1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_trace.h"
20 #include "xfs_trans.h"
21 #include "xfs_ag.h"
22
23
24 STATIC struct xfs_btree_cur *
xfs_allocbt_dup_cursor(struct xfs_btree_cur * cur)25 xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
27 {
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
30 }
31
32 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)33 xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 const union xfs_btree_ptr *ptr,
36 int inc)
37 {
38 struct xfs_buf *agbp = cur->bc_ag.agbp;
39 struct xfs_agf *agf = agbp->b_addr;
40 int btnum = cur->bc_btnum;
41
42 ASSERT(ptr->s != 0);
43
44 agf->agf_roots[btnum] = ptr->s;
45 be32_add_cpu(&agf->agf_levels[btnum], inc);
46 cur->bc_ag.pag->pagf_levels[btnum] += inc;
47
48 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
49 }
50
51 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)52 xfs_allocbt_alloc_block(
53 struct xfs_btree_cur *cur,
54 const union xfs_btree_ptr *start,
55 union xfs_btree_ptr *new,
56 int *stat)
57 {
58 int error;
59 xfs_agblock_t bno;
60
61 /* Allocate the new block from the freelist. If we can't, give up. */
62 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
63 &bno, 1);
64 if (error)
65 return error;
66
67 if (bno == NULLAGBLOCK) {
68 *stat = 0;
69 return 0;
70 }
71
72 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
73 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agbp->b_pag, bno, 1, false);
74
75 new->s = cpu_to_be32(bno);
76
77 *stat = 1;
78 return 0;
79 }
80
81 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)82 xfs_allocbt_free_block(
83 struct xfs_btree_cur *cur,
84 struct xfs_buf *bp)
85 {
86 struct xfs_buf *agbp = cur->bc_ag.agbp;
87 xfs_agblock_t bno;
88 int error;
89
90 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
91 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
92 if (error)
93 return error;
94
95 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
96 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
97 XFS_EXTENT_BUSY_SKIP_DISCARD);
98 return 0;
99 }
100
101 /*
102 * Update the longest extent in the AGF
103 */
104 STATIC void
xfs_allocbt_update_lastrec(struct xfs_btree_cur * cur,const struct xfs_btree_block * block,const union xfs_btree_rec * rec,int ptr,int reason)105 xfs_allocbt_update_lastrec(
106 struct xfs_btree_cur *cur,
107 const struct xfs_btree_block *block,
108 const union xfs_btree_rec *rec,
109 int ptr,
110 int reason)
111 {
112 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
113 struct xfs_perag *pag;
114 __be32 len;
115 int numrecs;
116
117 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
118
119 switch (reason) {
120 case LASTREC_UPDATE:
121 /*
122 * If this is the last leaf block and it's the last record,
123 * then update the size of the longest extent in the AG.
124 */
125 if (ptr != xfs_btree_get_numrecs(block))
126 return;
127 len = rec->alloc.ar_blockcount;
128 break;
129 case LASTREC_INSREC:
130 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
131 be32_to_cpu(agf->agf_longest))
132 return;
133 len = rec->alloc.ar_blockcount;
134 break;
135 case LASTREC_DELREC:
136 numrecs = xfs_btree_get_numrecs(block);
137 if (ptr <= numrecs)
138 return;
139 ASSERT(ptr == numrecs + 1);
140
141 if (numrecs) {
142 xfs_alloc_rec_t *rrp;
143
144 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
145 len = rrp->ar_blockcount;
146 } else {
147 len = 0;
148 }
149
150 break;
151 default:
152 ASSERT(0);
153 return;
154 }
155
156 agf->agf_longest = len;
157 pag = cur->bc_ag.agbp->b_pag;
158 pag->pagf_longest = be32_to_cpu(len);
159 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
160 }
161
162 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)163 xfs_allocbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166 {
167 return cur->bc_mp->m_alloc_mnr[level != 0];
168 }
169
170 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)171 xfs_allocbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174 {
175 return cur->bc_mp->m_alloc_mxr[level != 0];
176 }
177
