory for a given queue
473  */
__vb2_free_mem(struct vb2_queue * q,unsigned int buffers)474 static void __vb2_free_mem(struct vb2_queue *q, unsigned int buffers)
475 {
476 	unsigned int buffer;
477 	struct vb2_buffer *vb;
478 
479 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
480 	     ++buffer) {
481 		vb = q->bufs[buffer];
482 		if (!vb)
483 			continue;
484 
485 		/* Free MMAP buffers or release USERPTR buffers */
486 		if (q->memory == VB2_MEMORY_MMAP)
487 			__vb2_buf_mem_free(vb);
488 		else if (q->memory == VB2_MEMORY_DMABUF)
489 			__vb2_buf_dmabuf_put(vb);
490 		else
491 			__vb2_buf_userptr_put(vb);
492 	}
493 }
494 
495 /*
496  * __vb2_queue_free() - free buffers at the end of the queue - video memory and
497  * related information, if no buffers are left return the queue to an
498  * uninitialized state. Might be called even if the queue has already been freed.
499  */
__vb2_queue_free(struct vb2_queue * q,unsigned int buffers)500 static int __vb2_queue_free(struct vb2_queue *q, unsigned int buffers)
501 {
502 	unsigned int buffer;
503 
504 	/*
505 	 * Sanity check: when preparing a buffer the queue lock is released for
506 	 * a short while (see __buf_prepare for the details), which would allow
507 	 * a race with a reqbufs which can call this function. Removing the
508 	 * buffers from underneath __buf_prepare is obviously a bad idea, so we
509 	 * check if any of the buffers is in the state PREPARING, and if so we
510 	 * just return -EAGAIN.
511 	 */
512 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
513 	     ++buffer) {
514 		if (q->bufs[buffer] == NULL)
515 			continue;
516 		if (q->bufs[buffer]->state == VB2_BUF_STATE_PREPARING) {
517 			dprintk(q, 1, "preparing buffers, cannot free\n");
518 			return -EAGAIN;
519 		}
520 	}
521 
522 	/* Call driver-provided cleanup function for each buffer, if provided */
523 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
524 	     ++buffer) {
525 		struct vb2_buffer *vb = q->bufs[buffer];
526 
527 		if (vb && vb->planes[0].mem_priv)
528 			call_void_vb_qop(vb, buf_cleanup, vb);
529 	}
530 
531 	/* Release video buffer memory */
532 	__vb2_free_mem(q, buffers);
533 
534 #ifdef CONFIG_VIDEO_ADV_DEBUG
535 	/*
536 	 * Check that all the calls were balances during the life-time of this
537 	 * queue. If not (or if the debug level is 1 or up), then dump the
538 	 * counters to the kernel log.
539 	 */
540 	if (q->num_buffers) {
541 		bool unbalanced = q->cnt_start_streaming != q->cnt_stop_streaming ||
542 				  q->cnt_wait_prepare != q->cnt_wait_finish;
543 
544 		if (unbalanced || debug) {
545 			pr_info("counters for queue %p:%s\n", q,
546 				unbalanced ? " UNBALANCED!" : "");
547 			pr_info("     setup: %u start_streaming: %u stop_streaming: %u\n",
548 				q->cnt_queue_setup, q->cnt_start_streaming,
549 				q->cnt_stop_streaming);
550 			pr_info("     wait_prepare: %u wait_finish: %u\n",
551 				q->cnt_wait_prepare, q->cnt_wait_finish);
552 		}
553 		q->cnt_queue_setup = 0;
554 		q->cnt_wait_prepare = 0;
555 		q->cnt_wait_finish = 0;
556 		q->cnt_start_streaming = 0;
557 		q->cnt_stop_streaming = 0;
558 	}
559 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
560 		struct vb2_buffer *vb = q->bufs[buffer];
561 		bool unbalanced = vb->cnt_mem_alloc != vb->cnt_mem_put ||
562 				  vb->cnt_mem_prepare != vb->cnt_mem_finish ||
563 				  vb->cnt_mem_get_userptr != vb->cnt_mem_put_userptr ||
564 				  vb->cnt_mem_attach_dmabuf != vb->cnt_mem_detach_dmabuf ||
565 				  vb->cnt_mem_map_dmabuf != vb->cnt_mem_unmap_dmabuf ||
566 				  vb->cnt_buf_queue != vb->cnt_buf_done ||
567 				  vb->cnt_buf_prepare != vb->cnt_buf_finish ||
568 				  vb->cnt_buf_init != vb->cnt_buf_cleanup;
569 
570 		if (unbalanced || debug) {
571 			pr_info("   counters for queue %p, buffer %d:%s\n",
572 				q, buffer, unbalanced ? " UNBALANCED!" : "");
573 			pr_info("     buf_init: %u buf_cleanup: %u buf_prepare: %u buf_finish: %u\n",
574 				vb->cnt_buf_init, vb->cnt_buf_cleanup,
575 				vb->cnt_buf_prepare, vb->cnt_buf_finish);
576 			pr_info("     buf_out_validate: %u buf_queue: %u buf_done: %u buf_request_complete: %u\n",
577 				vb->cnt_buf_out_validate, vb->cnt_buf_queue,
578 				vb->cnt_buf_done, vb->cnt_buf_request_complete);
579 			pr_info("     alloc: %u put: %u prepare: %u finish: %u mmap: %u\n",
580 				vb->cnt_mem_alloc, vb->cnt_mem_put,
581 				vb->cnt_mem_prepare, vb->cnt_mem_finish,
582 				vb->cnt_mem_mmap);
583 			pr_info("     get_userptr: %u put_userptr: %u\n",
584 				vb->cnt_mem_get_userptr, vb->cnt_mem_put_userptr);
585 			pr_info("     attach_dmabuf: %u detach_dmabuf: %u map_dmabuf: %u unmap_dmabuf: %u\n",
586 				vb->cnt_mem_attach_dmabuf, vb->cnt_mem_detach_dmabuf,
587 				vb->cnt_mem_map_dmabuf, vb->cnt_mem_unmap_dmabuf);
588 			pr_info("     get_dmabuf: %u num_users: %u vaddr: %u cookie: %u\n",
589 				vb->cnt_mem_get_dmabuf,
590 				vb->cnt_mem_num_users,
591 				vb->cnt_mem_vaddr,
592 				vb->cnt_mem_cookie);
593 		}
594 	}
595 #endif
596 
597 	/* Free videobuf buffers */
598 	for (buffer = q->num_buffers - buffers; buffer < q->num_buffers;
599 	     ++buffer) {
600 		kfree(q->bufs[buffer]);
601 		q->bufs[buffer] = NULL;
602 	}
603 
604 	q->num_buffers -= buffers;
605 	if (!q->num_buffers) {
606 		q->memory = VB2_MEMORY_UNKNOWN;
607 		INIT_LIST_HEAD(&q->queued_list);
608 	}
609 	return 0;
610 }
611 
vb2_buffer_in_use(struct vb2_queue * q,struct vb2_buffer * vb)612 bool vb2_buffer_in_use(struct vb2_queue *q, struct vb2_buffer *vb)
613 {
614 	unsigned int plane;
615 	for (plane = 0; plane < vb->num_planes; ++plane) {
616 		void *mem_priv = vb->planes[plane].mem_priv;
617 		/*
618 		 * If num_users() has not been provided, call_memop
619 		 * will return 0, apparently nobody cares about this
620 		 * case anyway. If num_users() returns more than 1,
621 		 * we are not the only user of the plane's memory.
622 		 */
623 		if (mem_priv && call_memop(vb, num_users, mem_priv) > 1)
624 			return true;
625 	}
626 	return false;
627 }
628 EXPORT_SYMBOL(vb2_buffer_in_use);
629 
630 /*
631  * __buffers_in_use() - return true if any buffers on the queue are in use and
632  * the queue cannot be freed (by the means of REQBUFS(0)) call
633  */
__buffers_in_use(struct vb2_queue * q)634 static bool __buffers_in_use(struct vb2_queue *q)
635 {
636 	unsigned int buffer;
637 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
638 		if (vb2_buffer_in_use(q, q->bufs[buffer]))
639 			return true;
640 	}
641 	return false;
642 }
643 
vb2_core_querybuf(struct vb2_queue * q,unsigned int index,void * pb)644 void vb2_core_querybuf(struct vb2_queue *q, unsigned int index, void *pb)
645 {
646 	call_void_bufop(q, fill_user_buffer, q->bufs[index], pb);
647 }
648 EXPORT_SYMBOL_GPL(vb2_core_querybuf);
649 
650 /*
651  * __verify_userptr_ops() - verify that all memory operations required for
652  * USERPTR queue type have been provided
653  */
__verify_userptr_ops(struct vb2_queue * q)654 static int __verify_userptr_ops(struct vb2_queue *q)
655 {
656 	if (!(q->io_modes & VB2_USERPTR) || !q->mem_ops->get_userptr ||
657 	    !q->mem_ops->put_userptr)
658 		return -EINVAL;
659 
660 	return 0;
661 }
662 
663 /*
664  * __verify_mmap_ops() - verify that all memory operations required for
665  * MMAP queue type have been provided
666  */
__verify_mmap_ops(struct vb2_queue * q)667 static int __verify_mmap_ops(struct vb2_queue *q)
668 {
669 	if (!(q->io_modes & VB2_MMAP) || !q->mem_ops->alloc ||
670 	    !q->mem_ops->put || !q->mem_ops->mmap)
671 		return -EINVAL;
672 
673 	return 0;
674 }
675 
676 /*
677  * __verify_dmabuf_ops() - verify that all memory operations required for
678  * DMABUF queue type have been provided
679  */
__verify_dmabuf_ops(struct vb2_queue * q)680 static int __verify_dmabuf_ops(struct vb2_queue *q)
681 {
682 	if (!(q->io_modes & VB2_DMABUF) || !q->mem_ops->attach_dmabuf ||
683 	    !q->mem_ops->detach_dmabuf  || !q->mem_ops->map_dmabuf ||
684 	    !q->mem_ops->unmap_dmabuf)
685 		return -EINVAL;
686 
687 	return 0;
688 }
689 
vb2_verify_memory_type(struct vb2_queue * q,enum vb2_memory memory,unsigned int type)690 int vb2_verify_memory_type(struct vb2_queue *q,
691 		enum vb2_memory memory, unsigned int type)
692 {
693 	if (memory != VB2_MEMORY_MMAP && memory != VB2_MEMORY_USERPTR &&
694 	    memory != VB2_MEMORY_DMABUF) {
695 		dprintk(q, 1, "unsupported memory type\n");
696 		return -EINVAL;
697 	}
698 
699 	if (type != q->type) {
700 		dprintk(q, 1, "requested type is incorrect\n");
701 		return -EINVAL;
702 	}
703 
704 	/*
705 	 * Make sure all the required memory ops for given memory type
706 	 * are available.
707 	 */
708 	if (memory == VB2_MEMORY_MMAP && __verify_mmap_ops(q)) {
709 		dprintk(q, 1, "MMAP for current setup unsupported\n");
710 		return -EINVAL;
711 	}
712 
713 	if (memory == VB2_MEMORY_USERPTR && __verify_userptr_ops(q)) {
714 		dprintk(q, 1, "USERPTR for current setup unsupported\n");
715 		return -EINVAL;
716 	}
717 
718 	if (memory == VB2_MEMORY_DMABUF && __verify_dmabuf_ops(q)) {
719 		dprintk(q, 1, "DMABUF for current setup unsupported\n");
720 		return -EINVAL;
721 	}
722 
723 	/*
724 	 * Place the busy tests at the end: -EBUSY can be ignored when
725 	 * create_bufs is called with count == 0, but count == 0 should still
726 	 * do the memory and type validation.
727 	 */
728 	if (vb2_fileio_is_active(q)) {
729 		dprintk(q, 1, "file io in progress\n");
730 		return -EBUSY;
731 	}
732 	return 0;
733 }
734 EXPORT_SYMBOL(vb2_verify_memory_type);
735 
vb2_core_reqbufs(struct vb2_queue * q,enum vb2_memory memory,unsigned int * count)736 int vb2_core_reqbufs(struct vb2_queue *q, enum vb2_memory memory,
737 		     unsigned int *count)
738 {
739 	unsigned int num_buffers, allocated_buffers, num_planes = 0;
740 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
741 	unsigned int i;
742 	int ret;
743 
744 	if (q->streaming) {
745 		dprintk(q, 1, "streaming active\n");
746 		return -EBUSY;
747 	}
748 
749 	if (q->waiting_in_dqbuf && *count) {
750 		dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
751 		return -EBUSY;
752 	}
753 
754 	if (*count == 0 || q->num_buffers != 0 ||
755 	    (q->memory != VB2_MEMORY_UNKNOWN && q->memory != memory)) {
756 		/*
757 		 * We already have buffers allocated, so first check if they
758 		 * are not in use and can be freed.
