1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 .name = "AF_VSOCK",
120 .owner = THIS_MODULE,
121 .obj_size = sizeof(struct vsock_sock),
122 };
123
124 /* The default peer timeout indicates how long we will wait for a peer response
125 * to a control message.
126 */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128
129 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142
143 /**** UTILS ****/
144
145 /* Each bound VSocket is stored in the bind hash table and each connected
146 * VSocket is stored in the connected hash table.
147 *
148 * Unbound sockets are all put on the same list attached to the end of the hash
149 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
150 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151 * represents the list that addr hashes to).
152 *
153 * Specifically, we initialize the vsock_bind_table array to a size of
154 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
157 * mods with VSOCK_HASH_SIZE to ensure this.
158 */
159 #define MAX_PORT_RETRIES 24
160
161 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
164
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst) \
167 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst) \
169 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk) \
171 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179
180 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 struct sock *sk = sk_vsock(vsk);
184 struct sockaddr_vm local_addr;
185
186 if (vsock_addr_bound(&vsk->local_addr))
187 return 0;
188 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 return __vsock_bind(sk, &local_addr);
190 }
191
vsock_init_tables(void)192 static void vsock_init_tables(void)
193 {
194 int i;
195
196 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 INIT_LIST_HEAD(&vsock_bind_table[i]);
198
199 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 struct vsock_sock *vsk)
205 {
206 sock_hold(&vsk->sk);
207 list_add(&vsk->bound_table, list);
208 }
209
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->connected_table, list);
215 }
216
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 list_del_init(&vsk->bound_table);
220 sock_put(&vsk->sk);
221 }
222
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 list_del_init(&vsk->connected_table);
226 sock_put(&vsk->sk);
227 }
228
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 struct vsock_sock *vsk;
232
233 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 return sk_vsock(vsk);
236
237 if (addr->svm_port == vsk->local_addr.svm_port &&
238 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 addr->svm_cid == VMADDR_CID_ANY))
240 return sk_vsock(vsk);
241 }
242
243 return NULL;
244 }
245
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 struct sockaddr_vm *dst)
248 {
249 struct vsock_sock *vsk;
250
251 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 connected_table) {
253 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 dst->svm_port == vsk->local_addr.svm_port) {
255 return sk_vsock(vsk);
256 }
257 }
258
259 return NULL;
260 }
261
vsock_insert_unbound(struct vsock_sock * vsk)262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 spin_lock_bh(&vsock_table_lock);
265 __vsock_insert_bound(vsock_unbound_sockets, vsk);
266 spin_unlock_bh(&vsock_table_lock);
267 }
268
vsock_insert_connected(struct vsock_sock * vsk)269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 struct list_head *list = vsock_connected_sockets(
272 &vsk->remote_addr, &vsk->local_addr);
273
274 spin_lock_bh(&vsock_table_lock);
275 __vsock_insert_connected(list, vsk);
276 spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279
vsock_remove_bound(struct vsock_sock * vsk)280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 spin_lock_bh(&vsock_table_lock);
283 if (__vsock_in_bound_table(vsk))
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_connected_table(vsk))
293 __vsock_remove_connected(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297
vsock_find_bound_socket(struct sockaddr_vm * addr)298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 struct sock *sk;
301
302 spin_lock_bh(&vsock_table_lock);
303 sk = __vsock_find_bound_socket(addr);
304 if (sk)
305 sock_hold(sk);
306
307 spin_unlock_bh(&vsock_table_lock);
308
309 return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 struct sockaddr_vm *dst)
315 {
316 struct sock *sk;
317
318 spin_lock_bh(&vsock_table_lock);
319 sk = __vsock_find_connected_socket(src, dst);
320 if (sk)
321 sock_hold(sk);
322
323 spin_unlock_bh(&vsock_table_lock);
324
325 return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328
vsock_remove_sock(struct vsock_sock * vsk)329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 vsock_remove_bound(vsk);
332 vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 int i;
339
340 spin_lock_bh(&vsock_table_lock);
341
342 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 struct vsock_sock *vsk;
344 list_for_each_entry(vsk, &vsock_connected_table[i],
345 connected_table)
346 fn(sk_vsock(vsk));
347 }
348
349 spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352
vsock_add_pending(struct sock * listener,struct sock * pending)353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 struct vsock_sock *vlistener;
356 struct vsock_sock *vpending;
357
358 vlistener = vsock_sk(listener);
359 vpending = vsock_sk(pending);
360
361 sock_hold(pending);
362 sock_hold(listener);
363 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366
vsock_remove_pending(struct sock * listener,struct sock * pending)367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 struct vsock_sock *vpending = vsock_sk(pending);
370
371 list_del_init(&vpending->pending_links);
372 sock_put(listener);
373 sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376
vsock_enqueue_accept(struct sock * listener,struct sock * connected)377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vconnected;
381
382 vlistener = vsock_sk(listener);
383 vconnected = vsock_sk(connected);
384
385 sock_hold(connected);
386 sock_hold(listener);
387 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390
vsock_use_local_transport(unsigned int remote_cid)391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 if (!transport_local)
394 return false;
395
396 if (remote_cid == VMADDR_CID_LOCAL)
397 return true;
398
399 if (transport_g2h) {
400 return remote_cid == transport_g2h->get_local_cid();
401 } else {
402 return remote_cid == VMADDR_CID_HOST;
403 }
404 }
405
vsock_deassign_transport(struct vsock_sock * vsk)406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 if (!vsk->transport)
409 return;
410
411 vsk->transport->destruct(vsk);
412 module_put(vsk->transport->module);
413 vsk->transport = NULL;
414 }
415
416 /* Assign a transport to a socket and call the .init transport callback.
417 *
418 * Note: for connection oriented socket this must be called when vsk->remote_addr
419 * is set (e.g. during the connect() or when a connection request on a listener
420 * socket is received).
421 * The vsk->remote_addr is used to decide which transport to use:
422 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423 * g2h is not loaded, will use local transport;
424 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
425 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
426 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
427 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)428 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
429 {
430 const struct vsock_transport *new_transport;
431 struct sock *sk = sk_vsock(vsk);
432 unsigned int remote_cid = vsk->remote_addr.svm_cid;
433 __u8 remote_flags;
434 int ret;
435
436 /* If the packet is coming with the source and destination CIDs higher
437 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
438 * forwarded to the host should be established. Then the host will
439 * need to forward the packets to the guest.
440 *
441 * The flag is set on the (listen) receive path (psk is not NULL). On
442 * the connect path the flag can be set by the user space application.
443 */
444 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
445 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
446 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
447
448 remote_flags = vsk->remote_addr.svm_flags;
449
450 switch (sk->sk_type) {
451 case SOCK_DGRAM:
452 new_transport = transport_dgram;
453 break;
454 case SOCK_STREAM:
455 case SOCK_SEQPACKET:
456 if (vsock_use_local_transport(remote_cid))
457 new_transport = transport_local;
458 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
459 (remote_flags & VMADDR_FLAG_TO_HOST))
460 new_transport = transport_g2h;
461 else
462 new_transport = transport_h2g;
463 break;
464 default:
465 return -ESOCKTNOSUPPORT;
466 }
467
468 if (vsk->transport) {
469 if (vsk->transport == new_transport)
470 return 0;
471
472 /* transport->release() must be called with sock lock acquired.
473 * This path can only be taken during vsock_connect(), where we
474 * have already held the sock lock. In the other cases, this
475 * function is called on a new socket which is not assigned to
476 * any transport.
477 */
478 vsk->transport->release(vsk);
479 vsock_deassign_transport(vsk);
480 }
481
482 /* We increase the module refcnt to prevent the transport unloading
483 * while there are open sockets assigned to it.
