1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 /* ethtool support for iavf */
5 #include "iavf.h"
6
7 #include <linux/uaccess.h>
8
9 /* ethtool statistics helpers */
10
11 /**
12 * struct iavf_stats - definition for an ethtool statistic
13 * @stat_string: statistic name to display in ethtool -S output
14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
15 * @stat_offset: offsetof() the stat from a base pointer
16 *
17 * This structure defines a statistic to be added to the ethtool stats buffer.
18 * It defines a statistic as offset from a common base pointer. Stats should
19 * be defined in constant arrays using the IAVF_STAT macro, with every element
20 * of the array using the same _type for calculating the sizeof_stat and
21 * stat_offset.
22 *
23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
25 * the iavf_add_ethtool_stat() helper function.
26 *
27 * The @stat_string is interpreted as a format string, allowing formatted
28 * values to be inserted while looping over multiple structures for a given
29 * statistics array. Thus, every statistic string in an array should have the
30 * same type and number of format specifiers, to be formatted by variadic
31 * arguments to the iavf_add_stat_string() helper function.
32 **/
33 struct iavf_stats {
34 char stat_string[ETH_GSTRING_LEN];
35 int sizeof_stat;
36 int stat_offset;
37 };
38
39 /* Helper macro to define an iavf_stat structure with proper size and type.
40 * Use this when defining constant statistics arrays. Note that @_type expects
41 * only a type name and is used multiple times.
42 */
43 #define IAVF_STAT(_type, _name, _stat) { \
44 .stat_string = _name, \
45 .sizeof_stat = sizeof_field(_type, _stat), \
46 .stat_offset = offsetof(_type, _stat) \
47 }
48
49 /* Helper macro for defining some statistics related to queues */
50 #define IAVF_QUEUE_STAT(_name, _stat) \
51 IAVF_STAT(struct iavf_ring, _name, _stat)
52
53 /* Stats associated with a Tx or Rx ring */
54 static const struct iavf_stats iavf_gstrings_queue_stats[] = {
55 IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
56 IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
57 };
58
59 /**
60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
61 * @data: location to store the stat value
62 * @pointer: basis for where to copy from
63 * @stat: the stat definition
64 *
65 * Copies the stat data defined by the pointer and stat structure pair into
66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
68 */
69 static void
iavf_add_one_ethtool_stat(u64 * data,void * pointer,const struct iavf_stats * stat)70 iavf_add_one_ethtool_stat(u64 *data, void *pointer,
71 const struct iavf_stats *stat)
72 {
73 char *p;
74
75 if (!pointer) {
76 /* ensure that the ethtool data buffer is zero'd for any stats
77 * which don't have a valid pointer.
78 */
79 *data = 0;
80 return;
81 }
82
83 p = (char *)pointer + stat->stat_offset;
84 switch (stat->sizeof_stat) {
85 case sizeof(u64):
86 *data = *((u64 *)p);
87 break;
88 case sizeof(u32):
89 *data = *((u32 *)p);
90 break;
91 case sizeof(u16):
92 *data = *((u16 *)p);
93 break;
94 case sizeof(u8):
95 *data = *((u8 *)p);
96 break;
97 default:
98 WARN_ONCE(1, "unexpected stat size for %s",
99 stat->stat_string);
100 *data = 0;
101 }
102 }
103
104 /**
105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
106 * @data: ethtool stats buffer
107 * @pointer: location to copy stats from
108 * @stats: array of stats to copy
109 * @size: the size of the stats definition
110 *
111 * Copy the stats defined by the stats array using the pointer as a base into
112 * the data buffer supplied by ethtool. Updates the data pointer to point to
113 * the next empty location for successive calls to __iavf_add_ethtool_stats.
114 * If pointer is null, set the data values to zero and update the pointer to
115 * skip these stats.
116 **/
117 static void
__iavf_add_ethtool_stats(u64 ** data,void * pointer,const struct iavf_stats stats[],const unsigned int size)118 __iavf_add_ethtool_stats(u64 **data, void *pointer,
119 const struct iavf_stats stats[],
120 const unsigned int size)
121 {
122 unsigned int i;
123
124 for (i = 0; i < size; i++)
125 iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
126 }
127
128 /**
129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
130 * @data: ethtool stats buffer
131 * @pointer: location where stats are stored
132 * @stats: static const array of stat definitions
133 *
134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
136 * ensuring that we pass the size associated with the given stats array.
137 *
138 * The parameter @stats is evaluated twice, so parameters with side effects
139 * should be avoided.
140 **/
141 #define iavf_add_ethtool_stats(data, pointer, stats) \
142 __iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
143
144 /**
145 * iavf_add_queue_stats - copy queue statistics into supplied buffer
146 * @data: ethtool stats buffer
147 * @ring: the ring to copy
148 *
149 * Queue statistics must be copied while protected by
150 * u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats.
151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
152 * ring pointer is null, zero out the queue stat values and update the data
153 * pointer. Otherwise safely copy the stats from the ring into the supplied
154 * buffer and update the data pointer when finished.
155 *
156 * This function expects to be called while under rcu_read_lock().
157 **/
158 static void
iavf_add_queue_stats(u64 ** data,struct iavf_ring * ring)159 iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
160 {
161 const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
162 const struct iavf_stats *stats = iavf_gstrings_queue_stats;
163 unsigned int start;
164 unsigned int i;
165
166 /* To avoid invalid statistics values, ensure that we keep retrying
167 * the copy until we get a consistent value according to
168 * u64_stats_fetch_retry_irq. But first, make sure our ring is
169 * non-null before attempting to access its syncp.
170 */
171 do {
172 start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp);
173 for (i = 0; i < size; i++)
174 iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
175 } while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start));
176
177 /* Once we successfully copy the stats in, update the data pointer */
178 *data += size;
179 }
180
181 /**
182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer
183 * @p: ethtool supplied buffer
184 * @stats: stat definitions array
185 * @size: size of the stats array
186 *
187 * Format and copy the strings described by stats into the buffer pointed at
188 * by p.
189 **/
__iavf_add_stat_strings(u8 ** p,const struct iavf_stats stats[],const unsigned int size,...)190 static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
191 const unsigned int size, ...)
192 {
193 unsigned int i;
194
195 for (i = 0; i < size; i++) {
196 va_list args;
197
198 va_start(args, size);
199 vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
200 *p += ETH_GSTRING_LEN;
201 va_end(args);
202 }
203 }
204
205 /**
206 * iavf_add_stat_strings - copy stat strings into ethtool buffer
207 * @p: ethtool supplied buffer
208 * @stats: stat definitions array
209 *
210 * Format and copy the strings described by the const static stats value into
211 * the buffer pointed at by p.
212 *
213 * The parameter @stats is evaluated twice, so parameters with side effects
214 * should be avoided. Additionally, stats must be an array such that
215 * ARRAY_SIZE can be called on it.
216 **/
217 #define iavf_add_stat_strings(p, stats, ...) \
218 __iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
219
220 #define VF_STAT(_name, _stat) \
221 IAVF_STAT(struct iavf_adapter, _name, _stat)
222
223 static const struct iavf_stats iavf_gstrings_stats[] = {
224 VF_STAT("rx_bytes", current_stats.rx_bytes),
225 VF_STAT("rx_unicast", current_stats.rx_unicast),
226 VF_STAT("rx_multicast", current_stats.rx_multicast),
227 VF_STAT("rx_broadcast", current_stats.rx_broadcast),
228 VF_STAT("rx_discards", current_stats.rx_discards),
229 VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
230 VF_STAT("tx_bytes", current_stats.tx_bytes),
231 VF_STAT("tx_unicast", current_stats.tx_unicast),
232 VF_STAT("tx_multicast", current_stats.tx_multicast),
233 VF_STAT("tx_broadcast", current_stats.tx_broadcast),
234 VF_STAT("tx_discards", current_stats.tx_discards),
235 VF_STAT("tx_errors", current_stats.tx_errors),
236 };
237
238 #define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats)
239
240 #define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats)
241
242 /* For now we have one and only one private flag and it is only defined
243 * when we have support for the SKIP_CPU_SYNC DMA attribute. Instead
244 * of leaving all this code sitting around empty we will strip it unless
245 * our one private flag is actually available.
