• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 SLB support.
4  *
5  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6  * Based on earlier code written by:
7  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8  *    Copyright (c) 2001 Dave Engebretsen
9  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10  */
11 
12 #include <asm/asm-prototypes.h>
13 #include <asm/interrupt.h>
14 #include <asm/mmu.h>
15 #include <asm/mmu_context.h>
16 #include <asm/paca.h>
17 #include <asm/lppaca.h>
18 #include <asm/ppc-opcode.h>
19 #include <asm/cputable.h>
20 #include <asm/cacheflush.h>
21 #include <asm/smp.h>
22 #include <linux/compiler.h>
23 #include <linux/context_tracking.h>
24 #include <linux/mm_types.h>
25 #include <linux/pgtable.h>
26 
27 #include <asm/udbg.h>
28 #include <asm/code-patching.h>
29 
30 #include "internal.h"
31 
32 
33 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
34 
35 bool stress_slb_enabled __initdata;
36 
parse_stress_slb(char * p)37 static int __init parse_stress_slb(char *p)
38 {
39 	stress_slb_enabled = true;
40 	return 0;
41 }
42 early_param("stress_slb", parse_stress_slb);
43 
44 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
45 
assert_slb_presence(bool present,unsigned long ea)46 static void assert_slb_presence(bool present, unsigned long ea)
47 {
48 #ifdef CONFIG_DEBUG_VM
49 	unsigned long tmp;
50 
51 	WARN_ON_ONCE(mfmsr() & MSR_EE);
52 
53 	if (!cpu_has_feature(CPU_FTR_ARCH_206))
54 		return;
55 
56 	/*
57 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
58 	 * ignores all other bits from 0-27, so just clear them all.
59 	 */
60 	ea &= ~((1UL << SID_SHIFT) - 1);
61 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
62 
63 	WARN_ON(present == (tmp == 0));
64 #endif
65 }
66 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)67 static inline void slb_shadow_update(unsigned long ea, int ssize,
68 				     unsigned long flags,
69 				     enum slb_index index)
70 {
71 	struct slb_shadow *p = get_slb_shadow();
72 
73 	/*
74 	 * Clear the ESID first so the entry is not valid while we are
75 	 * updating it.  No write barriers are needed here, provided
76 	 * we only update the current CPU's SLB shadow buffer.
77 	 */
78 	WRITE_ONCE(p->save_area[index].esid, 0);
79 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
80 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
81 }
82 
slb_shadow_clear(enum slb_index index)83 static inline void slb_shadow_clear(enum slb_index index)
84 {
85 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
86 }
87 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)88 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
89 					unsigned long flags,
90 					enum slb_index index)
91 {
92 	/*
93 	 * Updating the shadow buffer before writing the SLB ensures
94 	 * we don't get a stale entry here if we get preempted by PHYP
95 	 * between these two statements.
96 	 */
97 	slb_shadow_update(ea, ssize, flags, index);
98 
99 	assert_slb_presence(false, ea);
100 	asm volatile("slbmte  %0,%1" :
101 		     : "r" (mk_vsid_data(ea, ssize, flags)),
102 		       "r" (mk_esid_data(ea, ssize, index))
103 		     : "memory" );
104 }
105 
106 /*
107  * Insert bolted entries into SLB (which may not be empty, so don't clear
108  * slb_cache_ptr).
109  */
__slb_restore_bolted_realmode(void)110 void __slb_restore_bolted_realmode(void)
111 {
112 	struct slb_shadow *p = get_slb_shadow();
113 	enum slb_index index;
114 
115 	 /* No isync needed because realmode. */
116 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
117 		asm volatile("slbmte  %0,%1" :
118 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
119 		       "r" (be64_to_cpu(p->save_area[index].esid)));
120 	}
121 
122 	assert_slb_presence(true, local_paca->kstack);
123 }
124 
125 /*
126  * Insert the bolted entries into an empty SLB.
127  */
slb_restore_bolted_realmode(void)128 void slb_restore_bolted_realmode(void)
129 {
130 	__slb_restore_bolted_realmode();
131 	get_paca()->slb_cache_ptr = 0;
132 
133 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
134 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
135 }
136 
137 /*
138  * This flushes all SLB entries including 0, so it must be realmode.
139  */
slb_flush_all_realmode(void)140 void slb_flush_all_realmode(void)
141 {
142 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
143 }
144 
__slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)145 static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
146 {
147 	struct slb_shadow *p = get_slb_shadow();
148 	unsigned long ksp_esid_data, ksp_vsid_data;
149 	u32 ih;
150 
151 	/*
152 	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
153 	 * information created with Class=0 entries, which we use for kernel
154 	 * SLB entries (the SLB entries themselves are still invalidated).
155 	 *
156 	 * Older processors will ignore this optimisation. Over-invalidation
157 	 * is fine because we never rely on lookaside information existing.
