1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_da_format.h"
15 #include "xfs_da_btree.h"
16 #include "xfs_inode.h"
17 #include "xfs_bmap_btree.h"
18 #include "xfs_quota.h"
19 #include "xfs_trans.h"
20 #include "xfs_qm.h"
21 #include "xfs_trans_space.h"
22
23 #define _ALLOC true
24 #define _FREE false
25
26 /*
27 * A buffer has a format structure overhead in the log in addition
28 * to the data, so we need to take this into account when reserving
29 * space in a transaction for a buffer. Round the space required up
30 * to a multiple of 128 bytes so that we don't change the historical
31 * reservation that has been used for this overhead.
32 */
33 STATIC uint
xfs_buf_log_overhead(void)34 xfs_buf_log_overhead(void)
35 {
36 return round_up(sizeof(struct xlog_op_header) +
37 sizeof(struct xfs_buf_log_format), 128);
38 }
39
40 /*
41 * Calculate out transaction log reservation per item in bytes.
42 *
43 * The nbufs argument is used to indicate the number of items that
44 * will be changed in a transaction. size is used to tell how many
45 * bytes should be reserved per item.
46 */
47 STATIC uint
xfs_calc_buf_res(uint nbufs,uint size)48 xfs_calc_buf_res(
49 uint nbufs,
50 uint size)
51 {
52 return nbufs * (size + xfs_buf_log_overhead());
53 }
54
55 /*
56 * Per-extent log reservation for the btree changes involved in freeing or
57 * allocating an extent. In classic XFS there were two trees that will be
58 * modified (bnobt + cntbt). With rmap enabled, there are three trees
59 * (rmapbt). With reflink, there are four trees (refcountbt). The number of
60 * blocks reserved is based on the formula:
61 *
62 * num trees * ((2 blocks/level * max depth) - 1)
63 *
64 * Keep in mind that max depth is calculated separately for each type of tree.
65 */
66 uint
xfs_allocfree_log_count(struct xfs_mount * mp,uint num_ops)67 xfs_allocfree_log_count(
68 struct xfs_mount *mp,
69 uint num_ops)
70 {
71 uint blocks;
72
73 blocks = num_ops * 2 * (2 * mp->m_ag_maxlevels - 1);
74 if (xfs_has_rmapbt(mp))
75 blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
76 if (xfs_has_reflink(mp))
77 blocks += num_ops * (2 * mp->m_refc_maxlevels - 1);
78
79 return blocks;
80 }
81
82 /*
83 * Logging inodes is really tricksy. They are logged in memory format,
84 * which means that what we write into the log doesn't directly translate into
85 * the amount of space they use on disk.
86 *
87 * Case in point - btree format forks in memory format use more space than the
88 * on-disk format. In memory, the buffer contains a normal btree block header so
89 * the btree code can treat it as though it is just another generic buffer.
90 * However, when we write it to the inode fork, we don't write all of this
91 * header as it isn't needed. e.g. the root is only ever in the inode, so
92 * there's no need for sibling pointers which would waste 16 bytes of space.
93 *
94 * Hence when we have an inode with a maximally sized btree format fork, then
95 * amount of information we actually log is greater than the size of the inode
96 * on disk. Hence we need an inode reservation function that calculates all this
97 * correctly. So, we log:
98 *
99 * - 4 log op headers for object
100 * - for the ilf, the inode core and 2 forks
101 * - inode log format object
102 * - the inode core
103 * - two inode forks containing bmap btree root blocks.
104 * - the btree data contained by both forks will fit into the inode size,
105 * hence when combined with the inode core above, we have a total of the
106 * actual inode size.
107 * - the BMBT headers need to be accounted separately, as they are
108 * additional to the records and pointers that fit inside the inode
109 * forks.
