1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
25
26 #include <linux/delay.h>
27 #include <linux/notifier.h>
28 #include <linux/panic_notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <clocksource/hyperv_timer.h>
37 #include "hyperv_vmbus.h"
38
39 struct vmbus_dynid {
40 struct list_head node;
41 struct hv_vmbus_device_id id;
42 };
43
44 static struct acpi_device *hv_acpi_dev;
45
46 static struct completion probe_event;
47
48 static int hyperv_cpuhp_online;
49
50 static void *hv_panic_page;
51
52 static long __percpu *vmbus_evt;
53
54 /* Values parsed from ACPI DSDT */
55 int vmbus_irq;
56 int vmbus_interrupt;
57
58 /*
59 * Boolean to control whether to report panic messages over Hyper-V.
60 *
61 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
62 */
63 static int sysctl_record_panic_msg = 1;
64
hyperv_report_reg(void)65 static int hyperv_report_reg(void)
66 {
67 return !sysctl_record_panic_msg || !hv_panic_page;
68 }
69
hyperv_panic_event(struct notifier_block * nb,unsigned long val,void * args)70 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
71 void *args)
72 {
73 struct pt_regs *regs;
74
75 vmbus_initiate_unload(true);
76
77 /*
78 * Hyper-V should be notified only once about a panic. If we will be
79 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
80 * here.
81 */
82 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
83 && hyperv_report_reg()) {
84 regs = current_pt_regs();
85 hyperv_report_panic(regs, val, false);
86 }
87 return NOTIFY_DONE;
88 }
89
hyperv_die_event(struct notifier_block * nb,unsigned long val,void * args)90 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
91 void *args)
92 {
93 struct die_args *die = args;
94 struct pt_regs *regs = die->regs;
95
96 /* Don't notify Hyper-V if the die event is other than oops */
97 if (val != DIE_OOPS)
98 return NOTIFY_DONE;
99
100 /*
101 * Hyper-V should be notified only once about a panic. If we will be
102 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
103 * here.
104 */
105 if (hyperv_report_reg())
106 hyperv_report_panic(regs, val, true);
107 return NOTIFY_DONE;
108 }
109
110 static struct notifier_block hyperv_die_block = {
111 .notifier_call = hyperv_die_event,
112 };
113 static struct notifier_block hyperv_panic_block = {
114 .notifier_call = hyperv_panic_event,
115 };
116
117 static const char *fb_mmio_name = "fb_range";
118 static struct resource *fb_mmio;
119 static struct resource *hyperv_mmio;
120 static DEFINE_MUTEX(hyperv_mmio_lock);
121
vmbus_exists(void)122 static int vmbus_exists(void)
123 {
124 if (hv_acpi_dev == NULL)
125 return -ENODEV;
126
127 return 0;
128 }
129
channel_monitor_group(const struct vmbus_channel * channel)130 static u8 channel_monitor_group(const struct vmbus_channel *channel)
131 {
132 return (u8)channel->offermsg.monitorid / 32;
133 }
134
channel_monitor_offset(const struct vmbus_channel * channel)135 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
136 {
137 return (u8)channel->offermsg.monitorid % 32;
138 }
139
channel_pending(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)140 static u32 channel_pending(const struct vmbus_channel *channel,
141 const struct hv_monitor_page *monitor_page)
142 {
143 u8 monitor_group = channel_monitor_group(channel);
144
145 return monitor_page->trigger_group[monitor_group].pending;
146 }
147
channel_latency(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)148 static u32 channel_latency(const struct vmbus_channel *channel,
149 const struct hv_monitor_page *monitor_page)
150 {
151 u8 monitor_group = channel_monitor_group(channel);
152 u8 monitor_offset = channel_monitor_offset(channel);
153
154 return monitor_page->latency[monitor_group][monitor_offset];
155 }
156
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)157 static u32 channel_conn_id(struct vmbus_channel *channel,
158 struct hv_monitor_page *monitor_page)
159 {
160 u8 monitor_group = channel_monitor_group(channel);
161 u8 monitor_offset = channel_monitor_offset(channel);
162
163 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
164 }
165
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)166 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
167 char *buf)
168 {
169 struct hv_device *hv_dev = device_to_hv_device(dev);
170
171 if (!hv_dev->channel)
172 return -ENODEV;
173 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
174 }
175 static DEVICE_ATTR_RO(id);
176
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)177 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
178 char *buf)
179 {
180 struct hv_device *hv_dev = device_to_hv_device(dev);
181
182 if (!hv_dev->channel)
183 return -ENODEV;
184 return sprintf(buf, "%d\n", hv_dev->channel->state);
185 }
186 static DEVICE_ATTR_RO(state);
187
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)188 static ssize_t monitor_id_show(struct device *dev,
189 struct device_attribute *dev_attr, char *buf)
190 {
191 struct hv_device *hv_dev = device_to_hv_device(dev);
192
193 if (!hv_dev->channel)
194 return -ENODEV;
195 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
196 }
197 static DEVICE_ATTR_RO(monitor_id);
198
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)199 static ssize_t class_id_show(struct device *dev,
200 struct device_attribute *dev_attr, char *buf)
201 {
202 struct hv_device *hv_dev = device_to_hv_device(dev);
203
204 if (!hv_dev->channel)
205 return -ENODEV;
206 return sprintf(buf, "{%pUl}\n",
207 &hv_dev->channel->offermsg.offer.if_type);
208 }
209 static DEVICE_ATTR_RO(class_id);
210
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)211 static ssize_t device_id_show(struct device *dev,
212 struct device_attribute *dev_attr, char *buf)
213 {
214 struct hv_device *hv_dev = device_to_hv_device(dev);
215
216 if (!hv_dev->channel)
217 return -ENODEV;
218 return sprintf(buf, "{%pUl}\n",
219 &hv_dev->channel->offermsg.offer.if_instance);
220 }
221 static DEVICE_ATTR_RO(device_id);
222
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)223 static ssize_t modalias_show(struct device *dev,
224 struct device_attribute *dev_attr, char *buf)
225 {
226 struct hv_device *hv_dev = device_to_hv_device(dev);
227
228 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
229 }
230 static DEVICE_ATTR_RO(modalias);
231
232 #ifdef CONFIG_NUMA
numa_node_show(struct device * dev,struct device_attribute * attr,char * buf)233 static ssize_t numa_node_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct hv_device *hv_dev = device_to_hv_device(dev);
237
238 if (!hv_dev->channel)
239 return -ENODEV;
240
241 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
242 }
243 static DEVICE_ATTR_RO(numa_node);
244 #endif
245
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)246 static ssize_t server_monitor_pending_show(struct device *dev,
247 struct device_attribute *dev_attr,
248 char *buf)
249 {
250 struct hv_device *hv_dev = device_to_hv_device(dev);
251
252 if (!hv_dev->channel)
253 return -ENODEV;
254 return sprintf(buf, "%d\n",
255 channel_pending(hv_dev->channel,
256 vmbus_connection.monitor_pages[0]));
257 }
258 static DEVICE_ATTR_RO(server_monitor_pending);
259
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)260 static ssize_t client_monitor_pending_show(struct device *dev,
261 struct device_attribute *dev_attr,
262 char *buf)
263 {
264 struct hv_device *hv_dev = device_to_hv_device(dev);
265
266 if (!hv_dev->channel)
267 return -ENODEV;
268 return sprintf(buf, "%d\n",
269 channel_pending(hv_dev->channel,
270 vmbus_connection.monitor_pages[1]));
271 }
272 static DEVICE_ATTR_RO(client_monitor_pending);
273
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)274 static ssize_t server_monitor_latency_show(struct device *dev,
275 struct device_attribute *dev_attr,
276 char *buf)
277 {
278 struct hv_device *hv_dev = device_to_hv_device(dev);
279
280 if (!hv_dev->channel)
281 return -ENODEV;
282 return sprintf(buf, "%d\n",
283 channel_latency(hv_dev->channel,
284 vmbus_connection.monitor_pages[0]));
285 }
286 static DEVICE_ATTR_RO(server_monitor_latency);
287
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)288 static ssize_t client_monitor_latency_show(struct device *dev,
289 struct device_attribute *dev_attr,
290 char *buf)
291 {
292 struct hv_device *hv_dev = device_to_hv_device(dev);
293
294 if (!hv_dev->channel)
295 return -ENODEV;
296 return sprintf(buf, "%d\n",
297 channel_latency(hv_dev->channel,
298 vmbus_connection.monitor_pages[1]));
299 }
300 static DEVICE_ATTR_RO(client_monitor_latency);
301
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)302 static ssize_t server_monitor_conn_id_show(struct device *dev,
303 struct device_attribute *dev_attr,
304 char *buf)
305 {
306 struct hv_device *hv_dev = device_to_hv_device(dev);
307
308 if (!hv_dev->channel)
309 return -ENODEV;
310 return sprintf(buf, "%d\n",
311 channel_conn_id(hv_dev->channel,
312 vmbus_connection.monitor_pages[0]));
313 }
314 static DEVICE_ATTR_RO(server_monitor_conn_id);
315
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)316 static ssize_t client_monitor_conn_id_show(struct device *dev,
317 struct device_attribute *dev_attr,
318 char *buf)
319 {
320 struct hv_device *hv_dev = device_to_hv_device(dev);
321
322 if (!hv_dev->channel)
323 return -ENODEV;
324 return sprintf(buf, "%d\n",
325 channel_conn_id(hv_dev->channel,
326 vmbus_connection.monitor_pages[1]));
327 }
328 static DEVICE_ATTR_RO(client_monitor_conn_id);
329
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)330 static ssize_t out_intr_mask_show(struct device *dev,
331 struct device_attribute *dev_attr, char *buf)
332 {
333 struct hv_device *hv_dev = device_to_hv_device(dev);
334 struct hv_ring_buffer_debug_info outbound;
335 int ret;
336
337 if (!hv_dev->channel)
338 return -ENODEV;
339
340 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
341 &outbound);
342 if (ret < 0)
343 return ret;
344
345 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
346 }
347 static DEVICE_ATTR_RO(out_intr_mask);
348
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)349 static ssize_t out_read_index_show(struct device *dev,
350 struct device_attribute *dev_attr, char *buf)
351 {
352 struct hv_device *hv_dev = device_to_hv_device(dev);
353 struct hv_ring_buffer_debug_info outbound;
354 int ret;
355
356 if (!hv_dev->channel)
357 return -ENODEV;
358
359 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
360 &outbound);
361 if (ret < 0)
362 return ret;
363 return sprintf(buf, "%d\n", outbound.current_read_index);
364 }
365 static DEVICE_ATTR_RO(out_read_index);
366
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)367 static ssize_t out_write_index_show(struct device *dev,
368 struct device_attribute *dev_attr,