246 */
247 struct iavf_priv_flags {
248 char flag_string[ETH_GSTRING_LEN];
249 u32 flag;
250 bool read_only;
251 };
252
253 #define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
254 .flag_string = _name, \
255 .flag = _flag, \
256 .read_only = _read_only, \
257 }
258
259 static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
260 IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
261 };
262
263 #define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
264
265 /**
266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings
267 * @netdev: network interface device structure
268 * @cmd: ethtool command
269 *
270 * Reports speed/duplex settings. Because this is a VF, we don't know what
271 * kind of link we really have, so we fake it.
272 **/
iavf_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)273 static int iavf_get_link_ksettings(struct net_device *netdev,
274 struct ethtool_link_ksettings *cmd)
275 {
276 struct iavf_adapter *adapter = netdev_priv(netdev);
277
278 ethtool_link_ksettings_zero_link_mode(cmd, supported);
279 cmd->base.autoneg = AUTONEG_DISABLE;
280 cmd->base.port = PORT_NONE;
281 cmd->base.duplex = DUPLEX_FULL;
282
283 if (ADV_LINK_SUPPORT(adapter)) {
284 if (adapter->link_speed_mbps &&
285 adapter->link_speed_mbps < U32_MAX)
286 cmd->base.speed = adapter->link_speed_mbps;
287 else
288 cmd->base.speed = SPEED_UNKNOWN;
289
290 return 0;
291 }
292
293 switch (adapter->link_speed) {
294 case VIRTCHNL_LINK_SPEED_40GB:
295 cmd->base.speed = SPEED_40000;
296 break;
297 case VIRTCHNL_LINK_SPEED_25GB:
298 cmd->base.speed = SPEED_25000;
299 break;
300 case VIRTCHNL_LINK_SPEED_20GB:
301 cmd->base.speed = SPEED_20000;
302 break;
303 case VIRTCHNL_LINK_SPEED_10GB:
304 cmd->base.speed = SPEED_10000;
305 break;
306 case VIRTCHNL_LINK_SPEED_5GB:
307 cmd->base.speed = SPEED_5000;
308 break;
309 case VIRTCHNL_LINK_SPEED_2_5GB:
310 cmd->base.speed = SPEED_2500;
311 break;
312 case VIRTCHNL_LINK_SPEED_1GB:
313 cmd->base.speed = SPEED_1000;
314 break;
315 case VIRTCHNL_LINK_SPEED_100MB:
316 cmd->base.speed = SPEED_100;
317 break;
318 default:
319 break;
320 }
321
322 return 0;
323 }
324
325 /**
326 * iavf_get_sset_count - Get length of string set
327 * @netdev: network interface device structure
328 * @sset: id of string set
329 *
330 * Reports size of various string tables.
331 **/
iavf_get_sset_count(struct net_device * netdev,int sset)332 static int iavf_get_sset_count(struct net_device *netdev, int sset)
333 {
334 if (sset == ETH_SS_STATS)
335 return IAVF_STATS_LEN +
336 (IAVF_QUEUE_STATS_LEN * 2 * IAVF_MAX_REQ_QUEUES);
337 else if (sset == ETH_SS_PRIV_FLAGS)
338 return IAVF_PRIV_FLAGS_STR_LEN;
339 else
340 return -EINVAL;
341 }
342
343 /**
344 * iavf_get_ethtool_stats - report device statistics
345 * @netdev: network interface device structure
346 * @stats: ethtool statistics structure
347 * @data: pointer to data buffer
348 *
349 * All statistics are added to the data buffer as an array of u64.
350 **/
iavf_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)351 static void iavf_get_ethtool_stats(struct net_device *netdev,
352 struct ethtool_stats *stats, u64 *data)
353 {
354 struct iavf_adapter *adapter = netdev_priv(netdev);
355 unsigned int i;
356
357 /* Explicitly request stats refresh */
358 iavf_schedule_request_stats(adapter);
359
360 iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
361
362 rcu_read_lock();
363 for (i = 0; i < IAVF_MAX_REQ_QUEUES; i++) {
364 struct iavf_ring *ring;
365
366 /* Avoid accessing un-allocated queues */
367 ring = (i < adapter->num_active_queues ?
368 &adapter->tx_rings[i] : NULL);
369 iavf_add_queue_stats(&data, ring);
370
371 /* Avoid accessing un-allocated queues */
372 ring = (i < adapter->num_active_queues ?
373 &adapter->rx_rings[i] : NULL);
374 iavf_add_queue_stats(&data, ring);
375 }
376 rcu_read_unlock();
377 }
378
379 /**
380 * iavf_get_priv_flag_strings - Get private flag strings
381 * @netdev: network interface device structure
382 * @data: buffer for string data
383 *
384 * Builds the private flags string table
385 **/
iavf_get_priv_flag_strings(struct net_device * netdev,u8 * data)386 static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
387 {
388 unsigned int i;
389
390 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
391 snprintf(data, ETH_GSTRING_LEN, "%s",
392 iavf_gstrings_priv_flags[i].flag_string);
393 data += ETH_GSTRING_LEN;
394 }
395 }
396
397 /**
398 * iavf_get_stat_strings - Get stat strings
399 * @netdev: network interface device structure
400 * @data: buffer for string data
401 *
402 * Builds the statistics string table
403 **/
iavf_get_stat_strings(struct net_device * netdev,u8 * data)404 static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
405 {
406 unsigned int i;
407
408 iavf_add_stat_strings(&data, iavf_gstrings_stats);
409
410 /* Queues are always allocated in pairs, so we just use num_tx_queues
411 * for both Tx and Rx queues.
412 */
413 for (i = 0; i < netdev->num_tx_queues; i++) {
414 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
415 "tx", i);
416 iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
417 "rx", i);
418 }
419 }
420
421 /**
422 * iavf_get_strings - Get string set
423 * @netdev: network interface device structure
424 * @sset: id of string set
425 * @data: buffer for string data
426 *
427 * Builds string tables for various string sets
428 **/
iavf_get_strings(struct net_device * netdev,u32 sset,u8 * data)429 static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
430 {
431 switch (sset) {
432 case ETH_SS_STATS:
433 iavf_get_stat_strings(netdev, data);
434 break;
435 case ETH_SS_PRIV_FLAGS:
436 iavf_get_priv_flag_strings(netdev, data);
437 break;
438 default:
439 break;
440 }
441 }
442
443 /**
444 * iavf_get_priv_flags - report device private flags
445 * @netdev: network interface device structure
446 *
447 * The get string set count and the string set should be matched for each
448 * flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags
449 * array.
450 *
451 * Returns a u32 bitmap of flags.
452 **/
iavf_get_priv_flags(struct net_device * netdev)453 static u32 iavf_get_priv_flags(struct net_device *netdev)
454 {
455 struct iavf_adapter *adapter = netdev_priv(netdev);
456 u32 i, ret_flags = 0;
457
458 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
459 const struct iavf_priv_flags *priv_flags;
460
461 priv_flags = &iavf_gstrings_priv_flags[i];
462
463 if (priv_flags->flag & adapter->flags)
464 ret_flags |= BIT(i);
465 }
466
467 return ret_flags;
468 }
469
470 /**
471 * iavf_set_priv_flags - set private flags
472 * @netdev: network interface device structure
473 * @flags: bit flags to be set
474 **/
iavf_set_priv_flags(struct net_device * netdev,u32 flags)475 static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
476 {
477 struct iavf_adapter *adapter = netdev_priv(netdev);
478 u32 orig_flags, new_flags, changed_flags;
479 u32 i;
480
481 orig_flags = READ_ONCE(adapter->flags);
482 new_flags = orig_flags;
483
484 for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
485 const struct iavf_priv_flags *priv_flags;
486
487 priv_flags = &iavf_gstrings_priv_flags[i];
488
489 if (flags & BIT(i))
490 new_flags |= priv_flags->flag;
491 else
492 new_flags &= ~(priv_flags->flag);
493
494 if (priv_flags->read_only &&
495 ((orig_flags ^ new_flags) & ~BIT(i)))
496 return -EOPNOTSUPP;
497 }
498
499 /* Before we finalize any flag changes, any checks which we need to
500 * perform to determine if the new flags will be supported should go
501 * here...