759 		 */
760 		mutex_lock(&q->mmap_lock);
761 		if (debug && q->memory == VB2_MEMORY_MMAP &&
762 		    __buffers_in_use(q))
763 			dprintk(q, 1, "memory in use, orphaning buffers\n");
764 
765 		/*
766 		 * Call queue_cancel to clean up any buffers in the
767 		 * QUEUED state which is possible if buffers were prepared or
768 		 * queued without ever calling STREAMON.
769 		 */
770 		__vb2_queue_cancel(q);
771 		ret = __vb2_queue_free(q, q->num_buffers);
772 		mutex_unlock(&q->mmap_lock);
773 		if (ret)
774 			return ret;
775 
776 		/*
777 		 * In case of REQBUFS(0) return immediately without calling
778 		 * driver's queue_setup() callback and allocating resources.
779 		 */
780 		if (*count == 0)
781 			return 0;
782 	}
783 
784 	/*
785 	 * Make sure the requested values and current defaults are sane.
786 	 */
787 	WARN_ON(q->min_buffers_needed > VB2_MAX_FRAME);
788 	num_buffers = max_t(unsigned int, *count, q->min_buffers_needed);
789 	num_buffers = min_t(unsigned int, num_buffers, VB2_MAX_FRAME);
790 	memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
791 	/*
792 	 * Set this now to ensure that drivers see the correct q->memory value
793 	 * in the queue_setup op.
794 	 */
795 	mutex_lock(&q->mmap_lock);
796 	q->memory = memory;
797 	mutex_unlock(&q->mmap_lock);
798 
799 	/*
800 	 * Ask the driver how many buffers and planes per buffer it requires.
801 	 * Driver also sets the size and allocator context for each plane.
802 	 */
803 	ret = call_qop(q, queue_setup, q, &num_buffers, &num_planes,
804 		       plane_sizes, q->alloc_devs);
805 	if (ret)
806 		goto error;
807 
808 	/* Check that driver has set sane values */
809 	if (WARN_ON(!num_planes)) {
810 		ret = -EINVAL;
811 		goto error;
812 	}
813 
814 	for (i = 0; i < num_planes; i++)
815 		if (WARN_ON(!plane_sizes[i])) {
816 			ret = -EINVAL;
817 			goto error;
818 		}
819 
820 	/* Finally, allocate buffers and video memory */
821 	allocated_buffers =
822 		__vb2_queue_alloc(q, memory, num_buffers, num_planes, plane_sizes);
823 	if (allocated_buffers == 0) {
824 		dprintk(q, 1, "memory allocation failed\n");
825 		ret = -ENOMEM;
826 		goto error;
827 	}
828 
829 	/*
830 	 * There is no point in continuing if we can't allocate the minimum
831 	 * number of buffers needed by this vb2_queue.
832 	 */
833 	if (allocated_buffers < q->min_buffers_needed)
834 		ret = -ENOMEM;
835 
836 	/*
837 	 * Check if driver can handle the allocated number of buffers.
838 	 */
839 	if (!ret && allocated_buffers < num_buffers) {
840 		num_buffers = allocated_buffers;
841 		/*
842 		 * num_planes is set by the previous queue_setup(), but since it
843 		 * signals to queue_setup() whether it is called from create_bufs()
844 		 * vs reqbufs() we zero it here to signal that queue_setup() is
845 		 * called for the reqbufs() case.
846 		 */
847 		num_planes = 0;
848 
849 		ret = call_qop(q, queue_setup, q, &num_buffers,
850 			       &num_planes, plane_sizes, q->alloc_devs);
851 
852 		if (!ret && allocated_buffers < num_buffers)
853 			ret = -ENOMEM;
854 
855 		/*
856 		 * Either the driver has accepted a smaller number of buffers,
857 		 * or .queue_setup() returned an error
858 		 */
859 	}
860 
861 	mutex_lock(&q->mmap_lock);
862 	q->num_buffers = allocated_buffers;
863 
864 	if (ret < 0) {
865 		/*
866 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
867 		 * from q->num_buffers and it will reset q->memory to
868 		 * VB2_MEMORY_UNKNOWN.
869 		 */
870 		__vb2_queue_free(q, allocated_buffers);
871 		mutex_unlock(&q->mmap_lock);
872 		return ret;
873 	}
874 	mutex_unlock(&q->mmap_lock);
875 
876 	/*
877 	 * Return the number of successfully allocated buffers
878 	 * to the userspace.
879 	 */
880 	*count = allocated_buffers;
881 	q->waiting_for_buffers = !q->is_output;
882 
883 	return 0;
884 
885 error:
886 	mutex_lock(&q->mmap_lock);
887 	q->memory = VB2_MEMORY_UNKNOWN;
888 	mutex_unlock(&q->mmap_lock);
889 	return ret;
890 }
891 EXPORT_SYMBOL_GPL(vb2_core_reqbufs);
892 
vb2_core_create_bufs(struct vb2_queue * q,enum vb2_memory memory,unsigned int * count,unsigned int requested_planes,const unsigned int requested_sizes[])893 int vb2_core_create_bufs(struct vb2_queue *q, enum vb2_memory memory,
894 			 unsigned int *count,
895 			 unsigned int requested_planes,
896 			 const unsigned int requested_sizes[])
897 {
898 	unsigned int num_planes = 0, num_buffers, allocated_buffers;
899 	unsigned plane_sizes[VB2_MAX_PLANES] = { };
900 	bool no_previous_buffers = !q->num_buffers;
901 	int ret;
902 
903 	if (q->num_buffers == VB2_MAX_FRAME) {
904 		dprintk(q, 1, "maximum number of buffers already allocated\n");
905 		return -ENOBUFS;
906 	}
907 
908 	if (no_previous_buffers) {
909 		if (q->waiting_in_dqbuf && *count) {
910 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
911 			return -EBUSY;
912 		}
913 		memset(q->alloc_devs, 0, sizeof(q->alloc_devs));
914 		/*
915 		 * Set this now to ensure that drivers see the correct q->memory
916 		 * value in the queue_setup op.
917 		 */
918 		mutex_lock(&q->mmap_lock);
919 		q->memory = memory;
920 		mutex_unlock(&q->mmap_lock);
921 		q->waiting_for_buffers = !q->is_output;
922 	} else {
923 		if (q->memory != memory) {
924 			dprintk(q, 1, "memory model mismatch\n");
925 			return -EINVAL;
926 		}
927 	}
928 
929 	num_buffers = min(*count, VB2_MAX_FRAME - q->num_buffers);
930 
931 	if (requested_planes && requested_sizes) {
932 		num_planes = requested_planes;
933 		memcpy(plane_sizes, requested_sizes, sizeof(plane_sizes));
934 	}
935 
936 	/*
937 	 * Ask the driver, whether the requested number of buffers, planes per
938 	 * buffer and their sizes are acceptable
939 	 */
940 	ret = call_qop(q, queue_setup, q, &num_buffers,
941 		       &num_planes, plane_sizes, q->alloc_devs);
942 	if (ret)
943 		goto error;
944 
945 	/* Finally, allocate buffers and video memory */
946 	allocated_buffers = __vb2_queue_alloc(q, memory, num_buffers,
947 				num_planes, plane_sizes);
948 	if (allocated_buffers == 0) {
949 		dprintk(q, 1, "memory allocation failed\n");
950 		ret = -ENOMEM;
951 		goto error;
952 	}
953 
954 	/*
955 	 * Check if driver can handle the so far allocated number of buffers.
956 	 */
957 	if (allocated_buffers < num_buffers) {
958 		num_buffers = allocated_buffers;
959 
960 		/*
961 		 * q->num_buffers contains the total number of buffers, that the
962 		 * queue driver has set up
963 		 */
964 		ret = call_qop(q, queue_setup, q, &num_buffers,
965 			       &num_planes, plane_sizes, q->alloc_devs);
966 
967 		if (!ret && allocated_buffers < num_buffers)
968 			ret = -ENOMEM;
969 
970 		/*
971 		 * Either the driver has accepted a smaller number of buffers,
972 		 * or .queue_setup() returned an error
973 		 */
974 	}
975 
976 	mutex_lock(&q->mmap_lock);
977 	q->num_buffers += allocated_buffers;
978 
979 	if (ret < 0) {
980 		/*
981 		 * Note: __vb2_queue_free() will subtract 'allocated_buffers'
982 		 * from q->num_buffers and it will reset q->memory to
983 		 * VB2_MEMORY_UNKNOWN.
984 		 */
985 		__vb2_queue_free(q, allocated_buffers);
986 		mutex_unlock(&q->mmap_lock);
987 		return -ENOMEM;
988 	}
989 	mutex_unlock(&q->mmap_lock);
990 
991 	/*
992 	 * Return the number of successfully allocated buffers
993 	 * to the userspace.
994 	 */
995 	*count = allocated_buffers;
996 
997 	return 0;
998 
999 error:
1000 	if (no_previous_buffers) {
1001 		mutex_lock(&q->mmap_lock);
1002 		q->memory = VB2_MEMORY_UNKNOWN;
1003 		mutex_unlock(&q->mmap_lock);
1004 	}
1005 	return ret;
1006 }
1007 EXPORT_SYMBOL_GPL(vb2_core_create_bufs);
1008 
vb2_plane_vaddr(struct vb2_buffer * vb,unsigned int plane_no)1009 void *vb2_plane_vaddr(struct vb2_buffer *vb, unsigned int plane_no)
1010 {
1011 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1012 		return NULL;
1013 
1014 	return call_ptr_memop(vaddr, vb, vb->planes[plane_no].mem_priv);
1015 
1016 }
1017 EXPORT_SYMBOL_GPL(vb2_plane_vaddr);
1018 
vb2_plane_cookie(struct vb2_buffer * vb,unsigned int plane_no)1019 void *vb2_plane_cookie(struct vb2_buffer *vb, unsigned int plane_no)
1020 {
1021 	if (plane_no >= vb->num_planes || !vb->planes[plane_no].mem_priv)
1022 		return NULL;
1023 
1024 	return call_ptr_memop(cookie, vb, vb->planes[plane_no].mem_priv);
1025 }
1026 EXPORT_SYMBOL_GPL(vb2_plane_cookie);
1027 
vb2_buffer_done(struct vb2_buffer * vb,enum vb2_buffer_state state)1028 void vb2_buffer_done(struct vb2_buffer *vb, enum vb2_buffer_state state)
1029 {
1030 	struct vb2_queue *q = vb->vb2_queue;
1031 	unsigned long flags;
1032 
1033 	if (WARN_ON(vb->state != VB2_BUF_STATE_ACTIVE))
1034 		return;
1035 
1036 	if (WARN_ON(state != VB2_BUF_STATE_DONE &&
1037 		    state != VB2_BUF_STATE_ERROR &&
1038 		    state != VB2_BUF_STATE_QUEUED))
1039 		state = VB2_BUF_STATE_ERROR;
1040 
1041 #ifdef CONFIG_VIDEO_ADV_DEBUG
1042 	/*
1043 	 * Although this is not a callback, it still does have to balance
1044 	 * with the buf_queue op. So update this counter manually.