369 char *buf)
370 {
371 struct hv_device *hv_dev = device_to_hv_device(dev);
372 struct hv_ring_buffer_debug_info outbound;
373 int ret;
374
375 if (!hv_dev->channel)
376 return -ENODEV;
377
378 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
379 &outbound);
380 if (ret < 0)
381 return ret;
382 return sprintf(buf, "%d\n", outbound.current_write_index);
383 }
384 static DEVICE_ATTR_RO(out_write_index);
385
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)386 static ssize_t out_read_bytes_avail_show(struct device *dev,
387 struct device_attribute *dev_attr,
388 char *buf)
389 {
390 struct hv_device *hv_dev = device_to_hv_device(dev);
391 struct hv_ring_buffer_debug_info outbound;
392 int ret;
393
394 if (!hv_dev->channel)
395 return -ENODEV;
396
397 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
398 &outbound);
399 if (ret < 0)
400 return ret;
401 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
402 }
403 static DEVICE_ATTR_RO(out_read_bytes_avail);
404
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)405 static ssize_t out_write_bytes_avail_show(struct device *dev,
406 struct device_attribute *dev_attr,
407 char *buf)
408 {
409 struct hv_device *hv_dev = device_to_hv_device(dev);
410 struct hv_ring_buffer_debug_info outbound;
411 int ret;
412
413 if (!hv_dev->channel)
414 return -ENODEV;
415
416 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
417 &outbound);
418 if (ret < 0)
419 return ret;
420 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
421 }
422 static DEVICE_ATTR_RO(out_write_bytes_avail);
423
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)424 static ssize_t in_intr_mask_show(struct device *dev,
425 struct device_attribute *dev_attr, char *buf)
426 {
427 struct hv_device *hv_dev = device_to_hv_device(dev);
428 struct hv_ring_buffer_debug_info inbound;
429 int ret;
430
431 if (!hv_dev->channel)
432 return -ENODEV;
433
434 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
435 if (ret < 0)
436 return ret;
437
438 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
439 }
440 static DEVICE_ATTR_RO(in_intr_mask);
441
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)442 static ssize_t in_read_index_show(struct device *dev,
443 struct device_attribute *dev_attr, char *buf)
444 {
445 struct hv_device *hv_dev = device_to_hv_device(dev);
446 struct hv_ring_buffer_debug_info inbound;
447 int ret;
448
449 if (!hv_dev->channel)
450 return -ENODEV;
451
452 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
453 if (ret < 0)
454 return ret;
455
456 return sprintf(buf, "%d\n", inbound.current_read_index);
457 }
458 static DEVICE_ATTR_RO(in_read_index);
459
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)460 static ssize_t in_write_index_show(struct device *dev,
461 struct device_attribute *dev_attr, char *buf)
462 {
463 struct hv_device *hv_dev = device_to_hv_device(dev);
464 struct hv_ring_buffer_debug_info inbound;
465 int ret;
466
467 if (!hv_dev->channel)
468 return -ENODEV;
469
470 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
471 if (ret < 0)
472 return ret;
473
474 return sprintf(buf, "%d\n", inbound.current_write_index);
475 }
476 static DEVICE_ATTR_RO(in_write_index);
477
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)478 static ssize_t in_read_bytes_avail_show(struct device *dev,
479 struct device_attribute *dev_attr,
480 char *buf)
481 {
482 struct hv_device *hv_dev = device_to_hv_device(dev);
483 struct hv_ring_buffer_debug_info inbound;
484 int ret;
485
486 if (!hv_dev->channel)
487 return -ENODEV;
488
489 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
490 if (ret < 0)
491 return ret;
492
493 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
494 }
495 static DEVICE_ATTR_RO(in_read_bytes_avail);
496
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)497 static ssize_t in_write_bytes_avail_show(struct device *dev,
498 struct device_attribute *dev_attr,
499 char *buf)
500 {
501 struct hv_device *hv_dev = device_to_hv_device(dev);
502 struct hv_ring_buffer_debug_info inbound;
503 int ret;
504
505 if (!hv_dev->channel)
506 return -ENODEV;
507
508 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
509 if (ret < 0)
510 return ret;
511
512 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
513 }
514 static DEVICE_ATTR_RO(in_write_bytes_avail);
515
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)516 static ssize_t channel_vp_mapping_show(struct device *dev,
517 struct device_attribute *dev_attr,
518 char *buf)
519 {
520 struct hv_device *hv_dev = device_to_hv_device(dev);
521 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
522 int buf_size = PAGE_SIZE, n_written, tot_written;
523 struct list_head *cur;
524
525 if (!channel)
526 return -ENODEV;
527
528 mutex_lock(&vmbus_connection.channel_mutex);
529
530 tot_written = snprintf(buf, buf_size, "%u:%u\n",
531 channel->offermsg.child_relid, channel->target_cpu);
532
533 list_for_each(cur, &channel->sc_list) {
534 if (tot_written >= buf_size - 1)
535 break;
536
537 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
538 n_written = scnprintf(buf + tot_written,
539 buf_size - tot_written,
540 "%u:%u\n",
541 cur_sc->offermsg.child_relid,
542 cur_sc->target_cpu);
543 tot_written += n_written;
544 }
545
546 mutex_unlock(&vmbus_connection.channel_mutex);
547
548 return tot_written;
549 }
550 static DEVICE_ATTR_RO(channel_vp_mapping);
551
vendor_show(struct device * dev,struct device_attribute * dev_attr,char * buf)552 static ssize_t vendor_show(struct device *dev,
553 struct device_attribute *dev_attr,
554 char *buf)
555 {
556 struct hv_device *hv_dev = device_to_hv_device(dev);
557
558 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
559 }
560 static DEVICE_ATTR_RO(vendor);
561
device_show(struct device * dev,struct device_attribute * dev_attr,char * buf)562 static ssize_t device_show(struct device *dev,
563 struct device_attribute *dev_attr,
564 char *buf)
565 {
566 struct hv_device *hv_dev = device_to_hv_device(dev);
567
568 return sprintf(buf, "0x%x\n", hv_dev->device_id);
569 }
570 static DEVICE_ATTR_RO(device);
571
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)572 static ssize_t driver_override_store(struct device *dev,
573 struct device_attribute *attr,
574 const char *buf, size_t count)
575 {
576 struct hv_device *hv_dev = device_to_hv_device(dev);
577 char *driver_override, *old, *cp;
578
579 /* We need to keep extra room for a newline */
580 if (count >= (PAGE_SIZE - 1))
581 return -EINVAL;
582
583 driver_override = kstrndup(buf, count, GFP_KERNEL);
584 if (!driver_override)
585 return -ENOMEM;
586
587 cp = strchr(driver_override, '\n');
588 if (cp)
589 *cp = '\0';
590
591 device_lock(dev);
592 old = hv_dev->driver_override;
593 if (strlen(driver_override)) {
594 hv_dev->driver_override = driver_override;
595 } else {
596 kfree(driver_override);
597 hv_dev->driver_override = NULL;
598 }
599 device_unlock(dev);
600
601 kfree(old);
602
603 return count;
604 }
605
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)606 static ssize_t driver_override_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
608 {
609 struct hv_device *hv_dev = device_to_hv_device(dev);
610 ssize_t len;
611
612 device_lock(dev);
613 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
614 device_unlock(dev);
615
616 return len;
617 }
618 static DEVICE_ATTR_RW(driver_override);
619
620 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
621 static struct attribute *vmbus_dev_attrs[] = {
622 &dev_attr_id.attr,
623 &dev_attr_state.attr,
624 &dev_attr_monitor_id.attr,
625 &dev_attr_class_id.attr,
626 &dev_attr_device_id.attr,
627 &dev_attr_modalias.attr,
628 #ifdef CONFIG_NUMA
629 &dev_attr_numa_node.attr,
630 #endif
631 &dev_attr_server_monitor_pending.attr,
632 &dev_attr_client_monitor_pending.attr,
633 &dev_attr_server_monitor_latency.attr,
634 &dev_attr_client_monitor_latency.attr,
635 &dev_attr_server_monitor_conn_id.attr,
636 &dev_attr_client_monitor_conn_id.attr,
637 &dev_attr_out_intr_mask.attr,
638 &dev_attr_out_read_index.attr,
639 &dev_attr_out_write_index.attr,
640 &dev_attr_out_read_bytes_avail.attr,
641 &dev_attr_out_write_bytes_avail.attr,
642 &dev_attr_in_intr_mask.attr,
643 &dev_attr_in_read_index.attr,
644 &dev_attr_in_write_index.attr,
645 &dev_attr_in_read_bytes_avail.attr,
646 &dev_attr_in_write_bytes_avail.attr,
647 &dev_attr_channel_vp_mapping.attr,
648 &dev_attr_vendor.attr,
649 &dev_attr_device.attr,
650 &dev_attr_driver_override.attr,
651 NULL,
652 };
653
654 /*
655 * Device-level attribute_group callback function. Returns the permission for
656 * each attribute, and returns 0 if an attribute is not visible.
657 */
vmbus_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)658 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
659 struct attribute *attr, int idx)
660 {
661 struct device *dev = kobj_to_dev(kobj);
662 const struct hv_device *hv_dev = device_to_hv_device(dev);
663
664 /* Hide the monitor attributes if the monitor mechanism is not used. */
665 if (!hv_dev->channel->offermsg.monitor_allocated &&
666 (attr == &dev_attr_monitor_id.attr ||
667 attr == &dev_attr_server_monitor_pending.attr ||
668 attr == &dev_attr_client_monitor_pending.attr ||
669 attr == &dev_attr_server_monitor_latency.attr ||
670 attr == &dev_attr_client_monitor_latency.attr ||
671 attr == &dev_attr_server_monitor_conn_id.attr ||
672 attr == &dev_attr_client_monitor_conn_id.attr))
673 return 0;
674
675 return attr->mode;
676 }
677
678 static const struct attribute_group vmbus_dev_group = {
679 .attrs = vmbus_dev_attrs,
680 .is_visible = vmbus_dev_attr_is_visible
681 };
682 __ATTRIBUTE_GROUPS(vmbus_dev);
683
684 /* Set up the attribute for /sys/bus/vmbus/hibernation */
hibernation_show(struct bus_type * bus,char * buf)685 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
686 {
687 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
688 }
689
690 static BUS_ATTR_RO(hibernation);
691
692 static struct attribute *vmbus_bus_attrs[] = {
693 &bus_attr_hibernation.attr,
694 NULL,
695 };
696 static const struct attribute_group vmbus_bus_group = {
697 .attrs = vmbus_bus_attrs,
698 };
699 __ATTRIBUTE_GROUPS(vmbus_bus);
700
701 /*
702 * vmbus_uevent - add uevent for our device
703 *
704 * This routine is invoked when a device is added or removed on the vmbus to
705 * generate a uevent to udev in the userspace. The udev will then look at its
706 * rule and the uevent generated here to load the appropriate driver
707 *
708 * The alias string will be of the form vmbus:guid where guid is the string
709 * representation of the device guid (each byte of the guid will be
710 * represented with two hex characters.
