• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_SLAB_ALLOC,
58 	FAULT_DQUOT_INIT,
59 	FAULT_LOCK_OP,
60 	FAULT_BLKADDR,
61 	FAULT_MAX,
62 };
63 
64 #ifdef CONFIG_F2FS_FAULT_INJECTION
65 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
66 
67 struct f2fs_fault_info {
68 	atomic_t inject_ops;
69 	unsigned int inject_rate;
70 	unsigned int inject_type;
71 };
72 
73 extern const char *f2fs_fault_name[FAULT_MAX];
74 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
75 #endif
76 
77 /*
78  * For mount options
79  */
80 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
81 #define F2FS_MOUNT_DISCARD		0x00000004
82 #define F2FS_MOUNT_NOHEAP		0x00000008
83 #define F2FS_MOUNT_XATTR_USER		0x00000010
84 #define F2FS_MOUNT_POSIX_ACL		0x00000020
85 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
86 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
87 #define F2FS_MOUNT_INLINE_DATA		0x00000100
88 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
89 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
90 #define F2FS_MOUNT_NOBARRIER		0x00000800
91 #define F2FS_MOUNT_FASTBOOT		0x00001000
92 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
93 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
95 #define F2FS_MOUNT_USRQUOTA		0x00080000
96 #define F2FS_MOUNT_GRPQUOTA		0x00100000
97 #define F2FS_MOUNT_PRJQUOTA		0x00200000
98 #define F2FS_MOUNT_QUOTA		0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
102 #define F2FS_MOUNT_NORECOVERY		0x04000000
103 #define F2FS_MOUNT_ATGC			0x08000000
104 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
105 #define	F2FS_MOUNT_GC_MERGE		0x20000000
106 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
107 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
108 
109 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
110 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
111 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
112 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
113 
114 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
115 		typecheck(unsigned long long, b) &&			\
116 		((long long)((a) - (b)) > 0))
117 
118 typedef u32 block_t;	/*
119 			 * should not change u32, since it is the on-disk block
120 			 * address format, __le32.
121 			 */
122 typedef u32 nid_t;
123 
124 #define COMPRESS_EXT_NUM		16
125 
126 /*
127  * An implementation of an rwsem that is explicitly unfair to readers. This
128  * prevents priority inversion when a low-priority reader acquires the read lock
129  * while sleeping on the write lock but the write lock is needed by
130  * higher-priority clients.
131  */
132 
133 struct f2fs_rwsem {
134         struct rw_semaphore internal_rwsem;
135 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
136         wait_queue_head_t read_waiters;
137 #endif
138 };
139 
140 struct f2fs_mount_info {
141 	unsigned int opt;
142 	int write_io_size_bits;		/* Write IO size bits */
143 	block_t root_reserved_blocks;	/* root reserved blocks */
144 	kuid_t s_resuid;		/* reserved blocks for uid */
145 	kgid_t s_resgid;		/* reserved blocks for gid */
146 	int active_logs;		/* # of active logs */
147 	int inline_xattr_size;		/* inline xattr size */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 	struct f2fs_fault_info fault_info;	/* For fault injection */
150 #endif
151 #ifdef CONFIG_QUOTA
152 	/* Names of quota files with journalled quota */
153 	char *s_qf_names[MAXQUOTAS];
154 	int s_jquota_fmt;			/* Format of quota to use */
155 #endif
156 	/* For which write hints are passed down to block layer */
157 	int alloc_mode;			/* segment allocation policy */
158 	int fsync_mode;			/* fsync policy */
159 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
160 	int bggc_mode;			/* bggc mode: off, on or sync */
161 	int memory_mode;		/* memory mode */
162 	int discard_unit;		/*
163 					 * discard command's offset/size should
164 					 * be aligned to this unit: block,
165 					 * segment or section
166 					 */
167 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
168 	block_t unusable_cap_perc;	/* percentage for cap */
169 	block_t unusable_cap;		/* Amount of space allowed to be
170 					 * unusable when disabling checkpoint
171 					 */
172 
173 	/* For compression */
174 	unsigned char compress_algorithm;	/* algorithm type */
175 	unsigned char compress_log_size;	/* cluster log size */
176 	unsigned char compress_level;		/* compress level */
177 	bool compress_chksum;			/* compressed data chksum */
178 	unsigned char compress_ext_cnt;		/* extension count */
179 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
180 	int compress_mode;			/* compression mode */
181 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
182 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
183 };
184 
185 #define F2FS_FEATURE_ENCRYPT		0x0001
186 #define F2FS_FEATURE_BLKZONED		0x0002
187 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
188 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
189 #define F2FS_FEATURE_PRJQUOTA		0x0010
190 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
191 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
192 #define F2FS_FEATURE_QUOTA_INO		0x0080
193 #define F2FS_FEATURE_INODE_CRTIME	0x0100
194 #define F2FS_FEATURE_LOST_FOUND		0x0200
195 #define F2FS_FEATURE_VERITY		0x0400
196 #define F2FS_FEATURE_SB_CHKSUM		0x0800
197 #define F2FS_FEATURE_CASEFOLD		0x1000
198 #define F2FS_FEATURE_COMPRESSION	0x2000
199 #define F2FS_FEATURE_RO			0x4000
200 
201 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
202 	((raw_super->feature & cpu_to_le32(mask)) != 0)
203 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
204 
205 /*
206  * Default values for user and/or group using reserved blocks
207  */
208 #define	F2FS_DEF_RESUID		0
209 #define	F2FS_DEF_RESGID		0
210 
211 /*
212  * For checkpoint manager
213  */
214 enum {
215 	NAT_BITMAP,
216 	SIT_BITMAP
217 };
218 
219 #define	CP_UMOUNT	0x00000001
220 #define	CP_FASTBOOT	0x00000002
221 #define	CP_SYNC		0x00000004
222 #define	CP_RECOVERY	0x00000008
223 #define	CP_DISCARD	0x00000010
224 #define CP_TRIMMED	0x00000020
225 #define CP_PAUSE	0x00000040
226 #define CP_RESIZE 	0x00000080
227 
228 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
229 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
230 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
231 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
232 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
233 #define DEF_CP_INTERVAL			60	/* 60 secs */
234 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
235 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
236 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
237 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
238 
239 struct cp_control {
240 	int reason;
241 	__u64 trim_start;
242 	__u64 trim_end;
243 	__u64 trim_minlen;
244 };
245 
246 /*
247  * indicate meta/data type
248  */
249 enum {
250 	META_CP,
251 	META_NAT,
252 	META_SIT,
253 	META_SSA,
254 	META_MAX,
255 	META_POR,
256 	DATA_GENERIC,		/* check range only */
257 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
258 	DATA_GENERIC_ENHANCE_READ,	/*
259 					 * strong check on range and segment
260 					 * bitmap but no warning due to race
261 					 * condition of read on truncated area
262 					 * by extent_cache
263 					 */
264 	DATA_GENERIC_ENHANCE_UPDATE,	/*
265 					 * strong check on range and segment
266 					 * bitmap for update case
267 					 */
268 	META_GENERIC,
269 };
270 
271 /* for the list of ino */
272 enum {
273 	ORPHAN_INO,		/* for orphan ino list */
274 	APPEND_INO,		/* for append ino list */
275 	UPDATE_INO,		/* for update ino list */
276 	TRANS_DIR_INO,		/* for transactions dir ino list */
277 	FLUSH_INO,		/* for multiple device flushing */
278 	MAX_INO_ENTRY,		/* max. list */
279 };
280 
281 struct ino_entry {
282 	struct list_head list;		/* list head */
283 	nid_t ino;			/* inode number */
284 	unsigned int dirty_device;	/* dirty device bitmap */
285 };
286 
287 /* for the list of inodes to be GCed */
288 struct inode_entry {
289 	struct list_head list;	/* list head */
290 	struct inode *inode;	/* vfs inode pointer */
291 };
292 
293 struct fsync_node_entry {
294 	struct list_head list;	/* list head */
295 	struct page *page;	/* warm node page pointer */
296 	unsigned int seq_id;	/* sequence id */
297 };
298 
299 struct ckpt_req {
300 	struct completion wait;		/* completion for checkpoint done */
301 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
302 	int ret;			/* return code of checkpoint */
303 	ktime_t queue_time;		/* request queued time */
304 };
305 
306 struct ckpt_req_control {
307 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
308 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
309 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
310 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
311 	atomic_t total_ckpt;		/* # of total ckpts */
312 	atomic_t queued_ckpt;		/* # of queued ckpts */
313 	struct llist_head issue_list;	/* list for command issue */
314 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
315 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
316 	unsigned int peak_time;		/* peak wait time in msec until now */
317 };
318 
319 /* for the bitmap indicate blocks to be discarded */
320 struct discard_entry {
321 	struct list_head list;	/* list head */
322 	block_t start_blkaddr;	/* start blockaddr of current segment */
323 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
324 };
325 
326 /* minimum discard granularity, unit: block count */
327 #define MIN_DISCARD_GRANULARITY		1
328 /* default discard granularity of inner discard thread, unit: block count */
329 #define DEFAULT_DISCARD_GRANULARITY		16
330 /* default maximum discard granularity of ordered discard, unit: block count */
331 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
332 
333 /* max discard pend list number */
334 #define MAX_PLIST_NUM		512
335 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
336 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
337 
338 enum {
339 	D_PREP,			/* initial */
340 	D_PARTIAL,		/* partially submitted */
341 	D_SUBMIT,		/* all submitted */
342 	D_DONE,			/* finished */
343 };
344 
345 struct discard_info {
346 	block_t lstart;			/* logical start address */
347 	block_t len;			/* length */
348 	block_t start;			/* actual start address in dev */
349 };
350 
351 struct discard_cmd {
352 	struct rb_node rb_node;		/* rb node located in rb-tree */
353 	struct discard_info di;		/* discard info */
354 	struct list_head list;		/* command list */
355 	struct completion wait;		/* compleation */
356 	struct block_device *bdev;	/* bdev */
357 	unsigned short ref;		/* reference count */
358 	unsigned char state;		/* state */
359 	unsigned char queued;		/* queued discard */
360 	int error;			/* bio error */
361 	spinlock_t lock;		/* for state/bio_ref updating */
362 	unsigned short bio_ref;		/* bio reference count */
363 };
364 
365 enum {
366 	DPOLICY_BG,
367 	DPOLICY_FORCE,
368 	DPOLICY_FSTRIM,
369 	DPOLICY_UMOUNT,
370 	MAX_DPOLICY,
371 };
372 
373 struct discard_policy {
374 	int type;			/* type of discard */
375 	unsigned int min_interval;	/* used for candidates exist */
376 	unsigned int mid_interval;	/* used for device busy */
377 	unsigned int max_interval;	/* used for candidates not exist */
378 	unsigned int max_requests;	/* # of discards issued per round */
379 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
380 	bool io_aware;			/* issue discard in idle time */
381 	bool sync;			/* submit discard with REQ_SYNC flag */
382 	bool ordered;			/* issue discard by lba order */
383 	bool timeout;			/* discard timeout for put_super */
384 	unsigned int granularity;	/* discard granularity */
385 };
386 
387 struct discard_cmd_control {
388 	struct task_struct *f2fs_issue_discard;	/* discard thread */
389 	struct list_head entry_list;		/* 4KB discard entry list */
390 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
391 	struct list_head wait_list;		/* store on-flushing entries */
392 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
393 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
394 	struct mutex cmd_lock;
395 	unsigned int nr_discards;		/* # of discards in the list */
396 	unsigned int max_discards;		/* max. discards to be issued */
397 	unsigned int max_discard_request;	/* max. discard request per round */
398 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
399 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
400 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
401 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
402 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
403 	unsigned int discard_granularity;	/* discard granularity */
404 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
405 	unsigned int undiscard_blks;		/* # of undiscard blocks */
406 	unsigned int next_pos;			/* next discard position */
407 	atomic_t issued_discard;		/* # of issued discard */
408 	atomic_t queued_discard;		/* # of queued discard */
409 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
410 	struct rb_root_cached root;		/* root of discard rb-tree */
411 	bool rbtree_check;			/* config for consistence check */
412 	bool discard_wake;			/* to wake up discard thread */
413 };
414 
415 /* for the list of fsync inodes, used only during recovery */
416 struct fsync_inode_entry {
417 	struct list_head list;	/* list head */
418 	struct inode *inode;	/* vfs inode pointer */
419 	block_t blkaddr;	/* block address locating the last fsync */
420 	block_t last_dentry;	/* block address locating the last dentry */
421 };
422 
423 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
424 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
425 
426 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
427 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
428 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
429 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
430 
431 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
432 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
433 
update_nats_in_cursum(struct f2fs_journal * journal,int i)434 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
435 {
436 	int before = nats_in_cursum(journal);
437 
438 	journal->n_nats = cpu_to_le16(before + i);
439 	return before;
440 }
441 
update_sits_in_cursum(struct f2fs_journal * journal,int i)442 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
443 {
444 	int before = sits_in_cursum(journal);
445 
446 	journal->n_sits = cpu_to_le16(before + i);
447 	return before;
448 }
449 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)450 static inline bool __has_cursum_space(struct f2fs_journal *journal,
451 							int size, int type)
452 {
453 	if (type == NAT_JOURNAL)
454 		return size <= MAX_NAT_JENTRIES(journal);
455 	return size <= MAX_SIT_JENTRIES(journal);
456 }
457 
458 /* for inline stuff */
459 #define DEF_INLINE_RESERVED_SIZE	1
460 static inline int get_extra_isize(struct inode *inode);
461 static inline int get_inline_xattr_addrs(struct inode *inode);
462 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
463 				(CUR_ADDRS_PER_INODE(inode) -		\
464 				get_inline_xattr_addrs(inode) -	\
465 				DEF_INLINE_RESERVED_SIZE))
466 
467 /* for inline dir */
468 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
469 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
470 				BITS_PER_BYTE + 1))
471 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
472 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
473 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
474 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
475 				NR_INLINE_DENTRY(inode) + \
476 				INLINE_DENTRY_BITMAP_SIZE(inode)))
477 
478 /*
479  * For INODE and NODE manager
480  */
481 /* for directory operations */
482 
483 struct f2fs_filename {
484 	/*
485 	 * The filename the user specified.  This is NULL for some
486 	 * filesystem-internal operations, e.g. converting an inline directory
487 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
488 	 */
489 	const struct qstr *usr_fname;
490 
491 	/*
492 	 * The on-disk filename.  For encrypted directories, this is encrypted.
493 	 * This may be NULL for lookups in an encrypted dir without the key.
494 	 */
495 	struct fscrypt_str disk_name;
496 
497 	/* The dirhash of this filename */
498 	f2fs_hash_t hash;
499 
500 #ifdef CONFIG_FS_ENCRYPTION
501 	/*
502 	 * For lookups in encrypted directories: either the buffer backing
503 	 * disk_name, or a buffer that holds the decoded no-key name.
504 	 */
505 	struct fscrypt_str crypto_buf;
506 #endif
507 #ifdef CONFIG_UNICODE
508 	/*
509 	 * For casefolded directories: the casefolded name, but it's left NULL
510 	 * if the original name is not valid Unicode, if the original name is
511 	 * "." or "..", if the directory is both casefolded and encrypted and
512 	 * its encryption key is unavailable, or if the filesystem is doing an
513 	 * internal operation where usr_fname is also NULL.  In all these cases
514 	 * we fall back to treating the name as an opaque byte sequence.
515 	 */
516 	struct fscrypt_str cf_name;
517 #endif
518 };
519 
520 struct f2fs_dentry_ptr {
521 	struct inode *inode;
522 	void *bitmap;
523 	struct f2fs_dir_entry *dentry;
524 	__u8 (*filename)[F2FS_SLOT_LEN];
525 	int max;
526 	int nr_bitmap;
527 };
528 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)529 static inline void make_dentry_ptr_block(struct inode *inode,
530 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
531 {
532 	d->inode = inode;
533 	d->max = NR_DENTRY_IN_BLOCK;
534 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
535 	d->bitmap = t->dentry_bitmap;
536 	d->dentry = t->dentry;
537 	d->filename = t->filename;
538 }
539 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)540 static inline void make_dentry_ptr_inline(struct inode *inode,
541 					struct f2fs_dentry_ptr *d, void *t)
542 {
543 	int entry_cnt = NR_INLINE_DENTRY(inode);
544 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
545 	int reserved_size = INLINE_RESERVED_SIZE(inode);
546 
547 	d->inode = inode;
548 	d->max = entry_cnt;
549 	d->nr_bitmap = bitmap_size;
550 	d->bitmap = t;
551 	d->dentry = t + bitmap_size + reserved_size;
552 	d->filename = t + bitmap_size + reserved_size +
553 					SIZE_OF_DIR_ENTRY * entry_cnt;
554 }
555 
556 /*
557  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
558  * as its node offset to distinguish from index node blocks.
559  * But some bits are used to mark the node block.
560  */
561 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
562 				>> OFFSET_BIT_SHIFT)
563 enum {
564 	ALLOC_NODE,			/* allocate a new node page if needed */
565 	LOOKUP_NODE,			/* look up a node without readahead */
566 	LOOKUP_NODE_RA,			/*
567 					 * look up a node with readahead called
568 					 * by get_data_block.