484 */
485 if (!new_transport || !try_module_get(new_transport->module))
486 return -ENODEV;
487
488 if (sk->sk_type == SOCK_SEQPACKET) {
489 if (!new_transport->seqpacket_allow ||
490 !new_transport->seqpacket_allow(remote_cid)) {
491 module_put(new_transport->module);
492 return -ESOCKTNOSUPPORT;
493 }
494 }
495
496 ret = new_transport->init(vsk, psk);
497 if (ret) {
498 module_put(new_transport->module);
499 return ret;
500 }
501
502 vsk->transport = new_transport;
503
504 return 0;
505 }
506 EXPORT_SYMBOL_GPL(vsock_assign_transport);
507
vsock_find_cid(unsigned int cid)508 bool vsock_find_cid(unsigned int cid)
509 {
510 if (transport_g2h && cid == transport_g2h->get_local_cid())
511 return true;
512
513 if (transport_h2g && cid == VMADDR_CID_HOST)
514 return true;
515
516 if (transport_local && cid == VMADDR_CID_LOCAL)
517 return true;
518
519 return false;
520 }
521 EXPORT_SYMBOL_GPL(vsock_find_cid);
522
vsock_dequeue_accept(struct sock * listener)523 static struct sock *vsock_dequeue_accept(struct sock *listener)
524 {
525 struct vsock_sock *vlistener;
526 struct vsock_sock *vconnected;
527
528 vlistener = vsock_sk(listener);
529
530 if (list_empty(&vlistener->accept_queue))
531 return NULL;
532
533 vconnected = list_entry(vlistener->accept_queue.next,
534 struct vsock_sock, accept_queue);
535
536 list_del_init(&vconnected->accept_queue);
537 sock_put(listener);
538 /* The caller will need a reference on the connected socket so we let
539 * it call sock_put().
540 */
541
542 return sk_vsock(vconnected);
543 }
544
vsock_is_accept_queue_empty(struct sock * sk)545 static bool vsock_is_accept_queue_empty(struct sock *sk)
546 {
547 struct vsock_sock *vsk = vsock_sk(sk);
548 return list_empty(&vsk->accept_queue);
549 }
550
vsock_is_pending(struct sock * sk)551 static bool vsock_is_pending(struct sock *sk)
552 {
553 struct vsock_sock *vsk = vsock_sk(sk);
554 return !list_empty(&vsk->pending_links);
555 }
556
vsock_send_shutdown(struct sock * sk,int mode)557 static int vsock_send_shutdown(struct sock *sk, int mode)
558 {
559 struct vsock_sock *vsk = vsock_sk(sk);
560
561 if (!vsk->transport)
562 return -ENODEV;
563
564 return vsk->transport->shutdown(vsk, mode);
565 }
566
vsock_pending_work(struct work_struct * work)567 static void vsock_pending_work(struct work_struct *work)
568 {
569 struct sock *sk;
570 struct sock *listener;
571 struct vsock_sock *vsk;
572 bool cleanup;
573
574 vsk = container_of(work, struct vsock_sock, pending_work.work);
575 sk = sk_vsock(vsk);
576 listener = vsk->listener;
577 cleanup = true;
578
579 lock_sock(listener);
580 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
581
582 if (vsock_is_pending(sk)) {
583 vsock_remove_pending(listener, sk);
584
585 sk_acceptq_removed(listener);
586 } else if (!vsk->rejected) {
587 /* We are not on the pending list and accept() did not reject
588 * us, so we must have been accepted by our user process. We
589 * just need to drop our references to the sockets and be on
590 * our way.
591 */
592 cleanup = false;
593 goto out;
594 }
595
596 /* We need to remove ourself from the global connected sockets list so
597 * incoming packets can't find this socket, and to reduce the reference
598 * count.
599 */
600 vsock_remove_connected(vsk);
601
602 sk->sk_state = TCP_CLOSE;
603
604 out:
605 release_sock(sk);
606 release_sock(listener);
607 if (cleanup)
608 sock_put(sk);
609
610 sock_put(sk);
611 sock_put(listener);
612 }
613
614 /**** SOCKET OPERATIONS ****/
615
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)616 static int __vsock_bind_connectible(struct vsock_sock *vsk,
617 struct sockaddr_vm *addr)
618 {
619 static u32 port;
620 struct sockaddr_vm new_addr;
621
622 if (!port)
623 port = LAST_RESERVED_PORT + 1 +
624 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
625
626 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
627
628 if (addr->svm_port == VMADDR_PORT_ANY) {
629 bool found = false;
630 unsigned int i;
631
632 for (i = 0; i < MAX_PORT_RETRIES; i++) {
633 if (port <= LAST_RESERVED_PORT)
634 port = LAST_RESERVED_PORT + 1;
635
636 new_addr.svm_port = port++;
637
638 if (!__vsock_find_bound_socket(&new_addr)) {
639 found = true;
640 break;
641 }
642 }
643
644 if (!found)
645 return -EADDRNOTAVAIL;
646 } else {
647 /* If port is in reserved range, ensure caller
648 * has necessary privileges.
649 */
650 if (addr->svm_port <= LAST_RESERVED_PORT &&
651 !capable(CAP_NET_BIND_SERVICE)) {
652 return -EACCES;
653 }
654
655 if (__vsock_find_bound_socket(&new_addr))
656 return -EADDRINUSE;
657 }
658
659 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
660
661 /* Remove connection oriented sockets from the unbound list and add them
662 * to the hash table for easy lookup by its address. The unbound list
663 * is simply an extra entry at the end of the hash table, a trick used
664 * by AF_UNIX.
665 */
666 __vsock_remove_bound(vsk);
667 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
668
669 return 0;
670 }
671
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)672 static int __vsock_bind_dgram(struct vsock_sock *vsk,
673 struct sockaddr_vm *addr)
674 {
675 return vsk->transport->dgram_bind(vsk, addr);
676 }
677
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)678 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
679 {
680 struct vsock_sock *vsk = vsock_sk(sk);
681 int retval;
682
683 /* First ensure this socket isn't already bound. */
684 if (vsock_addr_bound(&vsk->local_addr))
685 return -EINVAL;
686
687 /* Now bind to the provided address or select appropriate values if
688 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
689 * like AF_INET prevents binding to a non-local IP address (in most
690 * cases), we only allow binding to a local CID.
691 */
692 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
693 return -EADDRNOTAVAIL;
694
695 switch (sk->sk_socket->type) {
696 case SOCK_STREAM:
697 case SOCK_SEQPACKET:
698 spin_lock_bh(&vsock_table_lock);
699 retval = __vsock_bind_connectible(vsk, addr);
700 spin_unlock_bh(&vsock_table_lock);
701 break;
702
703 case SOCK_DGRAM:
704 retval = __vsock_bind_dgram(vsk, addr);
705 break;
706
707 default:
708 retval = -EINVAL;
709 break;
710 }
711
712 return retval;
713 }
714
715 static void vsock_connect_timeout(struct work_struct *work);
716
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)717 static struct sock *__vsock_create(struct net *net,
718 struct socket *sock,
719 struct sock *parent,
720 gfp_t priority,
721 unsigned short type,
722 int kern)
723 {
724 struct sock *sk;
725 struct vsock_sock *psk;
726 struct vsock_sock *vsk;
727
728 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
729 if (!sk)
730 return NULL;
731
732 sock_init_data(sock, sk);
733
734 /* sk->sk_type is normally set in sock_init_data, but only if sock is
735 * non-NULL. We make sure that our sockets always have a type by
736 * setting it here if needed.