502 */
503
504 /* Compare and exchange the new flags into place. If we failed, that
505 * is if cmpxchg returns anything but the old value, this means
506 * something else must have modified the flags variable since we
507 * copied it. We'll just punt with an error and log something in the
508 * message buffer.
509 */
510 if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
511 dev_warn(&adapter->pdev->dev,
512 "Unable to update adapter->flags as it was modified by another thread...\n");
513 return -EAGAIN;
514 }
515
516 changed_flags = orig_flags ^ new_flags;
517
518 /* Process any additional changes needed as a result of flag changes.
519 * The changed_flags value reflects the list of bits that were changed
520 * in the code above.
521 */
522
523 /* issue a reset to force legacy-rx change to take effect */
524 if (changed_flags & IAVF_FLAG_LEGACY_RX) {
525 if (netif_running(netdev)) {
526 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
527 queue_work(iavf_wq, &adapter->reset_task);
528 }
529 }
530
531 return 0;
532 }
533
534 /**
535 * iavf_get_msglevel - Get debug message level
536 * @netdev: network interface device structure
537 *
538 * Returns current debug message level.
539 **/
iavf_get_msglevel(struct net_device * netdev)540 static u32 iavf_get_msglevel(struct net_device *netdev)
541 {
542 struct iavf_adapter *adapter = netdev_priv(netdev);
543
544 return adapter->msg_enable;
545 }
546
547 /**
548 * iavf_set_msglevel - Set debug message level
549 * @netdev: network interface device structure
550 * @data: message level
551 *
552 * Set current debug message level. Higher values cause the driver to
553 * be noisier.
554 **/
iavf_set_msglevel(struct net_device * netdev,u32 data)555 static void iavf_set_msglevel(struct net_device *netdev, u32 data)
556 {
557 struct iavf_adapter *adapter = netdev_priv(netdev);
558
559 if (IAVF_DEBUG_USER & data)
560 adapter->hw.debug_mask = data;
561 adapter->msg_enable = data;
562 }
563
564 /**
565 * iavf_get_drvinfo - Get driver info
566 * @netdev: network interface device structure
567 * @drvinfo: ethool driver info structure
568 *
569 * Returns information about the driver and device for display to the user.
570 **/
iavf_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)571 static void iavf_get_drvinfo(struct net_device *netdev,
572 struct ethtool_drvinfo *drvinfo)
573 {
574 struct iavf_adapter *adapter = netdev_priv(netdev);
575
576 strlcpy(drvinfo->driver, iavf_driver_name, 32);
577 strlcpy(drvinfo->fw_version, "N/A", 4);
578 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
579 drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
580 }
581
582 /**
583 * iavf_get_ringparam - Get ring parameters
584 * @netdev: network interface device structure
585 * @ring: ethtool ringparam structure
586 *
587 * Returns current ring parameters. TX and RX rings are reported separately,
588 * but the number of rings is not reported.
589 **/
iavf_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)590 static void iavf_get_ringparam(struct net_device *netdev,
591 struct ethtool_ringparam *ring)
592 {
593 struct iavf_adapter *adapter = netdev_priv(netdev);
594
595 ring->rx_max_pending = IAVF_MAX_RXD;
596 ring->tx_max_pending = IAVF_MAX_TXD;
597 ring->rx_pending = adapter->rx_desc_count;
598 ring->tx_pending = adapter->tx_desc_count;
599 }
600
601 /**
602 * iavf_set_ringparam - Set ring parameters
603 * @netdev: network interface device structure
604 * @ring: ethtool ringparam structure
605 *
606 * Sets ring parameters. TX and RX rings are controlled separately, but the
607 * number of rings is not specified, so all rings get the same settings.
608 **/
iavf_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)609 static int iavf_set_ringparam(struct net_device *netdev,
610 struct ethtool_ringparam *ring)
611 {
612 struct iavf_adapter *adapter = netdev_priv(netdev);
613 u32 new_rx_count, new_tx_count;
614
615 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
616 return -EINVAL;
617
618 if (ring->tx_pending > IAVF_MAX_TXD ||
619 ring->tx_pending < IAVF_MIN_TXD ||
620 ring->rx_pending > IAVF_MAX_RXD ||
621 ring->rx_pending < IAVF_MIN_RXD) {
622 netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
623 ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD,
624 IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE);
625 return -EINVAL;
626 }
627
628 new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
629 if (new_tx_count != ring->tx_pending)
630 netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
631 new_tx_count);
632
633 new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
634 if (new_rx_count != ring->rx_pending)
635 netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
636 new_rx_count);
637
638 /* if nothing to do return success */
639 if ((new_tx_count == adapter->tx_desc_count) &&
640 (new_rx_count == adapter->rx_desc_count)) {
641 netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
642 return 0;
643 }
644
645 if (new_tx_count != adapter->tx_desc_count) {
646 netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n",
647 adapter->tx_desc_count, new_tx_count);
648 adapter->tx_desc_count = new_tx_count;
649 }
650
651 if (new_rx_count != adapter->rx_desc_count) {
652 netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n",
653 adapter->rx_desc_count, new_rx_count);
654 adapter->rx_desc_count = new_rx_count;
655 }
656
657 if (netif_running(netdev)) {
658 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
659 queue_work(iavf_wq, &adapter->reset_task);
660 }
661
662 return 0;
663 }
664
665 /**
666 * __iavf_get_coalesce - get per-queue coalesce settings
667 * @netdev: the netdev to check
668 * @ec: ethtool coalesce data structure
669 * @queue: which queue to pick
670 *
671 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
672 * are per queue. If queue is <0 then we default to queue 0 as the
673 * representative value.
674 **/
__iavf_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int queue)675 static int __iavf_get_coalesce(struct net_device *netdev,
676 struct ethtool_coalesce *ec, int queue)
677 {
678 struct iavf_adapter *adapter = netdev_priv(netdev);
679 struct iavf_vsi *vsi = &adapter->vsi;
680 struct iavf_ring *rx_ring, *tx_ring;
681
682 ec->tx_max_coalesced_frames = vsi->work_limit;
683 ec->rx_max_coalesced_frames = vsi->work_limit;
684
685 /* Rx and Tx usecs per queue value. If user doesn't specify the
686 * queue, return queue 0's value to represent.
687 */
688 if (queue < 0)
689 queue = 0;
690 else if (queue >= adapter->num_active_queues)
691 return -EINVAL;
692
693 rx_ring = &adapter->rx_rings[queue];
694 tx_ring = &adapter->tx_rings[queue];
695
696 if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
697 ec->use_adaptive_rx_coalesce = 1;
698
699 if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
700 ec->use_adaptive_tx_coalesce = 1;
701
702 ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
703 ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
704
705 return 0;
706 }
707
708 /**
709 * iavf_get_coalesce - Get interrupt coalescing settings
710 * @netdev: network interface device structure
711 * @ec: ethtool coalesce structure
712 * @kernel_coal: ethtool CQE mode setting structure
713 * @extack: extack for reporting error messages
714 *
715 * Returns current coalescing settings. This is referred to elsewhere in the
716 * driver as Interrupt Throttle Rate, as this is how the hardware describes
717 * this functionality. Note that if per-queue settings have been modified this
718 * only represents the settings of queue 0.