569 					 */
570 };
571 
572 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
573 
574 /* congestion wait timeout value, default: 20ms */
575 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
576 
577 /* maximum retry quota flush count */
578 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
579 
580 /* maximum retry of EIO'ed page */
581 #define MAX_RETRY_PAGE_EIO			100
582 
583 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
584 
585 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
586 
587 /* dirty segments threshold for triggering CP */
588 #define DEFAULT_DIRTY_THRESHOLD		4
589 
590 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
591 #define RECOVERY_MIN_RA_BLOCKS		1
592 
593 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
594 
595 /* for in-memory extent cache entry */
596 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
597 
598 /* number of extent info in extent cache we try to shrink */
599 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
600 
601 /* number of age extent info in extent cache we try to shrink */
602 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
603 #define LAST_AGE_WEIGHT			30
604 #define SAME_AGE_REGION			1024
605 
606 /*
607  * Define data block with age less than 1GB as hot data
608  * define data block with age less than 10GB but more than 1GB as warm data
609  */
610 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
611 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
612 
613 /* extent cache type */
614 enum extent_type {
615 	EX_READ,
616 	EX_BLOCK_AGE,
617 	NR_EXTENT_CACHES,
618 };
619 
620 struct extent_info {
621 	unsigned int fofs;		/* start offset in a file */
622 	unsigned int len;		/* length of the extent */
623 	union {
624 		/* read extent_cache */
625 		struct {
626 			/* start block address of the extent */
627 			block_t blk;
628 #ifdef CONFIG_F2FS_FS_COMPRESSION
629 			/* physical extent length of compressed blocks */
630 			unsigned int c_len;
631 #endif
632 		};
633 		/* block age extent_cache */
634 		struct {
635 			/* block age of the extent */
636 			unsigned long long age;
637 			/* last total blocks allocated */
638 			unsigned long long last_blocks;
639 		};
640 	};
641 };
642 
643 struct extent_node {
644 	struct rb_node rb_node;		/* rb node located in rb-tree */
645 	struct extent_info ei;		/* extent info */
646 	struct list_head list;		/* node in global extent list of sbi */
647 	struct extent_tree *et;		/* extent tree pointer */
648 };
649 
650 struct extent_tree {
651 	nid_t ino;			/* inode number */
652 	enum extent_type type;		/* keep the extent tree type */
653 	struct rb_root_cached root;	/* root of extent info rb-tree */
654 	struct extent_node *cached_en;	/* recently accessed extent node */
655 	struct list_head list;		/* to be used by sbi->zombie_list */
656 	rwlock_t lock;			/* protect extent info rb-tree */
657 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
658 	bool largest_updated;		/* largest extent updated */
659 	struct extent_info largest;	/* largest cached extent for EX_READ */
660 };
661 
662 struct extent_tree_info {
663 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
664 	struct mutex extent_tree_lock;	/* locking extent radix tree */
665 	struct list_head extent_list;		/* lru list for shrinker */
666 	spinlock_t extent_lock;			/* locking extent lru list */
667 	atomic_t total_ext_tree;		/* extent tree count */
668 	struct list_head zombie_list;		/* extent zombie tree list */
669 	atomic_t total_zombie_tree;		/* extent zombie tree count */
670 	atomic_t total_ext_node;		/* extent info count */
671 };
672 
673 /*
674  * State of block returned by f2fs_map_blocks.
675  */
676 #define F2FS_MAP_NEW		(1U << 0)
677 #define F2FS_MAP_MAPPED		(1U << 1)
678 #define F2FS_MAP_DELALLOC	(1U << 2)
679 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
680 				F2FS_MAP_DELALLOC)
681 
682 struct f2fs_map_blocks {
683 	struct block_device *m_bdev;	/* for multi-device dio */
684 	block_t m_pblk;
685 	block_t m_lblk;
686 	unsigned int m_len;
687 	unsigned int m_flags;
688 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
689 	pgoff_t *m_next_extent;		/* point to next possible extent */
690 	int m_seg_type;
691 	bool m_may_create;		/* indicate it is from write path */
692 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
693 };
694 
695 /* for flag in get_data_block */
696 enum {
697 	F2FS_GET_BLOCK_DEFAULT,
698 	F2FS_GET_BLOCK_FIEMAP,
699 	F2FS_GET_BLOCK_BMAP,
700 	F2FS_GET_BLOCK_DIO,
701 	F2FS_GET_BLOCK_PRE_DIO,
702 	F2FS_GET_BLOCK_PRE_AIO,
703 	F2FS_GET_BLOCK_PRECACHE,
704 };
705 
706 /*
707  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
708  */
709 #define FADVISE_COLD_BIT	0x01
710 #define FADVISE_LOST_PINO_BIT	0x02
711 #define FADVISE_ENCRYPT_BIT	0x04
712 #define FADVISE_ENC_NAME_BIT	0x08
713 #define FADVISE_KEEP_SIZE_BIT	0x10
714 #define FADVISE_HOT_BIT		0x20
715 #define FADVISE_VERITY_BIT	0x40
716 #define FADVISE_TRUNC_BIT	0x80
717 
718 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
719 
720 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
721 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
722 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
723 
724 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
725 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
726 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
727 
728 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
729 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
730 
731 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
732 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
733 
734 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
735 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
736 
737 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
738 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
739 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
740 
741 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
742 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
743 
744 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
745 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
746 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
747 
748 #define DEF_DIR_LEVEL		0
749 
750 enum {
751 	GC_FAILURE_PIN,
752 	MAX_GC_FAILURE
753 };
754 
755 /* used for f2fs_inode_info->flags */
756 enum {
757 	FI_NEW_INODE,		/* indicate newly allocated inode */
758 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
759 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
760 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
761 	FI_INC_LINK,		/* need to increment i_nlink */
762 	FI_ACL_MODE,		/* indicate acl mode */
763 	FI_NO_ALLOC,		/* should not allocate any blocks */
764 	FI_FREE_NID,		/* free allocated nide */
765 	FI_NO_EXTENT,		/* not to use the extent cache */
766 	FI_INLINE_XATTR,	/* used for inline xattr */
767 	FI_INLINE_DATA,		/* used for inline data*/
768 	FI_INLINE_DENTRY,	/* used for inline dentry */
769 	FI_APPEND_WRITE,	/* inode has appended data */
770 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
771 	FI_NEED_IPU,		/* used for ipu per file */
772 	FI_ATOMIC_FILE,		/* indicate atomic file */
773 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
774 	FI_DROP_CACHE,		/* drop dirty page cache */
775 	FI_DATA_EXIST,		/* indicate data exists */
776 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
777 	FI_SKIP_WRITES,		/* should skip data page writeback */
778 	FI_OPU_WRITE,		/* used for opu per file */
779 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
780 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
781 	FI_HOT_DATA,		/* indicate file is hot */
782 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
783 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
784 	FI_PIN_FILE,		/* indicate file should not be gced */
785 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
786 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
787 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
788 	FI_MMAP_FILE,		/* indicate file was mmapped */
789 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
790 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
791 	FI_ALIGNED_WRITE,	/* enable aligned write */
792 	FI_COW_FILE,		/* indicate COW file */
793 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
794 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
795 	FI_MAX,			/* max flag, never be used */
796 };
797 
798 struct f2fs_inode_info {
799 	struct inode vfs_inode;		/* serve a vfs inode */
800 	unsigned long i_flags;		/* keep an inode flags for ioctl */
801 	unsigned char i_advise;		/* use to give file attribute hints */
802 	unsigned char i_dir_level;	/* use for dentry level for large dir */
803 	unsigned int i_current_depth;	/* only for directory depth */
804 	/* for gc failure statistic */
805 	unsigned int i_gc_failures[MAX_GC_FAILURE];
806 	unsigned int i_pino;		/* parent inode number */
807 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
808 
809 	/* Use below internally in f2fs*/
810 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
811 	struct f2fs_rwsem i_sem;	/* protect fi info */
812 	atomic_t dirty_pages;		/* # of dirty pages */
813 	f2fs_hash_t chash;		/* hash value of given file name */
814 	unsigned int clevel;		/* maximum level of given file name */
815 	struct task_struct *task;	/* lookup and create consistency */
816 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
817 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
818 	nid_t i_xattr_nid;		/* node id that contains xattrs */
819 	loff_t	last_disk_size;		/* lastly written file size */
820 	spinlock_t i_size_lock;		/* protect last_disk_size */
821 
822 #ifdef CONFIG_QUOTA
823 	struct dquot *i_dquot[MAXQUOTAS];
824 
825 	/* quota space reservation, managed internally by quota code */
826 	qsize_t i_reserved_quota;
827 #endif
828 	struct list_head dirty_list;	/* dirty list for dirs and files */
829 	struct list_head gdirty_list;	/* linked in global dirty list */
830 	struct task_struct *atomic_write_task;	/* store atomic write task */
831 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
832 					/* cached extent_tree entry */
833 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
834 
835 	/* avoid racing between foreground op and gc */
836 	struct f2fs_rwsem i_gc_rwsem[2];
837 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
838 
839 	int i_extra_isize;		/* size of extra space located in i_addr */
840 	kprojid_t i_projid;		/* id for project quota */
841 	int i_inline_xattr_size;	/* inline xattr size */
842 	struct timespec64 i_crtime;	/* inode creation time */
843 	struct timespec64 i_disk_time[3];/* inode disk times */
844 
845 	/* for file compress */
846 	atomic_t i_compr_blocks;		/* # of compressed blocks */
847 	unsigned char i_compress_algorithm;	/* algorithm type */
848 	unsigned char i_log_cluster_size;	/* log of cluster size */
849 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
850 	unsigned char i_compress_flag;		/* compress flag */
851 	unsigned int i_cluster_size;		/* cluster size */
852 
853 	unsigned int atomic_write_cnt;
854 	loff_t original_i_size;		/* original i_size before atomic write */
855 };
856 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)857 static inline void get_read_extent_info(struct extent_info *ext,
858 					struct f2fs_extent *i_ext)
859 {
860 	ext->fofs = le32_to_cpu(i_ext->fofs);
861 	ext->blk = le32_to_cpu(i_ext->blk);
862 	ext->len = le32_to_cpu(i_ext->len);
863 }
864 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)865 static inline void set_raw_read_extent(struct extent_info *ext,
866 					struct f2fs_extent *i_ext)
867 {
868 	i_ext->fofs = cpu_to_le32(ext->fofs);
869 	i_ext->blk = cpu_to_le32(ext->blk);
870 	i_ext->len = cpu_to_le32(ext->len);
871 }
872 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)873 static inline bool __is_discard_mergeable(struct discard_info *back,
874 			struct discard_info *front, unsigned int max_len)
875 {
876 	return (back->lstart + back->len == front->lstart) &&
877 		(back->len + front->len <= max_len);
878 }
879 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)880 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
881 			struct discard_info *back, unsigned int max_len)
882 {
883 	return __is_discard_mergeable(back, cur, max_len);
884 }
885 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)886 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
887 			struct discard_info *front, unsigned int max_len)
888 {
889 	return __is_discard_mergeable(cur, front, max_len);
890 }
891 
892 /*
893  * For free nid management
894  */
895 enum nid_state {
896 	FREE_NID,		/* newly added to free nid list */
897 	PREALLOC_NID,		/* it is preallocated */
898 	MAX_NID_STATE,
899 };
900 
901 enum nat_state {
902 	TOTAL_NAT,
903 	DIRTY_NAT,
904 	RECLAIMABLE_NAT,
905 	MAX_NAT_STATE,
906 };
907 
908 struct f2fs_nm_info {
909 	block_t nat_blkaddr;		/* base disk address of NAT */
910 	nid_t max_nid;			/* maximum possible node ids */
911 	nid_t available_nids;		/* # of available node ids */
912 	nid_t next_scan_nid;		/* the next nid to be scanned */
913 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
914 	unsigned int ram_thresh;	/* control the memory footprint */
915 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
916 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
917 
918 	/* NAT cache management */
919 	struct radix_tree_root nat_root;/* root of the nat entry cache */
920 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
921 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
922 	struct list_head nat_entries;	/* cached nat entry list (clean) */
923 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
924 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
925 	unsigned int nat_blocks;	/* # of nat blocks */
926 
927 	/* free node ids management */
928 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
929 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
930 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
931 	spinlock_t nid_list_lock;	/* protect nid lists ops */
932 	struct mutex build_lock;	/* lock for build free nids */
933 	unsigned char **free_nid_bitmap;
934 	unsigned char *nat_block_bitmap;
935 	unsigned short *free_nid_count;	/* free nid count of NAT block */
936 
937 	/* for checkpoint */
938 	char *nat_bitmap;		/* NAT bitmap pointer */
939 
940 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
941 	unsigned char *nat_bits;	/* NAT bits blocks */
942 	unsigned char *full_nat_bits;	/* full NAT pages */
943 	unsigned char *empty_nat_bits;	/* empty NAT pages */
944 #ifdef CONFIG_F2FS_CHECK_FS
945 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
946 #endif
947 	int bitmap_size;		/* bitmap size */
948 };
949 
950 /*
951  * this structure is used as one of function parameters.
952  * all the information are dedicated to a given direct node block determined
953  * by the data offset in a file.
954  */
955 struct dnode_of_data {
956 	struct inode *inode;		/* vfs inode pointer */
957 	struct page *inode_page;	/* its inode page, NULL is possible */
958 	struct page *node_page;		/* cached direct node page */
959 	nid_t nid;			/* node id of the direct node block */
960 	unsigned int ofs_in_node;	/* data offset in the node page */
961 	bool inode_page_locked;		/* inode page is locked or not */
962 	bool node_changed;		/* is node block changed */
963 	char cur_level;			/* level of hole node page */
964 	char max_level;			/* level of current page located */
965 	block_t	data_blkaddr;		/* block address of the node block */
966 };
967 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)968 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
969 		struct page *ipage, struct page *npage, nid_t nid)
970 {
971 	memset(dn, 0, sizeof(*dn));
972 	dn->inode = inode;
973 	dn->inode_page = ipage;
974 	dn->node_page = npage;
975 	dn->nid = nid;
976 }
977 
978 /*
979  * For SIT manager
980  *
981  * By default, there are 6 active log areas across the whole main area.
982  * When considering hot and cold data separation to reduce cleaning overhead,
983  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
984  * respectively.
985  * In the current design, you should not change the numbers intentionally.
986  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
987  * logs individually according to the underlying devices. (default: 6)
988  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
989  * data and 8 for node logs.
990  */
991 #define	NR_CURSEG_DATA_TYPE	(3)
992 #define NR_CURSEG_NODE_TYPE	(3)
993 #define NR_CURSEG_INMEM_TYPE	(2)
994 #define NR_CURSEG_RO_TYPE	(2)
995 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
996 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
997 
998 enum {
999 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1000 	CURSEG_WARM_DATA,	/* data blocks */
1001 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1002 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1003 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1004 	CURSEG_COLD_NODE,	/* indirect node blocks */
1005 	NR_PERSISTENT_LOG,	/* number of persistent log */
1006 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1007 				/* pinned file that needs consecutive block address */
1008 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1009 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1010 };
1011 
1012 struct flush_cmd {
1013 	struct completion wait;
1014 	struct llist_node llnode;
1015 	nid_t ino;
1016 	int ret;
1017 };
1018 
1019 struct flush_cmd_control {
1020 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1021 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1022 	atomic_t issued_flush;			/* # of issued flushes */
1023 	atomic_t queued_flush;			/* # of queued flushes */
1024 	struct llist_head issue_list;		/* list for command issue */
1025 	struct llist_node *dispatch_list;	/* list for command dispatch */
1026 };
1027 
1028 struct f2fs_sm_info {
1029 	struct sit_info *sit_info;		/* whole segment information */
1030 	struct free_segmap_info *free_info;	/* free segment information */
1031 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1032 	struct curseg_info *curseg_array;	/* active segment information */
1033 
1034 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1035 
1036 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1037 	block_t main_blkaddr;		/* start block address of main area */
1038 	block_t ssa_blkaddr;		/* start block address of SSA area */
1039 
1040 	unsigned int segment_count;	/* total # of segments */
1041 	unsigned int main_segments;	/* # of segments in main area */
1042 	unsigned int reserved_segments;	/* # of reserved segments */
1043 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1044 	unsigned int ovp_segments;	/* # of overprovision segments */
1045 
1046 	/* a threshold to reclaim prefree segments */
1047 	unsigned int rec_prefree_segments;
1048 
1049 	struct list_head sit_entry_set;	/* sit entry set list */
1050 
1051 	unsigned int ipu_policy;	/* in-place-update policy */
1052 	unsigned int min_ipu_util;	/* in-place-update threshold */
1053 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1054 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1055 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1056 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1057 
1058 	/* for flush command control */
1059 	struct flush_cmd_control *fcc_info;
1060 
1061 	/* for discard command control */
1062 	struct discard_cmd_control *dcc_info;
1063 };
1064 
1065 /*
1066  * For superblock
1067  */
1068 /*
1069  * COUNT_TYPE for monitoring
1070  *
1071  * f2fs monitors the number of several block types such as on-writeback,
1072  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1073  */
1074 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1075 enum count_type {
1076 	F2FS_DIRTY_DENTS,
1077 	F2FS_DIRTY_DATA,
1078 	F2FS_DIRTY_QDATA,
1079 	F2FS_DIRTY_NODES,
1080 	F2FS_DIRTY_META,
1081 	F2FS_DIRTY_IMETA,
1082 	F2FS_WB_CP_DATA,
1083 	F2FS_WB_DATA,
1084 	F2FS_RD_DATA,
1085 	F2FS_RD_NODE,
1086 	F2FS_RD_META,
1087 	F2FS_DIO_WRITE,
1088 	F2FS_DIO_READ,
1089 	NR_COUNT_TYPE,
1090 };
1091 
1092 /*
1093  * The below are the page types of bios used in submit_bio().