178 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)179 xfs_allocbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 const union xfs_btree_rec *rec)
182 {
183 key->alloc.ar_startblock = rec->alloc.ar_startblock;
184 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
185 }
186
187 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)188 xfs_bnobt_init_high_key_from_rec(
189 union xfs_btree_key *key,
190 const union xfs_btree_rec *rec)
191 {
192 __u32 x;
193
194 x = be32_to_cpu(rec->alloc.ar_startblock);
195 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
196 key->alloc.ar_startblock = cpu_to_be32(x);
197 key->alloc.ar_blockcount = 0;
198 }
199
200 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)201 xfs_cntbt_init_high_key_from_rec(
202 union xfs_btree_key *key,
203 const union xfs_btree_rec *rec)
204 {
205 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
206 key->alloc.ar_startblock = 0;
207 }
208
209 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)210 xfs_allocbt_init_rec_from_cur(
211 struct xfs_btree_cur *cur,
212 union xfs_btree_rec *rec)
213 {
214 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
215 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
216 }
217
218 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)219 xfs_allocbt_init_ptr_from_cur(
220 struct xfs_btree_cur *cur,
221 union xfs_btree_ptr *ptr)
222 {
223 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
224
225 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226
227 ptr->s = agf->agf_roots[cur->bc_btnum];
228 }
229
230 STATIC int64_t
xfs_bnobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)231 xfs_bnobt_key_diff(
232 struct xfs_btree_cur *cur,
233 const union xfs_btree_key *key)
234 {
235 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
236 const struct xfs_alloc_rec *kp = &key->alloc;
237
238 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
239 }
240
241 STATIC int64_t
xfs_cntbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)242 xfs_cntbt_key_diff(
243 struct xfs_btree_cur *cur,
244 const union xfs_btree_key *key)
245 {
246 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
247 const struct xfs_alloc_rec *kp = &key->alloc;
248 int64_t diff;
249
250 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
251 if (diff)
252 return diff;
253
254 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
255 }
256
257 STATIC int64_t
xfs_bnobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)258 xfs_bnobt_diff_two_keys(
259 struct xfs_btree_cur *cur,
260 const union xfs_btree_key *k1,
261 const union xfs_btree_key *k2)
262 {
263 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
264 be32_to_cpu(k2->alloc.ar_startblock);
265 }
266
267 STATIC int64_t
xfs_cntbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)268 xfs_cntbt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 const union xfs_btree_key *k1,
271 const union xfs_btree_key *k2)
272 {
273 int64_t diff;
274
275 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
276 be32_to_cpu(k2->alloc.ar_blockcount);
277 if (diff)
278 return diff;
279
280 return be32_to_cpu(k1->alloc.ar_startblock) -
281 be32_to_cpu(k2->alloc.ar_startblock);
282 }
283
284 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)285 xfs_allocbt_verify(
286 struct xfs_buf *bp)
287 {
288 struct xfs_mount *mp = bp->b_mount;
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_perag *pag = bp->b_pag;
291 xfs_failaddr_t fa;
292 unsigned int level;
293 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
294
295 if (!xfs_verify_magic(bp, block->bb_magic))
296 return __this_address;
297
298 if (xfs_has_crc(mp)) {
299 fa = xfs_btree_sblock_v5hdr_verify(bp);
300 if (fa)
301 return fa;
302 }
303
304 /*
305 * The perag may not be attached during grow operations or fully
306 * initialized from the AGF during log recovery. Therefore we can only
307 * check against maximum tree depth from those contexts.
308 *
309 * Otherwise check against the per-tree limit. Peek at one of the
310 * verifier magic values to determine the type of tree we're verifying
311 * against.