110 */
111 STATIC uint
xfs_calc_inode_res(struct xfs_mount * mp,uint ninodes)112 xfs_calc_inode_res(
113 struct xfs_mount *mp,
114 uint ninodes)
115 {
116 return ninodes *
117 (4 * sizeof(struct xlog_op_header) +
118 sizeof(struct xfs_inode_log_format) +
119 mp->m_sb.sb_inodesize +
120 2 * XFS_BMBT_BLOCK_LEN(mp));
121 }
122
123 /*
124 * Inode btree record insertion/removal modifies the inode btree and free space
125 * btrees (since the inobt does not use the agfl). This requires the following
126 * reservation:
127 *
128 * the inode btree: max depth * blocksize
129 * the allocation btrees: 2 trees * (max depth - 1) * block size
130 *
131 * The caller must account for SB and AG header modifications, etc.
132 */
133 STATIC uint
xfs_calc_inobt_res(struct xfs_mount * mp)134 xfs_calc_inobt_res(
135 struct xfs_mount *mp)
136 {
137 return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
138 XFS_FSB_TO_B(mp, 1)) +
139 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
140 XFS_FSB_TO_B(mp, 1));
141 }
142
143 /*
144 * The free inode btree is a conditional feature. The behavior differs slightly
145 * from that of the traditional inode btree in that the finobt tracks records
146 * for inode chunks with at least one free inode. A record can be removed from
147 * the tree during individual inode allocation. Therefore the finobt
148 * reservation is unconditional for both the inode chunk allocation and
149 * individual inode allocation (modify) cases.
150 *
151 * Behavior aside, the reservation for finobt modification is equivalent to the
152 * traditional inobt: cover a full finobt shape change plus block allocation.
153 */
154 STATIC uint
xfs_calc_finobt_res(struct xfs_mount * mp)155 xfs_calc_finobt_res(
156 struct xfs_mount *mp)
157 {
158 if (!xfs_has_finobt(mp))
159 return 0;
160
161 return xfs_calc_inobt_res(mp);
162 }
163
164 /*
165 * Calculate the reservation required to allocate or free an inode chunk. This
166 * includes:
167 *
168 * the allocation btrees: 2 trees * (max depth - 1) * block size
169 * the inode chunk: m_ino_geo.ialloc_blks * N
170 *
171 * The size N of the inode chunk reservation depends on whether it is for
172 * allocation or free and which type of create transaction is in use. An inode
173 * chunk free always invalidates the buffers and only requires reservation for
174 * headers (N == 0). An inode chunk allocation requires a chunk sized
175 * reservation on v4 and older superblocks to initialize the chunk. No chunk
176 * reservation is required for allocation on v5 supers, which use ordered
177 * buffers to initialize.
178 */
179 STATIC uint
xfs_calc_inode_chunk_res(struct xfs_mount * mp,bool alloc)180 xfs_calc_inode_chunk_res(
181 struct xfs_mount *mp,
182 bool alloc)
183 {
184 uint res, size = 0;
185
186 res = xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
187 XFS_FSB_TO_B(mp, 1));
188 if (alloc) {
189 /* icreate tx uses ordered buffers */
190 if (xfs_has_v3inodes(mp))
191 return res;
192 size = XFS_FSB_TO_B(mp, 1);
193 }
194
195 res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
196 return res;
197 }
198
199 /*
200 * Per-extent log reservation for the btree changes involved in freeing or
201 * allocating a realtime extent. We have to be able to log as many rtbitmap
202 * blocks as needed to mark inuse MAXEXTLEN blocks' worth of realtime extents,
203 * as well as the realtime summary block.
204 */
205 static unsigned int
xfs_rtalloc_log_count(struct xfs_mount * mp,unsigned int num_ops)206 xfs_rtalloc_log_count(
207 struct xfs_mount *mp,
208 unsigned int num_ops)
209 {
210 unsigned int blksz = XFS_FSB_TO_B(mp, 1);
211 unsigned int rtbmp_bytes;
212
213 rtbmp_bytes = (MAXEXTLEN / mp->m_sb.sb_rextsize) / NBBY;
214 return (howmany(rtbmp_bytes, blksz) + 1) * num_ops;
215 }
216
217 /*
218 * Various log reservation values.