1045 	 */
1046 	vb->cnt_buf_done++;
1047 #endif
1048 	dprintk(q, 4, "done processing on buffer %d, state: %s\n",
1049 		vb->index, vb2_state_name(state));
1050 
1051 	if (state != VB2_BUF_STATE_QUEUED)
1052 		__vb2_buf_mem_finish(vb);
1053 
1054 	spin_lock_irqsave(&q->done_lock, flags);
1055 	if (state == VB2_BUF_STATE_QUEUED) {
1056 		vb->state = VB2_BUF_STATE_QUEUED;
1057 	} else {
1058 		/* Add the buffer to the done buffers list */
1059 		list_add_tail(&vb->done_entry, &q->done_list);
1060 		vb->state = state;
1061 	}
1062 	atomic_dec(&q->owned_by_drv_count);
1063 
1064 	if (state != VB2_BUF_STATE_QUEUED && vb->req_obj.req) {
1065 		media_request_object_unbind(&vb->req_obj);
1066 		media_request_object_put(&vb->req_obj);
1067 	}
1068 
1069 	spin_unlock_irqrestore(&q->done_lock, flags);
1070 
1071 	trace_vb2_buf_done(q, vb);
1072 
1073 	switch (state) {
1074 	case VB2_BUF_STATE_QUEUED:
1075 		return;
1076 	default:
1077 		/* Inform any processes that may be waiting for buffers */
1078 		wake_up(&q->done_wq);
1079 		break;
1080 	}
1081 }
1082 EXPORT_SYMBOL_GPL(vb2_buffer_done);
1083 
vb2_discard_done(struct vb2_queue * q)1084 void vb2_discard_done(struct vb2_queue *q)
1085 {
1086 	struct vb2_buffer *vb;
1087 	unsigned long flags;
1088 
1089 	spin_lock_irqsave(&q->done_lock, flags);
1090 	list_for_each_entry(vb, &q->done_list, done_entry)
1091 		vb->state = VB2_BUF_STATE_ERROR;
1092 	spin_unlock_irqrestore(&q->done_lock, flags);
1093 }
1094 EXPORT_SYMBOL_GPL(vb2_discard_done);
1095 
1096 /*
1097  * __prepare_mmap() - prepare an MMAP buffer
1098  */
__prepare_mmap(struct vb2_buffer * vb)1099 static int __prepare_mmap(struct vb2_buffer *vb)
1100 {
1101 	int ret = 0;
1102 
1103 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1104 			 vb, vb->planes);
1105 	return ret ? ret : call_vb_qop(vb, buf_prepare, vb);
1106 }
1107 
1108 /*
1109  * __prepare_userptr() - prepare a USERPTR buffer
1110  */
__prepare_userptr(struct vb2_buffer * vb)1111 static int __prepare_userptr(struct vb2_buffer *vb)
1112 {
1113 	struct vb2_plane planes[VB2_MAX_PLANES];
1114 	struct vb2_queue *q = vb->vb2_queue;
1115 	void *mem_priv;
1116 	unsigned int plane;
1117 	int ret = 0;
1118 	bool reacquired = vb->planes[0].mem_priv == NULL;
1119 
1120 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1121 	/* Copy relevant information provided by the userspace */
1122 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1123 			 vb, planes);
1124 	if (ret)
1125 		return ret;
1126 
1127 	for (plane = 0; plane < vb->num_planes; ++plane) {
1128 		/* Skip the plane if already verified */
1129 		if (vb->planes[plane].m.userptr &&
1130 			vb->planes[plane].m.userptr == planes[plane].m.userptr
1131 			&& vb->planes[plane].length == planes[plane].length)
1132 			continue;
1133 
1134 		dprintk(q, 3, "userspace address for plane %d changed, reacquiring memory\n",
1135 			plane);
1136 
1137 		/* Check if the provided plane buffer is large enough */
1138 		if (planes[plane].length < vb->planes[plane].min_length) {
1139 			dprintk(q, 1, "provided buffer size %u is less than setup size %u for plane %d\n",
1140 						planes[plane].length,
1141 						vb->planes[plane].min_length,
1142 						plane);
1143 			ret = -EINVAL;
1144 			goto err;
1145 		}
1146 
1147 		/* Release previously acquired memory if present */
1148 		if (vb->planes[plane].mem_priv) {
1149 			if (!reacquired) {
1150 				reacquired = true;
1151 				vb->copied_timestamp = 0;
1152 				call_void_vb_qop(vb, buf_cleanup, vb);
1153 			}
1154 			call_void_memop(vb, put_userptr, vb->planes[plane].mem_priv);
1155 		}
1156 
1157 		vb->planes[plane].mem_priv = NULL;
1158 		vb->planes[plane].bytesused = 0;
1159 		vb->planes[plane].length = 0;
1160 		vb->planes[plane].m.userptr = 0;
1161 		vb->planes[plane].data_offset = 0;
1162 
1163 		/* Acquire each plane's memory */
1164 		mem_priv = call_ptr_memop(get_userptr,
1165 					  vb,
1166 					  q->alloc_devs[plane] ? : q->dev,
1167 					  planes[plane].m.userptr,
1168 					  planes[plane].length);
1169 		if (IS_ERR(mem_priv)) {
1170 			dprintk(q, 1, "failed acquiring userspace memory for plane %d\n",
1171 				plane);
1172 			ret = PTR_ERR(mem_priv);
1173 			goto err;
1174 		}
1175 		vb->planes[plane].mem_priv = mem_priv;
1176 	}
1177 
1178 	/*
1179 	 * Now that everything is in order, copy relevant information
1180 	 * provided by userspace.
1181 	 */
1182 	for (plane = 0; plane < vb->num_planes; ++plane) {
1183 		vb->planes[plane].bytesused = planes[plane].bytesused;
1184 		vb->planes[plane].length = planes[plane].length;
1185 		vb->planes[plane].m.userptr = planes[plane].m.userptr;
1186 		vb->planes[plane].data_offset = planes[plane].data_offset;
1187 	}
1188 
1189 	if (reacquired) {
1190 		/*
1191 		 * One or more planes changed, so we must call buf_init to do
1192 		 * the driver-specific initialization on the newly acquired
1193 		 * buffer, if provided.
1194 		 */
1195 		ret = call_vb_qop(vb, buf_init, vb);
1196 		if (ret) {
1197 			dprintk(q, 1, "buffer initialization failed\n");
1198 			goto err;
1199 		}
1200 	}
1201 
1202 	ret = call_vb_qop(vb, buf_prepare, vb);
1203 	if (ret) {
1204 		dprintk(q, 1, "buffer preparation failed\n");
1205 		call_void_vb_qop(vb, buf_cleanup, vb);
1206 		goto err;
1207 	}
1208 
1209 	return 0;
1210 err:
1211 	/* In case of errors, release planes that were already acquired */
1212 	for (plane = 0; plane < vb->num_planes; ++plane) {
1213 		if (vb->planes[plane].mem_priv)
1214 			call_void_memop(vb, put_userptr,
1215 				vb->planes[plane].mem_priv);
1216 		vb->planes[plane].mem_priv = NULL;
1217 		vb->planes[plane].m.userptr = 0;
1218 		vb->planes[plane].length = 0;
1219 	}
1220 
1221 	return ret;
1222 }
1223 
1224 /*
1225  * __prepare_dmabuf() - prepare a DMABUF buffer
1226  */
__prepare_dmabuf(struct vb2_buffer * vb)1227 static int __prepare_dmabuf(struct vb2_buffer *vb)
1228 {
1229 	struct vb2_plane planes[VB2_MAX_PLANES];
1230 	struct vb2_queue *q = vb->vb2_queue;
1231 	void *mem_priv;
1232 	unsigned int plane;
1233 	int ret = 0;
1234 	bool reacquired = vb->planes[0].mem_priv == NULL;
1235 
1236 	memset(planes, 0, sizeof(planes[0]) * vb->num_planes);
1237 	/* Copy relevant information provided by the userspace */
1238 	ret = call_bufop(vb->vb2_queue, fill_vb2_buffer,
1239 			 vb, planes);
1240 	if (ret)
1241 		return ret;
1242 
1243 	for (plane = 0; plane < vb->num_planes; ++plane) {
1244 		struct dma_buf *dbuf = dma_buf_get(planes[plane].m.fd);
1245 
1246 		if (IS_ERR_OR_NULL(dbuf)) {
1247 			dprintk(q, 1, "invalid dmabuf fd for plane %d\n",
1248 				plane);
1249 			ret = -EINVAL;
1250 			goto err;
1251 		}
1252 
1253 		/* use DMABUF size if length is not provided */
1254 		if (planes[plane].length == 0)
1255 			planes[plane].length = dbuf->size;
1256 
1257 		if (planes[plane].length < vb->planes[plane].min_length) {
1258 			dprintk(q, 1, "invalid dmabuf length %u for plane %d, minimum length %u\n",
1259 				planes[plane].length, plane,
1260 				vb->planes[plane].min_length);
1261 			dma_buf_put(dbuf);
1262 			ret = -EINVAL;
1263 			goto err;
1264 		}
1265 
1266 		/* Skip the plane if already verified */
1267 		if (dbuf == vb->planes[plane].dbuf &&
1268 			vb->planes[plane].length == planes[plane].length) {
1269 			dma_buf_put(dbuf);
1270 			continue;
1271 		}
1272 
1273 		dprintk(q, 3, "buffer for plane %d changed\n", plane);
1274 
1275 		if (!reacquired) {
1276 			reacquired = true;
1277 			vb->copied_timestamp = 0;
1278 			call_void_vb_qop(vb, buf_cleanup, vb);
1279 		}
1280 
1281 		/* Release previously acquired memory if present */
1282 		__vb2_plane_dmabuf_put(vb, &vb->planes[plane]);
1283 		vb->planes[plane].bytesused = 0;
1284 		vb->planes[plane].length = 0;
1285 		vb->planes[plane].m.fd = 0;
1286 		vb->planes[plane].data_offset = 0;
1287 
1288 		/* Acquire each plane's memory */
1289 		mem_priv = call_ptr_memop(attach_dmabuf,
1290 					  vb,
1291 					  q->alloc_devs[plane] ? : q->dev,
1292 					  dbuf,
1293 					  planes[plane].length);
1294 		if (IS_ERR(mem_priv)) {
1295 			dprintk(q, 1, "failed to attach dmabuf\n");
1296 			ret = PTR_ERR(mem_priv);
1297 			dma_buf_put(dbuf);
1298 			goto err;
1299 		}
1300 
1301 		vb->planes[plane].dbuf = dbuf;
1302 		vb->planes[plane].mem_priv = mem_priv;
1303 	}
1304 
1305 	/*
1306 	 * This pins the buffer(s) with dma_buf_map_attachment()). It's done
1307 	 * here instead just before the DMA, while queueing the buffer(s) so
1308 	 * userspace knows sooner rather than later if the dma-buf map fails.
1309 	 */
1310 	for (plane = 0; plane < vb->num_planes; ++plane) {
1311 		if (vb->planes[plane].dbuf_mapped)
1312 			continue;
1313 
1314 		ret = call_memop(vb, map_dmabuf, vb->planes[plane].mem_priv);
1315 		if (ret) {
1316 			dprintk(q, 1, "failed to map dmabuf for plane %d\n",
1317 				plane);
1318 			goto err;
1319 		}
1320 		vb->planes[plane].dbuf_mapped = 1;
1321 	}
1322 
1323 	/*
1324 	 * Now that everything is in order, copy relevant information
1325 	 * provided by userspace.
1326 	 */
1327 	for (plane = 0; plane < vb->num_planes; ++plane) {
1328 		vb->planes[plane].bytesused = planes[plane].bytesused;
1329 		vb->planes[plane].length = planes[plane].length;
1330 		vb->planes[plane].m.fd = planes[plane].m.fd;
1331 		vb->planes[plane].data_offset = planes[plane].data_offset;
1332 	}
1333 
1334 	if (reacquired) {
1335 		/*
1336 		 * Call driver-specific initialization on the newly acquired buffer,
1337 		 * if provided.
