• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/mm.h>
49 
50 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
51 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
52 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
53 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
54 
55 /*
56  * Fragmentation score check interval for proactive compaction purposes.
57  */
58 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
59 
60 /*
61  * Page order with-respect-to which proactive compaction
62  * calculates external fragmentation, which is used as
63  * the "fragmentation score" of a node/zone.
64  */
65 #if defined CONFIG_TRANSPARENT_HUGEPAGE
66 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
67 #elif defined CONFIG_HUGETLBFS
68 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
69 #else
70 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
71 #endif
72 
release_freepages(struct list_head * freelist)73 static unsigned long release_freepages(struct list_head *freelist)
74 {
75 	struct page *page, *next;
76 	unsigned long high_pfn = 0;
77 
78 	list_for_each_entry_safe(page, next, freelist, lru) {
79 		unsigned long pfn = page_to_pfn(page);
80 		list_del(&page->lru);
81 		__free_page(page);
82 		if (pfn > high_pfn)
83 			high_pfn = pfn;
84 	}
85 
86 	return high_pfn;
87 }
88 
split_map_pages(struct list_head * list)89 static void split_map_pages(struct list_head *list)
90 {
91 	unsigned int i, order, nr_pages;
92 	struct page *page, *next;
93 	LIST_HEAD(tmp_list);
94 
95 	list_for_each_entry_safe(page, next, list, lru) {
96 		list_del(&page->lru);
97 
98 		order = page_private(page);
99 		nr_pages = 1 << order;
100 
101 		post_alloc_hook(page, order, __GFP_MOVABLE);
102 		if (order)
103 			split_page(page, order);
104 
105 		for (i = 0; i < nr_pages; i++) {
106 			list_add(&page->lru, &tmp_list);
107 			page++;
108 		}
109 	}
110 
111 	list_splice(&tmp_list, list);
112 }
113 
114 #ifdef CONFIG_COMPACTION
115 
PageMovable(struct page * page)116 int PageMovable(struct page *page)
117 {
118 	struct address_space *mapping;
119 
120 	VM_BUG_ON_PAGE(!PageLocked(page), page);
121 	if (!__PageMovable(page))
122 		return 0;
123 
124 	mapping = page_mapping(page);
125 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
126 		return 1;
127 
128 	return 0;
129 }
130 EXPORT_SYMBOL(PageMovable);
131 
__SetPageMovable(struct page * page,struct address_space * mapping)132 void __SetPageMovable(struct page *page, struct address_space *mapping)
133 {
134 	VM_BUG_ON_PAGE(!PageLocked(page), page);
135 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
136 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
137 }
138 EXPORT_SYMBOL(__SetPageMovable);
139 
__ClearPageMovable(struct page * page)140 void __ClearPageMovable(struct page *page)
141 {
142 	VM_BUG_ON_PAGE(!PageMovable(page), page);
143 	/*
144 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
145 	 * flag so that VM can catch up released page by driver after isolation.
146 	 * With it, VM migration doesn't try to put it back.
147 	 */
148 	page->mapping = (void *)((unsigned long)page->mapping &
149 				PAGE_MAPPING_MOVABLE);
150 }
151 EXPORT_SYMBOL(__ClearPageMovable);
152 
153 /* Do not skip compaction more than 64 times */
154 #define COMPACT_MAX_DEFER_SHIFT 6
155 
156 /*
157  * Compaction is deferred when compaction fails to result in a page
158  * allocation success. 1 << compact_defer_shift, compactions are skipped up
159  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
160  */
defer_compaction(struct zone * zone,int order)161 static void defer_compaction(struct zone *zone, int order)
162 {
163 	zone->compact_considered = 0;
164 	zone->compact_defer_shift++;
165 
166 	if (order < zone->compact_order_failed)
167 		zone->compact_order_failed = order;
168 
169 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
170 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
171 
172 	trace_mm_compaction_defer_compaction(zone, order);
173 }
174 
175 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)176 static bool compaction_deferred(struct zone *zone, int order)
177 {
178 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
179 
180 	if (order < zone->compact_order_failed)
181 		return false;
182 
183 	/* Avoid possible overflow */
184 	if (++zone->compact_considered >= defer_limit) {
185 		zone->compact_considered = defer_limit;
186 		return false;
187 	}
188 
189 	trace_mm_compaction_deferred(zone, order);
190 
191 	return true;
192 }
193 
194 /*
195  * Update defer tracking counters after successful compaction of given order,
196  * which means an allocation either succeeded (alloc_success == true) or is
197  * expected to succeed.
198  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)199 void compaction_defer_reset(struct zone *zone, int order,
200 		bool alloc_success)
201 {
202 	if (alloc_success) {
203 		zone->compact_considered = 0;
204 		zone->compact_defer_shift = 0;
205 	}
206 	if (order >= zone->compact_order_failed)
207 		zone->compact_order_failed = order + 1;
208 
209 	trace_mm_compaction_defer_reset(zone, order);
210 }
211 
212 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)213 static bool compaction_restarting(struct zone *zone, int order)
214 {
215 	if (order < zone->compact_order_failed)
216 		return false;
217 
218 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
219 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
220 }
221 
222 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)223 static inline bool isolation_suitable(struct compact_control *cc,
224 					struct page *page)
225 {
226 	if (cc->ignore_skip_hint)
227 		return true;
228 
229 	return !get_pageblock_skip(page);
230 }
231 
reset_cached_positions(struct zone * zone)232 static void reset_cached_positions(struct zone *zone)
233 {
234 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
235 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
236 	zone->compact_cached_free_pfn =
237 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
238 }
239 
240 /*
241  * Compound pages of >= pageblock_order should consistently be skipped until
242  * released. It is always pointless to compact pages of such order (if they are
243  * migratable), and the pageblocks they occupy cannot contain any free pages.
244  */
pageblock_skip_persistent(struct page * page)245 static bool pageblock_skip_persistent(struct page *page)
246 {
247 	if (!PageCompound(page))
248 		return false;
249 
250 	page = compound_head(page);
251 
252 	if (compound_order(page) >= pageblock_order)
253 		return true;
254 
255 	return false;
256 }
257 
258 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)259 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
260 							bool check_target)
261 {
262 	struct page *page = pfn_to_online_page(pfn);
263 	struct page *block_page;
264 	struct page *end_page;
265 	unsigned long block_pfn;
266 
267 	if (!page)
268 		return false;
269 	if (zone != page_zone(page))
270 		return false;
271 	if (pageblock_skip_persistent(page))
272 		return false;
273 
274 	/*
275 	 * If skip is already cleared do no further checking once the
276 	 * restart points have been set.
277 	 */
278 	if (check_source && check_target && !get_pageblock_skip(page))
279 		return true;
280 
281 	/*
282 	 * If clearing skip for the target scanner, do not select a
283 	 * non-movable pageblock as the starting point.
284 	 */
285 	if (!check_source && check_target &&
286 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
287 		return false;
288 
289 	/* Ensure the start of the pageblock or zone is online and valid */
290 	block_pfn = pageblock_start_pfn(pfn);
291 	block_pfn = max(block_pfn, zone->zone_start_pfn);
292 	block_page = pfn_to_online_page(block_pfn);
293 	if (block_page) {
294 		page = block_page;
295 		pfn = block_pfn;
296 	}
297 
298 	/* Ensure the end of the pageblock or zone is online and valid */
299 	block_pfn = pageblock_end_pfn(pfn) - 1;
300 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
301 	end_page = pfn_to_online_page(block_pfn);
302 	if (!end_page)
303 		return false;
304 
305 	/*
306 	 * Only clear the hint if a sample indicates there is either a
307 	 * free page or an LRU page in the block. One or other condition
308 	 * is necessary for the block to be a migration source/target.
309 	 */
310 	do {
311 		if (check_source && PageLRU(page)) {
312 			clear_pageblock_skip(page);
313 			return true;
314 		}
315 
316 		if (check_target && PageBuddy(page)) {
317 			clear_pageblock_skip(page);
318 			return true;
319 		}
320 
321 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 	} while (page <= end_page);
324 
325 	return false;
326 }
327 
328 /*
329  * This function is called to clear all cached information on pageblocks that
330  * should be skipped for page isolation when the migrate and free page scanner
331  * meet.
332  */
__reset_isolation_suitable(struct zone * zone)333 static void __reset_isolation_suitable(struct zone *zone)
334 {
335 	unsigned long migrate_pfn = zone->zone_start_pfn;
336 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
337 	unsigned long reset_migrate = free_pfn;
338 	unsigned long reset_free = migrate_pfn;
339 	bool source_set = false;
340 	bool free_set = false;
341 
342 	if (!zone->compact_blockskip_flush)
343 		return;
344 
345 	zone->compact_blockskip_flush = false;
346 
347 	/*
348 	 * Walk the zone and update pageblock skip information. Source looks
349 	 * for PageLRU while target looks for PageBuddy. When the scanner
350 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 	 * is suitable as both source and target.
352 	 */
353 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 					free_pfn -= pageblock_nr_pages) {
355 		cond_resched();
356 
357 		/* Update the migrate PFN */
358 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 		    migrate_pfn < reset_migrate) {
360 			source_set = true;
361 			reset_migrate = migrate_pfn;
362 			zone->compact_init_migrate_pfn = reset_migrate;
363 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 		}
366 
367 		/* Update the free PFN */
368 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 		    free_pfn > reset_free) {
370 			free_set = true;
371 			reset_free = free_pfn;
372 			zone->compact_init_free_pfn = reset_free;
373 			zone->compact_cached_free_pfn = reset_free;
374 		}
375 	}
376 
377 	/* Leave no distance if no suitable block was reset */
378 	if (reset_migrate >= reset_free) {
379 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 		zone->compact_cached_free_pfn = free_pfn;
382 	}
383 }
384 
reset_isolation_suitable(pg_data_t * pgdat)385 void reset_isolation_suitable(pg_data_t *pgdat)
386 {
387 	int zoneid;
388 
389 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 		struct zone *zone = &pgdat->node_zones[zoneid];
391 		if (!populated_zone(zone))
392 			continue;
393 
394 		/* Only flush if a full compaction finished recently */
395 		if (zone->compact_blockskip_flush)
396 			__reset_isolation_suitable(zone);
397 	}
398 }
399 
400 /*
401  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402  * locks are not required for read/writers. Returns true if it was already set.
403  */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)404 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 							unsigned long pfn)
406 {
407 	bool skip;
408 
409 	/* Do no update if skip hint is being ignored */
410 	if (cc->ignore_skip_hint)
411 		return false;
412 
413 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 		return false;
415 
416 	skip = get_pageblock_skip(page);
417 	if (!skip && !cc->no_set_skip_hint)
418 		set_pageblock_skip(page);
419 
420 	return skip;
421 }
422 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)423 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424 {
425 	struct zone *zone = cc->zone;
426 
427 	pfn = pageblock_end_pfn(pfn);
428 
429 	/* Set for isolation rather than compaction */
430 	if (cc->no_set_skip_hint)
431 		return;
432 
433 	if (pfn > zone->compact_cached_migrate_pfn[0])
434 		zone->compact_cached_migrate_pfn[0] = pfn;
435 	if (cc->mode != MIGRATE_ASYNC &&
436 	    pfn > zone->compact_cached_migrate_pfn[1])
437 		zone->compact_cached_migrate_pfn[1] = pfn;
438 }
439 
440 /*
441  * If no pages were isolated then mark this pageblock to be skipped in the
442  * future. The information is later cleared by __reset_isolation_suitable().
443  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)444 static void update_pageblock_skip(struct compact_control *cc,
445 			struct page *page, unsigned long pfn)
446 {
447 	struct zone *zone = cc->zone;
448 
449 	if (cc->no_set_skip_hint)
450 		return;
451 
452 	if (!page)
453 		return;
454 
455 	set_pageblock_skip(page);
456 
457 	/* Update where async and sync compaction should restart */
458 	if (pfn < zone->compact_cached_free_pfn)
459 		zone->compact_cached_free_pfn = pfn;
460 }
461 #else
isolation_suitable(struct compact_control * cc,struct page * page)462 static inline bool isolation_suitable(struct compact_control *cc,
463 					struct page *page)
464 {
465 	return true;
466 }
467 
pageblock_skip_persistent(struct page * page)468 static inline bool pageblock_skip_persistent(struct page *page)
469 {
470 	return false;
471 }
472 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)473 static inline void update_pageblock_skip(struct compact_control *cc,
474 			struct page *page, unsigned long pfn)
475 {
476 }
477 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)478 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479 {
480 }
481 
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)482 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 							unsigned long pfn)
484 {
485 	return false;
486 }
487 #endif /* CONFIG_COMPACTION */
488 
489 /*
490  * Compaction requires the taking of some coarse locks that are potentially
491  * very heavily contended. For async compaction, trylock and record if the
492  * lock is contended. The lock will still be acquired but compaction will
493  * abort when the current block is finished regardless of success rate.