711 */
vmbus_uevent(struct device * device,struct kobj_uevent_env * env)712 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
713 {
714 struct hv_device *dev = device_to_hv_device(device);
715 const char *format = "MODALIAS=vmbus:%*phN";
716
717 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
718 }
719
720 static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id * id,const guid_t * guid)721 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
722 {
723 if (id == NULL)
724 return NULL; /* empty device table */
725
726 for (; !guid_is_null(&id->guid); id++)
727 if (guid_equal(&id->guid, guid))
728 return id;
729
730 return NULL;
731 }
732
733 static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver * drv,const guid_t * guid)734 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
735 {
736 const struct hv_vmbus_device_id *id = NULL;
737 struct vmbus_dynid *dynid;
738
739 spin_lock(&drv->dynids.lock);
740 list_for_each_entry(dynid, &drv->dynids.list, node) {
741 if (guid_equal(&dynid->id.guid, guid)) {
742 id = &dynid->id;
743 break;
744 }
745 }
746 spin_unlock(&drv->dynids.lock);
747
748 return id;
749 }
750
751 static const struct hv_vmbus_device_id vmbus_device_null;
752
753 /*
754 * Return a matching hv_vmbus_device_id pointer.
755 * If there is no match, return NULL.
756 */
hv_vmbus_get_id(struct hv_driver * drv,struct hv_device * dev)757 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
758 struct hv_device *dev)
759 {
760 const guid_t *guid = &dev->dev_type;
761 const struct hv_vmbus_device_id *id;
762
763 /* When driver_override is set, only bind to the matching driver */
764 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
765 return NULL;
766
767 /* Look at the dynamic ids first, before the static ones */
768 id = hv_vmbus_dynid_match(drv, guid);
769 if (!id)
770 id = hv_vmbus_dev_match(drv->id_table, guid);
771
772 /* driver_override will always match, send a dummy id */
773 if (!id && dev->driver_override)
774 id = &vmbus_device_null;
775
776 return id;
777 }
778
779 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
vmbus_add_dynid(struct hv_driver * drv,guid_t * guid)780 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
781 {
782 struct vmbus_dynid *dynid;
783
784 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
785 if (!dynid)
786 return -ENOMEM;
787
788 dynid->id.guid = *guid;
789
790 spin_lock(&drv->dynids.lock);
791 list_add_tail(&dynid->node, &drv->dynids.list);
792 spin_unlock(&drv->dynids.lock);
793
794 return driver_attach(&drv->driver);
795 }
796
vmbus_free_dynids(struct hv_driver * drv)797 static void vmbus_free_dynids(struct hv_driver *drv)
798 {
799 struct vmbus_dynid *dynid, *n;
800
801 spin_lock(&drv->dynids.lock);
802 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
803 list_del(&dynid->node);
804 kfree(dynid);
805 }
806 spin_unlock(&drv->dynids.lock);
807 }
808
809 /*
810 * store_new_id - sysfs frontend to vmbus_add_dynid()
811 *
812 * Allow GUIDs to be added to an existing driver via sysfs.
813 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)814 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
815 size_t count)
816 {
817 struct hv_driver *drv = drv_to_hv_drv(driver);
818 guid_t guid;
819 ssize_t retval;
820
821 retval = guid_parse(buf, &guid);
822 if (retval)
823 return retval;
824
825 if (hv_vmbus_dynid_match(drv, &guid))
826 return -EEXIST;
827
828 retval = vmbus_add_dynid(drv, &guid);
829 if (retval)
830 return retval;
831 return count;
832 }
833 static DRIVER_ATTR_WO(new_id);
834
835 /*
836 * store_remove_id - remove a PCI device ID from this driver
837 *
838 * Removes a dynamic pci device ID to this driver.
839 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)840 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
841 size_t count)
842 {
843 struct hv_driver *drv = drv_to_hv_drv(driver);
844 struct vmbus_dynid *dynid, *n;
845 guid_t guid;
846 ssize_t retval;
847
848 retval = guid_parse(buf, &guid);
849 if (retval)
850 return retval;
851
852 retval = -ENODEV;
853 spin_lock(&drv->dynids.lock);
854 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
855 struct hv_vmbus_device_id *id = &dynid->id;
856
857 if (guid_equal(&id->guid, &guid)) {
858 list_del(&dynid->node);
859 kfree(dynid);
860 retval = count;
861 break;
862 }
863 }
864 spin_unlock(&drv->dynids.lock);
865
866 return retval;
867 }
868 static DRIVER_ATTR_WO(remove_id);
869
870 static struct attribute *vmbus_drv_attrs[] = {
871 &driver_attr_new_id.attr,
872 &driver_attr_remove_id.attr,
873 NULL,
874 };
875 ATTRIBUTE_GROUPS(vmbus_drv);
876
877
878 /*
879 * vmbus_match - Attempt to match the specified device to the specified driver
880 */
vmbus_match(struct device * device,struct device_driver * driver)881 static int vmbus_match(struct device *device, struct device_driver *driver)
882 {
883 struct hv_driver *drv = drv_to_hv_drv(driver);
884 struct hv_device *hv_dev = device_to_hv_device(device);
885
886 /* The hv_sock driver handles all hv_sock offers. */
887 if (is_hvsock_channel(hv_dev->channel))
888 return drv->hvsock;
889
890 if (hv_vmbus_get_id(drv, hv_dev))
891 return 1;
892
893 return 0;
894 }
895
896 /*
897 * vmbus_probe - Add the new vmbus's child device
898 */
vmbus_probe(struct device * child_device)899 static int vmbus_probe(struct device *child_device)
900 {
901 int ret = 0;
902 struct hv_driver *drv =
903 drv_to_hv_drv(child_device->driver);
904 struct hv_device *dev = device_to_hv_device(child_device);
905 const struct hv_vmbus_device_id *dev_id;
906
907 dev_id = hv_vmbus_get_id(drv, dev);
908 if (drv->probe) {
909 ret = drv->probe(dev, dev_id);
910 if (ret != 0)
911 pr_err("probe failed for device %s (%d)\n",
912 dev_name(child_device), ret);
913
914 } else {
915 pr_err("probe not set for driver %s\n",
916 dev_name(child_device));
917 ret = -ENODEV;
918 }
919 return ret;
920 }
921
922 /*
923 * vmbus_remove - Remove a vmbus device
924 */
vmbus_remove(struct device * child_device)925 static void vmbus_remove(struct device *child_device)
926 {
927 struct hv_driver *drv;
928 struct hv_device *dev = device_to_hv_device(child_device);
929
930 if (child_device->driver) {
931 drv = drv_to_hv_drv(child_device->driver);
932 if (drv->remove)
933 drv->remove(dev);
934 }
935 }
936
937 /*
938 * vmbus_shutdown - Shutdown a vmbus device
939 */
vmbus_shutdown(struct device * child_device)940 static void vmbus_shutdown(struct device *child_device)
941 {
942 struct hv_driver *drv;
943 struct hv_device *dev = device_to_hv_device(child_device);
944
945
946 /* The device may not be attached yet */
947 if (!child_device->driver)
948 return;
949
950 drv = drv_to_hv_drv(child_device->driver);
951
952 if (drv->shutdown)
953 drv->shutdown(dev);
954 }
955
956 #ifdef CONFIG_PM_SLEEP
957 /*
958 * vmbus_suspend - Suspend a vmbus device
959 */
vmbus_suspend(struct device * child_device)960 static int vmbus_suspend(struct device *child_device)
961 {
962 struct hv_driver *drv;
963 struct hv_device *dev = device_to_hv_device(child_device);
964
965 /* The device may not be attached yet */
966 if (!child_device->driver)
967 return 0;
968
969 drv = drv_to_hv_drv(child_device->driver);
970 if (!drv->suspend)
971 return -EOPNOTSUPP;
972
973 return drv->suspend(dev);
974 }
975
976 /*
977 * vmbus_resume - Resume a vmbus device
978 */
vmbus_resume(struct device * child_device)979 static int vmbus_resume(struct device *child_device)
980 {
981 struct hv_driver *drv;
982 struct hv_device *dev = device_to_hv_device(child_device);
983
984 /* The device may not be attached yet */
985 if (!child_device->driver)
986 return 0;
987
988 drv = drv_to_hv_drv(child_device->driver);
989 if (!drv->resume)
990 return -EOPNOTSUPP;
991
992 return drv->resume(dev);
993 }
994 #else
995 #define vmbus_suspend NULL
996 #define vmbus_resume NULL
997 #endif /* CONFIG_PM_SLEEP */
998
999 /*
1000 * vmbus_device_release - Final callback release of the vmbus child device
1001 */
vmbus_device_release(struct device * device)1002 static void vmbus_device_release(struct device *device)
1003 {
1004 struct hv_device *hv_dev = device_to_hv_device(device);
1005 struct vmbus_channel *channel = hv_dev->channel;
1006
1007 hv_debug_rm_dev_dir(hv_dev);
1008
1009 mutex_lock(&vmbus_connection.channel_mutex);
1010 hv_process_channel_removal(channel);
1011 mutex_unlock(&vmbus_connection.channel_mutex);
1012 kfree(hv_dev);
1013 }
1014
1015 /*
1016 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1017 *
1018 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1019 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1020 * is no way to wake up a Generation-2 VM.
1021 *
1022 * The other 4 ops are for hibernation.
1023 */
1024
1025 static const struct dev_pm_ops vmbus_pm = {
1026 .suspend_noirq = NULL,
1027 .resume_noirq = NULL,
1028 .freeze_noirq = vmbus_suspend,
1029 .thaw_noirq = vmbus_resume,
1030 .poweroff_noirq = vmbus_suspend,
1031 .restore_noirq = vmbus_resume,
1032 };
1033
1034 /* The one and only one */
1035 static struct bus_type hv_bus = {
1036 .name = "vmbus",
1037 .match = vmbus_match,
1038 .shutdown = vmbus_shutdown,
1039 .remove = vmbus_remove,
1040 .probe = vmbus_probe,
1041 .uevent = vmbus_uevent,
1042 .dev_groups = vmbus_dev_groups,
1043 .drv_groups = vmbus_drv_groups,
1044 .bus_groups = vmbus_bus_groups,
1045 .pm = &vmbus_pm,
1046 };
1047
1048 struct onmessage_work_context {
1049 struct work_struct work;
1050 struct {
1051 struct hv_message_header header;
1052 u8 payload[];
1053 } msg;
1054 };
1055
vmbus_onmessage_work(struct work_struct * work)1056 static void vmbus_onmessage_work(struct work_struct *work)
1057 {
1058 struct onmessage_work_context *ctx;
1059
1060 /* Do not process messages if we're in DISCONNECTED state */
1061 if (vmbus_connection.conn_state == DISCONNECTED)
1062 return;
1063
1064 ctx = container_of(work, struct onmessage_work_context,
1065 work);
1066 vmbus_onmessage((struct vmbus_channel_message_header *)
1067 &ctx->msg.payload);
1068 kfree(ctx);
1069 }
1070
vmbus_on_msg_dpc(unsigned long data)1071 void vmbus_on_msg_dpc(unsigned long data)
1072 {
1073 struct hv_per_cpu_context *hv_cpu = (void *)data;
1074 void *page_addr = hv_cpu->synic_message_page;
1075 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1076 VMBUS_MESSAGE_SINT;
1077 struct vmbus_channel_message_header *hdr;
1078 enum vmbus_channel_message_type msgtype;
1079 const struct vmbus_channel_message_table_entry *entry;
1080 struct onmessage_work_context *ctx;
1081 __u8 payload_size;
1082 u32 message_type;
1083
1084 /*
1085 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1086 * it is being used in 'struct vmbus_channel_message_header' definition
1087 * which is supposed to match hypervisor ABI.
