1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/mm.h>
49
50 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
51 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
52 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
53 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
54
55 /*
56 * Fragmentation score check interval for proactive compaction purposes.
57 */
58 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
59
60 /*
61 * Page order with-respect-to which proactive compaction
62 * calculates external fragmentation, which is used as
63 * the "fragmentation score" of a node/zone.
64 */
65 #if defined CONFIG_TRANSPARENT_HUGEPAGE
66 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
67 #elif defined CONFIG_HUGETLBFS
68 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
69 #else
70 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
71 #endif
72
release_freepages(struct list_head * freelist)73 static unsigned long release_freepages(struct list_head *freelist)
74 {
75 struct page *page, *next;
76 unsigned long high_pfn = 0;
77
78 list_for_each_entry_safe(page, next, freelist, lru) {
79 unsigned long pfn = page_to_pfn(page);
80 list_del(&page->lru);
81 __free_page(page);
82 if (pfn > high_pfn)
83 high_pfn = pfn;
84 }
85
86 return high_pfn;
87 }
88
split_map_pages(struct list_head * list)89 static void split_map_pages(struct list_head *list)
90 {
91 unsigned int i, order, nr_pages;
92 struct page *page, *next;
93 LIST_HEAD(tmp_list);
94
95 list_for_each_entry_safe(page, next, list, lru) {
96 list_del(&page->lru);
97
98 order = page_private(page);
99 nr_pages = 1 << order;
100
101 post_alloc_hook(page, order, __GFP_MOVABLE);
102 if (order)
103 split_page(page, order);
104
105 for (i = 0; i < nr_pages; i++) {
106 list_add(&page->lru, &tmp_list);
107 page++;
108 }
109 }
110
111 list_splice(&tmp_list, list);
112 }
113
114 #ifdef CONFIG_COMPACTION
115
PageMovable(struct page * page)116 int PageMovable(struct page *page)
117 {
118 struct address_space *mapping;
119
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 if (!__PageMovable(page))
122 return 0;
123
124 mapping = page_mapping(page);
125 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
126 return 1;
127
128 return 0;
129 }
130 EXPORT_SYMBOL(PageMovable);
131
__SetPageMovable(struct page * page,struct address_space * mapping)132 void __SetPageMovable(struct page *page, struct address_space *mapping)
133 {
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
136 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
137 }
138 EXPORT_SYMBOL(__SetPageMovable);
139
__ClearPageMovable(struct page * page)140 void __ClearPageMovable(struct page *page)
141 {
142 VM_BUG_ON_PAGE(!PageMovable(page), page);
143 /*
144 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
145 * flag so that VM can catch up released page by driver after isolation.
146 * With it, VM migration doesn't try to put it back.
147 */
148 page->mapping = (void *)((unsigned long)page->mapping &
149 PAGE_MAPPING_MOVABLE);
150 }
151 EXPORT_SYMBOL(__ClearPageMovable);
152
153 /* Do not skip compaction more than 64 times */
154 #define COMPACT_MAX_DEFER_SHIFT 6
155
156 /*
157 * Compaction is deferred when compaction fails to result in a page
158 * allocation success. 1 << compact_defer_shift, compactions are skipped up
159 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
160 */
defer_compaction(struct zone * zone,int order)161 static void defer_compaction(struct zone *zone, int order)
162 {
163 zone->compact_considered = 0;
164 zone->compact_defer_shift++;
165
166 if (order < zone->compact_order_failed)
167 zone->compact_order_failed = order;
168
169 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
170 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
171
172 trace_mm_compaction_defer_compaction(zone, order);
173 }
174
175 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)176 static bool compaction_deferred(struct zone *zone, int order)
177 {
178 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
179
180 if (order < zone->compact_order_failed)
181 return false;
182
183 /* Avoid possible overflow */
184 if (++zone->compact_considered >= defer_limit) {
185 zone->compact_considered = defer_limit;
186 return false;
187 }
188
189 trace_mm_compaction_deferred(zone, order);
190
191 return true;
192 }
193
194 /*
195 * Update defer tracking counters after successful compaction of given order,
196 * which means an allocation either succeeded (alloc_success == true) or is
197 * expected to succeed.
198 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)199 void compaction_defer_reset(struct zone *zone, int order,
200 bool alloc_success)
201 {
202 if (alloc_success) {
203 zone->compact_considered = 0;
204 zone->compact_defer_shift = 0;
205 }
206 if (order >= zone->compact_order_failed)
207 zone->compact_order_failed = order + 1;
208
209 trace_mm_compaction_defer_reset(zone, order);
210 }
211
212 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)213 static bool compaction_restarting(struct zone *zone, int order)
214 {
215 if (order < zone->compact_order_failed)
216 return false;
217
218 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
219 zone->compact_considered >= 1UL << zone->compact_defer_shift;
220 }
221
222 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)223 static inline bool isolation_suitable(struct compact_control *cc,
224 struct page *page)
225 {
226 if (cc->ignore_skip_hint)
227 return true;
228
229 return !get_pageblock_skip(page);
230 }
231
reset_cached_positions(struct zone * zone)232 static void reset_cached_positions(struct zone *zone)
233 {
234 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
235 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
236 zone->compact_cached_free_pfn =
237 pageblock_start_pfn(zone_end_pfn(zone) - 1);
238 }
239
240 /*
241 * Compound pages of >= pageblock_order should consistently be skipped until
242 * released. It is always pointless to compact pages of such order (if they are
243 * migratable), and the pageblocks they occupy cannot contain any free pages.
244 */
pageblock_skip_persistent(struct page * page)245 static bool pageblock_skip_persistent(struct page *page)
246 {
247 if (!PageCompound(page))
248 return false;
249
250 page = compound_head(page);
251
252 if (compound_order(page) >= pageblock_order)
253 return true;
254
255 return false;
256 }
257
258 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)259 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
260 bool check_target)
261 {
262 struct page *page = pfn_to_online_page(pfn);
263 struct page *block_page;
264 struct page *end_page;
265 unsigned long block_pfn;
266
267 if (!page)
268 return false;
269 if (zone != page_zone(page))
270 return false;
271 if (pageblock_skip_persistent(page))
272 return false;
273
274 /*
275 * If skip is already cleared do no further checking once the
276 * restart points have been set.
277 */
278 if (check_source && check_target && !get_pageblock_skip(page))
279 return true;
280
281 /*
282 * If clearing skip for the target scanner, do not select a
283 * non-movable pageblock as the starting point.
284 */
285 if (!check_source && check_target &&
286 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
287 return false;
288
289 /* Ensure the start of the pageblock or zone is online and valid */
290 block_pfn = pageblock_start_pfn(pfn);
291 block_pfn = max(block_pfn, zone->zone_start_pfn);
292 block_page = pfn_to_online_page(block_pfn);
293 if (block_page) {
294 page = block_page;
295 pfn = block_pfn;
296 }
297
298 /* Ensure the end of the pageblock or zone is online and valid */
299 block_pfn = pageblock_end_pfn(pfn) - 1;
300 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
301 end_page = pfn_to_online_page(block_pfn);
302 if (!end_page)
303 return false;
304
305 /*
306 * Only clear the hint if a sample indicates there is either a
307 * free page or an LRU page in the block. One or other condition
308 * is necessary for the block to be a migration source/target.
309 */
310 do {
311 if (check_source && PageLRU(page)) {
312 clear_pageblock_skip(page);
313 return true;
314 }
315
316 if (check_target && PageBuddy(page)) {
317 clear_pageblock_skip(page);
318 return true;
319 }
320
321 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 } while (page <= end_page);
324
325 return false;
326 }
327
328 /*
329 * This function is called to clear all cached information on pageblocks that
330 * should be skipped for page isolation when the migrate and free page scanner
331 * meet.
332 */
__reset_isolation_suitable(struct zone * zone)333 static void __reset_isolation_suitable(struct zone *zone)
334 {
335 unsigned long migrate_pfn = zone->zone_start_pfn;
336 unsigned long free_pfn = zone_end_pfn(zone) - 1;
337 unsigned long reset_migrate = free_pfn;
338 unsigned long reset_free = migrate_pfn;
339 bool source_set = false;
340 bool free_set = false;
341
342 if (!zone->compact_blockskip_flush)
343 return;
344
345 zone->compact_blockskip_flush = false;
346
347 /*
348 * Walk the zone and update pageblock skip information. Source looks
349 * for PageLRU while target looks for PageBuddy. When the scanner
350 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 * is suitable as both source and target.
352 */
353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 free_pfn -= pageblock_nr_pages) {
355 cond_resched();
356
357 /* Update the migrate PFN */
358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 migrate_pfn < reset_migrate) {
360 source_set = true;
361 reset_migrate = migrate_pfn;
362 zone->compact_init_migrate_pfn = reset_migrate;
363 zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 }
366
367 /* Update the free PFN */
368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 free_pfn > reset_free) {
370 free_set = true;
371 reset_free = free_pfn;
372 zone->compact_init_free_pfn = reset_free;
373 zone->compact_cached_free_pfn = reset_free;
374 }
375 }
376
377 /* Leave no distance if no suitable block was reset */
378 if (reset_migrate >= reset_free) {
379 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 zone->compact_cached_free_pfn = free_pfn;
382 }
383 }
384
reset_isolation_suitable(pg_data_t * pgdat)385 void reset_isolation_suitable(pg_data_t *pgdat)
386 {
387 int zoneid;
388
389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 struct zone *zone = &pgdat->node_zones[zoneid];
391 if (!populated_zone(zone))
392 continue;
393
394 /* Only flush if a full compaction finished recently */
395 if (zone->compact_blockskip_flush)
396 __reset_isolation_suitable(zone);
397 }
398 }
399
400 /*
401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402 * locks are not required for read/writers. Returns true if it was already set.
403 */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)404 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 unsigned long pfn)
406 {
407 bool skip;
408
409 /* Do no update if skip hint is being ignored */
410 if (cc->ignore_skip_hint)
411 return false;
412
413 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 return false;
415
416 skip = get_pageblock_skip(page);
417 if (!skip && !cc->no_set_skip_hint)
418 set_pageblock_skip(page);
419
420 return skip;
421 }
422
update_cached_migrate(struct compact_control * cc,unsigned long pfn)423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424 {
425 struct zone *zone = cc->zone;
426
427 pfn = pageblock_end_pfn(pfn);
428
429 /* Set for isolation rather than compaction */
430 if (cc->no_set_skip_hint)
431 return;
432
433 if (pfn > zone->compact_cached_migrate_pfn[0])
434 zone->compact_cached_migrate_pfn[0] = pfn;
435 if (cc->mode != MIGRATE_ASYNC &&
436 pfn > zone->compact_cached_migrate_pfn[1])
437 zone->compact_cached_migrate_pfn[1] = pfn;
438 }
439
440 /*
441 * If no pages were isolated then mark this pageblock to be skipped in the
442 * future. The information is later cleared by __reset_isolation_suitable().
443 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)444 static void update_pageblock_skip(struct compact_control *cc,
445 struct page *page, unsigned long pfn)
446 {
447 struct zone *zone = cc->zone;
448
449 if (cc->no_set_skip_hint)
450 return;
451
452 if (!page)
453 return;
454
455 set_pageblock_skip(page);
456
457 /* Update where async and sync compaction should restart */
458 if (pfn < zone->compact_cached_free_pfn)
459 zone->compact_cached_free_pfn = pfn;
460 }
461 #else
isolation_suitable(struct compact_control * cc,struct page * page)462 static inline bool isolation_suitable(struct compact_control *cc,
463 struct page *page)
464 {
465 return true;
466 }
467
pageblock_skip_persistent(struct page * page)468 static inline bool pageblock_skip_persistent(struct page *page)
469 {
470 return false;
471 }
472
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)473 static inline void update_pageblock_skip(struct compact_control *cc,
474 struct page *page, unsigned long pfn)
475 {
476 }
477
update_cached_migrate(struct compact_control * cc,unsigned long pfn)478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479 {
480 }
481
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)482 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 unsigned long pfn)
484 {
485 return false;
486 }
487 #endif /* CONFIG_COMPACTION */
488
489 /*
490 * Compaction requires the taking of some coarse locks that are potentially
491 * very heavily contended. For async compaction, trylock and record if the
492 * lock is contended. The lock will still be acquired but compaction will
493 * abort when the current block is finished regardless of success rate.