312 */
313 level = be16_to_cpu(block->bb_level);
314 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
315 btnum = XFS_BTNUM_CNTi;
316 if (pag && pag->pagf_init) {
317 if (level >= pag->pagf_levels[btnum])
318 return __this_address;
319 } else if (level >= mp->m_ag_maxlevels)
320 return __this_address;
321
322 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
323 }
324
325 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)326 xfs_allocbt_read_verify(
327 struct xfs_buf *bp)
328 {
329 xfs_failaddr_t fa;
330
331 if (!xfs_btree_sblock_verify_crc(bp))
332 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333 else {
334 fa = xfs_allocbt_verify(bp);
335 if (fa)
336 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337 }
338
339 if (bp->b_error)
340 trace_xfs_btree_corrupt(bp, _RET_IP_);
341 }
342
343 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)344 xfs_allocbt_write_verify(
345 struct xfs_buf *bp)
346 {
347 xfs_failaddr_t fa;
348
349 fa = xfs_allocbt_verify(bp);
350 if (fa) {
351 trace_xfs_btree_corrupt(bp, _RET_IP_);
352 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353 return;
354 }
355 xfs_btree_sblock_calc_crc(bp);
356
357 }
358
359 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
360 .name = "xfs_bnobt",
361 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
362 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
363 .verify_read = xfs_allocbt_read_verify,
364 .verify_write = xfs_allocbt_write_verify,
365 .verify_struct = xfs_allocbt_verify,
366 };
367
368 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
369 .name = "xfs_cntbt",
370 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
371 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
372 .verify_read = xfs_allocbt_read_verify,
373 .verify_write = xfs_allocbt_write_verify,
374 .verify_struct = xfs_allocbt_verify,
375 };
376
377 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)378 xfs_bnobt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 const union xfs_btree_key *k1,
381 const union xfs_btree_key *k2)
382 {
383 return be32_to_cpu(k1->alloc.ar_startblock) <
384 be32_to_cpu(k2->alloc.ar_startblock);
385 }
386
387 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)388 xfs_bnobt_recs_inorder(
389 struct xfs_btree_cur *cur,
390 const union xfs_btree_rec *r1,
391 const union xfs_btree_rec *r2)
392 {
393 return be32_to_cpu(r1->alloc.ar_startblock) +
394 be32_to_cpu(r1->alloc.ar_blockcount) <=
395 be32_to_cpu(r2->alloc.ar_startblock);
396 }
397
398 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)399 xfs_cntbt_keys_inorder(
400 struct xfs_btree_cur *cur,
401 const union xfs_btree_key *k1,
402 const union xfs_btree_key *k2)
403 {
404 return be32_to_cpu(k1->alloc.ar_blockcount) <
405 be32_to_cpu(k2->alloc.ar_blockcount) ||
406 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
407 be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock));
409 }
410
411 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)412 xfs_cntbt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 const union xfs_btree_rec *r1,
415 const union xfs_btree_rec *r2)
416 {
417 return be32_to_cpu(r1->alloc.ar_blockcount) <
418 be32_to_cpu(r2->alloc.ar_blockcount) ||
419 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
420 be32_to_cpu(r1->alloc.ar_startblock) <
421 be32_to_cpu(r2->alloc.ar_startblock));
422 }
423
424 static const struct xfs_btree_ops xfs_bnobt_ops = {
425 .rec_len = sizeof(xfs_alloc_rec_t),
426 .key_len = sizeof(xfs_alloc_key_t),
427
428 .dup_cursor = xfs_allocbt_dup_cursor,
429 .set_root = xfs_allocbt_set_root,
430 .alloc_block = xfs_allocbt_alloc_block,
431 .free_block = xfs_allocbt_free_block,
432 .update_lastrec = xfs_allocbt_update_lastrec,
433 .get_minrecs = xfs_allocbt_get_minrecs,
434 .get_maxrecs = xfs_allocbt_get_maxrecs,
435 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
436 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
437 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
438 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
439 .key_diff = xfs_bnobt_key_diff,
440 .buf_ops = &xfs_bnobt_buf_ops,
441 .diff_two_keys = xfs_bnobt_diff_two_keys,
442 .keys_inorder = xfs_bnobt_keys_inorder,
443 .recs_inorder = xfs_bnobt_recs_inorder,
444 };
445
446 static const struct xfs_btree_ops xfs_cntbt_ops = {
447 .rec_len = sizeof(xfs_alloc_rec_t),
448 .key_len = sizeof(xfs_alloc_key_t),
449
450 .dup_cursor = xfs_allocbt_dup_cursor,
451 .set_root = xfs_allocbt_set_root,
452 .alloc_block = xfs_allocbt_alloc_block,
453 .free_block = xfs_allocbt_free_block,
454 .update_lastrec = xfs_allocbt_update_lastrec,