719 **/
iavf_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)720 static int iavf_get_coalesce(struct net_device *netdev,
721 struct ethtool_coalesce *ec,
722 struct kernel_ethtool_coalesce *kernel_coal,
723 struct netlink_ext_ack *extack)
724 {
725 return __iavf_get_coalesce(netdev, ec, -1);
726 }
727
728 /**
729 * iavf_get_per_queue_coalesce - get coalesce values for specific queue
730 * @netdev: netdev to read
731 * @ec: coalesce settings from ethtool
732 * @queue: the queue to read
733 *
734 * Read specific queue's coalesce settings.
735 **/
iavf_get_per_queue_coalesce(struct net_device * netdev,u32 queue,struct ethtool_coalesce * ec)736 static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
737 struct ethtool_coalesce *ec)
738 {
739 return __iavf_get_coalesce(netdev, ec, queue);
740 }
741
742 /**
743 * iavf_set_itr_per_queue - set ITR values for specific queue
744 * @adapter: the VF adapter struct to set values for
745 * @ec: coalesce settings from ethtool
746 * @queue: the queue to modify
747 *
748 * Change the ITR settings for a specific queue.
749 **/
iavf_set_itr_per_queue(struct iavf_adapter * adapter,struct ethtool_coalesce * ec,int queue)750 static int iavf_set_itr_per_queue(struct iavf_adapter *adapter,
751 struct ethtool_coalesce *ec, int queue)
752 {
753 struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
754 struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
755 struct iavf_q_vector *q_vector;
756 u16 itr_setting;
757
758 itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
759
760 if (ec->rx_coalesce_usecs != itr_setting &&
761 ec->use_adaptive_rx_coalesce) {
762 netif_info(adapter, drv, adapter->netdev,
763 "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n");
764 return -EINVAL;
765 }
766
767 itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
768
769 if (ec->tx_coalesce_usecs != itr_setting &&
770 ec->use_adaptive_tx_coalesce) {
771 netif_info(adapter, drv, adapter->netdev,
772 "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n");
773 return -EINVAL;
774 }
775
776 rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
777 tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
778
779 rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
780 if (!ec->use_adaptive_rx_coalesce)
781 rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
782
783 tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
784 if (!ec->use_adaptive_tx_coalesce)
785 tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
786
787 q_vector = rx_ring->q_vector;
788 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
789
790 q_vector = tx_ring->q_vector;
791 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
792
793 /* The interrupt handler itself will take care of programming
794 * the Tx and Rx ITR values based on the values we have entered
795 * into the q_vector, no need to write the values now.
796 */
797 return 0;
798 }
799
800 /**
801 * __iavf_set_coalesce - set coalesce settings for particular queue
802 * @netdev: the netdev to change
803 * @ec: ethtool coalesce settings
804 * @queue: the queue to change
805 *
806 * Sets the coalesce settings for a particular queue.
807 **/
__iavf_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,int queue)808 static int __iavf_set_coalesce(struct net_device *netdev,
809 struct ethtool_coalesce *ec, int queue)
810 {
811 struct iavf_adapter *adapter = netdev_priv(netdev);
812 struct iavf_vsi *vsi = &adapter->vsi;
813 int i;
814
815 if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq)
816 vsi->work_limit = ec->tx_max_coalesced_frames_irq;
817
818 if (ec->rx_coalesce_usecs == 0) {
819 if (ec->use_adaptive_rx_coalesce)
820 netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
821 } else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
822 (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
823 netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
824 return -EINVAL;
825 } else if (ec->tx_coalesce_usecs == 0) {
826 if (ec->use_adaptive_tx_coalesce)
827 netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
828 } else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
829 (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
830 netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
831 return -EINVAL;
832 }
833
834 /* Rx and Tx usecs has per queue value. If user doesn't specify the
835 * queue, apply to all queues.
836 */
837 if (queue < 0) {
838 for (i = 0; i < adapter->num_active_queues; i++)
839 if (iavf_set_itr_per_queue(adapter, ec, i))
840 return -EINVAL;
841 } else if (queue < adapter->num_active_queues) {
842 if (iavf_set_itr_per_queue(adapter, ec, queue))
843 return -EINVAL;
844 } else {
845 netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
846 adapter->num_active_queues - 1);
847 return -EINVAL;
848 }
849
850 return 0;
851 }
852
853 /**
854 * iavf_set_coalesce - Set interrupt coalescing settings
855 * @netdev: network interface device structure
856 * @ec: ethtool coalesce structure
857 * @kernel_coal: ethtool CQE mode setting structure
858 * @extack: extack for reporting error messages
859 *
860 * Change current coalescing settings for every queue.
861 **/
iavf_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)862 static int iavf_set_coalesce(struct net_device *netdev,
863 struct ethtool_coalesce *ec,
864 struct kernel_ethtool_coalesce *kernel_coal,
865 struct netlink_ext_ack *extack)
866 {
867 return __iavf_set_coalesce(netdev, ec, -1);
868 }
869
870 /**
871 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
872 * @netdev: the netdev to change
873 * @ec: ethtool's coalesce settings
874 * @queue: the queue to modify
875 *
876 * Modifies a specific queue's coalesce settings.
877 */
iavf_set_per_queue_coalesce(struct net_device * netdev,u32 queue,struct ethtool_coalesce * ec)878 static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
879 struct ethtool_coalesce *ec)
880 {
881 return __iavf_set_coalesce(netdev, ec, queue);
882 }
883
884 /**
885 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
886 * flow type values
887 * @flow: filter type to be converted
888 *
889 * Returns the corresponding ethtool flow type.
890 */
iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)891 static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
892 {
893 switch (flow) {
894 case IAVF_FDIR_FLOW_IPV4_TCP:
895 return TCP_V4_FLOW;
896 case IAVF_FDIR_FLOW_IPV4_UDP:
897 return UDP_V4_FLOW;
898 case IAVF_FDIR_FLOW_IPV4_SCTP:
899 return SCTP_V4_FLOW;
900 case IAVF_FDIR_FLOW_IPV4_AH:
901 return AH_V4_FLOW;
902 case IAVF_FDIR_FLOW_IPV4_ESP:
903 return ESP_V4_FLOW;
904 case IAVF_FDIR_FLOW_IPV4_OTHER:
905 return IPV4_USER_FLOW;
906 case IAVF_FDIR_FLOW_IPV6_TCP:
907 return TCP_V6_FLOW;
908 case IAVF_FDIR_FLOW_IPV6_UDP:
909 return UDP_V6_FLOW;
910 case IAVF_FDIR_FLOW_IPV6_SCTP:
911 return SCTP_V6_FLOW;
912 case IAVF_FDIR_FLOW_IPV6_AH:
913 return AH_V6_FLOW;
914 case IAVF_FDIR_FLOW_IPV6_ESP:
915 return ESP_V6_FLOW;
916 case IAVF_FDIR_FLOW_IPV6_OTHER:
917 return IPV6_USER_FLOW;
918 case IAVF_FDIR_FLOW_NON_IP_L2:
919 return ETHER_FLOW;
920 default:
921 /* 0 is undefined ethtool flow */
922 return 0;
923 }
924 }
925
926 /**
927 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
928 * @eth: Ethtool flow type to be converted
929 *
930 * Returns flow enum
931 */
iavf_ethtool_flow_to_fltr(int eth)932 static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
933 {
934 switch (eth) {
935 case TCP_V4_FLOW:
936 return IAVF_FDIR_FLOW_IPV4_TCP;
937 case UDP_V4_FLOW:
938 return IAVF_FDIR_FLOW_IPV4_UDP;
939 case SCTP_V4_FLOW:
940 return IAVF_FDIR_FLOW_IPV4_SCTP;
941 case AH_V4_FLOW:
942 return IAVF_FDIR_FLOW_IPV4_AH;
943 case ESP_V4_FLOW:
944 return IAVF_FDIR_FLOW_IPV4_ESP;
945 case IPV4_USER_FLOW:
946 return IAVF_FDIR_FLOW_IPV4_OTHER;
947 case TCP_V6_FLOW:
948 return IAVF_FDIR_FLOW_IPV6_TCP;
949 case UDP_V6_FLOW:
950 return IAVF_FDIR_FLOW_IPV6_UDP;
951 case SCTP_V6_FLOW:
952 return IAVF_FDIR_FLOW_IPV6_SCTP;
953 case AH_V6_FLOW:
954 return IAVF_FDIR_FLOW_IPV6_AH;
955 case ESP_V6_FLOW:
956 return IAVF_FDIR_FLOW_IPV6_ESP;
957 case IPV6_USER_FLOW:
958 return IAVF_FDIR_FLOW_IPV6_OTHER;
959 case ETHER_FLOW:
960 return IAVF_FDIR_FLOW_NON_IP_L2;
961 default:
962 return IAVF_FDIR_FLOW_NONE;
963 }
964 }
965
966 /**
967 * iavf_is_mask_valid - check mask field set
968 * @mask: full mask to check
969 * @field: field for which mask should be valid
970 *
971 * If the mask is fully set return true. If it is not valid for field return
972 * false.