494 * Sync compaction acquires the lock.
495 *
496 * Always returns true which makes it easier to track lock state in callers.
497 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
499 struct compact_control *cc)
500 __acquires(lock)
501 {
502 /* Track if the lock is contended in async mode */
503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 if (spin_trylock_irqsave(lock, *flags))
505 return true;
506
507 cc->contended = true;
508 }
509
510 spin_lock_irqsave(lock, *flags);
511 return true;
512 }
513
514 /*
515 * Compaction requires the taking of some coarse locks that are potentially
516 * very heavily contended. The lock should be periodically unlocked to avoid
517 * having disabled IRQs for a long time, even when there is nobody waiting on
518 * the lock. It might also be that allowing the IRQs will result in
519 * need_resched() becoming true. If scheduling is needed, async compaction
520 * aborts. Sync compaction schedules.
521 * Either compaction type will also abort if a fatal signal is pending.
522 * In either case if the lock was locked, it is dropped and not regained.
523 *
524 * Returns true if compaction should abort due to fatal signal pending, or
525 * async compaction due to need_resched()
526 * Returns false when compaction can continue (sync compaction might have
527 * scheduled)
528 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)529 static bool compact_unlock_should_abort(spinlock_t *lock,
530 unsigned long flags, bool *locked, struct compact_control *cc)
531 {
532 if (*locked) {
533 spin_unlock_irqrestore(lock, flags);
534 *locked = false;
535 }
536
537 if (fatal_signal_pending(current)) {
538 cc->contended = true;
539 return true;
540 }
541
542 cond_resched();
543
544 return false;
545 }
546
547 /*
548 * Isolate free pages onto a private freelist. If @strict is true, will abort
549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550 * (even though it may still end up isolating some pages).
551 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)552 static unsigned long isolate_freepages_block(struct compact_control *cc,
553 unsigned long *start_pfn,
554 unsigned long end_pfn,
555 struct list_head *freelist,
556 unsigned int stride,
557 bool strict)
558 {
559 int nr_scanned = 0, total_isolated = 0;
560 struct page *cursor;
561 unsigned long flags = 0;
562 bool locked = false;
563 unsigned long blockpfn = *start_pfn;
564 unsigned int order;
565
566 /* Strict mode is for isolation, speed is secondary */
567 if (strict)
568 stride = 1;
569
570 cursor = pfn_to_page(blockpfn);
571
572 /* Isolate free pages. */
573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
574 int isolated;
575 struct page *page = cursor;
576
577 /*
578 * Periodically drop the lock (if held) regardless of its
579 * contention, to give chance to IRQs. Abort if fatal signal
580 * pending or async compaction detects need_resched()
581 */
582 if (!(blockpfn % SWAP_CLUSTER_MAX)
583 && compact_unlock_should_abort(&cc->zone->lock, flags,
584 &locked, cc))
585 break;
586
587 nr_scanned++;
588
589 /*
590 * For compound pages such as THP and hugetlbfs, we can save
591 * potentially a lot of iterations if we skip them at once.
592 * The check is racy, but we can consider only valid values
593 * and the only danger is skipping too much.
594 */
595 if (PageCompound(page)) {
596 const unsigned int order = compound_order(page);
597
598 if (likely(order < MAX_ORDER)) {
599 blockpfn += (1UL << order) - 1;
600 cursor += (1UL << order) - 1;
601 }
602 goto isolate_fail;
603 }
604
605 if (!PageBuddy(page))
606 goto isolate_fail;
607
608 /*
609 * If we already hold the lock, we can skip some rechecking.
610 * Note that if we hold the lock now, checked_pageblock was
611 * already set in some previous iteration (or strict is true),
612 * so it is correct to skip the suitable migration target
613 * recheck as well.
614 */
615 if (!locked) {
616 locked = compact_lock_irqsave(&cc->zone->lock,
617 &flags, cc);
618
619 /* Recheck this is a buddy page under lock */
620 if (!PageBuddy(page))
621 goto isolate_fail;
622 }
623
624 /* Found a free page, will break it into order-0 pages */
625 order = buddy_order(page);
626 isolated = __isolate_free_page(page, order);
627 if (!isolated)
628 break;
629 set_page_private(page, order);
630
631 total_isolated += isolated;
632 cc->nr_freepages += isolated;
633 list_add_tail(&page->lru, freelist);
634
635 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
636 blockpfn += isolated;
637 break;
638 }
639 /* Advance to the end of split page */
640 blockpfn += isolated - 1;
641 cursor += isolated - 1;
642 continue;
643
644 isolate_fail:
645 if (strict)
646 break;
647 else
648 continue;
649
650 }
651
652 if (locked)
653 spin_unlock_irqrestore(&cc->zone->lock, flags);
654
655 /*
656 * There is a tiny chance that we have read bogus compound_order(),
657 * so be careful to not go outside of the pageblock.
658 */
659 if (unlikely(blockpfn > end_pfn))
660 blockpfn = end_pfn;
661
662 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
663 nr_scanned, total_isolated);
664
665 /* Record how far we have got within the block */
666 *start_pfn = blockpfn;
667
668 /*
669 * If strict isolation is requested by CMA then check that all the
670 * pages requested were isolated. If there were any failures, 0 is
671 * returned and CMA will fail.
672 */
673 if (strict && blockpfn < end_pfn)
674 total_isolated = 0;
675
676 cc->total_free_scanned += nr_scanned;
677 if (total_isolated)
678 count_compact_events(COMPACTISOLATED, total_isolated);
679 return total_isolated;
680 }
681
682 /**
683 * isolate_freepages_range() - isolate free pages.
684 * @cc: Compaction control structure.
685 * @start_pfn: The first PFN to start isolating.
686 * @end_pfn: The one-past-last PFN.
687 *
688 * Non-free pages, invalid PFNs, or zone boundaries within the
689 * [start_pfn, end_pfn) range are considered errors, cause function to
690 * undo its actions and return zero.
691 *
692 * Otherwise, function returns one-past-the-last PFN of isolated page
693 * (which may be greater then end_pfn if end fell in a middle of
694 * a free page).
695 */
696 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)697 isolate_freepages_range(struct compact_control *cc,
698 unsigned long start_pfn, unsigned long end_pfn)
699 {
700 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
701 LIST_HEAD(freelist);
702
703 pfn = start_pfn;
704 block_start_pfn = pageblock_start_pfn(pfn);
705 if (block_start_pfn < cc->zone->zone_start_pfn)
706 block_start_pfn = cc->zone->zone_start_pfn;
707 block_end_pfn = pageblock_end_pfn(pfn);
708
709 for (; pfn < end_pfn; pfn += isolated,
710 block_start_pfn = block_end_pfn,
711 block_end_pfn += pageblock_nr_pages) {
712 /* Protect pfn from changing by isolate_freepages_block */
713 unsigned long isolate_start_pfn = pfn;
714
715 block_end_pfn = min(block_end_pfn, end_pfn);
716
717 /*
718 * pfn could pass the block_end_pfn if isolated freepage
719 * is more than pageblock order. In this case, we adjust
720 * scanning range to right one.
721 */
722 if (pfn >= block_end_pfn) {
723 block_start_pfn = pageblock_start_pfn(pfn);
724 block_end_pfn = pageblock_end_pfn(pfn);
725 block_end_pfn = min(block_end_pfn, end_pfn);
726 }
727
728 if (!pageblock_pfn_to_page(block_start_pfn,
729 block_end_pfn, cc->zone))
730 break;
731
732 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
733 block_end_pfn, &freelist, 0, true);
734
735 /*
736 * In strict mode, isolate_freepages_block() returns 0 if
737 * there are any holes in the block (ie. invalid PFNs or
738 * non-free pages).
739 */
740 if (!isolated)
741 break;
742
743 /*
744 * If we managed to isolate pages, it is always (1 << n) *
745 * pageblock_nr_pages for some non-negative n. (Max order
746 * page may span two pageblocks).
747 */
748 }
749
750 /* __isolate_free_page() does not map the pages */
751 split_map_pages(&freelist);
752
753 if (pfn < end_pfn) {
754 /* Loop terminated early, cleanup. */
755 release_freepages(&freelist);
756 return 0;
757 }
758
759 /* We don't use freelists for anything. */
760 return pfn;
761 }
762
763 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)764 unsigned long isolate_and_split_free_page(struct page *page,
765 struct list_head *list)
766 {
767 unsigned long isolated;
768 unsigned int order;
769
770 if (!PageBuddy(page))
771 return 0;
772
773 order = buddy_order(page);
774 isolated = __isolate_free_page(page, order);
775 if (!isolated)
776 return 0;
777
778 set_page_private(page, order);
779 list_add(&page->lru, list);
780
781 split_map_pages(list);
782
783 return isolated;
784 }
785 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
786 #endif
787
788 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)789 static bool too_many_isolated(pg_data_t *pgdat)
790 {
791 unsigned long active, inactive, isolated;
792
793 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
794 node_page_state(pgdat, NR_INACTIVE_ANON);
795 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
796 node_page_state(pgdat, NR_ACTIVE_ANON);
797 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
798 node_page_state(pgdat, NR_ISOLATED_ANON);
799
800 return isolated > (inactive + active) / 2;
801 }
802
803 /**
804 * isolate_migratepages_block() - isolate all migrate-able pages within
805 * a single pageblock
806 * @cc: Compaction control structure.
807 * @low_pfn: The first PFN to isolate
808 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
809 * @mode: Isolation mode to be used.
810 *
811 * Isolate all pages that can be migrated from the range specified by
812 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
813 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
814 * -ENOMEM in case we could not allocate a page, or 0.
815 * cc->migrate_pfn will contain the next pfn to scan.
816 *
817 * The pages are isolated on cc->migratepages list (not required to be empty),
818 * and cc->nr_migratepages is updated accordingly.
819 */
820 static int
isolate_migratepages_block(struct compact_control_ext * cc_ext,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t mode)821 isolate_migratepages_block(struct compact_control_ext *cc_ext, unsigned long low_pfn,
822 unsigned long end_pfn, isolate_mode_t mode)
823 {
824 struct compact_control *cc = cc_ext->cc;
825 pg_data_t *pgdat = cc->zone->zone_pgdat;
826 unsigned long nr_scanned = 0, nr_isolated = 0;
827 struct lruvec *lruvec;
828 unsigned long flags = 0;
829 struct lruvec *locked = NULL;
830 struct page *page = NULL, *valid_page = NULL;
831 struct address_space *mapping;
832 unsigned long start_pfn = low_pfn;
833 bool skip_on_failure = false;
834 unsigned long next_skip_pfn = 0;
835 bool skip_updated = false;
836 int ret = 0;
837
838 cc->migrate_pfn = low_pfn;
839
840 /*
841 * Ensure that there are not too many pages isolated from the LRU
842 * list by either parallel reclaimers or compaction. If there are,
843 * delay for some time until fewer pages are isolated
844 */
845 while (unlikely(too_many_isolated(pgdat))) {
846 /* stop isolation if there are still pages not migrated */
847 if (cc->nr_migratepages)
848 return -EAGAIN;
849
850 /* async migration should just abort */
851 if (cc->mode == MIGRATE_ASYNC)
852 return -EAGAIN;
853
854 congestion_wait(BLK_RW_ASYNC, HZ/10);
855
856 if (fatal_signal_pending(current))
857 return -EINTR;
858 }
859
860 cond_resched();
861
862 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
863 skip_on_failure = true;
864 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
865 }
866
867 /* Time to isolate some pages for migration */
868 for (; low_pfn < end_pfn; low_pfn++) {
869
870 if (skip_on_failure && low_pfn >= next_skip_pfn) {
871 /*
872 * We have isolated all migration candidates in the
873 * previous order-aligned block, and did not skip it due
874 * to failure. We should migrate the pages now and
875 * hopefully succeed compaction.