219 *
220 * These are based on the size of the file system block because that is what
221 * most transactions manipulate. Each adds in an additional 128 bytes per
222 * item logged to try to account for the overhead of the transaction mechanism.
223 *
224 * Note: Most of the reservations underestimate the number of allocation
225 * groups into which they could free extents in the xfs_defer_finish() call.
226 * This is because the number in the worst case is quite high and quite
227 * unusual. In order to fix this we need to change xfs_defer_finish() to free
228 * extents in only a single AG at a time. This will require changes to the
229 * EFI code as well, however, so that the EFI for the extents not freed is
230 * logged again in each transaction. See SGI PV #261917.
231 *
232 * Reservation functions here avoid a huge stack in xfs_trans_init due to
233 * register overflow from temporaries in the calculations.
234 */
235
236
237 /*
238 * In a write transaction we can allocate a maximum of 2
239 * extents. This gives (t1):
240 * the inode getting the new extents: inode size
241 * the inode's bmap btree: max depth * block size
242 * the agfs of the ags from which the extents are allocated: 2 * sector
243 * the superblock free block counter: sector size
244 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
245 * Or, if we're writing to a realtime file (t2):
246 * the inode getting the new extents: inode size
247 * the inode's bmap btree: max depth * block size
248 * the agfs of the ags from which the extents are allocated: 2 * sector
249 * the superblock free block counter: sector size
250 * the realtime bitmap: ((MAXEXTLEN / rtextsize) / NBBY) bytes
251 * the realtime summary: 1 block
252 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
253 * And the bmap_finish transaction can free bmap blocks in a join (t3):
254 * the agfs of the ags containing the blocks: 2 * sector size
255 * the agfls of the ags containing the blocks: 2 * sector size
256 * the super block free block counter: sector size
257 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
258 */
259 STATIC uint
xfs_calc_write_reservation(struct xfs_mount * mp)260 xfs_calc_write_reservation(
261 struct xfs_mount *mp)
262 {
263 unsigned int t1, t2, t3;
264 unsigned int blksz = XFS_FSB_TO_B(mp, 1);
265
266 t1 = xfs_calc_inode_res(mp, 1) +
267 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
268 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
269 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), blksz);
270
271 if (xfs_has_realtime(mp)) {
272 t2 = xfs_calc_inode_res(mp, 1) +
273 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
274 blksz) +
275 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
276 xfs_calc_buf_res(xfs_rtalloc_log_count(mp, 1), blksz) +
277 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), blksz);
278 } else {
279 t2 = 0;
280 }
281
282 t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
283 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), blksz);
284
285 return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
286 }
287
288 /*
289 * In truncating a file we free up to two extents at once. We can modify (t1):
290 * the inode being truncated: inode size
291 * the inode's bmap btree: (max depth + 1) * block size
292 * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
293 * the agf for each of the ags: 4 * sector size
294 * the agfl for each of the ags: 4 * sector size
295 * the super block to reflect the freed blocks: sector size
296 * worst case split in allocation btrees per extent assuming 4 extents:
297 * 4 exts * 2 trees * (2 * max depth - 1) * block size
298 * Or, if it's a realtime file (t3):
299 * the agf for each of the ags: 2 * sector size
300 * the agfl for each of the ags: 2 * sector size
301 * the super block to reflect the freed blocks: sector size
302 * the realtime bitmap: 2 exts * ((MAXEXTLEN / rtextsize) / NBBY) bytes
303 * the realtime summary: 2 exts * 1 block
304 * worst case split in allocation btrees per extent assuming 2 extents:
305 * 2 exts * 2 trees * (2 * max depth - 1) * block size
306 */
307 STATIC uint
xfs_calc_itruncate_reservation(struct xfs_mount * mp)308 xfs_calc_itruncate_reservation(
309 struct xfs_mount *mp)
310 {
311 unsigned int t1, t2, t3;
312 unsigned int blksz = XFS_FSB_TO_B(mp, 1);
313
314 t1 = xfs_calc_inode_res(mp, 1) +
315 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
316
317 t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
318 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 4), blksz);
319
320 if (xfs_has_realtime(mp)) {
321 t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
