• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/android_kabi.h>
18 
19 struct workqueue_struct;
20 
21 struct work_struct;
22 typedef void (*work_func_t)(struct work_struct *work);
23 void delayed_work_timer_fn(struct timer_list *t);
24 
25 /*
26  * The first word is the work queue pointer and the flags rolled into
27  * one
28  */
29 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
30 
31 enum {
32 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
33 	WORK_STRUCT_INACTIVE_BIT= 1,	/* work item is inactive */
34 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
35 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
36 #ifdef CONFIG_DEBUG_OBJECTS_WORK
37 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
38 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
39 #else
40 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
41 #endif
42 
43 	WORK_STRUCT_COLOR_BITS	= 4,
44 
45 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
46 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
47 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
48 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
49 #ifdef CONFIG_DEBUG_OBJECTS_WORK
50 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
51 #else
52 	WORK_STRUCT_STATIC	= 0,
53 #endif
54 
55 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
56 
57 	/* not bound to any CPU, prefer the local CPU */
58 	WORK_CPU_UNBOUND	= NR_CPUS,
59 
60 	/*
61 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
62 	 * This makes pwqs aligned to 256 bytes and allows 16 workqueue
63 	 * flush colors.
64 	 */
65 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
66 				  WORK_STRUCT_COLOR_BITS,
67 
68 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
69 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
70 
71 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
72 
73 	/*
74 	 * When a work item is off queue, its high bits point to the last
75 	 * pool it was on.  Cap at 31 bits and use the highest number to
76 	 * indicate that no pool is associated.
77 	 */
78 	WORK_OFFQ_FLAG_BITS	= 1,
79 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
80 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
81 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
82 
83 	/* bit mask for work_busy() return values */
84 	WORK_BUSY_PENDING	= 1 << 0,
85 	WORK_BUSY_RUNNING	= 1 << 1,
86 
87 	/* maximum string length for set_worker_desc() */
88 	WORKER_DESC_LEN		= 24,
89 };
90 
91 /* Convenience constants - of type 'unsigned long', not 'enum'! */
92 #define WORK_OFFQ_CANCELING	(1ul << __WORK_OFFQ_CANCELING)
93 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
94 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
95 
96 #define WORK_STRUCT_FLAG_MASK    ((1ul << WORK_STRUCT_FLAG_BITS) - 1)
97 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
98 
99 struct work_struct {
100 	atomic_long_t data;
101 	struct list_head entry;
102 	work_func_t func;
103 #ifdef CONFIG_LOCKDEP
104 	struct lockdep_map lockdep_map;
105 #endif
106 	ANDROID_KABI_RESERVE(1);
107 	ANDROID_KABI_RESERVE(2);
108 };
109 
110 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
111 #define WORK_DATA_STATIC_INIT()	\
112 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
113 
114 struct delayed_work {
115 	struct work_struct work;
116 	struct timer_list timer;
117 
118 	/* target workqueue and CPU ->timer uses to queue ->work */
119 	struct workqueue_struct *wq;
120 	int cpu;
121 
122 	ANDROID_KABI_RESERVE(1);
123 	ANDROID_KABI_RESERVE(2);
124 };
125 
126 struct rcu_work {
127 	struct work_struct work;
128 	struct rcu_head rcu;
129 
130 	/* target workqueue ->rcu uses to queue ->work */
131 	struct workqueue_struct *wq;
132 };
133 
134 /**
135  * struct workqueue_attrs - A struct for workqueue attributes.
136  *
137  * This can be used to change attributes of an unbound workqueue.
138  */
139 struct workqueue_attrs {
140 	/**
141 	 * @nice: nice level
142 	 */
143 	int nice;
144 
145 	/**
146 	 * @cpumask: allowed CPUs
147 	 */
148 	cpumask_var_t cpumask;
149 
150 	/**
151 	 * @no_numa: disable NUMA affinity
152 	 *
153 	 * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It
154 	 * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus
155 	 * doesn't participate in pool hash calculations or equality comparisons.
156 	 */
157 	bool no_numa;
158 };
159 
to_delayed_work(struct work_struct * work)160 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
161 {
162 	return container_of(work, struct delayed_work, work);
163 }
164 
to_rcu_work(struct work_struct * work)165 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
166 {
167 	return container_of(work, struct rcu_work, work);
168 }
169 
170 struct execute_work {
171 	struct work_struct work;
172 };
173 
174 #ifdef CONFIG_LOCKDEP
175 /*
176  * NB: because we have to copy the lockdep_map, setting _key
177  * here is required, otherwise it could get initialised to the
178  * copy of the lockdep_map!