876 */
877 if (nr_isolated)
878 break;
879
880 /*
881 * We failed to isolate in the previous order-aligned
882 * block. Set the new boundary to the end of the
883 * current block. Note we can't simply increase
884 * next_skip_pfn by 1 << order, as low_pfn might have
885 * been incremented by a higher number due to skipping
886 * a compound or a high-order buddy page in the
887 * previous loop iteration.
888 */
889 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
890 }
891
892 /*
893 * Periodically drop the lock (if held) regardless of its
894 * contention, to give chance to IRQs. Abort completely if
895 * a fatal signal is pending.
896 */
897 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
898 if (locked) {
899 unlock_page_lruvec_irqrestore(locked, flags);
900 locked = NULL;
901 }
902
903 if (fatal_signal_pending(current)) {
904 cc->contended = true;
905 ret = -EINTR;
906
907 goto fatal_pending;
908 }
909
910 cond_resched();
911 }
912
913 nr_scanned++;
914
915 page = pfn_to_page(low_pfn);
916
917 /*
918 * Check if the pageblock has already been marked skipped.
919 * Only the aligned PFN is checked as the caller isolates
920 * COMPACT_CLUSTER_MAX at a time so the second call must
921 * not falsely conclude that the block should be skipped.
922 */
923 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
924 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
925 low_pfn = end_pfn;
926 page = NULL;
927 goto isolate_abort;
928 }
929 valid_page = page;
930 }
931
932 if (PageHuge(page) && cc->alloc_contig) {
933 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
934
935 /*
936 * Fail isolation in case isolate_or_dissolve_huge_page()
937 * reports an error. In case of -ENOMEM, abort right away.
938 */
939 if (ret < 0) {
940 /* Do not report -EBUSY down the chain */
941 if (ret == -EBUSY)
942 ret = 0;
943 low_pfn += (1UL << compound_order(page)) - 1;
944 goto isolate_fail;
945 }
946
947 if (PageHuge(page)) {
948 /*
949 * Hugepage was successfully isolated and placed
950 * on the cc->migratepages list.
951 */
952 low_pfn += compound_nr(page) - 1;
953 goto isolate_success_no_list;
954 }
955
956 /*
957 * Ok, the hugepage was dissolved. Now these pages are
958 * Buddy and cannot be re-allocated because they are
959 * isolated. Fall-through as the check below handles
960 * Buddy pages.
961 */
962 }
963
964 /*
965 * Skip if free. We read page order here without zone lock
966 * which is generally unsafe, but the race window is small and
967 * the worst thing that can happen is that we skip some
968 * potential isolation targets.
969 */
970 if (PageBuddy(page)) {
971 unsigned long freepage_order = buddy_order_unsafe(page);
972
973 /*
974 * Without lock, we cannot be sure that what we got is
975 * a valid page order. Consider only values in the
976 * valid order range to prevent low_pfn overflow.
977 */
978 if (freepage_order > 0 && freepage_order < MAX_ORDER)
979 low_pfn += (1UL << freepage_order) - 1;
980 continue;
981 }
982
983 /*
984 * Regardless of being on LRU, compound pages such as THP and
985 * hugetlbfs are not to be compacted unless we are attempting
986 * an allocation much larger than the huge page size (eg CMA).
987 * We can potentially save a lot of iterations if we skip them
988 * at once. The check is racy, but we can consider only valid
989 * values and the only danger is skipping too much.
990 */
991 if (PageCompound(page) && !cc->alloc_contig) {
992 const unsigned int order = compound_order(page);
993
994 if (likely(order < MAX_ORDER))
995 low_pfn += (1UL << order) - 1;
996 goto isolate_fail;
997 }
998
999 /*
1000 * Check may be lockless but that's ok as we recheck later.
1001 * It's possible to migrate LRU and non-lru movable pages.
1002 * Skip any other type of page
1003 */
1004 if (!PageLRU(page)) {
1005 /*
1006 * __PageMovable can return false positive so we need
1007 * to verify it under page_lock.
1008 */
1009 if (unlikely(__PageMovable(page)) &&
1010 !PageIsolated(page)) {
1011 if (locked) {
1012 unlock_page_lruvec_irqrestore(locked, flags);
1013 locked = NULL;
1014 }
1015
1016 if (!isolate_movable_page(page, mode))
1017 goto isolate_success;
1018 }
1019
1020 goto isolate_fail;
1021 }
1022
1023 /*
1024 * Be careful not to clear PageLRU until after we're
1025 * sure the page is not being freed elsewhere -- the
1026 * page release code relies on it.
1027 */
1028 if (unlikely(!get_page_unless_zero(page)))
1029 goto isolate_fail;
1030
1031 /*
1032 * Migration will fail if an anonymous page is pinned in memory,
1033 * so avoid taking lru_lock and isolating it unnecessarily in an
1034 * admittedly racy check.
1035 */
1036 mapping = page_mapping(page);
1037 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1038 goto isolate_fail_put;
1039
1040 /*
1041 * Only allow to migrate anonymous pages in GFP_NOFS context
1042 * because those do not depend on fs locks.
1043 */
1044 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1045 goto isolate_fail_put;
1046
1047 /* Only take pages on LRU: a check now makes later tests safe */
1048 if (!PageLRU(page))
1049 goto isolate_fail_put;
1050
1051 /* Compaction might skip unevictable pages but CMA takes them */
1052 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1053 goto isolate_fail_put;
1054
1055 /*
1056 * To minimise LRU disruption, the caller can indicate with
1057 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1058 * it will be able to migrate without blocking - clean pages
1059 * for the most part. PageWriteback would require blocking.
1060 */
1061 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1062 goto isolate_fail_put;
1063
1064 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1065 bool migrate_dirty;
1066
1067 /*
1068 * Only pages without mappings or that have a
1069 * ->migratepage callback are possible to migrate
1070 * without blocking. However, we can be racing with
1071 * truncation so it's necessary to lock the page
1072 * to stabilise the mapping as truncation holds
1073 * the page lock until after the page is removed
1074 * from the page cache.
1075 */
1076 if (!trylock_page(page))
1077 goto isolate_fail_put;
1078
1079 mapping = page_mapping(page);
1080 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1081 unlock_page(page);
1082 if (!migrate_dirty)
1083 goto isolate_fail_put;
1084 }
1085
1086 /* Try isolate the page */
1087 if (!TestClearPageLRU(page))
1088 goto isolate_fail_put;
1089
1090 lruvec = mem_cgroup_page_lruvec(page);
1091
1092 /* If we already hold the lock, we can skip some rechecking */
1093 if (lruvec != locked) {
1094 if (locked)
1095 unlock_page_lruvec_irqrestore(locked, flags);
1096
1097 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1098 locked = lruvec;
1099
1100 lruvec_memcg_debug(lruvec, page);
1101
1102 /* Try get exclusive access under lock */
1103 if (!skip_updated) {
1104 skip_updated = true;
1105 if (test_and_set_skip(cc, page, low_pfn))
1106 goto isolate_abort;
1107 }
1108
1109 /*
1110 * Page become compound since the non-locked check,
1111 * and it's on LRU. It can only be a THP so the order
1112 * is safe to read and it's 0 for tail pages.
1113 */
1114 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1115 low_pfn += compound_nr(page) - 1;
1116 SetPageLRU(page);
1117 goto isolate_fail_put;
1118 }
1119 }
1120
1121 /* The whole page is taken off the LRU; skip the tail pages. */
1122 if (PageCompound(page))
1123 low_pfn += compound_nr(page) - 1;
1124
1125 /* Successfully isolated */
1126 del_page_from_lru_list(page, lruvec);
1127 mod_node_page_state(page_pgdat(page),
1128 NR_ISOLATED_ANON + page_is_file_lru(page),
1129 thp_nr_pages(page));
1130
1131 isolate_success:
1132 list_add(&page->lru, &cc->migratepages);
1133 isolate_success_no_list:
1134 cc->nr_migratepages += compound_nr(page);
1135 if (!PageAnon(page))
1136 cc_ext->nr_migrate_file_pages += compound_nr(page);
1137 nr_isolated += compound_nr(page);
1138
1139 /*
1140 * Avoid isolating too much unless this block is being
1141 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1142 * or a lock is contended. For contention, isolate quickly to
1143 * potentially remove one source of contention.
1144 */
1145 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1146 !cc->rescan && !cc->contended) {
1147 ++low_pfn;
1148 break;
1149 }
1150
1151 continue;
1152
1153 isolate_fail_put:
1154 /* Avoid potential deadlock in freeing page under lru_lock */
1155 if (locked) {
1156 unlock_page_lruvec_irqrestore(locked, flags);
1157 locked = NULL;
1158 }
1159 put_page(page);
1160
1161 isolate_fail:
1162 if (!skip_on_failure && ret != -ENOMEM)
1163 continue;
1164
1165 /*
1166 * We have isolated some pages, but then failed. Release them
1167 * instead of migrating, as we cannot form the cc->order buddy
1168 * page anyway.
1169 */
1170 if (nr_isolated) {
1171 if (locked) {
1172 unlock_page_lruvec_irqrestore(locked, flags);
1173 locked = NULL;
1174 }
1175 putback_movable_pages(&cc->migratepages);
1176 cc->nr_migratepages = 0;
1177 cc_ext->nr_migrate_file_pages = 0;
1178 nr_isolated = 0;
1179 }
1180
1181 if (low_pfn < next_skip_pfn) {
1182 low_pfn = next_skip_pfn - 1;
1183 /*
1184 * The check near the loop beginning would have updated
1185 * next_skip_pfn too, but this is a bit simpler.
1186 */
1187 next_skip_pfn += 1UL << cc->order;
1188 }
1189
1190 if (ret == -ENOMEM)
1191 break;
1192 }
1193
1194 /*
1195 * The PageBuddy() check could have potentially brought us outside
1196 * the range to be scanned.
1197 */
1198 if (unlikely(low_pfn > end_pfn))
1199 low_pfn = end_pfn;
1200
1201 page = NULL;
1202
1203 isolate_abort:
1204 if (locked)
1205 unlock_page_lruvec_irqrestore(locked, flags);
1206 if (page) {
1207 SetPageLRU(page);
1208 put_page(page);
1209 }
1210
1211 /*
1212 * Updated the cached scanner pfn once the pageblock has been scanned
1213 * Pages will either be migrated in which case there is no point
1214 * scanning in the near future or migration failed in which case the
1215 * failure reason may persist. The block is marked for skipping if
1216 * there were no pages isolated in the block or if the block is
1217 * rescanned twice in a row.
1218 */
1219 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1220 if (valid_page && !skip_updated)
1221 set_pageblock_skip(valid_page);
1222 update_cached_migrate(cc, low_pfn);
1223 }
1224
1225 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1226 nr_scanned, nr_isolated);
1227
1228 fatal_pending:
1229 cc->total_migrate_scanned += nr_scanned;
1230 if (nr_isolated)
1231 count_compact_events(COMPACTISOLATED, nr_isolated);
1232
1233 cc->migrate_pfn = low_pfn;
1234
1235 return ret;
1236 }
1237
1238 /**
1239 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1240 * @cc: Compaction control structure.
1241 * @start_pfn: The first PFN to start isolating.
1242 * @end_pfn: The one-past-last PFN.
1243 *
1244 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1245 * in case we could not allocate a page, or 0.
