• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
3  *	(c) Copyright 2000, 2001 Red Hat Inc
4  *
5  *	Development of this driver was funded by Equiinet Ltd
6  *			http://www.equiinet.com
7  *
8  *	ChangeLog:
9  *
10  *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
11  *	unification of all the Z85x30 asynchronous drivers for real.
12  *
13  *	DMA now uses get_free_page as kmalloc buffers may span a 64K
14  *	boundary.
15  *
16  *	Modified for SMP safety and SMP locking by Alan Cox
17  *					<alan@lxorguk.ukuu.org.uk>
18  *
19  *	Performance
20  *
21  *	Z85230:
22  *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
23  *	X.25 is not unrealistic on all machines. DMA mode can in theory
24  *	handle T1/E1 quite nicely. In practice the limit seems to be about
25  *	512Kbit->1Mbit depending on motherboard.
26  *
27  *	Z85C30:
28  *	64K will take DMA, 9600 baud X.25 should be ok.
29  *
30  *	Z8530:
31  *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/net.h>
40 #include <linux/skbuff.h>
41 #include <linux/netdevice.h>
42 #include <linux/if_arp.h>
43 #include <linux/delay.h>
44 #include <linux/hdlc.h>
45 #include <linux/ioport.h>
46 #include <linux/init.h>
47 #include <linux/gfp.h>
48 #include <asm/dma.h>
49 #include <asm/io.h>
50 #define RT_LOCK
51 #define RT_UNLOCK
52 #include <linux/spinlock.h>
53 
54 #include "z85230.h"
55 
56 /**
57  *	z8530_read_port - Architecture specific interface function
58  *	@p: port to read
59  *
60  *	Provided port access methods. The Comtrol SV11 requires no delays
61  *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
62  *
63  *	In the longer term this should become an architecture specific
64  *	section so that this can become a generic driver interface for all
65  *	platforms. For now we only handle PC I/O ports with or without the
66  *	dread 5uS sanity delay.
67  *
68  *	The caller must hold sufficient locks to avoid violating the horrible
69  *	5uS delay rule.
70  */
71 
z8530_read_port(unsigned long p)72 static inline int z8530_read_port(unsigned long p)
73 {
74 	u8 r = inb(Z8530_PORT_OF(p));
75 
76 	if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
77 		udelay(5);
78 	return r;
79 }
80 
81 /**
82  *	z8530_write_port - Architecture specific interface function
83  *	@p: port to write
84  *	@d: value to write
85  *
86  *	Write a value to a port with delays if need be. Note that the
87  *	caller must hold locks to avoid read/writes from other contexts
88  *	violating the 5uS rule
89  *
90  *	In the longer term this should become an architecture specific
91  *	section so that this can become a generic driver interface for all
92  *	platforms. For now we only handle PC I/O ports with or without the
93  *	dread 5uS sanity delay.
94  */
95 
z8530_write_port(unsigned long p,u8 d)96 static inline void z8530_write_port(unsigned long p, u8 d)
97 {
98 	outb(d, Z8530_PORT_OF(p));
99 	if (p & Z8530_PORT_SLEEP)
100 		udelay(5);
101 }
102 
103 static void z8530_rx_done(struct z8530_channel *c);
104 static void z8530_tx_done(struct z8530_channel *c);
105 
106 /**
107  *	read_zsreg - Read a register from a Z85230
108  *	@c: Z8530 channel to read from (2 per chip)
109  *	@reg: Register to read
110  *	FIXME: Use a spinlock.
111  *
112  *	Most of the Z8530 registers are indexed off the control registers.
113  *	A read is done by writing to the control register and reading the
114  *	register back.  The caller must hold the lock
115  */
116 
read_zsreg(struct z8530_channel * c,u8 reg)117 static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
118 {
119 	if (reg)
120 		z8530_write_port(c->ctrlio, reg);
121 	return z8530_read_port(c->ctrlio);
122 }
123 
124 /**
125  *	read_zsdata - Read the data port of a Z8530 channel
126  *	@c: The Z8530 channel to read the data port from
127  *
128  *	The data port provides fast access to some things. We still
129  *	have all the 5uS delays to worry about.
130  */
131 
read_zsdata(struct z8530_channel * c)132 static inline u8 read_zsdata(struct z8530_channel *c)
133 {
134 	u8 r;
135 
136 	r = z8530_read_port(c->dataio);
137 	return r;
138 }
139 
140 /**
141  *	write_zsreg - Write to a Z8530 channel register
142  *	@c: The Z8530 channel
143  *	@reg: Register number
144  *	@val: Value to write
145  *
146  *	Write a value to an indexed register. The caller must hold the lock
147  *	to honour the irritating delay rules. We know about register 0
148  *	being fast to access.
149  *
150  *      Assumes c->lock is held.
151  */
write_zsreg(struct z8530_channel * c,u8 reg,u8 val)152 static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
153 {
154 	if (reg)
155 		z8530_write_port(c->ctrlio, reg);
156 	z8530_write_port(c->ctrlio, val);
157 }
158 
159 /**
160  *	write_zsctrl - Write to a Z8530 control register
161  *	@c: The Z8530 channel
162  *	@val: Value to write
163  *
164  *	Write directly to the control register on the Z8530
165  */
166 
write_zsctrl(struct z8530_channel * c,u8 val)167 static inline void write_zsctrl(struct z8530_channel *c, u8 val)
168 {
169 	z8530_write_port(c->ctrlio, val);
170 }
171 
172 /**
173  *	write_zsdata - Write to a Z8530 control register
174  *	@c: The Z8530 channel
175  *	@val: Value to write
176  *
177  *	Write directly to the data register on the Z8530
178  */
write_zsdata(struct z8530_channel * c,u8 val)179 static inline void write_zsdata(struct z8530_channel *c, u8 val)
180 {
181 	z8530_write_port(c->dataio, val);
182 }
183 
184 /*	Register loading parameters for a dead port
185  */
186 
187 u8 z8530_dead_port[] = {
188 	255
189 };
190 EXPORT_SYMBOL(z8530_dead_port);
191 
192 /*	Register loading parameters for currently supported circuit types
193  */
194 
195 /*	Data clocked by telco end. This is the correct data for the UK
196  *	"kilostream" service, and most other similar services.
197  */
198 
199 u8 z8530_hdlc_kilostream[] = {
200 	4,	SYNC_ENAB | SDLC | X1CLK,
201 	2,	0,	/* No vector */
202 	1,	0,
203 	3,	ENT_HM | RxCRC_ENAB | Rx8,
204 	5,	TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
205 	9,	0,		/* Disable interrupts */
206 	6,	0xFF,
207 	7,	FLAG,
208 	10,	ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/
209 	11,	TCTRxCP,
210 	14,	DISDPLL,
211 	15,	DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
212 	1,	EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
213 	9,	NV | MIE | NORESET,
214 	255
215 };
216 EXPORT_SYMBOL(z8530_hdlc_kilostream);
217 
218 /*	As above but for enhanced chips.
