1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 #include <linux/sched/mm.h>
26 #include <trace/hooks/mm.h>
27
28 #include "internal.h"
29
30 /*
31 * Initialise a struct file's readahead state. Assumes that the caller has
32 * memset *ra to zero.
33 */
34 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)35 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
36 {
37 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
38 ra->prev_pos = -1;
39 }
40 EXPORT_SYMBOL_GPL(file_ra_state_init);
41
42 /*
43 * see if a page needs releasing upon read_cache_pages() failure
44 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
45 * before calling, such as the NFS fs marking pages that are cached locally
46 * on disk, thus we need to give the fs a chance to clean up in the event of
47 * an error
48 */
read_cache_pages_invalidate_page(struct address_space * mapping,struct page * page)49 static void read_cache_pages_invalidate_page(struct address_space *mapping,
50 struct page *page)
51 {
52 if (page_has_private(page)) {
53 if (!trylock_page(page))
54 BUG();
55 page->mapping = mapping;
56 do_invalidatepage(page, 0, PAGE_SIZE);
57 page->mapping = NULL;
58 unlock_page(page);
59 }
60 put_page(page);
61 }
62
63 /*
64 * release a list of pages, invalidating them first if need be
65 */
read_cache_pages_invalidate_pages(struct address_space * mapping,struct list_head * pages)66 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
67 struct list_head *pages)
68 {
69 struct page *victim;
70
71 while (!list_empty(pages)) {
72 victim = lru_to_page(pages);
73 list_del(&victim->lru);
74 read_cache_pages_invalidate_page(mapping, victim);
75 }
76 }
77
78 /**
79 * read_cache_pages - populate an address space with some pages & start reads against them
80 * @mapping: the address_space
81 * @pages: The address of a list_head which contains the target pages. These
82 * pages have their ->index populated and are otherwise uninitialised.
83 * @filler: callback routine for filling a single page.
84 * @data: private data for the callback routine.
85 *
86 * Hides the details of the LRU cache etc from the filesystems.
87 *
88 * Returns: %0 on success, error return by @filler otherwise
89 */
read_cache_pages(struct address_space * mapping,struct list_head * pages,int (* filler)(void *,struct page *),void * data)90 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
91 int (*filler)(void *, struct page *), void *data)
92 {
93 struct page *page;
94 int ret = 0;
95
96 while (!list_empty(pages)) {
97 page = lru_to_page(pages);
98 list_del(&page->lru);
99 if (add_to_page_cache_lru(page, mapping, page->index,
100 readahead_gfp_mask(mapping))) {
101 read_cache_pages_invalidate_page(mapping, page);
102 continue;
103 }
104 put_page(page);
105
106 ret = filler(data, page);
107 if (unlikely(ret)) {
108 read_cache_pages_invalidate_pages(mapping, pages);
109 break;
110 }
111 task_io_account_read(PAGE_SIZE);
112 }
113 return ret;
114 }
115
116 EXPORT_SYMBOL(read_cache_pages);
117
readahead_gfp_mask(struct address_space * x)118 gfp_t readahead_gfp_mask(struct address_space *x)
119 {
120 gfp_t mask = mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
121
122 trace_android_rvh_set_readahead_gfp_mask(&mask);
123 return mask;
124 }
125 EXPORT_SYMBOL_GPL(readahead_gfp_mask);
126
read_pages(struct readahead_control * rac,struct list_head * pages,bool skip_page)127 static void read_pages(struct readahead_control *rac, struct list_head *pages,
128 bool skip_page)
129 {
130 const struct address_space_operations *aops = rac->mapping->a_ops;
131 struct page *page;
132 struct blk_plug plug;
133
134 if (!readahead_count(rac))
135 goto out;
136
137 blk_start_plug(&plug);
138
139 if (aops->readahead) {
140 aops->readahead(rac);
141 /* Clean up the remaining pages */
142 while ((page = readahead_page(rac))) {
143 unlock_page(page);
144 put_page(page);
145 }
146 } else if (aops->readpages) {
147 aops->readpages(rac->file, rac->mapping, pages,
148 readahead_count(rac));
149 /* Clean up the remaining pages */
150 put_pages_list(pages);
151 rac->_index += rac->_nr_pages;
152 rac->_nr_pages = 0;
153 } else {
154 while ((page = readahead_page(rac))) {
155 aops->readpage(rac->file, page);
156 put_page(page);
157 }
158 }
159
160 blk_finish_plug(&plug);
161
162 BUG_ON(!list_empty(pages));
163 BUG_ON(readahead_count(rac));
164
165 out:
166 if (skip_page)
167 rac->_index++;
168 }
169
170 /**
171 * page_cache_ra_unbounded - Start unchecked readahead.