737 */
738 if (!sock)
739 sk->sk_type = type;
740
741 vsk = vsock_sk(sk);
742 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
743 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
744
745 sk->sk_destruct = vsock_sk_destruct;
746 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
747 sock_reset_flag(sk, SOCK_DONE);
748
749 INIT_LIST_HEAD(&vsk->bound_table);
750 INIT_LIST_HEAD(&vsk->connected_table);
751 vsk->listener = NULL;
752 INIT_LIST_HEAD(&vsk->pending_links);
753 INIT_LIST_HEAD(&vsk->accept_queue);
754 vsk->rejected = false;
755 vsk->sent_request = false;
756 vsk->ignore_connecting_rst = false;
757 vsk->peer_shutdown = 0;
758 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
759 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
760
761 psk = parent ? vsock_sk(parent) : NULL;
762 if (parent) {
763 vsk->trusted = psk->trusted;
764 vsk->owner = get_cred(psk->owner);
765 vsk->connect_timeout = psk->connect_timeout;
766 vsk->buffer_size = psk->buffer_size;
767 vsk->buffer_min_size = psk->buffer_min_size;
768 vsk->buffer_max_size = psk->buffer_max_size;
769 security_sk_clone(parent, sk);
770 } else {
771 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
772 vsk->owner = get_current_cred();
773 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
774 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
775 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
776 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
777 }
778
779 return sk;
780 }
781
sock_type_connectible(u16 type)782 static bool sock_type_connectible(u16 type)
783 {
784 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
785 }
786
__vsock_release(struct sock * sk,int level)787 static void __vsock_release(struct sock *sk, int level)
788 {
789 if (sk) {
790 struct sock *pending;
791 struct vsock_sock *vsk;
792
793 vsk = vsock_sk(sk);
794 pending = NULL; /* Compiler warning. */
795
796 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
797 * version to avoid the warning "possible recursive locking
798 * detected". When "level" is 0, lock_sock_nested(sk, level)
799 * is the same as lock_sock(sk).
800 */
801 lock_sock_nested(sk, level);
802
803 if (vsk->transport)
804 vsk->transport->release(vsk);
805 else if (sock_type_connectible(sk->sk_type))
806 vsock_remove_sock(vsk);
807
808 sock_orphan(sk);
809 sk->sk_shutdown = SHUTDOWN_MASK;
810
811 skb_queue_purge(&sk->sk_receive_queue);
812
813 /* Clean up any sockets that never were accepted. */
814 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
815 __vsock_release(pending, SINGLE_DEPTH_NESTING);
816 sock_put(pending);
817 }
818
819 release_sock(sk);
820 sock_put(sk);
821 }
822 }
823
vsock_sk_destruct(struct sock * sk)824 static void vsock_sk_destruct(struct sock *sk)
825 {
826 struct vsock_sock *vsk = vsock_sk(sk);
827
828 vsock_deassign_transport(vsk);
829
830 /* When clearing these addresses, there's no need to set the family and
831 * possibly register the address family with the kernel.
832 */
833 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
834 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
835
836 put_cred(vsk->owner);
837 }
838
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)839 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
840 {
841 int err;
842
843 err = sock_queue_rcv_skb(sk, skb);
844 if (err)
845 kfree_skb(skb);
846
847 return err;
848 }
849
vsock_create_connected(struct sock * parent)850 struct sock *vsock_create_connected(struct sock *parent)
851 {
852 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
853 parent->sk_type, 0);
854 }
855 EXPORT_SYMBOL_GPL(vsock_create_connected);
856
vsock_stream_has_data(struct vsock_sock * vsk)857 s64 vsock_stream_has_data(struct vsock_sock *vsk)
858 {
859 return vsk->transport->stream_has_data(vsk);
860 }
861 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
862
vsock_connectible_has_data(struct vsock_sock * vsk)863 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
864 {
865 struct sock *sk = sk_vsock(vsk);
866
867 if (sk->sk_type == SOCK_SEQPACKET)
868 return vsk->transport->seqpacket_has_data(vsk);
869 else
870 return vsock_stream_has_data(vsk);
871 }
872
vsock_stream_has_space(struct vsock_sock * vsk)873 s64 vsock_stream_has_space(struct vsock_sock *vsk)
874 {
875 return vsk->transport->stream_has_space(vsk);
876 }
877 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
878
vsock_release(struct socket * sock)879 static int vsock_release(struct socket *sock)
880 {
881 __vsock_release(sock->sk, 0);
882 sock->sk = NULL;
883 sock->state = SS_FREE;
884
885 return 0;
886 }
887
888 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)889 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
890 {
891 int err;
892 struct sock *sk;
893 struct sockaddr_vm *vm_addr;
894
895 sk = sock->sk;
896
897 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
898 return -EINVAL;
899
900 lock_sock(sk);
901 err = __vsock_bind(sk, vm_addr);
902 release_sock(sk);
903
904 return err;
905 }
906
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)907 static int vsock_getname(struct socket *sock,
908 struct sockaddr *addr, int peer)
909 {
910 int err;
911 struct sock *sk;
912 struct vsock_sock *vsk;
913 struct sockaddr_vm *vm_addr;
914
915 sk = sock->sk;
916 vsk = vsock_sk(sk);
917 err = 0;
918
919 lock_sock(sk);
920
921 if (peer) {
922 if (sock->state != SS_CONNECTED) {
923 err = -ENOTCONN;
924 goto out;
925 }
926 vm_addr = &vsk->remote_addr;
927 } else {
928 vm_addr = &vsk->local_addr;
929 }
930
931 if (!vm_addr) {
932 err = -EINVAL;
933 goto out;
934 }
935
936 /* sys_getsockname() and sys_getpeername() pass us a
937 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
938 * that macro is defined in socket.c instead of .h, so we hardcode its
939 * value here.
940 */
941 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
942 memcpy(addr, vm_addr, sizeof(*vm_addr));
943 err = sizeof(*vm_addr);
944
945 out:
946 release_sock(sk);
947 return err;
948 }
949
vsock_shutdown(struct socket * sock,int mode)950 static int vsock_shutdown(struct socket *sock, int mode)
951 {
952 int err;
953 struct sock *sk;
954
955 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
956 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
957 * here like the other address families do. Note also that the
958 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
959 * which is what we want.
960 */
961 mode++;
962
963 if ((mode & ~SHUTDOWN_MASK) || !mode)
964 return -EINVAL;
965
966 /* If this is a connection oriented socket and it is not connected then
967 * bail out immediately. If it is a DGRAM socket then we must first
968 * kick the socket so that it wakes up from any sleeping calls, for
969 * example recv(), and then afterwards return the error.
970 */
971
972 sk = sock->sk;
973
974 lock_sock(sk);
975 if (sock->state == SS_UNCONNECTED) {
976 err = -ENOTCONN;
977 if (sock_type_connectible(sk->sk_type))
978 goto out;
979 } else {
980 sock->state = SS_DISCONNECTING;
981 err = 0;
982 }
983
984 /* Receive and send shutdowns are treated alike. */
985 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
986 if (mode) {
987 sk->sk_shutdown |= mode;
988 sk->sk_state_change(sk);
989
990 if (sock_type_connectible(sk->sk_type)) {
991 sock_reset_flag(sk, SOCK_DONE);
992 vsock_send_shutdown(sk, mode);
993 }
994 }
995
996 out:
997 release_sock(sk);
998 return err;
999 }
1000
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1001 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1002 poll_table *wait)
1003 {
1004 struct sock *sk;
1005 __poll_t mask;
1006 struct vsock_sock *vsk;
1007
1008 sk = sock->sk;
1009 vsk = vsock_sk(sk);
1010
1011 poll_wait(file, sk_sleep(sk), wait);
1012 mask = 0;
1013
1014 if (sk->sk_err)
1015 /* Signify that there has been an error on this socket. */
1016 mask |= EPOLLERR;
1017
1018 /* INET sockets treat local write shutdown and peer write shutdown as a
1019 * case of EPOLLHUP set.
1020 */
1021 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1022 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1023 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1024 mask |= EPOLLHUP;
1025 }
1026
1027 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1028 vsk->peer_shutdown & SEND_SHUTDOWN) {
1029 mask |= EPOLLRDHUP;
1030 }
1031
1032 if (sock->type == SOCK_DGRAM) {
1033 /* For datagram sockets we can read if there is something in
1034 * the queue and write as long as the socket isn't shutdown for
1035 * sending.