179  */
180 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
181 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
182 #else
183 #define __WORK_INIT_LOCKDEP_MAP(n, k)
184 #endif
185 
186 #define __WORK_INITIALIZER(n, f) {					\
187 	.data = WORK_DATA_STATIC_INIT(),				\
188 	.entry	= { &(n).entry, &(n).entry },				\
189 	.func = (f),							\
190 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
191 	}
192 
193 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
194 	.work = __WORK_INITIALIZER((n).work, (f)),			\
195 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
196 				     (tflags) | TIMER_IRQSAFE),		\
197 	}
198 
199 #define DECLARE_WORK(n, f)						\
200 	struct work_struct n = __WORK_INITIALIZER(n, f)
201 
202 #define DECLARE_DELAYED_WORK(n, f)					\
203 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
204 
205 #define DECLARE_DEFERRABLE_WORK(n, f)					\
206 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
207 
208 #ifdef CONFIG_DEBUG_OBJECTS_WORK
209 extern void __init_work(struct work_struct *work, int onstack);
210 extern void destroy_work_on_stack(struct work_struct *work);
211 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
work_static(struct work_struct * work)212 static inline unsigned int work_static(struct work_struct *work)
213 {
214 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
215 }
216 #else
__init_work(struct work_struct * work,int onstack)217 static inline void __init_work(struct work_struct *work, int onstack) { }
destroy_work_on_stack(struct work_struct * work)218 static inline void destroy_work_on_stack(struct work_struct *work) { }
destroy_delayed_work_on_stack(struct delayed_work * work)219 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
work_static(struct work_struct * work)220 static inline unsigned int work_static(struct work_struct *work) { return 0; }
221 #endif
222 
223 /*
224  * initialize all of a work item in one go
225  *
226  * NOTE! No point in using "atomic_long_set()": using a direct
227  * assignment of the work data initializer allows the compiler
228  * to generate better code.
229  */
230 #ifdef CONFIG_LOCKDEP
231 #define __INIT_WORK(_work, _func, _onstack)				\
232 	do {								\
233 		static struct lock_class_key __key;			\
234 									\
235 		__init_work((_work), _onstack);				\
236 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
237 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
238 		INIT_LIST_HEAD(&(_work)->entry);			\
239 		(_work)->func = (_func);				\
240 	} while (0)
241 #else
242 #define __INIT_WORK(_work, _func, _onstack)				\
243 	do {								\
244 		__init_work((_work), _onstack);				\
245 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
246 		INIT_LIST_HEAD(&(_work)->entry);			\
247 		(_work)->func = (_func);				\
248 	} while (0)
249 #endif
250 
251 #define INIT_WORK(_work, _func)						\
252 	__INIT_WORK((_work), (_func), 0)
253 
254 #define INIT_WORK_ONSTACK(_work, _func)					\
255 	__INIT_WORK((_work), (_func), 1)
256 
257 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
258 	do {								\
259 		INIT_WORK(&(_work)->work, (_func));			\
260 		__init_timer(&(_work)->timer,				\
261 			     delayed_work_timer_fn,			\
262 			     (_tflags) | TIMER_IRQSAFE);		\
263 	} while (0)
264 
265 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
266 	do {								\
267 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
268 		__init_timer_on_stack(&(_work)->timer,			\
269 				      delayed_work_timer_fn,		\
270 				      (_tflags) | TIMER_IRQSAFE);	\
271 	} while (0)
272 
273 #define INIT_DELAYED_WORK(_work, _func)					\
274 	__INIT_DELAYED_WORK(_work, _func, 0)
275 
276 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
277 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
278 
279 #define INIT_DEFERRABLE_WORK(_work, _func)				\
280 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
281 
282 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
283 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
284 
285 #define INIT_RCU_WORK(_work, _func)					\
286 	INIT_WORK(&(_work)->work, (_func))
287 
288 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
289 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
290 
291 /**
292  * work_pending - Find out whether a work item is currently pending
293  * @work: The work item in question
294  */
295 #define work_pending(work) \
296 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
297 
298 /**
299  * delayed_work_pending - Find out whether a delayable work item is currently
300  * pending
301  * @w: The work item in question
302  */
303 #define delayed_work_pending(w) \
304 	work_pending(&(w)->work)
305 
306 /*
307  * Workqueue flags and constants.  For details, please refer to
308  * Documentation/core-api/workqueue.rst.