219  */
220 
221 u8 z8530_hdlc_kilostream_85230[] = {
222 	4,	SYNC_ENAB | SDLC | X1CLK,
223 	2,	0,	/* No vector */
224 	1,	0,
225 	3,	ENT_HM | RxCRC_ENAB | Rx8,
226 	5,	TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
227 	9,	0,		/* Disable interrupts */
228 	6,	0xFF,
229 	7,	FLAG,
230 	10,	ABUNDER | NRZ | CRCPS,	/* MARKIDLE?? */
231 	11,	TCTRxCP,
232 	14,	DISDPLL,
233 	15,	DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
234 	1,	EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
235 	9,	NV | MIE | NORESET,
236 	23,	3,		/* Extended mode AUTO TX and EOM*/
237 
238 	255
239 };
240 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
241 
242 /**
243  *	z8530_flush_fifo - Flush on chip RX FIFO
244  *	@c: Channel to flush
245  *
246  *	Flush the receive FIFO. There is no specific option for this, we
247  *	blindly read bytes and discard them. Reading when there is no data
248  *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
249  *
250  *	All locking is handled for the caller. On return data may still be
251  *	present if it arrived during the flush.
252  */
253 
z8530_flush_fifo(struct z8530_channel * c)254 static void z8530_flush_fifo(struct z8530_channel *c)
255 {
256 	read_zsreg(c, R1);
257 	read_zsreg(c, R1);
258 	read_zsreg(c, R1);
259 	read_zsreg(c, R1);
260 	if (c->dev->type == Z85230) {
261 		read_zsreg(c, R1);
262 		read_zsreg(c, R1);
263 		read_zsreg(c, R1);
264 		read_zsreg(c, R1);
265 	}
266 }
267 
268 /**
269  *	z8530_rtsdtr - Control the outgoing DTS/RTS line
270  *	@c: The Z8530 channel to control;
271  *	@set: 1 to set, 0 to clear
272  *
273  *	Sets or clears DTR/RTS on the requested line. All locking is handled
274  *	by the caller. For now we assume all boards use the actual RTS/DTR
275  *	on the chip. Apparently one or two don't. We'll scream about them
276  *	later.
277  */
278 
z8530_rtsdtr(struct z8530_channel * c,int set)279 static void z8530_rtsdtr(struct z8530_channel *c, int set)
280 {
281 	if (set)
282 		c->regs[5] |= (RTS | DTR);
283 	else
284 		c->regs[5] &= ~(RTS | DTR);
285 	write_zsreg(c, R5, c->regs[5]);
286 }
287 
288 /**
289  *	z8530_rx - Handle a PIO receive event
290  *	@c: Z8530 channel to process
291  *
292  *	Receive handler for receiving in PIO mode. This is much like the
293  *	async one but not quite the same or as complex
294  *
295  *	Note: Its intended that this handler can easily be separated from
296  *	the main code to run realtime. That'll be needed for some machines
297  *	(eg to ever clock 64kbits on a sparc ;)).
298  *
299  *	The RT_LOCK macros don't do anything now. Keep the code covered
300  *	by them as short as possible in all circumstances - clocks cost
301  *	baud. The interrupt handler is assumed to be atomic w.r.t. to
302  *	other code - this is true in the RT case too.
303  *
304  *	We only cover the sync cases for this. If you want 2Mbit async
305  *	do it yourself but consider medical assistance first. This non DMA
306  *	synchronous mode is portable code. The DMA mode assumes PCI like
307  *	ISA DMA
308  *
309  *	Called with the device lock held
310  */
311 
z8530_rx(struct z8530_channel * c)312 static void z8530_rx(struct z8530_channel *c)
313 {
314 	u8 ch, stat;
315 
316 	while (1) {
317 		/* FIFO empty ? */
318 		if (!(read_zsreg(c, R0) & 1))
319 			break;
320 		ch = read_zsdata(c);
321 		stat = read_zsreg(c, R1);
322 
323 		/*	Overrun ?
324 		 */
325 		if (c->count < c->max) {
326 			*c->dptr++ = ch;
327 			c->count++;
328 		}
329 
330 		if (stat & END_FR) {
331 			/*	Error ?
332 			 */
333 			if (stat & (Rx_OVR | CRC_ERR)) {
334 				/* Rewind the buffer and return */
335 				if (c->skb)
336 					c->dptr = c->skb->data;
337 				c->count = 0;
338 				if (stat & Rx_OVR) {
339 					pr_warn("%s: overrun\n", c->dev->name);
340 					c->rx_overrun++;
341 				}
342 				if (stat & CRC_ERR) {
343 					c->rx_crc_err++;
344 					/* printk("crc error\n"); */
345 				}
346 				/* Shove the frame upstream */
347 			} else {
348 				/*	Drop the lock for RX processing, or
349 				 *	there are deadlocks
350 				 */
351 				z8530_rx_done(c);
352 				write_zsctrl(c, RES_Rx_CRC);
353 			}
354 		}
355 	}
356 	/*	Clear irq
357 	 */
358 	write_zsctrl(c, ERR_RES);
359 	write_zsctrl(c, RES_H_IUS);
360 }
361 
362 /**
363  *	z8530_tx - Handle a PIO transmit event
364  *	@c: Z8530 channel to process
365  *
366  *	Z8530 transmit interrupt handler for the PIO mode. The basic
367  *	idea is to attempt to keep the FIFO fed. We fill as many bytes
368  *	in as possible, its quite possible that we won't keep up with the
369  *	data rate otherwise.
370  */
371 
z8530_tx(struct z8530_channel * c)372 static void z8530_tx(struct z8530_channel *c)
373 {
374 	while (c->txcount) {
375 		/* FIFO full ? */
376 		if (!(read_zsreg(c, R0) & 4))
377 			return;
378 		c->txcount--;
379 		/*	Shovel out the byte
380 		 */
381 		write_zsreg(c, R8, *c->tx_ptr++);
382 		write_zsctrl(c, RES_H_IUS);
383 		/* We are about to underflow */
384 		if (c->txcount == 0) {
385 			write_zsctrl(c, RES_EOM_L);
386 			write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
387 		}
388 	}
389 
390 	/*	End of frame TX - fire another one
391 	 */
392 
393 	write_zsctrl(c, RES_Tx_P);
394 
395 	z8530_tx_done(c);
396 	write_zsctrl(c, RES_H_IUS);
397 }
398 
399 /**
400  *	z8530_status - Handle a PIO status exception
401  *	@chan: Z8530 channel to process
402  *
403  *	A status event occurred in PIO synchronous mode. There are several
404  *	reasons the chip will bother us here. A transmit underrun means we
405  *	failed to feed the chip fast enough and just broke a packet. A DCD
406  *	change is a line up or down.