1088 */
1089 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1090
1091 /*
1092 * Since the message is in memory shared with the host, an erroneous or
1093 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1094 * or individual message handlers are executing; to prevent this, copy
1095 * the message into private memory.
1096 */
1097 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1098
1099 message_type = msg_copy.header.message_type;
1100 if (message_type == HVMSG_NONE)
1101 /* no msg */
1102 return;
1103
1104 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1105 msgtype = hdr->msgtype;
1106
1107 trace_vmbus_on_msg_dpc(hdr);
1108
1109 if (msgtype >= CHANNELMSG_COUNT) {
1110 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1111 goto msg_handled;
1112 }
1113
1114 payload_size = msg_copy.header.payload_size;
1115 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1116 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1117 goto msg_handled;
1118 }
1119
1120 entry = &channel_message_table[msgtype];
1121
1122 if (!entry->message_handler)
1123 goto msg_handled;
1124
1125 if (payload_size < entry->min_payload_len) {
1126 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1127 goto msg_handled;
1128 }
1129
1130 if (entry->handler_type == VMHT_BLOCKING) {
1131 ctx = kmalloc(sizeof(*ctx) + payload_size, GFP_ATOMIC);
1132 if (ctx == NULL)
1133 return;
1134
1135 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1136 memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
1137
1138 /*
1139 * The host can generate a rescind message while we
1140 * may still be handling the original offer. We deal with
1141 * this condition by relying on the synchronization provided
1142 * by offer_in_progress and by channel_mutex. See also the
1143 * inline comments in vmbus_onoffer_rescind().
1144 */
1145 switch (msgtype) {
1146 case CHANNELMSG_RESCIND_CHANNELOFFER:
1147 /*
1148 * If we are handling the rescind message;
1149 * schedule the work on the global work queue.
1150 *
1151 * The OFFER message and the RESCIND message should
1152 * not be handled by the same serialized work queue,
1153 * because the OFFER handler may call vmbus_open(),
1154 * which tries to open the channel by sending an
1155 * OPEN_CHANNEL message to the host and waits for
1156 * the host's response; however, if the host has
1157 * rescinded the channel before it receives the
1158 * OPEN_CHANNEL message, the host just silently
1159 * ignores the OPEN_CHANNEL message; as a result,
1160 * the guest's OFFER handler hangs for ever, if we
1161 * handle the RESCIND message in the same serialized
1162 * work queue: the RESCIND handler can not start to
1163 * run before the OFFER handler finishes.
1164 */
1165 schedule_work(&ctx->work);
1166 break;
1167
1168 case CHANNELMSG_OFFERCHANNEL:
1169 /*
1170 * The host sends the offer message of a given channel
1171 * before sending the rescind message of the same
1172 * channel. These messages are sent to the guest's
1173 * connect CPU; the guest then starts processing them
1174 * in the tasklet handler on this CPU:
1175 *
1176 * VMBUS_CONNECT_CPU
1177 *
1178 * [vmbus_on_msg_dpc()]
1179 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1180 * queue_work()
1181 * ...
1182 * [vmbus_on_msg_dpc()]
1183 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1184 *
1185 * We rely on the memory-ordering properties of the
1186 * queue_work() and schedule_work() primitives, which
1187 * guarantee that the atomic increment will be visible
1188 * to the CPUs which will execute the offer & rescind
1189 * works by the time these works will start execution.
1190 */
1191 atomic_inc(&vmbus_connection.offer_in_progress);
1192 fallthrough;
1193
1194 default:
1195 queue_work(vmbus_connection.work_queue, &ctx->work);
1196 }
1197 } else
1198 entry->message_handler(hdr);
1199
1200 msg_handled:
1201 vmbus_signal_eom(msg, message_type);
1202 }
1203
1204 #ifdef CONFIG_PM_SLEEP
1205 /*
1206 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1207 * hibernation, because hv_sock connections can not persist across hibernation.
1208 */
vmbus_force_channel_rescinded(struct vmbus_channel * channel)1209 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1210 {
1211 struct onmessage_work_context *ctx;
1212 struct vmbus_channel_rescind_offer *rescind;
1213
1214 WARN_ON(!is_hvsock_channel(channel));
1215
1216 /*
1217 * Allocation size is small and the allocation should really not fail,
1218 * otherwise the state of the hv_sock connections ends up in limbo.
1219 */
1220 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1221 GFP_KERNEL | __GFP_NOFAIL);
1222
1223 /*
1224 * So far, these are not really used by Linux. Just set them to the
1225 * reasonable values conforming to the definitions of the fields.
1226 */
1227 ctx->msg.header.message_type = 1;
1228 ctx->msg.header.payload_size = sizeof(*rescind);
1229
1230 /* These values are actually used by Linux. */
1231 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1232 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1233 rescind->child_relid = channel->offermsg.child_relid;
1234
1235 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1236
1237 queue_work(vmbus_connection.work_queue, &ctx->work);
1238 }
1239 #endif /* CONFIG_PM_SLEEP */
1240
1241 /*
1242 * Schedule all channels with events pending
1243 */
vmbus_chan_sched(struct hv_per_cpu_context * hv_cpu)1244 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1245 {
1246 unsigned long *recv_int_page;
1247 u32 maxbits, relid;
1248
1249 if (vmbus_proto_version < VERSION_WIN8) {
1250 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1251 recv_int_page = vmbus_connection.recv_int_page;
1252 } else {
1253 /*
1254 * When the host is win8 and beyond, the event page
1255 * can be directly checked to get the id of the channel
1256 * that has the interrupt pending.
1257 */
1258 void *page_addr = hv_cpu->synic_event_page;
1259 union hv_synic_event_flags *event
1260 = (union hv_synic_event_flags *)page_addr +
1261 VMBUS_MESSAGE_SINT;
1262
1263 maxbits = HV_EVENT_FLAGS_COUNT;
1264 recv_int_page = event->flags;
1265 }
1266
1267 if (unlikely(!recv_int_page))
1268 return;
1269
1270 for_each_set_bit(relid, recv_int_page, maxbits) {
1271 void (*callback_fn)(void *context);
1272 struct vmbus_channel *channel;
1273
1274 if (!sync_test_and_clear_bit(relid, recv_int_page))
1275 continue;
1276
1277 /* Special case - vmbus channel protocol msg */
1278 if (relid == 0)
1279 continue;
1280
1281 /*
1282 * Pairs with the kfree_rcu() in vmbus_chan_release().
1283 * Guarantees that the channel data structure doesn't
1284 * get freed while the channel pointer below is being
1285 * dereferenced.
1286 */
1287 rcu_read_lock();
1288
1289 /* Find channel based on relid */
1290 channel = relid2channel(relid);
1291 if (channel == NULL)
1292 goto sched_unlock_rcu;
1293
1294 if (channel->rescind)
1295 goto sched_unlock_rcu;
1296
1297 /*
1298 * Make sure that the ring buffer data structure doesn't get
1299 * freed while we dereference the ring buffer pointer. Test
1300 * for the channel's onchannel_callback being NULL within a
1301 * sched_lock critical section. See also the inline comments
1302 * in vmbus_reset_channel_cb().
1303 */
1304 spin_lock(&channel->sched_lock);
1305
1306 callback_fn = channel->onchannel_callback;
1307 if (unlikely(callback_fn == NULL))
1308 goto sched_unlock;
1309
1310 trace_vmbus_chan_sched(channel);
1311
1312 ++channel->interrupts;
1313
1314 switch (channel->callback_mode) {
1315 case HV_CALL_ISR:
1316 (*callback_fn)(channel->channel_callback_context);
1317 break;
1318
1319 case HV_CALL_BATCHED:
1320 hv_begin_read(&channel->inbound);
1321 fallthrough;
1322 case HV_CALL_DIRECT:
1323 tasklet_schedule(&channel->callback_event);
1324 }
1325
1326 sched_unlock:
1327 spin_unlock(&channel->sched_lock);
1328 sched_unlock_rcu:
1329 rcu_read_unlock();
1330 }
1331 }
1332
vmbus_isr(void)1333 static void vmbus_isr(void)
1334 {
1335 struct hv_per_cpu_context *hv_cpu
1336 = this_cpu_ptr(hv_context.cpu_context);
1337 void *page_addr = hv_cpu->synic_event_page;
1338 struct hv_message *msg;
1339 union hv_synic_event_flags *event;
1340 bool handled = false;
1341
1342 if (unlikely(page_addr == NULL))
1343 return;
1344
1345 event = (union hv_synic_event_flags *)page_addr +
1346 VMBUS_MESSAGE_SINT;
1347 /*
1348 * Check for events before checking for messages. This is the order
1349 * in which events and messages are checked in Windows guests on
1350 * Hyper-V, and the Windows team suggested we do the same.
1351 */
1352
1353 if ((vmbus_proto_version == VERSION_WS2008) ||
1354 (vmbus_proto_version == VERSION_WIN7)) {
1355
1356 /* Since we are a child, we only need to check bit 0 */
1357 if (sync_test_and_clear_bit(0, event->flags))
1358 handled = true;
1359 } else {
1360 /*
1361 * Our host is win8 or above. The signaling mechanism
1362 * has changed and we can directly look at the event page.
1363 * If bit n is set then we have an interrup on the channel
1364 * whose id is n.
1365 */
1366 handled = true;
1367 }
1368
1369 if (handled)
1370 vmbus_chan_sched(hv_cpu);
1371
1372 page_addr = hv_cpu->synic_message_page;
1373 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1374
1375 /* Check if there are actual msgs to be processed */
1376 if (msg->header.message_type != HVMSG_NONE) {
1377 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1378 hv_stimer0_isr();
1379 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1380 } else
1381 tasklet_schedule(&hv_cpu->msg_dpc);
1382 }
1383
1384 add_interrupt_randomness(vmbus_interrupt);
1385 }
1386
vmbus_percpu_isr(int irq,void * dev_id)1387 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1388 {
1389 vmbus_isr();
1390 return IRQ_HANDLED;
1391 }
1392
1393 /*
1394 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1395 * buffer and call into Hyper-V to transfer the data.
1396 */
hv_kmsg_dump(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)1397 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1398 enum kmsg_dump_reason reason)
1399 {
1400 struct kmsg_dump_iter iter;
1401 size_t bytes_written;
1402
1403 /* We are only interested in panics. */
1404 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1405 return;
1406
1407 /*
1408 * Write dump contents to the page. No need to synchronize; panic should
1409 * be single-threaded.
1410 */
1411 kmsg_dump_rewind(&iter);
1412 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1413 &bytes_written);
1414 if (!bytes_written)
1415 return;
1416 /*
1417 * P3 to contain the physical address of the panic page & P4 to
1418 * contain the size of the panic data in that page. Rest of the
1419 * registers are no-op when the NOTIFY_MSG flag is set.