1036 */
1037 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1038 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1039 mask |= EPOLLIN | EPOLLRDNORM;
1040 }
1041
1042 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1043 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1044
1045 } else if (sock_type_connectible(sk->sk_type)) {
1046 const struct vsock_transport *transport;
1047
1048 lock_sock(sk);
1049
1050 transport = vsk->transport;
1051
1052 /* Listening sockets that have connections in their accept
1053 * queue can be read.
1054 */
1055 if (sk->sk_state == TCP_LISTEN
1056 && !vsock_is_accept_queue_empty(sk))
1057 mask |= EPOLLIN | EPOLLRDNORM;
1058
1059 /* If there is something in the queue then we can read. */
1060 if (transport && transport->stream_is_active(vsk) &&
1061 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1062 bool data_ready_now = false;
1063 int ret = transport->notify_poll_in(
1064 vsk, 1, &data_ready_now);
1065 if (ret < 0) {
1066 mask |= EPOLLERR;
1067 } else {
1068 if (data_ready_now)
1069 mask |= EPOLLIN | EPOLLRDNORM;
1070
1071 }
1072 }
1073
1074 /* Sockets whose connections have been closed, reset, or
1075 * terminated should also be considered read, and we check the
1076 * shutdown flag for that.
1077 */
1078 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1079 vsk->peer_shutdown & SEND_SHUTDOWN) {
1080 mask |= EPOLLIN | EPOLLRDNORM;
1081 }
1082
1083 /* Connected sockets that can produce data can be written. */
1084 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1085 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1086 bool space_avail_now = false;
1087 int ret = transport->notify_poll_out(
1088 vsk, 1, &space_avail_now);
1089 if (ret < 0) {
1090 mask |= EPOLLERR;
1091 } else {
1092 if (space_avail_now)
1093 /* Remove EPOLLWRBAND since INET
1094 * sockets are not setting it.
1095 */
1096 mask |= EPOLLOUT | EPOLLWRNORM;
1097
1098 }
1099 }
1100 }
1101
1102 /* Simulate INET socket poll behaviors, which sets
1103 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1104 * but local send is not shutdown.
1105 */
1106 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1107 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1108 mask |= EPOLLOUT | EPOLLWRNORM;
1109
1110 }
1111
1112 release_sock(sk);
1113 }
1114
1115 return mask;
1116 }
1117
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1118 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1119 size_t len)
1120 {
1121 int err;
1122 struct sock *sk;
1123 struct vsock_sock *vsk;
1124 struct sockaddr_vm *remote_addr;
1125 const struct vsock_transport *transport;
1126
1127 if (msg->msg_flags & MSG_OOB)
1128 return -EOPNOTSUPP;
1129
1130 /* For now, MSG_DONTWAIT is always assumed... */
1131 err = 0;
1132 sk = sock->sk;
1133 vsk = vsock_sk(sk);
1134
1135 lock_sock(sk);
1136
1137 transport = vsk->transport;
1138
1139 err = vsock_auto_bind(vsk);
1140 if (err)
1141 goto out;
1142
1143
1144 /* If the provided message contains an address, use that. Otherwise
1145 * fall back on the socket's remote handle (if it has been connected).
1146 */
1147 if (msg->msg_name &&
1148 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1149 &remote_addr) == 0) {
1150 /* Ensure this address is of the right type and is a valid
1151 * destination.
1152 */
1153
1154 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1155 remote_addr->svm_cid = transport->get_local_cid();
1156
1157 if (!vsock_addr_bound(remote_addr)) {
1158 err = -EINVAL;
1159 goto out;
1160 }
1161 } else if (sock->state == SS_CONNECTED) {
1162 remote_addr = &vsk->remote_addr;
1163
1164 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1165 remote_addr->svm_cid = transport->get_local_cid();
1166
1167 /* XXX Should connect() or this function ensure remote_addr is
1168 * bound?
1169 */
1170 if (!vsock_addr_bound(&vsk->remote_addr)) {
1171 err = -EINVAL;
1172 goto out;
1173 }
1174 } else {
1175 err = -EINVAL;
1176 goto out;
1177 }
1178
1179 if (!transport->dgram_allow(remote_addr->svm_cid,
1180 remote_addr->svm_port)) {
1181 err = -EINVAL;
1182 goto out;
1183 }
1184
1185 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1186
1187 out:
1188 release_sock(sk);
1189 return err;
1190 }
1191
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1192 static int vsock_dgram_connect(struct socket *sock,
1193 struct sockaddr *addr, int addr_len, int flags)
1194 {
1195 int err;
1196 struct sock *sk;
1197 struct vsock_sock *vsk;
1198 struct sockaddr_vm *remote_addr;
1199
1200 sk = sock->sk;
1201 vsk = vsock_sk(sk);
1202
1203 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1204 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1205 lock_sock(sk);
1206 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1207 VMADDR_PORT_ANY);
1208 sock->state = SS_UNCONNECTED;
1209 release_sock(sk);
1210 return 0;
1211 } else if (err != 0)
1212 return -EINVAL;
1213
1214 lock_sock(sk);
1215
1216 err = vsock_auto_bind(vsk);
1217 if (err)
1218 goto out;
1219
1220 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1221 remote_addr->svm_port)) {
1222 err = -EINVAL;
1223 goto out;
1224 }
1225
1226 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1227 sock->state = SS_CONNECTED;
1228
1229 out:
1230 release_sock(sk);
1231 return err;
1232 }
1233
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1234 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1235 size_t len, int flags)
1236 {
1237 struct vsock_sock *vsk = vsock_sk(sock->sk);
1238
1239 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1240 }
1241
1242 static const struct proto_ops vsock_dgram_ops = {
1243 .family = PF_VSOCK,
1244 .owner = THIS_MODULE,
1245 .release = vsock_release,
1246 .bind = vsock_bind,
1247 .connect = vsock_dgram_connect,
1248 .socketpair = sock_no_socketpair,
1249 .accept = sock_no_accept,
1250 .getname = vsock_getname,
1251 .poll = vsock_poll,
1252 .ioctl = sock_no_ioctl,
1253 .listen = sock_no_listen,
1254 .shutdown = vsock_shutdown,
1255 .sendmsg = vsock_dgram_sendmsg,
1256 .recvmsg = vsock_dgram_recvmsg,
1257 .mmap = sock_no_mmap,
1258 .sendpage = sock_no_sendpage,
1259 };
1260
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1261 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1262 {
1263 const struct vsock_transport *transport = vsk->transport;
1264
1265 if (!transport || !transport->cancel_pkt)
1266 return -EOPNOTSUPP;
1267
1268 return transport->cancel_pkt(vsk);
1269 }
1270
vsock_connect_timeout(struct work_struct * work)1271 static void vsock_connect_timeout(struct work_struct *work)
1272 {
1273 struct sock *sk;
1274 struct vsock_sock *vsk;
1275
1276 vsk = container_of(work, struct vsock_sock, connect_work.work);
1277 sk = sk_vsock(vsk);
1278
1279 lock_sock(sk);
1280 if (sk->sk_state == TCP_SYN_SENT &&
1281 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1282 sk->sk_state = TCP_CLOSE;
1283 sk->sk_socket->state = SS_UNCONNECTED;
1284 sk->sk_err = ETIMEDOUT;
1285 sk_error_report(sk);
1286 vsock_transport_cancel_pkt(vsk);
1287 }
1288 release_sock(sk);
1289
1290 sock_put(sk);
1291 }
1292
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1293 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1294 int addr_len, int flags)
1295 {
1296 int err;
1297 struct sock *sk;
1298 struct vsock_sock *vsk;
1299 const struct vsock_transport *transport;
1300 struct sockaddr_vm *remote_addr;
1301 long timeout;
1302 DEFINE_WAIT(wait);
1303
1304 err = 0;
1305 sk = sock->sk;
1306 vsk = vsock_sk(sk);
1307
1308 lock_sock(sk);
1309
1310 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1311 switch (sock->state) {
1312 case SS_CONNECTED:
1313 err = -EISCONN;
1314 goto out;
1315 case SS_DISCONNECTING:
1316 err = -EINVAL;
1317 goto out;
1318 case SS_CONNECTING:
1319 /* This continues on so we can move sock into the SS_CONNECTED
1320 * state once the connection has completed (at which point err
1321 * will be set to zero also). Otherwise, we will either wait
1322 * for the connection or return -EALREADY should this be a
1323 * non-blocking call.