494  * Sync compaction acquires the lock.
495  *
496  * Always returns true which makes it easier to track lock state in callers.
497  */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)498 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
499 						struct compact_control *cc)
500 	__acquires(lock)
501 {
502 	/* Track if the lock is contended in async mode */
503 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 		if (spin_trylock_irqsave(lock, *flags))
505 			return true;
506 
507 		cc->contended = true;
508 	}
509 
510 	spin_lock_irqsave(lock, *flags);
511 	return true;
512 }
513 
514 /*
515  * Compaction requires the taking of some coarse locks that are potentially
516  * very heavily contended. The lock should be periodically unlocked to avoid
517  * having disabled IRQs for a long time, even when there is nobody waiting on
518  * the lock. It might also be that allowing the IRQs will result in
519  * need_resched() becoming true. If scheduling is needed, async compaction
520  * aborts. Sync compaction schedules.
521  * Either compaction type will also abort if a fatal signal is pending.
522  * In either case if the lock was locked, it is dropped and not regained.
523  *
524  * Returns true if compaction should abort due to fatal signal pending, or
525  *		async compaction due to need_resched()
526  * Returns false when compaction can continue (sync compaction might have
527  *		scheduled)
528  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)529 static bool compact_unlock_should_abort(spinlock_t *lock,
530 		unsigned long flags, bool *locked, struct compact_control *cc)
531 {
532 	if (*locked) {
533 		spin_unlock_irqrestore(lock, flags);
534 		*locked = false;
535 	}
536 
537 	if (fatal_signal_pending(current)) {
538 		cc->contended = true;
539 		return true;
540 	}
541 
542 	cond_resched();
543 
544 	return false;
545 }
546 
547 /*
548  * Isolate free pages onto a private freelist. If @strict is true, will abort
549  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550  * (even though it may still end up isolating some pages).
551  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)552 static unsigned long isolate_freepages_block(struct compact_control *cc,
553 				unsigned long *start_pfn,
554 				unsigned long end_pfn,
555 				struct list_head *freelist,
556 				unsigned int stride,
557 				bool strict)
558 {
559 	int nr_scanned = 0, total_isolated = 0;
560 	struct page *cursor;
561 	unsigned long flags = 0;
562 	bool locked = false;
563 	unsigned long blockpfn = *start_pfn;
564 	unsigned int order;
565 
566 	/* Strict mode is for isolation, speed is secondary */
567 	if (strict)
568 		stride = 1;
569 
570 	cursor = pfn_to_page(blockpfn);
571 
572 	/* Isolate free pages. */
573 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
574 		int isolated;
575 		struct page *page = cursor;
576 
577 		/*
578 		 * Periodically drop the lock (if held) regardless of its
579 		 * contention, to give chance to IRQs. Abort if fatal signal
580 		 * pending or async compaction detects need_resched()
581 		 */
582 		if (!(blockpfn % SWAP_CLUSTER_MAX)
583 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
584 								&locked, cc))
585 			break;
586 
587 		nr_scanned++;
588 
589 		/*
590 		 * For compound pages such as THP and hugetlbfs, we can save
591 		 * potentially a lot of iterations if we skip them at once.
592 		 * The check is racy, but we can consider only valid values
593 		 * and the only danger is skipping too much.
594 		 */
595 		if (PageCompound(page)) {
596 			const unsigned int order = compound_order(page);
597 
598 			if (likely(order < MAX_ORDER)) {
599 				blockpfn += (1UL << order) - 1;
600 				cursor += (1UL << order) - 1;
601 			}
602 			goto isolate_fail;
603 		}
604 
605 		if (!PageBuddy(page))
606 			goto isolate_fail;
607 
608 		/*
609 		 * If we already hold the lock, we can skip some rechecking.
610 		 * Note that if we hold the lock now, checked_pageblock was
611 		 * already set in some previous iteration (or strict is true),
612 		 * so it is correct to skip the suitable migration target
613 		 * recheck as well.
614 		 */
615 		if (!locked) {
616 			locked = compact_lock_irqsave(&cc->zone->lock,
617 								&flags, cc);
618 
619 			/* Recheck this is a buddy page under lock */
620 			if (!PageBuddy(page))
621 				goto isolate_fail;
622 		}
623 
624 		/* Found a free page, will break it into order-0 pages */
625 		order = buddy_order(page);
626 		isolated = __isolate_free_page(page, order);
627 		if (!isolated)
628 			break;
629 		set_page_private(page, order);
630 
631 		total_isolated += isolated;
632 		cc->nr_freepages += isolated;
633 		list_add_tail(&page->lru, freelist);
634 
635 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
636 			blockpfn += isolated;
637 			break;
638 		}
639 		/* Advance to the end of split page */
640 		blockpfn += isolated - 1;
641 		cursor += isolated - 1;
642 		continue;
643 
644 isolate_fail:
645 		if (strict)
646 			break;
647 		else
648 			continue;
649 
650 	}
651 
652 	if (locked)
653 		spin_unlock_irqrestore(&cc->zone->lock, flags);
654 
655 	/*
656 	 * There is a tiny chance that we have read bogus compound_order(),
657 	 * so be careful to not go outside of the pageblock.
658 	 */
659 	if (unlikely(blockpfn > end_pfn))
660 		blockpfn = end_pfn;
661 
662 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
663 					nr_scanned, total_isolated);
664 
665 	/* Record how far we have got within the block */
666 	*start_pfn = blockpfn;
667 
668 	/*
669 	 * If strict isolation is requested by CMA then check that all the
670 	 * pages requested were isolated. If there were any failures, 0 is
671 	 * returned and CMA will fail.
672 	 */
673 	if (strict && blockpfn < end_pfn)
674 		total_isolated = 0;
675 
676 	cc->total_free_scanned += nr_scanned;
677 	if (total_isolated)
678 		count_compact_events(COMPACTISOLATED, total_isolated);
679 	return total_isolated;
680 }
681 
682 /**
683  * isolate_freepages_range() - isolate free pages.
684  * @cc:        Compaction control structure.
685  * @start_pfn: The first PFN to start isolating.
686  * @end_pfn:   The one-past-last PFN.
687  *
688  * Non-free pages, invalid PFNs, or zone boundaries within the
689  * [start_pfn, end_pfn) range are considered errors, cause function to
690  * undo its actions and return zero.
691  *
692  * Otherwise, function returns one-past-the-last PFN of isolated page
693  * (which may be greater then end_pfn if end fell in a middle of
694  * a free page).
695  */
696 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)697 isolate_freepages_range(struct compact_control *cc,
698 			unsigned long start_pfn, unsigned long end_pfn)
699 {
700 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
701 	LIST_HEAD(freelist);
702 
703 	pfn = start_pfn;
704 	block_start_pfn = pageblock_start_pfn(pfn);
705 	if (block_start_pfn < cc->zone->zone_start_pfn)
706 		block_start_pfn = cc->zone->zone_start_pfn;
707 	block_end_pfn = pageblock_end_pfn(pfn);
708 
709 	for (; pfn < end_pfn; pfn += isolated,
710 				block_start_pfn = block_end_pfn,
711 				block_end_pfn += pageblock_nr_pages) {
712 		/* Protect pfn from changing by isolate_freepages_block */
713 		unsigned long isolate_start_pfn = pfn;
714 
715 		block_end_pfn = min(block_end_pfn, end_pfn);
716 
717 		/*
718 		 * pfn could pass the block_end_pfn if isolated freepage
719 		 * is more than pageblock order. In this case, we adjust
720 		 * scanning range to right one.
721 		 */
722 		if (pfn >= block_end_pfn) {
723 			block_start_pfn = pageblock_start_pfn(pfn);
724 			block_end_pfn = pageblock_end_pfn(pfn);
725 			block_end_pfn = min(block_end_pfn, end_pfn);
726 		}
727 
728 		if (!pageblock_pfn_to_page(block_start_pfn,
729 					block_end_pfn, cc->zone))
730 			break;
731 
732 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
733 					block_end_pfn, &freelist, 0, true);
734 
735 		/*
736 		 * In strict mode, isolate_freepages_block() returns 0 if
737 		 * there are any holes in the block (ie. invalid PFNs or
738 		 * non-free pages).
739 		 */
740 		if (!isolated)
741 			break;
742 
743 		/*
744 		 * If we managed to isolate pages, it is always (1 << n) *
745 		 * pageblock_nr_pages for some non-negative n.  (Max order
746 		 * page may span two pageblocks).
747 		 */
748 	}
749 
750 	/* __isolate_free_page() does not map the pages */
751 	split_map_pages(&freelist);
752 
753 	if (pfn < end_pfn) {
754 		/* Loop terminated early, cleanup. */
755 		release_freepages(&freelist);
756 		return 0;
757 	}
758 
759 	/* We don't use freelists for anything. */
760 	return pfn;
761 }
762 
763 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)764 unsigned long isolate_and_split_free_page(struct page *page,
765 						struct list_head *list)
766 {
767 	unsigned long isolated;
768 	unsigned int order;
769 
770 	if (!PageBuddy(page))
771 		return 0;
772 
773 	order = buddy_order(page);
774 	isolated = __isolate_free_page(page, order);
775 	if (!isolated)
776 		return 0;
777 
778 	set_page_private(page, order);
779 	list_add(&page->lru, list);
780 
781 	split_map_pages(list);
782 
783 	return isolated;
784 }
785 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
786 #endif
787 
788 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)789 static bool too_many_isolated(pg_data_t *pgdat)
790 {
791 	unsigned long active, inactive, isolated;
792 
793 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
794 			node_page_state(pgdat, NR_INACTIVE_ANON);
795 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
796 			node_page_state(pgdat, NR_ACTIVE_ANON);
797 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
798 			node_page_state(pgdat, NR_ISOLATED_ANON);
799 
800 	return isolated > (inactive + active) / 2;
801 }
802 
803 /**
804  * isolate_migratepages_block() - isolate all migrate-able pages within
805  *				  a single pageblock
806  * @cc:		Compaction control structure.
807  * @low_pfn:	The first PFN to isolate
808  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
809  * @mode:	Isolation mode to be used.
810  *
811  * Isolate all pages that can be migrated from the range specified by
812  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
813  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
814  * -ENOMEM in case we could not allocate a page, or 0.
815  * cc->migrate_pfn will contain the next pfn to scan.
816  *
817  * The pages are isolated on cc->migratepages list (not required to be empty),
818  * and cc->nr_migratepages is updated accordingly.
819  */
820 static int
isolate_migratepages_block(struct compact_control_ext * cc_ext,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t mode)821 isolate_migratepages_block(struct compact_control_ext *cc_ext, unsigned long low_pfn,
822 			unsigned long end_pfn, isolate_mode_t mode)
823 {
824 	struct compact_control *cc = cc_ext->cc;
825 	pg_data_t *pgdat = cc->zone->zone_pgdat;
826 	unsigned long nr_scanned = 0, nr_isolated = 0;
827 	struct lruvec *lruvec;
828 	unsigned long flags = 0;
829 	struct lruvec *locked = NULL;
830 	struct page *page = NULL, *valid_page = NULL;
831 	struct address_space *mapping;
832 	unsigned long start_pfn = low_pfn;
833 	bool skip_on_failure = false;
834 	unsigned long next_skip_pfn = 0;
835 	bool skip_updated = false;
836 	int ret = 0;
837 
838 	cc->migrate_pfn = low_pfn;
839 
840 	/*
841 	 * Ensure that there are not too many pages isolated from the LRU
842 	 * list by either parallel reclaimers or compaction. If there are,
843 	 * delay for some time until fewer pages are isolated
844 	 */
845 	while (unlikely(too_many_isolated(pgdat))) {
846 		/* stop isolation if there are still pages not migrated */
847 		if (cc->nr_migratepages)
848 			return -EAGAIN;
849 
850 		/* async migration should just abort */
851 		if (cc->mode == MIGRATE_ASYNC)
852 			return -EAGAIN;
853 
854 		congestion_wait(BLK_RW_ASYNC, HZ/10);
855 
856 		if (fatal_signal_pending(current))
857 			return -EINTR;
858 	}
859 
860 	cond_resched();
861 
862 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
863 		skip_on_failure = true;
864 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
865 	}
866 
867 	/* Time to isolate some pages for migration */
868 	for (; low_pfn < end_pfn; low_pfn++) {
869 
870 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
871 			/*
872 			 * We have isolated all migration candidates in the
873 			 * previous order-aligned block, and did not skip it due
874 			 * to failure. We should migrate the pages now and
875 			 * hopefully succeed compaction.