1338 		 */
1339 		ret = call_vb_qop(vb, buf_init, vb);
1340 		if (ret) {
1341 			dprintk(q, 1, "buffer initialization failed\n");
1342 			goto err;
1343 		}
1344 	}
1345 
1346 	ret = call_vb_qop(vb, buf_prepare, vb);
1347 	if (ret) {
1348 		dprintk(q, 1, "buffer preparation failed\n");
1349 		call_void_vb_qop(vb, buf_cleanup, vb);
1350 		goto err;
1351 	}
1352 
1353 	return 0;
1354 err:
1355 	/* In case of errors, release planes that were already acquired */
1356 	__vb2_buf_dmabuf_put(vb);
1357 
1358 	return ret;
1359 }
1360 
1361 /*
1362  * __enqueue_in_driver() - enqueue a vb2_buffer in driver for processing
1363  */
__enqueue_in_driver(struct vb2_buffer * vb)1364 static void __enqueue_in_driver(struct vb2_buffer *vb)
1365 {
1366 	struct vb2_queue *q = vb->vb2_queue;
1367 
1368 	vb->state = VB2_BUF_STATE_ACTIVE;
1369 	atomic_inc(&q->owned_by_drv_count);
1370 
1371 	trace_vb2_buf_queue(q, vb);
1372 
1373 	call_void_vb_qop(vb, buf_queue, vb);
1374 }
1375 
__buf_prepare(struct vb2_buffer * vb)1376 static int __buf_prepare(struct vb2_buffer *vb)
1377 {
1378 	struct vb2_queue *q = vb->vb2_queue;
1379 	enum vb2_buffer_state orig_state = vb->state;
1380 	int ret;
1381 
1382 	if (q->error) {
1383 		dprintk(q, 1, "fatal error occurred on queue\n");
1384 		return -EIO;
1385 	}
1386 
1387 	if (vb->prepared)
1388 		return 0;
1389 	WARN_ON(vb->synced);
1390 
1391 	if (q->is_output) {
1392 		ret = call_vb_qop(vb, buf_out_validate, vb);
1393 		if (ret) {
1394 			dprintk(q, 1, "buffer validation failed\n");
1395 			return ret;
1396 		}
1397 	}
1398 
1399 	vb->state = VB2_BUF_STATE_PREPARING;
1400 
1401 	switch (q->memory) {
1402 	case VB2_MEMORY_MMAP:
1403 		ret = __prepare_mmap(vb);
1404 		break;
1405 	case VB2_MEMORY_USERPTR:
1406 		ret = __prepare_userptr(vb);
1407 		break;
1408 	case VB2_MEMORY_DMABUF:
1409 		ret = __prepare_dmabuf(vb);
1410 		break;
1411 	default:
1412 		WARN(1, "Invalid queue type\n");
1413 		ret = -EINVAL;
1414 		break;
1415 	}
1416 
1417 	if (ret) {
1418 		dprintk(q, 1, "buffer preparation failed: %d\n", ret);
1419 		vb->state = orig_state;
1420 		return ret;
1421 	}
1422 
1423 	__vb2_buf_mem_prepare(vb);
1424 	vb->prepared = 1;
1425 	vb->state = orig_state;
1426 
1427 	return 0;
1428 }
1429 
vb2_req_prepare(struct media_request_object * obj)1430 static int vb2_req_prepare(struct media_request_object *obj)
1431 {
1432 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1433 	int ret;
1434 
1435 	if (WARN_ON(vb->state != VB2_BUF_STATE_IN_REQUEST))
1436 		return -EINVAL;
1437 
1438 	mutex_lock(vb->vb2_queue->lock);
1439 	ret = __buf_prepare(vb);
1440 	mutex_unlock(vb->vb2_queue->lock);
1441 	return ret;
1442 }
1443 
1444 static void __vb2_dqbuf(struct vb2_buffer *vb);
1445 
vb2_req_unprepare(struct media_request_object * obj)1446 static void vb2_req_unprepare(struct media_request_object *obj)
1447 {
1448 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1449 
1450 	mutex_lock(vb->vb2_queue->lock);
1451 	__vb2_dqbuf(vb);
1452 	vb->state = VB2_BUF_STATE_IN_REQUEST;
1453 	mutex_unlock(vb->vb2_queue->lock);
1454 	WARN_ON(!vb->req_obj.req);
1455 }
1456 
1457 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1458 		  struct media_request *req);
1459 
vb2_req_queue(struct media_request_object * obj)1460 static void vb2_req_queue(struct media_request_object *obj)
1461 {
1462 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1463 
1464 	mutex_lock(vb->vb2_queue->lock);
1465 	vb2_core_qbuf(vb->vb2_queue, vb->index, NULL, NULL);
1466 	mutex_unlock(vb->vb2_queue->lock);
1467 }
1468 
vb2_req_unbind(struct media_request_object * obj)1469 static void vb2_req_unbind(struct media_request_object *obj)
1470 {
1471 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1472 
1473 	if (vb->state == VB2_BUF_STATE_IN_REQUEST)
1474 		call_void_bufop(vb->vb2_queue, init_buffer, vb);
1475 }
1476 
vb2_req_release(struct media_request_object * obj)1477 static void vb2_req_release(struct media_request_object *obj)
1478 {
1479 	struct vb2_buffer *vb = container_of(obj, struct vb2_buffer, req_obj);
1480 
1481 	if (vb->state == VB2_BUF_STATE_IN_REQUEST) {
1482 		vb->state = VB2_BUF_STATE_DEQUEUED;
1483 		if (vb->request)
1484 			media_request_put(vb->request);
1485 		vb->request = NULL;
1486 	}
1487 }
1488 
1489 static const struct media_request_object_ops vb2_core_req_ops = {
1490 	.prepare = vb2_req_prepare,
1491 	.unprepare = vb2_req_unprepare,
1492 	.queue = vb2_req_queue,
1493 	.unbind = vb2_req_unbind,
1494 	.release = vb2_req_release,
1495 };
1496 
vb2_request_object_is_buffer(struct media_request_object * obj)1497 bool vb2_request_object_is_buffer(struct media_request_object *obj)
1498 {
1499 	return obj->ops == &vb2_core_req_ops;
1500 }
1501 EXPORT_SYMBOL_GPL(vb2_request_object_is_buffer);
1502 
vb2_request_buffer_cnt(struct media_request * req)1503 unsigned int vb2_request_buffer_cnt(struct media_request *req)
1504 {
1505 	struct media_request_object *obj;
1506 	unsigned long flags;
1507 	unsigned int buffer_cnt = 0;
1508 
1509 	spin_lock_irqsave(&req->lock, flags);
1510 	list_for_each_entry(obj, &req->objects, list)
1511 		if (vb2_request_object_is_buffer(obj))
1512 			buffer_cnt++;
1513 	spin_unlock_irqrestore(&req->lock, flags);
1514 
1515 	return buffer_cnt;
1516 }
1517 EXPORT_SYMBOL_GPL(vb2_request_buffer_cnt);
1518 
vb2_core_prepare_buf(struct vb2_queue * q,unsigned int index,void * pb)1519 int vb2_core_prepare_buf(struct vb2_queue *q, unsigned int index, void *pb)
1520 {
1521 	struct vb2_buffer *vb;
1522 	int ret;
1523 
1524 	vb = q->bufs[index];
1525 	if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1526 		dprintk(q, 1, "invalid buffer state %s\n",
1527 			vb2_state_name(vb->state));
1528 		return -EINVAL;
1529 	}
1530 	if (vb->prepared) {
1531 		dprintk(q, 1, "buffer already prepared\n");
1532 		return -EINVAL;
1533 	}
1534 
1535 	ret = __buf_prepare(vb);
1536 	if (ret)
1537 		return ret;
1538 
1539 	/* Fill buffer information for the userspace */
1540 	call_void_bufop(q, fill_user_buffer, vb, pb);
1541 
1542 	dprintk(q, 2, "prepare of buffer %d succeeded\n", vb->index);
1543 
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(vb2_core_prepare_buf);
1547 
1548 /*
1549  * vb2_start_streaming() - Attempt to start streaming.
1550  * @q:		videobuf2 queue
1551  *
1552  * Attempt to start streaming. When this function is called there must be
1553  * at least q->min_buffers_needed buffers queued up (i.e. the minimum
1554  * number of buffers required for the DMA engine to function). If the
1555  * @start_streaming op fails it is supposed to return all the driver-owned
1556  * buffers back to vb2 in state QUEUED. Check if that happened and if
1557  * not warn and reclaim them forcefully.
1558  */
vb2_start_streaming(struct vb2_queue * q)1559 static int vb2_start_streaming(struct vb2_queue *q)
1560 {
1561 	struct vb2_buffer *vb;
1562 	int ret;
1563 
1564 	/*
1565 	 * If any buffers were queued before streamon,
1566 	 * we can now pass them to driver for processing.
1567 	 */
1568 	list_for_each_entry(vb, &q->queued_list, queued_entry)
1569 		__enqueue_in_driver(vb);
1570 
1571 	/* Tell the driver to start streaming */
1572 	q->start_streaming_called = 1;
1573 	ret = call_qop(q, start_streaming, q,
1574 		       atomic_read(&q->owned_by_drv_count));
1575 	if (!ret)
1576 		return 0;
1577 
1578 	q->start_streaming_called = 0;
1579 
1580 	dprintk(q, 1, "driver refused to start streaming\n");
1581 	/*
1582 	 * If you see this warning, then the driver isn't cleaning up properly
1583 	 * after a failed start_streaming(). See the start_streaming()
1584 	 * documentation in videobuf2-core.h for more information how buffers
1585 	 * should be returned to vb2 in start_streaming().
1586 	 */
1587 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1588 		unsigned i;
1589 
1590 		/*
1591 		 * Forcefully reclaim buffers if the driver did not
1592 		 * correctly return them to vb2.
1593 		 */
1594 		for (i = 0; i < q->num_buffers; ++i) {
1595 			vb = q->bufs[i];
1596 			if (vb->state == VB2_BUF_STATE_ACTIVE)
1597 				vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1598 		}
1599 		/* Must be zero now */
1600 		WARN_ON(atomic_read(&q->owned_by_drv_count));
1601 	}
1602 	/*
1603 	 * If done_list is not empty, then start_streaming() didn't call
1604 	 * vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED) but STATE_ERROR or
1605 	 * STATE_DONE.
1606 	 */
1607 	WARN_ON(!list_empty(&q->done_list));
1608 	return ret;
1609 }
1610 
vb2_core_qbuf(struct vb2_queue * q,unsigned int index,void * pb,struct media_request * req)1611 int vb2_core_qbuf(struct vb2_queue *q, unsigned int index, void *pb,
1612 		  struct media_request *req)
1613 {
1614 	struct vb2_buffer *vb;
1615 	enum vb2_buffer_state orig_state;
1616 	int ret;
1617 
1618 	if (q->error) {
1619 		dprintk(q, 1, "fatal error occurred on queue\n");
1620 		return -EIO;
1621 	}
1622 
1623 	vb = q->bufs[index];
1624 
1625 	if (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1626 	    q->requires_requests) {
1627 		dprintk(q, 1, "qbuf requires a request\n");
1628 		return -EBADR;
1629 	}
1630 
1631 	if ((req && q->uses_qbuf) ||
1632 	    (!req && vb->state != VB2_BUF_STATE_IN_REQUEST &&
1633 	     q->uses_requests)) {
1634 		dprintk(q, 1, "queue in wrong mode (qbuf vs requests)\n");
1635 		return -EBUSY;
1636 	}
1637 
1638 	if (req) {
1639 		int ret;
1640 
1641 		q->uses_requests = 1;
1642 		if (vb->state != VB2_BUF_STATE_DEQUEUED) {
1643 			dprintk(q, 1, "buffer %d not in dequeued state\n",
1644 				vb->index);
1645 			return -EINVAL;
1646 		}
1647 
1648 		if (q->is_output && !vb->prepared) {
1649 			ret = call_vb_qop(vb, buf_out_validate, vb);
1650 			if (ret) {
1651 				dprintk(q, 1, "buffer validation failed\n");
1652 				return ret;
1653 			}
1654 		}
1655 
1656 		media_request_object_init(&vb->req_obj);
1657 
1658 		/* Make sure the request is in a safe state for updating. */
1659 		ret = media_request_lock_for_update(req);
1660 		if (ret)
1661 			return ret;
1662 		ret = media_request_object_bind(req, &vb2_core_req_ops,
1663 						q, true, &vb->req_obj);
1664 		media_request_unlock_for_update(req);
1665 		if (ret)
1666 			return ret;
1667 
1668 		vb->state = VB2_BUF_STATE_IN_REQUEST;
1669 
1670 		/*
1671 		 * Increment the refcount and store the request.
1672 		 * The request refcount is decremented again when the
1673 		 * buffer is dequeued. This is to prevent vb2_buffer_done()
1674 		 * from freeing the request from interrupt context, which can
1675 		 * happen if the application closed the request fd after
1676 		 * queueing the request.
1677 		 */
1678 		media_request_get(req);
1679 		vb->request = req;
1680 
1681 		/* Fill buffer information for the userspace */
1682 		if (pb) {
1683 			call_void_bufop(q, copy_timestamp, vb, pb);
1684 			call_void_bufop(q, fill_user_buffer, vb, pb);
1685 		}
1686 
1687 		dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1688 		return 0;
1689 	}
1690 
1691 	if (vb->state != VB2_BUF_STATE_IN_REQUEST)
1692 		q->uses_qbuf = 1;
1693 
1694 	switch (vb->state) {
1695 	case VB2_BUF_STATE_DEQUEUED:
1696 	case VB2_BUF_STATE_IN_REQUEST:
1697 		if (!vb->prepared) {
1698 			ret = __buf_prepare(vb);
1699 			if (ret)
1700 				return ret;
1701 		}
1702 		break;
1703 	case VB2_BUF_STATE_PREPARING:
1704 		dprintk(q, 1, "buffer still being prepared\n");
1705 		return -EINVAL;
1706 	default:
1707 		dprintk(q, 1, "invalid buffer state %s\n",
1708 			vb2_state_name(vb->state));
1709 		return -EINVAL;
1710 	}
1711 
1712 	/*
1713 	 * Add to the queued buffers list, a buffer will stay on it until
1714 	 * dequeued in dqbuf.
1715 	 */
1716 	orig_state = vb->state;
1717 	list_add_tail(&vb->queued_entry, &q->queued_list);
1718 	q->queued_count++;
1719 	q->waiting_for_buffers = false;
1720 	vb->state = VB2_BUF_STATE_QUEUED;
1721 
1722 	if (pb)
1723 		call_void_bufop(q, copy_timestamp, vb, pb);
1724 
1725 	trace_vb2_qbuf(q, vb);
1726 
1727 	/*
1728 	 * If already streaming, give the buffer to driver for processing.
1729 	 * If not, the buffer will be given to driver on next streamon.
1730 	 */
1731 	if (q->start_streaming_called)
1732 		__enqueue_in_driver(vb);
1733 
1734 	/* Fill buffer information for the userspace */
1735 	if (pb)
1736 		call_void_bufop(q, fill_user_buffer, vb, pb);
1737 
1738 	/*
1739 	 * If streamon has been called, and we haven't yet called
1740 	 * start_streaming() since not enough buffers were queued, and
1741 	 * we now have reached the minimum number of queued buffers,
1742 	 * then we can finally call start_streaming().