172 * @ractl: Readahead control.
173 * @nr_to_read: The number of pages to read.
174 * @lookahead_size: Where to start the next readahead.
175 *
176 * This function is for filesystems to call when they want to start
177 * readahead beyond a file's stated i_size. This is almost certainly
178 * not the function you want to call. Use page_cache_async_readahead()
179 * or page_cache_sync_readahead() instead.
180 *
181 * Context: File is referenced by caller. Mutexes may be held by caller.
182 * May sleep, but will not reenter filesystem to reclaim memory.
183 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)184 void page_cache_ra_unbounded(struct readahead_control *ractl,
185 unsigned long nr_to_read, unsigned long lookahead_size)
186 {
187 struct address_space *mapping = ractl->mapping;
188 unsigned long index = readahead_index(ractl);
189 LIST_HEAD(page_pool);
190 gfp_t gfp_mask = readahead_gfp_mask(mapping);
191 unsigned long i;
192
193 /*
194 * Partway through the readahead operation, we will have added
195 * locked pages to the page cache, but will not yet have submitted
196 * them for I/O. Adding another page may need to allocate memory,
197 * which can trigger memory reclaim. Telling the VM we're in
198 * the middle of a filesystem operation will cause it to not
199 * touch file-backed pages, preventing a deadlock. Most (all?)
200 * filesystems already specify __GFP_NOFS in their mapping's
201 * gfp_mask, but let's be explicit here.
202 */
203 unsigned int nofs = memalloc_nofs_save();
204
205 filemap_invalidate_lock_shared(mapping);
206 /*
207 * Preallocate as many pages as we will need.
208 */
209 for (i = 0; i < nr_to_read; i++) {
210 struct page *page = xa_load(&mapping->i_pages, index + i);
211
212 if (page && !xa_is_value(page)) {
213 /*
214 * Page already present? Kick off the current batch
215 * of contiguous pages before continuing with the
216 * next batch. This page may be the one we would
217 * have intended to mark as Readahead, but we don't
218 * have a stable reference to this page, and it's
219 * not worth getting one just for that.
220 */
221 read_pages(ractl, &page_pool, true);
222 i = ractl->_index + ractl->_nr_pages - index - 1;
223 continue;
224 }
225
226 page = __page_cache_alloc(gfp_mask);
227 if (!page)
228 break;
229 if (mapping->a_ops->readpages) {
230 page->index = index + i;
231 list_add(&page->lru, &page_pool);
232 } else if (add_to_page_cache_lru(page, mapping, index + i,
233 gfp_mask) < 0) {
234 put_page(page);
235 read_pages(ractl, &page_pool, true);
236 i = ractl->_index + ractl->_nr_pages - index - 1;
237 continue;
238 }
239 if (i == nr_to_read - lookahead_size)
240 SetPageReadahead(page);
241 ractl->_nr_pages++;
242 }
243
244 /*
245 * Now start the IO. We ignore I/O errors - if the page is not
246 * uptodate then the caller will launch readpage again, and
247 * will then handle the error.
248 */
249 read_pages(ractl, &page_pool, false);
250 filemap_invalidate_unlock_shared(mapping);
251 memalloc_nofs_restore(nofs);
252 }
253 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
254
255 /*
256 * do_page_cache_ra() actually reads a chunk of disk. It allocates
257 * the pages first, then submits them for I/O. This avoids the very bad
258 * behaviour which would occur if page allocations are causing VM writeback.
259 * We really don't want to intermingle reads and writes like that.
260 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)261 void do_page_cache_ra(struct readahead_control *ractl,
262 unsigned long nr_to_read, unsigned long lookahead_size)
263 {
264 struct inode *inode = ractl->mapping->host;
265 unsigned long index = readahead_index(ractl);
266 loff_t isize = i_size_read(inode);
267 pgoff_t end_index; /* The last page we want to read */
268
269 if (isize == 0)
270 return;
271
272 end_index = (isize - 1) >> PAGE_SHIFT;
273 if (index > end_index)
274 return;
275 /* Don't read past the page containing the last byte of the file */
276 if (nr_to_read > end_index - index)
277 nr_to_read = end_index - index + 1;
278
279 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
280 }
281
282 /*
283 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
284 * memory at once.