1094  * The available types are:
1095  * DATA			User data pages. It operates as async mode.
1096  * NODE			Node pages. It operates as async mode.
1097  * META			FS metadata pages such as SIT, NAT, CP.
1098  * NR_PAGE_TYPE		The number of page types.
1099  * META_FLUSH		Make sure the previous pages are written
1100  *			with waiting the bio's completion
1101  * ...			Only can be used with META.
1102  */
1103 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1104 enum page_type {
1105 	DATA = 0,
1106 	NODE = 1,	/* should not change this */
1107 	META,
1108 	NR_PAGE_TYPE,
1109 	META_FLUSH,
1110 	IPU,		/* the below types are used by tracepoints only. */
1111 	OPU,
1112 };
1113 
1114 enum temp_type {
1115 	HOT = 0,	/* must be zero for meta bio */
1116 	WARM,
1117 	COLD,
1118 	NR_TEMP_TYPE,
1119 };
1120 
1121 enum need_lock_type {
1122 	LOCK_REQ = 0,
1123 	LOCK_DONE,
1124 	LOCK_RETRY,
1125 };
1126 
1127 enum cp_reason_type {
1128 	CP_NO_NEEDED,
1129 	CP_NON_REGULAR,
1130 	CP_COMPRESSED,
1131 	CP_HARDLINK,
1132 	CP_SB_NEED_CP,
1133 	CP_WRONG_PINO,
1134 	CP_NO_SPC_ROLL,
1135 	CP_NODE_NEED_CP,
1136 	CP_FASTBOOT_MODE,
1137 	CP_SPEC_LOG_NUM,
1138 	CP_RECOVER_DIR,
1139 };
1140 
1141 enum iostat_type {
1142 	/* WRITE IO */
1143 	APP_DIRECT_IO,			/* app direct write IOs */
1144 	APP_BUFFERED_IO,		/* app buffered write IOs */
1145 	APP_WRITE_IO,			/* app write IOs */
1146 	APP_MAPPED_IO,			/* app mapped IOs */
1147 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1148 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1149 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1150 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1151 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1152 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1153 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1154 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1155 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1156 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1157 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1158 
1159 	/* READ IO */
1160 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1161 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1162 	APP_READ_IO,			/* app read IOs */
1163 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1164 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1165 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1166 	FS_DATA_READ_IO,		/* data read IOs */
1167 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1168 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1169 	FS_NODE_READ_IO,		/* node read IOs */
1170 	FS_META_READ_IO,		/* meta read IOs */
1171 
1172 	/* other */
1173 	FS_DISCARD_IO,			/* discard */
1174 	FS_FLUSH_IO,			/* flush */
1175 	NR_IO_TYPE,
1176 };
1177 
1178 struct f2fs_io_info {
1179 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1180 	nid_t ino;		/* inode number */
1181 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1182 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1183 	int op;			/* contains REQ_OP_ */
1184 	int op_flags;		/* req_flag_bits */
1185 	block_t new_blkaddr;	/* new block address to be written */
1186 	block_t old_blkaddr;	/* old block address before Cow */
1187 	struct page *page;	/* page to be written */
1188 	struct page *encrypted_page;	/* encrypted page */
1189 	struct page *compressed_page;	/* compressed page */
1190 	struct list_head list;		/* serialize IOs */
1191 	unsigned int compr_blocks;	/* # of compressed block addresses */
1192 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1193 	unsigned int version:8;		/* version of the node */
1194 	unsigned int submitted:1;	/* indicate IO submission */
1195 	unsigned int in_list:1;		/* indicate fio is in io_list */
1196 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1197 	unsigned int retry:1;		/* need to reallocate block address */
1198 	unsigned int encrypted:1;	/* indicate file is encrypted */
1199 	unsigned int post_read:1;	/* require post read */
1200 	enum iostat_type io_type;	/* io type */
1201 	struct writeback_control *io_wbc; /* writeback control */
1202 	struct bio **bio;		/* bio for ipu */
1203 	sector_t *last_block;		/* last block number in bio */
1204 };
1205 
1206 struct bio_entry {
1207 	struct bio *bio;
1208 	struct list_head list;
1209 };
1210 
1211 #define is_read_io(rw) ((rw) == READ)
1212 struct f2fs_bio_info {
1213 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1214 	struct bio *bio;		/* bios to merge */
1215 	sector_t last_block_in_bio;	/* last block number */
1216 	struct f2fs_io_info fio;	/* store buffered io info. */
1217 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1218 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1219 	struct list_head io_list;	/* track fios */
1220 	struct list_head bio_list;	/* bio entry list head */
1221 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1222 };
1223 
1224 #define FDEV(i)				(sbi->devs[i])
1225 #define RDEV(i)				(raw_super->devs[i])
1226 struct f2fs_dev_info {
1227 	struct block_device *bdev;
1228 	char path[MAX_PATH_LEN];
1229 	unsigned int total_segments;
1230 	block_t start_blk;
1231 	block_t end_blk;
1232 #ifdef CONFIG_BLK_DEV_ZONED
1233 	unsigned int nr_blkz;		/* Total number of zones */
1234 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1235 #endif
1236 };
1237 
1238 enum inode_type {
1239 	DIR_INODE,			/* for dirty dir inode */
1240 	FILE_INODE,			/* for dirty regular/symlink inode */
1241 	DIRTY_META,			/* for all dirtied inode metadata */
1242 	NR_INODE_TYPE,
1243 };
1244 
1245 /* for inner inode cache management */
1246 struct inode_management {
1247 	struct radix_tree_root ino_root;	/* ino entry array */
1248 	spinlock_t ino_lock;			/* for ino entry lock */
1249 	struct list_head ino_list;		/* inode list head */
1250 	unsigned long ino_num;			/* number of entries */
1251 };
1252 
1253 /* for GC_AT */
1254 struct atgc_management {
1255 	bool atgc_enabled;			/* ATGC is enabled or not */
1256 	struct rb_root_cached root;		/* root of victim rb-tree */
1257 	struct list_head victim_list;		/* linked with all victim entries */
1258 	unsigned int victim_count;		/* victim count in rb-tree */
1259 	unsigned int candidate_ratio;		/* candidate ratio */
1260 	unsigned int max_candidate_count;	/* max candidate count */
1261 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1262 	unsigned long long age_threshold;	/* age threshold */
1263 };
1264 
1265 struct f2fs_gc_control {
1266 	unsigned int victim_segno;	/* target victim segment number */
1267 	int init_gc_type;		/* FG_GC or BG_GC */
1268 	bool no_bg_gc;			/* check the space and stop bg_gc */
1269 	bool should_migrate_blocks;	/* should migrate blocks */
1270 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1271 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1272 };
1273 
1274 /*
1275  * For s_flag in struct f2fs_sb_info
1276  * Modification on enum should be synchronized with s_flag array
1277  */
1278 enum {
1279 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1280 	SBI_IS_CLOSE,				/* specify unmounting */
1281 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1282 	SBI_POR_DOING,				/* recovery is doing or not */
1283 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1284 	SBI_NEED_CP,				/* need to checkpoint */
1285 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1286 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1287 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1288 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1289 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1290 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1291 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1292 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1293 	SBI_IS_FREEZING,			/* freezefs is in process */
1294 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1295 	MAX_SBI_FLAG,
1296 };
1297 
1298 enum {
1299 	CP_TIME,
1300 	REQ_TIME,
1301 	DISCARD_TIME,
1302 	GC_TIME,
1303 	DISABLE_TIME,
1304 	UMOUNT_DISCARD_TIMEOUT,
1305 	MAX_TIME,
1306 };
1307 
1308 /* Note that you need to keep synchronization with this gc_mode_names array */
1309 enum {
1310 	GC_NORMAL,
1311 	GC_IDLE_CB,
1312 	GC_IDLE_GREEDY,
1313 	GC_IDLE_AT,
1314 	GC_URGENT_HIGH,
1315 	GC_URGENT_LOW,
1316 	GC_URGENT_MID,
1317 	MAX_GC_MODE,
1318 };
1319 
1320 enum {
1321 	BGGC_MODE_ON,		/* background gc is on */
1322 	BGGC_MODE_OFF,		/* background gc is off */
1323 	BGGC_MODE_SYNC,		/*
1324 				 * background gc is on, migrating blocks
1325 				 * like foreground gc
1326 				 */
1327 };
1328 
1329 enum {
1330 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1331 	FS_MODE_LFS,			/* use lfs allocation only */
1332 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1333 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1334 };
1335 
1336 enum {
1337 	ALLOC_MODE_DEFAULT,	/* stay default */
1338 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1339 };
1340 
1341 enum fsync_mode {
1342 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1343 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1344 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1345 };
1346 
1347 enum {
1348 	COMPR_MODE_FS,		/*
1349 				 * automatically compress compression
1350 				 * enabled files
1351 				 */
1352 	COMPR_MODE_USER,	/*
1353 				 * automatical compression is disabled.
1354 				 * user can control the file compression
1355 				 * using ioctls
1356 				 */
1357 };
1358 
1359 enum {
1360 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1361 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1362 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1363 };
1364 
1365 enum {
1366 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1367 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1368 };
1369 
1370 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1371 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1372 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1373 
1374 /*
1375  * Layout of f2fs page.private:
1376  *
1377  * Layout A: lowest bit should be 1
1378  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1379  * bit 0	PAGE_PRIVATE_NOT_POINTER
1380  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1381  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1382  * bit 3	PAGE_PRIVATE_INLINE_INODE
1383  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1384  * bit 5-	f2fs private data
1385  *
1386  * Layout B: lowest bit should be 0
1387  * page.private is a wrapped pointer.
1388  */
1389 enum {
1390 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1391 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1392 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1393 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1394 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1395 	PAGE_PRIVATE_MAX
1396 };
1397 
1398 /* For compression */
1399 enum compress_algorithm_type {
1400 	COMPRESS_LZO,
1401 	COMPRESS_LZ4,
1402 	COMPRESS_ZSTD,
1403 	COMPRESS_LZORLE,
1404 	COMPRESS_MAX,
1405 };
1406 
1407 enum compress_flag {
1408 	COMPRESS_CHKSUM,
1409 	COMPRESS_MAX_FLAG,
1410 };
1411 
1412 #define	COMPRESS_WATERMARK			20
1413 #define	COMPRESS_PERCENT			20
1414 
1415 #define COMPRESS_DATA_RESERVED_SIZE		4
1416 struct compress_data {
1417 	__le32 clen;			/* compressed data size */
1418 	__le32 chksum;			/* compressed data chksum */
1419 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1420 	u8 cdata[];			/* compressed data */
1421 };
1422 
1423 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1424 
1425 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1426 
1427 #define	COMPRESS_LEVEL_OFFSET	8
1428 
1429 /* compress context */
1430 struct compress_ctx {
1431 	struct inode *inode;		/* inode the context belong to */
1432 	pgoff_t cluster_idx;		/* cluster index number */
1433 	unsigned int cluster_size;	/* page count in cluster */
1434 	unsigned int log_cluster_size;	/* log of cluster size */
1435 	struct page **rpages;		/* pages store raw data in cluster */
1436 	unsigned int nr_rpages;		/* total page number in rpages */
1437 	struct page **cpages;		/* pages store compressed data in cluster */
1438 	unsigned int nr_cpages;		/* total page number in cpages */
1439 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1440 	void *rbuf;			/* virtual mapped address on rpages */
1441 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1442 	size_t rlen;			/* valid data length in rbuf */
1443 	size_t clen;			/* valid data length in cbuf */
1444 	void *private;			/* payload buffer for specified compression algorithm */
1445 	void *private2;			/* extra payload buffer */
1446 };
1447 
1448 /* compress context for write IO path */
1449 struct compress_io_ctx {
1450 	u32 magic;			/* magic number to indicate page is compressed */
1451 	struct inode *inode;		/* inode the context belong to */
1452 	struct page **rpages;		/* pages store raw data in cluster */
1453 	unsigned int nr_rpages;		/* total page number in rpages */
1454 	atomic_t pending_pages;		/* in-flight compressed page count */
1455 };
1456 
1457 /* Context for decompressing one cluster on the read IO path */
1458 struct decompress_io_ctx {
1459 	u32 magic;			/* magic number to indicate page is compressed */
1460 	struct inode *inode;		/* inode the context belong to */
1461 	pgoff_t cluster_idx;		/* cluster index number */
1462 	unsigned int cluster_size;	/* page count in cluster */
1463 	unsigned int log_cluster_size;	/* log of cluster size */
1464 	struct page **rpages;		/* pages store raw data in cluster */
1465 	unsigned int nr_rpages;		/* total page number in rpages */
1466 	struct page **cpages;		/* pages store compressed data in cluster */
1467 	unsigned int nr_cpages;		/* total page number in cpages */
1468 	struct page **tpages;		/* temp pages to pad holes in cluster */
1469 	void *rbuf;			/* virtual mapped address on rpages */
1470 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1471 	size_t rlen;			/* valid data length in rbuf */
1472 	size_t clen;			/* valid data length in cbuf */
1473 
1474 	/*
1475 	 * The number of compressed pages remaining to be read in this cluster.
1476 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1477 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1478 	 * is decompressed (or an error is reported).
1479 	 *
1480 	 * If an error occurs before all the pages have been submitted for I/O,
1481 	 * then this will never reach 0.  In this case the I/O submitter is
1482 	 * responsible for calling f2fs_decompress_end_io() instead.
1483 	 */
1484 	atomic_t remaining_pages;
1485 
1486 	/*
1487 	 * Number of references to this decompress_io_ctx.
1488 	 *
1489 	 * One reference is held for I/O completion.  This reference is dropped
1490 	 * after the pagecache pages are updated and unlocked -- either after
1491 	 * decompression (and verity if enabled), or after an error.
1492 	 *
1493 	 * In addition, each compressed page holds a reference while it is in a
1494 	 * bio.  These references are necessary prevent compressed pages from
1495 	 * being freed while they are still in a bio.