1246 */
1247 int
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1248 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1249 unsigned long end_pfn)
1250 {
1251 struct compact_control_ext cc_ext = { .cc = cc };
1252 unsigned long pfn, block_start_pfn, block_end_pfn;
1253 int ret = 0;
1254
1255 /* Scan block by block. First and last block may be incomplete */
1256 pfn = start_pfn;
1257 block_start_pfn = pageblock_start_pfn(pfn);
1258 if (block_start_pfn < cc->zone->zone_start_pfn)
1259 block_start_pfn = cc->zone->zone_start_pfn;
1260 block_end_pfn = pageblock_end_pfn(pfn);
1261
1262 for (; pfn < end_pfn; pfn = block_end_pfn,
1263 block_start_pfn = block_end_pfn,
1264 block_end_pfn += pageblock_nr_pages) {
1265
1266 block_end_pfn = min(block_end_pfn, end_pfn);
1267
1268 if (!pageblock_pfn_to_page(block_start_pfn,
1269 block_end_pfn, cc->zone))
1270 continue;
1271
1272 ret = isolate_migratepages_block(&cc_ext, pfn, block_end_pfn,
1273 ISOLATE_UNEVICTABLE);
1274
1275 if (ret)
1276 break;
1277
1278 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1279 break;
1280 }
1281
1282 return ret;
1283 }
1284
1285 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1286 #ifdef CONFIG_COMPACTION
1287
suitable_migration_source(struct compact_control * cc,struct page * page)1288 static bool suitable_migration_source(struct compact_control *cc,
1289 struct page *page)
1290 {
1291 int block_mt;
1292
1293 if (pageblock_skip_persistent(page))
1294 return false;
1295
1296 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1297 return true;
1298
1299 block_mt = get_pageblock_migratetype(page);
1300
1301 if (cc->migratetype == MIGRATE_MOVABLE)
1302 return is_migrate_movable(block_mt);
1303 else
1304 return block_mt == cc->migratetype;
1305 }
1306
1307 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control_ext * cc_ext,struct page * page)1308 static bool suitable_migration_target(struct compact_control_ext *cc_ext,
1309 struct page *page)
1310 {
1311 struct compact_control *cc = cc_ext->cc;
1312 /* If the page is a large free page, then disallow migration */
1313 if (PageBuddy(page)) {
1314 /*
1315 * We are checking page_order without zone->lock taken. But
1316 * the only small danger is that we skip a potentially suitable
1317 * pageblock, so it's not worth to check order for valid range.
1318 */
1319 if (buddy_order_unsafe(page) >= pageblock_order)
1320 return false;
1321 }
1322
1323 if (cc->ignore_block_suitable)
1324 return true;
1325
1326 /* Allow file pages to migrate only into MIGRATE_MOVABLE blocks */
1327 if (cc_ext->nr_migrate_file_pages)
1328 return get_pageblock_migratetype(page) == MIGRATE_MOVABLE;
1329
1330 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1331 if (is_migrate_movable(get_pageblock_migratetype(page)))
1332 return true;
1333
1334 /* Otherwise skip the block */
1335 return false;
1336 }
1337
1338 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1339 freelist_scan_limit(struct compact_control *cc)
1340 {
1341 unsigned short shift = BITS_PER_LONG - 1;
1342
1343 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1344 }
1345
1346 /*
1347 * Test whether the free scanner has reached the same or lower pageblock than
1348 * the migration scanner, and compaction should thus terminate.
1349 */
compact_scanners_met(struct compact_control * cc)1350 static inline bool compact_scanners_met(struct compact_control *cc)
1351 {
1352 return (cc->free_pfn >> pageblock_order)
1353 <= (cc->migrate_pfn >> pageblock_order);
1354 }
1355
1356 /*
1357 * Used when scanning for a suitable migration target which scans freelists
1358 * in reverse. Reorders the list such as the unscanned pages are scanned
1359 * first on the next iteration of the free scanner
1360 */
1361 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1362 move_freelist_head(struct list_head *freelist, struct page *freepage)
1363 {
1364 LIST_HEAD(sublist);
1365
1366 if (!list_is_last(freelist, &freepage->lru)) {
1367 list_cut_before(&sublist, freelist, &freepage->lru);
1368 list_splice_tail(&sublist, freelist);
1369 }
1370 }
1371
1372 /*
1373 * Similar to move_freelist_head except used by the migration scanner
1374 * when scanning forward. It's possible for these list operations to
1375 * move against each other if they search the free list exactly in
1376 * lockstep.
1377 */
1378 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1379 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1380 {
1381 LIST_HEAD(sublist);
1382
1383 if (!list_is_first(freelist, &freepage->lru)) {
1384 list_cut_position(&sublist, freelist, &freepage->lru);
1385 list_splice_tail(&sublist, freelist);
1386 }
1387 }
1388
1389 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1390 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1391 {
1392 unsigned long start_pfn, end_pfn;
1393 struct page *page;
1394
1395 /* Do not search around if there are enough pages already */
1396 if (cc->nr_freepages >= cc->nr_migratepages)
1397 return;
1398
1399 /* Minimise scanning during async compaction */
1400 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1401 return;
1402
1403 /* Pageblock boundaries */
1404 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1405 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1406
1407 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1408 if (!page)
1409 return;
1410
1411 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1412
1413 /* Skip this pageblock in the future as it's full or nearly full */
1414 if (cc->nr_freepages < cc->nr_migratepages)
1415 set_pageblock_skip(page);
1416
1417 return;
1418 }
1419
1420 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1421 static int next_search_order(struct compact_control *cc, int order)
1422 {
1423 order--;
1424 if (order < 0)
1425 order = cc->order - 1;
1426
1427 /* Search wrapped around? */
1428 if (order == cc->search_order) {
1429 cc->search_order--;
1430 if (cc->search_order < 0)
1431 cc->search_order = cc->order - 1;
1432 return -1;
1433 }
1434
1435 return order;
1436 }
1437
1438 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1439 fast_isolate_freepages(struct compact_control *cc)
1440 {
1441 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1442 unsigned int nr_scanned = 0;
1443 unsigned long low_pfn, min_pfn, highest = 0;
1444 unsigned long nr_isolated = 0;
1445 unsigned long distance;
1446 struct page *page = NULL;
1447 bool scan_start = false;
1448 int order;
1449
1450 /* Full compaction passes in a negative order */
1451 if (cc->order <= 0)
1452 return cc->free_pfn;
1453
1454 /*
1455 * If starting the scan, use a deeper search and use the highest
1456 * PFN found if a suitable one is not found.
1457 */
1458 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1459 limit = pageblock_nr_pages >> 1;
1460 scan_start = true;
1461 }
1462
1463 /*
1464 * Preferred point is in the top quarter of the scan space but take
1465 * a pfn from the top half if the search is problematic.
1466 */
1467 distance = (cc->free_pfn - cc->migrate_pfn);
1468 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1469 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1470
1471 if (WARN_ON_ONCE(min_pfn > low_pfn))
1472 low_pfn = min_pfn;
1473
1474 /*
1475 * Search starts from the last successful isolation order or the next
1476 * order to search after a previous failure
1477 */
1478 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1479
1480 for (order = cc->search_order;
1481 !page && order >= 0;
1482 order = next_search_order(cc, order)) {
1483 struct free_area *area = &cc->zone->free_area[order];
1484 struct list_head *freelist;
1485 struct page *freepage;
1486 unsigned long flags;
1487 unsigned int order_scanned = 0;
1488 unsigned long high_pfn = 0;
1489
1490 if (!area->nr_free)
1491 continue;
1492
1493 spin_lock_irqsave(&cc->zone->lock, flags);
1494 freelist = &area->free_list[MIGRATE_MOVABLE];
1495 list_for_each_entry_reverse(freepage, freelist, lru) {
1496 unsigned long pfn;
1497
1498 order_scanned++;
1499 nr_scanned++;
1500 pfn = page_to_pfn(freepage);
1501
1502 if (pfn >= highest)
1503 highest = max(pageblock_start_pfn(pfn),
1504 cc->zone->zone_start_pfn);
1505
1506 if (pfn >= low_pfn) {
1507 cc->fast_search_fail = 0;
1508 cc->search_order = order;
1509 page = freepage;
1510 break;
1511 }
1512
1513 if (pfn >= min_pfn && pfn > high_pfn) {
1514 high_pfn = pfn;
1515
1516 /* Shorten the scan if a candidate is found */
1517 limit >>= 1;
1518 }
1519
1520 if (order_scanned >= limit)
1521 break;
1522 }
1523
1524 /* Use a minimum pfn if a preferred one was not found */
1525 if (!page && high_pfn) {
1526 page = pfn_to_page(high_pfn);
1527
1528 /* Update freepage for the list reorder below */
1529 freepage = page;
1530 }
1531
1532 /* Reorder to so a future search skips recent pages */
1533 move_freelist_head(freelist, freepage);
1534
1535 /* Isolate the page if available */
1536 if (page) {
1537 if (__isolate_free_page(page, order)) {
1538 set_page_private(page, order);
1539 nr_isolated = 1 << order;
1540 cc->nr_freepages += nr_isolated;
1541 list_add_tail(&page->lru, &cc->freepages);
1542 count_compact_events(COMPACTISOLATED, nr_isolated);
1543 } else {
1544 /* If isolation fails, abort the search */
1545 order = cc->search_order + 1;
1546 page = NULL;
1547 }
1548 }
1549
1550 spin_unlock_irqrestore(&cc->zone->lock, flags);
1551
1552 /*
1553 * Smaller scan on next order so the total scan is related
1554 * to freelist_scan_limit.
1555 */
1556 if (order_scanned >= limit)
1557 limit = max(1U, limit >> 1);
1558 }
1559
1560 if (!page) {
1561 cc->fast_search_fail++;
1562 if (scan_start) {
1563 /*
1564 * Use the highest PFN found above min. If one was
1565 * not found, be pessimistic for direct compaction
1566 * and use the min mark.
1567 */
1568 if (highest) {
1569 page = pfn_to_page(highest);
1570 cc->free_pfn = highest;
1571 } else {
1572 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1573 page = pageblock_pfn_to_page(min_pfn,
1574 min(pageblock_end_pfn(min_pfn),
1575 zone_end_pfn(cc->zone)),
1576 cc->zone);
1577 cc->free_pfn = min_pfn;
1578 }
1579 }
1580 }
1581 }
1582
1583 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1584 highest -= pageblock_nr_pages;
1585 cc->zone->compact_cached_free_pfn = highest;
1586 }
1587
1588 cc->total_free_scanned += nr_scanned;
1589 if (!page)
1590 return cc->free_pfn;
1591
1592 low_pfn = page_to_pfn(page);
1593 fast_isolate_around(cc, low_pfn);
1594 return low_pfn;
1595 }
1596
1597 /*
1598 * Based on information in the current compact_control, find blocks
1599 * suitable for isolating free pages from and then isolate them.
1600 */
isolate_freepages(struct compact_control_ext * cc_ext)1601 static void isolate_freepages(struct compact_control_ext *cc_ext)
1602 {
1603 struct compact_control *cc = cc_ext->cc;
1604 struct zone *zone = cc->zone;
1605 struct page *page;
1606 unsigned long block_start_pfn; /* start of current pageblock */
1607 unsigned long isolate_start_pfn; /* exact pfn we start at */
1608 unsigned long block_end_pfn; /* end of current pageblock */
1609 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1610 struct list_head *freelist = &cc->freepages;
1611 unsigned int stride;
1612 bool bypass = false;
1613
1614 /* Try a small search of the free lists for a candidate */
1615 isolate_start_pfn = fast_isolate_freepages(cc);
1616 if (cc->nr_freepages)
1617 goto splitmap;
1618
1619 /*
1620 * Initialise the free scanner. The starting point is where we last
1621 * successfully isolated from, zone-cached value, or the end of the
1622 * zone when isolating for the first time. For looping we also need
1623 * this pfn aligned down to the pageblock boundary, because we do
1624 * block_start_pfn -= pageblock_nr_pages in the for loop.
1625 * For ending point, take care when isolating in last pageblock of a
1626 * zone which ends in the middle of a pageblock.
1627 * The low boundary is the end of the pageblock the migration scanner
1628 * is using.
1629 */
1630 isolate_start_pfn = cc->free_pfn;
1631 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1632 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1633 zone_end_pfn(zone));
1634 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1635 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1636
1637 /*
1638 * Isolate free pages until enough are available to migrate the
1639 * pages on cc->migratepages. We stop searching if the migrate
1640 * and free page scanners meet or enough free pages are isolated.