1743 	 */
1744 	if (q->streaming && !q->start_streaming_called &&
1745 	    q->queued_count >= q->min_buffers_needed) {
1746 		ret = vb2_start_streaming(q);
1747 		if (ret) {
1748 			/*
1749 			 * Since vb2_core_qbuf will return with an error,
1750 			 * we should return it to state DEQUEUED since
1751 			 * the error indicates that the buffer wasn't queued.
1752 			 */
1753 			list_del(&vb->queued_entry);
1754 			q->queued_count--;
1755 			vb->state = orig_state;
1756 			return ret;
1757 		}
1758 	}
1759 
1760 	dprintk(q, 2, "qbuf of buffer %d succeeded\n", vb->index);
1761 	return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(vb2_core_qbuf);
1764 
1765 /*
1766  * __vb2_wait_for_done_vb() - wait for a buffer to become available
1767  * for dequeuing
1768  *
1769  * Will sleep if required for nonblocking == false.
1770  */
__vb2_wait_for_done_vb(struct vb2_queue * q,int nonblocking)1771 static int __vb2_wait_for_done_vb(struct vb2_queue *q, int nonblocking)
1772 {
1773 	/*
1774 	 * All operations on vb_done_list are performed under done_lock
1775 	 * spinlock protection. However, buffers may be removed from
1776 	 * it and returned to userspace only while holding both driver's
1777 	 * lock and the done_lock spinlock. Thus we can be sure that as
1778 	 * long as we hold the driver's lock, the list will remain not
1779 	 * empty if list_empty() check succeeds.
1780 	 */
1781 
1782 	for (;;) {
1783 		int ret;
1784 
1785 		if (q->waiting_in_dqbuf) {
1786 			dprintk(q, 1, "another dup()ped fd is waiting for a buffer\n");
1787 			return -EBUSY;
1788 		}
1789 
1790 		if (!q->streaming) {
1791 			dprintk(q, 1, "streaming off, will not wait for buffers\n");
1792 			return -EINVAL;
1793 		}
1794 
1795 		if (q->error) {
1796 			dprintk(q, 1, "Queue in error state, will not wait for buffers\n");
1797 			return -EIO;
1798 		}
1799 
1800 		if (q->last_buffer_dequeued) {
1801 			dprintk(q, 3, "last buffer dequeued already, will not wait for buffers\n");
1802 			return -EPIPE;
1803 		}
1804 
1805 		if (!list_empty(&q->done_list)) {
1806 			/*
1807 			 * Found a buffer that we were waiting for.
1808 			 */
1809 			break;
1810 		}
1811 
1812 		if (nonblocking) {
1813 			dprintk(q, 3, "nonblocking and no buffers to dequeue, will not wait\n");
1814 			return -EAGAIN;
1815 		}
1816 
1817 		q->waiting_in_dqbuf = 1;
1818 		/*
1819 		 * We are streaming and blocking, wait for another buffer to
1820 		 * become ready or for streamoff. Driver's lock is released to
1821 		 * allow streamoff or qbuf to be called while waiting.
1822 		 */
1823 		call_void_qop(q, wait_prepare, q);
1824 
1825 		/*
1826 		 * All locks have been released, it is safe to sleep now.
1827 		 */
1828 		dprintk(q, 3, "will sleep waiting for buffers\n");
1829 		ret = wait_event_interruptible(q->done_wq,
1830 				!list_empty(&q->done_list) || !q->streaming ||
1831 				q->error);
1832 
1833 		/*
1834 		 * We need to reevaluate both conditions again after reacquiring
1835 		 * the locks or return an error if one occurred.
1836 		 */
1837 		call_void_qop(q, wait_finish, q);
1838 		q->waiting_in_dqbuf = 0;
1839 		if (ret) {
1840 			dprintk(q, 1, "sleep was interrupted\n");
1841 			return ret;
1842 		}
1843 	}
1844 	return 0;
1845 }
1846 
1847 /*
1848  * __vb2_get_done_vb() - get a buffer ready for dequeuing
1849  *
1850  * Will sleep if required for nonblocking == false.
1851  */
__vb2_get_done_vb(struct vb2_queue * q,struct vb2_buffer ** vb,void * pb,int nonblocking)1852 static int __vb2_get_done_vb(struct vb2_queue *q, struct vb2_buffer **vb,
1853 			     void *pb, int nonblocking)
1854 {
1855 	unsigned long flags;
1856 	int ret = 0;
1857 
1858 	/*
1859 	 * Wait for at least one buffer to become available on the done_list.
1860 	 */
1861 	ret = __vb2_wait_for_done_vb(q, nonblocking);
1862 	if (ret)
1863 		return ret;
1864 
1865 	/*
1866 	 * Driver's lock has been held since we last verified that done_list
1867 	 * is not empty, so no need for another list_empty(done_list) check.
1868 	 */
1869 	spin_lock_irqsave(&q->done_lock, flags);
1870 	*vb = list_first_entry(&q->done_list, struct vb2_buffer, done_entry);
1871 	/*
1872 	 * Only remove the buffer from done_list if all planes can be
1873 	 * handled. Some cases such as V4L2 file I/O and DVB have pb
1874 	 * == NULL; skip the check then as there's nothing to verify.
1875 	 */
1876 	if (pb)
1877 		ret = call_bufop(q, verify_planes_array, *vb, pb);
1878 	if (!ret)
1879 		list_del(&(*vb)->done_entry);
1880 	spin_unlock_irqrestore(&q->done_lock, flags);
1881 
1882 	return ret;
1883 }
1884 
vb2_wait_for_all_buffers(struct vb2_queue * q)1885 int vb2_wait_for_all_buffers(struct vb2_queue *q)
1886 {
1887 	if (!q->streaming) {
1888 		dprintk(q, 1, "streaming off, will not wait for buffers\n");
1889 		return -EINVAL;
1890 	}
1891 
1892 	if (q->start_streaming_called)
1893 		wait_event(q->done_wq, !atomic_read(&q->owned_by_drv_count));
1894 	return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(vb2_wait_for_all_buffers);
1897 
1898 /*
1899  * __vb2_dqbuf() - bring back the buffer to the DEQUEUED state
1900  */
__vb2_dqbuf(struct vb2_buffer * vb)1901 static void __vb2_dqbuf(struct vb2_buffer *vb)
1902 {
1903 	struct vb2_queue *q = vb->vb2_queue;
1904 
1905 	/* nothing to do if the buffer is already dequeued */
1906 	if (vb->state == VB2_BUF_STATE_DEQUEUED)
1907 		return;
1908 
1909 	vb->state = VB2_BUF_STATE_DEQUEUED;
1910 
1911 	call_void_bufop(q, init_buffer, vb);
1912 }
1913 
vb2_core_dqbuf(struct vb2_queue * q,unsigned int * pindex,void * pb,bool nonblocking)1914 int vb2_core_dqbuf(struct vb2_queue *q, unsigned int *pindex, void *pb,
1915 		   bool nonblocking)
1916 {
1917 	struct vb2_buffer *vb = NULL;
1918 	int ret;
1919 
1920 	ret = __vb2_get_done_vb(q, &vb, pb, nonblocking);
1921 	if (ret < 0)
1922 		return ret;
1923 
1924 	switch (vb->state) {
1925 	case VB2_BUF_STATE_DONE:
1926 		dprintk(q, 3, "returning done buffer\n");
1927 		break;
1928 	case VB2_BUF_STATE_ERROR:
1929 		dprintk(q, 3, "returning done buffer with errors\n");
1930 		break;
1931 	default:
1932 		dprintk(q, 1, "invalid buffer state %s\n",
1933 			vb2_state_name(vb->state));
1934 		return -EINVAL;
1935 	}
1936 
1937 	call_void_vb_qop(vb, buf_finish, vb);
1938 	vb->prepared = 0;
1939 
1940 	if (pindex)
1941 		*pindex = vb->index;
1942 
1943 	/* Fill buffer information for the userspace */
1944 	if (pb)
1945 		call_void_bufop(q, fill_user_buffer, vb, pb);
1946 
1947 	/* Remove from videobuf queue */
1948 	list_del(&vb->queued_entry);
1949 	q->queued_count--;
1950 
1951 	trace_vb2_dqbuf(q, vb);
1952 
1953 	/* go back to dequeued state */
1954 	__vb2_dqbuf(vb);
1955 
1956 	if (WARN_ON(vb->req_obj.req)) {
1957 		media_request_object_unbind(&vb->req_obj);
1958 		media_request_object_put(&vb->req_obj);
1959 	}
1960 	if (vb->request)
1961 		media_request_put(vb->request);
1962 	vb->request = NULL;
1963 
1964 	dprintk(q, 2, "dqbuf of buffer %d, state: %s\n",
1965 		vb->index, vb2_state_name(vb->state));
1966 
1967 	return 0;
1968 
1969 }
1970 EXPORT_SYMBOL_GPL(vb2_core_dqbuf);
1971 
1972 /*
1973  * __vb2_queue_cancel() - cancel and stop (pause) streaming
1974  *
1975  * Removes all queued buffers from driver's queue and all buffers queued by
1976  * userspace from videobuf's queue. Returns to state after reqbufs.
1977  */
__vb2_queue_cancel(struct vb2_queue * q)1978 static void __vb2_queue_cancel(struct vb2_queue *q)
1979 {
1980 	unsigned int i;
1981 
1982 	/*
1983 	 * Tell driver to stop all transactions and release all queued
1984 	 * buffers.
1985 	 */
1986 	if (q->start_streaming_called)
1987 		call_void_qop(q, stop_streaming, q);
1988 
1989 	/*
1990 	 * If you see this warning, then the driver isn't cleaning up properly
1991 	 * in stop_streaming(). See the stop_streaming() documentation in
1992 	 * videobuf2-core.h for more information how buffers should be returned
1993 	 * to vb2 in stop_streaming().
1994 	 */
1995 	if (WARN_ON(atomic_read(&q->owned_by_drv_count))) {
1996 		for (i = 0; i < q->num_buffers; ++i)
1997 			if (q->bufs[i]->state == VB2_BUF_STATE_ACTIVE) {
1998 				pr_warn("driver bug: stop_streaming operation is leaving buf %p in active state\n",
1999 					q->bufs[i]);
2000 				vb2_buffer_done(q->bufs[i], VB2_BUF_STATE_ERROR);
2001 			}
2002 		/* Must be zero now */
2003 		WARN_ON(atomic_read(&q->owned_by_drv_count));
2004 	}
2005 
2006 	q->streaming = 0;
2007 	q->start_streaming_called = 0;
2008 	q->queued_count = 0;
2009 	q->error = 0;
2010 	q->uses_requests = 0;
2011 	q->uses_qbuf = 0;
2012 
2013 	/*
2014 	 * Remove all buffers from videobuf's list...
2015 	 */
2016 	INIT_LIST_HEAD(&q->queued_list);
2017 	/*
2018 	 * ...and done list; userspace will not receive any buffers it
2019 	 * has not already dequeued before initiating cancel.
2020 	 */
2021 	INIT_LIST_HEAD(&q->done_list);
2022 	atomic_set(&q->owned_by_drv_count, 0);
2023 	wake_up_all(&q->done_wq);
2024 
2025 	/*
2026 	 * Reinitialize all buffers for next use.
2027 	 * Make sure to call buf_finish for any queued buffers. Normally
2028 	 * that's done in dqbuf, but that's not going to happen when we
2029 	 * cancel the whole queue. Note: this code belongs here, not in
2030 	 * __vb2_dqbuf() since in vb2_core_dqbuf() there is a critical
2031 	 * call to __fill_user_buffer() after buf_finish(). That order can't
2032 	 * be changed, so we can't move the buf_finish() to __vb2_dqbuf().
2033 	 */
2034 	for (i = 0; i < q->num_buffers; ++i) {
2035 		struct vb2_buffer *vb = q->bufs[i];
2036 		struct media_request *req = vb->req_obj.req;
2037 
2038 		/*
2039 		 * If a request is associated with this buffer, then
2040 		 * call buf_request_cancel() to give the driver to complete()
2041 		 * related request objects. Otherwise those objects would
2042 		 * never complete.