1496 	 */
1497 	refcount_t refcnt;
1498 
1499 	bool failed;			/* IO error occurred before decompression? */
1500 	bool need_verity;		/* need fs-verity verification after decompression? */
1501 	void *private;			/* payload buffer for specified decompression algorithm */
1502 	void *private2;			/* extra payload buffer */
1503 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1504 	struct work_struct free_work;	/* work for late free this structure itself */
1505 };
1506 
1507 #define NULL_CLUSTER			((unsigned int)(~0))
1508 #define MIN_COMPRESS_LOG_SIZE		2
1509 #define MAX_COMPRESS_LOG_SIZE		8
1510 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1511 
1512 struct f2fs_sb_info {
1513 	struct super_block *sb;			/* pointer to VFS super block */
1514 	struct proc_dir_entry *s_proc;		/* proc entry */
1515 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1516 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1517 	int valid_super_block;			/* valid super block no */
1518 	unsigned long s_flag;				/* flags for sbi */
1519 	struct mutex writepages;		/* mutex for writepages() */
1520 
1521 #ifdef CONFIG_BLK_DEV_ZONED
1522 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1523 #endif
1524 
1525 	/* for node-related operations */
1526 	struct f2fs_nm_info *nm_info;		/* node manager */
1527 	struct inode *node_inode;		/* cache node blocks */
1528 
1529 	/* for segment-related operations */
1530 	struct f2fs_sm_info *sm_info;		/* segment manager */
1531 
1532 	/* for bio operations */
1533 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1534 	/* keep migration IO order for LFS mode */
1535 	struct f2fs_rwsem io_order_lock;
1536 	mempool_t *write_io_dummy;		/* Dummy pages */
1537 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1538 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1539 
1540 	/* for checkpoint */
1541 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1542 	int cur_cp_pack;			/* remain current cp pack */
1543 	spinlock_t cp_lock;			/* for flag in ckpt */
1544 	struct inode *meta_inode;		/* cache meta blocks */
1545 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1546 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1547 	struct f2fs_rwsem node_write;		/* locking node writes */
1548 	struct f2fs_rwsem node_change;	/* locking node change */
1549 	wait_queue_head_t cp_wait;
1550 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1551 	long interval_time[MAX_TIME];		/* to store thresholds */
1552 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1553 
1554 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1555 
1556 	spinlock_t fsync_node_lock;		/* for node entry lock */
1557 	struct list_head fsync_node_list;	/* node list head */
1558 	unsigned int fsync_seg_id;		/* sequence id */
1559 	unsigned int fsync_node_num;		/* number of node entries */
1560 
1561 	/* for orphan inode, use 0'th array */
1562 	unsigned int max_orphans;		/* max orphan inodes */
1563 
1564 	/* for inode management */
1565 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1566 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1567 	struct mutex flush_lock;		/* for flush exclusion */
1568 
1569 	/* for extent tree cache */
1570 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1571 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1572 
1573 	/* The threshold used for hot and warm data seperation*/
1574 	unsigned int hot_data_age_threshold;
1575 	unsigned int warm_data_age_threshold;
1576 	unsigned int last_age_weight;
1577 
1578 	/* basic filesystem units */
1579 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1580 	unsigned int log_blocksize;		/* log2 block size */
1581 	unsigned int blocksize;			/* block size */
1582 	unsigned int root_ino_num;		/* root inode number*/
1583 	unsigned int node_ino_num;		/* node inode number*/
1584 	unsigned int meta_ino_num;		/* meta inode number*/
1585 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1586 	unsigned int blocks_per_seg;		/* blocks per segment */
1587 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1588 	unsigned int segs_per_sec;		/* segments per section */
1589 	unsigned int secs_per_zone;		/* sections per zone */
1590 	unsigned int total_sections;		/* total section count */
1591 	unsigned int total_node_count;		/* total node block count */
1592 	unsigned int total_valid_node_count;	/* valid node block count */
1593 	int dir_level;				/* directory level */
1594 	bool readdir_ra;			/* readahead inode in readdir */
1595 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1596 
1597 	block_t user_block_count;		/* # of user blocks */
1598 	block_t total_valid_block_count;	/* # of valid blocks */
1599 	block_t discard_blks;			/* discard command candidats */
1600 	block_t last_valid_block_count;		/* for recovery */
1601 	block_t reserved_blocks;		/* configurable reserved blocks */
1602 	block_t current_reserved_blocks;	/* current reserved blocks */
1603 
1604 	/* Additional tracking for no checkpoint mode */
1605 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1606 
1607 	unsigned int nquota_files;		/* # of quota sysfile */
1608 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1609 
1610 	/* # of pages, see count_type */
1611 	atomic_t nr_pages[NR_COUNT_TYPE];
1612 	/* # of allocated blocks */
1613 	struct percpu_counter alloc_valid_block_count;
1614 	/* # of node block writes as roll forward recovery */
1615 	struct percpu_counter rf_node_block_count;
1616 
1617 	/* writeback control */
1618 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1619 
1620 	/* valid inode count */
1621 	struct percpu_counter total_valid_inode_count;
1622 
1623 	struct f2fs_mount_info mount_opt;	/* mount options */
1624 
1625 	/* for cleaning operations */
1626 	struct f2fs_rwsem gc_lock;		/*
1627 						 * semaphore for GC, avoid
1628 						 * race between GC and GC or CP
1629 						 */
1630 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1631 	struct atgc_management am;		/* atgc management */
1632 	unsigned int cur_victim_sec;		/* current victim section num */
1633 	unsigned int gc_mode;			/* current GC state */
1634 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1635 	spinlock_t gc_remaining_trials_lock;
1636 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1637 	unsigned int gc_remaining_trials;
1638 
1639 	/* for skip statistic */
1640 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1641 
1642 	/* threshold for gc trials on pinned files */
1643 	u64 gc_pin_file_threshold;
1644 	struct f2fs_rwsem pin_sem;
1645 
1646 	/* maximum # of trials to find a victim segment for SSR and GC */
1647 	unsigned int max_victim_search;
1648 	/* migration granularity of garbage collection, unit: segment */
1649 	unsigned int migration_granularity;
1650 
1651 	/*
1652 	 * for stat information.
1653 	 * one is for the LFS mode, and the other is for the SSR mode.
1654 	 */
1655 #ifdef CONFIG_F2FS_STAT_FS
1656 	struct f2fs_stat_info *stat_info;	/* FS status information */
1657 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1658 	unsigned int segment_count[2];		/* # of allocated segments */
1659 	unsigned int block_count[2];		/* # of allocated blocks */
1660 	atomic_t inplace_count;		/* # of inplace update */
1661 	/* # of lookup extent cache */
1662 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1663 	/* # of hit rbtree extent node */
1664 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1665 	/* # of hit cached extent node */
1666 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1667 	/* # of hit largest extent node in read extent cache */
1668 	atomic64_t read_hit_largest;
1669 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1670 	atomic_t inline_inode;			/* # of inline_data inodes */
1671 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1672 	atomic_t compr_inode;			/* # of compressed inodes */
1673 	atomic64_t compr_blocks;		/* # of compressed blocks */
1674 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1675 	atomic_t atomic_files;			/* # of opened atomic file */
1676 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1677 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1678 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1679 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1680 #endif
1681 	spinlock_t stat_lock;			/* lock for stat operations */
1682 
1683 	/* to attach REQ_META|REQ_FUA flags */
1684 	unsigned int data_io_flag;
1685 	unsigned int node_io_flag;
1686 
1687 	/* For sysfs support */
1688 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1689 	struct completion s_kobj_unregister;
1690 
1691 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1692 	struct completion s_stat_kobj_unregister;
1693 
1694 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1695 	struct completion s_feature_list_kobj_unregister;
1696 
1697 	/* For shrinker support */
1698 	struct list_head s_list;
1699 	struct mutex umount_mutex;
1700 	unsigned int shrinker_run_no;
1701 
1702 	/* For multi devices */
1703 	int s_ndevs;				/* number of devices */
1704 	struct f2fs_dev_info *devs;		/* for device list */
1705 	unsigned int dirty_device;		/* for checkpoint data flush */
1706 	spinlock_t dev_lock;			/* protect dirty_device */
1707 	bool aligned_blksize;			/* all devices has the same logical blksize */
1708 
1709 	/* For write statistics */
1710 	u64 sectors_written_start;
1711 	u64 kbytes_written;
1712 
1713 	/* Reference to checksum algorithm driver via cryptoapi */
1714 	struct crypto_shash *s_chksum_driver;
1715 
1716 	/* Precomputed FS UUID checksum for seeding other checksums */
1717 	__u32 s_chksum_seed;
1718 
1719 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1720 
1721 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1722 	spinlock_t error_lock;			/* protect errors array */
1723 	bool error_dirty;			/* errors of sb is dirty */
1724 
1725 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1726 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1727 
1728 	/* For reclaimed segs statistics per each GC mode */
1729 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1730 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1731 
1732 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1733 
1734 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1735 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1736 
1737 	/* For atomic write statistics */
1738 	atomic64_t current_atomic_write;
1739 	s64 peak_atomic_write;
1740 	u64 committed_atomic_block;
1741 	u64 revoked_atomic_block;
1742 
1743 #ifdef CONFIG_F2FS_FS_COMPRESSION
1744 	struct kmem_cache *page_array_slab;	/* page array entry */
1745 	unsigned int page_array_slab_size;	/* default page array slab size */
1746 
1747 	/* For runtime compression statistics */
1748 	u64 compr_written_block;
1749 	u64 compr_saved_block;
1750 	u32 compr_new_inode;
1751 
1752 	/* For compressed block cache */
1753 	struct inode *compress_inode;		/* cache compressed blocks */
1754 	unsigned int compress_percent;		/* cache page percentage */
1755 	unsigned int compress_watermark;	/* cache page watermark */
1756 	atomic_t compress_page_hit;		/* cache hit count */
1757 #endif
1758 
1759 #ifdef CONFIG_F2FS_IOSTAT
1760 	/* For app/fs IO statistics */
1761 	spinlock_t iostat_lock;
1762 	unsigned long long iostat_count[NR_IO_TYPE];
1763 	unsigned long long iostat_bytes[NR_IO_TYPE];
1764 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1765 	bool iostat_enable;
1766 	unsigned long iostat_next_period;
1767 	unsigned int iostat_period_ms;
1768 
1769 	/* For io latency related statistics info in one iostat period */
1770 	spinlock_t iostat_lat_lock;
1771 	struct iostat_lat_info *iostat_io_lat;
1772 #endif
1773 };
1774 
1775 #ifdef CONFIG_F2FS_FAULT_INJECTION
1776 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1777 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1778 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1779 				const char *func, const char *parent_func)
1780 {
1781 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1782 
1783 	if (!ffi->inject_rate)
1784 		return false;
1785 
1786 	if (!IS_FAULT_SET(ffi, type))
1787 		return false;
1788 
1789 	atomic_inc(&ffi->inject_ops);
1790 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1791 		atomic_set(&ffi->inject_ops, 0);
1792 		printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1793 			KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1794 			func, parent_func);
1795 		return true;
1796 	}
1797 	return false;
1798 }
1799 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1800 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1801 {
1802 	return false;
1803 }
1804 #endif
1805 
1806 /*
1807  * Test if the mounted volume is a multi-device volume.
1808  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1809  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1810  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1811  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1812 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1813 {
1814 	return sbi->s_ndevs > 1;
1815 }
1816 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1817 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1818 {
1819 	unsigned long now = jiffies;
1820 
1821 	sbi->last_time[type] = now;
1822 
1823 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1824 	if (type == REQ_TIME) {
1825 		sbi->last_time[DISCARD_TIME] = now;
1826 		sbi->last_time[GC_TIME] = now;
1827 	}
1828 }
1829 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1830 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1831 {
1832 	unsigned long interval = sbi->interval_time[type] * HZ;
1833 
1834 	return time_after(jiffies, sbi->last_time[type] + interval);
1835 }
1836 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1837 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1838 						int type)
1839 {
1840 	unsigned long interval = sbi->interval_time[type] * HZ;
1841 	unsigned int wait_ms = 0;
1842 	long delta;
1843 
1844 	delta = (sbi->last_time[type] + interval) - jiffies;
1845 	if (delta > 0)
1846 		wait_ms = jiffies_to_msecs(delta);
1847 
1848 	return wait_ms;
1849 }
1850 
1851 /*
1852  * Inline functions
1853  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1854 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1855 			      const void *address, unsigned int length)
1856 {
1857 	struct {
1858 		struct shash_desc shash;
1859 		char ctx[4];
1860 	} desc;
1861 	int err;
1862 
1863 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1864 
1865 	desc.shash.tfm = sbi->s_chksum_driver;
1866 	*(u32 *)desc.ctx = crc;
1867 
1868 	err = crypto_shash_update(&desc.shash, address, length);
1869 	BUG_ON(err);
1870 
1871 	return *(u32 *)desc.ctx;
1872 }
1873 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1874 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1875 			   unsigned int length)
1876 {
1877 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1878 }
1879 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1880 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1881 				  void *buf, size_t buf_size)
1882 {
1883 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1884 }
1885 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1886 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1887 			      const void *address, unsigned int length)
1888 {
1889 	return __f2fs_crc32(sbi, crc, address, length);
1890 }
1891 
F2FS_I(struct inode * inode)1892 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1893 {
1894 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1895 }
1896 
F2FS_SB(struct super_block * sb)1897 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1898 {
1899 	return sb->s_fs_info;
1900 }
1901 
F2FS_I_SB(struct inode * inode)1902 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1903 {
1904 	return F2FS_SB(inode->i_sb);
1905 }
1906 
F2FS_M_SB(struct address_space * mapping)1907 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1908 {
1909 	return F2FS_I_SB(mapping->host);
1910 }
1911 
F2FS_P_SB(struct page * page)1912 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1913 {
1914 	return F2FS_M_SB(page_file_mapping(page));
1915 }
1916 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1917 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1918 {
1919 	return (struct f2fs_super_block *)(sbi->raw_super);
1920 }
1921 
F2FS_CKPT(struct f2fs_sb_info * sbi)1922 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1923 {
1924 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1925 }
1926 
F2FS_NODE(struct page * page)1927 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1928 {
1929 	return (struct f2fs_node *)page_address(page);
1930 }
1931 
F2FS_INODE(struct page * page)1932 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1933 {
1934 	return &((struct f2fs_node *)page_address(page))->i;
1935 }
1936 
NM_I(struct f2fs_sb_info * sbi)1937 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1938 {
1939 	return (struct f2fs_nm_info *)(sbi->nm_info);
1940 }
1941 
SM_I(struct f2fs_sb_info * sbi)1942 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1943 {
1944 	return (struct f2fs_sm_info *)(sbi->sm_info);
1945 }
1946 
SIT_I(struct f2fs_sb_info * sbi)1947 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1948 {
1949 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1950 }
1951 
FREE_I(struct f2fs_sb_info * sbi)1952 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1953 {
1954 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1955 }
1956 
DIRTY_I(struct f2fs_sb_info * sbi)1957 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1958 {
1959 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1960 }
1961 
META_MAPPING(struct f2fs_sb_info * sbi)1962 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1963 {
1964 	return sbi->meta_inode->i_mapping;
1965 }
1966 
NODE_MAPPING(struct f2fs_sb_info * sbi)1967 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1968 {
1969 	return sbi->node_inode->i_mapping;
1970 }
1971 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1972 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1973 {
1974 	return test_bit(type, &sbi->s_flag);
1975 }
1976 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1977 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1978 {
1979 	set_bit(type, &sbi->s_flag);
1980 }
1981 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1982 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1983 {
1984 	clear_bit(type, &sbi->s_flag);
1985 }
1986 
cur_cp_version(struct f2fs_checkpoint * cp)1987 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1988 {
1989 	return le64_to_cpu(cp->checkpoint_ver);
1990 }
1991 
f2fs_qf_ino(struct super_block * sb,int type)1992 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1993 {
1994 	if (type < F2FS_MAX_QUOTAS)
1995 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1996 	return 0;
1997 }
1998 
cur_cp_crc(struct f2fs_checkpoint * cp)1999 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2000 {
2001 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2002 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2003 }
2004 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2005 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2006 {
2007 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2008 
2009 	return ckpt_flags & f;
2010 }
2011 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2012 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2013 {
2014 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2015 }
2016 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2017 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2018 {
2019 	unsigned int ckpt_flags;
2020 
2021 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2022 	ckpt_flags |= f;
2023 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2024 }
2025 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2026 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2027 {
2028 	unsigned long flags;
2029 
2030 	spin_lock_irqsave(&sbi->cp_lock, flags);
2031 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2032 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2033 }
2034 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2035 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2036 {
2037 	unsigned int ckpt_flags;
2038 
2039 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2040 	ckpt_flags &= (~f);
2041 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2042 }
2043 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2044 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2045 {
2046 	unsigned long flags;
2047 
2048 	spin_lock_irqsave(&sbi->cp_lock, flags);
2049 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2050 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2051 }
2052 
2053 #define init_f2fs_rwsem(sem)					\
2054 do {								\
2055 	static struct lock_class_key __key;			\
2056 								\
2057 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2058 } while (0)
2059 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2060 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2061 		const char *sem_name, struct lock_class_key *key)
2062 {
2063 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2064 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2065 	init_waitqueue_head(&sem->read_waiters);