1324 */
1325 err = -EALREADY;
1326 if (flags & O_NONBLOCK)
1327 goto out;
1328 break;
1329 default:
1330 if ((sk->sk_state == TCP_LISTEN) ||
1331 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1332 err = -EINVAL;
1333 goto out;
1334 }
1335
1336 /* Set the remote address that we are connecting to. */
1337 memcpy(&vsk->remote_addr, remote_addr,
1338 sizeof(vsk->remote_addr));
1339
1340 err = vsock_assign_transport(vsk, NULL);
1341 if (err)
1342 goto out;
1343
1344 transport = vsk->transport;
1345
1346 /* The hypervisor and well-known contexts do not have socket
1347 * endpoints.
1348 */
1349 if (!transport ||
1350 !transport->stream_allow(remote_addr->svm_cid,
1351 remote_addr->svm_port)) {
1352 err = -ENETUNREACH;
1353 goto out;
1354 }
1355
1356 err = vsock_auto_bind(vsk);
1357 if (err)
1358 goto out;
1359
1360 sk->sk_state = TCP_SYN_SENT;
1361
1362 err = transport->connect(vsk);
1363 if (err < 0)
1364 goto out;
1365
1366 /* Mark sock as connecting and set the error code to in
1367 * progress in case this is a non-blocking connect.
1368 */
1369 sock->state = SS_CONNECTING;
1370 err = -EINPROGRESS;
1371 }
1372
1373 /* The receive path will handle all communication until we are able to
1374 * enter the connected state. Here we wait for the connection to be
1375 * completed or a notification of an error.
1376 */
1377 timeout = vsk->connect_timeout;
1378 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1379
1380 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1381 if (flags & O_NONBLOCK) {
1382 /* If we're not going to block, we schedule a timeout
1383 * function to generate a timeout on the connection
1384 * attempt, in case the peer doesn't respond in a
1385 * timely manner. We hold on to the socket until the
1386 * timeout fires.
1387 */
1388 sock_hold(sk);
1389
1390 /* If the timeout function is already scheduled,
1391 * reschedule it, then ungrab the socket refcount to
1392 * keep it balanced.
1393 */
1394 if (mod_delayed_work(system_wq, &vsk->connect_work,
1395 timeout))
1396 sock_put(sk);
1397
1398 /* Skip ahead to preserve error code set above. */
1399 goto out_wait;
1400 }
1401
1402 release_sock(sk);
1403 timeout = schedule_timeout(timeout);
1404 lock_sock(sk);
1405
1406 if (signal_pending(current)) {
1407 err = sock_intr_errno(timeout);
1408 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1409 sock->state = SS_UNCONNECTED;
1410 vsock_transport_cancel_pkt(vsk);
1411 vsock_remove_connected(vsk);
1412 goto out_wait;
1413 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1414 err = -ETIMEDOUT;
1415 sk->sk_state = TCP_CLOSE;
1416 sock->state = SS_UNCONNECTED;
1417 vsock_transport_cancel_pkt(vsk);
1418 goto out_wait;
1419 }
1420
1421 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1422 }
1423
1424 if (sk->sk_err) {
1425 err = -sk->sk_err;
1426 sk->sk_state = TCP_CLOSE;
1427 sock->state = SS_UNCONNECTED;
1428 } else {
1429 err = 0;
1430 }
1431
1432 out_wait:
1433 finish_wait(sk_sleep(sk), &wait);
1434 out:
1435 release_sock(sk);
1436 return err;
1437 }
1438
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1439 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1440 bool kern)
1441 {
1442 struct sock *listener;
1443 int err;
1444 struct sock *connected;
1445 struct vsock_sock *vconnected;
1446 long timeout;
1447 DEFINE_WAIT(wait);
1448
1449 err = 0;
1450 listener = sock->sk;
1451
1452 lock_sock(listener);
1453
1454 if (!sock_type_connectible(sock->type)) {
1455 err = -EOPNOTSUPP;
1456 goto out;
1457 }
1458
1459 if (listener->sk_state != TCP_LISTEN) {
1460 err = -EINVAL;
1461 goto out;
1462 }
1463
1464 /* Wait for children sockets to appear; these are the new sockets
1465 * created upon connection establishment.
1466 */
1467 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1468 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1469
1470 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1471 listener->sk_err == 0) {
1472 release_sock(listener);
1473 timeout = schedule_timeout(timeout);
1474 finish_wait(sk_sleep(listener), &wait);
1475 lock_sock(listener);
1476
1477 if (signal_pending(current)) {
1478 err = sock_intr_errno(timeout);
1479 goto out;
1480 } else if (timeout == 0) {
1481 err = -EAGAIN;
1482 goto out;
1483 }
1484
1485 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1486 }
1487 finish_wait(sk_sleep(listener), &wait);
1488
1489 if (listener->sk_err)
1490 err = -listener->sk_err;
1491
1492 if (connected) {
1493 sk_acceptq_removed(listener);
1494
1495 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1496 vconnected = vsock_sk(connected);
1497
1498 /* If the listener socket has received an error, then we should
1499 * reject this socket and return. Note that we simply mark the
1500 * socket rejected, drop our reference, and let the cleanup
1501 * function handle the cleanup; the fact that we found it in
1502 * the listener's accept queue guarantees that the cleanup
1503 * function hasn't run yet.