876 			 */
877 			if (nr_isolated)
878 				break;
879 
880 			/*
881 			 * We failed to isolate in the previous order-aligned
882 			 * block. Set the new boundary to the end of the
883 			 * current block. Note we can't simply increase
884 			 * next_skip_pfn by 1 << order, as low_pfn might have
885 			 * been incremented by a higher number due to skipping
886 			 * a compound or a high-order buddy page in the
887 			 * previous loop iteration.
888 			 */
889 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
890 		}
891 
892 		/*
893 		 * Periodically drop the lock (if held) regardless of its
894 		 * contention, to give chance to IRQs. Abort completely if
895 		 * a fatal signal is pending.
896 		 */
897 		if (!(low_pfn % SWAP_CLUSTER_MAX)) {
898 			if (locked) {
899 				unlock_page_lruvec_irqrestore(locked, flags);
900 				locked = NULL;
901 			}
902 
903 			if (fatal_signal_pending(current)) {
904 				cc->contended = true;
905 				ret = -EINTR;
906 
907 				goto fatal_pending;
908 			}
909 
910 			cond_resched();
911 		}
912 
913 		nr_scanned++;
914 
915 		page = pfn_to_page(low_pfn);
916 
917 		/*
918 		 * Check if the pageblock has already been marked skipped.
919 		 * Only the aligned PFN is checked as the caller isolates
920 		 * COMPACT_CLUSTER_MAX at a time so the second call must
921 		 * not falsely conclude that the block should be skipped.
922 		 */
923 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
924 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
925 				low_pfn = end_pfn;
926 				page = NULL;
927 				goto isolate_abort;
928 			}
929 			valid_page = page;
930 		}
931 
932 		if (PageHuge(page) && cc->alloc_contig) {
933 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
934 
935 			/*
936 			 * Fail isolation in case isolate_or_dissolve_huge_page()
937 			 * reports an error. In case of -ENOMEM, abort right away.
938 			 */
939 			if (ret < 0) {
940 				 /* Do not report -EBUSY down the chain */
941 				if (ret == -EBUSY)
942 					ret = 0;
943 				low_pfn += (1UL << compound_order(page)) - 1;
944 				goto isolate_fail;
945 			}
946 
947 			if (PageHuge(page)) {
948 				/*
949 				 * Hugepage was successfully isolated and placed
950 				 * on the cc->migratepages list.
951 				 */
952 				low_pfn += compound_nr(page) - 1;
953 				goto isolate_success_no_list;
954 			}
955 
956 			/*
957 			 * Ok, the hugepage was dissolved. Now these pages are
958 			 * Buddy and cannot be re-allocated because they are
959 			 * isolated. Fall-through as the check below handles
960 			 * Buddy pages.
961 			 */
962 		}
963 
964 		/*
965 		 * Skip if free. We read page order here without zone lock
966 		 * which is generally unsafe, but the race window is small and
967 		 * the worst thing that can happen is that we skip some
968 		 * potential isolation targets.
969 		 */
970 		if (PageBuddy(page)) {
971 			unsigned long freepage_order = buddy_order_unsafe(page);
972 
973 			/*
974 			 * Without lock, we cannot be sure that what we got is
975 			 * a valid page order. Consider only values in the
976 			 * valid order range to prevent low_pfn overflow.
977 			 */
978 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
979 				low_pfn += (1UL << freepage_order) - 1;
980 			continue;
981 		}
982 
983 		/*
984 		 * Regardless of being on LRU, compound pages such as THP and
985 		 * hugetlbfs are not to be compacted unless we are attempting
986 		 * an allocation much larger than the huge page size (eg CMA).
987 		 * We can potentially save a lot of iterations if we skip them
988 		 * at once. The check is racy, but we can consider only valid
989 		 * values and the only danger is skipping too much.
990 		 */
991 		if (PageCompound(page) && !cc->alloc_contig) {
992 			const unsigned int order = compound_order(page);
993 
994 			if (likely(order < MAX_ORDER))
995 				low_pfn += (1UL << order) - 1;
996 			goto isolate_fail;
997 		}
998 
999 		/*
1000 		 * Check may be lockless but that's ok as we recheck later.
1001 		 * It's possible to migrate LRU and non-lru movable pages.
1002 		 * Skip any other type of page
1003 		 */
1004 		if (!PageLRU(page)) {
1005 			/*
1006 			 * __PageMovable can return false positive so we need
1007 			 * to verify it under page_lock.
1008 			 */
1009 			if (unlikely(__PageMovable(page)) &&
1010 					!PageIsolated(page)) {
1011 				if (locked) {
1012 					unlock_page_lruvec_irqrestore(locked, flags);
1013 					locked = NULL;
1014 				}
1015 
1016 				if (!isolate_movable_page(page, mode))
1017 					goto isolate_success;
1018 			}
1019 
1020 			goto isolate_fail;
1021 		}
1022 
1023 		/*
1024 		 * Be careful not to clear PageLRU until after we're
1025 		 * sure the page is not being freed elsewhere -- the
1026 		 * page release code relies on it.
1027 		 */
1028 		if (unlikely(!get_page_unless_zero(page)))
1029 			goto isolate_fail;
1030 
1031 		/*
1032 		 * Migration will fail if an anonymous page is pinned in memory,
1033 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1034 		 * admittedly racy check.
1035 		 */
1036 		mapping = page_mapping(page);
1037 		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1038 			goto isolate_fail_put;
1039 
1040 		/*
1041 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1042 		 * because those do not depend on fs locks.
1043 		 */
1044 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1045 			goto isolate_fail_put;
1046 
1047 		/* Only take pages on LRU: a check now makes later tests safe */
1048 		if (!PageLRU(page))
1049 			goto isolate_fail_put;
1050 
1051 		/* Compaction might skip unevictable pages but CMA takes them */
1052 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1053 			goto isolate_fail_put;
1054 
1055 		/*
1056 		 * To minimise LRU disruption, the caller can indicate with
1057 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1058 		 * it will be able to migrate without blocking - clean pages
1059 		 * for the most part.  PageWriteback would require blocking.
1060 		 */
1061 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1062 			goto isolate_fail_put;
1063 
1064 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1065 			bool migrate_dirty;
1066 
1067 			/*
1068 			 * Only pages without mappings or that have a
1069 			 * ->migratepage callback are possible to migrate
1070 			 * without blocking. However, we can be racing with
1071 			 * truncation so it's necessary to lock the page
1072 			 * to stabilise the mapping as truncation holds
1073 			 * the page lock until after the page is removed
1074 			 * from the page cache.
1075 			 */
1076 			if (!trylock_page(page))
1077 				goto isolate_fail_put;
1078 
1079 			mapping = page_mapping(page);
1080 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1081 			unlock_page(page);
1082 			if (!migrate_dirty)
1083 				goto isolate_fail_put;
1084 		}
1085 
1086 		/* Try isolate the page */
1087 		if (!TestClearPageLRU(page))
1088 			goto isolate_fail_put;
1089 
1090 		lruvec = mem_cgroup_page_lruvec(page);
1091 
1092 		/* If we already hold the lock, we can skip some rechecking */
1093 		if (lruvec != locked) {
1094 			if (locked)
1095 				unlock_page_lruvec_irqrestore(locked, flags);
1096 
1097 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1098 			locked = lruvec;
1099 
1100 			lruvec_memcg_debug(lruvec, page);
1101 
1102 			/* Try get exclusive access under lock */
1103 			if (!skip_updated) {
1104 				skip_updated = true;
1105 				if (test_and_set_skip(cc, page, low_pfn))
1106 					goto isolate_abort;
1107 			}
1108 
1109 			/*
1110 			 * Page become compound since the non-locked check,
1111 			 * and it's on LRU. It can only be a THP so the order
1112 			 * is safe to read and it's 0 for tail pages.
1113 			 */
1114 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1115 				low_pfn += compound_nr(page) - 1;
1116 				SetPageLRU(page);
1117 				goto isolate_fail_put;
1118 			}
1119 		}
1120 
1121 		/* The whole page is taken off the LRU; skip the tail pages. */
1122 		if (PageCompound(page))
1123 			low_pfn += compound_nr(page) - 1;
1124 
1125 		/* Successfully isolated */
1126 		del_page_from_lru_list(page, lruvec);
1127 		mod_node_page_state(page_pgdat(page),
1128 				NR_ISOLATED_ANON + page_is_file_lru(page),
1129 				thp_nr_pages(page));
1130 
1131 isolate_success:
1132 		list_add(&page->lru, &cc->migratepages);
1133 isolate_success_no_list:
1134 		cc->nr_migratepages += compound_nr(page);
1135 		if (!PageAnon(page))
1136 			cc_ext->nr_migrate_file_pages += compound_nr(page);
1137 		nr_isolated += compound_nr(page);
1138 
1139 		/*
1140 		 * Avoid isolating too much unless this block is being
1141 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1142 		 * or a lock is contended. For contention, isolate quickly to
1143 		 * potentially remove one source of contention.
1144 		 */
1145 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1146 		    !cc->rescan && !cc->contended) {
1147 			++low_pfn;
1148 			break;
1149 		}
1150 
1151 		continue;
1152 
1153 isolate_fail_put:
1154 		/* Avoid potential deadlock in freeing page under lru_lock */
1155 		if (locked) {
1156 			unlock_page_lruvec_irqrestore(locked, flags);
1157 			locked = NULL;
1158 		}
1159 		put_page(page);
1160 
1161 isolate_fail:
1162 		if (!skip_on_failure && ret != -ENOMEM)
1163 			continue;
1164 
1165 		/*
1166 		 * We have isolated some pages, but then failed. Release them
1167 		 * instead of migrating, as we cannot form the cc->order buddy
1168 		 * page anyway.
1169 		 */
1170 		if (nr_isolated) {
1171 			if (locked) {
1172 				unlock_page_lruvec_irqrestore(locked, flags);
1173 				locked = NULL;
1174 			}
1175 			putback_movable_pages(&cc->migratepages);
1176 			cc->nr_migratepages = 0;
1177 			cc_ext->nr_migrate_file_pages = 0;
1178 			nr_isolated = 0;
1179 		}
1180 
1181 		if (low_pfn < next_skip_pfn) {
1182 			low_pfn = next_skip_pfn - 1;
1183 			/*
1184 			 * The check near the loop beginning would have updated
1185 			 * next_skip_pfn too, but this is a bit simpler.
1186 			 */
1187 			next_skip_pfn += 1UL << cc->order;
1188 		}
1189 
1190 		if (ret == -ENOMEM)
1191 			break;
1192 	}
1193 
1194 	/*
1195 	 * The PageBuddy() check could have potentially brought us outside
1196 	 * the range to be scanned.
1197 	 */
1198 	if (unlikely(low_pfn > end_pfn))
1199 		low_pfn = end_pfn;
1200 
1201 	page = NULL;
1202 
1203 isolate_abort:
1204 	if (locked)
1205 		unlock_page_lruvec_irqrestore(locked, flags);
1206 	if (page) {
1207 		SetPageLRU(page);
1208 		put_page(page);
1209 	}
1210 
1211 	/*
1212 	 * Updated the cached scanner pfn once the pageblock has been scanned
1213 	 * Pages will either be migrated in which case there is no point
1214 	 * scanning in the near future or migration failed in which case the
1215 	 * failure reason may persist. The block is marked for skipping if
1216 	 * there were no pages isolated in the block or if the block is
1217 	 * rescanned twice in a row.
1218 	 */
1219 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1220 		if (valid_page && !skip_updated)
1221 			set_pageblock_skip(valid_page);
1222 		update_cached_migrate(cc, low_pfn);
1223 	}
1224 
1225 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1226 						nr_scanned, nr_isolated);
1227 
1228 fatal_pending:
1229 	cc->total_migrate_scanned += nr_scanned;
1230 	if (nr_isolated)
1231 		count_compact_events(COMPACTISOLATED, nr_isolated);
1232 
1233 	cc->migrate_pfn = low_pfn;
1234 
1235 	return ret;
1236 }
1237 
1238 /**
1239  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1240  * @cc:        Compaction control structure.
1241  * @start_pfn: The first PFN to start isolating.
1242  * @end_pfn:   The one-past-last PFN.
1243  *
1244  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1245  * in case we could not allocate a page, or 0.