1641 */
1642 for (; block_start_pfn >= low_pfn;
1643 block_end_pfn = block_start_pfn,
1644 block_start_pfn -= pageblock_nr_pages,
1645 isolate_start_pfn = block_start_pfn) {
1646 unsigned long nr_isolated;
1647
1648 /*
1649 * This can iterate a massively long zone without finding any
1650 * suitable migration targets, so periodically check resched.
1651 */
1652 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1653 cond_resched();
1654
1655 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1656 zone);
1657 if (!page)
1658 continue;
1659
1660 /* Check the block is suitable for migration */
1661 if (!suitable_migration_target(cc_ext, page))
1662 continue;
1663
1664 /* If isolation recently failed, do not retry */
1665 if (!isolation_suitable(cc, page))
1666 continue;
1667
1668 trace_android_vh_isolate_freepages(cc, page, &bypass);
1669 if (bypass)
1670 continue;
1671
1672 /* Found a block suitable for isolating free pages from. */
1673 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1674 block_end_pfn, freelist, stride, false);
1675
1676 /* Update the skip hint if the full pageblock was scanned */
1677 if (isolate_start_pfn == block_end_pfn)
1678 update_pageblock_skip(cc, page, block_start_pfn);
1679
1680 /* Are enough freepages isolated? */
1681 if (cc->nr_freepages >= cc->nr_migratepages) {
1682 if (isolate_start_pfn >= block_end_pfn) {
1683 /*
1684 * Restart at previous pageblock if more
1685 * freepages can be isolated next time.
1686 */
1687 isolate_start_pfn =
1688 block_start_pfn - pageblock_nr_pages;
1689 }
1690 break;
1691 } else if (isolate_start_pfn < block_end_pfn) {
1692 /*
1693 * If isolation failed early, do not continue
1694 * needlessly.
1695 */
1696 break;
1697 }
1698
1699 /* Adjust stride depending on isolation */
1700 if (nr_isolated) {
1701 stride = 1;
1702 continue;
1703 }
1704 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1705 }
1706
1707 /*
1708 * Record where the free scanner will restart next time. Either we
1709 * broke from the loop and set isolate_start_pfn based on the last
1710 * call to isolate_freepages_block(), or we met the migration scanner
1711 * and the loop terminated due to isolate_start_pfn < low_pfn
1712 */
1713 cc->free_pfn = isolate_start_pfn;
1714
1715 splitmap:
1716 /* __isolate_free_page() does not map the pages */
1717 split_map_pages(freelist);
1718 }
1719
1720 /*
1721 * This is a migrate-callback that "allocates" freepages by taking pages
1722 * from the isolated freelists in the block we are migrating to.
1723 */
compaction_alloc(struct page * migratepage,unsigned long data)1724 static struct page *compaction_alloc(struct page *migratepage,
1725 unsigned long data)
1726 {
1727 struct compact_control_ext *cc_ext = (struct compact_control_ext *)data;
1728 struct compact_control *cc = cc_ext->cc;
1729 struct page *freepage;
1730
1731 if (list_empty(&cc->freepages)) {
1732 isolate_freepages(cc_ext);
1733
1734 if (list_empty(&cc->freepages))
1735 return NULL;
1736 }
1737
1738 freepage = list_entry(cc->freepages.next, struct page, lru);
1739 list_del(&freepage->lru);
1740 cc->nr_freepages--;
1741
1742 return freepage;
1743 }
1744
1745 /*
1746 * This is a migrate-callback that "frees" freepages back to the isolated
1747 * freelist. All pages on the freelist are from the same zone, so there is no
1748 * special handling needed for NUMA.
1749 */
compaction_free(struct page * page,unsigned long data)1750 static void compaction_free(struct page *page, unsigned long data)
1751 {
1752 struct compact_control_ext *cc_ext = (struct compact_control_ext *)data;
1753 struct compact_control *cc = cc_ext->cc;
1754
1755 list_add(&page->lru, &cc->freepages);
1756 cc->nr_freepages++;
1757 }
1758
1759 /* possible outcome of isolate_migratepages */
1760 typedef enum {
1761 ISOLATE_ABORT, /* Abort compaction now */
1762 ISOLATE_NONE, /* No pages isolated, continue scanning */
1763 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1764 } isolate_migrate_t;
1765
1766 /*
1767 * Allow userspace to control policy on scanning the unevictable LRU for
1768 * compactable pages.
1769 */
1770 #ifdef CONFIG_PREEMPT_RT
1771 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1772 #else
1773 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1774 #endif
1775
1776 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1777 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1778 {
1779 if (cc->fast_start_pfn == ULONG_MAX)
1780 return;
1781
1782 if (!cc->fast_start_pfn)
1783 cc->fast_start_pfn = pfn;
1784
1785 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1786 }
1787
1788 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1789 reinit_migrate_pfn(struct compact_control *cc)
1790 {
1791 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1792 return cc->migrate_pfn;
1793
1794 cc->migrate_pfn = cc->fast_start_pfn;
1795 cc->fast_start_pfn = ULONG_MAX;
1796
1797 return cc->migrate_pfn;
1798 }
1799
1800 /*
1801 * Briefly search the free lists for a migration source that already has
1802 * some free pages to reduce the number of pages that need migration
1803 * before a pageblock is free.
1804 */
fast_find_migrateblock(struct compact_control * cc)1805 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1806 {
1807 unsigned int limit = freelist_scan_limit(cc);
1808 unsigned int nr_scanned = 0;
1809 unsigned long distance;
1810 unsigned long pfn = cc->migrate_pfn;
1811 unsigned long high_pfn;
1812 int order;
1813 bool found_block = false;
1814
1815 /* Skip hints are relied on to avoid repeats on the fast search */
1816 if (cc->ignore_skip_hint)
1817 return pfn;
1818
1819 /*
1820 * If the migrate_pfn is not at the start of a zone or the start
1821 * of a pageblock then assume this is a continuation of a previous
1822 * scan restarted due to COMPACT_CLUSTER_MAX.
1823 */
1824 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1825 return pfn;
1826
1827 /*
1828 * For smaller orders, just linearly scan as the number of pages
1829 * to migrate should be relatively small and does not necessarily
1830 * justify freeing up a large block for a small allocation.
1831 */
1832 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1833 return pfn;
1834
1835 /*
1836 * Only allow kcompactd and direct requests for movable pages to
1837 * quickly clear out a MOVABLE pageblock for allocation. This
1838 * reduces the risk that a large movable pageblock is freed for
1839 * an unmovable/reclaimable small allocation.
1840 */
1841 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1842 return pfn;
1843
1844 /*
1845 * When starting the migration scanner, pick any pageblock within the
1846 * first half of the search space. Otherwise try and pick a pageblock
1847 * within the first eighth to reduce the chances that a migration
1848 * target later becomes a source.
1849 */
1850 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1851 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1852 distance >>= 2;
1853 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1854
1855 for (order = cc->order - 1;
1856 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1857 order--) {
1858 struct free_area *area = &cc->zone->free_area[order];
1859 struct list_head *freelist;
1860 unsigned long flags;
1861 struct page *freepage;
1862
1863 if (!area->nr_free)
1864 continue;
1865
1866 spin_lock_irqsave(&cc->zone->lock, flags);
1867 freelist = &area->free_list[MIGRATE_MOVABLE];
1868 list_for_each_entry(freepage, freelist, lru) {
1869 unsigned long free_pfn;
1870
1871 if (nr_scanned++ >= limit) {
1872 move_freelist_tail(freelist, freepage);
1873 break;
1874 }
1875
1876 free_pfn = page_to_pfn(freepage);
1877 if (free_pfn < high_pfn) {
1878 /*
1879 * Avoid if skipped recently. Ideally it would
1880 * move to the tail but even safe iteration of
1881 * the list assumes an entry is deleted, not
1882 * reordered.
1883 */
1884 if (get_pageblock_skip(freepage))
1885 continue;
1886
1887 /* Reorder to so a future search skips recent pages */
1888 move_freelist_tail(freelist, freepage);
1889
1890 update_fast_start_pfn(cc, free_pfn);
1891 pfn = pageblock_start_pfn(free_pfn);
1892 if (pfn < cc->zone->zone_start_pfn)
1893 pfn = cc->zone->zone_start_pfn;
1894 cc->fast_search_fail = 0;
1895 found_block = true;
1896 set_pageblock_skip(freepage);
1897 break;
1898 }
1899 }
1900 spin_unlock_irqrestore(&cc->zone->lock, flags);
1901 }
1902
1903 cc->total_migrate_scanned += nr_scanned;
1904
1905 /*
1906 * If fast scanning failed then use a cached entry for a page block
1907 * that had free pages as the basis for starting a linear scan.
1908 */
1909 if (!found_block) {
1910 cc->fast_search_fail++;
1911 pfn = reinit_migrate_pfn(cc);
1912 }
1913 return pfn;
1914 }
1915
1916 /*
1917 * Isolate all pages that can be migrated from the first suitable block,
1918 * starting at the block pointed to by the migrate scanner pfn within
1919 * compact_control.
1920 */
isolate_migratepages(struct compact_control_ext * cc_ext)1921 static isolate_migrate_t isolate_migratepages(struct compact_control_ext *cc_ext)
1922 {
1923 struct compact_control *cc = cc_ext->cc;
1924 unsigned long block_start_pfn;
1925 unsigned long block_end_pfn;
1926 unsigned long low_pfn;
1927 struct page *page;
1928 const isolate_mode_t isolate_mode =
1929 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1930 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1931 bool fast_find_block;
1932
1933 /*
1934 * Start at where we last stopped, or beginning of the zone as
1935 * initialized by compact_zone(). The first failure will use
1936 * the lowest PFN as the starting point for linear scanning.
1937 */
1938 low_pfn = fast_find_migrateblock(cc);
1939 block_start_pfn = pageblock_start_pfn(low_pfn);
1940 if (block_start_pfn < cc->zone->zone_start_pfn)
1941 block_start_pfn = cc->zone->zone_start_pfn;
1942
1943 /*
1944 * fast_find_migrateblock marks a pageblock skipped so to avoid
1945 * the isolation_suitable check below, check whether the fast
1946 * search was successful.
1947 */
1948 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1949
1950 /* Only scan within a pageblock boundary */
1951 block_end_pfn = pageblock_end_pfn(low_pfn);
1952
1953 /*
1954 * Iterate over whole pageblocks until we find the first suitable.
1955 * Do not cross the free scanner.
1956 */
1957 for (; block_end_pfn <= cc->free_pfn;
1958 fast_find_block = false,
1959 cc->migrate_pfn = low_pfn = block_end_pfn,
1960 block_start_pfn = block_end_pfn,
1961 block_end_pfn += pageblock_nr_pages) {
1962
1963 /*
1964 * This can potentially iterate a massively long zone with
1965 * many pageblocks unsuitable, so periodically check if we
1966 * need to schedule.
1967 */
1968 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1969 cond_resched();
1970
1971 page = pageblock_pfn_to_page(block_start_pfn,
1972 block_end_pfn, cc->zone);
1973 if (!page)
1974 continue;
1975
1976 /*
1977 * If isolation recently failed, do not retry. Only check the
1978 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1979 * to be visited multiple times. Assume skip was checked
1980 * before making it "skip" so other compaction instances do
1981 * not scan the same block.
1982 */
1983 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1984 !fast_find_block && !isolation_suitable(cc, page))
1985 continue;
1986
1987 /*
1988 * For async compaction, also only scan in MOVABLE blocks
1989 * without huge pages. Async compaction is optimistic to see
1990 * if the minimum amount of work satisfies the allocation.
1991 * The cached PFN is updated as it's possible that all
1992 * remaining blocks between source and target are unsuitable
1993 * and the compaction scanners fail to meet.