407  */
408 
z8530_status(struct z8530_channel * chan)409 static void z8530_status(struct z8530_channel *chan)
410 {
411 	u8 status, altered;
412 
413 	status = read_zsreg(chan, R0);
414 	altered = chan->status ^ status;
415 
416 	chan->status = status;
417 
418 	if (status & TxEOM) {
419 /*		printk("%s: Tx underrun.\n", chan->dev->name); */
420 		chan->netdevice->stats.tx_fifo_errors++;
421 		write_zsctrl(chan, ERR_RES);
422 		z8530_tx_done(chan);
423 	}
424 
425 	if (altered & chan->dcdcheck) {
426 		if (status & chan->dcdcheck) {
427 			pr_info("%s: DCD raised\n", chan->dev->name);
428 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
429 			if (chan->netdevice)
430 				netif_carrier_on(chan->netdevice);
431 		} else {
432 			pr_info("%s: DCD lost\n", chan->dev->name);
433 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
434 			z8530_flush_fifo(chan);
435 			if (chan->netdevice)
436 				netif_carrier_off(chan->netdevice);
437 		}
438 	}
439 	write_zsctrl(chan, RES_EXT_INT);
440 	write_zsctrl(chan, RES_H_IUS);
441 }
442 
443 struct z8530_irqhandler z8530_sync = {
444 	.rx = z8530_rx,
445 	.tx = z8530_tx,
446 	.status = z8530_status,
447 };
448 EXPORT_SYMBOL(z8530_sync);
449 
450 /**
451  *	z8530_dma_rx - Handle a DMA RX event
452  *	@chan: Channel to handle
453  *
454  *	Non bus mastering DMA interfaces for the Z8x30 devices. This
455  *	is really pretty PC specific. The DMA mode means that most receive
456  *	events are handled by the DMA hardware. We get a kick here only if
457  *	a frame ended.
458  */
459 
z8530_dma_rx(struct z8530_channel * chan)460 static void z8530_dma_rx(struct z8530_channel *chan)
461 {
462 	if (chan->rxdma_on) {
463 		/* Special condition check only */
464 		u8 status;
465 
466 		read_zsreg(chan, R7);
467 		read_zsreg(chan, R6);
468 
469 		status = read_zsreg(chan, R1);
470 
471 		if (status & END_FR)
472 			z8530_rx_done(chan);	/* Fire up the next one */
473 
474 		write_zsctrl(chan, ERR_RES);
475 		write_zsctrl(chan, RES_H_IUS);
476 	} else {
477 		/* DMA is off right now, drain the slow way */
478 		z8530_rx(chan);
479 	}
480 }
481 
482 /**
483  *	z8530_dma_tx - Handle a DMA TX event
484  *	@chan:	The Z8530 channel to handle
485  *
486  *	We have received an interrupt while doing DMA transmissions. It
487  *	shouldn't happen. Scream loudly if it does.
488  */
z8530_dma_tx(struct z8530_channel * chan)489 static void z8530_dma_tx(struct z8530_channel *chan)
490 {
491 	if (!chan->dma_tx) {
492 		pr_warn("Hey who turned the DMA off?\n");
493 		z8530_tx(chan);
494 		return;
495 	}
496 	/* This shouldn't occur in DMA mode */
497 	pr_err("DMA tx - bogus event!\n");
498 	z8530_tx(chan);
499 }
500 
501 /**
502  *	z8530_dma_status - Handle a DMA status exception
503  *	@chan: Z8530 channel to process
504  *
505  *	A status event occurred on the Z8530. We receive these for two reasons
506  *	when in DMA mode. Firstly if we finished a packet transfer we get one
507  *	and kick the next packet out. Secondly we may see a DCD change.
508  *
509  */
z8530_dma_status(struct z8530_channel * chan)510 static void z8530_dma_status(struct z8530_channel *chan)
511 {
512 	u8 status, altered;
513 
514 	status = read_zsreg(chan, R0);
515 	altered = chan->status ^ status;
516 
517 	chan->status = status;
518 
519 	if (chan->dma_tx) {
520 		if (status & TxEOM) {
521 			unsigned long flags;
522 
523 			flags = claim_dma_lock();
524 			disable_dma(chan->txdma);
525 			clear_dma_ff(chan->txdma);
526 			chan->txdma_on = 0;
527 			release_dma_lock(flags);
528 			z8530_tx_done(chan);
529 		}
530 	}
531 
532 	if (altered & chan->dcdcheck) {
533 		if (status & chan->dcdcheck) {
534 			pr_info("%s: DCD raised\n", chan->dev->name);
535 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
536 			if (chan->netdevice)
537 				netif_carrier_on(chan->netdevice);
538 		} else {
539 			pr_info("%s: DCD lost\n", chan->dev->name);
540 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
541 			z8530_flush_fifo(chan);
542 			if (chan->netdevice)
543 				netif_carrier_off(chan->netdevice);
544 		}
545 	}
546 
547 	write_zsctrl(chan, RES_EXT_INT);
548 	write_zsctrl(chan, RES_H_IUS);
549 }
550 
551 static struct z8530_irqhandler z8530_dma_sync = {
552 	.rx = z8530_dma_rx,
553 	.tx = z8530_dma_tx,
554 	.status = z8530_dma_status,
555 };
556 
557 static struct z8530_irqhandler z8530_txdma_sync = {
558 	.rx = z8530_rx,
559 	.tx = z8530_dma_tx,
560 	.status = z8530_dma_status,
561 };
562 
563 /**
564  *	z8530_rx_clear - Handle RX events from a stopped chip
565  *	@c: Z8530 channel to shut up
566  *
567  *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
568  *	For machines with PCI Z85x30 cards, or level triggered interrupts
569  *	(eg the MacII) we must clear the interrupt cause or die.
570  */
571 
z8530_rx_clear(struct z8530_channel * c)572 static void z8530_rx_clear(struct z8530_channel *c)
573 {
574 	/*	Data and status bytes
575 	 */
576 	u8 stat;
577 
578 	read_zsdata(c);
579 	stat = read_zsreg(c, R1);
580 
581 	if (stat & END_FR)
582 		write_zsctrl(c, RES_Rx_CRC);
583 	/*	Clear irq
584 	 */
585 	write_zsctrl(c, ERR_RES);
586 	write_zsctrl(c, RES_H_IUS);
587 }
588 
589 /**
590  *	z8530_tx_clear - Handle TX events from a stopped chip
591  *	@c: Z8530 channel to shut up
592  *
593  *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
594  *	For machines with PCI Z85x30 cards, or level triggered interrupts
595  *	(eg the MacII) we must clear the interrupt cause or die.
596  */
597 
z8530_tx_clear(struct z8530_channel * c)598 static void z8530_tx_clear(struct z8530_channel *c)
599 {
600 	write_zsctrl(c, RES_Tx_P);
601 	write_zsctrl(c, RES_H_IUS);
602 }
603 
604 /**
605  *	z8530_status_clear - Handle status events from a stopped chip
606  *	@chan: Z8530 channel to shut up
607  *
608  *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
609  *	For machines with PCI Z85x30 cards, or level triggered interrupts
610  *	(eg the MacII) we must clear the interrupt cause or die.
611  */
612 
z8530_status_clear(struct z8530_channel * chan)613 static void z8530_status_clear(struct z8530_channel *chan)
614 {
615 	u8 status = read_zsreg(chan, R0);
616 
617 	if (status & TxEOM)
618 		write_zsctrl(chan, ERR_RES);
619 	write_zsctrl(chan, RES_EXT_INT);
620 	write_zsctrl(chan, RES_H_IUS);
621 }
622 
623 struct z8530_irqhandler z8530_nop = {
624 	.rx = z8530_rx_clear,
625 	.tx = z8530_tx_clear,
626 	.status = z8530_status_clear,
627 };
628 EXPORT_SYMBOL(z8530_nop);
629 
630 /**
631  *	z8530_interrupt - Handle an interrupt from a Z8530
632  *	@irq: Interrupt number
633  *	@dev_id: The Z8530 device that is interrupting.