1246  */
1247 int
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1248 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1249 							unsigned long end_pfn)
1250 {
1251 	struct compact_control_ext cc_ext = { .cc = cc };
1252 	unsigned long pfn, block_start_pfn, block_end_pfn;
1253 	int ret = 0;
1254 
1255 	/* Scan block by block. First and last block may be incomplete */
1256 	pfn = start_pfn;
1257 	block_start_pfn = pageblock_start_pfn(pfn);
1258 	if (block_start_pfn < cc->zone->zone_start_pfn)
1259 		block_start_pfn = cc->zone->zone_start_pfn;
1260 	block_end_pfn = pageblock_end_pfn(pfn);
1261 
1262 	for (; pfn < end_pfn; pfn = block_end_pfn,
1263 				block_start_pfn = block_end_pfn,
1264 				block_end_pfn += pageblock_nr_pages) {
1265 
1266 		block_end_pfn = min(block_end_pfn, end_pfn);
1267 
1268 		if (!pageblock_pfn_to_page(block_start_pfn,
1269 					block_end_pfn, cc->zone))
1270 			continue;
1271 
1272 		ret = isolate_migratepages_block(&cc_ext, pfn, block_end_pfn,
1273 						 ISOLATE_UNEVICTABLE);
1274 
1275 		if (ret)
1276 			break;
1277 
1278 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1279 			break;
1280 	}
1281 
1282 	return ret;
1283 }
1284 
1285 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1286 #ifdef CONFIG_COMPACTION
1287 
suitable_migration_source(struct compact_control * cc,struct page * page)1288 static bool suitable_migration_source(struct compact_control *cc,
1289 							struct page *page)
1290 {
1291 	int block_mt;
1292 
1293 	if (pageblock_skip_persistent(page))
1294 		return false;
1295 
1296 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1297 		return true;
1298 
1299 	block_mt = get_pageblock_migratetype(page);
1300 
1301 	if (cc->migratetype == MIGRATE_MOVABLE)
1302 		return is_migrate_movable(block_mt);
1303 	else
1304 		return block_mt == cc->migratetype;
1305 }
1306 
1307 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control_ext * cc_ext,struct page * page)1308 static bool suitable_migration_target(struct compact_control_ext *cc_ext,
1309 							struct page *page)
1310 {
1311 	struct compact_control *cc = cc_ext->cc;
1312 	/* If the page is a large free page, then disallow migration */
1313 	if (PageBuddy(page)) {
1314 		/*
1315 		 * We are checking page_order without zone->lock taken. But
1316 		 * the only small danger is that we skip a potentially suitable
1317 		 * pageblock, so it's not worth to check order for valid range.
1318 		 */
1319 		if (buddy_order_unsafe(page) >= pageblock_order)
1320 			return false;
1321 	}
1322 
1323 	if (cc->ignore_block_suitable)
1324 		return true;
1325 
1326 	/* Allow file pages to migrate only into MIGRATE_MOVABLE blocks */
1327 	if (cc_ext->nr_migrate_file_pages)
1328 		return get_pageblock_migratetype(page) == MIGRATE_MOVABLE;
1329 
1330 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1331 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1332 		return true;
1333 
1334 	/* Otherwise skip the block */
1335 	return false;
1336 }
1337 
1338 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1339 freelist_scan_limit(struct compact_control *cc)
1340 {
1341 	unsigned short shift = BITS_PER_LONG - 1;
1342 
1343 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1344 }
1345 
1346 /*
1347  * Test whether the free scanner has reached the same or lower pageblock than
1348  * the migration scanner, and compaction should thus terminate.
1349  */
compact_scanners_met(struct compact_control * cc)1350 static inline bool compact_scanners_met(struct compact_control *cc)
1351 {
1352 	return (cc->free_pfn >> pageblock_order)
1353 		<= (cc->migrate_pfn >> pageblock_order);
1354 }
1355 
1356 /*
1357  * Used when scanning for a suitable migration target which scans freelists
1358  * in reverse. Reorders the list such as the unscanned pages are scanned
1359  * first on the next iteration of the free scanner
1360  */
1361 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1362 move_freelist_head(struct list_head *freelist, struct page *freepage)
1363 {
1364 	LIST_HEAD(sublist);
1365 
1366 	if (!list_is_last(freelist, &freepage->lru)) {
1367 		list_cut_before(&sublist, freelist, &freepage->lru);
1368 		list_splice_tail(&sublist, freelist);
1369 	}
1370 }
1371 
1372 /*
1373  * Similar to move_freelist_head except used by the migration scanner
1374  * when scanning forward. It's possible for these list operations to
1375  * move against each other if they search the free list exactly in
1376  * lockstep.
1377  */
1378 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1379 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1380 {
1381 	LIST_HEAD(sublist);
1382 
1383 	if (!list_is_first(freelist, &freepage->lru)) {
1384 		list_cut_position(&sublist, freelist, &freepage->lru);
1385 		list_splice_tail(&sublist, freelist);
1386 	}
1387 }
1388 
1389 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1390 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1391 {
1392 	unsigned long start_pfn, end_pfn;
1393 	struct page *page;
1394 
1395 	/* Do not search around if there are enough pages already */
1396 	if (cc->nr_freepages >= cc->nr_migratepages)
1397 		return;
1398 
1399 	/* Minimise scanning during async compaction */
1400 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1401 		return;
1402 
1403 	/* Pageblock boundaries */
1404 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1405 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1406 
1407 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1408 	if (!page)
1409 		return;
1410 
1411 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1412 
1413 	/* Skip this pageblock in the future as it's full or nearly full */
1414 	if (cc->nr_freepages < cc->nr_migratepages)
1415 		set_pageblock_skip(page);
1416 
1417 	return;
1418 }
1419 
1420 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1421 static int next_search_order(struct compact_control *cc, int order)
1422 {
1423 	order--;
1424 	if (order < 0)
1425 		order = cc->order - 1;
1426 
1427 	/* Search wrapped around? */
1428 	if (order == cc->search_order) {
1429 		cc->search_order--;
1430 		if (cc->search_order < 0)
1431 			cc->search_order = cc->order - 1;
1432 		return -1;
1433 	}
1434 
1435 	return order;
1436 }
1437 
1438 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1439 fast_isolate_freepages(struct compact_control *cc)
1440 {
1441 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1442 	unsigned int nr_scanned = 0;
1443 	unsigned long low_pfn, min_pfn, highest = 0;
1444 	unsigned long nr_isolated = 0;
1445 	unsigned long distance;
1446 	struct page *page = NULL;
1447 	bool scan_start = false;
1448 	int order;
1449 
1450 	/* Full compaction passes in a negative order */
1451 	if (cc->order <= 0)
1452 		return cc->free_pfn;
1453 
1454 	/*
1455 	 * If starting the scan, use a deeper search and use the highest
1456 	 * PFN found if a suitable one is not found.
1457 	 */
1458 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1459 		limit = pageblock_nr_pages >> 1;
1460 		scan_start = true;
1461 	}
1462 
1463 	/*
1464 	 * Preferred point is in the top quarter of the scan space but take
1465 	 * a pfn from the top half if the search is problematic.
1466 	 */
1467 	distance = (cc->free_pfn - cc->migrate_pfn);
1468 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1469 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1470 
1471 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1472 		low_pfn = min_pfn;
1473 
1474 	/*
1475 	 * Search starts from the last successful isolation order or the next
1476 	 * order to search after a previous failure
1477 	 */
1478 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1479 
1480 	for (order = cc->search_order;
1481 	     !page && order >= 0;
1482 	     order = next_search_order(cc, order)) {
1483 		struct free_area *area = &cc->zone->free_area[order];
1484 		struct list_head *freelist;
1485 		struct page *freepage;
1486 		unsigned long flags;
1487 		unsigned int order_scanned = 0;
1488 		unsigned long high_pfn = 0;
1489 
1490 		if (!area->nr_free)
1491 			continue;
1492 
1493 		spin_lock_irqsave(&cc->zone->lock, flags);
1494 		freelist = &area->free_list[MIGRATE_MOVABLE];
1495 		list_for_each_entry_reverse(freepage, freelist, lru) {
1496 			unsigned long pfn;
1497 
1498 			order_scanned++;
1499 			nr_scanned++;
1500 			pfn = page_to_pfn(freepage);
1501 
1502 			if (pfn >= highest)
1503 				highest = max(pageblock_start_pfn(pfn),
1504 					      cc->zone->zone_start_pfn);
1505 
1506 			if (pfn >= low_pfn) {
1507 				cc->fast_search_fail = 0;
1508 				cc->search_order = order;
1509 				page = freepage;
1510 				break;
1511 			}
1512 
1513 			if (pfn >= min_pfn && pfn > high_pfn) {
1514 				high_pfn = pfn;
1515 
1516 				/* Shorten the scan if a candidate is found */
1517 				limit >>= 1;
1518 			}
1519 
1520 			if (order_scanned >= limit)
1521 				break;
1522 		}
1523 
1524 		/* Use a minimum pfn if a preferred one was not found */
1525 		if (!page && high_pfn) {
1526 			page = pfn_to_page(high_pfn);
1527 
1528 			/* Update freepage for the list reorder below */
1529 			freepage = page;
1530 		}
1531 
1532 		/* Reorder to so a future search skips recent pages */
1533 		move_freelist_head(freelist, freepage);
1534 
1535 		/* Isolate the page if available */
1536 		if (page) {
1537 			if (__isolate_free_page(page, order)) {
1538 				set_page_private(page, order);
1539 				nr_isolated = 1 << order;
1540 				cc->nr_freepages += nr_isolated;
1541 				list_add_tail(&page->lru, &cc->freepages);
1542 				count_compact_events(COMPACTISOLATED, nr_isolated);
1543 			} else {
1544 				/* If isolation fails, abort the search */
1545 				order = cc->search_order + 1;
1546 				page = NULL;
1547 			}
1548 		}
1549 
1550 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1551 
1552 		/*
1553 		 * Smaller scan on next order so the total scan is related
1554 		 * to freelist_scan_limit.
1555 		 */
1556 		if (order_scanned >= limit)
1557 			limit = max(1U, limit >> 1);
1558 	}
1559 
1560 	if (!page) {
1561 		cc->fast_search_fail++;
1562 		if (scan_start) {
1563 			/*
1564 			 * Use the highest PFN found above min. If one was
1565 			 * not found, be pessimistic for direct compaction
1566 			 * and use the min mark.
1567 			 */
1568 			if (highest) {
1569 				page = pfn_to_page(highest);
1570 				cc->free_pfn = highest;
1571 			} else {
1572 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1573 					page = pageblock_pfn_to_page(min_pfn,
1574 						min(pageblock_end_pfn(min_pfn),
1575 						    zone_end_pfn(cc->zone)),
1576 						cc->zone);
1577 					cc->free_pfn = min_pfn;
1578 				}
1579 			}
1580 		}
1581 	}
1582 
1583 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1584 		highest -= pageblock_nr_pages;
1585 		cc->zone->compact_cached_free_pfn = highest;
1586 	}
1587 
1588 	cc->total_free_scanned += nr_scanned;
1589 	if (!page)
1590 		return cc->free_pfn;
1591 
1592 	low_pfn = page_to_pfn(page);
1593 	fast_isolate_around(cc, low_pfn);
1594 	return low_pfn;
1595 }
1596 
1597 /*
1598  * Based on information in the current compact_control, find blocks
1599  * suitable for isolating free pages from and then isolate them.
1600  */
isolate_freepages(struct compact_control_ext * cc_ext)1601 static void isolate_freepages(struct compact_control_ext *cc_ext)
1602 {
1603 	struct compact_control *cc = cc_ext->cc;
1604 	struct zone *zone = cc->zone;
1605 	struct page *page;
1606 	unsigned long block_start_pfn;	/* start of current pageblock */
1607 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1608 	unsigned long block_end_pfn;	/* end of current pageblock */
1609 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1610 	struct list_head *freelist = &cc->freepages;
1611 	unsigned int stride;
1612 	bool bypass = false;
1613 
1614 	/* Try a small search of the free lists for a candidate */
1615 	isolate_start_pfn = fast_isolate_freepages(cc);
1616 	if (cc->nr_freepages)
1617 		goto splitmap;
1618 
1619 	/*
1620 	 * Initialise the free scanner. The starting point is where we last
1621 	 * successfully isolated from, zone-cached value, or the end of the
1622 	 * zone when isolating for the first time. For looping we also need
1623 	 * this pfn aligned down to the pageblock boundary, because we do
1624 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1625 	 * For ending point, take care when isolating in last pageblock of a
1626 	 * zone which ends in the middle of a pageblock.
1627 	 * The low boundary is the end of the pageblock the migration scanner
1628 	 * is using.