2043 		 */
2044 		if (req) {
2045 			enum media_request_state state;
2046 			unsigned long flags;
2047 
2048 			spin_lock_irqsave(&req->lock, flags);
2049 			state = req->state;
2050 			spin_unlock_irqrestore(&req->lock, flags);
2051 
2052 			if (state == MEDIA_REQUEST_STATE_QUEUED)
2053 				call_void_vb_qop(vb, buf_request_complete, vb);
2054 		}
2055 
2056 		__vb2_buf_mem_finish(vb);
2057 
2058 		if (vb->prepared) {
2059 			call_void_vb_qop(vb, buf_finish, vb);
2060 			vb->prepared = 0;
2061 		}
2062 		__vb2_dqbuf(vb);
2063 
2064 		if (vb->req_obj.req) {
2065 			media_request_object_unbind(&vb->req_obj);
2066 			media_request_object_put(&vb->req_obj);
2067 		}
2068 		if (vb->request)
2069 			media_request_put(vb->request);
2070 		vb->request = NULL;
2071 		vb->copied_timestamp = 0;
2072 	}
2073 }
2074 
vb2_core_streamon(struct vb2_queue * q,unsigned int type)2075 int vb2_core_streamon(struct vb2_queue *q, unsigned int type)
2076 {
2077 	int ret;
2078 
2079 	if (type != q->type) {
2080 		dprintk(q, 1, "invalid stream type\n");
2081 		return -EINVAL;
2082 	}
2083 
2084 	if (q->streaming) {
2085 		dprintk(q, 3, "already streaming\n");
2086 		return 0;
2087 	}
2088 
2089 	if (!q->num_buffers) {
2090 		dprintk(q, 1, "no buffers have been allocated\n");
2091 		return -EINVAL;
2092 	}
2093 
2094 	if (q->num_buffers < q->min_buffers_needed) {
2095 		dprintk(q, 1, "need at least %u allocated buffers\n",
2096 				q->min_buffers_needed);
2097 		return -EINVAL;
2098 	}
2099 
2100 	/*
2101 	 * Tell driver to start streaming provided sufficient buffers
2102 	 * are available.
2103 	 */
2104 	if (q->queued_count >= q->min_buffers_needed) {
2105 		ret = v4l_vb2q_enable_media_source(q);
2106 		if (ret)
2107 			return ret;
2108 		ret = vb2_start_streaming(q);
2109 		if (ret)
2110 			return ret;
2111 	}
2112 
2113 	q->streaming = 1;
2114 
2115 	dprintk(q, 3, "successful\n");
2116 	return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(vb2_core_streamon);
2119 
vb2_queue_error(struct vb2_queue * q)2120 void vb2_queue_error(struct vb2_queue *q)
2121 {
2122 	q->error = 1;
2123 
2124 	wake_up_all(&q->done_wq);
2125 }
2126 EXPORT_SYMBOL_GPL(vb2_queue_error);
2127 
vb2_core_streamoff(struct vb2_queue * q,unsigned int type)2128 int vb2_core_streamoff(struct vb2_queue *q, unsigned int type)
2129 {
2130 	if (type != q->type) {
2131 		dprintk(q, 1, "invalid stream type\n");
2132 		return -EINVAL;
2133 	}
2134 
2135 	/*
2136 	 * Cancel will pause streaming and remove all buffers from the driver
2137 	 * and videobuf, effectively returning control over them to userspace.
2138 	 *
2139 	 * Note that we do this even if q->streaming == 0: if you prepare or
2140 	 * queue buffers, and then call streamoff without ever having called
2141 	 * streamon, you would still expect those buffers to be returned to
2142 	 * their normal dequeued state.
2143 	 */
2144 	__vb2_queue_cancel(q);
2145 	q->waiting_for_buffers = !q->is_output;
2146 	q->last_buffer_dequeued = false;
2147 
2148 	dprintk(q, 3, "successful\n");
2149 	return 0;
2150 }
2151 EXPORT_SYMBOL_GPL(vb2_core_streamoff);
2152 
2153 /*
2154  * __find_plane_by_offset() - find plane associated with the given offset off
2155  */
__find_plane_by_offset(struct vb2_queue * q,unsigned long off,unsigned int * _buffer,unsigned int * _plane)2156 static int __find_plane_by_offset(struct vb2_queue *q, unsigned long off,
2157 			unsigned int *_buffer, unsigned int *_plane)
2158 {
2159 	struct vb2_buffer *vb;
2160 	unsigned int buffer, plane;
2161 
2162 	/*
2163 	 * Sanity checks to ensure the lock is held, MEMORY_MMAP is
2164 	 * used and fileio isn't active.
2165 	 */
2166 	lockdep_assert_held(&q->mmap_lock);
2167 
2168 	if (q->memory != VB2_MEMORY_MMAP) {
2169 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2170 		return -EINVAL;
2171 	}
2172 
2173 	if (vb2_fileio_is_active(q)) {
2174 		dprintk(q, 1, "file io in progress\n");
2175 		return -EBUSY;
2176 	}
2177 
2178 	/*
2179 	 * Go over all buffers and their planes, comparing the given offset
2180 	 * with an offset assigned to each plane. If a match is found,
2181 	 * return its buffer and plane numbers.
2182 	 */
2183 	for (buffer = 0; buffer < q->num_buffers; ++buffer) {
2184 		vb = q->bufs[buffer];
2185 
2186 		for (plane = 0; plane < vb->num_planes; ++plane) {
2187 			if (vb->planes[plane].m.offset == off) {
2188 				*_buffer = buffer;
2189 				*_plane = plane;
2190 				return 0;
2191 			}
2192 		}
2193 	}
2194 
2195 	return -EINVAL;
2196 }
2197 
vb2_core_expbuf(struct vb2_queue * q,int * fd,unsigned int type,unsigned int index,unsigned int plane,unsigned int flags)2198 int vb2_core_expbuf(struct vb2_queue *q, int *fd, unsigned int type,
2199 		unsigned int index, unsigned int plane, unsigned int flags)
2200 {
2201 	struct vb2_buffer *vb = NULL;
2202 	struct vb2_plane *vb_plane;
2203 	int ret;
2204 	struct dma_buf *dbuf;
2205 
2206 	if (q->memory != VB2_MEMORY_MMAP) {
2207 		dprintk(q, 1, "queue is not currently set up for mmap\n");
2208 		return -EINVAL;
2209 	}
2210 
2211 	if (!q->mem_ops->get_dmabuf) {
2212 		dprintk(q, 1, "queue does not support DMA buffer exporting\n");
2213 		return -EINVAL;
2214 	}
2215 
2216 	if (flags & ~(O_CLOEXEC | O_ACCMODE)) {
2217 		dprintk(q, 1, "queue does support only O_CLOEXEC and access mode flags\n");
2218 		return -EINVAL;
2219 	}
2220 
2221 	if (type != q->type) {
2222 		dprintk(q, 1, "invalid buffer type\n");
2223 		return -EINVAL;
2224 	}
2225 
2226 	if (index >= q->num_buffers) {
2227 		dprintk(q, 1, "buffer index out of range\n");
2228 		return -EINVAL;
2229 	}
2230 
2231 	vb = q->bufs[index];
2232 
2233 	if (plane >= vb->num_planes) {
2234 		dprintk(q, 1, "buffer plane out of range\n");
2235 		return -EINVAL;
2236 	}
2237 
2238 	if (vb2_fileio_is_active(q)) {
2239 		dprintk(q, 1, "expbuf: file io in progress\n");
2240 		return -EBUSY;
2241 	}
2242 
2243 	vb_plane = &vb->planes[plane];
2244 
2245 	dbuf = call_ptr_memop(get_dmabuf,
2246 			      vb,
2247 			      vb_plane->mem_priv,
2248 			      flags & O_ACCMODE);
2249 	if (IS_ERR_OR_NULL(dbuf)) {
2250 		dprintk(q, 1, "failed to export buffer %d, plane %d\n",
2251 			index, plane);
2252 		return -EINVAL;
2253 	}
2254 
2255 	ret = dma_buf_fd(dbuf, flags & ~O_ACCMODE);
2256 	if (ret < 0) {
2257 		dprintk(q, 3, "buffer %d, plane %d failed to export (%d)\n",
2258 			index, plane, ret);
2259 		dma_buf_put(dbuf);
2260 		return ret;
2261 	}
2262 
2263 	dprintk(q, 3, "buffer %d, plane %d exported as %d descriptor\n",
2264 		index, plane, ret);
2265 	*fd = ret;
2266 
2267 	return 0;
2268 }
2269 EXPORT_SYMBOL_GPL(vb2_core_expbuf);
2270 
vb2_mmap(struct vb2_queue * q,struct vm_area_struct * vma)2271 int vb2_mmap(struct vb2_queue *q, struct vm_area_struct *vma)
2272 {
2273 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
2274 	struct vb2_buffer *vb;
2275 	unsigned int buffer = 0, plane = 0;
2276 	int ret;
2277 	unsigned long length;
2278 
2279 	/*
2280 	 * Check memory area access mode.
2281 	 */
2282 	if (!(vma->vm_flags & VM_SHARED)) {
2283 		dprintk(q, 1, "invalid vma flags, VM_SHARED needed\n");
2284 		return -EINVAL;
2285 	}
2286 	if (q->is_output) {
2287 		if (!(vma->vm_flags & VM_WRITE)) {
2288 			dprintk(q, 1, "invalid vma flags, VM_WRITE needed\n");
2289 			return -EINVAL;
2290 		}
2291 	} else {
2292 		if (!(vma->vm_flags & VM_READ)) {
2293 			dprintk(q, 1, "invalid vma flags, VM_READ needed\n");
2294 			return -EINVAL;
2295 		}
2296 	}
2297 
2298 	mutex_lock(&q->mmap_lock);
2299 
2300 	/*
2301 	 * Find the plane corresponding to the offset passed by userspace. This
2302 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2303 	 */
2304 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
2305 	if (ret)
2306 		goto unlock;
2307 
2308 	vb = q->bufs[buffer];
2309 
2310 	/*
2311 	 * MMAP requires page_aligned buffers.
2312 	 * The buffer length was page_aligned at __vb2_buf_mem_alloc(),
2313 	 * so, we need to do the same here.
2314 	 */
2315 	length = PAGE_ALIGN(vb->planes[plane].length);
2316 	if (length < (vma->vm_end - vma->vm_start)) {
2317 		dprintk(q, 1,
2318 			"MMAP invalid, as it would overflow buffer length\n");
2319 		ret = -EINVAL;
2320 		goto unlock;
2321 	}
2322 
2323 	/*
2324 	 * vm_pgoff is treated in V4L2 API as a 'cookie' to select a buffer,
2325 	 * not as a in-buffer offset. We always want to mmap a whole buffer
2326 	 * from its beginning.
2327 	 */
2328 	vma->vm_pgoff = 0;
2329 
2330 	ret = call_memop(vb, mmap, vb->planes[plane].mem_priv, vma);
2331 
2332 unlock:
2333 	mutex_unlock(&q->mmap_lock);
2334 	if (ret)
2335 		return ret;
2336 
2337 	dprintk(q, 3, "buffer %d, plane %d successfully mapped\n", buffer, plane);
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(vb2_mmap);
2341 
2342 #ifndef CONFIG_MMU
vb2_get_unmapped_area(struct vb2_queue * q,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2343 unsigned long vb2_get_unmapped_area(struct vb2_queue *q,
2344 				    unsigned long addr,
2345 				    unsigned long len,
2346 				    unsigned long pgoff,
2347 				    unsigned long flags)
2348 {
2349 	unsigned long off = pgoff << PAGE_SHIFT;
2350 	struct vb2_buffer *vb;
2351 	unsigned int buffer, plane;
2352 	void *vaddr;
2353 	int ret;
2354 
2355 	mutex_lock(&q->mmap_lock);
2356 
2357 	/*
2358 	 * Find the plane corresponding to the offset passed by userspace. This
2359 	 * will return an error if not MEMORY_MMAP or file I/O is in progress.