2066 #endif
2067 }
2068 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2069 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2070 {
2071 	return rwsem_is_locked(&sem->internal_rwsem);
2072 }
2073 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2074 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2075 {
2076 	return rwsem_is_contended(&sem->internal_rwsem);
2077 }
2078 
f2fs_down_read(struct f2fs_rwsem * sem)2079 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2080 {
2081 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2082 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2083 #else
2084 	down_read(&sem->internal_rwsem);
2085 #endif
2086 }
2087 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2088 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2089 {
2090 	return down_read_trylock(&sem->internal_rwsem);
2091 }
2092 
2093 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2094 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2095 {
2096 	down_read_nested(&sem->internal_rwsem, subclass);
2097 }
2098 #else
2099 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2100 #endif
2101 
f2fs_up_read(struct f2fs_rwsem * sem)2102 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2103 {
2104 	up_read(&sem->internal_rwsem);
2105 }
2106 
f2fs_down_write(struct f2fs_rwsem * sem)2107 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2108 {
2109 	down_write(&sem->internal_rwsem);
2110 }
2111 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2112 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2113 {
2114 	return down_write_trylock(&sem->internal_rwsem);
2115 }
2116 
f2fs_up_write(struct f2fs_rwsem * sem)2117 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2118 {
2119 	up_write(&sem->internal_rwsem);
2120 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2121 	wake_up_all(&sem->read_waiters);
2122 #endif
2123 }
2124 
f2fs_lock_op(struct f2fs_sb_info * sbi)2125 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2126 {
2127 	f2fs_down_read(&sbi->cp_rwsem);
2128 }
2129 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2130 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2131 {
2132 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2133 		return 0;
2134 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2135 }
2136 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2137 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2138 {
2139 	f2fs_up_read(&sbi->cp_rwsem);
2140 }
2141 
f2fs_lock_all(struct f2fs_sb_info * sbi)2142 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2143 {
2144 	f2fs_down_write(&sbi->cp_rwsem);
2145 }
2146 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2147 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2148 {
2149 	f2fs_up_write(&sbi->cp_rwsem);
2150 }
2151 
__get_cp_reason(struct f2fs_sb_info * sbi)2152 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2153 {
2154 	int reason = CP_SYNC;
2155 
2156 	if (test_opt(sbi, FASTBOOT))
2157 		reason = CP_FASTBOOT;
2158 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2159 		reason = CP_UMOUNT;
2160 	return reason;
2161 }
2162 
__remain_node_summaries(int reason)2163 static inline bool __remain_node_summaries(int reason)
2164 {
2165 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2166 }
2167 
__exist_node_summaries(struct f2fs_sb_info * sbi)2168 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2169 {
2170 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2171 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2172 }
2173 
2174 /*
2175  * Check whether the inode has blocks or not
2176  */
F2FS_HAS_BLOCKS(struct inode * inode)2177 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2178 {
2179 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2180 
2181 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2182 }
2183 
f2fs_has_xattr_block(unsigned int ofs)2184 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2185 {
2186 	return ofs == XATTR_NODE_OFFSET;
2187 }
2188 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2189 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2190 					struct inode *inode, bool cap)
2191 {
2192 	if (!inode)
2193 		return true;
2194 	if (!test_opt(sbi, RESERVE_ROOT))
2195 		return false;
2196 	if (IS_NOQUOTA(inode))
2197 		return true;
2198 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2199 		return true;
2200 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2201 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2202 		return true;
2203 	if (cap && capable(CAP_SYS_RESOURCE))
2204 		return true;
2205 	return false;
2206 }
2207 
2208 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2209 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2210 				 struct inode *inode, blkcnt_t *count)
2211 {
2212 	blkcnt_t diff = 0, release = 0;
2213 	block_t avail_user_block_count;
2214 	int ret;
2215 
2216 	ret = dquot_reserve_block(inode, *count);
2217 	if (ret)
2218 		return ret;
2219 
2220 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2221 		release = *count;
2222 		goto release_quota;
2223 	}
2224 
2225 	/*
2226 	 * let's increase this in prior to actual block count change in order
2227 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2228 	 */
2229 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2230 
2231 	spin_lock(&sbi->stat_lock);
2232 	sbi->total_valid_block_count += (block_t)(*count);
2233 	avail_user_block_count = sbi->user_block_count -
2234 					sbi->current_reserved_blocks;
2235 
2236 	if (!__allow_reserved_blocks(sbi, inode, true))
2237 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2238 
2239 	if (F2FS_IO_ALIGNED(sbi))
2240 		avail_user_block_count -= sbi->blocks_per_seg *
2241 				SM_I(sbi)->additional_reserved_segments;
2242 
2243 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2244 		if (avail_user_block_count > sbi->unusable_block_count)
2245 			avail_user_block_count -= sbi->unusable_block_count;
2246 		else
2247 			avail_user_block_count = 0;
2248 	}
2249 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2250 		diff = sbi->total_valid_block_count - avail_user_block_count;
2251 		if (diff > *count)
2252 			diff = *count;
2253 		*count -= diff;
2254 		release = diff;
2255 		sbi->total_valid_block_count -= diff;
2256 		if (!*count) {
2257 			spin_unlock(&sbi->stat_lock);
2258 			goto enospc;
2259 		}
2260 	}
2261 	spin_unlock(&sbi->stat_lock);
2262 
2263 	if (unlikely(release)) {
2264 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2265 		dquot_release_reservation_block(inode, release);
2266 	}
2267 	f2fs_i_blocks_write(inode, *count, true, true);
2268 	return 0;
2269 
2270 enospc:
2271 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2272 release_quota:
2273 	dquot_release_reservation_block(inode, release);
2274 	return -ENOSPC;
2275 }
2276 
2277 __printf(2, 3)
2278 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2279 
2280 #define f2fs_err(sbi, fmt, ...)						\
2281 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2282 #define f2fs_warn(sbi, fmt, ...)					\
2283 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2284 #define f2fs_notice(sbi, fmt, ...)					\
2285 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2286 #define f2fs_info(sbi, fmt, ...)					\
2287 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2288 #define f2fs_debug(sbi, fmt, ...)					\
2289 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2290 
2291 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2292 static inline bool page_private_##name(struct page *page) \
2293 { \
2294 	return PagePrivate(page) && \
2295 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2296 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2297 }
2298 
2299 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2300 static inline void set_page_private_##name(struct page *page) \
2301 { \
2302 	if (!PagePrivate(page)) \
2303 		attach_page_private(page, (void *)0); \
2304 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2305 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2306 }
2307 
2308 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2309 static inline void clear_page_private_##name(struct page *page) \
2310 { \
2311 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2312 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2313 		detach_page_private(page); \
2314 }
2315 
2316 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2317 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2318 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2319 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2320 
2321 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2322 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2323 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2324 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2325 
2326 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2327 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2328 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2329 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2330 
get_page_private_data(struct page * page)2331 static inline unsigned long get_page_private_data(struct page *page)
2332 {
2333 	unsigned long data = page_private(page);
2334 
2335 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2336 		return 0;
2337 	return data >> PAGE_PRIVATE_MAX;
2338 }
2339 
set_page_private_data(struct page * page,unsigned long data)2340 static inline void set_page_private_data(struct page *page, unsigned long data)
2341 {
2342 	if (!PagePrivate(page))
2343 		attach_page_private(page, (void *)0);
2344 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2345 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2346 }
2347 
clear_page_private_data(struct page * page)2348 static inline void clear_page_private_data(struct page *page)
2349 {
2350 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2351 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2352 		detach_page_private(page);
2353 }
2354 
clear_page_private_all(struct page * page)2355 static inline void clear_page_private_all(struct page *page)
2356 {
2357 	clear_page_private_data(page);
2358 	clear_page_private_reference(page);
2359 	clear_page_private_gcing(page);
2360 	clear_page_private_inline(page);
2361 
2362 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2363 }
2364 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2365 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2366 						struct inode *inode,
2367 						block_t count)
2368 {
2369 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2370 
2371 	spin_lock(&sbi->stat_lock);
2372 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2373 	sbi->total_valid_block_count -= (block_t)count;
2374 	if (sbi->reserved_blocks &&
2375 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2376 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2377 					sbi->current_reserved_blocks + count);
2378 	spin_unlock(&sbi->stat_lock);
2379 	if (unlikely(inode->i_blocks < sectors)) {
2380 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2381 			  inode->i_ino,
2382 			  (unsigned long long)inode->i_blocks,
2383 			  (unsigned long long)sectors);
2384 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2385 		return;
2386 	}
2387 	f2fs_i_blocks_write(inode, count, false, true);
2388 }
2389 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2390 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2391 {
2392 	atomic_inc(&sbi->nr_pages[count_type]);
2393 
2394 	if (count_type == F2FS_DIRTY_DENTS ||
2395 			count_type == F2FS_DIRTY_NODES ||
2396 			count_type == F2FS_DIRTY_META ||
2397 			count_type == F2FS_DIRTY_QDATA ||
2398 			count_type == F2FS_DIRTY_IMETA)
2399 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2400 }
2401 
inode_inc_dirty_pages(struct inode * inode)2402 static inline void inode_inc_dirty_pages(struct inode *inode)
2403 {
2404 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2405 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2406 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2407 	if (IS_NOQUOTA(inode))
2408 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2409 }
2410 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2411 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2412 {
2413 	atomic_dec(&sbi->nr_pages[count_type]);
2414 }
2415 
inode_dec_dirty_pages(struct inode * inode)2416 static inline void inode_dec_dirty_pages(struct inode *inode)
2417 {
2418 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2419 			!S_ISLNK(inode->i_mode))
2420 		return;
2421 
2422 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2423 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2424 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2425 	if (IS_NOQUOTA(inode))
2426 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2427 }
2428 
inc_atomic_write_cnt(struct inode * inode)2429 static inline void inc_atomic_write_cnt(struct inode *inode)
2430 {
2431 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2432 	struct f2fs_inode_info *fi = F2FS_I(inode);
2433 	u64 current_write;
2434 
2435 	fi->atomic_write_cnt++;
2436 	atomic64_inc(&sbi->current_atomic_write);
2437 	current_write = atomic64_read(&sbi->current_atomic_write);
2438 	if (current_write > sbi->peak_atomic_write)
2439 		sbi->peak_atomic_write = current_write;
2440 }
2441 
release_atomic_write_cnt(struct inode * inode)2442 static inline void release_atomic_write_cnt(struct inode *inode)
2443 {
2444 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2445 	struct f2fs_inode_info *fi = F2FS_I(inode);
2446 
2447 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2448 	fi->atomic_write_cnt = 0;
2449 }
2450 
get_pages(struct f2fs_sb_info * sbi,int count_type)2451 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2452 {
2453 	return atomic_read(&sbi->nr_pages[count_type]);
2454 }
2455 
get_dirty_pages(struct inode * inode)2456 static inline int get_dirty_pages(struct inode *inode)
2457 {
2458 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2459 }
2460 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2461 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2462 {
2463 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2464 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2465 						sbi->log_blocks_per_seg;
2466 
2467 	return segs / sbi->segs_per_sec;
2468 }
2469 
valid_user_blocks(struct f2fs_sb_info * sbi)2470 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2471 {
2472 	return sbi->total_valid_block_count;
2473 }
2474 
discard_blocks(struct f2fs_sb_info * sbi)2475 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2476 {
2477 	return sbi->discard_blks;
2478 }
2479 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2480 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2481 {
2482 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2483 
2484 	/* return NAT or SIT bitmap */
2485 	if (flag == NAT_BITMAP)
2486 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2487 	else if (flag == SIT_BITMAP)
2488 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2489 
2490 	return 0;
2491 }
2492 
__cp_payload(struct f2fs_sb_info * sbi)2493 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2494 {
2495 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2496 }
2497 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2498 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2499 {
2500 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2501 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2502 	int offset;
2503 
2504 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2505 		offset = (flag == SIT_BITMAP) ?
2506 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2507 		/*
2508 		 * if large_nat_bitmap feature is enabled, leave checksum
2509 		 * protection for all nat/sit bitmaps.
2510 		 */
2511 		return tmp_ptr + offset + sizeof(__le32);
2512 	}
2513 
2514 	if (__cp_payload(sbi) > 0) {
2515 		if (flag == NAT_BITMAP)
2516 			return tmp_ptr;
2517 		else
2518 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2519 	} else {
2520 		offset = (flag == NAT_BITMAP) ?
2521 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2522 		return tmp_ptr + offset;
2523 	}
2524 }
2525 
__start_cp_addr(struct f2fs_sb_info * sbi)2526 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2527 {
2528 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2529 
2530 	if (sbi->cur_cp_pack == 2)
2531 		start_addr += sbi->blocks_per_seg;
2532 	return start_addr;
2533 }
2534 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2535 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2536 {
2537 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2538 
2539 	if (sbi->cur_cp_pack == 1)
2540 		start_addr += sbi->blocks_per_seg;
2541 	return start_addr;
2542 }
2543 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2544 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2545 {
2546 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2547 }
2548 
__start_sum_addr(struct f2fs_sb_info * sbi)2549 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2550 {
2551 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2552 }
2553 
2554 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2555 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2556 					struct inode *inode, bool is_inode)
2557 {
2558 	block_t	valid_block_count;
2559 	unsigned int valid_node_count, user_block_count;
2560 	int err;
2561 
2562 	if (is_inode) {
2563 		if (inode) {
2564 			err = dquot_alloc_inode(inode);
2565 			if (err)
2566 				return err;
2567 		}
2568 	} else {
2569 		err = dquot_reserve_block(inode, 1);
2570 		if (err)
2571 			return err;
2572 	}
2573 
2574 	if (time_to_inject(sbi, FAULT_BLOCK))
2575 		goto enospc;
2576 
2577 	spin_lock(&sbi->stat_lock);
2578 
2579 	valid_block_count = sbi->total_valid_block_count +
2580 					sbi->current_reserved_blocks + 1;
2581 
2582 	if (!__allow_reserved_blocks(sbi, inode, false))
2583 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2584 
2585 	if (F2FS_IO_ALIGNED(sbi))
2586 		valid_block_count += sbi->blocks_per_seg *
2587 				SM_I(sbi)->additional_reserved_segments;
2588 
2589 	user_block_count = sbi->user_block_count;
2590 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2591 		user_block_count -= sbi->unusable_block_count;
2592 
2593 	if (unlikely(valid_block_count > user_block_count)) {
2594 		spin_unlock(&sbi->stat_lock);
2595 		goto enospc;
2596 	}
2597 
2598 	valid_node_count = sbi->total_valid_node_count + 1;
2599 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2600 		spin_unlock(&sbi->stat_lock);
2601 		goto enospc;
2602 	}
2603 
2604 	sbi->total_valid_node_count++;
2605 	sbi->total_valid_block_count++;
2606 	spin_unlock(&sbi->stat_lock);
2607 
2608 	if (inode) {
2609 		if (is_inode)
2610 			f2fs_mark_inode_dirty_sync(inode, true);
2611 		else
2612 			f2fs_i_blocks_write(inode, 1, true, true);
2613 	}
2614 
2615 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2616 	return 0;
2617 
2618 enospc:
2619 	if (is_inode) {
2620 		if (inode)
2621 			dquot_free_inode(inode);
2622 	} else {
2623 		dquot_release_reservation_block(inode, 1);
2624 	}
2625 	return -ENOSPC;
2626 }
2627 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2628 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2629 					struct inode *inode, bool is_inode)
2630 {
2631 	spin_lock(&sbi->stat_lock);
2632 
2633 	if (unlikely(!sbi->total_valid_block_count ||
2634 			!sbi->total_valid_node_count)) {
2635 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2636 			  sbi->total_valid_block_count,
2637 			  sbi->total_valid_node_count);
2638 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2639 	} else {
2640 		sbi->total_valid_block_count--;
2641 		sbi->total_valid_node_count--;
2642 	}
2643 
2644 	if (sbi->reserved_blocks &&
2645 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2646 		sbi->current_reserved_blocks++;
2647 
2648 	spin_unlock(&sbi->stat_lock);
2649 
2650 	if (is_inode) {
2651 		dquot_free_inode(inode);
2652 	} else {
2653 		if (unlikely(inode->i_blocks == 0)) {
2654 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2655 				  inode->i_ino,
2656 				  (unsigned long long)inode->i_blocks);
2657 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2658 			return;
2659 		}
2660 		f2fs_i_blocks_write(inode, 1, false, true);
2661 	}
2662 }
2663 
valid_node_count(struct f2fs_sb_info * sbi)2664 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2665 {
2666 	return sbi->total_valid_node_count;
2667 }
2668 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2669 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2670 {
2671 	percpu_counter_inc(&sbi->total_valid_inode_count);
2672 }
2673 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2674 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2675 {
2676 	percpu_counter_dec(&sbi->total_valid_inode_count);
2677 }
2678 
valid_inode_count(struct f2fs_sb_info * sbi)2679 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2680 {
2681 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2682 }
2683 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2684 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2685 						pgoff_t index, bool for_write)
2686 {
2687 	struct page *page;
2688 