1504 */
1505 if (err) {
1506 vconnected->rejected = true;
1507 } else {
1508 newsock->state = SS_CONNECTED;
1509 sock_graft(connected, newsock);
1510 }
1511
1512 release_sock(connected);
1513 sock_put(connected);
1514 }
1515
1516 out:
1517 release_sock(listener);
1518 return err;
1519 }
1520
vsock_listen(struct socket * sock,int backlog)1521 static int vsock_listen(struct socket *sock, int backlog)
1522 {
1523 int err;
1524 struct sock *sk;
1525 struct vsock_sock *vsk;
1526
1527 sk = sock->sk;
1528
1529 lock_sock(sk);
1530
1531 if (!sock_type_connectible(sk->sk_type)) {
1532 err = -EOPNOTSUPP;
1533 goto out;
1534 }
1535
1536 if (sock->state != SS_UNCONNECTED) {
1537 err = -EINVAL;
1538 goto out;
1539 }
1540
1541 vsk = vsock_sk(sk);
1542
1543 if (!vsock_addr_bound(&vsk->local_addr)) {
1544 err = -EINVAL;
1545 goto out;
1546 }
1547
1548 sk->sk_max_ack_backlog = backlog;
1549 sk->sk_state = TCP_LISTEN;
1550
1551 err = 0;
1552
1553 out:
1554 release_sock(sk);
1555 return err;
1556 }
1557
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1558 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1559 const struct vsock_transport *transport,
1560 u64 val)
1561 {
1562 if (val > vsk->buffer_max_size)
1563 val = vsk->buffer_max_size;
1564
1565 if (val < vsk->buffer_min_size)
1566 val = vsk->buffer_min_size;
1567
1568 if (val != vsk->buffer_size &&
1569 transport && transport->notify_buffer_size)
1570 transport->notify_buffer_size(vsk, &val);
1571
1572 vsk->buffer_size = val;
1573 }
1574
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1575 static int vsock_connectible_setsockopt(struct socket *sock,
1576 int level,
1577 int optname,
1578 sockptr_t optval,
1579 unsigned int optlen)
1580 {
1581 int err;
1582 struct sock *sk;
1583 struct vsock_sock *vsk;
1584 const struct vsock_transport *transport;
1585 u64 val;
1586
1587 if (level != AF_VSOCK)
1588 return -ENOPROTOOPT;
1589
1590 #define COPY_IN(_v) \
1591 do { \
1592 if (optlen < sizeof(_v)) { \
1593 err = -EINVAL; \
1594 goto exit; \
1595 } \
1596 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1597 err = -EFAULT; \
1598 goto exit; \
1599 } \
1600 } while (0)
1601
1602 err = 0;
1603 sk = sock->sk;
1604 vsk = vsock_sk(sk);
1605
1606 lock_sock(sk);
1607
1608 transport = vsk->transport;
1609
1610 switch (optname) {
1611 case SO_VM_SOCKETS_BUFFER_SIZE:
1612 COPY_IN(val);
1613 vsock_update_buffer_size(vsk, transport, val);
1614 break;
1615
1616 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1617 COPY_IN(val);
1618 vsk->buffer_max_size = val;
1619 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1620 break;
1621
1622 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1623 COPY_IN(val);
1624 vsk->buffer_min_size = val;
1625 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1626 break;
1627
1628 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1629 struct __kernel_old_timeval tv;
1630 COPY_IN(tv);
1631 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1632 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1633 vsk->connect_timeout = tv.tv_sec * HZ +
1634 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1635 if (vsk->connect_timeout == 0)
1636 vsk->connect_timeout =
1637 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1638
1639 } else {
1640 err = -ERANGE;
1641 }
1642 break;
1643 }
1644
1645 default:
1646 err = -ENOPROTOOPT;
1647 break;
1648 }
1649
1650 #undef COPY_IN
1651
1652 exit:
1653 release_sock(sk);
1654 return err;
1655 }
1656
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1657 static int vsock_connectible_getsockopt(struct socket *sock,
1658 int level, int optname,
1659 char __user *optval,
1660 int __user *optlen)
1661 {
1662 int err;
1663 int len;
1664 struct sock *sk;
1665 struct vsock_sock *vsk;
1666 u64 val;
1667
1668 if (level != AF_VSOCK)
1669 return -ENOPROTOOPT;
1670
1671 err = get_user(len, optlen);
1672 if (err != 0)
1673 return err;
1674
1675 #define COPY_OUT(_v) \
1676 do { \
1677 if (len < sizeof(_v)) \
1678 return -EINVAL; \
1679 \
1680 len = sizeof(_v); \
1681 if (copy_to_user(optval, &_v, len) != 0) \
1682 return -EFAULT; \
1683 \
1684 } while (0)
1685
1686 err = 0;
1687 sk = sock->sk;
1688 vsk = vsock_sk(sk);
1689
1690 switch (optname) {
1691 case SO_VM_SOCKETS_BUFFER_SIZE:
1692 val = vsk->buffer_size;
1693 COPY_OUT(val);
1694 break;
1695
1696 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1697 val = vsk->buffer_max_size;
1698 COPY_OUT(val);
1699 break;
1700
1701 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1702 val = vsk->buffer_min_size;
1703 COPY_OUT(val);
1704 break;
1705
1706 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1707 struct __kernel_old_timeval tv;
1708 tv.tv_sec = vsk->connect_timeout / HZ;
1709 tv.tv_usec =
1710 (vsk->connect_timeout -
1711 tv.tv_sec * HZ) * (1000000 / HZ);
1712 COPY_OUT(tv);
1713 break;
1714 }
1715 default:
1716 return -ENOPROTOOPT;
1717 }
1718
1719 err = put_user(len, optlen);
1720 if (err != 0)
1721 return -EFAULT;
1722
1723 #undef COPY_OUT
1724
1725 return 0;
1726 }
1727
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1728 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1729 size_t len)
1730 {
1731 struct sock *sk;
1732 struct vsock_sock *vsk;
1733 const struct vsock_transport *transport;
1734 ssize_t total_written;
1735 long timeout;
1736 int err;
1737 struct vsock_transport_send_notify_data send_data;
1738 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1739
1740 sk = sock->sk;
1741 vsk = vsock_sk(sk);
1742 total_written = 0;
1743 err = 0;
1744
1745 if (msg->msg_flags & MSG_OOB)
1746 return -EOPNOTSUPP;
1747
1748 lock_sock(sk);
1749
1750 transport = vsk->transport;
1751
1752 /* Callers should not provide a destination with connection oriented
1753 * sockets.
1754 */
1755 if (msg->msg_namelen) {
1756 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1757 goto out;
1758 }
1759
1760 /* Send data only if both sides are not shutdown in the direction. */
1761 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1762 vsk->peer_shutdown & RCV_SHUTDOWN) {
1763 err = -EPIPE;
1764 goto out;
1765 }
1766
1767 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1768 !vsock_addr_bound(&vsk->local_addr)) {
1769 err = -ENOTCONN;
1770 goto out;
1771 }
1772
1773 if (!vsock_addr_bound(&vsk->remote_addr)) {
1774 err = -EDESTADDRREQ;
1775 goto out;
1776 }
1777
1778 /* Wait for room in the produce queue to enqueue our user's data. */
1779 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1780
1781 err = transport->notify_send_init(vsk, &send_data);
1782 if (err < 0)
1783 goto out;
1784
1785 while (total_written < len) {
1786 ssize_t written;
1787
1788 add_wait_queue(sk_sleep(sk), &wait);
1789 while (vsock_stream_has_space(vsk) == 0 &&
1790 sk->sk_err == 0 &&
1791 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1792 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1793
1794 /* Don't wait for non-blocking sockets. */
1795 if (timeout == 0) {
1796 err = -EAGAIN;
1797 remove_wait_queue(sk_sleep(sk), &wait);
1798 goto out_err;
1799 }
1800
1801 err = transport->notify_send_pre_block(vsk, &send_data);
1802 if (err < 0) {
1803 remove_wait_queue(sk_sleep(sk), &wait);
1804 goto out_err;
1805 }
1806
1807 release_sock(sk);
1808 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1809 lock_sock(sk);
1810 if (signal_pending(current)) {
1811 err = sock_intr_errno(timeout);
1812 remove_wait_queue(sk_sleep(sk), &wait);
1813 goto out_err;
1814 } else if (timeout == 0) {
1815 err = -EAGAIN;
1816 remove_wait_queue(sk_sleep(sk), &wait);
1817 goto out_err;
1818 }
1819 }
1820 remove_wait_queue(sk_sleep(sk), &wait);
1821
1822 /* These checks occur both as part of and after the loop
1823 * conditional since we need to check before and after
1824 * sleeping.
1825 */
1826 if (sk->sk_err) {
1827 err = -sk->sk_err;
1828 goto out_err;
1829 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1830 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1831 err = -EPIPE;
1832 goto out_err;
1833 }
1834
1835 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1836 if (err < 0)
1837 goto out_err;
1838
1839 /* Note that enqueue will only write as many bytes as are free
1840 * in the produce queue, so we don't need to ensure len is
1841 * smaller than the queue size. It is the caller's
1842 * responsibility to check how many bytes we were able to send.
1843 */
1844
1845 if (sk->sk_type == SOCK_SEQPACKET) {
1846 written = transport->seqpacket_enqueue(vsk,
1847 msg, len - total_written);
1848 } else {
1849 written = transport->stream_enqueue(vsk,
1850 msg, len - total_written);
1851 }
1852 if (written < 0) {
1853 err = -ENOMEM;
1854 goto out_err;
1855 }
1856
1857 total_written += written;
1858
1859 err = transport->notify_send_post_enqueue(
1860 vsk, written, &send_data);
1861 if (err < 0)
1862 goto out_err;
1863
1864 }
1865
1866 out_err:
1867 if (total_written > 0) {
1868 /* Return number of written bytes only if:
1869 * 1) SOCK_STREAM socket.