322 xfs_calc_buf_res(xfs_rtalloc_log_count(mp, 2), blksz) +
323 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), blksz);
324 } else {
325 t3 = 0;
326 }
327
328 return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
329 }
330
331 /*
332 * In renaming a files we can modify:
333 * the four inodes involved: 4 * inode size
334 * the two directory btrees: 2 * (max depth + v2) * dir block size
335 * the two directory bmap btrees: 2 * max depth * block size
336 * And the bmap_finish transaction can free dir and bmap blocks (two sets
337 * of bmap blocks) giving:
338 * the agf for the ags in which the blocks live: 3 * sector size
339 * the agfl for the ags in which the blocks live: 3 * sector size
340 * the superblock for the free block count: sector size
341 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
342 */
343 STATIC uint
xfs_calc_rename_reservation(struct xfs_mount * mp)344 xfs_calc_rename_reservation(
345 struct xfs_mount *mp)
346 {
347 return XFS_DQUOT_LOGRES(mp) +
348 max((xfs_calc_inode_res(mp, 4) +
349 xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
350 XFS_FSB_TO_B(mp, 1))),
351 (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
352 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 3),
353 XFS_FSB_TO_B(mp, 1))));
354 }
355
356 /*
357 * For removing an inode from unlinked list at first, we can modify:
358 * the agi hash list and counters: sector size
359 * the on disk inode before ours in the agi hash list: inode cluster size
360 * the on disk inode in the agi hash list: inode cluster size
361 */
362 STATIC uint
xfs_calc_iunlink_remove_reservation(struct xfs_mount * mp)363 xfs_calc_iunlink_remove_reservation(
364 struct xfs_mount *mp)
365 {
366 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
367 2 * M_IGEO(mp)->inode_cluster_size;
368 }
369
370 /*
371 * For creating a link to an inode:
372 * the parent directory inode: inode size
373 * the linked inode: inode size
374 * the directory btree could split: (max depth + v2) * dir block size
375 * the directory bmap btree could join or split: (max depth + v2) * blocksize
376 * And the bmap_finish transaction can free some bmap blocks giving:
377 * the agf for the ag in which the blocks live: sector size
378 * the agfl for the ag in which the blocks live: sector size
379 * the superblock for the free block count: sector size
380 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
381 */
382 STATIC uint
xfs_calc_link_reservation(struct xfs_mount * mp)383 xfs_calc_link_reservation(
384 struct xfs_mount *mp)
385 {
386 return XFS_DQUOT_LOGRES(mp) +
387 xfs_calc_iunlink_remove_reservation(mp) +
388 max((xfs_calc_inode_res(mp, 2) +
389 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
390 XFS_FSB_TO_B(mp, 1))),
391 (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
392 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
393 XFS_FSB_TO_B(mp, 1))));
394 }
395
396 /*
397 * For adding an inode to unlinked list we can modify:
398 * the agi hash list: sector size
399 * the on disk inode: inode cluster size
400 */
401 STATIC uint
xfs_calc_iunlink_add_reservation(xfs_mount_t * mp)402 xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
403 {
404 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
405 M_IGEO(mp)->inode_cluster_size;
406 }
407
408 /*
409 * For removing a directory entry we can modify:
410 * the parent directory inode: inode size
411 * the removed inode: inode size
412 * the directory btree could join: (max depth + v2) * dir block size
413 * the directory bmap btree could join or split: (max depth + v2) * blocksize
414 * And the bmap_finish transaction can free the dir and bmap blocks giving:
415 * the agf for the ag in which the blocks live: 2 * sector size
416 * the agfl for the ag in which the blocks live: 2 * sector size
417 * the superblock for the free block count: sector size
418 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
419 */
420 STATIC uint
xfs_calc_remove_reservation(struct xfs_mount * mp)421 xfs_calc_remove_reservation(
422 struct xfs_mount *mp)
423 {
424 return XFS_DQUOT_LOGRES(mp) +
425 xfs_calc_iunlink_add_reservation(mp) +
426 max((xfs_calc_inode_res(mp, 2) +
427 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
428 XFS_FSB_TO_B(mp, 1))),
429 (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
430 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2),
431 XFS_FSB_TO_B(mp, 1))));
432 }
433
434 /*
435 * For create, break it in to the two cases that the transaction
436 * covers. We start with the modify case - allocation done by modification
437 * of the state of existing inodes - and the allocation case.