285 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)286 void force_page_cache_ra(struct readahead_control *ractl,
287 unsigned long nr_to_read)
288 {
289 struct address_space *mapping = ractl->mapping;
290 struct file_ra_state *ra = ractl->ra;
291 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
292 unsigned long max_pages, index;
293
294 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
295 !mapping->a_ops->readahead))
296 return;
297
298 /*
299 * If the request exceeds the readahead window, allow the read to
300 * be up to the optimal hardware IO size
301 */
302 index = readahead_index(ractl);
303 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
304 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
305 while (nr_to_read) {
306 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
307
308 if (this_chunk > nr_to_read)
309 this_chunk = nr_to_read;
310 ractl->_index = index;
311 do_page_cache_ra(ractl, this_chunk, 0);
312
313 index += this_chunk;
314 nr_to_read -= this_chunk;
315 }
316 }
317
318 /*
319 * Set the initial window size, round to next power of 2 and square
320 * for small size, x 4 for medium, and x 2 for large
321 * for 128k (32 page) max ra
322 * 1-8 page = 32k initial, > 8 page = 128k initial
323 */
get_init_ra_size(unsigned long size,unsigned long max)324 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
325 {
326 unsigned long newsize = roundup_pow_of_two(size);
327
328 if (newsize <= max / 32)
329 newsize = newsize * 4;
330 else if (newsize <= max / 4)
331 newsize = newsize * 2;
332 else
333 newsize = max;
334
335 return newsize;
336 }
337
338 /*
339 * Get the previous window size, ramp it up, and
340 * return it as the new window size.
341 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)342 static unsigned long get_next_ra_size(struct file_ra_state *ra,
343 unsigned long max)
344 {
345 unsigned long cur = ra->size;
346
347 if (cur < max / 16)
348 return 4 * cur;
349 if (cur <= max / 2)
350 return 2 * cur;
351 return max;
352 }
353
354 /*
355 * On-demand readahead design.
356 *
357 * The fields in struct file_ra_state represent the most-recently-executed
358 * readahead attempt:
359 *
360 * |<----- async_size ---------|
361 * |------------------- size -------------------->|
362 * |==================#===========================|
363 * ^start ^page marked with PG_readahead
364 *
365 * To overlap application thinking time and disk I/O time, we do
366 * `readahead pipelining': Do not wait until the application consumed all
367 * readahead pages and stalled on the missing page at readahead_index;
368 * Instead, submit an asynchronous readahead I/O as soon as there are
369 * only async_size pages left in the readahead window. Normally async_size
370 * will be equal to size, for maximum pipelining.
371 *
372 * In interleaved sequential reads, concurrent streams on the same fd can
373 * be invalidating each other's readahead state. So we flag the new readahead
374 * page at (start+size-async_size) with PG_readahead, and use it as readahead
375 * indicator. The flag won't be set on already cached pages, to avoid the
376 * readahead-for-nothing fuss, saving pointless page cache lookups.
377 *
378 * prev_pos tracks the last visited byte in the _previous_ read request.
379 * It should be maintained by the caller, and will be used for detecting
380 * small random reads. Note that the readahead algorithm checks loosely
381 * for sequential patterns. Hence interleaved reads might be served as
382 * sequential ones.
383 *
384 * There is a special-case: if the first page which the application tries to
385 * read happens to be the first page of the file, it is assumed that a linear
386 * read is about to happen and the window is immediately set to the initial size
387 * based on I/O request size and the max_readahead.
388 *
389 * The code ramps up the readahead size aggressively at first, but slow down as
390 * it approaches max_readhead.
391 */
392
393 /*
394 * Count contiguously cached pages from @index-1 to @index-@max,
395 * this count is a conservative estimation of
396 * - length of the sequential read sequence, or
397 * - thrashing threshold in memory tight systems
398 */
count_history_pages(struct address_space * mapping,pgoff_t index,unsigned long max)399 static pgoff_t count_history_pages(struct address_space *mapping,
400 pgoff_t index, unsigned long max)
401 {
402 pgoff_t head;
403
404 rcu_read_lock();
405 head = page_cache_prev_miss(mapping, index - 1, max);
406 rcu_read_unlock();
407
408 return index - 1 - head;
409 }
410
411 /*
412 * page cache context based read-ahead
413 */
try_context_readahead(struct address_space * mapping,struct file_ra_state * ra,pgoff_t index,unsigned long req_size,unsigned long max)414 static int try_context_readahead(struct address_space *mapping,
415 struct file_ra_state *ra,
416 pgoff_t index,
417 unsigned long req_size,
418 unsigned long max)
419 {
420 pgoff_t size;
421
422 size = count_history_pages(mapping, index, max);
423
424 /*
425 * not enough history pages:
426 * it could be a random read
427 */
428 if (size <= req_size)
429 return 0;
430
431 /*
432 * starts from beginning of file:
433 * it is a strong indication of long-run stream (or whole-file-read)
434 */
435 if (size >= index)
436 size *= 2;
437
438 ra->start = index;
439 ra->size = min(size + req_size, max);
440 ra->async_size = 1;
441
442 return 1;
443 }
444
445 /*
446 * A minimal readahead algorithm for trivial sequential/random reads.