634  *
635  *	A Z85[2]30 device has stuck its hand in the air for attention.
636  *	We scan both the channels on the chip for events and then call
637  *	the channel specific call backs for each channel that has events.
638  *	We have to use callback functions because the two channels can be
639  *	in different modes.
640  *
641  *	Locking is done for the handlers. Note that locking is done
642  *	at the chip level (the 5uS delay issue is per chip not per
643  *	channel). c->lock for both channels points to dev->lock
644  */
645 
z8530_interrupt(int irq,void * dev_id)646 irqreturn_t z8530_interrupt(int irq, void *dev_id)
647 {
648 	struct z8530_dev *dev = dev_id;
649 	u8 intr;
650 	static volatile int locker=0;
651 	int work = 0;
652 	struct z8530_irqhandler *irqs;
653 
654 	if (locker) {
655 		pr_err("IRQ re-enter\n");
656 		return IRQ_NONE;
657 	}
658 	locker = 1;
659 
660 	spin_lock(&dev->lock);
661 
662 	while (++work < 5000) {
663 		intr = read_zsreg(&dev->chanA, R3);
664 		if (!(intr &
665 		   (CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT)))
666 			break;
667 
668 		/* This holds the IRQ status. On the 8530 you must read it
669 		 * from chan A even though it applies to the whole chip
670 		 */
671 
672 		/* Now walk the chip and see what it is wanting - it may be
673 		 * an IRQ for someone else remember
674 		 */
675 
676 		irqs = dev->chanA.irqs;
677 
678 		if (intr & (CHARxIP | CHATxIP | CHAEXT)) {
679 			if (intr & CHARxIP)
680 				irqs->rx(&dev->chanA);
681 			if (intr & CHATxIP)
682 				irqs->tx(&dev->chanA);
683 			if (intr & CHAEXT)
684 				irqs->status(&dev->chanA);
685 		}
686 
687 		irqs = dev->chanB.irqs;
688 
689 		if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) {
690 			if (intr & CHBRxIP)
691 				irqs->rx(&dev->chanB);
692 			if (intr & CHBTxIP)
693 				irqs->tx(&dev->chanB);
694 			if (intr & CHBEXT)
695 				irqs->status(&dev->chanB);
696 		}
697 	}
698 	spin_unlock(&dev->lock);
699 	if (work == 5000)
700 		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
701 		       dev->name, intr);
702 	/* Ok all done */
703 	locker = 0;
704 	return IRQ_HANDLED;
705 }
706 EXPORT_SYMBOL(z8530_interrupt);
707 
708 static const u8 reg_init[16] = {
709 	0, 0, 0, 0,
710 	0, 0, 0, 0,
711 	0, 0, 0, 0,
712 	0x55, 0, 0, 0
713 };
714 
715 /**
716  *	z8530_sync_open - Open a Z8530 channel for PIO
717  *	@dev:	The network interface we are using
718  *	@c:	The Z8530 channel to open in synchronous PIO mode
719  *
720  *	Switch a Z8530 into synchronous mode without DMA assist. We
721  *	raise the RTS/DTR and commence network operation.
722  */
z8530_sync_open(struct net_device * dev,struct z8530_channel * c)723 int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
724 {
725 	unsigned long flags;
726 
727 	spin_lock_irqsave(c->lock, flags);
728 
729 	c->sync = 1;
730 	c->mtu = dev->mtu + 64;
731 	c->count = 0;
732 	c->skb = NULL;
733 	c->skb2 = NULL;
734 	c->irqs = &z8530_sync;
735 
736 	/* This loads the double buffer up */
737 	z8530_rx_done(c);	/* Load the frame ring */
738 	z8530_rx_done(c);	/* Load the backup frame */
739 	z8530_rtsdtr(c, 1);
740 	c->dma_tx = 0;
741 	c->regs[R1] |= TxINT_ENAB;
742 	write_zsreg(c, R1, c->regs[R1]);
743 	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
744 
745 	spin_unlock_irqrestore(c->lock, flags);
746 	return 0;
747 }
748 EXPORT_SYMBOL(z8530_sync_open);
749 
750 /**
751  *	z8530_sync_close - Close a PIO Z8530 channel
752  *	@dev: Network device to close
753  *	@c: Z8530 channel to disassociate and move to idle
754  *
755  *	Close down a Z8530 interface and switch its interrupt handlers
756  *	to discard future events.
757  */
z8530_sync_close(struct net_device * dev,struct z8530_channel * c)758 int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
759 {
760 	u8 chk;
761 	unsigned long flags;
762 
763 	spin_lock_irqsave(c->lock, flags);
764 	c->irqs = &z8530_nop;
765 	c->max = 0;
766 	c->sync = 0;
767 
768 	chk = read_zsreg(c, R0);
769 	write_zsreg(c, R3, c->regs[R3]);
770 	z8530_rtsdtr(c, 0);
771 
772 	spin_unlock_irqrestore(c->lock, flags);
773 	return 0;
774 }
775 EXPORT_SYMBOL(z8530_sync_close);
776 
777 /**
778  *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
779  *	@dev: The network device to attach
780  *	@c: The Z8530 channel to configure in sync DMA mode.
781  *
782  *	Set up a Z85x30 device for synchronous DMA in both directions. Two
783  *	ISA DMA channels must be available for this to work. We assume ISA
784  *	DMA driven I/O and PC limits on access.
785  */
z8530_sync_dma_open(struct net_device * dev,struct z8530_channel * c)786 int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
787 {
788 	unsigned long cflags, dflags;
789 
790 	c->sync = 1;
791 	c->mtu = dev->mtu + 64;
792 	c->count = 0;
793 	c->skb = NULL;
794 	c->skb2 = NULL;
795 
796 	/*	Load the DMA interfaces up
797 	 */
798 	c->rxdma_on = 0;
799 	c->txdma_on = 0;
800 
801 	/*	Allocate the DMA flip buffers. Limit by page size.
802 	 *	Everyone runs 1500 mtu or less on wan links so this
803 	 *	should be fine.