309  */
310 enum {
311 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
312 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
313 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
314 	WQ_HIGHPRI		= 1 << 4, /* high priority */
315 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
316 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
317 
318 	/*
319 	 * Per-cpu workqueues are generally preferred because they tend to
320 	 * show better performance thanks to cache locality.  Per-cpu
321 	 * workqueues exclude the scheduler from choosing the CPU to
322 	 * execute the worker threads, which has an unfortunate side effect
323 	 * of increasing power consumption.
324 	 *
325 	 * The scheduler considers a CPU idle if it doesn't have any task
326 	 * to execute and tries to keep idle cores idle to conserve power;
327 	 * however, for example, a per-cpu work item scheduled from an
328 	 * interrupt handler on an idle CPU will force the scheduler to
329 	 * execute the work item on that CPU breaking the idleness, which in
330 	 * turn may lead to more scheduling choices which are sub-optimal
331 	 * in terms of power consumption.
332 	 *
333 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
334 	 * but become unbound if workqueue.power_efficient kernel param is
335 	 * specified.  Per-cpu workqueues which are identified to
336 	 * contribute significantly to power-consumption are identified and
337 	 * marked with this flag and enabling the power_efficient mode
338 	 * leads to noticeable power saving at the cost of small
339 	 * performance disadvantage.
340 	 *
341 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
342 	 */
343 	WQ_POWER_EFFICIENT	= 1 << 7,
344 
345 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
346 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
347 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
348 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
349 
350 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
351 	WQ_MAX_UNBOUND_PER_CPU	= 4,	  /* 4 * #cpus for unbound wq */
352 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
353 };
354 
355 /* unbound wq's aren't per-cpu, scale max_active according to #cpus */
356 #define WQ_UNBOUND_MAX_ACTIVE	\
357 	max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
358 
359 /*
360  * System-wide workqueues which are always present.
361  *
362  * system_wq is the one used by schedule[_delayed]_work[_on]().
363  * Multi-CPU multi-threaded.  There are users which expect relatively
364  * short queue flush time.  Don't queue works which can run for too
365  * long.
366  *
367  * system_highpri_wq is similar to system_wq but for work items which
368  * require WQ_HIGHPRI.
369  *
370  * system_long_wq is similar to system_wq but may host long running
371  * works.  Queue flushing might take relatively long.
372  *
373  * system_unbound_wq is unbound workqueue.  Workers are not bound to
374  * any specific CPU, not concurrency managed, and all queued works are
375  * executed immediately as long as max_active limit is not reached and
376  * resources are available.
377  *
378  * system_freezable_wq is equivalent to system_wq except that it's
379  * freezable.
380  *
381  * *_power_efficient_wq are inclined towards saving power and converted
382  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
383  * they are same as their non-power-efficient counterparts - e.g.
384  * system_power_efficient_wq is identical to system_wq if
385  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
386  */
387 extern struct workqueue_struct *system_wq;
388 extern struct workqueue_struct *system_highpri_wq;
389 extern struct workqueue_struct *system_long_wq;
390 extern struct workqueue_struct *system_unbound_wq;
391 extern struct workqueue_struct *system_freezable_wq;
392 extern struct workqueue_struct *system_power_efficient_wq;
393 extern struct workqueue_struct *system_freezable_power_efficient_wq;
394 
395 /**
396  * alloc_workqueue - allocate a workqueue
397  * @fmt: printf format for the name of the workqueue
398  * @flags: WQ_* flags
399  * @max_active: max in-flight work items, 0 for default
400  * remaining args: args for @fmt
401  *
402  * Allocate a workqueue with the specified parameters.  For detailed
403  * information on WQ_* flags, please refer to
404  * Documentation/core-api/workqueue.rst.
405  *
406  * RETURNS:
407  * Pointer to the allocated workqueue on success, %NULL on failure.
408  */
409 __printf(1, 4) struct workqueue_struct *
410 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
411 
412 /**
413  * alloc_ordered_workqueue - allocate an ordered workqueue
414  * @fmt: printf format for the name of the workqueue
415  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
416  * @args...: args for @fmt
417  *
418  * Allocate an ordered workqueue.  An ordered workqueue executes at
419  * most one work item at any given time in the queued order.  They are
420  * implemented as unbound workqueues with @max_active of one.