2689 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2690 		if (!for_write)
2691 			page = find_get_page_flags(mapping, index,
2692 							FGP_LOCK | FGP_ACCESSED);
2693 		else
2694 			page = find_lock_page(mapping, index);
2695 		if (page)
2696 			return page;
2697 
2698 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2699 			return NULL;
2700 	}
2701 
2702 	if (!for_write)
2703 		return grab_cache_page(mapping, index);
2704 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2705 }
2706 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2707 static inline struct page *f2fs_pagecache_get_page(
2708 				struct address_space *mapping, pgoff_t index,
2709 				int fgp_flags, gfp_t gfp_mask)
2710 {
2711 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2712 		return NULL;
2713 
2714 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2715 }
2716 
f2fs_put_page(struct page * page,int unlock)2717 static inline void f2fs_put_page(struct page *page, int unlock)
2718 {
2719 	if (!page)
2720 		return;
2721 
2722 	if (unlock) {
2723 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2724 		unlock_page(page);
2725 	}
2726 	put_page(page);
2727 }
2728 
f2fs_put_dnode(struct dnode_of_data * dn)2729 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2730 {
2731 	if (dn->node_page)
2732 		f2fs_put_page(dn->node_page, 1);
2733 	if (dn->inode_page && dn->node_page != dn->inode_page)
2734 		f2fs_put_page(dn->inode_page, 0);
2735 	dn->node_page = NULL;
2736 	dn->inode_page = NULL;
2737 }
2738 
f2fs_kmem_cache_create(const char * name,size_t size)2739 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2740 					size_t size)
2741 {
2742 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2743 }
2744 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2745 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2746 						gfp_t flags)
2747 {
2748 	void *entry;
2749 
2750 	entry = kmem_cache_alloc(cachep, flags);
2751 	if (!entry)
2752 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2753 	return entry;
2754 }
2755 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2756 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2757 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2758 {
2759 	if (nofail)
2760 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2761 
2762 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2763 		return NULL;
2764 
2765 	return kmem_cache_alloc(cachep, flags);
2766 }
2767 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2768 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2769 {
2770 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2771 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2772 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2773 		get_pages(sbi, F2FS_DIO_READ) ||
2774 		get_pages(sbi, F2FS_DIO_WRITE))
2775 		return true;
2776 
2777 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2778 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2779 		return true;
2780 
2781 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2782 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2783 		return true;
2784 	return false;
2785 }
2786 
is_idle(struct f2fs_sb_info * sbi,int type)2787 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2788 {
2789 	if (sbi->gc_mode == GC_URGENT_HIGH)
2790 		return true;
2791 
2792 	if (is_inflight_io(sbi, type))
2793 		return false;
2794 
2795 	if (sbi->gc_mode == GC_URGENT_MID)
2796 		return true;
2797 
2798 	if (sbi->gc_mode == GC_URGENT_LOW &&
2799 			(type == DISCARD_TIME || type == GC_TIME))
2800 		return true;
2801 
2802 	return f2fs_time_over(sbi, type);
2803 }
2804 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2805 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2806 				unsigned long index, void *item)
2807 {
2808 	while (radix_tree_insert(root, index, item))
2809 		cond_resched();
2810 }
2811 
2812 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2813 
IS_INODE(struct page * page)2814 static inline bool IS_INODE(struct page *page)
2815 {
2816 	struct f2fs_node *p = F2FS_NODE(page);
2817 
2818 	return RAW_IS_INODE(p);
2819 }
2820 
offset_in_addr(struct f2fs_inode * i)2821 static inline int offset_in_addr(struct f2fs_inode *i)
2822 {
2823 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2824 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2825 }
2826 
blkaddr_in_node(struct f2fs_node * node)2827 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2828 {
2829 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2830 }
2831 
2832 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2833 static inline block_t data_blkaddr(struct inode *inode,
2834 			struct page *node_page, unsigned int offset)
2835 {
2836 	struct f2fs_node *raw_node;
2837 	__le32 *addr_array;
2838 	int base = 0;
2839 	bool is_inode = IS_INODE(node_page);
2840 
2841 	raw_node = F2FS_NODE(node_page);
2842 
2843 	if (is_inode) {
2844 		if (!inode)
2845 			/* from GC path only */
2846 			base = offset_in_addr(&raw_node->i);
2847 		else if (f2fs_has_extra_attr(inode))
2848 			base = get_extra_isize(inode);
2849 	}
2850 
2851 	addr_array = blkaddr_in_node(raw_node);
2852 	return le32_to_cpu(addr_array[base + offset]);
2853 }
2854 
f2fs_data_blkaddr(struct dnode_of_data * dn)2855 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2856 {
2857 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2858 }
2859 
f2fs_test_bit(unsigned int nr,char * addr)2860 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2861 {
2862 	int mask;
2863 
2864 	addr += (nr >> 3);
2865 	mask = BIT(7 - (nr & 0x07));
2866 	return mask & *addr;
2867 }
2868 
f2fs_set_bit(unsigned int nr,char * addr)2869 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2870 {
2871 	int mask;
2872 
2873 	addr += (nr >> 3);
2874 	mask = BIT(7 - (nr & 0x07));
2875 	*addr |= mask;
2876 }
2877 
f2fs_clear_bit(unsigned int nr,char * addr)2878 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2879 {
2880 	int mask;
2881 
2882 	addr += (nr >> 3);
2883 	mask = BIT(7 - (nr & 0x07));
2884 	*addr &= ~mask;
2885 }
2886 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2887 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2888 {
2889 	int mask;
2890 	int ret;
2891 
2892 	addr += (nr >> 3);
2893 	mask = BIT(7 - (nr & 0x07));
2894 	ret = mask & *addr;
2895 	*addr |= mask;
2896 	return ret;
2897 }
2898 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2899 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2900 {
2901 	int mask;
2902 	int ret;
2903 
2904 	addr += (nr >> 3);
2905 	mask = BIT(7 - (nr & 0x07));
2906 	ret = mask & *addr;
2907 	*addr &= ~mask;
2908 	return ret;
2909 }
2910 
f2fs_change_bit(unsigned int nr,char * addr)2911 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2912 {
2913 	int mask;
2914 
2915 	addr += (nr >> 3);
2916 	mask = BIT(7 - (nr & 0x07));
2917 	*addr ^= mask;
2918 }
2919 
2920 /*
2921  * On-disk inode flags (f2fs_inode::i_flags)
2922  */
2923 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2924 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2925 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2926 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2927 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2928 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2929 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2930 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2931 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2932 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2933 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2934 
2935 /* Flags that should be inherited by new inodes from their parent. */
2936 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2937 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2938 			   F2FS_CASEFOLD_FL)
2939 
2940 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2941 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2942 				F2FS_CASEFOLD_FL))
2943 
2944 /* Flags that are appropriate for non-directories/regular files. */
2945 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2946 
f2fs_mask_flags(umode_t mode,__u32 flags)2947 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2948 {
2949 	if (S_ISDIR(mode))
2950 		return flags;
2951 	else if (S_ISREG(mode))
2952 		return flags & F2FS_REG_FLMASK;
2953 	else
2954 		return flags & F2FS_OTHER_FLMASK;
2955 }
2956 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2957 static inline void __mark_inode_dirty_flag(struct inode *inode,
2958 						int flag, bool set)
2959 {
2960 	switch (flag) {
2961 	case FI_INLINE_XATTR:
2962 	case FI_INLINE_DATA:
2963 	case FI_INLINE_DENTRY:
2964 	case FI_NEW_INODE:
2965 		if (set)
2966 			return;
2967 		fallthrough;
2968 	case FI_DATA_EXIST:
2969 	case FI_INLINE_DOTS:
2970 	case FI_PIN_FILE:
2971 	case FI_COMPRESS_RELEASED:
2972 		f2fs_mark_inode_dirty_sync(inode, true);
2973 	}
2974 }
2975 
set_inode_flag(struct inode * inode,int flag)2976 static inline void set_inode_flag(struct inode *inode, int flag)
2977 {
2978 	set_bit(flag, F2FS_I(inode)->flags);
2979 	__mark_inode_dirty_flag(inode, flag, true);
2980 }
2981 
is_inode_flag_set(struct inode * inode,int flag)2982 static inline int is_inode_flag_set(struct inode *inode, int flag)
2983 {
2984 	return test_bit(flag, F2FS_I(inode)->flags);
2985 }
2986 
clear_inode_flag(struct inode * inode,int flag)2987 static inline void clear_inode_flag(struct inode *inode, int flag)
2988 {
2989 	clear_bit(flag, F2FS_I(inode)->flags);
2990 	__mark_inode_dirty_flag(inode, flag, false);
2991 }
2992 
f2fs_verity_in_progress(struct inode * inode)2993 static inline bool f2fs_verity_in_progress(struct inode *inode)
2994 {
2995 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2996 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2997 }
2998 
set_acl_inode(struct inode * inode,umode_t mode)2999 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3000 {
3001 	F2FS_I(inode)->i_acl_mode = mode;
3002 	set_inode_flag(inode, FI_ACL_MODE);
3003 	f2fs_mark_inode_dirty_sync(inode, false);
3004 }
3005 
f2fs_i_links_write(struct inode * inode,bool inc)3006 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3007 {
3008 	if (inc)
3009 		inc_nlink(inode);
3010 	else
3011 		drop_nlink(inode);
3012 	f2fs_mark_inode_dirty_sync(inode, true);
3013 }
3014 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3015 static inline void f2fs_i_blocks_write(struct inode *inode,
3016 					block_t diff, bool add, bool claim)
3017 {
3018 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3019 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3020 
3021 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3022 	if (add) {
3023 		if (claim)
3024 			dquot_claim_block(inode, diff);
3025 		else
3026 			dquot_alloc_block_nofail(inode, diff);
3027 	} else {
3028 		dquot_free_block(inode, diff);
3029 	}
3030 
3031 	f2fs_mark_inode_dirty_sync(inode, true);
3032 	if (clean || recover)
3033 		set_inode_flag(inode, FI_AUTO_RECOVER);
3034 }
3035 
3036 static inline bool f2fs_is_atomic_file(struct inode *inode);
3037 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3038 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3039 {
3040 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3041 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3042 
3043 	if (i_size_read(inode) == i_size)
3044 		return;
3045 
3046 	i_size_write(inode, i_size);
3047 
3048 	if (f2fs_is_atomic_file(inode))
3049 		return;
3050 
3051 	f2fs_mark_inode_dirty_sync(inode, true);
3052 	if (clean || recover)
3053 		set_inode_flag(inode, FI_AUTO_RECOVER);
3054 }
3055 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3056 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3057 {
3058 	F2FS_I(inode)->i_current_depth = depth;
3059 	f2fs_mark_inode_dirty_sync(inode, true);
3060 }
3061 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3062 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3063 					unsigned int count)
3064 {
3065 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3066 	f2fs_mark_inode_dirty_sync(inode, true);
3067 }
3068 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3069 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3070 {
3071 	F2FS_I(inode)->i_xattr_nid = xnid;
3072 	f2fs_mark_inode_dirty_sync(inode, true);
3073 }
3074 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3075 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3076 {
3077 	F2FS_I(inode)->i_pino = pino;
3078 	f2fs_mark_inode_dirty_sync(inode, true);
3079 }
3080 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3081 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3082 {
3083 	struct f2fs_inode_info *fi = F2FS_I(inode);
3084 
3085 	if (ri->i_inline & F2FS_INLINE_XATTR)
3086 		set_bit(FI_INLINE_XATTR, fi->flags);
3087 	if (ri->i_inline & F2FS_INLINE_DATA)
3088 		set_bit(FI_INLINE_DATA, fi->flags);
3089 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3090 		set_bit(FI_INLINE_DENTRY, fi->flags);
3091 	if (ri->i_inline & F2FS_DATA_EXIST)
3092 		set_bit(FI_DATA_EXIST, fi->flags);
3093 	if (ri->i_inline & F2FS_INLINE_DOTS)
3094 		set_bit(FI_INLINE_DOTS, fi->flags);
3095 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3096 		set_bit(FI_EXTRA_ATTR, fi->flags);
3097 	if (ri->i_inline & F2FS_PIN_FILE)
3098 		set_bit(FI_PIN_FILE, fi->flags);
3099 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3100 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3101 }
3102 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3103 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3104 {
3105 	ri->i_inline = 0;
3106 
3107 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3108 		ri->i_inline |= F2FS_INLINE_XATTR;
3109 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3110 		ri->i_inline |= F2FS_INLINE_DATA;
3111 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3112 		ri->i_inline |= F2FS_INLINE_DENTRY;
3113 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3114 		ri->i_inline |= F2FS_DATA_EXIST;
3115 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3116 		ri->i_inline |= F2FS_INLINE_DOTS;
3117 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3118 		ri->i_inline |= F2FS_EXTRA_ATTR;
3119 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3120 		ri->i_inline |= F2FS_PIN_FILE;
3121 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3122 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3123 }
3124 
f2fs_has_extra_attr(struct inode * inode)3125 static inline int f2fs_has_extra_attr(struct inode *inode)
3126 {
3127 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3128 }
3129 
f2fs_has_inline_xattr(struct inode * inode)3130 static inline int f2fs_has_inline_xattr(struct inode *inode)
3131 {
3132 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3133 }
3134 
f2fs_compressed_file(struct inode * inode)3135 static inline int f2fs_compressed_file(struct inode *inode)
3136 {
3137 	return S_ISREG(inode->i_mode) &&
3138 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3139 }
3140 
f2fs_need_compress_data(struct inode * inode)3141 static inline bool f2fs_need_compress_data(struct inode *inode)
3142 {
3143 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3144 
3145 	if (!f2fs_compressed_file(inode))
3146 		return false;
3147 
3148 	if (compress_mode == COMPR_MODE_FS)
3149 		return true;
3150 	else if (compress_mode == COMPR_MODE_USER &&
3151 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3152 		return true;
3153 
3154 	return false;
3155 }
3156 
addrs_per_inode(struct inode * inode)3157 static inline unsigned int addrs_per_inode(struct inode *inode)
3158 {
3159 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3160 				get_inline_xattr_addrs(inode);
3161 
3162 	if (!f2fs_compressed_file(inode))
3163 		return addrs;
3164 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3165 }
3166 
addrs_per_block(struct inode * inode)3167 static inline unsigned int addrs_per_block(struct inode *inode)
3168 {
3169 	if (!f2fs_compressed_file(inode))
3170 		return DEF_ADDRS_PER_BLOCK;
3171 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3172 }
3173 
inline_xattr_addr(struct inode * inode,struct page * page)3174 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3175 {
3176 	struct f2fs_inode *ri = F2FS_INODE(page);
3177 
3178 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3179 					get_inline_xattr_addrs(inode)]);
3180 }
3181 
inline_xattr_size(struct inode * inode)3182 static inline int inline_xattr_size(struct inode *inode)
3183 {
3184 	if (f2fs_has_inline_xattr(inode))
3185 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3186 	return 0;
3187 }
3188 
3189 /*
3190  * Notice: check inline_data flag without inode page lock is unsafe.
3191  * It could change at any time by f2fs_convert_inline_page().
3192  */
f2fs_has_inline_data(struct inode * inode)3193 static inline int f2fs_has_inline_data(struct inode *inode)
3194 {
3195 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3196 }
3197 
f2fs_exist_data(struct inode * inode)3198 static inline int f2fs_exist_data(struct inode *inode)
3199 {
3200 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3201 }
3202 
f2fs_has_inline_dots(struct inode * inode)3203 static inline int f2fs_has_inline_dots(struct inode *inode)
3204 {
3205 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3206 }
3207 
f2fs_is_mmap_file(struct inode * inode)3208 static inline int f2fs_is_mmap_file(struct inode *inode)
3209 {
3210 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3211 }
3212 
f2fs_is_pinned_file(struct inode * inode)3213 static inline bool f2fs_is_pinned_file(struct inode *inode)
3214 {
3215 	return is_inode_flag_set(inode, FI_PIN_FILE);
3216 }
3217 
f2fs_is_atomic_file(struct inode * inode)3218 static inline bool f2fs_is_atomic_file(struct inode *inode)
3219 {
3220 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3221 }
3222 
f2fs_is_cow_file(struct inode * inode)3223 static inline bool f2fs_is_cow_file(struct inode *inode)
3224 {
3225 	return is_inode_flag_set(inode, FI_COW_FILE);
3226 }
3227 
f2fs_is_first_block_written(struct inode * inode)3228 static inline bool f2fs_is_first_block_written(struct inode *inode)
3229 {
3230 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3231 }
3232 
f2fs_is_drop_cache(struct inode * inode)3233 static inline bool f2fs_is_drop_cache(struct inode *inode)
3234 {
3235 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3236 }
3237 
inline_data_addr(struct inode * inode,struct page * page)3238 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3239 {
3240 	struct f2fs_inode *ri = F2FS_INODE(page);
3241 	int extra_size = get_extra_isize(inode);
3242 
3243 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3244 }
3245 
f2fs_has_inline_dentry(struct inode * inode)3246 static inline int f2fs_has_inline_dentry(struct inode *inode)
3247 {
3248 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3249 }
3250 
is_file(struct inode * inode,int type)3251 static inline int is_file(struct inode *inode, int type)
3252 {
3253 	return F2FS_I(inode)->i_advise & type;
3254 }
3255 
set_file(struct inode * inode,int type)3256 static inline void set_file(struct inode *inode, int type)
3257 {
3258 	if (is_file(inode, type))
3259 		return;
3260 	F2FS_I(inode)->i_advise |= type;
3261 	f2fs_mark_inode_dirty_sync(inode, true);
3262 }
3263 
clear_file(struct inode * inode,int type)3264 static inline void clear_file(struct inode *inode, int type)
3265 {
3266 	if (!is_file(inode, type))
3267 		return;
3268 	F2FS_I(inode)->i_advise &= ~type;
3269 	f2fs_mark_inode_dirty_sync(inode, true);
3270 }
3271 
f2fs_is_time_consistent(struct inode * inode)3272 static inline bool f2fs_is_time_consistent(struct inode *inode)
3273 {
3274 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3275 		return false;
3276 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3277 		return false;
3278 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3279 		return false;
3280 	return true;
3281 }
3282 
f2fs_skip_inode_update(struct inode * inode,int dsync)3283 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3284 {
3285 	bool ret;
3286 
3287 	if (dsync) {
3288 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3289 
3290 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3291 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3292 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3293 		return ret;
3294 	}
3295 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3296 			file_keep_isize(inode) ||
3297 			i_size_read(inode) & ~PAGE_MASK)
3298 		return false;
3299 
3300 	if (!f2fs_is_time_consistent(inode))
3301 		return false;
3302 
3303 	spin_lock(&F2FS_I(inode)->i_size_lock);
3304 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3305 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3306 
3307 	return ret;
3308 }
3309 
f2fs_readonly(struct super_block * sb)3310 static inline bool f2fs_readonly(struct super_block *sb)
3311 {
3312 	return sb_rdonly(sb);
3313 }
3314 
f2fs_cp_error(struct f2fs_sb_info * sbi)3315 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3316 {
3317 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3318 }
3319 
is_dot_dotdot(const u8 * name,size_t len)3320 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3321 {
3322 	if (len == 1 && name[0] == '.')
3323 		return true;
3324 
3325 	if (len == 2 && name[0] == '.' && name[1] == '.')