804 	 */
805 
806 	if (c->mtu  > PAGE_SIZE / 2)
807 		return -EMSGSIZE;
808 
809 	c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
810 	if (!c->rx_buf[0])
811 		return -ENOBUFS;
812 	c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2;
813 
814 	c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
815 	if (!c->tx_dma_buf[0]) {
816 		free_page((unsigned long)c->rx_buf[0]);
817 		c->rx_buf[0] = NULL;
818 		return -ENOBUFS;
819 	}
820 	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
821 
822 	c->tx_dma_used = 0;
823 	c->dma_tx = 1;
824 	c->dma_num = 0;
825 	c->dma_ready = 1;
826 
827 	/*	Enable DMA control mode
828 	 */
829 
830 	spin_lock_irqsave(c->lock, cflags);
831 
832 	/*	TX DMA via DIR/REQ
833 	 */
834 
835 	c->regs[R14] |= DTRREQ;
836 	write_zsreg(c, R14, c->regs[R14]);
837 
838 	c->regs[R1] &= ~TxINT_ENAB;
839 	write_zsreg(c, R1, c->regs[R1]);
840 
841 	/*	RX DMA via W/Req
842 	 */
843 
844 	c->regs[R1] |= WT_FN_RDYFN;
845 	c->regs[R1] |= WT_RDY_RT;
846 	c->regs[R1] |= INT_ERR_Rx;
847 	c->regs[R1] &= ~TxINT_ENAB;
848 	write_zsreg(c, R1, c->regs[R1]);
849 	c->regs[R1] |= WT_RDY_ENAB;
850 	write_zsreg(c, R1, c->regs[R1]);
851 
852 	/*	DMA interrupts
853 	 */
854 
855 	/*	Set up the DMA configuration
856 	 */
857 
858 	dflags = claim_dma_lock();
859 
860 	disable_dma(c->rxdma);
861 	clear_dma_ff(c->rxdma);
862 	set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
863 	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
864 	set_dma_count(c->rxdma, c->mtu);
865 	enable_dma(c->rxdma);
866 
867 	disable_dma(c->txdma);
868 	clear_dma_ff(c->txdma);
869 	set_dma_mode(c->txdma, DMA_MODE_WRITE);
870 	disable_dma(c->txdma);
871 
872 	release_dma_lock(dflags);
873 
874 	/*	Select the DMA interrupt handlers
875 	 */
876 
877 	c->rxdma_on = 1;
878 	c->txdma_on = 1;
879 	c->tx_dma_used = 1;
880 
881 	c->irqs = &z8530_dma_sync;
882 	z8530_rtsdtr(c, 1);
883 	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
884 
885 	spin_unlock_irqrestore(c->lock, cflags);
886 
887 	return 0;
888 }
889 EXPORT_SYMBOL(z8530_sync_dma_open);
890 
891 /**
892  *	z8530_sync_dma_close - Close down DMA I/O
893  *	@dev: Network device to detach
894  *	@c: Z8530 channel to move into discard mode
895  *
896  *	Shut down a DMA mode synchronous interface. Halt the DMA, and
897  *	free the buffers.
898  */
z8530_sync_dma_close(struct net_device * dev,struct z8530_channel * c)899 int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
900 {
901 	u8 chk;
902 	unsigned long flags;
903 
904 	c->irqs = &z8530_nop;
905 	c->max = 0;
906 	c->sync = 0;
907 
908 	/*	Disable the PC DMA channels
909 	 */
910 
911 	flags = claim_dma_lock();
912 	disable_dma(c->rxdma);
913 	clear_dma_ff(c->rxdma);
914 
915 	c->rxdma_on = 0;
916 
917 	disable_dma(c->txdma);
918 	clear_dma_ff(c->txdma);
919 	release_dma_lock(flags);
920 
921 	c->txdma_on = 0;
922 	c->tx_dma_used = 0;
923 
924 	spin_lock_irqsave(c->lock, flags);
925 
926 	/*	Disable DMA control mode
927 	 */
928 
929 	c->regs[R1] &= ~WT_RDY_ENAB;
930 	write_zsreg(c, R1, c->regs[R1]);
931 	c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
932 	c->regs[R1] |= INT_ALL_Rx;
933 	write_zsreg(c, R1, c->regs[R1]);
934 	c->regs[R14] &= ~DTRREQ;
935 	write_zsreg(c, R14, c->regs[R14]);
936 
937 	if (c->rx_buf[0]) {
938 		free_page((unsigned long)c->rx_buf[0]);
939 		c->rx_buf[0] = NULL;
940 	}
941 	if (c->tx_dma_buf[0]) {
942 		free_page((unsigned  long)c->tx_dma_buf[0]);
943 		c->tx_dma_buf[0] = NULL;
944 	}
945 	chk = read_zsreg(c, R0);
946 	write_zsreg(c, R3, c->regs[R3]);
947 	z8530_rtsdtr(c, 0);
948 
949 	spin_unlock_irqrestore(c->lock, flags);
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL(z8530_sync_dma_close);
954 
955 /**
956  *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
957  *	@dev: The network device to attach
958  *	@c: The Z8530 channel to configure in sync DMA mode.
959  *
960  *	Set up a Z85x30 device for synchronous DMA transmission. One
961  *	ISA DMA channel must be available for this to work. The receive
962  *	side is run in PIO mode, but then it has the bigger FIFO.
963  */
964 
z8530_sync_txdma_open(struct net_device * dev,struct z8530_channel * c)965 int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
966 {
967 	unsigned long cflags, dflags;
968 
969 	printk("Opening sync interface for TX-DMA\n");
970 	c->sync = 1;
971 	c->mtu = dev->mtu + 64;
972 	c->count = 0;
973 	c->skb = NULL;
974 	c->skb2 = NULL;
975 
976 	/*	Allocate the DMA flip buffers. Limit by page size.
977 	 *	Everyone runs 1500 mtu or less on wan links so this
978 	 *	should be fine.
979 	 */
980 
981 	if (c->mtu > PAGE_SIZE / 2)
982 		return -EMSGSIZE;
983 
984 	c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
985 	if (!c->tx_dma_buf[0])
986 		return -ENOBUFS;
987 
988 	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
989 
990 	spin_lock_irqsave(c->lock, cflags);
991 
992 	/*	Load the PIO receive ring
993 	 */
994 
995 	z8530_rx_done(c);
996 	z8530_rx_done(c);
997 
998 	/*	Load the DMA interfaces up
999 	 */
1000 
1001 	c->rxdma_on = 0;
1002 	c->txdma_on = 0;
1003 
1004 	c->tx_dma_used = 0;
1005 	c->dma_num = 0;
1006 	c->dma_ready = 1;
1007 	c->dma_tx = 1;
1008 
1009 	/*	Enable DMA control mode
1010 	 */
1011 
1012 	/*	TX DMA via DIR/REQ
1013 	 */
1014 	c->regs[R14] |= DTRREQ;
1015 	write_zsreg(c, R14, c->regs[R14]);
1016 
1017 	c->regs[R1] &= ~TxINT_ENAB;
1018 	write_zsreg(c, R1, c->regs[R1]);
1019 
1020 	/*	Set up the DMA configuration
1021 	 */
1022 
1023 	dflags = claim_dma_lock();
1024 
1025 	disable_dma(c->txdma);
1026 	clear_dma_ff(c->txdma);
1027 	set_dma_mode(c->txdma, DMA_MODE_WRITE);
1028 	disable_dma(c->txdma);
1029 
1030 	release_dma_lock(dflags);
1031 
1032 	/*	Select the DMA interrupt handlers
1033 	 */
1034 
1035 	c->rxdma_on = 0;
1036 	c->txdma_on = 1;
1037 	c->tx_dma_used = 1;
1038 
1039 	c->irqs = &z8530_txdma_sync;
1040 	z8530_rtsdtr(c, 1);
1041 	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
1042 	spin_unlock_irqrestore(c->lock, cflags);
1043 
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL(z8530_sync_txdma_open);
1047 
1048 /**
1049  *	z8530_sync_txdma_close - Close down a TX driven DMA channel
1050  *	@dev: Network device to detach
1051  *	@c: Z8530 channel to move into discard mode
1052  *
1053  *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1054  *	and  free the buffers.