438 */
439
440 /*
441 * For create we can modify:
442 * the parent directory inode: inode size
443 * the new inode: inode size
444 * the inode btree entry: block size
445 * the superblock for the nlink flag: sector size
446 * the directory btree: (max depth + v2) * dir block size
447 * the directory inode's bmap btree: (max depth + v2) * block size
448 * the finobt (record modification and allocation btrees)
449 */
450 STATIC uint
xfs_calc_create_resv_modify(struct xfs_mount * mp)451 xfs_calc_create_resv_modify(
452 struct xfs_mount *mp)
453 {
454 return xfs_calc_inode_res(mp, 2) +
455 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
456 (uint)XFS_FSB_TO_B(mp, 1) +
457 xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
458 xfs_calc_finobt_res(mp);
459 }
460
461 /*
462 * For icreate we can allocate some inodes giving:
463 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
464 * the superblock for the nlink flag: sector size
465 * the inode chunk (allocation, optional init)
466 * the inobt (record insertion)
467 * the finobt (optional, record insertion)
468 */
469 STATIC uint
xfs_calc_icreate_resv_alloc(struct xfs_mount * mp)470 xfs_calc_icreate_resv_alloc(
471 struct xfs_mount *mp)
472 {
473 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
474 mp->m_sb.sb_sectsize +
475 xfs_calc_inode_chunk_res(mp, _ALLOC) +
476 xfs_calc_inobt_res(mp) +
477 xfs_calc_finobt_res(mp);
478 }
479
480 STATIC uint
xfs_calc_icreate_reservation(xfs_mount_t * mp)481 xfs_calc_icreate_reservation(xfs_mount_t *mp)
482 {
483 return XFS_DQUOT_LOGRES(mp) +
484 max(xfs_calc_icreate_resv_alloc(mp),
485 xfs_calc_create_resv_modify(mp));
486 }
487
488 STATIC uint
xfs_calc_create_tmpfile_reservation(struct xfs_mount * mp)489 xfs_calc_create_tmpfile_reservation(
490 struct xfs_mount *mp)
491 {
492 uint res = XFS_DQUOT_LOGRES(mp);
493
494 res += xfs_calc_icreate_resv_alloc(mp);
495 return res + xfs_calc_iunlink_add_reservation(mp);
496 }
497
498 /*
499 * Making a new directory is the same as creating a new file.
500 */
501 STATIC uint
xfs_calc_mkdir_reservation(struct xfs_mount * mp)502 xfs_calc_mkdir_reservation(
503 struct xfs_mount *mp)
504 {
505 return xfs_calc_icreate_reservation(mp);
506 }
507
508
509 /*
510 * Making a new symplink is the same as creating a new file, but
511 * with the added blocks for remote symlink data which can be up to 1kB in
512 * length (XFS_SYMLINK_MAXLEN).
513 */
514 STATIC uint
xfs_calc_symlink_reservation(struct xfs_mount * mp)515 xfs_calc_symlink_reservation(
516 struct xfs_mount *mp)
517 {
518 return xfs_calc_icreate_reservation(mp) +
519 xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
520 }
521
522 /*
523 * In freeing an inode we can modify:
524 * the inode being freed: inode size
525 * the super block free inode counter, AGF and AGFL: sector size
526 * the on disk inode (agi unlinked list removal)
527 * the inode chunk (invalidated, headers only)
528 * the inode btree
529 * the finobt (record insertion, removal or modification)
530 *
531 * Note that the inode chunk res. includes an allocfree res. for freeing of the
532 * inode chunk. This is technically extraneous because the inode chunk free is
533 * deferred (it occurs after a transaction roll). Include the extra reservation
534 * anyways since we've had reports of ifree transaction overruns due to too many
535 * agfl fixups during inode chunk frees.