973 */
iavf_is_mask_valid(u64 mask,u64 field)974 static bool iavf_is_mask_valid(u64 mask, u64 field)
975 {
976 return (mask & field) == field;
977 }
978
979 /**
980 * iavf_parse_rx_flow_user_data - deconstruct user-defined data
981 * @fsp: pointer to ethtool Rx flow specification
982 * @fltr: pointer to Flow Director filter for userdef data storage
983 *
984 * Returns 0 on success, negative error value on failure
985 */
986 static int
iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)987 iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
988 struct iavf_fdir_fltr *fltr)
989 {
990 struct iavf_flex_word *flex;
991 int i, cnt = 0;
992
993 if (!(fsp->flow_type & FLOW_EXT))
994 return 0;
995
996 for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
997 #define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0)
998 #define IAVF_USERDEF_FLEX_OFFS_S 16
999 #define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
1000 #define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0)
1001 u32 value = be32_to_cpu(fsp->h_ext.data[i]);
1002 u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
1003
1004 if (!value || !mask)
1005 continue;
1006
1007 if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
1008 return -EINVAL;
1009
1010 /* 504 is the maximum value for offsets, and offset is measured
1011 * from the start of the MAC address.
1012 */
1013 #define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
1014 flex = &fltr->flex_words[cnt++];
1015 flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
1016 flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
1017 IAVF_USERDEF_FLEX_OFFS_S;
1018 if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
1019 return -EINVAL;
1020 }
1021
1022 fltr->flex_cnt = cnt;
1023
1024 return 0;
1025 }
1026
1027 /**
1028 * iavf_fill_rx_flow_ext_data - fill the additional data
1029 * @fsp: pointer to ethtool Rx flow specification
1030 * @fltr: pointer to Flow Director filter to get additional data
1031 */
1032 static void
iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)1033 iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
1034 struct iavf_fdir_fltr *fltr)
1035 {
1036 if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
1037 return;
1038
1039 fsp->flow_type |= FLOW_EXT;
1040
1041 memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
1042 memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
1043 }
1044
1045 /**
1046 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
1047 * @adapter: the VF adapter structure that contains filter list
1048 * @cmd: ethtool command data structure to receive the filter data
1049 *
1050 * Returns 0 as expected for success by ethtool
1051 */
1052 static int
iavf_get_ethtool_fdir_entry(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1053 iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1054 struct ethtool_rxnfc *cmd)
1055 {
1056 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1057 struct iavf_fdir_fltr *rule = NULL;
1058 int ret = 0;
1059
1060 if (!FDIR_FLTR_SUPPORT(adapter))
1061 return -EOPNOTSUPP;
1062
1063 spin_lock_bh(&adapter->fdir_fltr_lock);
1064
1065 rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1066 if (!rule) {
1067 ret = -EINVAL;
1068 goto release_lock;
1069 }
1070
1071 fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1072
1073 memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1074 memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1075
1076 switch (fsp->flow_type) {
1077 case TCP_V4_FLOW:
1078 case UDP_V4_FLOW:
1079 case SCTP_V4_FLOW:
1080 fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1081 fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1082 fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1083 fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1084 fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1085 fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1086 fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1087 fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1088 fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1089 fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1090 break;
1091 case AH_V4_FLOW:
1092 case ESP_V4_FLOW:
1093 fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1094 fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1095 fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1096 fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1097 fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1098 fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1099 fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1100 fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1101 break;
1102 case IPV4_USER_FLOW:
1103 fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1104 fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1105 fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1106 fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1107 fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1108 fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1109 fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1110 fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1111 fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1112 fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1113 fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1114 fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1115 break;
1116 case TCP_V6_FLOW:
1117 case UDP_V6_FLOW:
1118 case SCTP_V6_FLOW:
1119 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1120 sizeof(struct in6_addr));
1121 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1122 sizeof(struct in6_addr));
1123 fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1124 fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1125 fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1126 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1127 sizeof(struct in6_addr));
1128 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1129 sizeof(struct in6_addr));
1130 fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1131 fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1132 fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1133 break;
1134 case AH_V6_FLOW:
1135 case ESP_V6_FLOW:
1136 memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1137 sizeof(struct in6_addr));
1138 memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1139 sizeof(struct in6_addr));
1140 fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1141 fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1142 memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1143 sizeof(struct in6_addr));
1144 memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1145 sizeof(struct in6_addr));
1146 fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1147 fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1148 break;
1149 case IPV6_USER_FLOW:
1150 memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1151 sizeof(struct in6_addr));
1152 memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1153 sizeof(struct in6_addr));
1154 fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1155 fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1156 fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1157 memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1158 sizeof(struct in6_addr));
1159 memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1160 sizeof(struct in6_addr));
1161 fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1162 fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1163 fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1164 break;
1165 case ETHER_FLOW:
1166 fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1167 fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1168 break;
1169 default:
1170 ret = -EINVAL;
1171 break;
1172 }
1173
1174 iavf_fill_rx_flow_ext_data(fsp, rule);
1175
1176 if (rule->action == VIRTCHNL_ACTION_DROP)
1177 fsp->ring_cookie = RX_CLS_FLOW_DISC;
1178 else
1179 fsp->ring_cookie = rule->q_index;
1180
1181 release_lock:
1182 spin_unlock_bh(&adapter->fdir_fltr_lock);
1183 return ret;
1184 }
1185
1186 /**
1187 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1188 * @adapter: the VF adapter structure containing the filter list
1189 * @cmd: ethtool command data structure
1190 * @rule_locs: ethtool array passed in from OS to receive filter IDs
1191 *
1192 * Returns 0 as expected for success by ethtool
1193 */
1194 static int
iavf_get_fdir_fltr_ids(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd,u32 * rule_locs)1195 iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1196 u32 *rule_locs)
1197 {
1198 struct iavf_fdir_fltr *fltr;
1199 unsigned int cnt = 0;
1200 int val = 0;
1201
1202 if (!FDIR_FLTR_SUPPORT(adapter))
1203 return -EOPNOTSUPP;
1204
1205 cmd->data = IAVF_MAX_FDIR_FILTERS;
1206
1207 spin_lock_bh(&adapter->fdir_fltr_lock);
1208
1209 list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1210 if (cnt == cmd->rule_cnt) {
1211 val = -EMSGSIZE;
1212 goto release_lock;
1213 }
1214 rule_locs[cnt] = fltr->loc;
1215 cnt++;
1216 }
1217
1218 release_lock:
1219 spin_unlock_bh(&adapter->fdir_fltr_lock);
1220 if (!val)
1221 cmd->rule_cnt = cnt;
1222
1223 return val;
1224 }
1225
1226 /**
1227 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1228 * @adapter: pointer to the VF adapter structure
1229 * @fsp: pointer to ethtool Rx flow specification
1230 * @fltr: filter structure
1231 */
1232 static int
iavf_add_fdir_fltr_info(struct iavf_adapter * adapter,struct ethtool_rx_flow_spec * fsp,struct iavf_fdir_fltr * fltr)1233 iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1234 struct iavf_fdir_fltr *fltr)
1235 {
1236 u32 flow_type, q_index = 0;
1237 enum virtchnl_action act;
1238 int err;
1239
1240 if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1241 act = VIRTCHNL_ACTION_DROP;
1242 } else {
1243 q_index = fsp->ring_cookie;
1244 if (q_index >= adapter->num_active_queues)
1245 return -EINVAL;
1246
1247 act = VIRTCHNL_ACTION_QUEUE;
1248 }
1249
1250 fltr->action = act;
1251 fltr->loc = fsp->location;
1252 fltr->q_index = q_index;
1253
1254 if (fsp->flow_type & FLOW_EXT) {
1255 memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1256 sizeof(fltr->ext_data.usr_def));
1257 memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1258 sizeof(fltr->ext_mask.usr_def));
1259 }
1260
1261 flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1262 fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1263
1264 switch (flow_type) {
1265 case TCP_V4_FLOW:
1266 case UDP_V4_FLOW:
1267 case SCTP_V4_FLOW:
1268 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1269 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1270 fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1271 fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1272 fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1273 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1274 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1275 fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1276 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1277 fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1278 fltr->ip_ver = 4;