3326 		return true;
3327 
3328 	return false;
3329 }
3330 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3331 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3332 					size_t size, gfp_t flags)
3333 {
3334 	if (time_to_inject(sbi, FAULT_KMALLOC))
3335 		return NULL;
3336 
3337 	return kmalloc(size, flags);
3338 }
3339 
f2fs_getname(struct f2fs_sb_info * sbi)3340 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3341 {
3342 	if (time_to_inject(sbi, FAULT_KMALLOC))
3343 		return NULL;
3344 
3345 	return __getname();
3346 }
3347 
f2fs_putname(char * buf)3348 static inline void f2fs_putname(char *buf)
3349 {
3350 	__putname(buf);
3351 }
3352 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3353 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3354 					size_t size, gfp_t flags)
3355 {
3356 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3357 }
3358 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3359 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3360 					size_t size, gfp_t flags)
3361 {
3362 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3363 		return NULL;
3364 
3365 	return kvmalloc(size, flags);
3366 }
3367 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3368 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3369 					size_t size, gfp_t flags)
3370 {
3371 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3372 }
3373 
get_extra_isize(struct inode * inode)3374 static inline int get_extra_isize(struct inode *inode)
3375 {
3376 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3377 }
3378 
get_inline_xattr_addrs(struct inode * inode)3379 static inline int get_inline_xattr_addrs(struct inode *inode)
3380 {
3381 	return F2FS_I(inode)->i_inline_xattr_size;
3382 }
3383 
3384 #define f2fs_get_inode_mode(i) \
3385 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3386 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3387 
3388 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3389 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3390 	offsetof(struct f2fs_inode, i_extra_isize))	\
3391 
3392 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3393 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3394 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3395 		sizeof((f2fs_inode)->field))			\
3396 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3397 
3398 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3399 
3400 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3401 
3402 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3403 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3404 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3405 					block_t blkaddr, int type)
3406 {
3407 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3408 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3409 			 blkaddr, type);
3410 		f2fs_bug_on(sbi, 1);
3411 	}
3412 }
3413 
__is_valid_data_blkaddr(block_t blkaddr)3414 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3415 {
3416 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3417 			blkaddr == COMPRESS_ADDR)
3418 		return false;
3419 	return true;
3420 }
3421 
3422 /*
3423  * file.c
3424  */
3425 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3426 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3427 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3428 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3429 int f2fs_truncate(struct inode *inode);
3430 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3431 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3432 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3433 		 struct iattr *attr);
3434 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3435 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3436 int f2fs_precache_extents(struct inode *inode);
3437 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3438 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3439 		      struct dentry *dentry, struct fileattr *fa);
3440 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3441 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3442 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3443 int f2fs_pin_file_control(struct inode *inode, bool inc);
3444 
3445 /*
3446  * inode.c
3447  */
3448 void f2fs_set_inode_flags(struct inode *inode);
3449 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3450 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3451 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3452 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3453 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3454 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3455 void f2fs_update_inode_page(struct inode *inode);
3456 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3457 void f2fs_evict_inode(struct inode *inode);
3458 void f2fs_handle_failed_inode(struct inode *inode);
3459 
3460 /*
3461  * namei.c
3462  */
3463 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3464 							bool hot, bool set);
3465 struct dentry *f2fs_get_parent(struct dentry *child);
3466 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3467 		     struct inode **new_inode);
3468 
3469 /*
3470  * dir.c
3471  */
3472 int f2fs_init_casefolded_name(const struct inode *dir,
3473 			      struct f2fs_filename *fname);
3474 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3475 			int lookup, struct f2fs_filename *fname);
3476 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3477 			struct f2fs_filename *fname);
3478 void f2fs_free_filename(struct f2fs_filename *fname);
3479 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3480 			const struct f2fs_filename *fname, int *max_slots);
3481 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3482 			unsigned int start_pos, struct fscrypt_str *fstr);
3483 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3484 			struct f2fs_dentry_ptr *d);
3485 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3486 			const struct f2fs_filename *fname, struct page *dpage);
3487 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3488 			unsigned int current_depth);
3489 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3490 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3491 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3492 					 const struct f2fs_filename *fname,
3493 					 struct page **res_page);
3494 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3495 			const struct qstr *child, struct page **res_page);
3496 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3497 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3498 			struct page **page);
3499 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3500 			struct page *page, struct inode *inode);
3501 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3502 			  const struct f2fs_filename *fname);
3503 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3504 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3505 			unsigned int bit_pos);
3506 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3507 			struct inode *inode, nid_t ino, umode_t mode);
3508 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3509 			struct inode *inode, nid_t ino, umode_t mode);
3510 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3511 			struct inode *inode, nid_t ino, umode_t mode);
3512 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3513 			struct inode *dir, struct inode *inode);
3514 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3515 bool f2fs_empty_dir(struct inode *dir);
3516 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3517 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3518 {
3519 	if (fscrypt_is_nokey_name(dentry))
3520 		return -ENOKEY;
3521 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3522 				inode, inode->i_ino, inode->i_mode);
3523 }
3524 
3525 /*
3526  * super.c
3527  */
3528 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3529 void f2fs_inode_synced(struct inode *inode);
3530 int f2fs_dquot_initialize(struct inode *inode);
3531 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3532 int f2fs_quota_sync(struct super_block *sb, int type);
3533 loff_t max_file_blocks(struct inode *inode);
3534 void f2fs_quota_off_umount(struct super_block *sb);
3535 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3536 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3537 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3538 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3539 int f2fs_sync_fs(struct super_block *sb, int sync);
3540 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3541 
3542 /*
3543  * hash.c
3544  */
3545 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3546 
3547 /*
3548  * node.c
3549  */
3550 struct node_info;
3551 
3552 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3553 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3554 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3555 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3556 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3557 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3558 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3559 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3560 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3561 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3562 				struct node_info *ni, bool checkpoint_context);
3563 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3564 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3565 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3566 int f2fs_truncate_xattr_node(struct inode *inode);
3567 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3568 					unsigned int seq_id);
3569 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3570 int f2fs_remove_inode_page(struct inode *inode);
3571 struct page *f2fs_new_inode_page(struct inode *inode);
3572 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3573 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3574 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3575 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3576 int f2fs_move_node_page(struct page *node_page, int gc_type);
3577 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3578 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3579 			struct writeback_control *wbc, bool atomic,
3580 			unsigned int *seq_id);
3581 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3582 			struct writeback_control *wbc,
3583 			bool do_balance, enum iostat_type io_type);
3584 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3585 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3586 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3587 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3588 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3589 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3590 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3591 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3592 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3593 			unsigned int segno, struct f2fs_summary_block *sum);
3594 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3595 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3596 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3597 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3598 int __init f2fs_create_node_manager_caches(void);
3599 void f2fs_destroy_node_manager_caches(void);
3600 
3601 /*
3602  * segment.c
3603  */
3604 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3605 int f2fs_commit_atomic_write(struct inode *inode);
3606 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3607 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3608 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3609 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3610 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3611 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3612 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3613 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3614 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3615 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3616 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3617 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3618 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3619 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3620 					struct cp_control *cpc);
3621 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3622 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3623 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3624 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3625 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3626 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3627 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3628 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3629 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3630 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3631 			unsigned int *newseg, bool new_sec, int dir);
3632 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3633 					unsigned int start, unsigned int end);
3634 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3635 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3636 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3637 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3638 					struct cp_control *cpc);
3639 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3640 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3641 					block_t blk_addr);
3642 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3643 						enum iostat_type io_type);
3644 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3645 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3646 			struct f2fs_io_info *fio);
3647 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3648 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3649 			block_t old_blkaddr, block_t new_blkaddr,
3650 			bool recover_curseg, bool recover_newaddr,
3651 			bool from_gc);
3652 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3653 			block_t old_addr, block_t new_addr,
3654 			unsigned char version, bool recover_curseg,
3655 			bool recover_newaddr);
3656 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3657 			block_t old_blkaddr, block_t *new_blkaddr,
3658 			struct f2fs_summary *sum, int type,
3659 			struct f2fs_io_info *fio);
3660 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3661 					block_t blkaddr, unsigned int blkcnt);
3662 void f2fs_wait_on_page_writeback(struct page *page,
3663 			enum page_type type, bool ordered, bool locked);
3664 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3665 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3666 								block_t len);
3667 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3668 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3669 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3670 			unsigned int val, int alloc);
3671 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3672 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3673 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3674 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3675 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3676 int __init f2fs_create_segment_manager_caches(void);
3677 void f2fs_destroy_segment_manager_caches(void);
3678 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3679 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3680 			unsigned int segno);
3681 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3682 			unsigned int segno);
3683 
3684 #define DEF_FRAGMENT_SIZE	4
3685 #define MIN_FRAGMENT_SIZE	1
3686 #define MAX_FRAGMENT_SIZE	512
3687 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3688 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3689 {
3690 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3691 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3692 }
3693 
3694 /*
3695  * checkpoint.c
3696  */
3697 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3698 							unsigned char reason);
3699 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3700 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3701 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3702 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3703 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3704 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3705 					block_t blkaddr, int type);
3706 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3707 			int type, bool sync);
3708 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3709 							unsigned int ra_blocks);
3710 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3711 			long nr_to_write, enum iostat_type io_type);
3712 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3713 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3714 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3715 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3716 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3717 					unsigned int devidx, int type);
3718 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3719 					unsigned int devidx, int type);
3720 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3721 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3722 void f2fs_add_orphan_inode(struct inode *inode);
3723 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3724 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3725 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3726 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3727 void f2fs_remove_dirty_inode(struct inode *inode);
3728 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3729 								bool from_cp);
3730 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3731 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3732 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3733 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3734 int __init f2fs_create_checkpoint_caches(void);
3735 void f2fs_destroy_checkpoint_caches(void);
3736 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3737 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3738 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3739 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3740 
3741 /*
3742  * data.c
3743  */
3744 int __init f2fs_init_bioset(void);
3745 void f2fs_destroy_bioset(void);
3746 int f2fs_init_bio_entry_cache(void);
3747 void f2fs_destroy_bio_entry_cache(void);
3748 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3749 			  enum page_type type);
3750 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3751 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3752 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3753 				struct inode *inode, struct page *page,
3754 				nid_t ino, enum page_type type);
3755 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3756 					struct bio **bio, struct page *page);
3757 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3758 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3759 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3760 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3761 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3762 		block_t blk_addr, sector_t *sector);
3763 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3764 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3765 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3766 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3767 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3768 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3769 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3770 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3771 			int op_flags, bool for_write, pgoff_t *next_pgofs);
3772 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3773 							pgoff_t *next_pgofs);
3774 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3775 			bool for_write);
3776 struct page *f2fs_get_new_data_page(struct inode *inode,
3777 			struct page *ipage, pgoff_t index, bool new_i_size);
3778 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3779 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3780 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3781 			u64 start, u64 len);
3782 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3783 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3784 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3785 int f2fs_write_single_data_page(struct page *page, int *submitted,
3786 				struct bio **bio, sector_t *last_block,
3787 				struct writeback_control *wbc,
3788 				enum iostat_type io_type,
3789 				int compr_blocks, bool allow_balance);
3790 void f2fs_write_failed(struct inode *inode, loff_t to);
3791 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3792 			unsigned int length);
3793 int f2fs_release_page(struct page *page, gfp_t wait);
3794 #ifdef CONFIG_MIGRATION
3795 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3796 			struct page *page, enum migrate_mode mode);
3797 #endif
3798 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3799 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3800 int f2fs_init_post_read_processing(void);
3801 void f2fs_destroy_post_read_processing(void);
3802 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3803 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3804 extern const struct iomap_ops f2fs_iomap_ops;
3805 
3806 /*
3807  * gc.c
3808  */
3809 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3810 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3811 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3812 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3813 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3814 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3815 int __init f2fs_create_garbage_collection_cache(void);
3816 void f2fs_destroy_garbage_collection_cache(void);
3817 /* victim selection function for cleaning and SSR */
3818 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3819 			int gc_type, int type, char alloc_mode,
3820 			unsigned long long age);
3821 
3822 /*
3823  * recovery.c
3824  */
3825 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3826 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3827 int __init f2fs_create_recovery_cache(void);
3828 void f2fs_destroy_recovery_cache(void);
3829 
3830 /*
3831  * debug.c
3832  */
3833 #ifdef CONFIG_F2FS_STAT_FS
3834 struct f2fs_stat_info {
3835 	struct list_head stat_list;
3836 	struct f2fs_sb_info *sbi;
3837 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3838 	int main_area_segs, main_area_sections, main_area_zones;
3839 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3840 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3841 	unsigned long long total_ext[NR_EXTENT_CACHES];
3842 	unsigned long long hit_total[NR_EXTENT_CACHES];
3843 	int ext_tree[NR_EXTENT_CACHES];
3844 	int zombie_tree[NR_EXTENT_CACHES];
3845 	int ext_node[NR_EXTENT_CACHES];
3846 	/* to count memory footprint */
3847 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3848 	/* for read extent cache */
3849 	unsigned long long hit_largest;
3850 	/* for block age extent cache */
3851 	unsigned long long allocated_data_blocks;
3852 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3853 	int ndirty_data, ndirty_qdata;
3854 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3855 	int nats, dirty_nats, sits, dirty_sits;
3856 	int free_nids, avail_nids, alloc_nids;
3857 	int total_count, utilization;
3858 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3859 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3860 	int nr_dio_read, nr_dio_write;
3861 	unsigned int io_skip_bggc, other_skip_bggc;
3862 	int nr_flushing, nr_flushed, flush_list_empty;
3863 	int nr_discarding, nr_discarded;
3864 	int nr_discard_cmd;
3865 	unsigned int undiscard_blks;
3866 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3867 	unsigned int cur_ckpt_time, peak_ckpt_time;
3868 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3869 	int compr_inode, swapfile_inode;
3870 	unsigned long long compr_blocks;
3871 	int aw_cnt, max_aw_cnt;
3872 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3873 	unsigned int bimodal, avg_vblocks;
3874 	int util_free, util_valid, util_invalid;
3875 	int rsvd_segs, overp_segs;
3876 	int dirty_count, node_pages, meta_pages, compress_pages;
3877 	int compress_page_hit;
3878 	int prefree_count, call_count, cp_count, bg_cp_count;
3879 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3880 	int bg_node_segs, bg_data_segs;
3881 	int tot_blks, data_blks, node_blks;
3882 	int bg_data_blks, bg_node_blks;
3883 	int curseg[NR_CURSEG_TYPE];
3884 	int cursec[NR_CURSEG_TYPE];
3885 	int curzone[NR_CURSEG_TYPE];
3886 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3887 	unsigned int full_seg[NR_CURSEG_TYPE];
3888 	unsigned int valid_blks[NR_CURSEG_TYPE];
3889 
3890 	unsigned int meta_count[META_MAX];
3891 	unsigned int segment_count[2];
3892 	unsigned int block_count[2];
3893 	unsigned int inplace_count;
3894 	unsigned long long base_mem, cache_mem, page_mem;
3895 };
3896 
F2FS_STAT(struct f2fs_sb_info * sbi)3897 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3898 {
3899 	return (struct f2fs_stat_info *)sbi->stat_info;
3900 }
3901 
3902 #define stat_inc_cp_count(si)		((si)->cp_count++)
3903 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3904 #define stat_inc_call_count(si)		((si)->call_count++)
3905 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3906 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3907 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3908 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3909 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3910 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3911 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3912 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3913 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3914 #define stat_inc_inline_xattr(inode)					\