1420 */
1421 hv_set_register(HV_REGISTER_CRASH_P0, 0);
1422 hv_set_register(HV_REGISTER_CRASH_P1, 0);
1423 hv_set_register(HV_REGISTER_CRASH_P2, 0);
1424 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1425 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1426
1427 /*
1428 * Let Hyper-V know there is crash data available along with
1429 * the panic message.
1430 */
1431 hv_set_register(HV_REGISTER_CRASH_CTL,
1432 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1433 }
1434
1435 static struct kmsg_dumper hv_kmsg_dumper = {
1436 .dump = hv_kmsg_dump,
1437 };
1438
hv_kmsg_dump_register(void)1439 static void hv_kmsg_dump_register(void)
1440 {
1441 int ret;
1442
1443 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1444 if (!hv_panic_page) {
1445 pr_err("Hyper-V: panic message page memory allocation failed\n");
1446 return;
1447 }
1448
1449 ret = kmsg_dump_register(&hv_kmsg_dumper);
1450 if (ret) {
1451 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1452 hv_free_hyperv_page((unsigned long)hv_panic_page);
1453 hv_panic_page = NULL;
1454 }
1455 }
1456
1457 static struct ctl_table_header *hv_ctl_table_hdr;
1458
1459 /*
1460 * sysctl option to allow the user to control whether kmsg data should be
1461 * reported to Hyper-V on panic.
1462 */
1463 static struct ctl_table hv_ctl_table[] = {
1464 {
1465 .procname = "hyperv_record_panic_msg",
1466 .data = &sysctl_record_panic_msg,
1467 .maxlen = sizeof(int),
1468 .mode = 0644,
1469 .proc_handler = proc_dointvec_minmax,
1470 .extra1 = SYSCTL_ZERO,
1471 .extra2 = SYSCTL_ONE
1472 },
1473 {}
1474 };
1475
1476 static struct ctl_table hv_root_table[] = {
1477 {
1478 .procname = "kernel",
1479 .mode = 0555,
1480 .child = hv_ctl_table
1481 },
1482 {}
1483 };
1484
1485 /*
1486 * vmbus_bus_init -Main vmbus driver initialization routine.
1487 *
1488 * Here, we
1489 * - initialize the vmbus driver context
1490 * - invoke the vmbus hv main init routine
1491 * - retrieve the channel offers
1492 */
vmbus_bus_init(void)1493 static int vmbus_bus_init(void)
1494 {
1495 int ret;
1496
1497 ret = hv_init();
1498 if (ret != 0) {
1499 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1500 return ret;
1501 }
1502
1503 ret = bus_register(&hv_bus);
1504 if (ret)
1505 return ret;
1506
1507 /*
1508 * VMbus interrupts are best modeled as per-cpu interrupts. If
1509 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1510 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1511 * If not on such an architecture (e.g., x86/x64), then rely on
1512 * code in the arch-specific portion of the code tree to connect
1513 * the VMbus interrupt handler.
1514 */
1515
1516 if (vmbus_irq == -1) {
1517 hv_setup_vmbus_handler(vmbus_isr);
1518 } else {
1519 vmbus_evt = alloc_percpu(long);
1520 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1521 "Hyper-V VMbus", vmbus_evt);
1522 if (ret) {
1523 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1524 vmbus_irq, ret);
1525 free_percpu(vmbus_evt);
1526 goto err_setup;
1527 }
1528 }
1529
1530 ret = hv_synic_alloc();
1531 if (ret)
1532 goto err_alloc;
1533
1534 /*
1535 * Initialize the per-cpu interrupt state and stimer state.
1536 * Then connect to the host.
1537 */
1538 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1539 hv_synic_init, hv_synic_cleanup);
1540 if (ret < 0)
1541 goto err_alloc;
1542 hyperv_cpuhp_online = ret;
1543
1544 ret = vmbus_connect();
1545 if (ret)
1546 goto err_connect;
1547
1548 if (hv_is_isolation_supported())
1549 sysctl_record_panic_msg = 0;
1550
1551 /*
1552 * Only register if the crash MSRs are available
1553 */
1554 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1555 u64 hyperv_crash_ctl;
1556 /*
1557 * Panic message recording (sysctl_record_panic_msg)
1558 * is enabled by default in non-isolated guests and
1559 * disabled by default in isolated guests; the panic
1560 * message recording won't be available in isolated
1561 * guests should the following registration fail.
1562 */
1563 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1564 if (!hv_ctl_table_hdr)
1565 pr_err("Hyper-V: sysctl table register error");
1566
1567 /*
1568 * Register for panic kmsg callback only if the right
1569 * capability is supported by the hypervisor.
1570 */
1571 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1572 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1573 hv_kmsg_dump_register();
1574
1575 register_die_notifier(&hyperv_die_block);
1576 }
1577
1578 /*
1579 * Always register the panic notifier because we need to unload
1580 * the VMbus channel connection to prevent any VMbus
1581 * activity after the VM panics.
1582 */
1583 atomic_notifier_chain_register(&panic_notifier_list,
1584 &hyperv_panic_block);
1585
1586 vmbus_request_offers();
1587
1588 return 0;
1589
1590 err_connect:
1591 cpuhp_remove_state(hyperv_cpuhp_online);
1592 err_alloc:
1593 hv_synic_free();
1594 if (vmbus_irq == -1) {
1595 hv_remove_vmbus_handler();
1596 } else {
1597 free_percpu_irq(vmbus_irq, vmbus_evt);
1598 free_percpu(vmbus_evt);
1599 }
1600 err_setup:
1601 bus_unregister(&hv_bus);
1602 unregister_sysctl_table(hv_ctl_table_hdr);
1603 hv_ctl_table_hdr = NULL;
1604 return ret;
1605 }
1606
1607 /**
1608 * __vmbus_child_driver_register() - Register a vmbus's driver
1609 * @hv_driver: Pointer to driver structure you want to register
1610 * @owner: owner module of the drv
1611 * @mod_name: module name string
1612 *
1613 * Registers the given driver with Linux through the 'driver_register()' call
1614 * and sets up the hyper-v vmbus handling for this driver.
1615 * It will return the state of the 'driver_register()' call.
1616 *
1617 */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)1618 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1619 {
1620 int ret;
1621
1622 pr_info("registering driver %s\n", hv_driver->name);
1623
1624 ret = vmbus_exists();
1625 if (ret < 0)
1626 return ret;
1627
1628 hv_driver->driver.name = hv_driver->name;
1629 hv_driver->driver.owner = owner;
1630 hv_driver->driver.mod_name = mod_name;
1631 hv_driver->driver.bus = &hv_bus;
1632
1633 spin_lock_init(&hv_driver->dynids.lock);
1634 INIT_LIST_HEAD(&hv_driver->dynids.list);
1635
1636 ret = driver_register(&hv_driver->driver);
1637
1638 return ret;
1639 }
1640 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1641
1642 /**
1643 * vmbus_driver_unregister() - Unregister a vmbus's driver
1644 * @hv_driver: Pointer to driver structure you want to
1645 * un-register
1646 *
1647 * Un-register the given driver that was previous registered with a call to
1648 * vmbus_driver_register()
1649 */
vmbus_driver_unregister(struct hv_driver * hv_driver)1650 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1651 {
1652 pr_info("unregistering driver %s\n", hv_driver->name);
1653
1654 if (!vmbus_exists()) {
1655 driver_unregister(&hv_driver->driver);
1656 vmbus_free_dynids(hv_driver);
1657 }
1658 }
1659 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1660
1661
1662 /*
1663 * Called when last reference to channel is gone.
1664 */
vmbus_chan_release(struct kobject * kobj)1665 static void vmbus_chan_release(struct kobject *kobj)
1666 {
1667 struct vmbus_channel *channel
1668 = container_of(kobj, struct vmbus_channel, kobj);
1669
1670 kfree_rcu(channel, rcu);
1671 }
1672
1673 struct vmbus_chan_attribute {
1674 struct attribute attr;
1675 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1676 ssize_t (*store)(struct vmbus_channel *chan,
1677 const char *buf, size_t count);
1678 };
1679 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1680 struct vmbus_chan_attribute chan_attr_##_name \
1681 = __ATTR(_name, _mode, _show, _store)
1682 #define VMBUS_CHAN_ATTR_RW(_name) \
1683 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1684 #define VMBUS_CHAN_ATTR_RO(_name) \
1685 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1686 #define VMBUS_CHAN_ATTR_WO(_name) \
1687 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1688
vmbus_chan_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1689 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1690 struct attribute *attr, char *buf)
1691 {
1692 const struct vmbus_chan_attribute *attribute
1693 = container_of(attr, struct vmbus_chan_attribute, attr);
1694 struct vmbus_channel *chan
1695 = container_of(kobj, struct vmbus_channel, kobj);
1696
1697 if (!attribute->show)
1698 return -EIO;
1699
1700 return attribute->show(chan, buf);
1701 }
1702
vmbus_chan_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1703 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1704 struct attribute *attr, const char *buf,
1705 size_t count)
1706 {
1707 const struct vmbus_chan_attribute *attribute
1708 = container_of(attr, struct vmbus_chan_attribute, attr);
1709 struct vmbus_channel *chan
1710 = container_of(kobj, struct vmbus_channel, kobj);
1711
1712 if (!attribute->store)
1713 return -EIO;
1714
1715 return attribute->store(chan, buf, count);
1716 }
1717
1718 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1719 .show = vmbus_chan_attr_show,
1720 .store = vmbus_chan_attr_store,
1721 };
1722
out_mask_show(struct vmbus_channel * channel,char * buf)1723 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1724 {
1725 struct hv_ring_buffer_info *rbi = &channel->outbound;
1726 ssize_t ret;
1727
1728 mutex_lock(&rbi->ring_buffer_mutex);
1729 if (!rbi->ring_buffer) {
1730 mutex_unlock(&rbi->ring_buffer_mutex);
1731 return -EINVAL;
1732 }
1733
1734 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1735 mutex_unlock(&rbi->ring_buffer_mutex);
1736 return ret;
1737 }
1738 static VMBUS_CHAN_ATTR_RO(out_mask);
1739
in_mask_show(struct vmbus_channel * channel,char * buf)1740 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1741 {
1742 struct hv_ring_buffer_info *rbi = &channel->inbound;
1743 ssize_t ret;
1744
1745 mutex_lock(&rbi->ring_buffer_mutex);
1746 if (!rbi->ring_buffer) {
1747 mutex_unlock(&rbi->ring_buffer_mutex);
1748 return -EINVAL;
1749 }
1750
1751 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1752 mutex_unlock(&rbi->ring_buffer_mutex);
1753 return ret;
1754 }
1755 static VMBUS_CHAN_ATTR_RO(in_mask);
1756
read_avail_show(struct vmbus_channel * channel,char * buf)1757 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1758 {
1759 struct hv_ring_buffer_info *rbi = &channel->inbound;
1760 ssize_t ret;
1761
1762 mutex_lock(&rbi->ring_buffer_mutex);
1763 if (!rbi->ring_buffer) {
1764 mutex_unlock(&rbi->ring_buffer_mutex);
1765 return -EINVAL;
1766 }
1767
1768 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1769 mutex_unlock(&rbi->ring_buffer_mutex);
1770 return ret;
1771 }
1772 static VMBUS_CHAN_ATTR_RO(read_avail);
1773
write_avail_show(struct vmbus_channel * channel,char * buf)1774 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1775 {
1776 struct hv_ring_buffer_info *rbi = &channel->outbound;
1777 ssize_t ret;
1778
1779 mutex_lock(&rbi->ring_buffer_mutex);
1780 if (!rbi->ring_buffer) {
1781 mutex_unlock(&rbi->ring_buffer_mutex);
1782 return -EINVAL;
1783 }
1784
1785 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1786 mutex_unlock(&rbi->ring_buffer_mutex);
1787 return ret;
1788 }
1789 static VMBUS_CHAN_ATTR_RO(write_avail);
1790
target_cpu_show(struct vmbus_channel * channel,char * buf)1791 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1792 {
1793 return sprintf(buf, "%u\n", channel->target_cpu);
1794 }
target_cpu_store(struct vmbus_channel * channel,const char * buf,size_t count)1795 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1796 const char *buf, size_t count)
1797 {
1798 u32 target_cpu, origin_cpu;
1799 ssize_t ret = count;
1800
1801 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1802 return -EIO;
1803
1804 if (sscanf(buf, "%uu", &target_cpu) != 1)
1805 return -EIO;
1806
1807 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1808 if (target_cpu >= nr_cpumask_bits)
1809 return -EINVAL;
1810
1811 /* No CPUs should come up or down during this. */
1812 cpus_read_lock();
1813
1814 if (!cpu_online(target_cpu)) {
1815 cpus_read_unlock();
1816 return -EINVAL;
1817 }
1818
1819 /*
1820 * Synchronizes target_cpu_store() and channel closure:
1821 *
1822 * { Initially: state = CHANNEL_OPENED }
1823 *
1824 * CPU1 CPU2
1825 *
1826 * [target_cpu_store()] [vmbus_disconnect_ring()]
1827 *
1828 * LOCK channel_mutex LOCK channel_mutex
1829 * LOAD r1 = state LOAD r2 = state
1830 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1831 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1832 * [...] SEND CLOSECHANNEL
1833 * UNLOCK channel_mutex UNLOCK channel_mutex
1834 *
1835 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1836 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1837 *
1838 * Note. The host processes the channel messages "sequentially", in
1839 * the order in which they are received on a per-partition basis.