1279 break;
1280 case AH_V4_FLOW:
1281 case ESP_V4_FLOW:
1282 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1283 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1284 fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1285 fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1286 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1287 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1288 fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1289 fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1290 fltr->ip_ver = 4;
1291 break;
1292 case IPV4_USER_FLOW:
1293 fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1294 fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1295 fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1296 fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1297 fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1298 fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1299 fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1300 fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1301 fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1302 fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1303 fltr->ip_ver = 4;
1304 break;
1305 case TCP_V6_FLOW:
1306 case UDP_V6_FLOW:
1307 case SCTP_V6_FLOW:
1308 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1309 sizeof(struct in6_addr));
1310 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1311 sizeof(struct in6_addr));
1312 fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1313 fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1314 fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1315 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1316 sizeof(struct in6_addr));
1317 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1318 sizeof(struct in6_addr));
1319 fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1320 fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1321 fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1322 fltr->ip_ver = 6;
1323 break;
1324 case AH_V6_FLOW:
1325 case ESP_V6_FLOW:
1326 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1327 sizeof(struct in6_addr));
1328 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1329 sizeof(struct in6_addr));
1330 fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1331 fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1332 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1333 sizeof(struct in6_addr));
1334 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1335 sizeof(struct in6_addr));
1336 fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1337 fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1338 fltr->ip_ver = 6;
1339 break;
1340 case IPV6_USER_FLOW:
1341 memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1342 sizeof(struct in6_addr));
1343 memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1344 sizeof(struct in6_addr));
1345 fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1346 fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1347 fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1348 memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1349 sizeof(struct in6_addr));
1350 memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1351 sizeof(struct in6_addr));
1352 fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1353 fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1354 fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1355 fltr->ip_ver = 6;
1356 break;
1357 case ETHER_FLOW:
1358 fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1359 fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1360 break;
1361 default:
1362 /* not doing un-parsed flow types */
1363 return -EINVAL;
1364 }
1365
1366 err = iavf_validate_fdir_fltr_masks(adapter, fltr);
1367 if (err)
1368 return err;
1369
1370 if (iavf_fdir_is_dup_fltr(adapter, fltr))
1371 return -EEXIST;
1372
1373 err = iavf_parse_rx_flow_user_data(fsp, fltr);
1374 if (err)
1375 return err;
1376
1377 return iavf_fill_fdir_add_msg(adapter, fltr);
1378 }
1379
1380 /**
1381 * iavf_add_fdir_ethtool - add Flow Director filter
1382 * @adapter: pointer to the VF adapter structure
1383 * @cmd: command to add Flow Director filter
1384 *
1385 * Returns 0 on success and negative values for failure
1386 */
iavf_add_fdir_ethtool(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1387 static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1388 {
1389 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1390 struct iavf_fdir_fltr *fltr;
1391 int count = 50;
1392 int err;
1393
1394 if (!FDIR_FLTR_SUPPORT(adapter))
1395 return -EOPNOTSUPP;
1396
1397 if (fsp->flow_type & FLOW_MAC_EXT)
1398 return -EINVAL;
1399
1400 spin_lock_bh(&adapter->fdir_fltr_lock);
1401 if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1402 spin_unlock_bh(&adapter->fdir_fltr_lock);
1403 dev_err(&adapter->pdev->dev,
1404 "Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1405 IAVF_MAX_FDIR_FILTERS);
1406 return -ENOSPC;
1407 }
1408
1409 if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1410 dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1411 spin_unlock_bh(&adapter->fdir_fltr_lock);
1412 return -EEXIST;
1413 }
1414 spin_unlock_bh(&adapter->fdir_fltr_lock);
1415
1416 fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1417 if (!fltr)
1418 return -ENOMEM;
1419
1420 while (!mutex_trylock(&adapter->crit_lock)) {
1421 if (--count == 0) {
1422 kfree(fltr);
1423 return -EINVAL;
1424 }
1425 udelay(1);
1426 }
1427
1428 err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1429 if (err)
1430 goto ret;
1431
1432 spin_lock_bh(&adapter->fdir_fltr_lock);
1433 iavf_fdir_list_add_fltr(adapter, fltr);
1434 adapter->fdir_active_fltr++;
1435 fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1436 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
1437 spin_unlock_bh(&adapter->fdir_fltr_lock);
1438
1439 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1440
1441 ret:
1442 if (err && fltr)
1443 kfree(fltr);
1444
1445 mutex_unlock(&adapter->crit_lock);
1446 return err;
1447 }
1448
1449 /**
1450 * iavf_del_fdir_ethtool - delete Flow Director filter
1451 * @adapter: pointer to the VF adapter structure
1452 * @cmd: command to delete Flow Director filter
1453 *
1454 * Returns 0 on success and negative values for failure
1455 */
iavf_del_fdir_ethtool(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1456 static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1457 {
1458 struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1459 struct iavf_fdir_fltr *fltr = NULL;
1460 int err = 0;
1461
1462 if (!FDIR_FLTR_SUPPORT(adapter))
1463 return -EOPNOTSUPP;
1464
1465 spin_lock_bh(&adapter->fdir_fltr_lock);
1466 fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1467 if (fltr) {
1468 if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1469 fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1470 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1471 } else {
1472 err = -EBUSY;
1473 }
1474 } else if (adapter->fdir_active_fltr) {
1475 err = -EINVAL;
1476 }
1477 spin_unlock_bh(&adapter->fdir_fltr_lock);
1478
1479 if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1480 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1481
1482 return err;
1483 }
1484
1485 /**
1486 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1487 * @cmd: ethtool rxnfc command
1488 *
1489 * This function parses the rxnfc command and returns intended
1490 * header types for RSS configuration
1491 */
iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc * cmd)1492 static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1493 {
1494 u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1495
1496 switch (cmd->flow_type) {
1497 case TCP_V4_FLOW:
1498 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1499 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1500 break;
1501 case UDP_V4_FLOW:
1502 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1503 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1504 break;
1505 case SCTP_V4_FLOW:
1506 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1507 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1508 break;
1509 case TCP_V6_FLOW:
1510 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1511 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1512 break;
1513 case UDP_V6_FLOW:
1514 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1515 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1516 break;
1517 case SCTP_V6_FLOW:
1518 hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1519 IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1520 break;
1521 default:
1522 break;
1523 }
1524
1525 return hdrs;
1526 }
1527
1528 /**
1529 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1530 * @cmd: ethtool rxnfc command
1531 *
1532 * This function parses the rxnfc command and returns intended hash fields for
1533 * RSS configuration
1534 */
iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc * cmd)1535 static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
1536 {
1537 u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1538
1539 if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1540 switch (cmd->flow_type) {
1541 case TCP_V4_FLOW:
1542 case UDP_V4_FLOW:
1543 case SCTP_V4_FLOW:
1544 if (cmd->data & RXH_IP_SRC)
1545 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1546 if (cmd->data & RXH_IP_DST)
1547 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1548 break;
1549 case TCP_V6_FLOW:
1550 case UDP_V6_FLOW:
1551 case SCTP_V6_FLOW:
1552 if (cmd->data & RXH_IP_SRC)
1553 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1554 if (cmd->data & RXH_IP_DST)
1555 hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1556 break;
1557 default:
1558 break;
1559 }
1560 }
1561
1562 if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1563 switch (cmd->flow_type) {
1564 case TCP_V4_FLOW:
1565 case TCP_V6_FLOW:
1566 if (cmd->data & RXH_L4_B_0_1)
1567 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1568 if (cmd->data & RXH_L4_B_2_3)
1569 hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1570 break;
1571 case UDP_V4_FLOW:
1572 case UDP_V6_FLOW:
1573 if (cmd->data & RXH_L4_B_0_1)
1574 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1575 if (cmd->data & RXH_L4_B_2_3)
1576 hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1577 break;
1578 case SCTP_V4_FLOW:
1579 case SCTP_V6_FLOW:
1580 if (cmd->data & RXH_L4_B_0_1)
1581 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1582 if (cmd->data & RXH_L4_B_2_3)
1583 hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1584 break;
1585 default:
1586 break;
1587 }
1588 }
1589
1590 return hfld;
1591 }
1592
1593 /**
1594 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1595 * @adapter: pointer to the VF adapter structure
1596 * @cmd: ethtool rxnfc command
1597 *
1598 * Returns Success if the flow input set is supported.