3915 	do {								\
3916 		if (f2fs_has_inline_xattr(inode))			\
3917 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3918 	} while (0)
3919 #define stat_dec_inline_xattr(inode)					\
3920 	do {								\
3921 		if (f2fs_has_inline_xattr(inode))			\
3922 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3923 	} while (0)
3924 #define stat_inc_inline_inode(inode)					\
3925 	do {								\
3926 		if (f2fs_has_inline_data(inode))			\
3927 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3928 	} while (0)
3929 #define stat_dec_inline_inode(inode)					\
3930 	do {								\
3931 		if (f2fs_has_inline_data(inode))			\
3932 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3933 	} while (0)
3934 #define stat_inc_inline_dir(inode)					\
3935 	do {								\
3936 		if (f2fs_has_inline_dentry(inode))			\
3937 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3938 	} while (0)
3939 #define stat_dec_inline_dir(inode)					\
3940 	do {								\
3941 		if (f2fs_has_inline_dentry(inode))			\
3942 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3943 	} while (0)
3944 #define stat_inc_compr_inode(inode)					\
3945 	do {								\
3946 		if (f2fs_compressed_file(inode))			\
3947 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3948 	} while (0)
3949 #define stat_dec_compr_inode(inode)					\
3950 	do {								\
3951 		if (f2fs_compressed_file(inode))			\
3952 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3953 	} while (0)
3954 #define stat_add_compr_blocks(inode, blocks)				\
3955 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3956 #define stat_sub_compr_blocks(inode, blocks)				\
3957 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3958 #define stat_inc_swapfile_inode(inode)					\
3959 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3960 #define stat_dec_swapfile_inode(inode)					\
3961 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3962 #define stat_inc_atomic_inode(inode)					\
3963 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3964 #define stat_dec_atomic_inode(inode)					\
3965 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3966 #define stat_inc_meta_count(sbi, blkaddr)				\
3967 	do {								\
3968 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3969 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3970 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3971 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3972 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3973 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3974 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3975 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3976 	} while (0)
3977 #define stat_inc_seg_type(sbi, curseg)					\
3978 		((sbi)->segment_count[(curseg)->alloc_type]++)
3979 #define stat_inc_block_count(sbi, curseg)				\
3980 		((sbi)->block_count[(curseg)->alloc_type]++)
3981 #define stat_inc_inplace_blocks(sbi)					\
3982 		(atomic_inc(&(sbi)->inplace_count))
3983 #define stat_update_max_atomic_write(inode)				\
3984 	do {								\
3985 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
3986 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3987 		if (cur > max)						\
3988 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3989 	} while (0)
3990 #define stat_inc_seg_count(sbi, type, gc_type)				\
3991 	do {								\
3992 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3993 		si->tot_segs++;						\
3994 		if ((type) == SUM_TYPE_DATA) {				\
3995 			si->data_segs++;				\
3996 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3997 		} else {						\
3998 			si->node_segs++;				\
3999 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4000 		}							\
4001 	} while (0)
4002 
4003 #define stat_inc_tot_blk_count(si, blks)				\
4004 	((si)->tot_blks += (blks))
4005 
4006 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4007 	do {								\
4008 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4009 		stat_inc_tot_blk_count(si, blks);			\
4010 		si->data_blks += (blks);				\
4011 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4012 	} while (0)
4013 
4014 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4015 	do {								\
4016 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4017 		stat_inc_tot_blk_count(si, blks);			\
4018 		si->node_blks += (blks);				\
4019 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4020 	} while (0)
4021 
4022 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4023 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4024 void __init f2fs_create_root_stats(void);
4025 void f2fs_destroy_root_stats(void);
4026 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4027 #else
4028 #define stat_inc_cp_count(si)				do { } while (0)
4029 #define stat_inc_bg_cp_count(si)			do { } while (0)
4030 #define stat_inc_call_count(si)				do { } while (0)
4031 #define stat_inc_bggc_count(si)				do { } while (0)
4032 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4033 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4034 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4035 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4036 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4037 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4038 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4039 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4040 #define stat_inc_inline_xattr(inode)			do { } while (0)
4041 #define stat_dec_inline_xattr(inode)			do { } while (0)
4042 #define stat_inc_inline_inode(inode)			do { } while (0)
4043 #define stat_dec_inline_inode(inode)			do { } while (0)
4044 #define stat_inc_inline_dir(inode)			do { } while (0)
4045 #define stat_dec_inline_dir(inode)			do { } while (0)
4046 #define stat_inc_compr_inode(inode)			do { } while (0)
4047 #define stat_dec_compr_inode(inode)			do { } while (0)
4048 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4049 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4050 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4051 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4052 #define stat_inc_atomic_inode(inode)			do { } while (0)
4053 #define stat_dec_atomic_inode(inode)			do { } while (0)
4054 #define stat_update_max_atomic_write(inode)		do { } while (0)
4055 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4056 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4057 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4058 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4059 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4060 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4061 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4062 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4063 
f2fs_build_stats(struct f2fs_sb_info * sbi)4064 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4065 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4066 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4067 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4068 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4069 #endif
4070 
4071 extern const struct file_operations f2fs_dir_operations;
4072 extern const struct file_operations f2fs_file_operations;
4073 extern const struct inode_operations f2fs_file_inode_operations;
4074 extern const struct address_space_operations f2fs_dblock_aops;
4075 extern const struct address_space_operations f2fs_node_aops;
4076 extern const struct address_space_operations f2fs_meta_aops;
4077 extern const struct inode_operations f2fs_dir_inode_operations;
4078 extern const struct inode_operations f2fs_symlink_inode_operations;
4079 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4080 extern const struct inode_operations f2fs_special_inode_operations;
4081 extern struct kmem_cache *f2fs_inode_entry_slab;
4082 
4083 /*
4084  * inline.c
4085  */
4086 bool f2fs_may_inline_data(struct inode *inode);
4087 bool f2fs_sanity_check_inline_data(struct inode *inode);
4088 bool f2fs_may_inline_dentry(struct inode *inode);
4089 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4090 void f2fs_truncate_inline_inode(struct inode *inode,
4091 						struct page *ipage, u64 from);
4092 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4093 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4094 int f2fs_convert_inline_inode(struct inode *inode);
4095 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4096 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4097 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4098 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4099 					const struct f2fs_filename *fname,
4100 					struct page **res_page);
4101 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4102 			struct page *ipage);
4103 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4104 			struct inode *inode, nid_t ino, umode_t mode);
4105 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4106 				struct page *page, struct inode *dir,
4107 				struct inode *inode);
4108 bool f2fs_empty_inline_dir(struct inode *dir);
4109 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4110 			struct fscrypt_str *fstr);
4111 int f2fs_inline_data_fiemap(struct inode *inode,
4112 			struct fiemap_extent_info *fieinfo,
4113 			__u64 start, __u64 len);
4114 
4115 /*
4116  * shrinker.c
4117  */
4118 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4119 			struct shrink_control *sc);
4120 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4121 			struct shrink_control *sc);
4122 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4123 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4124 
4125 /*
4126  * extent_cache.c
4127  */
4128 bool sanity_check_extent_cache(struct inode *inode);
4129 void f2fs_init_extent_tree(struct inode *inode);
4130 void f2fs_drop_extent_tree(struct inode *inode);
4131 void f2fs_destroy_extent_node(struct inode *inode);
4132 void f2fs_destroy_extent_tree(struct inode *inode);
4133 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4134 int __init f2fs_create_extent_cache(void);
4135 void f2fs_destroy_extent_cache(void);
4136 
4137 /* read extent cache ops */
4138 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4139 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4140 			struct extent_info *ei);
4141 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4142 			block_t *blkaddr);
4143 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4144 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4145 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4146 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4147 			int nr_shrink);
4148 
4149 /* block age extent cache ops */
4150 void f2fs_init_age_extent_tree(struct inode *inode);
4151 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4152 			struct extent_info *ei);
4153 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4154 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4155 			pgoff_t fofs, unsigned int len);
4156 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4157 			int nr_shrink);
4158 
4159 /*
4160  * sysfs.c
4161  */
4162 #define MIN_RA_MUL	2
4163 #define MAX_RA_MUL	256
4164 
4165 int __init f2fs_init_sysfs(void);
4166 void f2fs_exit_sysfs(void);
4167 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4168 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4169 
4170 /* verity.c */
4171 extern const struct fsverity_operations f2fs_verityops;
4172 
4173 /*
4174  * crypto support
4175  */
f2fs_encrypted_file(struct inode * inode)4176 static inline bool f2fs_encrypted_file(struct inode *inode)
4177 {
4178 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4179 }
4180 
f2fs_set_encrypted_inode(struct inode * inode)4181 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4182 {
4183 #ifdef CONFIG_FS_ENCRYPTION
4184 	file_set_encrypt(inode);
4185 	f2fs_set_inode_flags(inode);
4186 #endif
4187 }
4188 
4189 /*
4190  * Returns true if the reads of the inode's data need to undergo some
4191  * postprocessing step, like decryption or authenticity verification.
4192  */
f2fs_post_read_required(struct inode * inode)4193 static inline bool f2fs_post_read_required(struct inode *inode)
4194 {
4195 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4196 		f2fs_compressed_file(inode);
4197 }
4198 
4199 /*
4200  * compress.c
4201  */
4202 #ifdef CONFIG_F2FS_FS_COMPRESSION
4203 bool f2fs_is_compressed_page(struct page *page);
4204 struct page *f2fs_compress_control_page(struct page *page);
4205 int f2fs_prepare_compress_overwrite(struct inode *inode,
4206 			struct page **pagep, pgoff_t index, void **fsdata);
4207 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4208 					pgoff_t index, unsigned copied);
4209 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4210 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4211 bool f2fs_is_compress_backend_ready(struct inode *inode);
4212 int __init f2fs_init_compress_mempool(void);
4213 void f2fs_destroy_compress_mempool(void);
4214 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4215 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4216 				block_t blkaddr, bool in_task);
4217 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4218 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4219 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4220 				int index, int nr_pages, bool uptodate);
4221 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4222 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4223 int f2fs_write_multi_pages(struct compress_ctx *cc,
4224 						int *submitted,
4225 						struct writeback_control *wbc,
4226 						enum iostat_type io_type);
4227 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4228 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4229 				pgoff_t fofs, block_t blkaddr,
4230 				unsigned int llen, unsigned int c_len);
4231 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4232 				unsigned nr_pages, sector_t *last_block_in_bio,
4233 				bool is_readahead, bool for_write);
4234 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4235 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4236 				bool in_task);
4237 void f2fs_put_page_dic(struct page *page, bool in_task);
4238 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4239 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4240 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4241 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4242 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4243 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4244 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4245 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4246 int __init f2fs_init_compress_cache(void);
4247 void f2fs_destroy_compress_cache(void);
4248 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4249 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4250 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4251 						nid_t ino, block_t blkaddr);
4252 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4253 								block_t blkaddr);
4254 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4255 #define inc_compr_inode_stat(inode)					\
4256 	do {								\
4257 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4258 		sbi->compr_new_inode++;					\
4259 	} while (0)
4260 #define add_compr_block_stat(inode, blocks)				\
4261 	do {								\
4262 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4263 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4264 		sbi->compr_written_block += blocks;			\
4265 		sbi->compr_saved_block += diff;				\
4266 	} while (0)
4267 #else
f2fs_is_compressed_page(struct page * page)4268 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4269 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4270 {
4271 	if (!f2fs_compressed_file(inode))
4272 		return true;
4273 	/* not support compression */
4274 	return false;
4275 }
f2fs_compress_control_page(struct page * page)4276 static inline struct page *f2fs_compress_control_page(struct page *page)
4277 {
4278 	WARN_ON_ONCE(1);
4279 	return ERR_PTR(-EINVAL);
4280 }
f2fs_init_compress_mempool(void)4281 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4282 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4283 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4284 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4285 static inline void f2fs_end_read_compressed_page(struct page *page,
4286 				bool failed, block_t blkaddr, bool in_task)
4287 {
4288 	WARN_ON_ONCE(1);
4289 }
f2fs_put_page_dic(struct page * page,bool in_task)4290 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4291 {
4292 	WARN_ON_ONCE(1);
4293 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4294 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4295 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4296 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4297 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4298 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4299 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4300 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4301 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4302 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4303 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4304 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4305 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4306 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4307 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4308 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4309 							nid_t ino) { }
4310 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4311 static inline void f2fs_update_read_extent_tree_range_compressed(
4312 				struct inode *inode,
4313 				pgoff_t fofs, block_t blkaddr,
4314 				unsigned int llen, unsigned int c_len) { }
4315 #endif
4316 
set_compress_context(struct inode * inode)4317 static inline int set_compress_context(struct inode *inode)
4318 {
4319 #ifdef CONFIG_F2FS_FS_COMPRESSION
4320 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4321 
4322 	F2FS_I(inode)->i_compress_algorithm =
4323 			F2FS_OPTION(sbi).compress_algorithm;
4324 	F2FS_I(inode)->i_log_cluster_size =
4325 			F2FS_OPTION(sbi).compress_log_size;
4326 	F2FS_I(inode)->i_compress_flag =
4327 			F2FS_OPTION(sbi).compress_chksum ?
4328 				BIT(COMPRESS_CHKSUM) : 0;
4329 	F2FS_I(inode)->i_cluster_size =
4330 			BIT(F2FS_I(inode)->i_log_cluster_size);
4331 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4332 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4333 			F2FS_OPTION(sbi).compress_level)
4334 		F2FS_I(inode)->i_compress_level =
4335 				F2FS_OPTION(sbi).compress_level;
4336 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4337 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4338 	stat_inc_compr_inode(inode);
4339 	inc_compr_inode_stat(inode);
4340 	f2fs_mark_inode_dirty_sync(inode, true);
4341 	return 0;
4342 #else
4343 	return -EOPNOTSUPP;
4344 #endif
4345 }
4346 
f2fs_disable_compressed_file(struct inode * inode)4347 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4348 {
4349 	struct f2fs_inode_info *fi = F2FS_I(inode);
4350 
4351 	if (!f2fs_compressed_file(inode))
4352 		return true;
4353 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4354 		return false;
4355 
4356 	fi->i_flags &= ~F2FS_COMPR_FL;
4357 	stat_dec_compr_inode(inode);
4358 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4359 	f2fs_mark_inode_dirty_sync(inode, true);
4360 	return true;
4361 }
4362 
4363 #define F2FS_FEATURE_FUNCS(name, flagname) \
4364 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4365 { \
4366 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4367 }
4368 
4369 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4370 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4371 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4372 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4373 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4374 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4375 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4376 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4377 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4378 F2FS_FEATURE_FUNCS(verity, VERITY);
4379 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4380 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4381 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4382 F2FS_FEATURE_FUNCS(readonly, RO);
4383 
4384 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4385 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4386 				    block_t blkaddr)
4387 {
4388 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4389 
4390 	return test_bit(zno, FDEV(devi).blkz_seq);
4391 }
4392 #endif
4393 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4394 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4395 {
4396 	return f2fs_sb_has_blkzoned(sbi);
4397 }
4398 
f2fs_bdev_support_discard(struct block_device * bdev)4399 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4400 {
4401 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4402 	       bdev_is_zoned(bdev);
4403 }
4404 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4405 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4406 {
4407 	int i;
4408 
4409 	if (!f2fs_is_multi_device(sbi))
4410 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4411 
4412 	for (i = 0; i < sbi->s_ndevs; i++)
4413 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4414 			return true;
4415 	return false;
4416 }
4417 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4418 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4419 {
4420 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4421 					f2fs_hw_should_discard(sbi);
4422 }
4423 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4424 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4425 {
4426 	int i;
4427 
4428 	if (!f2fs_is_multi_device(sbi))
4429 		return bdev_read_only(sbi->sb->s_bdev);
4430 
4431 	for (i = 0; i < sbi->s_ndevs; i++)
4432 		if (bdev_read_only(FDEV(i).bdev))
4433 			return true;
4434 	return false;
4435 }
4436 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4437 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4438 {
4439 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4440 }
4441 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4442 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4443 {
4444 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4445 }
4446 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4447 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4448 {
4449 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4450 }
4451 
f2fs_may_compress(struct inode * inode)4452 static inline bool f2fs_may_compress(struct inode *inode)
4453 {
4454 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4455 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4456 		return false;
4457 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4458 }
4459 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4460 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4461 						u64 blocks, bool add)
4462 {
4463 	struct f2fs_inode_info *fi = F2FS_I(inode);
4464 	int diff = fi->i_cluster_size - blocks;
4465 
4466 	/* don't update i_compr_blocks if saved blocks were released */
4467 	if (!add && !atomic_read(&fi->i_compr_blocks))
4468 		return;
4469 
4470 	if (add) {
4471 		atomic_add(diff, &fi->i_compr_blocks);
4472 		stat_add_compr_blocks(inode, diff);
4473 	} else {
4474 		atomic_sub(diff, &fi->i_compr_blocks);
4475 		stat_sub_compr_blocks(inode, diff);
4476 	}
4477 	f2fs_mark_inode_dirty_sync(inode, true);
4478 }
4479 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4480 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4481 								int flag)
4482 {
4483 	if (!f2fs_is_multi_device(sbi))
4484 		return false;
4485 	if (flag != F2FS_GET_BLOCK_DIO)
4486 		return false;
4487 	return sbi->aligned_blksize;
4488 }
4489 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4490 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4491 {
4492 	return fsverity_active(inode) &&
4493 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4494 }
4495 
4496 #ifdef CONFIG_F2FS_FAULT_INJECTION
4497 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4498 							unsigned int type);
4499 #else
4500 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4501 #endif
4502 
is_journalled_quota(struct f2fs_sb_info * sbi)4503 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4504 {
4505 #ifdef CONFIG_QUOTA
4506 	if (f2fs_sb_has_quota_ino(sbi))
4507 		return true;
4508 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4509 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4510 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4511 		return true;
4512 #endif
4513 	return false;
4514 }
4515 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4516 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4517 {
4518 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4519 }
4520 
f2fs_io_schedule_timeout(long timeout)4521 static inline void f2fs_io_schedule_timeout(long timeout)
4522 {
4523 	set_current_state(TASK_UNINTERRUPTIBLE);
4524 	io_schedule_timeout(timeout);
4525 }
4526 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4527 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4528 					enum page_type type)
4529 {
4530 	if (unlikely(f2fs_cp_error(sbi)))
4531 		return;
4532 
4533 	if (ofs == sbi->page_eio_ofs[type]) {
4534 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4535 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4536 	} else {
4537 		sbi->page_eio_ofs[type] = ofs;
4538 		sbi->page_eio_cnt[type] = 0;
4539 	}
4540 }
4541 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4542 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4543 {
4544 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4545 }
4546 
4547 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4548 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4549 
4550 #endif /* _LINUX_F2FS_H */
4551