1994 */
1995 if (!suitable_migration_source(cc, page)) {
1996 update_cached_migrate(cc, block_end_pfn);
1997 continue;
1998 }
1999
2000 /* Perform the isolation */
2001 if (isolate_migratepages_block(cc_ext, low_pfn, block_end_pfn,
2002 isolate_mode))
2003 return ISOLATE_ABORT;
2004
2005 /*
2006 * Either we isolated something and proceed with migration. Or
2007 * we failed and compact_zone should decide if we should
2008 * continue or not.
2009 */
2010 break;
2011 }
2012
2013 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2014 }
2015
2016 /*
2017 * order == -1 is expected when compacting via
2018 * /proc/sys/vm/compact_memory
2019 */
is_via_compact_memory(int order)2020 static inline bool is_via_compact_memory(int order)
2021 {
2022 return order == -1;
2023 }
2024
kswapd_is_running(pg_data_t * pgdat)2025 static bool kswapd_is_running(pg_data_t *pgdat)
2026 {
2027 return pgdat->kswapd && task_is_running(pgdat->kswapd);
2028 }
2029
2030 /*
2031 * A zone's fragmentation score is the external fragmentation wrt to the
2032 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2033 */
fragmentation_score_zone(struct zone * zone)2034 static unsigned int fragmentation_score_zone(struct zone *zone)
2035 {
2036 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2037 }
2038
2039 /*
2040 * A weighted zone's fragmentation score is the external fragmentation
2041 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2042 * returns a value in the range [0, 100].
2043 *
2044 * The scaling factor ensures that proactive compaction focuses on larger
2045 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2046 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2047 * and thus never exceeds the high threshold for proactive compaction.
2048 */
fragmentation_score_zone_weighted(struct zone * zone)2049 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2050 {
2051 unsigned long score;
2052
2053 score = zone->present_pages * fragmentation_score_zone(zone);
2054 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2055 }
2056
2057 /*
2058 * The per-node proactive (background) compaction process is started by its
2059 * corresponding kcompactd thread when the node's fragmentation score
2060 * exceeds the high threshold. The compaction process remains active till
2061 * the node's score falls below the low threshold, or one of the back-off
2062 * conditions is met.
2063 */
fragmentation_score_node(pg_data_t * pgdat)2064 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2065 {
2066 unsigned int score = 0;
2067 int zoneid;
2068
2069 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2070 struct zone *zone;
2071
2072 zone = &pgdat->node_zones[zoneid];
2073 score += fragmentation_score_zone_weighted(zone);
2074 }
2075
2076 return score;
2077 }
2078
fragmentation_score_wmark(pg_data_t * pgdat,bool low)2079 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2080 {
2081 unsigned int wmark_low;
2082
2083 /*
2084 * Cap the low watermark to avoid excessive compaction
2085 * activity in case a user sets the proactiveness tunable
2086 * close to 100 (maximum).
2087 */
2088 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2089 return low ? wmark_low : min(wmark_low + 10, 100U);
2090 }
2091
should_proactive_compact_node(pg_data_t * pgdat)2092 static bool should_proactive_compact_node(pg_data_t *pgdat)
2093 {
2094 int wmark_high;
2095
2096 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2097 return false;
2098
2099 wmark_high = fragmentation_score_wmark(pgdat, false);
2100 return fragmentation_score_node(pgdat) > wmark_high;
2101 }
2102
__compact_finished(struct compact_control * cc)2103 static enum compact_result __compact_finished(struct compact_control *cc)
2104 {
2105 unsigned int order;
2106 const int migratetype = cc->migratetype;
2107 int ret;
2108
2109 /* Compaction run completes if the migrate and free scanner meet */
2110 if (compact_scanners_met(cc)) {
2111 /* Let the next compaction start anew. */
2112 reset_cached_positions(cc->zone);
2113
2114 /*
2115 * Mark that the PG_migrate_skip information should be cleared
2116 * by kswapd when it goes to sleep. kcompactd does not set the
2117 * flag itself as the decision to be clear should be directly
2118 * based on an allocation request.
2119 */
2120 if (cc->direct_compaction)
2121 cc->zone->compact_blockskip_flush = true;
2122
2123 if (cc->whole_zone)
2124 return COMPACT_COMPLETE;
2125 else
2126 return COMPACT_PARTIAL_SKIPPED;
2127 }
2128
2129 if (cc->proactive_compaction) {
2130 int score, wmark_low;
2131 pg_data_t *pgdat;
2132
2133 pgdat = cc->zone->zone_pgdat;
2134 if (kswapd_is_running(pgdat))
2135 return COMPACT_PARTIAL_SKIPPED;
2136
2137 score = fragmentation_score_zone(cc->zone);
2138 wmark_low = fragmentation_score_wmark(pgdat, true);
2139
2140 if (score > wmark_low)
2141 ret = COMPACT_CONTINUE;
2142 else
2143 ret = COMPACT_SUCCESS;
2144
2145 goto out;
2146 }
2147
2148 if (is_via_compact_memory(cc->order))
2149 return COMPACT_CONTINUE;
2150
2151 /*
2152 * Always finish scanning a pageblock to reduce the possibility of
2153 * fallbacks in the future. This is particularly important when
2154 * migration source is unmovable/reclaimable but it's not worth
2155 * special casing.
2156 */
2157 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2158 return COMPACT_CONTINUE;
2159
2160 /* Direct compactor: Is a suitable page free? */
2161 ret = COMPACT_NO_SUITABLE_PAGE;
2162 for (order = cc->order; order < MAX_ORDER; order++) {
2163 struct free_area *area = &cc->zone->free_area[order];
2164 bool can_steal;
2165
2166 /* Job done if page is free of the right migratetype */
2167 if (!free_area_empty(area, migratetype))
2168 return COMPACT_SUCCESS;
2169
2170 #ifdef CONFIG_CMA
2171 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2172 if (migratetype == MIGRATE_MOVABLE &&
2173 !free_area_empty(area, MIGRATE_CMA))
2174 return COMPACT_SUCCESS;
2175 #endif
2176 /*
2177 * Job done if allocation would steal freepages from
2178 * other migratetype buddy lists.
2179 */
2180 if (find_suitable_fallback(area, order, migratetype,
2181 true, &can_steal) != -1) {
2182
2183 /* movable pages are OK in any pageblock */
2184 if (migratetype == MIGRATE_MOVABLE)
2185 return COMPACT_SUCCESS;
2186
2187 /*
2188 * We are stealing for a non-movable allocation. Make
2189 * sure we finish compacting the current pageblock
2190 * first so it is as free as possible and we won't
2191 * have to steal another one soon. This only applies
2192 * to sync compaction, as async compaction operates
2193 * on pageblocks of the same migratetype.
2194 */
2195 if (cc->mode == MIGRATE_ASYNC ||
2196 IS_ALIGNED(cc->migrate_pfn,
2197 pageblock_nr_pages)) {
2198 return COMPACT_SUCCESS;
2199 }
2200
2201 ret = COMPACT_CONTINUE;
2202 break;
2203 }
2204 }
2205
2206 out:
2207 if (cc->contended || fatal_signal_pending(current))
2208 ret = COMPACT_CONTENDED;
2209
2210 return ret;
2211 }
2212
compact_finished(struct compact_control * cc)2213 static enum compact_result compact_finished(struct compact_control *cc)
2214 {
2215 int ret;
2216
2217 ret = __compact_finished(cc);
2218 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2219 if (ret == COMPACT_NO_SUITABLE_PAGE)
2220 ret = COMPACT_CONTINUE;
2221
2222 return ret;
2223 }
2224
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2225 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2226 unsigned int alloc_flags,
2227 int highest_zoneidx,
2228 unsigned long wmark_target)
2229 {
2230 unsigned long watermark;
2231
2232 if (is_via_compact_memory(order))
2233 return COMPACT_CONTINUE;
2234
2235 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2236 /*
2237 * If watermarks for high-order allocation are already met, there
2238 * should be no need for compaction at all.
2239 */
2240 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2241 alloc_flags))
2242 return COMPACT_SUCCESS;
2243
2244 /*
2245 * Watermarks for order-0 must be met for compaction to be able to
2246 * isolate free pages for migration targets. This means that the
2247 * watermark and alloc_flags have to match, or be more pessimistic than
2248 * the check in __isolate_free_page(). We don't use the direct
2249 * compactor's alloc_flags, as they are not relevant for freepage
2250 * isolation. We however do use the direct compactor's highest_zoneidx
2251 * to skip over zones where lowmem reserves would prevent allocation
2252 * even if compaction succeeds.
2253 * For costly orders, we require low watermark instead of min for
2254 * compaction to proceed to increase its chances.
2255 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2256 * suitable migration targets
2257 */
2258 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2259 low_wmark_pages(zone) : min_wmark_pages(zone);
2260 watermark += compact_gap(order);
2261 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2262 ALLOC_CMA, wmark_target))
2263 return COMPACT_SKIPPED;
2264
2265 return COMPACT_CONTINUE;
2266 }
2267
2268 /*
2269 * compaction_suitable: Is this suitable to run compaction on this zone now?
2270 * Returns
2271 * COMPACT_SKIPPED - If there are too few free pages for compaction
2272 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2273 * COMPACT_CONTINUE - If compaction should run now
2274 */
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2275 enum compact_result compaction_suitable(struct zone *zone, int order,
2276 unsigned int alloc_flags,
2277 int highest_zoneidx)
2278 {
2279 enum compact_result ret;
2280 int fragindex;
2281
2282 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2283 zone_page_state(zone, NR_FREE_PAGES));
2284 /*
2285 * fragmentation index determines if allocation failures are due to
2286 * low memory or external fragmentation
2287 *
2288 * index of -1000 would imply allocations might succeed depending on
2289 * watermarks, but we already failed the high-order watermark check
2290 * index towards 0 implies failure is due to lack of memory
2291 * index towards 1000 implies failure is due to fragmentation
2292 *
2293 * Only compact if a failure would be due to fragmentation. Also
2294 * ignore fragindex for non-costly orders where the alternative to
2295 * a successful reclaim/compaction is OOM. Fragindex and the
2296 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2297 * excessive compaction for costly orders, but it should not be at the
2298 * expense of system stability.
2299 */
2300 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2301 fragindex = fragmentation_index(zone, order);
2302 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2303 ret = COMPACT_NOT_SUITABLE_ZONE;
2304 }
2305
2306 trace_mm_compaction_suitable(zone, order, ret);
2307 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2308 ret = COMPACT_SKIPPED;
2309
2310 return ret;
2311 }
2312
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2313 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2314 int alloc_flags)
2315 {
2316 struct zone *zone;
2317 struct zoneref *z;
2318
2319 /*
2320 * Make sure at least one zone would pass __compaction_suitable if we continue
2321 * retrying the reclaim.
2322 */
2323 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2324 ac->highest_zoneidx, ac->nodemask) {
2325 unsigned long available;
2326 enum compact_result compact_result;
2327
2328 /*
2329 * Do not consider all the reclaimable memory because we do not
2330 * want to trash just for a single high order allocation which
2331 * is even not guaranteed to appear even if __compaction_suitable
2332 * is happy about the watermark check.
2333 */
2334 available = zone_reclaimable_pages(zone) / order;
2335 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2336 compact_result = __compaction_suitable(zone, order, alloc_flags,
2337 ac->highest_zoneidx, available);
2338 if (compact_result != COMPACT_SKIPPED)
2339 return true;
2340 }
2341
2342 return false;
2343 }
2344
2345 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2346 compact_zone(struct compact_control *cc, struct capture_control *capc)
2347 {
2348 enum compact_result ret;
2349 unsigned long start_pfn = cc->zone->zone_start_pfn;
2350 unsigned long end_pfn = zone_end_pfn(cc->zone);
2351 unsigned long last_migrated_pfn;
2352 const bool sync = cc->mode != MIGRATE_ASYNC;
2353 bool update_cached;
2354 long vendor_ret;
2355 struct compact_control_ext cc_ext = {
2356 .cc = cc,
2357 .nr_migrate_file_pages = 0,
2358 };
2359
2360 /*
2361 * These counters track activities during zone compaction. Initialize
2362 * them before compacting a new zone.