1055  */
1056 
z8530_sync_txdma_close(struct net_device * dev,struct z8530_channel * c)1057 int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1058 {
1059 	unsigned long dflags, cflags;
1060 	u8 chk;
1061 
1062 	spin_lock_irqsave(c->lock, cflags);
1063 
1064 	c->irqs = &z8530_nop;
1065 	c->max = 0;
1066 	c->sync = 0;
1067 
1068 	/*	Disable the PC DMA channels
1069 	 */
1070 
1071 	dflags = claim_dma_lock();
1072 
1073 	disable_dma(c->txdma);
1074 	clear_dma_ff(c->txdma);
1075 	c->txdma_on = 0;
1076 	c->tx_dma_used = 0;
1077 
1078 	release_dma_lock(dflags);
1079 
1080 	/*	Disable DMA control mode
1081 	 */
1082 
1083 	c->regs[R1] &= ~WT_RDY_ENAB;
1084 	write_zsreg(c, R1, c->regs[R1]);
1085 	c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
1086 	c->regs[R1] |= INT_ALL_Rx;
1087 	write_zsreg(c, R1, c->regs[R1]);
1088 	c->regs[R14] &= ~DTRREQ;
1089 	write_zsreg(c, R14, c->regs[R14]);
1090 
1091 	if (c->tx_dma_buf[0]) {
1092 		free_page((unsigned long)c->tx_dma_buf[0]);
1093 		c->tx_dma_buf[0] = NULL;
1094 	}
1095 	chk = read_zsreg(c, R0);
1096 	write_zsreg(c, R3, c->regs[R3]);
1097 	z8530_rtsdtr(c, 0);
1098 
1099 	spin_unlock_irqrestore(c->lock, cflags);
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL(z8530_sync_txdma_close);
1103 
1104 /*	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1105  *	it exists...
1106  */
1107 static const char * const z8530_type_name[] = {
1108 	"Z8530",
1109 	"Z85C30",
1110 	"Z85230"
1111 };
1112 
1113 /**
1114  *	z8530_describe - Uniformly describe a Z8530 port
1115  *	@dev: Z8530 device to describe
1116  *	@mapping: string holding mapping type (eg "I/O" or "Mem")
1117  *	@io: the port value in question
1118  *
1119  *	Describe a Z8530 in a standard format. We must pass the I/O as
1120  *	the port offset isn't predictable. The main reason for this function
1121  *	is to try and get a common format of report.
1122  */
1123 
z8530_describe(struct z8530_dev * dev,char * mapping,unsigned long io)1124 void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1125 {
1126 	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1127 		dev->name,
1128 		z8530_type_name[dev->type],
1129 		mapping,
1130 		Z8530_PORT_OF(io),
1131 		dev->irq);
1132 }
1133 EXPORT_SYMBOL(z8530_describe);
1134 
1135 /*	Locked operation part of the z8530 init code
1136  */
do_z8530_init(struct z8530_dev * dev)1137 static inline int do_z8530_init(struct z8530_dev *dev)
1138 {
1139 	/* NOP the interrupt handlers first - we might get a
1140 	 * floating IRQ transition when we reset the chip
1141 	 */
1142 	dev->chanA.irqs = &z8530_nop;
1143 	dev->chanB.irqs = &z8530_nop;
1144 	dev->chanA.dcdcheck = DCD;
1145 	dev->chanB.dcdcheck = DCD;
1146 
1147 	/* Reset the chip */
1148 	write_zsreg(&dev->chanA, R9, 0xC0);
1149 	udelay(200);
1150 	/* Now check its valid */
1151 	write_zsreg(&dev->chanA, R12, 0xAA);
1152 	if (read_zsreg(&dev->chanA, R12) != 0xAA)
1153 		return -ENODEV;
1154 	write_zsreg(&dev->chanA, R12, 0x55);
1155 	if (read_zsreg(&dev->chanA, R12) != 0x55)
1156 		return -ENODEV;
1157 
1158 	dev->type = Z8530;
1159 
1160 	/*	See the application note.
1161 	 */
1162 
1163 	write_zsreg(&dev->chanA, R15, 0x01);
1164 
1165 	/*	If we can set the low bit of R15 then
1166 	 *	the chip is enhanced.
1167 	 */
1168 
1169 	if (read_zsreg(&dev->chanA, R15) == 0x01) {
1170 		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1171 		/* Put a char in the fifo */
1172 		write_zsreg(&dev->chanA, R8, 0);
1173 		if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP)
1174 			dev->type = Z85230;	/* Has a FIFO */
1175 		else
1176 			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
1177 	}
1178 
1179 	/*	The code assumes R7' and friends are
1180 	 *	off. Use write_zsext() for these and keep
1181 	 *	this bit clear.
1182 	 */
1183 
1184 	write_zsreg(&dev->chanA, R15, 0);
1185 
1186 	/*	At this point it looks like the chip is behaving
1187 	 */
1188 
1189 	memcpy(dev->chanA.regs, reg_init, 16);
1190 	memcpy(dev->chanB.regs, reg_init, 16);
1191 
1192 	return 0;
1193 }
1194 
1195 /**
1196  *	z8530_init - Initialise a Z8530 device
1197  *	@dev: Z8530 device to initialise.
1198  *
1199  *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1200  *	is present, identify the type and then program it to hopefully
1201  *	keep quite and behave. This matters a lot, a Z8530 in the wrong
1202  *	state will sometimes get into stupid modes generating 10Khz
1203  *	interrupt streams and the like.
1204  *
1205  *	We set the interrupt handler up to discard any events, in case
1206  *	we get them during reset or setp.
1207  *
1208  *	Return 0 for success, or a negative value indicating the problem
1209  *	in errno form.
1210  */
1211 
z8530_init(struct z8530_dev * dev)1212 int z8530_init(struct z8530_dev *dev)
1213 {
1214 	unsigned long flags;
1215 	int ret;
1216 
1217 	/* Set up the chip level lock */
1218 	spin_lock_init(&dev->lock);
1219 	dev->chanA.lock = &dev->lock;
1220 	dev->chanB.lock = &dev->lock;
1221 
1222 	spin_lock_irqsave(&dev->lock, flags);
1223 	ret = do_z8530_init(dev);
1224 	spin_unlock_irqrestore(&dev->lock, flags);
1225 
1226 	return ret;
1227 }
1228 EXPORT_SYMBOL(z8530_init);
1229 
1230 /**
1231  *	z8530_shutdown - Shutdown a Z8530 device
1232  *	@dev: The Z8530 chip to shutdown
1233  *
1234  *	We set the interrupt handlers to silence any interrupts. We then
1235  *	reset the chip and wait 100uS to be sure the reset completed. Just
1236  *	in case the caller then tries to do stuff.
1237  *
1238  *	This is called without the lock held
1239  */
z8530_shutdown(struct z8530_dev * dev)1240 int z8530_shutdown(struct z8530_dev *dev)
1241 {
1242 	unsigned long flags;
1243 	/* Reset the chip */
1244 
1245 	spin_lock_irqsave(&dev->lock, flags);
1246 	dev->chanA.irqs = &z8530_nop;
1247 	dev->chanB.irqs = &z8530_nop;
1248 	write_zsreg(&dev->chanA, R9, 0xC0);
1249 	/* We must lock the udelay, the chip is offlimits here */
1250 	udelay(100);
1251 	spin_unlock_irqrestore(&dev->lock, flags);
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL(z8530_shutdown);
1255 
1256 /**
1257  *	z8530_channel_load - Load channel data
1258  *	@c: Z8530 channel to configure
1259  *	@rtable: table of register, value pairs
1260  *	FIXME: ioctl to allow user uploaded tables
1261  *
1262  *	Load a Z8530 channel up from the system data. We use +16 to
1263  *	indicate the "prime" registers. The value 255 terminates the
1264  *	table.