455 .get_minrecs = xfs_allocbt_get_minrecs,
456 .get_maxrecs = xfs_allocbt_get_maxrecs,
457 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
458 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
459 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
460 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
461 .key_diff = xfs_cntbt_key_diff,
462 .buf_ops = &xfs_cntbt_buf_ops,
463 .diff_two_keys = xfs_cntbt_diff_two_keys,
464 .keys_inorder = xfs_cntbt_keys_inorder,
465 .recs_inorder = xfs_cntbt_recs_inorder,
466 };
467
468 /* Allocate most of a new allocation btree cursor. */
469 STATIC struct xfs_btree_cur *
xfs_allocbt_init_common(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_btnum_t btnum)470 xfs_allocbt_init_common(
471 struct xfs_mount *mp,
472 struct xfs_trans *tp,
473 struct xfs_perag *pag,
474 xfs_btnum_t btnum)
475 {
476 struct xfs_btree_cur *cur;
477
478 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
479
480 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
481
482 cur->bc_tp = tp;
483 cur->bc_mp = mp;
484 cur->bc_btnum = btnum;
485 cur->bc_blocklog = mp->m_sb.sb_blocklog;
486 cur->bc_ag.abt.active = false;
487
488 if (btnum == XFS_BTNUM_CNT) {
489 cur->bc_ops = &xfs_cntbt_ops;
490 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
491 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
492 } else {
493 cur->bc_ops = &xfs_bnobt_ops;
494 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
495 }
496
497 /* take a reference for the cursor */
498 atomic_inc(&pag->pag_ref);
499 cur->bc_ag.pag = pag;
500
501 if (xfs_has_crc(mp))
502 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
503
504 return cur;
505 }
506
507 /*
508 * Allocate a new allocation btree cursor.
509 */
510 struct xfs_btree_cur * /* new alloc btree cursor */
xfs_allocbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag,xfs_btnum_t btnum)511 xfs_allocbt_init_cursor(
512 struct xfs_mount *mp, /* file system mount point */
513 struct xfs_trans *tp, /* transaction pointer */
514 struct xfs_buf *agbp, /* buffer for agf structure */
515 struct xfs_perag *pag,
516 xfs_btnum_t btnum) /* btree identifier */
517 {
518 struct xfs_agf *agf = agbp->b_addr;
519 struct xfs_btree_cur *cur;
520
521 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
522 if (btnum == XFS_BTNUM_CNT)
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
524 else
525 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
526
527 cur->bc_ag.agbp = agbp;
528
529 return cur;
530 }
531
532 /* Create a free space btree cursor with a fake root for staging. */
533 struct xfs_btree_cur *
xfs_allocbt_stage_cursor(struct xfs_mount * mp,struct xbtree_afakeroot * afake,struct xfs_perag * pag,xfs_btnum_t btnum)534 xfs_allocbt_stage_cursor(
535 struct xfs_mount *mp,
536 struct xbtree_afakeroot *afake,
537 struct xfs_perag *pag,
538 xfs_btnum_t btnum)
539 {
540 struct xfs_btree_cur *cur;
541
542 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
543 xfs_btree_stage_afakeroot(cur, afake);
544 return cur;
545 }
546
547 /*
548 * Install a new free space btree root. Caller is responsible for invalidating
549 * and freeing the old btree blocks.
550 */
551 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)552 xfs_allocbt_commit_staged_btree(
553 struct xfs_btree_cur *cur,
554 struct xfs_trans *tp,
555 struct xfs_buf *agbp)
556 {
557 struct xfs_agf *agf = agbp->b_addr;
558 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
559
560 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
561
562 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
563 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
564 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
565
566 if (cur->bc_btnum == XFS_BTNUM_BNO) {
567 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
568 } else {
569 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
570 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
571 }
572 }
573
574 /*
575 * Calculate number of records in an alloc btree block.
576 */
577 int
xfs_allocbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)578 xfs_allocbt_maxrecs(
579 struct xfs_mount *mp,
580 int blocklen,
581 int leaf)
582 {
583 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
584
585 if (leaf)
586 return blocklen / sizeof(xfs_alloc_rec_t);
587 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
588 }
589
590 /* Calculate the freespace btree size for some records. */
591 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)592 xfs_allocbt_calc_size(
593 struct xfs_mount *mp,
594 unsigned long long len)
595 {
596 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
597 }
598