1870 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1871 */
1872 if (sk->sk_type == SOCK_STREAM || total_written == len)
1873 err = total_written;
1874 }
1875 out:
1876 release_sock(sk);
1877 return err;
1878 }
1879
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1880 static int vsock_connectible_wait_data(struct sock *sk,
1881 struct wait_queue_entry *wait,
1882 long timeout,
1883 struct vsock_transport_recv_notify_data *recv_data,
1884 size_t target)
1885 {
1886 const struct vsock_transport *transport;
1887 struct vsock_sock *vsk;
1888 s64 data;
1889 int err;
1890
1891 vsk = vsock_sk(sk);
1892 err = 0;
1893 transport = vsk->transport;
1894
1895 while (1) {
1896 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1897 data = vsock_connectible_has_data(vsk);
1898 if (data != 0)
1899 break;
1900
1901 if (sk->sk_err != 0 ||
1902 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1903 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1904 break;
1905 }
1906
1907 /* Don't wait for non-blocking sockets. */
1908 if (timeout == 0) {
1909 err = -EAGAIN;
1910 break;
1911 }
1912
1913 if (recv_data) {
1914 err = transport->notify_recv_pre_block(vsk, target, recv_data);
1915 if (err < 0)
1916 break;
1917 }
1918
1919 release_sock(sk);
1920 timeout = schedule_timeout(timeout);
1921 lock_sock(sk);
1922
1923 if (signal_pending(current)) {
1924 err = sock_intr_errno(timeout);
1925 break;
1926 } else if (timeout == 0) {
1927 err = -EAGAIN;
1928 break;
1929 }
1930 }
1931
1932 finish_wait(sk_sleep(sk), wait);
1933
1934 if (err)
1935 return err;
1936
1937 /* Internal transport error when checking for available
1938 * data. XXX This should be changed to a connection
1939 * reset in a later change.
1940 */
1941 if (data < 0)
1942 return -ENOMEM;
1943
1944 return data;
1945 }
1946
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)1947 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1948 size_t len, int flags)
1949 {
1950 struct vsock_transport_recv_notify_data recv_data;
1951 const struct vsock_transport *transport;
1952 struct vsock_sock *vsk;
1953 ssize_t copied;
1954 size_t target;
1955 long timeout;
1956 int err;
1957
1958 DEFINE_WAIT(wait);
1959
1960 vsk = vsock_sk(sk);
1961 transport = vsk->transport;
1962
1963 /* We must not copy less than target bytes into the user's buffer
1964 * before returning successfully, so we wait for the consume queue to
1965 * have that much data to consume before dequeueing. Note that this
1966 * makes it impossible to handle cases where target is greater than the
1967 * queue size.
1968 */
1969 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1970 if (target >= transport->stream_rcvhiwat(vsk)) {
1971 err = -ENOMEM;
1972 goto out;
1973 }
1974 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1975 copied = 0;
1976
1977 err = transport->notify_recv_init(vsk, target, &recv_data);
1978 if (err < 0)
1979 goto out;
1980
1981
1982 while (1) {
1983 ssize_t read;
1984
1985 err = vsock_connectible_wait_data(sk, &wait, timeout,
1986 &recv_data, target);
1987 if (err <= 0)
1988 break;
1989
1990 err = transport->notify_recv_pre_dequeue(vsk, target,
1991 &recv_data);
1992 if (err < 0)
1993 break;
1994
1995 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
1996 if (read < 0) {
1997 err = -ENOMEM;
1998 break;
1999 }
2000
2001 copied += read;
2002
2003 err = transport->notify_recv_post_dequeue(vsk, target, read,
2004 !(flags & MSG_PEEK), &recv_data);
2005 if (err < 0)
2006 goto out;
2007
2008 if (read >= target || flags & MSG_PEEK)
2009 break;
2010
2011 target -= read;
2012 }
2013
2014 if (sk->sk_err)
2015 err = -sk->sk_err;
2016 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2017 err = 0;
2018
2019 if (copied > 0)
2020 err = copied;
2021
2022 out:
2023 return err;
2024 }
2025
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2026 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2027 size_t len, int flags)
2028 {
2029 const struct vsock_transport *transport;
2030 struct vsock_sock *vsk;
2031 ssize_t msg_len;
2032 long timeout;
2033 int err = 0;
2034 DEFINE_WAIT(wait);
2035
2036 vsk = vsock_sk(sk);
2037 transport = vsk->transport;
2038
2039 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2040
2041 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2042 if (err <= 0)
2043 goto out;
2044
2045 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2046
2047 if (msg_len < 0) {
2048 err = -ENOMEM;
2049 goto out;
2050 }
2051
2052 if (sk->sk_err) {
2053 err = -sk->sk_err;
2054 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2055 err = 0;
2056 } else {
2057 /* User sets MSG_TRUNC, so return real length of
2058 * packet.
2059 */
2060 if (flags & MSG_TRUNC)
2061 err = msg_len;
2062 else
2063 err = len - msg_data_left(msg);
2064
2065 /* Always set MSG_TRUNC if real length of packet is
2066 * bigger than user's buffer.
2067 */
2068 if (msg_len > len)
2069 msg->msg_flags |= MSG_TRUNC;
2070 }
2071
2072 out:
2073 return err;
2074 }
2075
2076 static int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2077 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2078 int flags)
2079 {
2080 struct sock *sk;
2081 struct vsock_sock *vsk;
2082 const struct vsock_transport *transport;
2083 int err;
2084
2085 DEFINE_WAIT(wait);
2086
2087 sk = sock->sk;
2088 vsk = vsock_sk(sk);
2089 err = 0;
2090
2091 lock_sock(sk);
2092
2093 transport = vsk->transport;
2094
2095 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2096 /* Recvmsg is supposed to return 0 if a peer performs an
2097 * orderly shutdown. Differentiate between that case and when a
2098 * peer has not connected or a local shutdown occurred with the
2099 * SOCK_DONE flag.
2100 */
2101 if (sock_flag(sk, SOCK_DONE))
2102 err = 0;
2103 else
2104 err = -ENOTCONN;
2105
2106 goto out;
2107 }
2108
2109 if (flags & MSG_OOB) {
2110 err = -EOPNOTSUPP;
2111 goto out;
2112 }
2113
2114 /* We don't check peer_shutdown flag here since peer may actually shut
2115 * down, but there can be data in the queue that a local socket can
2116 * receive.
2117 */
2118 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2119 err = 0;
2120 goto out;
2121 }
2122
2123 /* It is valid on Linux to pass in a zero-length receive buffer. This
2124 * is not an error. We may as well bail out now.