1265  */
1266 
z8530_channel_load(struct z8530_channel * c,u8 * rtable)1267 int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1268 {
1269 	unsigned long flags;
1270 
1271 	spin_lock_irqsave(c->lock, flags);
1272 
1273 	while (*rtable != 255) {
1274 		int reg = *rtable++;
1275 
1276 		if (reg > 0x0F)
1277 			write_zsreg(c, R15, c->regs[15] | 1);
1278 		write_zsreg(c, reg & 0x0F, *rtable);
1279 		if (reg > 0x0F)
1280 			write_zsreg(c, R15, c->regs[15] & ~1);
1281 		c->regs[reg] = *rtable++;
1282 	}
1283 	c->rx_function = z8530_null_rx;
1284 	c->skb = NULL;
1285 	c->tx_skb = NULL;
1286 	c->tx_next_skb = NULL;
1287 	c->mtu = 1500;
1288 	c->max = 0;
1289 	c->count = 0;
1290 	c->status = read_zsreg(c, R0);
1291 	c->sync = 1;
1292 	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
1293 
1294 	spin_unlock_irqrestore(c->lock, flags);
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL(z8530_channel_load);
1298 
1299 /**
1300  *	z8530_tx_begin - Begin packet transmission
1301  *	@c: The Z8530 channel to kick
1302  *
1303  *	This is the speed sensitive side of transmission. If we are called
1304  *	and no buffer is being transmitted we commence the next buffer. If
1305  *	nothing is queued we idle the sync.
1306  *
1307  *	Note: We are handling this code path in the interrupt path, keep it
1308  *	fast or bad things will happen.
1309  *
1310  *	Called with the lock held.
1311  */
1312 
z8530_tx_begin(struct z8530_channel * c)1313 static void z8530_tx_begin(struct z8530_channel *c)
1314 {
1315 	unsigned long flags;
1316 
1317 	if (c->tx_skb)
1318 		return;
1319 
1320 	c->tx_skb = c->tx_next_skb;
1321 	c->tx_next_skb = NULL;
1322 	c->tx_ptr = c->tx_next_ptr;
1323 
1324 	if (!c->tx_skb) {
1325 		/* Idle on */
1326 		if (c->dma_tx) {
1327 			flags = claim_dma_lock();
1328 			disable_dma(c->txdma);
1329 			/*	Check if we crapped out.
1330 			 */
1331 			if (get_dma_residue(c->txdma)) {
1332 				c->netdevice->stats.tx_dropped++;
1333 				c->netdevice->stats.tx_fifo_errors++;
1334 			}
1335 			release_dma_lock(flags);
1336 		}
1337 		c->txcount = 0;
1338 	} else {
1339 		c->txcount = c->tx_skb->len;
1340 
1341 		if (c->dma_tx) {
1342 			/*	FIXME. DMA is broken for the original 8530,
1343 			 *	on the older parts we need to set a flag and
1344 			 *	wait for a further TX interrupt to fire this
1345 			 *	stage off
1346 			 */
1347 
1348 			flags = claim_dma_lock();
1349 			disable_dma(c->txdma);
1350 
1351 			/*	These two are needed by the 8530/85C30
1352 			 *	and must be issued when idling.
1353 			 */
1354 			if (c->dev->type != Z85230) {
1355 				write_zsctrl(c, RES_Tx_CRC);
1356 				write_zsctrl(c, RES_EOM_L);
1357 			}
1358 			write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
1359 			clear_dma_ff(c->txdma);
1360 			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1361 			set_dma_count(c->txdma, c->txcount);
1362 			enable_dma(c->txdma);
1363 			release_dma_lock(flags);
1364 			write_zsctrl(c, RES_EOM_L);
1365 			write_zsreg(c, R5, c->regs[R5] | TxENAB);
1366 		} else {
1367 			/* ABUNDER off */
1368 			write_zsreg(c, R10, c->regs[10]);
1369 			write_zsctrl(c, RES_Tx_CRC);
1370 
1371 			while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) {
1372 				write_zsreg(c, R8, *c->tx_ptr++);
1373 				c->txcount--;
1374 			}
1375 		}
1376 	}
1377 	/*	Since we emptied tx_skb we can ask for more
1378 	 */
1379 	netif_wake_queue(c->netdevice);
1380 }
1381 
1382 /**
1383  *	z8530_tx_done - TX complete callback
1384  *	@c: The channel that completed a transmit.
1385  *
1386  *	This is called when we complete a packet send. We wake the queue,
1387  *	start the next packet going and then free the buffer of the existing
1388  *	packet. This code is fairly timing sensitive.
1389  *
1390  *	Called with the register lock held.
1391  */
1392 
z8530_tx_done(struct z8530_channel * c)1393 static void z8530_tx_done(struct z8530_channel *c)
1394 {
1395 	struct sk_buff *skb;
1396 
1397 	/* Actually this can happen.*/
1398 	if (!c->tx_skb)
1399 		return;
1400 
1401 	skb = c->tx_skb;
1402 	c->tx_skb = NULL;
1403 	z8530_tx_begin(c);
1404 	c->netdevice->stats.tx_packets++;
1405 	c->netdevice->stats.tx_bytes += skb->len;
1406 	dev_consume_skb_irq(skb);
1407 }
1408 
1409 /**
1410  *	z8530_null_rx - Discard a packet
1411  *	@c: The channel the packet arrived on
1412  *	@skb: The buffer
1413  *
1414  *	We point the receive handler at this function when idle. Instead
1415  *	of processing the frames we get to throw them away.
1416  */
z8530_null_rx(struct z8530_channel * c,struct sk_buff * skb)1417 void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1418 {
1419 	dev_kfree_skb_any(skb);
1420 }
1421 EXPORT_SYMBOL(z8530_null_rx);
1422 
1423 /**
1424  *	z8530_rx_done - Receive completion callback
1425  *	@c: The channel that completed a receive
1426  *
1427  *	A new packet is complete. Our goal here is to get back into receive
1428  *	mode as fast as possible. On the Z85230 we could change to using
1429  *	ESCC mode, but on the older chips we have no choice. We flip to the
1430  *	new buffer immediately in DMA mode so that the DMA of the next
1431  *	frame can occur while we are copying the previous buffer to an sk_buff
1432  *
1433  *	Called with the lock held
1434  */
z8530_rx_done(struct z8530_channel * c)1435 static void z8530_rx_done(struct z8530_channel *c)
1436 {
1437 	struct sk_buff *skb;
1438 	int ct;
1439 
1440 	/*	Is our receive engine in DMA mode
1441 	 */
1442 	if (c->rxdma_on) {
1443 		/*	Save the ready state and the buffer currently
1444 		 *	being used as the DMA target
1445 		 */
1446 		int ready = c->dma_ready;
1447 		unsigned char *rxb = c->rx_buf[c->dma_num];
1448 		unsigned long flags;
1449 
1450 		/*	Complete this DMA. Necessary to find the length
1451 		 */
1452 		flags = claim_dma_lock();
1453 
1454 		disable_dma(c->rxdma);
1455 		clear_dma_ff(c->rxdma);
1456 		c->rxdma_on = 0;
1457 		ct = c->mtu - get_dma_residue(c->rxdma);
1458 		if (ct < 0)
1459 			ct = 2;	/* Shit happens.. */
1460 		c->dma_ready = 0;
1461 
1462 		/*	Normal case: the other slot is free, start the next DMA
1463 		 *	into it immediately.