2363 */
2364 cc->total_migrate_scanned = 0;
2365 cc->total_free_scanned = 0;
2366 cc->nr_migratepages = 0;
2367 cc->nr_freepages = 0;
2368 INIT_LIST_HEAD(&cc->freepages);
2369 INIT_LIST_HEAD(&cc->migratepages);
2370
2371 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2372 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2373 cc->highest_zoneidx);
2374 /* Compaction is likely to fail */
2375 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2376 return ret;
2377
2378 /* huh, compaction_suitable is returning something unexpected */
2379 VM_BUG_ON(ret != COMPACT_CONTINUE);
2380
2381 /*
2382 * Clear pageblock skip if there were failures recently and compaction
2383 * is about to be retried after being deferred.
2384 */
2385 if (compaction_restarting(cc->zone, cc->order))
2386 __reset_isolation_suitable(cc->zone);
2387
2388 /*
2389 * Setup to move all movable pages to the end of the zone. Used cached
2390 * information on where the scanners should start (unless we explicitly
2391 * want to compact the whole zone), but check that it is initialised
2392 * by ensuring the values are within zone boundaries.
2393 */
2394 cc->fast_start_pfn = 0;
2395 if (cc->whole_zone) {
2396 cc->migrate_pfn = start_pfn;
2397 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2398 } else {
2399 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2400 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2401 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2402 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2403 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2404 }
2405 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2406 cc->migrate_pfn = start_pfn;
2407 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2408 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2409 }
2410
2411 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2412 cc->whole_zone = true;
2413 }
2414
2415 last_migrated_pfn = 0;
2416
2417 /*
2418 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2419 * the basis that some migrations will fail in ASYNC mode. However,
2420 * if the cached PFNs match and pageblocks are skipped due to having
2421 * no isolation candidates, then the sync state does not matter.
2422 * Until a pageblock with isolation candidates is found, keep the
2423 * cached PFNs in sync to avoid revisiting the same blocks.
2424 */
2425 update_cached = !sync &&
2426 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2427
2428 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2429 cc->free_pfn, end_pfn, sync);
2430 trace_android_vh_mm_compaction_begin(cc, &vendor_ret);
2431
2432 /* lru_add_drain_all could be expensive with involving other CPUs */
2433 lru_add_drain();
2434
2435 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2436 int err;
2437 unsigned long iteration_start_pfn = cc->migrate_pfn;
2438
2439 /*
2440 * Avoid multiple rescans which can happen if a page cannot be
2441 * isolated (dirty/writeback in async mode) or if the migrated
2442 * pages are being allocated before the pageblock is cleared.
2443 * The first rescan will capture the entire pageblock for
2444 * migration. If it fails, it'll be marked skip and scanning
2445 * will proceed as normal.
2446 */
2447 cc->rescan = false;
2448 if (pageblock_start_pfn(last_migrated_pfn) ==
2449 pageblock_start_pfn(iteration_start_pfn)) {
2450 cc->rescan = true;
2451 }
2452
2453 switch (isolate_migratepages(&cc_ext)) {
2454 case ISOLATE_ABORT:
2455 ret = COMPACT_CONTENDED;
2456 putback_movable_pages(&cc->migratepages);
2457 cc->nr_migratepages = 0;
2458 cc_ext.nr_migrate_file_pages = 0;
2459 goto out;
2460 case ISOLATE_NONE:
2461 if (update_cached) {
2462 cc->zone->compact_cached_migrate_pfn[1] =
2463 cc->zone->compact_cached_migrate_pfn[0];
2464 }
2465
2466 /*
2467 * We haven't isolated and migrated anything, but
2468 * there might still be unflushed migrations from
2469 * previous cc->order aligned block.
2470 */
2471 goto check_drain;
2472 case ISOLATE_SUCCESS:
2473 update_cached = false;
2474 last_migrated_pfn = iteration_start_pfn;
2475 }
2476
2477 err = migrate_pages(&cc->migratepages, compaction_alloc,
2478 compaction_free, (unsigned long)&cc_ext, cc->mode,
2479 MR_COMPACTION, NULL);
2480
2481 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2482 &cc->migratepages);
2483
2484 /* All pages were either migrated or will be released */
2485 cc->nr_migratepages = 0;
2486 cc_ext.nr_migrate_file_pages = 0;
2487 if (err) {
2488 putback_movable_pages(&cc->migratepages);
2489 /*
2490 * migrate_pages() may return -ENOMEM when scanners meet
2491 * and we want compact_finished() to detect it
2492 */
2493 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2494 ret = COMPACT_CONTENDED;
2495 goto out;
2496 }
2497 /*
2498 * We failed to migrate at least one page in the current
2499 * order-aligned block, so skip the rest of it.
2500 */
2501 if (cc->direct_compaction &&
2502 (cc->mode == MIGRATE_ASYNC)) {
2503 cc->migrate_pfn = block_end_pfn(
2504 cc->migrate_pfn - 1, cc->order);
2505 /* Draining pcplists is useless in this case */
2506 last_migrated_pfn = 0;
2507 }
2508 }
2509
2510 check_drain:
2511 /*
2512 * Has the migration scanner moved away from the previous
2513 * cc->order aligned block where we migrated from? If yes,
2514 * flush the pages that were freed, so that they can merge and
2515 * compact_finished() can detect immediately if allocation
2516 * would succeed.
2517 */
2518 if (cc->order > 0 && last_migrated_pfn) {
2519 unsigned long current_block_start =
2520 block_start_pfn(cc->migrate_pfn, cc->order);
2521
2522 if (last_migrated_pfn < current_block_start) {
2523 lru_add_drain_cpu_zone(cc->zone);
2524 /* No more flushing until we migrate again */
2525 last_migrated_pfn = 0;
2526 }
2527 }
2528
2529 /* Stop if a page has been captured */
2530 if (capc && capc->page) {
2531 ret = COMPACT_SUCCESS;
2532 break;
2533 }
2534 }
2535
2536 out:
2537 /*
2538 * Release free pages and update where the free scanner should restart,
2539 * so we don't leave any returned pages behind in the next attempt.
2540 */
2541 if (cc->nr_freepages > 0) {
2542 unsigned long free_pfn = release_freepages(&cc->freepages);
2543
2544 cc->nr_freepages = 0;
2545 VM_BUG_ON(free_pfn == 0);
2546 /* The cached pfn is always the first in a pageblock */
2547 free_pfn = pageblock_start_pfn(free_pfn);
2548 /*
2549 * Only go back, not forward. The cached pfn might have been
2550 * already reset to zone end in compact_finished()
2551 */
2552 if (free_pfn > cc->zone->compact_cached_free_pfn)
2553 cc->zone->compact_cached_free_pfn = free_pfn;
2554 }
2555
2556 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2557 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2558
2559 trace_android_vh_mm_compaction_end(cc, vendor_ret);
2560 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2561 cc->free_pfn, end_pfn, sync, ret);
2562
2563 return ret;
2564 }
2565
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2566 static enum compact_result compact_zone_order(struct zone *zone, int order,
2567 gfp_t gfp_mask, enum compact_priority prio,
2568 unsigned int alloc_flags, int highest_zoneidx,
2569 struct page **capture)
2570 {
2571 enum compact_result ret;
2572 struct compact_control cc = {
2573 .order = order,
2574 .search_order = order,
2575 .gfp_mask = gfp_mask,
2576 .zone = zone,
2577 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2578 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2579 .alloc_flags = alloc_flags,
2580 .highest_zoneidx = highest_zoneidx,
2581 .direct_compaction = true,
2582 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2583 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2584 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2585 };
2586 struct capture_control capc = {
2587 .cc = &cc,
2588 .page = NULL,
2589 };
2590
2591 /*
2592 * Make sure the structs are really initialized before we expose the
2593 * capture control, in case we are interrupted and the interrupt handler
2594 * frees a page.
2595 */
2596 barrier();
2597 WRITE_ONCE(current->capture_control, &capc);
2598
2599 ret = compact_zone(&cc, &capc);
2600
2601 VM_BUG_ON(!list_empty(&cc.freepages));
2602 VM_BUG_ON(!list_empty(&cc.migratepages));
2603
2604 /*
2605 * Make sure we hide capture control first before we read the captured
2606 * page pointer, otherwise an interrupt could free and capture a page
2607 * and we would leak it.
2608 */
2609 WRITE_ONCE(current->capture_control, NULL);
2610 *capture = READ_ONCE(capc.page);
2611 /*
2612 * Technically, it is also possible that compaction is skipped but
2613 * the page is still captured out of luck(IRQ came and freed the page).
2614 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2615 * the COMPACT[STALL|FAIL] when compaction is skipped.
2616 */
2617 if (*capture)
2618 ret = COMPACT_SUCCESS;
2619
2620 return ret;
2621 }
2622
2623 int sysctl_extfrag_threshold = 500;
2624
2625 /**
2626 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2627 * @gfp_mask: The GFP mask of the current allocation
2628 * @order: The order of the current allocation
2629 * @alloc_flags: The allocation flags of the current allocation
2630 * @ac: The context of current allocation
2631 * @prio: Determines how hard direct compaction should try to succeed
2632 * @capture: Pointer to free page created by compaction will be stored here
2633 *
2634 * This is the main entry point for direct page compaction.
2635 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2636 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2637 unsigned int alloc_flags, const struct alloc_context *ac,
2638 enum compact_priority prio, struct page **capture)
2639 {
2640 int may_perform_io = gfp_mask & __GFP_IO;
2641 struct zoneref *z;
2642 struct zone *zone;
2643 enum compact_result rc = COMPACT_SKIPPED;
2644
2645 /*
2646 * Check if the GFP flags allow compaction - GFP_NOIO is really
2647 * tricky context because the migration might require IO
2648 */
2649 if (!may_perform_io)
2650 return COMPACT_SKIPPED;
2651
2652 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2653
2654 /* Compact each zone in the list */
2655 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2656 ac->highest_zoneidx, ac->nodemask) {
2657 enum compact_result status;
2658
2659 if (prio > MIN_COMPACT_PRIORITY
2660 && compaction_deferred(zone, order)) {
2661 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2662 continue;
2663 }
2664
2665 status = compact_zone_order(zone, order, gfp_mask, prio,
2666 alloc_flags, ac->highest_zoneidx, capture);
2667 rc = max(status, rc);
2668
2669 /* The allocation should succeed, stop compacting */
2670 if (status == COMPACT_SUCCESS) {
2671 /*
2672 * We think the allocation will succeed in this zone,
2673 * but it is not certain, hence the false. The caller
2674 * will repeat this with true if allocation indeed
2675 * succeeds in this zone.
2676 */
2677 compaction_defer_reset(zone, order, false);
2678
2679 break;
2680 }
2681
2682 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2683 status == COMPACT_PARTIAL_SKIPPED))
2684 /*
2685 * We think that allocation won't succeed in this zone
2686 * so we defer compaction there. If it ends up
2687 * succeeding after all, it will be reset.
2688 */
2689 defer_compaction(zone, order);
2690
2691 /*
2692 * We might have stopped compacting due to need_resched() in
2693 * async compaction, or due to a fatal signal detected. In that
2694 * case do not try further zones
2695 */
2696 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2697 || fatal_signal_pending(current))
2698 break;
2699 }
2700
2701 return rc;
2702 }
2703
2704 /*
2705 * Compact all zones within a node till each zone's fragmentation score
2706 * reaches within proactive compaction thresholds (as determined by the
2707 * proactiveness tunable).
2708 *
2709 * It is possible that the function returns before reaching score targets
2710 * due to various back-off conditions, such as, contention on per-node or
2711 * per-zone locks.