447 */
ondemand_readahead(struct readahead_control * ractl,bool hit_readahead_marker,unsigned long req_size)448 static void ondemand_readahead(struct readahead_control *ractl,
449 bool hit_readahead_marker, unsigned long req_size)
450 {
451 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
452 struct file_ra_state *ra = ractl->ra;
453 unsigned long max_pages = ra->ra_pages;
454 unsigned long add_pages;
455 unsigned long index = readahead_index(ractl);
456 pgoff_t prev_index;
457
458 /*
459 * If the request exceeds the readahead window, allow the read to
460 * be up to the optimal hardware IO size
461 */
462 if (req_size > max_pages && bdi->io_pages > max_pages)
463 max_pages = min(req_size, bdi->io_pages);
464
465 /*
466 * start of file
467 */
468 if (!index)
469 goto initial_readahead;
470
471 /*
472 * It's the expected callback index, assume sequential access.
473 * Ramp up sizes, and push forward the readahead window.
474 */
475 if ((index == (ra->start + ra->size - ra->async_size) ||
476 index == (ra->start + ra->size))) {
477 ra->start += ra->size;
478 ra->size = get_next_ra_size(ra, max_pages);
479 ra->async_size = ra->size;
480 goto readit;
481 }
482
483 /*
484 * Hit a marked page without valid readahead state.
485 * E.g. interleaved reads.
486 * Query the pagecache for async_size, which normally equals to
487 * readahead size. Ramp it up and use it as the new readahead size.
488 */
489 if (hit_readahead_marker) {
490 pgoff_t start;
491
492 rcu_read_lock();
493 start = page_cache_next_miss(ractl->mapping, index + 1,
494 max_pages);
495 rcu_read_unlock();
496
497 if (!start || start - index > max_pages)
498 return;
499
500 ra->start = start;
501 ra->size = start - index; /* old async_size */
502 ra->size += req_size;
503 ra->size = get_next_ra_size(ra, max_pages);
504 ra->async_size = ra->size;
505 goto readit;
506 }
507
508 /*
509 * oversize read
510 */
511 if (req_size > max_pages)
512 goto initial_readahead;
513
514 /*
515 * sequential cache miss
516 * trivial case: (index - prev_index) == 1
517 * unaligned reads: (index - prev_index) == 0
518 */
519 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
520 if (index - prev_index <= 1UL)
521 goto initial_readahead;
522
523 /*
524 * Query the page cache and look for the traces(cached history pages)
525 * that a sequential stream would leave behind.
526 */
527 if (try_context_readahead(ractl->mapping, ra, index, req_size,
528 max_pages))
529 goto readit;
530
531 /*
532 * standalone, small random read
533 * Read as is, and do not pollute the readahead state.
534 */
535 do_page_cache_ra(ractl, req_size, 0);
536 return;
537
538 initial_readahead:
539 ra->start = index;
540 ra->size = get_init_ra_size(req_size, max_pages);
541 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
542
543 readit:
544 /*
545 * Will this read hit the readahead marker made by itself?
546 * If so, trigger the readahead marker hit now, and merge
547 * the resulted next readahead window into the current one.
548 * Take care of maximum IO pages as above.
549 */
550 if (index == ra->start && ra->size == ra->async_size) {
551 add_pages = get_next_ra_size(ra, max_pages);
552 if (ra->size + add_pages <= max_pages) {
553 ra->async_size = add_pages;
554 ra->size += add_pages;
555 } else {
556 ra->size = max_pages;
557 ra->async_size = max_pages >> 1;
558 }
559 }
560
561 ractl->_index = ra->start;
562 do_page_cache_ra(ractl, ra->size, ra->async_size);
563 }
564
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)565 void page_cache_sync_ra(struct readahead_control *ractl,
566 unsigned long req_count)
567 {
568 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
569
570 /*
571 * Even if read-ahead is disabled, issue this request as read-ahead
572 * as we'll need it to satisfy the requested range. The forced
573 * read-ahead will do the right thing and limit the read to just the
574 * requested range, which we'll set to 1 page for this case.