1464 		 */
1465 
1466 		if (ready) {
1467 			c->dma_num ^= 1;
1468 			set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
1469 			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1470 			set_dma_count(c->rxdma, c->mtu);
1471 			c->rxdma_on = 1;
1472 			enable_dma(c->rxdma);
1473 			/* Stop any frames that we missed the head of
1474 			 * from passing
1475 			 */
1476 			write_zsreg(c, R0, RES_Rx_CRC);
1477 		} else {
1478 			/* Can't occur as we dont reenable the DMA irq until
1479 			 * after the flip is done
1480 			 */
1481 			netdev_warn(c->netdevice, "DMA flip overrun!\n");
1482 		}
1483 
1484 		release_dma_lock(flags);
1485 
1486 		/*	Shove the old buffer into an sk_buff. We can't DMA
1487 		 *	directly into one on a PC - it might be above the 16Mb
1488 		 *	boundary. Optimisation - we could check to see if we
1489 		 *	can avoid the copy. Optimisation 2 - make the memcpy
1490 		 *	a copychecksum.
1491 		 */
1492 
1493 		skb = dev_alloc_skb(ct);
1494 		if (!skb) {
1495 			c->netdevice->stats.rx_dropped++;
1496 			netdev_warn(c->netdevice, "Memory squeeze\n");
1497 		} else {
1498 			skb_put(skb, ct);
1499 			skb_copy_to_linear_data(skb, rxb, ct);
1500 			c->netdevice->stats.rx_packets++;
1501 			c->netdevice->stats.rx_bytes += ct;
1502 		}
1503 		c->dma_ready = 1;
1504 	} else {
1505 		RT_LOCK;
1506 		skb = c->skb;
1507 
1508 		/*	The game we play for non DMA is similar. We want to
1509 		 *	get the controller set up for the next packet as fast
1510 		 *	as possible. We potentially only have one byte + the
1511 		 *	fifo length for this. Thus we want to flip to the new
1512 		 *	buffer and then mess around copying and allocating
1513 		 *	things. For the current case it doesn't matter but
1514 		 *	if you build a system where the sync irq isn't blocked
1515 		 *	by the kernel IRQ disable then you need only block the
1516 		 *	sync IRQ for the RT_LOCK area.
1517 		 *
1518 		 */
1519 		ct = c->count;
1520 
1521 		c->skb = c->skb2;
1522 		c->count = 0;
1523 		c->max = c->mtu;
1524 		if (c->skb) {
1525 			c->dptr = c->skb->data;
1526 			c->max = c->mtu;
1527 		} else {
1528 			c->count = 0;
1529 			c->max = 0;
1530 		}
1531 		RT_UNLOCK;
1532 
1533 		c->skb2 = dev_alloc_skb(c->mtu);
1534 		if (c->skb2)
1535 			skb_put(c->skb2, c->mtu);
1536 
1537 		c->netdevice->stats.rx_packets++;
1538 		c->netdevice->stats.rx_bytes += ct;
1539 	}
1540 	/*	If we received a frame we must now process it.
1541 	 */
1542 	if (skb) {
1543 		skb_trim(skb, ct);
1544 		c->rx_function(c, skb);
1545 	} else {
1546 		c->netdevice->stats.rx_dropped++;
1547 		netdev_err(c->netdevice, "Lost a frame\n");
1548 	}
1549 }
1550 
1551 /**
1552  *	spans_boundary - Check a packet can be ISA DMA'd
1553  *	@skb: The buffer to check
1554  *
1555  *	Returns true if the buffer cross a DMA boundary on a PC. The poor
1556  *	thing can only DMA within a 64K block not across the edges of it.
1557  */
1558 
spans_boundary(struct sk_buff * skb)1559 static inline int spans_boundary(struct sk_buff *skb)
1560 {
1561 	unsigned long a = (unsigned long)skb->data;
1562 
1563 	a ^= (a + skb->len);
1564 	if (a & 0x00010000)	/* If the 64K bit is different.. */
1565 		return 1;
1566 	return 0;
1567 }
1568 
1569 /**
1570  *	z8530_queue_xmit - Queue a packet
1571  *	@c: The channel to use
1572  *	@skb: The packet to kick down the channel
1573  *
1574  *	Queue a packet for transmission. Because we have rather
1575  *	hard to hit interrupt latencies for the Z85230 per packet
1576  *	even in DMA mode we do the flip to DMA buffer if needed here
1577  *	not in the IRQ.
1578  *
1579  *	Called from the network code. The lock is not held at this
1580  *	point.
1581  */
z8530_queue_xmit(struct z8530_channel * c,struct sk_buff * skb)1582 netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1583 {
1584 	unsigned long flags;
1585 
1586 	netif_stop_queue(c->netdevice);
1587 	if (c->tx_next_skb)
1588 		return NETDEV_TX_BUSY;
1589 
1590 	/* PC SPECIFIC - DMA limits */
1591 	/*	If we will DMA the transmit and its gone over the ISA bus
1592 	 *	limit, then copy to the flip buffer
1593 	 */
1594 
1595 	if (c->dma_tx &&
1596 	    ((unsigned long)(virt_to_bus(skb->data + skb->len)) >=
1597 	    16 * 1024 * 1024 || spans_boundary(skb))) {
1598 		/*	Send the flip buffer, and flip the flippy bit.
1599 		 *	We don't care which is used when just so long as
1600 		 *	we never use the same buffer twice in a row. Since
1601 		 *	only one buffer can be going out at a time the other
1602 		 *	has to be safe.
1603 		 */
1604 		c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used];
1605 		c->tx_dma_used ^= 1;	/* Flip temp buffer */
1606 		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1607 	} else {
1608 		c->tx_next_ptr = skb->data;
1609 	}
1610 	RT_LOCK;
1611 	c->tx_next_skb = skb;
1612 	RT_UNLOCK;
1613 
1614 	spin_lock_irqsave(c->lock, flags);
1615 	z8530_tx_begin(c);
1616 	spin_unlock_irqrestore(c->lock, flags);
1617 
1618 	return NETDEV_TX_OK;
1619 }
1620 EXPORT_SYMBOL(z8530_queue_xmit);
1621 
1622 /*	Module support
1623  */
1624 static const char banner[] __initconst =
1625 	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1626 
z85230_init_driver(void)1627 static int __init z85230_init_driver(void)
1628 {
1629 	printk(banner);
1630 	return 0;
1631 }
1632 module_init(z85230_init_driver);
1633 
z85230_cleanup_driver(void)1634 static void __exit z85230_cleanup_driver(void)
1635 {
1636 }
1637 module_exit(z85230_cleanup_driver);
1638 
1639 MODULE_AUTHOR("Red Hat Inc.");
1640 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1641 MODULE_LICENSE("GPL");
1642