536 */
537 STATIC uint
xfs_calc_ifree_reservation(struct xfs_mount * mp)538 xfs_calc_ifree_reservation(
539 struct xfs_mount *mp)
540 {
541 return XFS_DQUOT_LOGRES(mp) +
542 xfs_calc_inode_res(mp, 1) +
543 xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
544 xfs_calc_iunlink_remove_reservation(mp) +
545 xfs_calc_inode_chunk_res(mp, _FREE) +
546 xfs_calc_inobt_res(mp) +
547 xfs_calc_finobt_res(mp);
548 }
549
550 /*
551 * When only changing the inode we log the inode and possibly the superblock
552 * We also add a bit of slop for the transaction stuff.
553 */
554 STATIC uint
xfs_calc_ichange_reservation(struct xfs_mount * mp)555 xfs_calc_ichange_reservation(
556 struct xfs_mount *mp)
557 {
558 return XFS_DQUOT_LOGRES(mp) +
559 xfs_calc_inode_res(mp, 1) +
560 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
561
562 }
563
564 /*
565 * Growing the data section of the filesystem.
566 * superblock
567 * agi and agf
568 * allocation btrees
569 */
570 STATIC uint
xfs_calc_growdata_reservation(struct xfs_mount * mp)571 xfs_calc_growdata_reservation(
572 struct xfs_mount *mp)
573 {
574 return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
575 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
576 XFS_FSB_TO_B(mp, 1));
577 }
578
579 /*
580 * Growing the rt section of the filesystem.
581 * In the first set of transactions (ALLOC) we allocate space to the
582 * bitmap or summary files.
583 * superblock: sector size
584 * agf of the ag from which the extent is allocated: sector size
585 * bmap btree for bitmap/summary inode: max depth * blocksize
586 * bitmap/summary inode: inode size
587 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
588 */
589 STATIC uint
xfs_calc_growrtalloc_reservation(struct xfs_mount * mp)590 xfs_calc_growrtalloc_reservation(
591 struct xfs_mount *mp)
592 {
593 return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
594 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
595 XFS_FSB_TO_B(mp, 1)) +
596 xfs_calc_inode_res(mp, 1) +
597 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
598 XFS_FSB_TO_B(mp, 1));
599 }
600
601 /*
602 * Growing the rt section of the filesystem.
603 * In the second set of transactions (ZERO) we zero the new metadata blocks.
604 * one bitmap/summary block: blocksize
605 */
606 STATIC uint
xfs_calc_growrtzero_reservation(struct xfs_mount * mp)607 xfs_calc_growrtzero_reservation(
608 struct xfs_mount *mp)
609 {
610 return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
611 }
612
613 /*
614 * Growing the rt section of the filesystem.
615 * In the third set of transactions (FREE) we update metadata without
616 * allocating any new blocks.
617 * superblock: sector size
618 * bitmap inode: inode size
619 * summary inode: inode size
620 * one bitmap block: blocksize
621 * summary blocks: new summary size
622 */
623 STATIC uint
xfs_calc_growrtfree_reservation(struct xfs_mount * mp)624 xfs_calc_growrtfree_reservation(
625 struct xfs_mount *mp)
626 {
627 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
628 xfs_calc_inode_res(mp, 2) +
629 xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
630 xfs_calc_buf_res(1, mp->m_rsumsize);
631 }
632
633 /*
634 * Logging the inode modification timestamp on a synchronous write.