1599 */
1600 static int
iavf_set_adv_rss_hash_opt(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1601 iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1602 struct ethtool_rxnfc *cmd)
1603 {
1604 struct iavf_adv_rss *rss_old, *rss_new;
1605 bool rss_new_add = false;
1606 int count = 50, err = 0;
1607 u64 hash_flds;
1608 u32 hdrs;
1609
1610 if (!ADV_RSS_SUPPORT(adapter))
1611 return -EOPNOTSUPP;
1612
1613 hdrs = iavf_adv_rss_parse_hdrs(cmd);
1614 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1615 return -EINVAL;
1616
1617 hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
1618 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1619 return -EINVAL;
1620
1621 rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1622 if (!rss_new)
1623 return -ENOMEM;
1624
1625 if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
1626 kfree(rss_new);
1627 return -EINVAL;
1628 }
1629
1630 while (!mutex_trylock(&adapter->crit_lock)) {
1631 if (--count == 0) {
1632 kfree(rss_new);
1633 return -EINVAL;
1634 }
1635
1636 udelay(1);
1637 }
1638
1639 spin_lock_bh(&adapter->adv_rss_lock);
1640 rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1641 if (rss_old) {
1642 if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1643 err = -EBUSY;
1644 } else if (rss_old->hash_flds != hash_flds) {
1645 rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1646 rss_old->hash_flds = hash_flds;
1647 memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1648 sizeof(rss_new->cfg_msg));
1649 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1650 } else {
1651 err = -EEXIST;
1652 }
1653 } else {
1654 rss_new_add = true;
1655 rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1656 rss_new->packet_hdrs = hdrs;
1657 rss_new->hash_flds = hash_flds;
1658 list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1659 adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1660 }
1661 spin_unlock_bh(&adapter->adv_rss_lock);
1662
1663 if (!err)
1664 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1665
1666 mutex_unlock(&adapter->crit_lock);
1667
1668 if (!rss_new_add)
1669 kfree(rss_new);
1670
1671 return err;
1672 }
1673
1674 /**
1675 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1676 * @adapter: pointer to the VF adapter structure
1677 * @cmd: ethtool rxnfc command
1678 *
1679 * Returns Success if the flow input set is supported.
1680 */
1681 static int
iavf_get_adv_rss_hash_opt(struct iavf_adapter * adapter,struct ethtool_rxnfc * cmd)1682 iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1683 struct ethtool_rxnfc *cmd)
1684 {
1685 struct iavf_adv_rss *rss;
1686 u64 hash_flds;
1687 u32 hdrs;
1688
1689 if (!ADV_RSS_SUPPORT(adapter))
1690 return -EOPNOTSUPP;
1691
1692 cmd->data = 0;
1693
1694 hdrs = iavf_adv_rss_parse_hdrs(cmd);
1695 if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1696 return -EINVAL;
1697
1698 spin_lock_bh(&adapter->adv_rss_lock);
1699 rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1700 if (rss)
1701 hash_flds = rss->hash_flds;
1702 else
1703 hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1704 spin_unlock_bh(&adapter->adv_rss_lock);
1705
1706 if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1707 return -EINVAL;
1708
1709 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1710 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1711 cmd->data |= (u64)RXH_IP_SRC;
1712
1713 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1714 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1715 cmd->data |= (u64)RXH_IP_DST;
1716
1717 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1718 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1719 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1720 cmd->data |= (u64)RXH_L4_B_0_1;
1721
1722 if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1723 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1724 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1725 cmd->data |= (u64)RXH_L4_B_2_3;
1726
1727 return 0;
1728 }
1729
1730 /**
1731 * iavf_set_rxnfc - command to set Rx flow rules.
1732 * @netdev: network interface device structure
1733 * @cmd: ethtool rxnfc command
1734 *
1735 * Returns 0 for success and negative values for errors
1736 */
iavf_set_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd)1737 static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1738 {
1739 struct iavf_adapter *adapter = netdev_priv(netdev);
1740 int ret = -EOPNOTSUPP;
1741
1742 switch (cmd->cmd) {
1743 case ETHTOOL_SRXCLSRLINS:
1744 ret = iavf_add_fdir_ethtool(adapter, cmd);
1745 break;
1746 case ETHTOOL_SRXCLSRLDEL:
1747 ret = iavf_del_fdir_ethtool(adapter, cmd);
1748 break;
1749 case ETHTOOL_SRXFH:
1750 ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1751 break;
1752 default:
1753 break;
1754 }
1755
1756 return ret;
1757 }
1758
1759 /**
1760 * iavf_get_rxnfc - command to get RX flow classification rules
1761 * @netdev: network interface device structure
1762 * @cmd: ethtool rxnfc command
1763 * @rule_locs: pointer to store rule locations
1764 *
1765 * Returns Success if the command is supported.
1766 **/
iavf_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * cmd,u32 * rule_locs)1767 static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1768 u32 *rule_locs)
1769 {
1770 struct iavf_adapter *adapter = netdev_priv(netdev);
1771 int ret = -EOPNOTSUPP;
1772
1773 switch (cmd->cmd) {
1774 case ETHTOOL_GRXRINGS:
1775 cmd->data = adapter->num_active_queues;
1776 ret = 0;
1777 break;
1778 case ETHTOOL_GRXCLSRLCNT:
1779 if (!FDIR_FLTR_SUPPORT(adapter))
1780 break;
1781 spin_lock_bh(&adapter->fdir_fltr_lock);
1782 cmd->rule_cnt = adapter->fdir_active_fltr;
1783 spin_unlock_bh(&adapter->fdir_fltr_lock);
1784 cmd->data = IAVF_MAX_FDIR_FILTERS;
1785 ret = 0;
1786 break;
1787 case ETHTOOL_GRXCLSRULE:
1788 ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1789 break;
1790 case ETHTOOL_GRXCLSRLALL:
1791 ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1792 break;
1793 case ETHTOOL_GRXFH:
1794 ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1795 break;
1796 default:
1797 break;
1798 }
1799
1800 return ret;
1801 }
1802 /**
1803 * iavf_get_channels: get the number of channels supported by the device
1804 * @netdev: network interface device structure
1805 * @ch: channel information structure
1806 *
1807 * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1808 * queue pair. Report one extra channel to match our "other" MSI-X vector.