1629 	 */
1630 	isolate_start_pfn = cc->free_pfn;
1631 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1632 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1633 						zone_end_pfn(zone));
1634 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1635 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1636 
1637 	/*
1638 	 * Isolate free pages until enough are available to migrate the
1639 	 * pages on cc->migratepages. We stop searching if the migrate
1640 	 * and free page scanners meet or enough free pages are isolated.
1641 	 */
1642 	for (; block_start_pfn >= low_pfn;
1643 				block_end_pfn = block_start_pfn,
1644 				block_start_pfn -= pageblock_nr_pages,
1645 				isolate_start_pfn = block_start_pfn) {
1646 		unsigned long nr_isolated;
1647 
1648 		/*
1649 		 * This can iterate a massively long zone without finding any
1650 		 * suitable migration targets, so periodically check resched.
1651 		 */
1652 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1653 			cond_resched();
1654 
1655 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1656 									zone);
1657 		if (!page)
1658 			continue;
1659 
1660 		/* Check the block is suitable for migration */
1661 		if (!suitable_migration_target(cc_ext, page))
1662 			continue;
1663 
1664 		/* If isolation recently failed, do not retry */
1665 		if (!isolation_suitable(cc, page))
1666 			continue;
1667 
1668 		trace_android_vh_isolate_freepages(cc, page, &bypass);
1669 		if (bypass)
1670 			continue;
1671 
1672 		/* Found a block suitable for isolating free pages from. */
1673 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1674 					block_end_pfn, freelist, stride, false);
1675 
1676 		/* Update the skip hint if the full pageblock was scanned */
1677 		if (isolate_start_pfn == block_end_pfn)
1678 			update_pageblock_skip(cc, page, block_start_pfn);
1679 
1680 		/* Are enough freepages isolated? */
1681 		if (cc->nr_freepages >= cc->nr_migratepages) {
1682 			if (isolate_start_pfn >= block_end_pfn) {
1683 				/*
1684 				 * Restart at previous pageblock if more
1685 				 * freepages can be isolated next time.
1686 				 */
1687 				isolate_start_pfn =
1688 					block_start_pfn - pageblock_nr_pages;
1689 			}
1690 			break;
1691 		} else if (isolate_start_pfn < block_end_pfn) {
1692 			/*
1693 			 * If isolation failed early, do not continue
1694 			 * needlessly.
1695 			 */
1696 			break;
1697 		}
1698 
1699 		/* Adjust stride depending on isolation */
1700 		if (nr_isolated) {
1701 			stride = 1;
1702 			continue;
1703 		}
1704 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1705 	}
1706 
1707 	/*
1708 	 * Record where the free scanner will restart next time. Either we
1709 	 * broke from the loop and set isolate_start_pfn based on the last
1710 	 * call to isolate_freepages_block(), or we met the migration scanner
1711 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1712 	 */
1713 	cc->free_pfn = isolate_start_pfn;
1714 
1715 splitmap:
1716 	/* __isolate_free_page() does not map the pages */
1717 	split_map_pages(freelist);
1718 }
1719 
1720 /*
1721  * This is a migrate-callback that "allocates" freepages by taking pages
1722  * from the isolated freelists in the block we are migrating to.
1723  */
compaction_alloc(struct page * migratepage,unsigned long data)1724 static struct page *compaction_alloc(struct page *migratepage,
1725 					unsigned long data)
1726 {
1727 	struct compact_control_ext *cc_ext = (struct compact_control_ext *)data;
1728 	struct compact_control *cc = cc_ext->cc;
1729 	struct page *freepage;
1730 
1731 	if (list_empty(&cc->freepages)) {
1732 		isolate_freepages(cc_ext);
1733 
1734 		if (list_empty(&cc->freepages))
1735 			return NULL;
1736 	}
1737 
1738 	freepage = list_entry(cc->freepages.next, struct page, lru);
1739 	list_del(&freepage->lru);
1740 	cc->nr_freepages--;
1741 
1742 	return freepage;
1743 }
1744 
1745 /*
1746  * This is a migrate-callback that "frees" freepages back to the isolated
1747  * freelist.  All pages on the freelist are from the same zone, so there is no
1748  * special handling needed for NUMA.
1749  */
compaction_free(struct page * page,unsigned long data)1750 static void compaction_free(struct page *page, unsigned long data)
1751 {
1752 	struct compact_control_ext *cc_ext = (struct compact_control_ext *)data;
1753 	struct compact_control *cc = cc_ext->cc;
1754 
1755 	list_add(&page->lru, &cc->freepages);
1756 	cc->nr_freepages++;
1757 }
1758 
1759 /* possible outcome of isolate_migratepages */
1760 typedef enum {
1761 	ISOLATE_ABORT,		/* Abort compaction now */
1762 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1763 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1764 } isolate_migrate_t;
1765 
1766 /*
1767  * Allow userspace to control policy on scanning the unevictable LRU for
1768  * compactable pages.
1769  */
1770 #ifdef CONFIG_PREEMPT_RT
1771 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1772 #else
1773 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1774 #endif
1775 
1776 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1777 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1778 {
1779 	if (cc->fast_start_pfn == ULONG_MAX)
1780 		return;
1781 
1782 	if (!cc->fast_start_pfn)
1783 		cc->fast_start_pfn = pfn;
1784 
1785 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1786 }
1787 
1788 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1789 reinit_migrate_pfn(struct compact_control *cc)
1790 {
1791 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1792 		return cc->migrate_pfn;
1793 
1794 	cc->migrate_pfn = cc->fast_start_pfn;
1795 	cc->fast_start_pfn = ULONG_MAX;
1796 
1797 	return cc->migrate_pfn;
1798 }
1799 
1800 /*
1801  * Briefly search the free lists for a migration source that already has
1802  * some free pages to reduce the number of pages that need migration
1803  * before a pageblock is free.
1804  */
fast_find_migrateblock(struct compact_control * cc)1805 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1806 {
1807 	unsigned int limit = freelist_scan_limit(cc);
1808 	unsigned int nr_scanned = 0;
1809 	unsigned long distance;
1810 	unsigned long pfn = cc->migrate_pfn;
1811 	unsigned long high_pfn;
1812 	int order;
1813 	bool found_block = false;
1814 
1815 	/* Skip hints are relied on to avoid repeats on the fast search */
1816 	if (cc->ignore_skip_hint)
1817 		return pfn;
1818 
1819 	/*
1820 	 * If the migrate_pfn is not at the start of a zone or the start
1821 	 * of a pageblock then assume this is a continuation of a previous
1822 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1823 	 */
1824 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1825 		return pfn;
1826 
1827 	/*
1828 	 * For smaller orders, just linearly scan as the number of pages
1829 	 * to migrate should be relatively small and does not necessarily
1830 	 * justify freeing up a large block for a small allocation.
1831 	 */
1832 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1833 		return pfn;
1834 
1835 	/*
1836 	 * Only allow kcompactd and direct requests for movable pages to
1837 	 * quickly clear out a MOVABLE pageblock for allocation. This
1838 	 * reduces the risk that a large movable pageblock is freed for
1839 	 * an unmovable/reclaimable small allocation.
1840 	 */
1841 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1842 		return pfn;
1843 
1844 	/*
1845 	 * When starting the migration scanner, pick any pageblock within the
1846 	 * first half of the search space. Otherwise try and pick a pageblock
1847 	 * within the first eighth to reduce the chances that a migration
1848 	 * target later becomes a source.
1849 	 */
1850 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1851 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1852 		distance >>= 2;
1853 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1854 
1855 	for (order = cc->order - 1;
1856 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1857 	     order--) {
1858 		struct free_area *area = &cc->zone->free_area[order];
1859 		struct list_head *freelist;
1860 		unsigned long flags;
1861 		struct page *freepage;
1862 
1863 		if (!area->nr_free)
1864 			continue;
1865 
1866 		spin_lock_irqsave(&cc->zone->lock, flags);
1867 		freelist = &area->free_list[MIGRATE_MOVABLE];
1868 		list_for_each_entry(freepage, freelist, lru) {
1869 			unsigned long free_pfn;
1870 
1871 			if (nr_scanned++ >= limit) {
1872 				move_freelist_tail(freelist, freepage);
1873 				break;
1874 			}
1875 
1876 			free_pfn = page_to_pfn(freepage);
1877 			if (free_pfn < high_pfn) {
1878 				/*
1879 				 * Avoid if skipped recently. Ideally it would
1880 				 * move to the tail but even safe iteration of
1881 				 * the list assumes an entry is deleted, not
1882 				 * reordered.
1883 				 */
1884 				if (get_pageblock_skip(freepage))
1885 					continue;
1886 
1887 				/* Reorder to so a future search skips recent pages */
1888 				move_freelist_tail(freelist, freepage);
1889 
1890 				update_fast_start_pfn(cc, free_pfn);
1891 				pfn = pageblock_start_pfn(free_pfn);
1892 				if (pfn < cc->zone->zone_start_pfn)
1893 					pfn = cc->zone->zone_start_pfn;
1894 				cc->fast_search_fail = 0;
1895 				found_block = true;
1896 				set_pageblock_skip(freepage);
1897 				break;
1898 			}
1899 		}
1900 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1901 	}
1902 
1903 	cc->total_migrate_scanned += nr_scanned;
1904 
1905 	/*
1906 	 * If fast scanning failed then use a cached entry for a page block
1907 	 * that had free pages as the basis for starting a linear scan.
1908 	 */
1909 	if (!found_block) {
1910 		cc->fast_search_fail++;
1911 		pfn = reinit_migrate_pfn(cc);
1912 	}
1913 	return pfn;
1914 }
1915 
1916 /*
1917  * Isolate all pages that can be migrated from the first suitable block,
1918  * starting at the block pointed to by the migrate scanner pfn within
1919  * compact_control.
1920  */
isolate_migratepages(struct compact_control_ext * cc_ext)1921 static isolate_migrate_t isolate_migratepages(struct compact_control_ext *cc_ext)
1922 {
1923 	struct compact_control *cc = cc_ext->cc;
1924 	unsigned long block_start_pfn;
1925 	unsigned long block_end_pfn;
1926 	unsigned long low_pfn;
1927 	struct page *page;
1928 	const isolate_mode_t isolate_mode =
1929 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1930 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1931 	bool fast_find_block;
1932 
1933 	/*
1934 	 * Start at where we last stopped, or beginning of the zone as
1935 	 * initialized by compact_zone(). The first failure will use
1936 	 * the lowest PFN as the starting point for linear scanning.
1937 	 */
1938 	low_pfn = fast_find_migrateblock(cc);
1939 	block_start_pfn = pageblock_start_pfn(low_pfn);
1940 	if (block_start_pfn < cc->zone->zone_start_pfn)
1941 		block_start_pfn = cc->zone->zone_start_pfn;
1942 
1943 	/*
1944 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1945 	 * the isolation_suitable check below, check whether the fast
1946 	 * search was successful.
1947 	 */
1948 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1949 
1950 	/* Only scan within a pageblock boundary */
1951 	block_end_pfn = pageblock_end_pfn(low_pfn);
1952 
1953 	/*
1954 	 * Iterate over whole pageblocks until we find the first suitable.
1955 	 * Do not cross the free scanner.
1956 	 */
1957 	for (; block_end_pfn <= cc->free_pfn;
1958 			fast_find_block = false,
1959 			cc->migrate_pfn = low_pfn = block_end_pfn,
1960 			block_start_pfn = block_end_pfn,
1961 			block_end_pfn += pageblock_nr_pages) {
1962 
1963 		/*
1964 		 * This can potentially iterate a massively long zone with
1965 		 * many pageblocks unsuitable, so periodically check if we
1966 		 * need to schedule.
1967 		 */
1968 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1969 			cond_resched();
1970 
1971 		page = pageblock_pfn_to_page(block_start_pfn,
1972 						block_end_pfn, cc->zone);
1973 		if (!page)
1974 			continue;
1975 
1976 		/*
1977 		 * If isolation recently failed, do not retry. Only check the
1978 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1979 		 * to be visited multiple times. Assume skip was checked
1980 		 * before making it "skip" so other compaction instances do
1981 		 * not scan the same block.
1982 		 */
1983 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1984 		    !fast_find_block && !isolation_suitable(cc, page))
1985 			continue;
1986 
1987 		/*
1988 		 * For async compaction, also only scan in MOVABLE blocks
1989 		 * without huge pages. Async compaction is optimistic to see
1990 		 * if the minimum amount of work satisfies the allocation.
1991 		 * The cached PFN is updated as it's possible that all
1992 		 * remaining blocks between source and target are unsuitable
1993 		 * and the compaction scanners fail to meet.