575 */
576 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
577 if (!ractl->file)
578 return;
579 req_count = 1;
580 do_forced_ra = true;
581 }
582
583 /* be dumb */
584 if (do_forced_ra) {
585 force_page_cache_ra(ractl, req_count);
586 return;
587 }
588
589 /* do read-ahead */
590 ondemand_readahead(ractl, false, req_count);
591 }
592 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
593
page_cache_async_ra(struct readahead_control * ractl,struct page * page,unsigned long req_count)594 void page_cache_async_ra(struct readahead_control *ractl,
595 struct page *page, unsigned long req_count)
596 {
597 /* no read-ahead */
598 if (!ractl->ra->ra_pages)
599 return;
600
601 /*
602 * Same bit is used for PG_readahead and PG_reclaim.
603 */
604 if (PageWriteback(page))
605 return;
606
607 ClearPageReadahead(page);
608
609 /*
610 * Defer asynchronous read-ahead on IO congestion.
611 */
612 if (inode_read_congested(ractl->mapping->host))
613 return;
614
615 if (blk_cgroup_congested())
616 return;
617
618 /* do read-ahead */
619 ondemand_readahead(ractl, true, req_count);
620 }
621 EXPORT_SYMBOL_GPL(page_cache_async_ra);
622
ksys_readahead(int fd,loff_t offset,size_t count)623 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
624 {
625 ssize_t ret;
626 struct fd f;
627
628 ret = -EBADF;
629 f = fdget(fd);
630 if (!f.file || !(f.file->f_mode & FMODE_READ))
631 goto out;
632
633 /*
634 * The readahead() syscall is intended to run only on files
635 * that can execute readahead. If readahead is not possible
636 * on this file, then we must return -EINVAL.
637 */
638 ret = -EINVAL;
639 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
640 (!S_ISREG(file_inode(f.file)->i_mode) &&
641 !S_ISBLK(file_inode(f.file)->i_mode)))
642 goto out;
643
644 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
645 out:
646 fdput(f);
647 return ret;
648 }
649
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)650 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
651 {
652 return ksys_readahead(fd, offset, count);
653 }
654
655 /**
656 * readahead_expand - Expand a readahead request
657 * @ractl: The request to be expanded
658 * @new_start: The revised start
659 * @new_len: The revised size of the request
660 *
661 * Attempt to expand a readahead request outwards from the current size to the
662 * specified size by inserting locked pages before and after the current window
663 * to increase the size to the new window. This may involve the insertion of
664 * THPs, in which case the window may get expanded even beyond what was
665 * requested.
666 *
667 * The algorithm will stop if it encounters a conflicting page already in the
668 * pagecache and leave a smaller expansion than requested.
669 *
670 * The caller must check for this by examining the revised @ractl object for a
671 * different expansion than was requested.
672 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)673 void readahead_expand(struct readahead_control *ractl,
674 loff_t new_start, size_t new_len)
675 {
676 struct address_space *mapping = ractl->mapping;
677 struct file_ra_state *ra = ractl->ra;
678 pgoff_t new_index, new_nr_pages;
679 gfp_t gfp_mask = readahead_gfp_mask(mapping);
680
681 new_index = new_start / PAGE_SIZE;
682
683 /* Expand the leading edge downwards */
684 while (ractl->_index > new_index) {
685 unsigned long index = ractl->_index - 1;
686 struct page *page = xa_load(&mapping->i_pages, index);
687
688 if (page && !xa_is_value(page))
689 return; /* Page apparently present */
690
691 page = __page_cache_alloc(gfp_mask);
692 if (!page)
693 return;
694 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
695 put_page(page);
696 return;
697 }
698
699 ractl->_nr_pages++;
700 ractl->_index = page->index;
701 }
702
703 new_len += new_start - readahead_pos(ractl);
704 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
705
706 /* Expand the trailing edge upwards */
707 while (ractl->_nr_pages < new_nr_pages) {
708 unsigned long index = ractl->_index + ractl->_nr_pages;
709 struct page *page = xa_load(&mapping->i_pages, index);
710
711 if (page && !xa_is_value(page))
712 return; /* Page apparently present */
713
714 page = __page_cache_alloc(gfp_mask);
715 if (!page)
716 return;
717 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
718 put_page(page);
719 return;
720 }
721 ractl->_nr_pages++;
722 if (ra) {
723 ra->size++;
724 ra->async_size++;
725 }
726 }
727 }
728 EXPORT_SYMBOL(readahead_expand);
729