2712 */
proactive_compact_node(pg_data_t * pgdat)2713 static void proactive_compact_node(pg_data_t *pgdat)
2714 {
2715 int zoneid;
2716 struct zone *zone;
2717 struct compact_control cc = {
2718 .order = -1,
2719 .mode = MIGRATE_SYNC_LIGHT,
2720 .ignore_skip_hint = true,
2721 .whole_zone = true,
2722 .gfp_mask = GFP_KERNEL,
2723 .proactive_compaction = true,
2724 };
2725
2726 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2727 zone = &pgdat->node_zones[zoneid];
2728 if (!populated_zone(zone))
2729 continue;
2730
2731 cc.zone = zone;
2732
2733 compact_zone(&cc, NULL);
2734
2735 VM_BUG_ON(!list_empty(&cc.freepages));
2736 VM_BUG_ON(!list_empty(&cc.migratepages));
2737 }
2738 }
2739
2740 /* Compact all zones within a node */
compact_node(int nid)2741 static void compact_node(int nid)
2742 {
2743 pg_data_t *pgdat = NODE_DATA(nid);
2744 int zoneid;
2745 struct zone *zone;
2746 struct compact_control cc = {
2747 .order = -1,
2748 .mode = MIGRATE_SYNC,
2749 .ignore_skip_hint = true,
2750 .whole_zone = true,
2751 .gfp_mask = GFP_KERNEL,
2752 };
2753
2754
2755 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2756
2757 zone = &pgdat->node_zones[zoneid];
2758 if (!populated_zone(zone))
2759 continue;
2760
2761 cc.zone = zone;
2762
2763 compact_zone(&cc, NULL);
2764
2765 VM_BUG_ON(!list_empty(&cc.freepages));
2766 VM_BUG_ON(!list_empty(&cc.migratepages));
2767 }
2768 }
2769
2770 /* Compact all nodes in the system */
compact_nodes(void)2771 static void compact_nodes(void)
2772 {
2773 int nid;
2774
2775 /* Flush pending updates to the LRU lists */
2776 lru_add_drain_all();
2777
2778 for_each_online_node(nid)
2779 compact_node(nid);
2780 }
2781
2782 /*
2783 * Tunable for proactive compaction. It determines how
2784 * aggressively the kernel should compact memory in the
2785 * background. It takes values in the range [0, 100].
2786 */
2787 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2788
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2789 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2790 void *buffer, size_t *length, loff_t *ppos)
2791 {
2792 int rc, nid;
2793
2794 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2795 if (rc)
2796 return rc;
2797
2798 if (write && sysctl_compaction_proactiveness) {
2799 for_each_online_node(nid) {
2800 pg_data_t *pgdat = NODE_DATA(nid);
2801
2802 if (pgdat->proactive_compact_trigger)
2803 continue;
2804
2805 pgdat->proactive_compact_trigger = true;
2806 wake_up_interruptible(&pgdat->kcompactd_wait);
2807 }
2808 }
2809
2810 return 0;
2811 }
2812
2813 /*
2814 * This is the entry point for compacting all nodes via
2815 * /proc/sys/vm/compact_memory
2816 */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2817 int sysctl_compaction_handler(struct ctl_table *table, int write,
2818 void *buffer, size_t *length, loff_t *ppos)
2819 {
2820 if (write)
2821 compact_nodes();
2822
2823 return 0;
2824 }
2825
2826 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2827 static ssize_t compact_store(struct device *dev,
2828 struct device_attribute *attr,
2829 const char *buf, size_t count)
2830 {
2831 int nid = dev->id;
2832
2833 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2834 /* Flush pending updates to the LRU lists */
2835 lru_add_drain_all();
2836
2837 compact_node(nid);
2838 }
2839
2840 return count;
2841 }
2842 static DEVICE_ATTR_WO(compact);
2843
compaction_register_node(struct node * node)2844 int compaction_register_node(struct node *node)
2845 {
2846 return device_create_file(&node->dev, &dev_attr_compact);
2847 }
2848
compaction_unregister_node(struct node * node)2849 void compaction_unregister_node(struct node *node)
2850 {
2851 return device_remove_file(&node->dev, &dev_attr_compact);
2852 }
2853 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2854
kcompactd_work_requested(pg_data_t * pgdat)2855 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2856 {
2857 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2858 pgdat->proactive_compact_trigger;
2859 }
2860
kcompactd_node_suitable(pg_data_t * pgdat)2861 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2862 {
2863 int zoneid;
2864 struct zone *zone;
2865 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2866
2867 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2868 zone = &pgdat->node_zones[zoneid];
2869
2870 if (!populated_zone(zone))
2871 continue;
2872
2873 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2874 highest_zoneidx) == COMPACT_CONTINUE)
2875 return true;
2876 }
2877
2878 return false;
2879 }
2880
kcompactd_do_work(pg_data_t * pgdat)2881 static void kcompactd_do_work(pg_data_t *pgdat)
2882 {
2883 /*
2884 * With no special task, compact all zones so that a page of requested
2885 * order is allocatable.
2886 */
2887 int zoneid;
2888 struct zone *zone;
2889 struct compact_control cc = {
2890 .order = pgdat->kcompactd_max_order,
2891 .search_order = pgdat->kcompactd_max_order,
2892 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2893 .mode = MIGRATE_SYNC_LIGHT,
2894 .ignore_skip_hint = false,
2895 .gfp_mask = GFP_KERNEL,
2896 };
2897 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2898 cc.highest_zoneidx);
2899 count_compact_event(KCOMPACTD_WAKE);
2900
2901 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2902 int status;
2903
2904 zone = &pgdat->node_zones[zoneid];
2905 if (!populated_zone(zone))
2906 continue;
2907
2908 if (compaction_deferred(zone, cc.order))
2909 continue;
2910
2911 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2912 COMPACT_CONTINUE)
2913 continue;
2914
2915 if (kthread_should_stop())
2916 return;
2917
2918 cc.zone = zone;
2919 status = compact_zone(&cc, NULL);
2920
2921 if (status == COMPACT_SUCCESS) {
2922 compaction_defer_reset(zone, cc.order, false);
2923 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2924 /*
2925 * Buddy pages may become stranded on pcps that could
2926 * otherwise coalesce on the zone's free area for
2927 * order >= cc.order. This is ratelimited by the
2928 * upcoming deferral.
2929 */
2930 drain_all_pages(zone);
2931
2932 /*
2933 * We use sync migration mode here, so we defer like
2934 * sync direct compaction does.
2935 */
2936 defer_compaction(zone, cc.order);
2937 }
2938
2939 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2940 cc.total_migrate_scanned);
2941 count_compact_events(KCOMPACTD_FREE_SCANNED,
2942 cc.total_free_scanned);
2943
2944 VM_BUG_ON(!list_empty(&cc.freepages));
2945 VM_BUG_ON(!list_empty(&cc.migratepages));
2946 }
2947
2948 /*
2949 * Regardless of success, we are done until woken up next. But remember
2950 * the requested order/highest_zoneidx in case it was higher/tighter
2951 * than our current ones
2952 */
2953 if (pgdat->kcompactd_max_order <= cc.order)
2954 pgdat->kcompactd_max_order = 0;
2955 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2956 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2957 }
2958
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2959 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2960 {
2961 if (!order)
2962 return;
2963
2964 if (pgdat->kcompactd_max_order < order)
2965 pgdat->kcompactd_max_order = order;
2966
2967 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2968 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2969
2970 /*
2971 * Pairs with implicit barrier in wait_event_freezable()
2972 * such that wakeups are not missed.
2973 */
2974 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2975 return;
2976
2977 if (!kcompactd_node_suitable(pgdat))
2978 return;
2979
2980 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2981 highest_zoneidx);
2982 wake_up_interruptible(&pgdat->kcompactd_wait);
2983 }
2984
2985 /*
2986 * The background compaction daemon, started as a kernel thread
2987 * from the init process.
2988 */
kcompactd(void * p)2989 static int kcompactd(void *p)
2990 {
2991 pg_data_t *pgdat = (pg_data_t *)p;
2992 struct task_struct *tsk = current;
2993 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2994 long timeout = default_timeout;
2995
2996 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2997
2998 if (!cpumask_empty(cpumask))
2999 set_cpus_allowed_ptr(tsk, cpumask);
3000
3001 set_freezable();
3002
3003 pgdat->kcompactd_max_order = 0;
3004 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3005
3006 while (!kthread_should_stop()) {
3007 unsigned long pflags;
3008
3009 /*
3010 * Avoid the unnecessary wakeup for proactive compaction
3011 * when it is disabled.
3012 */
3013 if (!sysctl_compaction_proactiveness)
3014 timeout = MAX_SCHEDULE_TIMEOUT;
3015 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3016 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3017 kcompactd_work_requested(pgdat), timeout) &&
3018 !pgdat->proactive_compact_trigger) {
3019
3020 psi_memstall_enter(&pflags);
3021 kcompactd_do_work(pgdat);
3022 psi_memstall_leave(&pflags);
3023 /*
3024 * Reset the timeout value. The defer timeout from
3025 * proactive compaction is lost here but that is fine
3026 * as the condition of the zone changing substantionally
3027 * then carrying on with the previous defer interval is
3028 * not useful.
3029 */
3030 timeout = default_timeout;
3031 continue;
3032 }
3033
3034 /*
3035 * Start the proactive work with default timeout. Based
3036 * on the fragmentation score, this timeout is updated.
3037 */
3038 timeout = default_timeout;
3039 if (should_proactive_compact_node(pgdat)) {
3040 unsigned int prev_score, score;
3041
3042 prev_score = fragmentation_score_node(pgdat);
3043 proactive_compact_node(pgdat);
3044 score = fragmentation_score_node(pgdat);
3045 /*
3046 * Defer proactive compaction if the fragmentation
3047 * score did not go down i.e. no progress made.
3048 */
3049 if (unlikely(score >= prev_score))
3050 timeout =
3051 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3052 }
3053 if (unlikely(pgdat->proactive_compact_trigger))
3054 pgdat->proactive_compact_trigger = false;
3055 }
3056
3057 return 0;
3058 }
3059
3060 /*
3061 * This kcompactd start function will be called by init and node-hot-add.
3062 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3063 */
kcompactd_run(int nid)3064 int kcompactd_run(int nid)
3065 {
3066 pg_data_t *pgdat = NODE_DATA(nid);
3067 int ret = 0;
3068
3069 if (pgdat->kcompactd)
3070 return 0;
3071
3072 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3073 if (IS_ERR(pgdat->kcompactd)) {
3074 pr_err("Failed to start kcompactd on node %d\n", nid);
3075 ret = PTR_ERR(pgdat->kcompactd);
3076 pgdat->kcompactd = NULL;
3077 }
3078 return ret;
3079 }
3080
3081 /*
3082 * Called by memory hotplug when all memory in a node is offlined. Caller must
3083 * hold mem_hotplug_begin/end().
3084 */
kcompactd_stop(int nid)3085 void kcompactd_stop(int nid)
3086 {
3087 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3088
3089 if (kcompactd) {
3090 kthread_stop(kcompactd);
3091 NODE_DATA(nid)->kcompactd = NULL;
3092 }
3093 }
3094
3095 /*
3096 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3097 * not required for correctness. So if the last cpu in a node goes
3098 * away, we get changed to run anywhere: as the first one comes back,
3099 * restore their cpu bindings.
3100 */
kcompactd_cpu_online(unsigned int cpu)3101 static int kcompactd_cpu_online(unsigned int cpu)
3102 {
3103 int nid;
3104
3105 for_each_node_state(nid, N_MEMORY) {
3106 pg_data_t *pgdat = NODE_DATA(nid);
3107 const struct cpumask *mask;
3108
3109 mask = cpumask_of_node(pgdat->node_id);
3110
3111 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3112 /* One of our CPUs online: restore mask */
3113 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3114 }
3115 return 0;
3116 }
3117
kcompactd_init(void)3118 static int __init kcompactd_init(void)
3119 {
3120 int nid;
3121 int ret;
3122
3123 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3124 "mm/compaction:online",
3125 kcompactd_cpu_online, NULL);
3126 if (ret < 0) {
3127 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3128 return ret;
3129 }
3130
3131 for_each_node_state(nid, N_MEMORY)
3132 kcompactd_run(nid);
3133 return 0;
3134 }
3135 subsys_initcall(kcompactd_init)
3136
3137 #endif /* CONFIG_COMPACTION */
3138