2360 	 */
2361 	ret = __find_plane_by_offset(q, off, &buffer, &plane);
2362 	if (ret)
2363 		goto unlock;
2364 
2365 	vb = q->bufs[buffer];
2366 
2367 	vaddr = vb2_plane_vaddr(vb, plane);
2368 	mutex_unlock(&q->mmap_lock);
2369 	return vaddr ? (unsigned long)vaddr : -EINVAL;
2370 
2371 unlock:
2372 	mutex_unlock(&q->mmap_lock);
2373 	return ret;
2374 }
2375 EXPORT_SYMBOL_GPL(vb2_get_unmapped_area);
2376 #endif
2377 
vb2_core_queue_init(struct vb2_queue * q)2378 int vb2_core_queue_init(struct vb2_queue *q)
2379 {
2380 	/*
2381 	 * Sanity check
2382 	 */
2383 	if (WARN_ON(!q)			  ||
2384 	    WARN_ON(!q->ops)		  ||
2385 	    WARN_ON(!q->mem_ops)	  ||
2386 	    WARN_ON(!q->type)		  ||
2387 	    WARN_ON(!q->io_modes)	  ||
2388 	    WARN_ON(!q->ops->queue_setup) ||
2389 	    WARN_ON(!q->ops->buf_queue))
2390 		return -EINVAL;
2391 
2392 	if (WARN_ON(q->requires_requests && !q->supports_requests))
2393 		return -EINVAL;
2394 
2395 	INIT_LIST_HEAD(&q->queued_list);
2396 	INIT_LIST_HEAD(&q->done_list);
2397 	spin_lock_init(&q->done_lock);
2398 	mutex_init(&q->mmap_lock);
2399 	init_waitqueue_head(&q->done_wq);
2400 
2401 	q->memory = VB2_MEMORY_UNKNOWN;
2402 
2403 	if (q->buf_struct_size == 0)
2404 		q->buf_struct_size = sizeof(struct vb2_buffer);
2405 
2406 	if (q->bidirectional)
2407 		q->dma_dir = DMA_BIDIRECTIONAL;
2408 	else
2409 		q->dma_dir = q->is_output ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2410 
2411 	if (q->name[0] == '\0')
2412 		snprintf(q->name, sizeof(q->name), "%s-%p",
2413 			 q->is_output ? "out" : "cap", q);
2414 
2415 	return 0;
2416 }
2417 EXPORT_SYMBOL_GPL(vb2_core_queue_init);
2418 
2419 static int __vb2_init_fileio(struct vb2_queue *q, int read);
2420 static int __vb2_cleanup_fileio(struct vb2_queue *q);
vb2_core_queue_release(struct vb2_queue * q)2421 void vb2_core_queue_release(struct vb2_queue *q)
2422 {
2423 	__vb2_cleanup_fileio(q);
2424 	__vb2_queue_cancel(q);
2425 	mutex_lock(&q->mmap_lock);
2426 	__vb2_queue_free(q, q->num_buffers);
2427 	mutex_unlock(&q->mmap_lock);
2428 }
2429 EXPORT_SYMBOL_GPL(vb2_core_queue_release);
2430 
vb2_core_poll(struct vb2_queue * q,struct file * file,poll_table * wait)2431 __poll_t vb2_core_poll(struct vb2_queue *q, struct file *file,
2432 		poll_table *wait)
2433 {
2434 	__poll_t req_events = poll_requested_events(wait);
2435 	struct vb2_buffer *vb = NULL;
2436 	unsigned long flags;
2437 
2438 	/*
2439 	 * poll_wait() MUST be called on the first invocation on all the
2440 	 * potential queues of interest, even if we are not interested in their
2441 	 * events during this first call. Failure to do so will result in
2442 	 * queue's events to be ignored because the poll_table won't be capable
2443 	 * of adding new wait queues thereafter.
2444 	 */
2445 	poll_wait(file, &q->done_wq, wait);
2446 
2447 	if (!q->is_output && !(req_events & (EPOLLIN | EPOLLRDNORM)))
2448 		return 0;
2449 	if (q->is_output && !(req_events & (EPOLLOUT | EPOLLWRNORM)))
2450 		return 0;
2451 
2452 	/*
2453 	 * Start file I/O emulator only if streaming API has not been used yet.
2454 	 */
2455 	if (q->num_buffers == 0 && !vb2_fileio_is_active(q)) {
2456 		if (!q->is_output && (q->io_modes & VB2_READ) &&
2457 				(req_events & (EPOLLIN | EPOLLRDNORM))) {
2458 			if (__vb2_init_fileio(q, 1))
2459 				return EPOLLERR;
2460 		}
2461 		if (q->is_output && (q->io_modes & VB2_WRITE) &&
2462 				(req_events & (EPOLLOUT | EPOLLWRNORM))) {
2463 			if (__vb2_init_fileio(q, 0))
2464 				return EPOLLERR;
2465 			/*
2466 			 * Write to OUTPUT queue can be done immediately.
2467 			 */
2468 			return EPOLLOUT | EPOLLWRNORM;
2469 		}
2470 	}
2471 
2472 	/*
2473 	 * There is nothing to wait for if the queue isn't streaming, or if the
2474 	 * error flag is set.
2475 	 */
2476 	if (!vb2_is_streaming(q) || q->error)
2477 		return EPOLLERR;
2478 
2479 	/*
2480 	 * If this quirk is set and QBUF hasn't been called yet then
2481 	 * return EPOLLERR as well. This only affects capture queues, output
2482 	 * queues will always initialize waiting_for_buffers to false.
2483 	 * This quirk is set by V4L2 for backwards compatibility reasons.
2484 	 */
2485 	if (q->quirk_poll_must_check_waiting_for_buffers &&
2486 	    q->waiting_for_buffers && (req_events & (EPOLLIN | EPOLLRDNORM)))
2487 		return EPOLLERR;
2488 
2489 	/*
2490 	 * For output streams you can call write() as long as there are fewer
2491 	 * buffers queued than there are buffers available.
2492 	 */
2493 	if (q->is_output && q->fileio && q->queued_count < q->num_buffers)
2494 		return EPOLLOUT | EPOLLWRNORM;
2495 
2496 	if (list_empty(&q->done_list)) {
2497 		/*
2498 		 * If the last buffer was dequeued from a capture queue,
2499 		 * return immediately. DQBUF will return -EPIPE.
2500 		 */
2501 		if (q->last_buffer_dequeued)
2502 			return EPOLLIN | EPOLLRDNORM;
2503 	}
2504 
2505 	/*
2506 	 * Take first buffer available for dequeuing.
2507 	 */
2508 	spin_lock_irqsave(&q->done_lock, flags);
2509 	if (!list_empty(&q->done_list))
2510 		vb = list_first_entry(&q->done_list, struct vb2_buffer,
2511 					done_entry);
2512 	spin_unlock_irqrestore(&q->done_lock, flags);
2513 
2514 	if (vb && (vb->state == VB2_BUF_STATE_DONE
2515 			|| vb->state == VB2_BUF_STATE_ERROR)) {
2516 		return (q->is_output) ?
2517 				EPOLLOUT | EPOLLWRNORM :
2518 				EPOLLIN | EPOLLRDNORM;
2519 	}
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(vb2_core_poll);
2523 
2524 /*
2525  * struct vb2_fileio_buf - buffer context used by file io emulator
2526  *
2527  * vb2 provides a compatibility layer and emulator of file io (read and
2528  * write) calls on top of streaming API. This structure is used for
2529  * tracking context related to the buffers.
2530  */
2531 struct vb2_fileio_buf {
2532 	void *vaddr;
2533 	unsigned int size;
2534 	unsigned int pos;
2535 	unsigned int queued:1;
2536 };
2537 
2538 /*
2539  * struct vb2_fileio_data - queue context used by file io emulator
2540  *
2541  * @cur_index:	the index of the buffer currently being read from or
2542  *		written to. If equal to q->num_buffers then a new buffer
2543  *		must be dequeued.
2544  * @initial_index: in the read() case all buffers are queued up immediately
2545  *		in __vb2_init_fileio() and __vb2_perform_fileio() just cycles
2546  *		buffers. However, in the write() case no buffers are initially
2547  *		queued, instead whenever a buffer is full it is queued up by
2548  *		__vb2_perform_fileio(). Only once all available buffers have
2549  *		been queued up will __vb2_perform_fileio() start to dequeue
2550  *		buffers. This means that initially __vb2_perform_fileio()
2551  *		needs to know what buffer index to use when it is queuing up
2552  *		the buffers for the first time. That initial index is stored
2553  *		in this field. Once it is equal to q->num_buffers all
2554  *		available buffers have been queued and __vb2_perform_fileio()
2555  *		should start the normal dequeue/queue cycle.
2556  *
2557  * vb2 provides a compatibility layer and emulator of file io (read and
2558  * write) calls on top of streaming API. For proper operation it required
2559  * this structure to save the driver state between each call of the read
2560  * or write function.
2561  */
2562 struct vb2_fileio_data {
2563 	unsigned int count;
2564 	unsigned int type;
2565 	unsigned int memory;
2566 	struct vb2_fileio_buf bufs[VB2_MAX_FRAME];
2567 	unsigned int cur_index;
2568 	unsigned int initial_index;
2569 	unsigned int q_count;
2570 	unsigned int dq_count;
2571 	unsigned read_once:1;
2572 	unsigned write_immediately:1;
2573 };
2574 
2575 /*
2576  * __vb2_init_fileio() - initialize file io emulator
2577  * @q:		videobuf2 queue
2578  * @read:	mode selector (1 means read, 0 means write)
2579  */
__vb2_init_fileio(struct vb2_queue * q,int read)2580 static int __vb2_init_fileio(struct vb2_queue *q, int read)
2581 {
2582 	struct vb2_fileio_data *fileio;
2583 	int i, ret;
2584 	unsigned int count = 0;
2585 
2586 	/*
2587 	 * Sanity check
2588 	 */
2589 	if (WARN_ON((read && !(q->io_modes & VB2_READ)) ||
2590 		    (!read && !(q->io_modes & VB2_WRITE))))
2591 		return -EINVAL;
2592 
2593 	/*
2594 	 * Check if device supports mapping buffers to kernel virtual space.
2595 	 */
2596 	if (!q->mem_ops->vaddr)
2597 		return -EBUSY;
2598 
2599 	/*
2600 	 * Check if streaming api has not been already activated.
2601 	 */
2602 	if (q->streaming || q->num_buffers > 0)
2603 		return -EBUSY;
2604 
2605 	/*
2606 	 * Start with count 1, driver can increase it in queue_setup()
2607 	 */
2608 	count = 1;
2609 
2610 	dprintk(q, 3, "setting up file io: mode %s, count %d, read_once %d, write_immediately %d\n",
2611 		(read) ? "read" : "write", count, q->fileio_read_once,
2612 		q->fileio_write_immediately);
2613 
2614 	fileio = kzalloc(sizeof(*fileio), GFP_KERNEL);
2615 	if (fileio == NULL)
2616 		return -ENOMEM;
2617 
2618 	fileio->read_once = q->fileio_read_once;
2619 	fileio->write_immediately = q->fileio_write_immediately;
2620 
2621 	/*
2622 	 * Request buffers and use MMAP type to force driver
2623 	 * to allocate buffers by itself.
2624 	 */
2625 	fileio->count = count;
2626 	fileio->memory = VB2_MEMORY_MMAP;
2627 	fileio->type = q->type;
2628 	q->fileio = fileio;
2629 	ret = vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2630 	if (ret)
2631 		goto err_kfree;
2632 
2633 	/*
2634 	 * Check if plane_count is correct
2635 	 * (multiplane buffers are not supported).
2636 	 */
2637 	if (q->bufs[0]->num_planes != 1) {
2638 		ret = -EBUSY;
2639 		goto err_reqbufs;
2640 	}
2641 
2642 	/*
2643 	 * Get kernel address of each buffer.
2644 	 */
2645 	for (i = 0; i < q->num_buffers; i++) {
2646 		fileio->bufs[i].vaddr = vb2_plane_vaddr(q->bufs[i], 0);
2647 		if (fileio->bufs[i].vaddr == NULL) {
2648 			ret = -EINVAL;
2649 			goto err_reqbufs;
2650 		}
2651 		fileio->bufs[i].size = vb2_plane_size(q->bufs[i], 0);
2652 	}
2653 
2654 	/*
2655 	 * Read mode requires pre queuing of all buffers.
2656 	 */
2657 	if (read) {
2658 		/*
2659 		 * Queue all buffers.
2660 		 */
2661 		for (i = 0; i < q->num_buffers; i++) {
2662 			ret = vb2_core_qbuf(q, i, NULL, NULL);
2663 			if (ret)
2664 				goto err_reqbufs;
2665 			fileio->bufs[i].queued = 1;
2666 		}
2667 		/*
2668 		 * All buffers have been queued, so mark that by setting
2669 		 * initial_index to q->num_buffers
2670 		 */
2671 		fileio->initial_index = q->num_buffers;
2672 		fileio->cur_index = q->num_buffers;
2673 	}
2674 
2675 	/*
2676 	 * Start streaming.