635 * inode
636 */
637 STATIC uint
xfs_calc_swrite_reservation(struct xfs_mount * mp)638 xfs_calc_swrite_reservation(
639 struct xfs_mount *mp)
640 {
641 return xfs_calc_inode_res(mp, 1);
642 }
643
644 /*
645 * Logging the inode mode bits when writing a setuid/setgid file
646 * inode
647 */
648 STATIC uint
xfs_calc_writeid_reservation(struct xfs_mount * mp)649 xfs_calc_writeid_reservation(
650 struct xfs_mount *mp)
651 {
652 return xfs_calc_inode_res(mp, 1);
653 }
654
655 /*
656 * Converting the inode from non-attributed to attributed.
657 * the inode being converted: inode size
658 * agf block and superblock (for block allocation)
659 * the new block (directory sized)
660 * bmap blocks for the new directory block
661 * allocation btrees
662 */
663 STATIC uint
xfs_calc_addafork_reservation(struct xfs_mount * mp)664 xfs_calc_addafork_reservation(
665 struct xfs_mount *mp)
666 {
667 return XFS_DQUOT_LOGRES(mp) +
668 xfs_calc_inode_res(mp, 1) +
669 xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
670 xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
671 xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
672 XFS_FSB_TO_B(mp, 1)) +
673 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
674 XFS_FSB_TO_B(mp, 1));
675 }
676
677 /*
678 * Removing the attribute fork of a file
679 * the inode being truncated: inode size
680 * the inode's bmap btree: max depth * block size
681 * And the bmap_finish transaction can free the blocks and bmap blocks:
682 * the agf for each of the ags: 4 * sector size
683 * the agfl for each of the ags: 4 * sector size
684 * the super block to reflect the freed blocks: sector size
685 * worst case split in allocation btrees per extent assuming 4 extents:
686 * 4 exts * 2 trees * (2 * max depth - 1) * block size
687 */
688 STATIC uint
xfs_calc_attrinval_reservation(struct xfs_mount * mp)689 xfs_calc_attrinval_reservation(
690 struct xfs_mount *mp)
691 {
692 return max((xfs_calc_inode_res(mp, 1) +
693 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
694 XFS_FSB_TO_B(mp, 1))),
695 (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
696 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 4),
697 XFS_FSB_TO_B(mp, 1))));
698 }
699
700 /*
701 * Setting an attribute at mount time.
702 * the inode getting the attribute
703 * the superblock for allocations
704 * the agfs extents are allocated from
705 * the attribute btree * max depth
706 * the inode allocation btree
707 * Since attribute transaction space is dependent on the size of the attribute,
708 * the calculation is done partially at mount time and partially at runtime(see
709 * below).
710 */
711 STATIC uint
xfs_calc_attrsetm_reservation(struct xfs_mount * mp)712 xfs_calc_attrsetm_reservation(
713 struct xfs_mount *mp)
714 {
715 return XFS_DQUOT_LOGRES(mp) +
716 xfs_calc_inode_res(mp, 1) +
717 xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
718 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
719 }
720
721 /*
722 * Setting an attribute at runtime, transaction space unit per block.
723 * the superblock for allocations: sector size
724 * the inode bmap btree could join or split: max depth * block size
725 * Since the runtime attribute transaction space is dependent on the total
726 * blocks needed for the 1st bmap, here we calculate out the space unit for
727 * one block so that the caller could figure out the total space according
728 * to the attibute extent length in blocks by:
729 * ext * M_RES(mp)->tr_attrsetrt.tr_logres
730 */
731 STATIC uint
xfs_calc_attrsetrt_reservation(struct xfs_mount * mp)732 xfs_calc_attrsetrt_reservation(
733 struct xfs_mount *mp)
734 {
735 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
736 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
737 XFS_FSB_TO_B(mp, 1));
738 }
739
740 /*
741 * Removing an attribute.