1994 		 */
1995 		if (!suitable_migration_source(cc, page)) {
1996 			update_cached_migrate(cc, block_end_pfn);
1997 			continue;
1998 		}
1999 
2000 		/* Perform the isolation */
2001 		if (isolate_migratepages_block(cc_ext, low_pfn, block_end_pfn,
2002 						isolate_mode))
2003 			return ISOLATE_ABORT;
2004 
2005 		/*
2006 		 * Either we isolated something and proceed with migration. Or
2007 		 * we failed and compact_zone should decide if we should
2008 		 * continue or not.
2009 		 */
2010 		break;
2011 	}
2012 
2013 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2014 }
2015 
2016 /*
2017  * order == -1 is expected when compacting via
2018  * /proc/sys/vm/compact_memory
2019  */
is_via_compact_memory(int order)2020 static inline bool is_via_compact_memory(int order)
2021 {
2022 	return order == -1;
2023 }
2024 
kswapd_is_running(pg_data_t * pgdat)2025 static bool kswapd_is_running(pg_data_t *pgdat)
2026 {
2027 	return pgdat->kswapd && task_is_running(pgdat->kswapd);
2028 }
2029 
2030 /*
2031  * A zone's fragmentation score is the external fragmentation wrt to the
2032  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2033  */
fragmentation_score_zone(struct zone * zone)2034 static unsigned int fragmentation_score_zone(struct zone *zone)
2035 {
2036 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2037 }
2038 
2039 /*
2040  * A weighted zone's fragmentation score is the external fragmentation
2041  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2042  * returns a value in the range [0, 100].
2043  *
2044  * The scaling factor ensures that proactive compaction focuses on larger
2045  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2046  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2047  * and thus never exceeds the high threshold for proactive compaction.
2048  */
fragmentation_score_zone_weighted(struct zone * zone)2049 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2050 {
2051 	unsigned long score;
2052 
2053 	score = zone->present_pages * fragmentation_score_zone(zone);
2054 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2055 }
2056 
2057 /*
2058  * The per-node proactive (background) compaction process is started by its
2059  * corresponding kcompactd thread when the node's fragmentation score
2060  * exceeds the high threshold. The compaction process remains active till
2061  * the node's score falls below the low threshold, or one of the back-off
2062  * conditions is met.
2063  */
fragmentation_score_node(pg_data_t * pgdat)2064 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2065 {
2066 	unsigned int score = 0;
2067 	int zoneid;
2068 
2069 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2070 		struct zone *zone;
2071 
2072 		zone = &pgdat->node_zones[zoneid];
2073 		score += fragmentation_score_zone_weighted(zone);
2074 	}
2075 
2076 	return score;
2077 }
2078 
fragmentation_score_wmark(pg_data_t * pgdat,bool low)2079 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2080 {
2081 	unsigned int wmark_low;
2082 
2083 	/*
2084 	 * Cap the low watermark to avoid excessive compaction
2085 	 * activity in case a user sets the proactiveness tunable
2086 	 * close to 100 (maximum).
2087 	 */
2088 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2089 	return low ? wmark_low : min(wmark_low + 10, 100U);
2090 }
2091 
should_proactive_compact_node(pg_data_t * pgdat)2092 static bool should_proactive_compact_node(pg_data_t *pgdat)
2093 {
2094 	int wmark_high;
2095 
2096 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2097 		return false;
2098 
2099 	wmark_high = fragmentation_score_wmark(pgdat, false);
2100 	return fragmentation_score_node(pgdat) > wmark_high;
2101 }
2102 
__compact_finished(struct compact_control * cc)2103 static enum compact_result __compact_finished(struct compact_control *cc)
2104 {
2105 	unsigned int order;
2106 	const int migratetype = cc->migratetype;
2107 	int ret;
2108 
2109 	/* Compaction run completes if the migrate and free scanner meet */
2110 	if (compact_scanners_met(cc)) {
2111 		/* Let the next compaction start anew. */
2112 		reset_cached_positions(cc->zone);
2113 
2114 		/*
2115 		 * Mark that the PG_migrate_skip information should be cleared
2116 		 * by kswapd when it goes to sleep. kcompactd does not set the
2117 		 * flag itself as the decision to be clear should be directly
2118 		 * based on an allocation request.
2119 		 */
2120 		if (cc->direct_compaction)
2121 			cc->zone->compact_blockskip_flush = true;
2122 
2123 		if (cc->whole_zone)
2124 			return COMPACT_COMPLETE;
2125 		else
2126 			return COMPACT_PARTIAL_SKIPPED;
2127 	}
2128 
2129 	if (cc->proactive_compaction) {
2130 		int score, wmark_low;
2131 		pg_data_t *pgdat;
2132 
2133 		pgdat = cc->zone->zone_pgdat;
2134 		if (kswapd_is_running(pgdat))
2135 			return COMPACT_PARTIAL_SKIPPED;
2136 
2137 		score = fragmentation_score_zone(cc->zone);
2138 		wmark_low = fragmentation_score_wmark(pgdat, true);
2139 
2140 		if (score > wmark_low)
2141 			ret = COMPACT_CONTINUE;
2142 		else
2143 			ret = COMPACT_SUCCESS;
2144 
2145 		goto out;
2146 	}
2147 
2148 	if (is_via_compact_memory(cc->order))
2149 		return COMPACT_CONTINUE;
2150 
2151 	/*
2152 	 * Always finish scanning a pageblock to reduce the possibility of
2153 	 * fallbacks in the future. This is particularly important when
2154 	 * migration source is unmovable/reclaimable but it's not worth
2155 	 * special casing.
2156 	 */
2157 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2158 		return COMPACT_CONTINUE;
2159 
2160 	/* Direct compactor: Is a suitable page free? */
2161 	ret = COMPACT_NO_SUITABLE_PAGE;
2162 	for (order = cc->order; order < MAX_ORDER; order++) {
2163 		struct free_area *area = &cc->zone->free_area[order];
2164 		bool can_steal;
2165 
2166 		/* Job done if page is free of the right migratetype */
2167 		if (!free_area_empty(area, migratetype))
2168 			return COMPACT_SUCCESS;
2169 
2170 #ifdef CONFIG_CMA
2171 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2172 		if (migratetype == MIGRATE_MOVABLE &&
2173 			!free_area_empty(area, MIGRATE_CMA))
2174 			return COMPACT_SUCCESS;
2175 #endif
2176 		/*
2177 		 * Job done if allocation would steal freepages from
2178 		 * other migratetype buddy lists.
2179 		 */
2180 		if (find_suitable_fallback(area, order, migratetype,
2181 						true, &can_steal) != -1) {
2182 
2183 			/* movable pages are OK in any pageblock */
2184 			if (migratetype == MIGRATE_MOVABLE)
2185 				return COMPACT_SUCCESS;
2186 
2187 			/*
2188 			 * We are stealing for a non-movable allocation. Make
2189 			 * sure we finish compacting the current pageblock
2190 			 * first so it is as free as possible and we won't
2191 			 * have to steal another one soon. This only applies
2192 			 * to sync compaction, as async compaction operates
2193 			 * on pageblocks of the same migratetype.
2194 			 */
2195 			if (cc->mode == MIGRATE_ASYNC ||
2196 					IS_ALIGNED(cc->migrate_pfn,
2197 							pageblock_nr_pages)) {
2198 				return COMPACT_SUCCESS;
2199 			}
2200 
2201 			ret = COMPACT_CONTINUE;
2202 			break;
2203 		}
2204 	}
2205 
2206 out:
2207 	if (cc->contended || fatal_signal_pending(current))
2208 		ret = COMPACT_CONTENDED;
2209 
2210 	return ret;
2211 }
2212 
compact_finished(struct compact_control * cc)2213 static enum compact_result compact_finished(struct compact_control *cc)
2214 {
2215 	int ret;
2216 
2217 	ret = __compact_finished(cc);
2218 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2219 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2220 		ret = COMPACT_CONTINUE;
2221 
2222 	return ret;
2223 }
2224 
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2225 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2226 					unsigned int alloc_flags,
2227 					int highest_zoneidx,
2228 					unsigned long wmark_target)
2229 {
2230 	unsigned long watermark;
2231 
2232 	if (is_via_compact_memory(order))
2233 		return COMPACT_CONTINUE;
2234 
2235 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2236 	/*
2237 	 * If watermarks for high-order allocation are already met, there
2238 	 * should be no need for compaction at all.
2239 	 */
2240 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2241 								alloc_flags))
2242 		return COMPACT_SUCCESS;
2243 
2244 	/*
2245 	 * Watermarks for order-0 must be met for compaction to be able to
2246 	 * isolate free pages for migration targets. This means that the
2247 	 * watermark and alloc_flags have to match, or be more pessimistic than
2248 	 * the check in __isolate_free_page(). We don't use the direct
2249 	 * compactor's alloc_flags, as they are not relevant for freepage
2250 	 * isolation. We however do use the direct compactor's highest_zoneidx
2251 	 * to skip over zones where lowmem reserves would prevent allocation
2252 	 * even if compaction succeeds.
2253 	 * For costly orders, we require low watermark instead of min for
2254 	 * compaction to proceed to increase its chances.
2255 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2256 	 * suitable migration targets
2257 	 */
2258 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2259 				low_wmark_pages(zone) : min_wmark_pages(zone);
2260 	watermark += compact_gap(order);
2261 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2262 						ALLOC_CMA, wmark_target))
2263 		return COMPACT_SKIPPED;
2264 
2265 	return COMPACT_CONTINUE;
2266 }
2267 
2268 /*
2269  * compaction_suitable: Is this suitable to run compaction on this zone now?
2270  * Returns
2271  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2272  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2273  *   COMPACT_CONTINUE - If compaction should run now
2274  */
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2275 enum compact_result compaction_suitable(struct zone *zone, int order,
2276 					unsigned int alloc_flags,
2277 					int highest_zoneidx)
2278 {
2279 	enum compact_result ret;
2280 	int fragindex;
2281 
2282 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2283 				    zone_page_state(zone, NR_FREE_PAGES));
2284 	/*
2285 	 * fragmentation index determines if allocation failures are due to
2286 	 * low memory or external fragmentation
2287 	 *
2288 	 * index of -1000 would imply allocations might succeed depending on
2289 	 * watermarks, but we already failed the high-order watermark check
2290 	 * index towards 0 implies failure is due to lack of memory
2291 	 * index towards 1000 implies failure is due to fragmentation
2292 	 *
2293 	 * Only compact if a failure would be due to fragmentation. Also
2294 	 * ignore fragindex for non-costly orders where the alternative to
2295 	 * a successful reclaim/compaction is OOM. Fragindex and the
2296 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2297 	 * excessive compaction for costly orders, but it should not be at the
2298 	 * expense of system stability.
2299 	 */
2300 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2301 		fragindex = fragmentation_index(zone, order);
2302 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2303 			ret = COMPACT_NOT_SUITABLE_ZONE;
2304 	}
2305 
2306 	trace_mm_compaction_suitable(zone, order, ret);
2307 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2308 		ret = COMPACT_SKIPPED;
2309 
2310 	return ret;
2311 }
2312 
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2313 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2314 		int alloc_flags)
2315 {
2316 	struct zone *zone;
2317 	struct zoneref *z;
2318 
2319 	/*
2320 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2321 	 * retrying the reclaim.
2322 	 */
2323 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2324 				ac->highest_zoneidx, ac->nodemask) {
2325 		unsigned long available;
2326 		enum compact_result compact_result;
2327 
2328 		/*
2329 		 * Do not consider all the reclaimable memory because we do not
2330 		 * want to trash just for a single high order allocation which
2331 		 * is even not guaranteed to appear even if __compaction_suitable
2332 		 * is happy about the watermark check.
2333 		 */
2334 		available = zone_reclaimable_pages(zone) / order;
2335 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2336 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2337 				ac->highest_zoneidx, available);
2338 		if (compact_result != COMPACT_SKIPPED)
2339 			return true;
2340 	}
2341 
2342 	return false;
2343 }
2344 
2345 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2346 compact_zone(struct compact_control *cc, struct capture_control *capc)
2347 {
2348 	enum compact_result ret;
2349 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2350 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2351 	unsigned long last_migrated_pfn;
2352 	const bool sync = cc->mode != MIGRATE_ASYNC;
2353 	bool update_cached;
2354 	long vendor_ret;
2355 	struct compact_control_ext cc_ext = {
2356 		.cc = cc,
2357 		.nr_migrate_file_pages = 0,
2358 	};
2359 
2360 	/*
2361 	 * These counters track activities during zone compaction.  Initialize
2362 	 * them before compacting a new zone.