2677 	 */
2678 	ret = vb2_core_streamon(q, q->type);
2679 	if (ret)
2680 		goto err_reqbufs;
2681 
2682 	return ret;
2683 
2684 err_reqbufs:
2685 	fileio->count = 0;
2686 	vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2687 
2688 err_kfree:
2689 	q->fileio = NULL;
2690 	kfree(fileio);
2691 	return ret;
2692 }
2693 
2694 /*
2695  * __vb2_cleanup_fileio() - free resourced used by file io emulator
2696  * @q:		videobuf2 queue
2697  */
__vb2_cleanup_fileio(struct vb2_queue * q)2698 static int __vb2_cleanup_fileio(struct vb2_queue *q)
2699 {
2700 	struct vb2_fileio_data *fileio = q->fileio;
2701 
2702 	if (fileio) {
2703 		vb2_core_streamoff(q, q->type);
2704 		q->fileio = NULL;
2705 		fileio->count = 0;
2706 		vb2_core_reqbufs(q, fileio->memory, &fileio->count);
2707 		kfree(fileio);
2708 		dprintk(q, 3, "file io emulator closed\n");
2709 	}
2710 	return 0;
2711 }
2712 
2713 /*
2714  * __vb2_perform_fileio() - perform a single file io (read or write) operation
2715  * @q:		videobuf2 queue
2716  * @data:	pointed to target userspace buffer
2717  * @count:	number of bytes to read or write
2718  * @ppos:	file handle position tracking pointer
2719  * @nonblock:	mode selector (1 means blocking calls, 0 means nonblocking)
2720  * @read:	access mode selector (1 means read, 0 means write)
2721  */
__vb2_perform_fileio(struct vb2_queue * q,char __user * data,size_t count,loff_t * ppos,int nonblock,int read)2722 static size_t __vb2_perform_fileio(struct vb2_queue *q, char __user *data, size_t count,
2723 		loff_t *ppos, int nonblock, int read)
2724 {
2725 	struct vb2_fileio_data *fileio;
2726 	struct vb2_fileio_buf *buf;
2727 	bool is_multiplanar = q->is_multiplanar;
2728 	/*
2729 	 * When using write() to write data to an output video node the vb2 core
2730 	 * should copy timestamps if V4L2_BUF_FLAG_TIMESTAMP_COPY is set. Nobody
2731 	 * else is able to provide this information with the write() operation.
2732 	 */
2733 	bool copy_timestamp = !read && q->copy_timestamp;
2734 	unsigned index;
2735 	int ret;
2736 
2737 	dprintk(q, 3, "mode %s, offset %ld, count %zd, %sblocking\n",
2738 		read ? "read" : "write", (long)*ppos, count,
2739 		nonblock ? "non" : "");
2740 
2741 	if (!data)
2742 		return -EINVAL;
2743 
2744 	if (q->waiting_in_dqbuf) {
2745 		dprintk(q, 3, "another dup()ped fd is %s\n",
2746 			read ? "reading" : "writing");
2747 		return -EBUSY;
2748 	}
2749 
2750 	/*
2751 	 * Initialize emulator on first call.
2752 	 */
2753 	if (!vb2_fileio_is_active(q)) {
2754 		ret = __vb2_init_fileio(q, read);
2755 		dprintk(q, 3, "vb2_init_fileio result: %d\n", ret);
2756 		if (ret)
2757 			return ret;
2758 	}
2759 	fileio = q->fileio;
2760 
2761 	/*
2762 	 * Check if we need to dequeue the buffer.
2763 	 */
2764 	index = fileio->cur_index;
2765 	if (index >= q->num_buffers) {
2766 		struct vb2_buffer *b;
2767 
2768 		/*
2769 		 * Call vb2_dqbuf to get buffer back.
2770 		 */
2771 		ret = vb2_core_dqbuf(q, &index, NULL, nonblock);
2772 		dprintk(q, 5, "vb2_dqbuf result: %d\n", ret);
2773 		if (ret)
2774 			return ret;
2775 		fileio->dq_count += 1;
2776 
2777 		fileio->cur_index = index;
2778 		buf = &fileio->bufs[index];
2779 		b = q->bufs[index];
2780 
2781 		/*
2782 		 * Get number of bytes filled by the driver
2783 		 */
2784 		buf->pos = 0;
2785 		buf->queued = 0;
2786 		buf->size = read ? vb2_get_plane_payload(q->bufs[index], 0)
2787 				 : vb2_plane_size(q->bufs[index], 0);
2788 		/* Compensate for data_offset on read in the multiplanar case. */
2789 		if (is_multiplanar && read &&
2790 				b->planes[0].data_offset < buf->size) {
2791 			buf->pos = b->planes[0].data_offset;
2792 			buf->size -= buf->pos;
2793 		}
2794 	} else {
2795 		buf = &fileio->bufs[index];
2796 	}
2797 
2798 	/*
2799 	 * Limit count on last few bytes of the buffer.
2800 	 */
2801 	if (buf->pos + count > buf->size) {
2802 		count = buf->size - buf->pos;
2803 		dprintk(q, 5, "reducing read count: %zd\n", count);
2804 	}
2805 
2806 	/*
2807 	 * Transfer data to userspace.
2808 	 */
2809 	dprintk(q, 3, "copying %zd bytes - buffer %d, offset %u\n",
2810 		count, index, buf->pos);
2811 	if (read)
2812 		ret = copy_to_user(data, buf->vaddr + buf->pos, count);
2813 	else
2814 		ret = copy_from_user(buf->vaddr + buf->pos, data, count);
2815 	if (ret) {
2816 		dprintk(q, 3, "error copying data\n");
2817 		return -EFAULT;
2818 	}
2819 
2820 	/*
2821 	 * Update counters.
2822 	 */
2823 	buf->pos += count;
2824 	*ppos += count;
2825 
2826 	/*
2827 	 * Queue next buffer if required.
2828 	 */
2829 	if (buf->pos == buf->size || (!read && fileio->write_immediately)) {
2830 		struct vb2_buffer *b = q->bufs[index];
2831 
2832 		/*
2833 		 * Check if this is the last buffer to read.
2834 		 */
2835 		if (read && fileio->read_once && fileio->dq_count == 1) {
2836 			dprintk(q, 3, "read limit reached\n");
2837 			return __vb2_cleanup_fileio(q);
2838 		}
2839 
2840 		/*
2841 		 * Call vb2_qbuf and give buffer to the driver.
2842 		 */
2843 		b->planes[0].bytesused = buf->pos;
2844 
2845 		if (copy_timestamp)
2846 			b->timestamp = ktime_get_ns();
2847 		ret = vb2_core_qbuf(q, index, NULL, NULL);
2848 		dprintk(q, 5, "vb2_dbuf result: %d\n", ret);
2849 		if (ret)
2850 			return ret;
2851 
2852 		/*
2853 		 * Buffer has been queued, update the status
2854 		 */
2855 		buf->pos = 0;
2856 		buf->queued = 1;
2857 		buf->size = vb2_plane_size(q->bufs[index], 0);
2858 		fileio->q_count += 1;
2859 		/*
2860 		 * If we are queuing up buffers for the first time, then
2861 		 * increase initial_index by one.
2862 		 */
2863 		if (fileio->initial_index < q->num_buffers)
2864 			fileio->initial_index++;
2865 		/*
2866 		 * The next buffer to use is either a buffer that's going to be
2867 		 * queued for the first time (initial_index < q->num_buffers)
2868 		 * or it is equal to q->num_buffers, meaning that the next
2869 		 * time we need to dequeue a buffer since we've now queued up
2870 		 * all the 'first time' buffers.
2871 		 */
2872 		fileio->cur_index = fileio->initial_index;
2873 	}
2874 
2875 	/*
2876 	 * Return proper number of bytes processed.
2877 	 */
2878 	if (ret == 0)
2879 		ret = count;
2880 	return ret;
2881 }
2882 
vb2_read(struct vb2_queue * q,char __user * data,size_t count,loff_t * ppos,int nonblocking)2883 size_t vb2_read(struct vb2_queue *q, char __user *data, size_t count,
2884 		loff_t *ppos, int nonblocking)
2885 {
2886 	return __vb2_perform_fileio(q, data, count, ppos, nonblocking, 1);
2887 }
2888 EXPORT_SYMBOL_GPL(vb2_read);
2889 
vb2_write(struct vb2_queue * q,const char __user * data,size_t count,loff_t * ppos,int nonblocking)2890 size_t vb2_write(struct vb2_queue *q, const char __user *data, size_t count,
2891 		loff_t *ppos, int nonblocking)
2892 {
2893 	return __vb2_perform_fileio(q, (char __user *) data, count,
2894 							ppos, nonblocking, 0);
2895 }
2896 EXPORT_SYMBOL_GPL(vb2_write);
2897 
2898 struct vb2_threadio_data {
2899 	struct task_struct *thread;
2900 	vb2_thread_fnc fnc;
2901 	void *priv;
2902 	bool stop;
2903 };
2904 
vb2_thread(void * data)2905 static int vb2_thread(void *data)
2906 {
2907 	struct vb2_queue *q = data;
2908 	struct vb2_threadio_data *threadio = q->threadio;
2909 	bool copy_timestamp = false;
2910 	unsigned prequeue = 0;
2911 	unsigned index = 0;
2912 	int ret = 0;
2913 
2914 	if (q->is_output) {
2915 		prequeue = q->num_buffers;
2916 		copy_timestamp = q->copy_timestamp;
2917 	}
2918 
2919 	set_freezable();
2920 
2921 	for (;;) {
2922 		struct vb2_buffer *vb;
2923 
2924 		/*
2925 		 * Call vb2_dqbuf to get buffer back.
2926 		 */
2927 		if (prequeue) {
2928 			vb = q->bufs[index++];
2929 			prequeue--;
2930 		} else {
2931 			call_void_qop(q, wait_finish, q);
2932 			if (!threadio->stop)
2933 				ret = vb2_core_dqbuf(q, &index, NULL, 0);
2934 			call_void_qop(q, wait_prepare, q);
2935 			dprintk(q, 5, "file io: vb2_dqbuf result: %d\n", ret);
2936 			if (!ret)
2937 				vb = q->bufs[index];
2938 		}
2939 		if (ret || threadio->stop)
2940 			break;
2941 		try_to_freeze();
2942 
2943 		if (vb->state != VB2_BUF_STATE_ERROR)
2944 			if (threadio->fnc(vb, threadio->priv))
2945 				break;
2946 		call_void_qop(q, wait_finish, q);
2947 		if (copy_timestamp)
2948 			vb->timestamp = ktime_get_ns();
2949 		if (!threadio->stop)
2950 			ret = vb2_core_qbuf(q, vb->index, NULL, NULL);
2951 		call_void_qop(q, wait_prepare, q);
2952 		if (ret || threadio->stop)
2953 			break;
2954 	}
2955 
2956 	/* Hmm, linux becomes *very* unhappy without this ... */
2957 	while (!kthread_should_stop()) {
2958 		set_current_state(TASK_INTERRUPTIBLE);
2959 		schedule();
2960 	}
2961 	return 0;
2962 }
2963 
2964 /*
2965  * This function should not be used for anything else but the videobuf2-dvb
2966  * support. If you think you have another good use-case for this, then please
2967  * contact the linux-media mailinglist first.
2968  */
vb2_thread_start(struct vb2_queue * q,vb2_thread_fnc fnc,void * priv,const char * thread_name)2969 int vb2_thread_start(struct vb2_queue *q, vb2_thread_fnc fnc, void *priv,
2970 		     const char *thread_name)
2971 {
2972 	struct vb2_threadio_data *threadio;
2973 	int ret = 0;
2974 
2975 	if (q->threadio)
2976 		return -EBUSY;
2977 	if (vb2_is_busy(q))
2978 		return -EBUSY;
2979 	if (WARN_ON(q->fileio))
2980 		return -EBUSY;
2981 
2982 	threadio = kzalloc(sizeof(*threadio), GFP_KERNEL);
2983 	if (threadio == NULL)
2984 		return -ENOMEM;
2985 	threadio->fnc = fnc;
2986 	threadio->priv = priv;
2987 
2988 	ret = __vb2_init_fileio(q, !q->is_output);
2989 	dprintk(q, 3, "file io: vb2_init_fileio result: %d\n", ret);
2990 	if (ret)
2991 		goto nomem;
2992 	q->threadio = threadio;
2993 	threadio->thread = kthread_run(vb2_thread, q, "vb2-%s", thread_name);
2994 	if (IS_ERR(threadio->thread)) {
2995 		ret = PTR_ERR(threadio->thread);
2996 		threadio->thread = NULL;
2997 		goto nothread;
2998 	}
2999 	return 0;
3000 
3001 nothread:
3002 	__vb2_cleanup_fileio(q);
3003 nomem:
3004 	kfree(threadio);
3005 	return ret;
3006 }
3007 EXPORT_SYMBOL_GPL(vb2_thread_start);
3008 
vb2_thread_stop(struct vb2_queue * q)3009 int vb2_thread_stop(struct vb2_queue *q)
3010 {
3011 	struct vb2_threadio_data *threadio = q->threadio;
3012 	int err;
3013 
3014 	if (threadio == NULL)
3015 		return 0;
3016 	threadio->stop = true;
3017 	/* Wake up all pending sleeps in the thread */
3018 	vb2_queue_error(q);
3019 	err = kthread_stop(threadio->thread);
3020 	__vb2_cleanup_fileio(q);
3021 	threadio->thread = NULL;
3022 	kfree(threadio);
3023 	q->threadio = NULL;
3024 	return err;
3025 }
3026 EXPORT_SYMBOL_GPL(vb2_thread_stop);
3027 
3028 MODULE_DESCRIPTION("Media buffer core framework");
3029 MODULE_AUTHOR("Pawel Osciak <pawel@osciak.com>, Marek Szyprowski");
3030 MODULE_LICENSE("GPL");
3031