421  *
422  * RETURNS:
423  * Pointer to the allocated workqueue on success, %NULL on failure.
424  */
425 #define alloc_ordered_workqueue(fmt, flags, args...)			\
426 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
427 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
428 
429 #define create_workqueue(name)						\
430 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
431 #define create_freezable_workqueue(name)				\
432 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
433 			WQ_MEM_RECLAIM, 1, (name))
434 #define create_singlethread_workqueue(name)				\
435 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
436 
437 extern void destroy_workqueue(struct workqueue_struct *wq);
438 
439 struct workqueue_attrs *alloc_workqueue_attrs(void);
440 void free_workqueue_attrs(struct workqueue_attrs *attrs);
441 int apply_workqueue_attrs(struct workqueue_struct *wq,
442 			  const struct workqueue_attrs *attrs);
443 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
444 
445 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
446 			struct work_struct *work);
447 extern bool queue_work_node(int node, struct workqueue_struct *wq,
448 			    struct work_struct *work);
449 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
450 			struct delayed_work *work, unsigned long delay);
451 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
452 			struct delayed_work *dwork, unsigned long delay);
453 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
454 
455 extern void flush_workqueue(struct workqueue_struct *wq);
456 extern void drain_workqueue(struct workqueue_struct *wq);
457 
458 extern int schedule_on_each_cpu(work_func_t func);
459 
460 int execute_in_process_context(work_func_t fn, struct execute_work *);
461 
462 extern bool flush_work(struct work_struct *work);
463 extern bool cancel_work(struct work_struct *work);
464 extern bool cancel_work_sync(struct work_struct *work);
465 
466 extern bool flush_delayed_work(struct delayed_work *dwork);
467 extern bool cancel_delayed_work(struct delayed_work *dwork);
468 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
469 
470 extern bool flush_rcu_work(struct rcu_work *rwork);
471 
472 extern void workqueue_set_max_active(struct workqueue_struct *wq,
473 				     int max_active);
474 extern struct work_struct *current_work(void);
475 extern bool current_is_workqueue_rescuer(void);
476 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
477 extern unsigned int work_busy(struct work_struct *work);
478 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
479 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
480 extern void show_all_workqueues(void);
481 extern void show_one_workqueue(struct workqueue_struct *wq);
482 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
483 
484 /**
485  * queue_work - queue work on a workqueue
486  * @wq: workqueue to use
487  * @work: work to queue
488  *
489  * Returns %false if @work was already on a queue, %true otherwise.
490  *
491  * We queue the work to the CPU on which it was submitted, but if the CPU dies
492  * it can be processed by another CPU.
493  *
494  * Memory-ordering properties:  If it returns %true, guarantees that all stores
495  * preceding the call to queue_work() in the program order will be visible from
496  * the CPU which will execute @work by the time such work executes, e.g.,
497  *
498  * { x is initially 0 }
499  *
500  *   CPU0				CPU1
501  *
502  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
503  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
504  *
505  * Forbids: r0 == true && r1 == 0
506  */
queue_work(struct workqueue_struct * wq,struct work_struct * work)507 static inline bool queue_work(struct workqueue_struct *wq,
508 			      struct work_struct *work)
509 {
510 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
511 }
512 
513 /**
514  * queue_delayed_work - queue work on a workqueue after delay
515  * @wq: workqueue to use
516  * @dwork: delayable work to queue
517  * @delay: number of jiffies to wait before queueing
518  *
519  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
520  */
queue_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)521 static inline bool queue_delayed_work(struct workqueue_struct *wq,
522 				      struct delayed_work *dwork,
523 				      unsigned long delay)
524 {
525 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
526 }
527 
528 /**
529  * mod_delayed_work - modify delay of or queue a delayed work
530  * @wq: workqueue to use
531  * @dwork: work to queue
532  * @delay: number of jiffies to wait before queueing
533  *
534  * mod_delayed_work_on() on local CPU.
535  */
mod_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)536 static inline bool mod_delayed_work(struct workqueue_struct *wq,
537 				    struct delayed_work *dwork,
538 				    unsigned long delay)
539 {
540 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
541 }
542 
543 /**
544  * schedule_work_on - put work task on a specific cpu
545  * @cpu: cpu to put the work task on
546  * @work: job to be done
547  *
548  * This puts a job on a specific cpu
549  */
schedule_work_on(int cpu,struct work_struct * work)550 static inline bool schedule_work_on(int cpu, struct work_struct *work)
551 {
552 	return queue_work_on(cpu, system_wq, work);
553 }
554 
555 /**
556  * schedule_work - put work task in global workqueue
557  * @work: job to be done
558  *
559  * Returns %false if @work was already on the kernel-global workqueue and
560  * %true otherwise.