2363 	 */
2364 	cc->total_migrate_scanned = 0;
2365 	cc->total_free_scanned = 0;
2366 	cc->nr_migratepages = 0;
2367 	cc->nr_freepages = 0;
2368 	INIT_LIST_HEAD(&cc->freepages);
2369 	INIT_LIST_HEAD(&cc->migratepages);
2370 
2371 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2372 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2373 							cc->highest_zoneidx);
2374 	/* Compaction is likely to fail */
2375 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2376 		return ret;
2377 
2378 	/* huh, compaction_suitable is returning something unexpected */
2379 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2380 
2381 	/*
2382 	 * Clear pageblock skip if there were failures recently and compaction
2383 	 * is about to be retried after being deferred.
2384 	 */
2385 	if (compaction_restarting(cc->zone, cc->order))
2386 		__reset_isolation_suitable(cc->zone);
2387 
2388 	/*
2389 	 * Setup to move all movable pages to the end of the zone. Used cached
2390 	 * information on where the scanners should start (unless we explicitly
2391 	 * want to compact the whole zone), but check that it is initialised
2392 	 * by ensuring the values are within zone boundaries.
2393 	 */
2394 	cc->fast_start_pfn = 0;
2395 	if (cc->whole_zone) {
2396 		cc->migrate_pfn = start_pfn;
2397 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2398 	} else {
2399 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2400 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2401 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2402 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2403 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2404 		}
2405 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2406 			cc->migrate_pfn = start_pfn;
2407 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2408 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2409 		}
2410 
2411 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2412 			cc->whole_zone = true;
2413 	}
2414 
2415 	last_migrated_pfn = 0;
2416 
2417 	/*
2418 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2419 	 * the basis that some migrations will fail in ASYNC mode. However,
2420 	 * if the cached PFNs match and pageblocks are skipped due to having
2421 	 * no isolation candidates, then the sync state does not matter.
2422 	 * Until a pageblock with isolation candidates is found, keep the
2423 	 * cached PFNs in sync to avoid revisiting the same blocks.
2424 	 */
2425 	update_cached = !sync &&
2426 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2427 
2428 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2429 				cc->free_pfn, end_pfn, sync);
2430 	trace_android_vh_mm_compaction_begin(cc, &vendor_ret);
2431 
2432 	/* lru_add_drain_all could be expensive with involving other CPUs */
2433 	lru_add_drain();
2434 
2435 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2436 		int err;
2437 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2438 
2439 		/*
2440 		 * Avoid multiple rescans which can happen if a page cannot be
2441 		 * isolated (dirty/writeback in async mode) or if the migrated
2442 		 * pages are being allocated before the pageblock is cleared.
2443 		 * The first rescan will capture the entire pageblock for
2444 		 * migration. If it fails, it'll be marked skip and scanning
2445 		 * will proceed as normal.
2446 		 */
2447 		cc->rescan = false;
2448 		if (pageblock_start_pfn(last_migrated_pfn) ==
2449 		    pageblock_start_pfn(iteration_start_pfn)) {
2450 			cc->rescan = true;
2451 		}
2452 
2453 		switch (isolate_migratepages(&cc_ext)) {
2454 		case ISOLATE_ABORT:
2455 			ret = COMPACT_CONTENDED;
2456 			putback_movable_pages(&cc->migratepages);
2457 			cc->nr_migratepages = 0;
2458 			cc_ext.nr_migrate_file_pages = 0;
2459 			goto out;
2460 		case ISOLATE_NONE:
2461 			if (update_cached) {
2462 				cc->zone->compact_cached_migrate_pfn[1] =
2463 					cc->zone->compact_cached_migrate_pfn[0];
2464 			}
2465 
2466 			/*
2467 			 * We haven't isolated and migrated anything, but
2468 			 * there might still be unflushed migrations from
2469 			 * previous cc->order aligned block.
2470 			 */
2471 			goto check_drain;
2472 		case ISOLATE_SUCCESS:
2473 			update_cached = false;
2474 			last_migrated_pfn = iteration_start_pfn;
2475 		}
2476 
2477 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2478 				compaction_free, (unsigned long)&cc_ext, cc->mode,
2479 				MR_COMPACTION, NULL);
2480 
2481 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2482 							&cc->migratepages);
2483 
2484 		/* All pages were either migrated or will be released */
2485 		cc->nr_migratepages = 0;
2486 		cc_ext.nr_migrate_file_pages = 0;
2487 		if (err) {
2488 			putback_movable_pages(&cc->migratepages);
2489 			/*
2490 			 * migrate_pages() may return -ENOMEM when scanners meet
2491 			 * and we want compact_finished() to detect it
2492 			 */
2493 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2494 				ret = COMPACT_CONTENDED;
2495 				goto out;
2496 			}
2497 			/*
2498 			 * We failed to migrate at least one page in the current
2499 			 * order-aligned block, so skip the rest of it.
2500 			 */
2501 			if (cc->direct_compaction &&
2502 						(cc->mode == MIGRATE_ASYNC)) {
2503 				cc->migrate_pfn = block_end_pfn(
2504 						cc->migrate_pfn - 1, cc->order);
2505 				/* Draining pcplists is useless in this case */
2506 				last_migrated_pfn = 0;
2507 			}
2508 		}
2509 
2510 check_drain:
2511 		/*
2512 		 * Has the migration scanner moved away from the previous
2513 		 * cc->order aligned block where we migrated from? If yes,
2514 		 * flush the pages that were freed, so that they can merge and
2515 		 * compact_finished() can detect immediately if allocation
2516 		 * would succeed.
2517 		 */
2518 		if (cc->order > 0 && last_migrated_pfn) {
2519 			unsigned long current_block_start =
2520 				block_start_pfn(cc->migrate_pfn, cc->order);
2521 
2522 			if (last_migrated_pfn < current_block_start) {
2523 				lru_add_drain_cpu_zone(cc->zone);
2524 				/* No more flushing until we migrate again */
2525 				last_migrated_pfn = 0;
2526 			}
2527 		}
2528 
2529 		/* Stop if a page has been captured */
2530 		if (capc && capc->page) {
2531 			ret = COMPACT_SUCCESS;
2532 			break;
2533 		}
2534 	}
2535 
2536 out:
2537 	/*
2538 	 * Release free pages and update where the free scanner should restart,
2539 	 * so we don't leave any returned pages behind in the next attempt.
2540 	 */
2541 	if (cc->nr_freepages > 0) {
2542 		unsigned long free_pfn = release_freepages(&cc->freepages);
2543 
2544 		cc->nr_freepages = 0;
2545 		VM_BUG_ON(free_pfn == 0);
2546 		/* The cached pfn is always the first in a pageblock */
2547 		free_pfn = pageblock_start_pfn(free_pfn);
2548 		/*
2549 		 * Only go back, not forward. The cached pfn might have been
2550 		 * already reset to zone end in compact_finished()
2551 		 */
2552 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2553 			cc->zone->compact_cached_free_pfn = free_pfn;
2554 	}
2555 
2556 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2557 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2558 
2559 	trace_android_vh_mm_compaction_end(cc, vendor_ret);
2560 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2561 				cc->free_pfn, end_pfn, sync, ret);
2562 
2563 	return ret;
2564 }
2565 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2566 static enum compact_result compact_zone_order(struct zone *zone, int order,
2567 		gfp_t gfp_mask, enum compact_priority prio,
2568 		unsigned int alloc_flags, int highest_zoneidx,
2569 		struct page **capture)
2570 {
2571 	enum compact_result ret;
2572 	struct compact_control cc = {
2573 		.order = order,
2574 		.search_order = order,
2575 		.gfp_mask = gfp_mask,
2576 		.zone = zone,
2577 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2578 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2579 		.alloc_flags = alloc_flags,
2580 		.highest_zoneidx = highest_zoneidx,
2581 		.direct_compaction = true,
2582 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2583 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2584 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2585 	};
2586 	struct capture_control capc = {
2587 		.cc = &cc,
2588 		.page = NULL,
2589 	};
2590 
2591 	/*
2592 	 * Make sure the structs are really initialized before we expose the
2593 	 * capture control, in case we are interrupted and the interrupt handler
2594 	 * frees a page.
2595 	 */
2596 	barrier();
2597 	WRITE_ONCE(current->capture_control, &capc);
2598 
2599 	ret = compact_zone(&cc, &capc);
2600 
2601 	VM_BUG_ON(!list_empty(&cc.freepages));
2602 	VM_BUG_ON(!list_empty(&cc.migratepages));
2603 
2604 	/*
2605 	 * Make sure we hide capture control first before we read the captured
2606 	 * page pointer, otherwise an interrupt could free and capture a page
2607 	 * and we would leak it.
2608 	 */
2609 	WRITE_ONCE(current->capture_control, NULL);
2610 	*capture = READ_ONCE(capc.page);
2611 	/*
2612 	 * Technically, it is also possible that compaction is skipped but
2613 	 * the page is still captured out of luck(IRQ came and freed the page).
2614 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2615 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2616 	 */
2617 	if (*capture)
2618 		ret = COMPACT_SUCCESS;
2619 
2620 	return ret;
2621 }
2622 
2623 int sysctl_extfrag_threshold = 500;
2624 
2625 /**
2626  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2627  * @gfp_mask: The GFP mask of the current allocation
2628  * @order: The order of the current allocation
2629  * @alloc_flags: The allocation flags of the current allocation
2630  * @ac: The context of current allocation
2631  * @prio: Determines how hard direct compaction should try to succeed
2632  * @capture: Pointer to free page created by compaction will be stored here
2633  *
2634  * This is the main entry point for direct page compaction.
2635  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2636 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2637 		unsigned int alloc_flags, const struct alloc_context *ac,
2638 		enum compact_priority prio, struct page **capture)
2639 {
2640 	int may_perform_io = gfp_mask & __GFP_IO;
2641 	struct zoneref *z;
2642 	struct zone *zone;
2643 	enum compact_result rc = COMPACT_SKIPPED;
2644 
2645 	/*
2646 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2647 	 * tricky context because the migration might require IO
2648 	 */
2649 	if (!may_perform_io)
2650 		return COMPACT_SKIPPED;
2651 
2652 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2653 
2654 	/* Compact each zone in the list */
2655 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2656 					ac->highest_zoneidx, ac->nodemask) {
2657 		enum compact_result status;
2658 
2659 		if (prio > MIN_COMPACT_PRIORITY
2660 					&& compaction_deferred(zone, order)) {
2661 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2662 			continue;
2663 		}
2664 
2665 		status = compact_zone_order(zone, order, gfp_mask, prio,
2666 				alloc_flags, ac->highest_zoneidx, capture);
2667 		rc = max(status, rc);
2668 
2669 		/* The allocation should succeed, stop compacting */
2670 		if (status == COMPACT_SUCCESS) {
2671 			/*
2672 			 * We think the allocation will succeed in this zone,
2673 			 * but it is not certain, hence the false. The caller
2674 			 * will repeat this with true if allocation indeed
2675 			 * succeeds in this zone.
2676 			 */
2677 			compaction_defer_reset(zone, order, false);
2678 
2679 			break;
2680 		}
2681 
2682 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2683 					status == COMPACT_PARTIAL_SKIPPED))
2684 			/*
2685 			 * We think that allocation won't succeed in this zone
2686 			 * so we defer compaction there. If it ends up
2687 			 * succeeding after all, it will be reset.
2688 			 */
2689 			defer_compaction(zone, order);
2690 
2691 		/*
2692 		 * We might have stopped compacting due to need_resched() in
2693 		 * async compaction, or due to a fatal signal detected. In that
2694 		 * case do not try further zones
2695 		 */
2696 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2697 					|| fatal_signal_pending(current))
2698 			break;
2699 	}
2700 
2701 	return rc;
2702 }
2703 
2704 /*
2705  * Compact all zones within a node till each zone's fragmentation score
2706  * reaches within proactive compaction thresholds (as determined by the
2707  * proactiveness tunable).
2708  *
2709  * It is possible that the function returns before reaching score targets
2710  * due to various back-off conditions, such as, contention on per-node or
2711  * per-zone locks.