1840 */
1841 mutex_lock(&vmbus_connection.channel_mutex);
1842
1843 /*
1844 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1845 * avoid sending the message and fail here for such channels.
1846 */
1847 if (channel->state != CHANNEL_OPENED_STATE) {
1848 ret = -EIO;
1849 goto cpu_store_unlock;
1850 }
1851
1852 origin_cpu = channel->target_cpu;
1853 if (target_cpu == origin_cpu)
1854 goto cpu_store_unlock;
1855
1856 if (vmbus_send_modifychannel(channel,
1857 hv_cpu_number_to_vp_number(target_cpu))) {
1858 ret = -EIO;
1859 goto cpu_store_unlock;
1860 }
1861
1862 /*
1863 * For version before VERSION_WIN10_V5_3, the following warning holds:
1864 *
1865 * Warning. At this point, there is *no* guarantee that the host will
1866 * have successfully processed the vmbus_send_modifychannel() request.
1867 * See the header comment of vmbus_send_modifychannel() for more info.
1868 *
1869 * Lags in the processing of the above vmbus_send_modifychannel() can
1870 * result in missed interrupts if the "old" target CPU is taken offline
1871 * before Hyper-V starts sending interrupts to the "new" target CPU.
1872 * But apart from this offlining scenario, the code tolerates such
1873 * lags. It will function correctly even if a channel interrupt comes
1874 * in on a CPU that is different from the channel target_cpu value.
1875 */
1876
1877 channel->target_cpu = target_cpu;
1878
1879 /* See init_vp_index(). */
1880 if (hv_is_perf_channel(channel))
1881 hv_update_alloced_cpus(origin_cpu, target_cpu);
1882
1883 /* Currently set only for storvsc channels. */
1884 if (channel->change_target_cpu_callback) {
1885 (*channel->change_target_cpu_callback)(channel,
1886 origin_cpu, target_cpu);
1887 }
1888
1889 cpu_store_unlock:
1890 mutex_unlock(&vmbus_connection.channel_mutex);
1891 cpus_read_unlock();
1892 return ret;
1893 }
1894 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1895
channel_pending_show(struct vmbus_channel * channel,char * buf)1896 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1897 char *buf)
1898 {
1899 return sprintf(buf, "%d\n",
1900 channel_pending(channel,
1901 vmbus_connection.monitor_pages[1]));
1902 }
1903 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1904
channel_latency_show(struct vmbus_channel * channel,char * buf)1905 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1906 char *buf)
1907 {
1908 return sprintf(buf, "%d\n",
1909 channel_latency(channel,
1910 vmbus_connection.monitor_pages[1]));
1911 }
1912 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1913
channel_interrupts_show(struct vmbus_channel * channel,char * buf)1914 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1915 {
1916 return sprintf(buf, "%llu\n", channel->interrupts);
1917 }
1918 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1919
channel_events_show(struct vmbus_channel * channel,char * buf)1920 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1921 {
1922 return sprintf(buf, "%llu\n", channel->sig_events);
1923 }
1924 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1925
channel_intr_in_full_show(struct vmbus_channel * channel,char * buf)1926 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1927 char *buf)
1928 {
1929 return sprintf(buf, "%llu\n",
1930 (unsigned long long)channel->intr_in_full);
1931 }
1932 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1933
channel_intr_out_empty_show(struct vmbus_channel * channel,char * buf)1934 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1935 char *buf)
1936 {
1937 return sprintf(buf, "%llu\n",
1938 (unsigned long long)channel->intr_out_empty);
1939 }
1940 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1941
channel_out_full_first_show(struct vmbus_channel * channel,char * buf)1942 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1943 char *buf)
1944 {
1945 return sprintf(buf, "%llu\n",
1946 (unsigned long long)channel->out_full_first);
1947 }
1948 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1949
channel_out_full_total_show(struct vmbus_channel * channel,char * buf)1950 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1951 char *buf)
1952 {
1953 return sprintf(buf, "%llu\n",
1954 (unsigned long long)channel->out_full_total);
1955 }
1956 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1957
subchannel_monitor_id_show(struct vmbus_channel * channel,char * buf)1958 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1959 char *buf)
1960 {
1961 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1962 }
1963 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1964
subchannel_id_show(struct vmbus_channel * channel,char * buf)1965 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1966 char *buf)
1967 {
1968 return sprintf(buf, "%u\n",
1969 channel->offermsg.offer.sub_channel_index);
1970 }
1971 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1972
1973 static struct attribute *vmbus_chan_attrs[] = {
1974 &chan_attr_out_mask.attr,
1975 &chan_attr_in_mask.attr,
1976 &chan_attr_read_avail.attr,
1977 &chan_attr_write_avail.attr,
1978 &chan_attr_cpu.attr,
1979 &chan_attr_pending.attr,
1980 &chan_attr_latency.attr,
1981 &chan_attr_interrupts.attr,
1982 &chan_attr_events.attr,
1983 &chan_attr_intr_in_full.attr,
1984 &chan_attr_intr_out_empty.attr,
1985 &chan_attr_out_full_first.attr,
1986 &chan_attr_out_full_total.attr,
1987 &chan_attr_monitor_id.attr,
1988 &chan_attr_subchannel_id.attr,
1989 NULL
1990 };
1991
1992 /*
1993 * Channel-level attribute_group callback function. Returns the permission for
1994 * each attribute, and returns 0 if an attribute is not visible.
1995 */
vmbus_chan_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1996 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1997 struct attribute *attr, int idx)
1998 {
1999 const struct vmbus_channel *channel =
2000 container_of(kobj, struct vmbus_channel, kobj);
2001
2002 /* Hide the monitor attributes if the monitor mechanism is not used. */
2003 if (!channel->offermsg.monitor_allocated &&
2004 (attr == &chan_attr_pending.attr ||
2005 attr == &chan_attr_latency.attr ||
2006 attr == &chan_attr_monitor_id.attr))
2007 return 0;
2008
2009 return attr->mode;
2010 }
2011
2012 static struct attribute_group vmbus_chan_group = {
2013 .attrs = vmbus_chan_attrs,
2014 .is_visible = vmbus_chan_attr_is_visible
2015 };
2016
2017 static struct kobj_type vmbus_chan_ktype = {
2018 .sysfs_ops = &vmbus_chan_sysfs_ops,
2019 .release = vmbus_chan_release,
2020 };
2021
2022 /*
2023 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
2024 */
vmbus_add_channel_kobj(struct hv_device * dev,struct vmbus_channel * channel)2025 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
2026 {
2027 const struct device *device = &dev->device;
2028 struct kobject *kobj = &channel->kobj;
2029 u32 relid = channel->offermsg.child_relid;
2030 int ret;
2031
2032 kobj->kset = dev->channels_kset;
2033 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2034 "%u", relid);
2035 if (ret) {
2036 kobject_put(kobj);
2037 return ret;
2038 }
2039
2040 ret = sysfs_create_group(kobj, &vmbus_chan_group);
2041
2042 if (ret) {
2043 /*
2044 * The calling functions' error handling paths will cleanup the
2045 * empty channel directory.
2046 */
2047 kobject_put(kobj);
2048 dev_err(device, "Unable to set up channel sysfs files\n");
2049 return ret;
2050 }
2051
2052 kobject_uevent(kobj, KOBJ_ADD);
2053
2054 return 0;
2055 }
2056
2057 /*
2058 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2059 */
vmbus_remove_channel_attr_group(struct vmbus_channel * channel)2060 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2061 {
2062 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2063 }
2064
2065 /*
2066 * vmbus_device_create - Creates and registers a new child device
2067 * on the vmbus.