561  *
562  * This puts a job in the kernel-global workqueue if it was not already
563  * queued and leaves it in the same position on the kernel-global
564  * workqueue otherwise.
565  *
566  * Shares the same memory-ordering properties of queue_work(), cf. the
567  * DocBook header of queue_work().
568  */
schedule_work(struct work_struct * work)569 static inline bool schedule_work(struct work_struct *work)
570 {
571 	return queue_work(system_wq, work);
572 }
573 
574 /**
575  * flush_scheduled_work - ensure that any scheduled work has run to completion.
576  *
577  * Forces execution of the kernel-global workqueue and blocks until its
578  * completion.
579  *
580  * Think twice before calling this function!  It's very easy to get into
581  * trouble if you don't take great care.  Either of the following situations
582  * will lead to deadlock:
583  *
584  *	One of the work items currently on the workqueue needs to acquire
585  *	a lock held by your code or its caller.
586  *
587  *	Your code is running in the context of a work routine.
588  *
589  * They will be detected by lockdep when they occur, but the first might not
590  * occur very often.  It depends on what work items are on the workqueue and
591  * what locks they need, which you have no control over.
592  *
593  * In most situations flushing the entire workqueue is overkill; you merely
594  * need to know that a particular work item isn't queued and isn't running.
595  * In such cases you should use cancel_delayed_work_sync() or
596  * cancel_work_sync() instead.
597  */
flush_scheduled_work(void)598 static inline void flush_scheduled_work(void)
599 {
600 	flush_workqueue(system_wq);
601 }
602 
603 /**
604  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
605  * @cpu: cpu to use
606  * @dwork: job to be done
607  * @delay: number of jiffies to wait
608  *
609  * After waiting for a given time this puts a job in the kernel-global
610  * workqueue on the specified CPU.
611  */
schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)612 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
613 					    unsigned long delay)
614 {
615 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
616 }
617 
618 /**
619  * schedule_delayed_work - put work task in global workqueue after delay
620  * @dwork: job to be done
621  * @delay: number of jiffies to wait or 0 for immediate execution
622  *
623  * After waiting for a given time this puts a job in the kernel-global
624  * workqueue.
625  */
schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)626 static inline bool schedule_delayed_work(struct delayed_work *dwork,
627 					 unsigned long delay)
628 {
629 	return queue_delayed_work(system_wq, dwork, delay);
630 }
631 
632 #ifndef CONFIG_SMP
work_on_cpu(int cpu,long (* fn)(void *),void * arg)633 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
634 {
635 	return fn(arg);
636 }
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)637 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
638 {
639 	return fn(arg);
640 }
641 #else
642 long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
643 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
644 #endif /* CONFIG_SMP */
645 
646 #ifdef CONFIG_FREEZER
647 extern void freeze_workqueues_begin(void);
648 extern bool freeze_workqueues_busy(void);
649 extern void thaw_workqueues(void);
650 #endif /* CONFIG_FREEZER */
651 
652 #ifdef CONFIG_SYSFS
653 int workqueue_sysfs_register(struct workqueue_struct *wq);
654 #else	/* CONFIG_SYSFS */
workqueue_sysfs_register(struct workqueue_struct * wq)655 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
656 { return 0; }
657 #endif	/* CONFIG_SYSFS */
658 
659 #ifdef CONFIG_WQ_WATCHDOG
660 void wq_watchdog_touch(int cpu);
661 #else	/* CONFIG_WQ_WATCHDOG */
wq_watchdog_touch(int cpu)662 static inline void wq_watchdog_touch(int cpu) { }
663 #endif	/* CONFIG_WQ_WATCHDOG */
664 
665 #ifdef CONFIG_SMP
666 int workqueue_prepare_cpu(unsigned int cpu);
667 int workqueue_online_cpu(unsigned int cpu);
668 int workqueue_offline_cpu(unsigned int cpu);
669 #endif
670 
671 void __init workqueue_init_early(void);
672 void __init workqueue_init(void);
673 
674 #endif
675