2712  */
proactive_compact_node(pg_data_t * pgdat)2713 static void proactive_compact_node(pg_data_t *pgdat)
2714 {
2715 	int zoneid;
2716 	struct zone *zone;
2717 	struct compact_control cc = {
2718 		.order = -1,
2719 		.mode = MIGRATE_SYNC_LIGHT,
2720 		.ignore_skip_hint = true,
2721 		.whole_zone = true,
2722 		.gfp_mask = GFP_KERNEL,
2723 		.proactive_compaction = true,
2724 	};
2725 
2726 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2727 		zone = &pgdat->node_zones[zoneid];
2728 		if (!populated_zone(zone))
2729 			continue;
2730 
2731 		cc.zone = zone;
2732 
2733 		compact_zone(&cc, NULL);
2734 
2735 		VM_BUG_ON(!list_empty(&cc.freepages));
2736 		VM_BUG_ON(!list_empty(&cc.migratepages));
2737 	}
2738 }
2739 
2740 /* Compact all zones within a node */
compact_node(int nid)2741 static void compact_node(int nid)
2742 {
2743 	pg_data_t *pgdat = NODE_DATA(nid);
2744 	int zoneid;
2745 	struct zone *zone;
2746 	struct compact_control cc = {
2747 		.order = -1,
2748 		.mode = MIGRATE_SYNC,
2749 		.ignore_skip_hint = true,
2750 		.whole_zone = true,
2751 		.gfp_mask = GFP_KERNEL,
2752 	};
2753 
2754 
2755 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2756 
2757 		zone = &pgdat->node_zones[zoneid];
2758 		if (!populated_zone(zone))
2759 			continue;
2760 
2761 		cc.zone = zone;
2762 
2763 		compact_zone(&cc, NULL);
2764 
2765 		VM_BUG_ON(!list_empty(&cc.freepages));
2766 		VM_BUG_ON(!list_empty(&cc.migratepages));
2767 	}
2768 }
2769 
2770 /* Compact all nodes in the system */
compact_nodes(void)2771 static void compact_nodes(void)
2772 {
2773 	int nid;
2774 
2775 	/* Flush pending updates to the LRU lists */
2776 	lru_add_drain_all();
2777 
2778 	for_each_online_node(nid)
2779 		compact_node(nid);
2780 }
2781 
2782 /*
2783  * Tunable for proactive compaction. It determines how
2784  * aggressively the kernel should compact memory in the
2785  * background. It takes values in the range [0, 100].
2786  */
2787 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2788 
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2789 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2790 		void *buffer, size_t *length, loff_t *ppos)
2791 {
2792 	int rc, nid;
2793 
2794 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2795 	if (rc)
2796 		return rc;
2797 
2798 	if (write && sysctl_compaction_proactiveness) {
2799 		for_each_online_node(nid) {
2800 			pg_data_t *pgdat = NODE_DATA(nid);
2801 
2802 			if (pgdat->proactive_compact_trigger)
2803 				continue;
2804 
2805 			pgdat->proactive_compact_trigger = true;
2806 			wake_up_interruptible(&pgdat->kcompactd_wait);
2807 		}
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * This is the entry point for compacting all nodes via
2815  * /proc/sys/vm/compact_memory
2816  */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2817 int sysctl_compaction_handler(struct ctl_table *table, int write,
2818 			void *buffer, size_t *length, loff_t *ppos)
2819 {
2820 	if (write)
2821 		compact_nodes();
2822 
2823 	return 0;
2824 }
2825 
2826 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2827 static ssize_t compact_store(struct device *dev,
2828 			     struct device_attribute *attr,
2829 			     const char *buf, size_t count)
2830 {
2831 	int nid = dev->id;
2832 
2833 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2834 		/* Flush pending updates to the LRU lists */
2835 		lru_add_drain_all();
2836 
2837 		compact_node(nid);
2838 	}
2839 
2840 	return count;
2841 }
2842 static DEVICE_ATTR_WO(compact);
2843 
compaction_register_node(struct node * node)2844 int compaction_register_node(struct node *node)
2845 {
2846 	return device_create_file(&node->dev, &dev_attr_compact);
2847 }
2848 
compaction_unregister_node(struct node * node)2849 void compaction_unregister_node(struct node *node)
2850 {
2851 	return device_remove_file(&node->dev, &dev_attr_compact);
2852 }
2853 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2854 
kcompactd_work_requested(pg_data_t * pgdat)2855 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2856 {
2857 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2858 		pgdat->proactive_compact_trigger;
2859 }
2860 
kcompactd_node_suitable(pg_data_t * pgdat)2861 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2862 {
2863 	int zoneid;
2864 	struct zone *zone;
2865 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2866 
2867 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2868 		zone = &pgdat->node_zones[zoneid];
2869 
2870 		if (!populated_zone(zone))
2871 			continue;
2872 
2873 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2874 					highest_zoneidx) == COMPACT_CONTINUE)
2875 			return true;
2876 	}
2877 
2878 	return false;
2879 }
2880 
kcompactd_do_work(pg_data_t * pgdat)2881 static void kcompactd_do_work(pg_data_t *pgdat)
2882 {
2883 	/*
2884 	 * With no special task, compact all zones so that a page of requested
2885 	 * order is allocatable.
2886 	 */
2887 	int zoneid;
2888 	struct zone *zone;
2889 	struct compact_control cc = {
2890 		.order = pgdat->kcompactd_max_order,
2891 		.search_order = pgdat->kcompactd_max_order,
2892 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2893 		.mode = MIGRATE_SYNC_LIGHT,
2894 		.ignore_skip_hint = false,
2895 		.gfp_mask = GFP_KERNEL,
2896 	};
2897 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2898 							cc.highest_zoneidx);
2899 	count_compact_event(KCOMPACTD_WAKE);
2900 
2901 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2902 		int status;
2903 
2904 		zone = &pgdat->node_zones[zoneid];
2905 		if (!populated_zone(zone))
2906 			continue;
2907 
2908 		if (compaction_deferred(zone, cc.order))
2909 			continue;
2910 
2911 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2912 							COMPACT_CONTINUE)
2913 			continue;
2914 
2915 		if (kthread_should_stop())
2916 			return;
2917 
2918 		cc.zone = zone;
2919 		status = compact_zone(&cc, NULL);
2920 
2921 		if (status == COMPACT_SUCCESS) {
2922 			compaction_defer_reset(zone, cc.order, false);
2923 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2924 			/*
2925 			 * Buddy pages may become stranded on pcps that could
2926 			 * otherwise coalesce on the zone's free area for
2927 			 * order >= cc.order.  This is ratelimited by the
2928 			 * upcoming deferral.
2929 			 */
2930 			drain_all_pages(zone);
2931 
2932 			/*
2933 			 * We use sync migration mode here, so we defer like
2934 			 * sync direct compaction does.
2935 			 */
2936 			defer_compaction(zone, cc.order);
2937 		}
2938 
2939 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2940 				     cc.total_migrate_scanned);
2941 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2942 				     cc.total_free_scanned);
2943 
2944 		VM_BUG_ON(!list_empty(&cc.freepages));
2945 		VM_BUG_ON(!list_empty(&cc.migratepages));
2946 	}
2947 
2948 	/*
2949 	 * Regardless of success, we are done until woken up next. But remember
2950 	 * the requested order/highest_zoneidx in case it was higher/tighter
2951 	 * than our current ones
2952 	 */
2953 	if (pgdat->kcompactd_max_order <= cc.order)
2954 		pgdat->kcompactd_max_order = 0;
2955 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2956 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2957 }
2958 
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2959 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2960 {
2961 	if (!order)
2962 		return;
2963 
2964 	if (pgdat->kcompactd_max_order < order)
2965 		pgdat->kcompactd_max_order = order;
2966 
2967 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2968 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2969 
2970 	/*
2971 	 * Pairs with implicit barrier in wait_event_freezable()
2972 	 * such that wakeups are not missed.
2973 	 */
2974 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2975 		return;
2976 
2977 	if (!kcompactd_node_suitable(pgdat))
2978 		return;
2979 
2980 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2981 							highest_zoneidx);
2982 	wake_up_interruptible(&pgdat->kcompactd_wait);
2983 }
2984 
2985 /*
2986  * The background compaction daemon, started as a kernel thread
2987  * from the init process.
2988  */
kcompactd(void * p)2989 static int kcompactd(void *p)
2990 {
2991 	pg_data_t *pgdat = (pg_data_t *)p;
2992 	struct task_struct *tsk = current;
2993 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2994 	long timeout = default_timeout;
2995 
2996 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2997 
2998 	if (!cpumask_empty(cpumask))
2999 		set_cpus_allowed_ptr(tsk, cpumask);
3000 
3001 	set_freezable();
3002 
3003 	pgdat->kcompactd_max_order = 0;
3004 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3005 
3006 	while (!kthread_should_stop()) {
3007 		unsigned long pflags;
3008 
3009 		/*
3010 		 * Avoid the unnecessary wakeup for proactive compaction
3011 		 * when it is disabled.
3012 		 */
3013 		if (!sysctl_compaction_proactiveness)
3014 			timeout = MAX_SCHEDULE_TIMEOUT;
3015 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3016 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3017 			kcompactd_work_requested(pgdat), timeout) &&
3018 			!pgdat->proactive_compact_trigger) {
3019 
3020 			psi_memstall_enter(&pflags);
3021 			kcompactd_do_work(pgdat);
3022 			psi_memstall_leave(&pflags);
3023 			/*
3024 			 * Reset the timeout value. The defer timeout from
3025 			 * proactive compaction is lost here but that is fine
3026 			 * as the condition of the zone changing substantionally
3027 			 * then carrying on with the previous defer interval is
3028 			 * not useful.
3029 			 */
3030 			timeout = default_timeout;
3031 			continue;
3032 		}
3033 
3034 		/*
3035 		 * Start the proactive work with default timeout. Based
3036 		 * on the fragmentation score, this timeout is updated.
3037 		 */
3038 		timeout = default_timeout;
3039 		if (should_proactive_compact_node(pgdat)) {
3040 			unsigned int prev_score, score;
3041 
3042 			prev_score = fragmentation_score_node(pgdat);
3043 			proactive_compact_node(pgdat);
3044 			score = fragmentation_score_node(pgdat);
3045 			/*
3046 			 * Defer proactive compaction if the fragmentation
3047 			 * score did not go down i.e. no progress made.
3048 			 */
3049 			if (unlikely(score >= prev_score))
3050 				timeout =
3051 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3052 		}
3053 		if (unlikely(pgdat->proactive_compact_trigger))
3054 			pgdat->proactive_compact_trigger = false;
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 /*
3061  * This kcompactd start function will be called by init and node-hot-add.
3062  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3063  */
kcompactd_run(int nid)3064 int kcompactd_run(int nid)
3065 {
3066 	pg_data_t *pgdat = NODE_DATA(nid);
3067 	int ret = 0;
3068 
3069 	if (pgdat->kcompactd)
3070 		return 0;
3071 
3072 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3073 	if (IS_ERR(pgdat->kcompactd)) {
3074 		pr_err("Failed to start kcompactd on node %d\n", nid);
3075 		ret = PTR_ERR(pgdat->kcompactd);
3076 		pgdat->kcompactd = NULL;
3077 	}
3078 	return ret;
3079 }
3080 
3081 /*
3082  * Called by memory hotplug when all memory in a node is offlined. Caller must
3083  * hold mem_hotplug_begin/end().
3084  */
kcompactd_stop(int nid)3085 void kcompactd_stop(int nid)
3086 {
3087 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3088 
3089 	if (kcompactd) {
3090 		kthread_stop(kcompactd);
3091 		NODE_DATA(nid)->kcompactd = NULL;
3092 	}
3093 }
3094 
3095 /*
3096  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3097  * not required for correctness. So if the last cpu in a node goes
3098  * away, we get changed to run anywhere: as the first one comes back,
3099  * restore their cpu bindings.
3100  */
kcompactd_cpu_online(unsigned int cpu)3101 static int kcompactd_cpu_online(unsigned int cpu)
3102 {
3103 	int nid;
3104 
3105 	for_each_node_state(nid, N_MEMORY) {
3106 		pg_data_t *pgdat = NODE_DATA(nid);
3107 		const struct cpumask *mask;
3108 
3109 		mask = cpumask_of_node(pgdat->node_id);
3110 
3111 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3112 			/* One of our CPUs online: restore mask */
3113 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3114 	}
3115 	return 0;
3116 }
3117 
kcompactd_init(void)3118 static int __init kcompactd_init(void)
3119 {
3120 	int nid;
3121 	int ret;
3122 
3123 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3124 					"mm/compaction:online",
3125 					kcompactd_cpu_online, NULL);
3126 	if (ret < 0) {
3127 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3128 		return ret;
3129 	}
3130 
3131 	for_each_node_state(nid, N_MEMORY)
3132 		kcompactd_run(nid);
3133 	return 0;
3134 }
3135 subsys_initcall(kcompactd_init)
3136 
3137 #endif /* CONFIG_COMPACTION */
3138