742 * the inode: inode size
743 * the attribute btree could join: max depth * block size
744 * the inode bmap btree could join or split: max depth * block size
745 * And the bmap_finish transaction can free the attr blocks freed giving:
746 * the agf for the ag in which the blocks live: 2 * sector size
747 * the agfl for the ag in which the blocks live: 2 * sector size
748 * the superblock for the free block count: sector size
749 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
750 */
751 STATIC uint
xfs_calc_attrrm_reservation(struct xfs_mount * mp)752 xfs_calc_attrrm_reservation(
753 struct xfs_mount *mp)
754 {
755 return XFS_DQUOT_LOGRES(mp) +
756 max((xfs_calc_inode_res(mp, 1) +
757 xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
758 XFS_FSB_TO_B(mp, 1)) +
759 (uint)XFS_FSB_TO_B(mp,
760 XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
761 xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
762 (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
763 xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2),
764 XFS_FSB_TO_B(mp, 1))));
765 }
766
767 /*
768 * Clearing a bad agino number in an agi hash bucket.
769 */
770 STATIC uint
xfs_calc_clear_agi_bucket_reservation(struct xfs_mount * mp)771 xfs_calc_clear_agi_bucket_reservation(
772 struct xfs_mount *mp)
773 {
774 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
775 }
776
777 /*
778 * Adjusting quota limits.
779 * the disk quota buffer: sizeof(struct xfs_disk_dquot)
780 */
781 STATIC uint
xfs_calc_qm_setqlim_reservation(void)782 xfs_calc_qm_setqlim_reservation(void)
783 {
784 return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
785 }
786
787 /*
788 * Allocating quota on disk if needed.
789 * the write transaction log space for quota file extent allocation
790 * the unit of quota allocation: one system block size
791 */
792 STATIC uint
xfs_calc_qm_dqalloc_reservation(struct xfs_mount * mp)793 xfs_calc_qm_dqalloc_reservation(
794 struct xfs_mount *mp)
795 {
796 return xfs_calc_write_reservation(mp) +
797 xfs_calc_buf_res(1,
798 XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
799 }
800
801 /*
802 * Syncing the incore super block changes to disk.
803 * the super block to reflect the changes: sector size
804 */
805 STATIC uint
xfs_calc_sb_reservation(struct xfs_mount * mp)806 xfs_calc_sb_reservation(
807 struct xfs_mount *mp)
808 {
809 return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
810 }
811
812 void
xfs_trans_resv_calc(struct xfs_mount * mp,struct xfs_trans_resv * resp)813 xfs_trans_resv_calc(
814 struct xfs_mount *mp,
815 struct xfs_trans_resv *resp)
816 {
817 /*
818 * The following transactions are logged in physical format and
819 * require a permanent reservation on space.
820 */
821 resp->tr_write.tr_logres = xfs_calc_write_reservation(mp);
822 if (xfs_has_reflink(mp))
823 resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT_REFLINK;
824 else
825 resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
826 resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
827
828 resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp);
829 if (xfs_has_reflink(mp))
830 resp->tr_itruncate.tr_logcount =
831 XFS_ITRUNCATE_LOG_COUNT_REFLINK;
832 else
833 resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
834 resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
835
836 resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
837 resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
838 resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
839
840 resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
841 resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
842 resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
843
844 resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
845 resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
846 resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
847
848 resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
849 resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
850 resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
851
852 resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
853 resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
854 resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
855
856 resp->tr_create_tmpfile.tr_logres =
857 xfs_calc_create_tmpfile_reservation(mp);
858 resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
859 resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
860
861 resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
862 resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
863 resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
864
865 resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
866 resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
867 resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
868
869 resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
870 resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
871 resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
872
873 resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
874 resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
875 resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
876
877 resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
878 resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
879 resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
880
881 resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
882 resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
883 resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
884
885 resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
886 resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
887 resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
888
889 resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp);
890 if (xfs_has_reflink(mp))
891 resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT_REFLINK;
892 else
893 resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
894 resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
895
896 /*
897 * The following transactions are logged in logical format with
898 * a default log count.
899 */
900 resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
901 resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
902
903 resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
904 resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
905
906 /* growdata requires permanent res; it can free space to the last AG */
907 resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
908 resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
909 resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
910
911 /* The following transaction are logged in logical format */
912 resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
913 resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
914 resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
915 resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
916 resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
917 resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
918 resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
919 }
920