2068 */
vmbus_device_create(const guid_t * type,const guid_t * instance,struct vmbus_channel * channel)2069 struct hv_device *vmbus_device_create(const guid_t *type,
2070 const guid_t *instance,
2071 struct vmbus_channel *channel)
2072 {
2073 struct hv_device *child_device_obj;
2074
2075 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2076 if (!child_device_obj) {
2077 pr_err("Unable to allocate device object for child device\n");
2078 return NULL;
2079 }
2080
2081 child_device_obj->channel = channel;
2082 guid_copy(&child_device_obj->dev_type, type);
2083 guid_copy(&child_device_obj->dev_instance, instance);
2084 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
2085
2086 return child_device_obj;
2087 }
2088
2089 /*
2090 * vmbus_device_register - Register the child device
2091 */
vmbus_device_register(struct hv_device * child_device_obj)2092 int vmbus_device_register(struct hv_device *child_device_obj)
2093 {
2094 struct kobject *kobj = &child_device_obj->device.kobj;
2095 int ret;
2096
2097 dev_set_name(&child_device_obj->device, "%pUl",
2098 &child_device_obj->channel->offermsg.offer.if_instance);
2099
2100 child_device_obj->device.bus = &hv_bus;
2101 child_device_obj->device.parent = &hv_acpi_dev->dev;
2102 child_device_obj->device.release = vmbus_device_release;
2103
2104 /*
2105 * Register with the LDM. This will kick off the driver/device
2106 * binding...which will eventually call vmbus_match() and vmbus_probe()
2107 */
2108 ret = device_register(&child_device_obj->device);
2109 if (ret) {
2110 pr_err("Unable to register child device\n");
2111 put_device(&child_device_obj->device);
2112 return ret;
2113 }
2114
2115 child_device_obj->channels_kset = kset_create_and_add("channels",
2116 NULL, kobj);
2117 if (!child_device_obj->channels_kset) {
2118 ret = -ENOMEM;
2119 goto err_dev_unregister;
2120 }
2121
2122 ret = vmbus_add_channel_kobj(child_device_obj,
2123 child_device_obj->channel);
2124 if (ret) {
2125 pr_err("Unable to register primary channeln");
2126 goto err_kset_unregister;
2127 }
2128 hv_debug_add_dev_dir(child_device_obj);
2129
2130 return 0;
2131
2132 err_kset_unregister:
2133 kset_unregister(child_device_obj->channels_kset);
2134
2135 err_dev_unregister:
2136 device_unregister(&child_device_obj->device);
2137 return ret;
2138 }
2139
2140 /*
2141 * vmbus_device_unregister - Remove the specified child device
2142 * from the vmbus.
2143 */
vmbus_device_unregister(struct hv_device * device_obj)2144 void vmbus_device_unregister(struct hv_device *device_obj)
2145 {
2146 pr_debug("child device %s unregistered\n",
2147 dev_name(&device_obj->device));
2148
2149 kset_unregister(device_obj->channels_kset);
2150
2151 /*
2152 * Kick off the process of unregistering the device.
2153 * This will call vmbus_remove() and eventually vmbus_device_release()
2154 */
2155 device_unregister(&device_obj->device);
2156 }
2157
2158
2159 /*
2160 * VMBUS is an acpi enumerated device. Get the information we
2161 * need from DSDT.
2162 */
2163 #define VTPM_BASE_ADDRESS 0xfed40000
vmbus_walk_resources(struct acpi_resource * res,void * ctx)2164 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2165 {
2166 resource_size_t start = 0;
2167 resource_size_t end = 0;
2168 struct resource *new_res;
2169 struct resource **old_res = &hyperv_mmio;
2170 struct resource **prev_res = NULL;
2171 struct resource r;
2172
2173 switch (res->type) {
2174
2175 /*
2176 * "Address" descriptors are for bus windows. Ignore
2177 * "memory" descriptors, which are for registers on
2178 * devices.
2179 */
2180 case ACPI_RESOURCE_TYPE_ADDRESS32:
2181 start = res->data.address32.address.minimum;
2182 end = res->data.address32.address.maximum;
2183 break;
2184
2185 case ACPI_RESOURCE_TYPE_ADDRESS64:
2186 start = res->data.address64.address.minimum;
2187 end = res->data.address64.address.maximum;
2188 break;
2189
2190 /*
2191 * The IRQ information is needed only on ARM64, which Hyper-V
2192 * sets up in the extended format. IRQ information is present
2193 * on x86/x64 in the non-extended format but it is not used by
2194 * Linux. So don't bother checking for the non-extended format.
2195 */
2196 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2197 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2198 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2199 return AE_ERROR;
2200 }
2201 /* ARM64 INTID for VMbus */
2202 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2203 /* Linux IRQ number */
2204 vmbus_irq = r.start;
2205 return AE_OK;
2206
2207 default:
2208 /* Unused resource type */
2209 return AE_OK;
2210
2211 }
2212 /*
2213 * Ignore ranges that are below 1MB, as they're not
2214 * necessary or useful here.
2215 */
2216 if (end < 0x100000)
2217 return AE_OK;
2218
2219 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2220 if (!new_res)
2221 return AE_NO_MEMORY;
2222
2223 /* If this range overlaps the virtual TPM, truncate it. */
2224 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2225 end = VTPM_BASE_ADDRESS;
2226
2227 new_res->name = "hyperv mmio";
2228 new_res->flags = IORESOURCE_MEM;
2229 new_res->start = start;
2230 new_res->end = end;
2231
2232 /*
2233 * If two ranges are adjacent, merge them.
2234 */
2235 do {
2236 if (!*old_res) {
2237 *old_res = new_res;
2238 break;
2239 }
2240
2241 if (((*old_res)->end + 1) == new_res->start) {
2242 (*old_res)->end = new_res->end;
2243 kfree(new_res);
2244 break;
2245 }
2246
2247 if ((*old_res)->start == new_res->end + 1) {
2248 (*old_res)->start = new_res->start;
2249 kfree(new_res);
2250 break;
2251 }
2252
2253 if ((*old_res)->start > new_res->end) {
2254 new_res->sibling = *old_res;
2255 if (prev_res)
2256 (*prev_res)->sibling = new_res;
2257 *old_res = new_res;
2258 break;
2259 }
2260
2261 prev_res = old_res;
2262 old_res = &(*old_res)->sibling;
2263
2264 } while (1);
2265
2266 return AE_OK;
2267 }
2268
vmbus_acpi_remove(struct acpi_device * device)2269 static int vmbus_acpi_remove(struct acpi_device *device)
2270 {
2271 struct resource *cur_res;
2272 struct resource *next_res;
2273
2274 if (hyperv_mmio) {
2275 if (fb_mmio) {
2276 __release_region(hyperv_mmio, fb_mmio->start,
2277 resource_size(fb_mmio));
2278 fb_mmio = NULL;
2279 }
2280
2281 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2282 next_res = cur_res->sibling;
2283 kfree(cur_res);
2284 }
2285 }
2286
2287 return 0;
2288 }
2289
vmbus_reserve_fb(void)2290 static void vmbus_reserve_fb(void)
2291 {
2292 int size;
2293 /*
2294 * Make a claim for the frame buffer in the resource tree under the
2295 * first node, which will be the one below 4GB. The length seems to
2296 * be underreported, particularly in a Generation 1 VM. So start out
2297 * reserving a larger area and make it smaller until it succeeds.
2298 */
2299
2300 if (screen_info.lfb_base) {
2301 if (efi_enabled(EFI_BOOT))
2302 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2303 else
2304 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
2305
2306 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
2307 fb_mmio = __request_region(hyperv_mmio,
2308 screen_info.lfb_base, size,
2309 fb_mmio_name, 0);
2310 }
2311 }
2312 }
2313
2314 /**
2315 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2316 * @new: If successful, supplied a pointer to the
2317 * allocated MMIO space.
2318 * @device_obj: Identifies the caller
2319 * @min: Minimum guest physical address of the
2320 * allocation
2321 * @max: Maximum guest physical address
2322 * @size: Size of the range to be allocated
2323 * @align: Alignment of the range to be allocated
2324 * @fb_overlap_ok: Whether this allocation can be allowed
2325 * to overlap the video frame buffer.
2326 *
2327 * This function walks the resources granted to VMBus by the
2328 * _CRS object in the ACPI namespace underneath the parent
2329 * "bridge" whether that's a root PCI bus in the Generation 1
2330 * case or a Module Device in the Generation 2 case. It then
2331 * attempts to allocate from the global MMIO pool in a way that
2332 * matches the constraints supplied in these parameters and by
2333 * that _CRS.
2334 *
2335 * Return: 0 on success, -errno on failure
2336 */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)2337 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2338 resource_size_t min, resource_size_t max,
2339 resource_size_t size, resource_size_t align,
2340 bool fb_overlap_ok)
2341 {
2342 struct resource *iter, *shadow;
2343 resource_size_t range_min, range_max, start, end;
2344 const char *dev_n = dev_name(&device_obj->device);
2345 int retval;
2346
2347 retval = -ENXIO;
2348 mutex_lock(&hyperv_mmio_lock);
2349
2350 /*
2351 * If overlaps with frame buffers are allowed, then first attempt to
2352 * make the allocation from within the reserved region. Because it
2353 * is already reserved, no shadow allocation is necessary.
2354 */
2355 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2356 !(max < fb_mmio->start)) {
2357
2358 range_min = fb_mmio->start;
2359 range_max = fb_mmio->end;
2360 start = (range_min + align - 1) & ~(align - 1);
2361 for (; start + size - 1 <= range_max; start += align) {
2362 *new = request_mem_region_exclusive(start, size, dev_n);
2363 if (*new) {
2364 retval = 0;
2365 goto exit;
2366 }
2367 }
2368 }
2369
2370 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2371 if ((iter->start >= max) || (iter->end <= min))
2372 continue;
2373
2374 range_min = iter->start;
2375 range_max = iter->end;
2376 start = (range_min + align - 1) & ~(align - 1);
2377 for (; start + size - 1 <= range_max; start += align) {
2378 end = start + size - 1;
2379
2380 /* Skip the whole fb_mmio region if not fb_overlap_ok */
2381 if (!fb_overlap_ok && fb_mmio &&
2382 (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2383 ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2384 continue;
2385
2386 shadow = __request_region(iter, start, size, NULL,
2387 IORESOURCE_BUSY);
2388 if (!shadow)
2389 continue;
2390
2391 *new = request_mem_region_exclusive(start, size, dev_n);
2392 if (*new) {
2393 shadow->name = (char *)*new;
2394 retval = 0;
2395 goto exit;
2396 }
2397
2398 __release_region(iter, start, size);
2399 }
2400 }
2401
2402 exit:
2403 mutex_unlock(&hyperv_mmio_lock);
2404 return retval;
2405 }
2406 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2407
2408 /**
2409 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2410 * @start: Base address of region to release.
2411 * @size: Size of the range to be allocated
2412 *
2413 * This function releases anything requested by
2414 * vmbus_mmio_allocate().
2415 */
vmbus_free_mmio(resource_size_t start,resource_size_t size)2416 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2417 {
2418 struct resource *iter;
2419
2420 mutex_lock(&hyperv_mmio_lock);
2421 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2422 if ((iter->start >= start + size) || (iter->end <= start))
2423 continue;
2424
2425 __release_region(iter, start, size);
2426 }
2427 release_mem_region(start, size);
2428 mutex_unlock(&hyperv_mmio_lock);
2429
2430 }
2431 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2432
vmbus_acpi_add(struct acpi_device * device)2433 static int vmbus_acpi_add(struct acpi_device *device)
2434 {
2435 acpi_status result;
2436 int ret_val = -ENODEV;
2437 struct acpi_device *ancestor;
2438
2439 hv_acpi_dev = device;
2440
2441 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2442 vmbus_walk_resources, NULL);
2443
2444 if (ACPI_FAILURE(result))
2445 goto acpi_walk_err;
2446 /*
2447 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2448 * firmware) is the VMOD that has the mmio ranges. Get that.