1809 **/
iavf_get_channels(struct net_device * netdev,struct ethtool_channels * ch)1810 static void iavf_get_channels(struct net_device *netdev,
1811 struct ethtool_channels *ch)
1812 {
1813 struct iavf_adapter *adapter = netdev_priv(netdev);
1814
1815 /* Report maximum channels */
1816 ch->max_combined = adapter->vsi_res->num_queue_pairs;
1817
1818 ch->max_other = NONQ_VECS;
1819 ch->other_count = NONQ_VECS;
1820
1821 ch->combined_count = adapter->num_active_queues;
1822 }
1823
1824 /**
1825 * iavf_set_channels: set the new channel count
1826 * @netdev: network interface device structure
1827 * @ch: channel information structure
1828 *
1829 * Negotiate a new number of channels with the PF then do a reset. During
1830 * reset we'll realloc queues and fix the RSS table. Returns 0 on success,
1831 * negative on failure.
1832 **/
iavf_set_channels(struct net_device * netdev,struct ethtool_channels * ch)1833 static int iavf_set_channels(struct net_device *netdev,
1834 struct ethtool_channels *ch)
1835 {
1836 struct iavf_adapter *adapter = netdev_priv(netdev);
1837 u32 num_req = ch->combined_count;
1838 int i;
1839
1840 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1841 adapter->num_tc) {
1842 dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1843 return -EINVAL;
1844 }
1845
1846 /* All of these should have already been checked by ethtool before this
1847 * even gets to us, but just to be sure.
1848 */
1849 if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs)
1850 return -EINVAL;
1851
1852 if (num_req == adapter->num_active_queues)
1853 return 0;
1854
1855 if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1856 return -EINVAL;
1857
1858 adapter->num_req_queues = num_req;
1859 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1860 iavf_schedule_reset(adapter);
1861
1862 /* wait for the reset is done */
1863 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
1864 msleep(IAVF_RESET_WAIT_MS);
1865 if (adapter->flags & IAVF_FLAG_RESET_PENDING)
1866 continue;
1867 break;
1868 }
1869 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
1870 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
1871 adapter->num_req_queues = 0;
1872 return -EOPNOTSUPP;
1873 }
1874
1875 return 0;
1876 }
1877
1878 /**
1879 * iavf_get_rxfh_key_size - get the RSS hash key size
1880 * @netdev: network interface device structure
1881 *
1882 * Returns the table size.
1883 **/
iavf_get_rxfh_key_size(struct net_device * netdev)1884 static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1885 {
1886 struct iavf_adapter *adapter = netdev_priv(netdev);
1887
1888 return adapter->rss_key_size;
1889 }
1890
1891 /**
1892 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1893 * @netdev: network interface device structure
1894 *
1895 * Returns the table size.
1896 **/
iavf_get_rxfh_indir_size(struct net_device * netdev)1897 static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1898 {
1899 struct iavf_adapter *adapter = netdev_priv(netdev);
1900
1901 return adapter->rss_lut_size;
1902 }
1903
1904 /**
1905 * iavf_get_rxfh - get the rx flow hash indirection table
1906 * @netdev: network interface device structure
1907 * @indir: indirection table
1908 * @key: hash key
1909 * @hfunc: hash function in use
1910 *
1911 * Reads the indirection table directly from the hardware. Always returns 0.
1912 **/
iavf_get_rxfh(struct net_device * netdev,u32 * indir,u8 * key,u8 * hfunc)1913 static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
1914 u8 *hfunc)
1915 {
1916 struct iavf_adapter *adapter = netdev_priv(netdev);
1917 u16 i;
1918
1919 if (hfunc)
1920 *hfunc = ETH_RSS_HASH_TOP;
1921 if (key)
1922 memcpy(key, adapter->rss_key, adapter->rss_key_size);
1923
1924 if (indir)
1925 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
1926 for (i = 0; i < adapter->rss_lut_size; i++)
1927 indir[i] = (u32)adapter->rss_lut[i];
1928
1929 return 0;
1930 }
1931
1932 /**
1933 * iavf_set_rxfh - set the rx flow hash indirection table
1934 * @netdev: network interface device structure
1935 * @indir: indirection table
1936 * @key: hash key
1937 * @hfunc: hash function to use
1938 *
1939 * Returns -EINVAL if the table specifies an inavlid queue id, otherwise
1940 * returns 0 after programming the table.
1941 **/
iavf_set_rxfh(struct net_device * netdev,const u32 * indir,const u8 * key,const u8 hfunc)1942 static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
1943 const u8 *key, const u8 hfunc)
1944 {
1945 struct iavf_adapter *adapter = netdev_priv(netdev);
1946 u16 i;
1947
1948 /* We do not allow change in unsupported parameters */
1949 if (key ||
1950 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1951 return -EOPNOTSUPP;
1952 if (!indir)
1953 return 0;
1954
1955 if (key)
1956 memcpy(adapter->rss_key, key, adapter->rss_key_size);
1957
1958 /* Each 32 bits pointed by 'indir' is stored with a lut entry */
1959 for (i = 0; i < adapter->rss_lut_size; i++)
1960 adapter->rss_lut[i] = (u8)(indir[i]);
1961
1962 return iavf_config_rss(adapter);
1963 }
1964
1965 static const struct ethtool_ops iavf_ethtool_ops = {
1966 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1967 ETHTOOL_COALESCE_MAX_FRAMES |
1968 ETHTOOL_COALESCE_MAX_FRAMES_IRQ |
1969 ETHTOOL_COALESCE_USE_ADAPTIVE,
1970 .get_drvinfo = iavf_get_drvinfo,
1971 .get_link = ethtool_op_get_link,
1972 .get_ringparam = iavf_get_ringparam,
1973 .set_ringparam = iavf_set_ringparam,
1974 .get_strings = iavf_get_strings,
1975 .get_ethtool_stats = iavf_get_ethtool_stats,
1976 .get_sset_count = iavf_get_sset_count,
1977 .get_priv_flags = iavf_get_priv_flags,
1978 .set_priv_flags = iavf_set_priv_flags,
1979 .get_msglevel = iavf_get_msglevel,
1980 .set_msglevel = iavf_set_msglevel,
1981 .get_coalesce = iavf_get_coalesce,
1982 .set_coalesce = iavf_set_coalesce,
1983 .get_per_queue_coalesce = iavf_get_per_queue_coalesce,
1984 .set_per_queue_coalesce = iavf_set_per_queue_coalesce,
1985 .set_rxnfc = iavf_set_rxnfc,
1986 .get_rxnfc = iavf_get_rxnfc,
1987 .get_rxfh_indir_size = iavf_get_rxfh_indir_size,
1988 .get_rxfh = iavf_get_rxfh,
1989 .set_rxfh = iavf_set_rxfh,
1990 .get_channels = iavf_get_channels,
1991 .set_channels = iavf_set_channels,
1992 .get_rxfh_key_size = iavf_get_rxfh_key_size,
1993 .get_link_ksettings = iavf_get_link_ksettings,
1994 };
1995
1996 /**
1997 * iavf_set_ethtool_ops - Initialize ethtool ops struct
1998 * @netdev: network interface device structure
1999 *
2000 * Sets ethtool ops struct in our netdev so that ethtool can call
2001 * our functions.
2002 **/
iavf_set_ethtool_ops(struct net_device * netdev)2003 void iavf_set_ethtool_ops(struct net_device *netdev)
2004 {
2005 netdev->ethtool_ops = &iavf_ethtool_ops;
2006 }
2007