2125 */
2126 if (!len) {
2127 err = 0;
2128 goto out;
2129 }
2130
2131 if (sk->sk_type == SOCK_STREAM)
2132 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2133 else
2134 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2135
2136 out:
2137 release_sock(sk);
2138 return err;
2139 }
2140
2141 static const struct proto_ops vsock_stream_ops = {
2142 .family = PF_VSOCK,
2143 .owner = THIS_MODULE,
2144 .release = vsock_release,
2145 .bind = vsock_bind,
2146 .connect = vsock_connect,
2147 .socketpair = sock_no_socketpair,
2148 .accept = vsock_accept,
2149 .getname = vsock_getname,
2150 .poll = vsock_poll,
2151 .ioctl = sock_no_ioctl,
2152 .listen = vsock_listen,
2153 .shutdown = vsock_shutdown,
2154 .setsockopt = vsock_connectible_setsockopt,
2155 .getsockopt = vsock_connectible_getsockopt,
2156 .sendmsg = vsock_connectible_sendmsg,
2157 .recvmsg = vsock_connectible_recvmsg,
2158 .mmap = sock_no_mmap,
2159 .sendpage = sock_no_sendpage,
2160 };
2161
2162 static const struct proto_ops vsock_seqpacket_ops = {
2163 .family = PF_VSOCK,
2164 .owner = THIS_MODULE,
2165 .release = vsock_release,
2166 .bind = vsock_bind,
2167 .connect = vsock_connect,
2168 .socketpair = sock_no_socketpair,
2169 .accept = vsock_accept,
2170 .getname = vsock_getname,
2171 .poll = vsock_poll,
2172 .ioctl = sock_no_ioctl,
2173 .listen = vsock_listen,
2174 .shutdown = vsock_shutdown,
2175 .setsockopt = vsock_connectible_setsockopt,
2176 .getsockopt = vsock_connectible_getsockopt,
2177 .sendmsg = vsock_connectible_sendmsg,
2178 .recvmsg = vsock_connectible_recvmsg,
2179 .mmap = sock_no_mmap,
2180 .sendpage = sock_no_sendpage,
2181 };
2182
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2183 static int vsock_create(struct net *net, struct socket *sock,
2184 int protocol, int kern)
2185 {
2186 struct vsock_sock *vsk;
2187 struct sock *sk;
2188 int ret;
2189
2190 if (!sock)
2191 return -EINVAL;
2192
2193 if (protocol && protocol != PF_VSOCK)
2194 return -EPROTONOSUPPORT;
2195
2196 switch (sock->type) {
2197 case SOCK_DGRAM:
2198 sock->ops = &vsock_dgram_ops;
2199 break;
2200 case SOCK_STREAM:
2201 sock->ops = &vsock_stream_ops;
2202 break;
2203 case SOCK_SEQPACKET:
2204 sock->ops = &vsock_seqpacket_ops;
2205 break;
2206 default:
2207 return -ESOCKTNOSUPPORT;
2208 }
2209
2210 sock->state = SS_UNCONNECTED;
2211
2212 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2213 if (!sk)
2214 return -ENOMEM;
2215
2216 vsk = vsock_sk(sk);
2217
2218 if (sock->type == SOCK_DGRAM) {
2219 ret = vsock_assign_transport(vsk, NULL);
2220 if (ret < 0) {
2221 sock_put(sk);
2222 return ret;
2223 }
2224 }
2225
2226 vsock_insert_unbound(vsk);
2227
2228 return 0;
2229 }
2230
2231 static const struct net_proto_family vsock_family_ops = {
2232 .family = AF_VSOCK,
2233 .create = vsock_create,
2234 .owner = THIS_MODULE,
2235 };
2236
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2237 static long vsock_dev_do_ioctl(struct file *filp,
2238 unsigned int cmd, void __user *ptr)
2239 {
2240 u32 __user *p = ptr;
2241 u32 cid = VMADDR_CID_ANY;
2242 int retval = 0;
2243
2244 switch (cmd) {
2245 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2246 /* To be compatible with the VMCI behavior, we prioritize the
2247 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2248 */
2249 if (transport_g2h)
2250 cid = transport_g2h->get_local_cid();
2251 else if (transport_h2g)
2252 cid = transport_h2g->get_local_cid();
2253
2254 if (put_user(cid, p) != 0)
2255 retval = -EFAULT;
2256 break;
2257
2258 default:
2259 retval = -ENOIOCTLCMD;
2260 }
2261
2262 return retval;
2263 }
2264
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2265 static long vsock_dev_ioctl(struct file *filp,
2266 unsigned int cmd, unsigned long arg)
2267 {
2268 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2269 }
2270
2271 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2272 static long vsock_dev_compat_ioctl(struct file *filp,
2273 unsigned int cmd, unsigned long arg)
2274 {
2275 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2276 }
2277 #endif
2278
2279 static const struct file_operations vsock_device_ops = {
2280 .owner = THIS_MODULE,
2281 .unlocked_ioctl = vsock_dev_ioctl,
2282 #ifdef CONFIG_COMPAT
2283 .compat_ioctl = vsock_dev_compat_ioctl,
2284 #endif
2285 .open = nonseekable_open,
2286 };
2287
2288 static struct miscdevice vsock_device = {
2289 .name = "vsock",
2290 .fops = &vsock_device_ops,
2291 };
2292
vsock_init(void)2293 static int __init vsock_init(void)
2294 {
2295 int err = 0;
2296
2297 vsock_init_tables();
2298
2299 vsock_proto.owner = THIS_MODULE;
2300 vsock_device.minor = MISC_DYNAMIC_MINOR;
2301 err = misc_register(&vsock_device);
2302 if (err) {
2303 pr_err("Failed to register misc device\n");
2304 goto err_reset_transport;
2305 }
2306
2307 err = proto_register(&vsock_proto, 1); /* we want our slab */
2308 if (err) {
2309 pr_err("Cannot register vsock protocol\n");
2310 goto err_deregister_misc;
2311 }
2312
2313 err = sock_register(&vsock_family_ops);
2314 if (err) {
2315 pr_err("could not register af_vsock (%d) address family: %d\n",
2316 AF_VSOCK, err);
2317 goto err_unregister_proto;
2318 }
2319
2320 return 0;
2321
2322 err_unregister_proto:
2323 proto_unregister(&vsock_proto);
2324 err_deregister_misc:
2325 misc_deregister(&vsock_device);
2326 err_reset_transport:
2327 return err;
2328 }
2329
vsock_exit(void)2330 static void __exit vsock_exit(void)
2331 {
2332 misc_deregister(&vsock_device);
2333 sock_unregister(AF_VSOCK);
2334 proto_unregister(&vsock_proto);
2335 }
2336
vsock_core_get_transport(struct vsock_sock * vsk)2337 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2338 {
2339 return vsk->transport;
2340 }
2341 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2342
vsock_core_register(const struct vsock_transport * t,int features)2343 int vsock_core_register(const struct vsock_transport *t, int features)
2344 {
2345 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2346 int err = mutex_lock_interruptible(&vsock_register_mutex);
2347
2348 if (err)
2349 return err;
2350
2351 t_h2g = transport_h2g;
2352 t_g2h = transport_g2h;
2353 t_dgram = transport_dgram;
2354 t_local = transport_local;
2355
2356 if (features & VSOCK_TRANSPORT_F_H2G) {
2357 if (t_h2g) {
2358 err = -EBUSY;
2359 goto err_busy;
2360 }
2361 t_h2g = t;
2362 }
2363
2364 if (features & VSOCK_TRANSPORT_F_G2H) {
2365 if (t_g2h) {
2366 err = -EBUSY;
2367 goto err_busy;
2368 }
2369 t_g2h = t;
2370 }
2371
2372 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2373 if (t_dgram) {
2374 err = -EBUSY;
2375 goto err_busy;
2376 }
2377 t_dgram = t;
2378 }
2379
2380 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2381 if (t_local) {
2382 err = -EBUSY;
2383 goto err_busy;
2384 }
2385 t_local = t;
2386 }
2387
2388 transport_h2g = t_h2g;
2389 transport_g2h = t_g2h;
2390 transport_dgram = t_dgram;
2391 transport_local = t_local;
2392
2393 err_busy:
2394 mutex_unlock(&vsock_register_mutex);
2395 return err;
2396 }
2397 EXPORT_SYMBOL_GPL(vsock_core_register);
2398
vsock_core_unregister(const struct vsock_transport * t)2399 void vsock_core_unregister(const struct vsock_transport *t)
2400 {
2401 mutex_lock(&vsock_register_mutex);
2402
2403 if (transport_h2g == t)
2404 transport_h2g = NULL;
2405
2406 if (transport_g2h == t)
2407 transport_g2h = NULL;
2408
2409 if (transport_dgram == t)
2410 transport_dgram = NULL;
2411
2412 if (transport_local == t)
2413 transport_local = NULL;
2414
2415 mutex_unlock(&vsock_register_mutex);
2416 }
2417 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2418
2419 module_init(vsock_init);
2420 module_exit(vsock_exit);
2421
2422 MODULE_AUTHOR("VMware, Inc.");
2423 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2424 MODULE_VERSION("1.0.2.0-k");
2425 MODULE_LICENSE("GPL v2");
2426