2449 */
2450 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
2451 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2452 vmbus_walk_resources, NULL);
2453
2454 if (ACPI_FAILURE(result))
2455 continue;
2456 if (hyperv_mmio) {
2457 vmbus_reserve_fb();
2458 break;
2459 }
2460 }
2461 ret_val = 0;
2462
2463 acpi_walk_err:
2464 complete(&probe_event);
2465 if (ret_val)
2466 vmbus_acpi_remove(device);
2467 return ret_val;
2468 }
2469
2470 #ifdef CONFIG_PM_SLEEP
vmbus_bus_suspend(struct device * dev)2471 static int vmbus_bus_suspend(struct device *dev)
2472 {
2473 struct vmbus_channel *channel, *sc;
2474
2475 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
2476 /*
2477 * We wait here until the completion of any channel
2478 * offers that are currently in progress.
2479 */
2480 usleep_range(1000, 2000);
2481 }
2482
2483 mutex_lock(&vmbus_connection.channel_mutex);
2484 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2485 if (!is_hvsock_channel(channel))
2486 continue;
2487
2488 vmbus_force_channel_rescinded(channel);
2489 }
2490 mutex_unlock(&vmbus_connection.channel_mutex);
2491
2492 /*
2493 * Wait until all the sub-channels and hv_sock channels have been
2494 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2495 * they would conflict with the new sub-channels that will be created
2496 * in the resume path. hv_sock channels should also be destroyed, but
2497 * a hv_sock channel of an established hv_sock connection can not be
2498 * really destroyed since it may still be referenced by the userspace
2499 * application, so we just force the hv_sock channel to be rescinded
2500 * by vmbus_force_channel_rescinded(), and the userspace application
2501 * will thoroughly destroy the channel after hibernation.
2502 *
2503 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2504 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2505 */
2506 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2507 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2508
2509 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2510 pr_err("Can not suspend due to a previous failed resuming\n");
2511 return -EBUSY;
2512 }
2513
2514 mutex_lock(&vmbus_connection.channel_mutex);
2515
2516 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2517 /*
2518 * Remove the channel from the array of channels and invalidate
2519 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2520 * up the relid (and other fields, if necessary) and add the
2521 * channel back to the array.
2522 */
2523 vmbus_channel_unmap_relid(channel);
2524 channel->offermsg.child_relid = INVALID_RELID;
2525
2526 if (is_hvsock_channel(channel)) {
2527 if (!channel->rescind) {
2528 pr_err("hv_sock channel not rescinded!\n");
2529 WARN_ON_ONCE(1);
2530 }
2531 continue;
2532 }
2533
2534 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2535 pr_err("Sub-channel not deleted!\n");
2536 WARN_ON_ONCE(1);
2537 }
2538
2539 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2540 }
2541
2542 mutex_unlock(&vmbus_connection.channel_mutex);
2543
2544 vmbus_initiate_unload(false);
2545
2546 /* Reset the event for the next resume. */
2547 reinit_completion(&vmbus_connection.ready_for_resume_event);
2548
2549 return 0;
2550 }
2551
vmbus_bus_resume(struct device * dev)2552 static int vmbus_bus_resume(struct device *dev)
2553 {
2554 struct vmbus_channel_msginfo *msginfo;
2555 size_t msgsize;
2556 int ret;
2557
2558 /*
2559 * We only use the 'vmbus_proto_version', which was in use before
2560 * hibernation, to re-negotiate with the host.
2561 */
2562 if (!vmbus_proto_version) {
2563 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2564 return -EINVAL;
2565 }
2566
2567 msgsize = sizeof(*msginfo) +
2568 sizeof(struct vmbus_channel_initiate_contact);
2569
2570 msginfo = kzalloc(msgsize, GFP_KERNEL);
2571
2572 if (msginfo == NULL)
2573 return -ENOMEM;
2574
2575 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2576
2577 kfree(msginfo);
2578
2579 if (ret != 0)
2580 return ret;
2581
2582 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2583
2584 vmbus_request_offers();
2585
2586 if (wait_for_completion_timeout(
2587 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2588 pr_err("Some vmbus device is missing after suspending?\n");
2589
2590 /* Reset the event for the next suspend. */
2591 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2592
2593 return 0;
2594 }
2595 #else
2596 #define vmbus_bus_suspend NULL
2597 #define vmbus_bus_resume NULL
2598 #endif /* CONFIG_PM_SLEEP */
2599
2600 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2601 {"VMBUS", 0},
2602 {"VMBus", 0},
2603 {"", 0},
2604 };
2605 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2606
2607 /*
2608 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2609 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2610 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2611 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2612 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2613 * resume callback must also run via the "noirq" ops.
2614 *
2615 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2616 * earlier in this file before vmbus_pm.
2617 */
2618
2619 static const struct dev_pm_ops vmbus_bus_pm = {
2620 .suspend_noirq = NULL,
2621 .resume_noirq = NULL,
2622 .freeze_noirq = vmbus_bus_suspend,
2623 .thaw_noirq = vmbus_bus_resume,
2624 .poweroff_noirq = vmbus_bus_suspend,
2625 .restore_noirq = vmbus_bus_resume
2626 };
2627
2628 static struct acpi_driver vmbus_acpi_driver = {
2629 .name = "vmbus",
2630 .ids = vmbus_acpi_device_ids,
2631 .ops = {
2632 .add = vmbus_acpi_add,
2633 .remove = vmbus_acpi_remove,
2634 },
2635 .drv.pm = &vmbus_bus_pm,
2636 };
2637
hv_kexec_handler(void)2638 static void hv_kexec_handler(void)
2639 {
2640 hv_stimer_global_cleanup();
2641 vmbus_initiate_unload(false);
2642 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2643 mb();
2644 cpuhp_remove_state(hyperv_cpuhp_online);
2645 };
2646
hv_crash_handler(struct pt_regs * regs)2647 static void hv_crash_handler(struct pt_regs *regs)
2648 {
2649 int cpu;
2650
2651 vmbus_initiate_unload(true);
2652 /*
2653 * In crash handler we can't schedule synic cleanup for all CPUs,
2654 * doing the cleanup for current CPU only. This should be sufficient
2655 * for kdump.
2656 */
2657 cpu = smp_processor_id();
2658 hv_stimer_cleanup(cpu);
2659 hv_synic_disable_regs(cpu);
2660 };
2661
hv_synic_suspend(void)2662 static int hv_synic_suspend(void)
2663 {
2664 /*
2665 * When we reach here, all the non-boot CPUs have been offlined.
2666 * If we're in a legacy configuration where stimer Direct Mode is
2667 * not enabled, the stimers on the non-boot CPUs have been unbound
2668 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2669 * hv_stimer_cleanup() -> clockevents_unbind_device().
2670 *
2671 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2672 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2673 * 1) it's unnecessary as interrupts remain disabled between
2674 * syscore_suspend() and syscore_resume(): see create_image() and
2675 * resume_target_kernel()
2676 * 2) the stimer on CPU0 is automatically disabled later by
2677 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2678 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2679 * 3) a warning would be triggered if we call
2680 * clockevents_unbind_device(), which may sleep, in an
2681 * interrupts-disabled context.
2682 */
2683
2684 hv_synic_disable_regs(0);
2685
2686 return 0;
2687 }
2688
hv_synic_resume(void)2689 static void hv_synic_resume(void)
2690 {
2691 hv_synic_enable_regs(0);
2692
2693 /*
2694 * Note: we don't need to call hv_stimer_init(0), because the timer
2695 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2696 * automatically re-enabled in timekeeping_resume().
2697 */
2698 }
2699
2700 /* The callbacks run only on CPU0, with irqs_disabled. */
2701 static struct syscore_ops hv_synic_syscore_ops = {
2702 .suspend = hv_synic_suspend,
2703 .resume = hv_synic_resume,
2704 };
2705
hv_acpi_init(void)2706 static int __init hv_acpi_init(void)
2707 {
2708 int ret, t;
2709
2710 if (!hv_is_hyperv_initialized())
2711 return -ENODEV;
2712
2713 if (hv_root_partition)
2714 return 0;
2715
2716 init_completion(&probe_event);
2717
2718 /*
2719 * Get ACPI resources first.
2720 */
2721 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2722
2723 if (ret)
2724 return ret;
2725
2726 t = wait_for_completion_timeout(&probe_event, 5*HZ);
2727 if (t == 0) {
2728 ret = -ETIMEDOUT;
2729 goto cleanup;
2730 }
2731
2732 /*
2733 * If we're on an architecture with a hardcoded hypervisor
2734 * vector (i.e. x86/x64), override the VMbus interrupt found
2735 * in the ACPI tables. Ensure vmbus_irq is not set since the
2736 * normal Linux IRQ mechanism is not used in this case.
2737 */
2738 #ifdef HYPERVISOR_CALLBACK_VECTOR
2739 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2740 vmbus_irq = -1;
2741 #endif
2742
2743 hv_debug_init();
2744
2745 ret = vmbus_bus_init();
2746 if (ret)
2747 goto cleanup;
2748
2749 hv_setup_kexec_handler(hv_kexec_handler);
2750 hv_setup_crash_handler(hv_crash_handler);
2751
2752 register_syscore_ops(&hv_synic_syscore_ops);
2753
2754 return 0;
2755
2756 cleanup:
2757 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2758 hv_acpi_dev = NULL;
2759 return ret;
2760 }
2761
vmbus_exit(void)2762 static void __exit vmbus_exit(void)
2763 {
2764 int cpu;
2765
2766 unregister_syscore_ops(&hv_synic_syscore_ops);
2767
2768 hv_remove_kexec_handler();
2769 hv_remove_crash_handler();
2770 vmbus_connection.conn_state = DISCONNECTED;
2771 hv_stimer_global_cleanup();
2772 vmbus_disconnect();
2773 if (vmbus_irq == -1) {
2774 hv_remove_vmbus_handler();
2775 } else {
2776 free_percpu_irq(vmbus_irq, vmbus_evt);
2777 free_percpu(vmbus_evt);
2778 }
2779 for_each_online_cpu(cpu) {
2780 struct hv_per_cpu_context *hv_cpu
2781 = per_cpu_ptr(hv_context.cpu_context, cpu);
2782
2783 tasklet_kill(&hv_cpu->msg_dpc);
2784 }
2785 hv_debug_rm_all_dir();
2786
2787 vmbus_free_channels();
2788 kfree(vmbus_connection.channels);
2789
2790 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2791 kmsg_dump_unregister(&hv_kmsg_dumper);
2792 unregister_die_notifier(&hyperv_die_block);
2793 }
2794
2795 /*
2796 * The panic notifier is always registered, hence we should
2797 * also unconditionally unregister it here as well.
2798 */
2799 atomic_notifier_chain_unregister(&panic_notifier_list,
2800 &hyperv_panic_block);
2801
2802 free_page((unsigned long)hv_panic_page);
2803 unregister_sysctl_table(hv_ctl_table_hdr);
2804 hv_ctl_table_hdr = NULL;
2805 bus_unregister(&hv_bus);
2806
2807 cpuhp_remove_state(hyperv_cpuhp_online);
2808 hv_synic_free();
2809 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2810 }
2811
2812
2813 MODULE_LICENSE("GPL");
2814 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2815
2816 subsys_initcall(hv_acpi_init);
2817 module_exit(vmbus_exit);
2818