158 	 */
159 	if (preserve_kernel_lookaside)
160 		ih = 1;
161 	else
162 		ih = 0;
163 
164 	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
165 	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
166 
167 	asm volatile(PPC_SLBIA(%0)"	\n"
168 		     "slbmte	%1, %2	\n"
169 		     :: "i" (ih),
170 			"r" (ksp_vsid_data),
171 			"r" (ksp_esid_data)
172 		     : "memory");
173 }
174 
175 /*
176  * This flushes non-bolted entries, it can be run in virtual mode. Must
177  * be called with interrupts disabled.
178  */
slb_flush_and_restore_bolted(void)179 void slb_flush_and_restore_bolted(void)
180 {
181 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
182 
183 	WARN_ON(!irqs_disabled());
184 
185 	/*
186 	 * We can't take a PMU exception in the following code, so hard
187 	 * disable interrupts.
188 	 */
189 	hard_irq_disable();
190 
191 	isync();
192 	__slb_flush_and_restore_bolted(false);
193 	isync();
194 
195 	assert_slb_presence(true, get_paca()->kstack);
196 
197 	get_paca()->slb_cache_ptr = 0;
198 
199 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
200 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
201 }
202 
slb_save_contents(struct slb_entry * slb_ptr)203 void slb_save_contents(struct slb_entry *slb_ptr)
204 {
205 	int i;
206 	unsigned long e, v;
207 
208 	/* Save slb_cache_ptr value. */
209 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
210 
211 	if (!slb_ptr)
212 		return;
213 
214 	for (i = 0; i < mmu_slb_size; i++) {
215 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
216 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
217 		slb_ptr->esid = e;
218 		slb_ptr->vsid = v;
219 		slb_ptr++;
220 	}
221 }
222 
slb_dump_contents(struct slb_entry * slb_ptr)223 void slb_dump_contents(struct slb_entry *slb_ptr)
224 {
225 	int i, n;
226 	unsigned long e, v;
227 	unsigned long llp;
228 
229 	if (!slb_ptr)
230 		return;
231 
232 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
233 
234 	for (i = 0; i < mmu_slb_size; i++) {
235 		e = slb_ptr->esid;
236 		v = slb_ptr->vsid;
237 		slb_ptr++;
238 
239 		if (!e && !v)
240 			continue;
241 
242 		pr_err("%02d %016lx %016lx %s\n", i, e, v,
243 				(e & SLB_ESID_V) ? "VALID" : "NOT VALID");
244 
245 		if (!(e & SLB_ESID_V))
246 			continue;
247 
248 		llp = v & SLB_VSID_LLP;
249 		if (v & SLB_VSID_B_1T) {
250 			pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
251 			       GET_ESID_1T(e),
252 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
253 		} else {
254 			pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
255 			       GET_ESID(e),
256 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
257 		}
258 	}
259 
260 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
261 		/* RR is not so useful as it's often not used for allocation */
262 		pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);
263 
264 		/* Dump slb cache entires as well. */
265 		pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
266 		pr_err("Valid SLB cache entries:\n");
267 		n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
268 		for (i = 0; i < n; i++)
269 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
270 		pr_err("Rest of SLB cache entries:\n");
271 		for (i = n; i < SLB_CACHE_ENTRIES; i++)
272 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
273 	}
274 }
275 
slb_vmalloc_update(void)276 void slb_vmalloc_update(void)
277 {
278 	/*
279 	 * vmalloc is not bolted, so just have to flush non-bolted.
280 	 */
281 	slb_flush_and_restore_bolted();
282 }
283 
preload_hit(struct thread_info * ti,unsigned long esid)284 static bool preload_hit(struct thread_info *ti, unsigned long esid)
285 {
286 	unsigned char i;
287 
288 	for (i = 0; i < ti->slb_preload_nr; i++) {
289 		unsigned char idx;
290 
291 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
292 		if (esid == ti->slb_preload_esid[idx])
293 			return true;
294 	}
295 	return false;
296 }
297 
preload_add(struct thread_info * ti,unsigned long ea)298 static bool preload_add(struct thread_info *ti, unsigned long ea)
299 {
300 	unsigned char idx;
301 	unsigned long esid;
302 
303 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
304 		/* EAs are stored >> 28 so 256MB segments don't need clearing */
305 		if (ea & ESID_MASK_1T)
306 			ea &= ESID_MASK_1T;
307 	}
308 
309 	esid = ea >> SID_SHIFT;
310 
311 	if (preload_hit(ti, esid))
312 		return false;
313 
314 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
315 	ti->slb_preload_esid[idx] = esid;
316 	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
317 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
318 	else
319 		ti->slb_preload_nr++;
320 
321 	return true;
322 }
323 
preload_age(struct thread_info * ti)324 static void preload_age(struct thread_info *ti)
325 {
326 	if (!ti->slb_preload_nr)
327 		return;
328 	ti->slb_preload_nr--;
329 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
330 }
331 
slb_setup_new_exec(void)332 void slb_setup_new_exec(void)
333 {
334 	struct thread_info *ti = current_thread_info();
335 	struct mm_struct *mm = current->mm;
336 	unsigned long exec = 0x10000000;
337 
338 	WARN_ON(irqs_disabled());
339 
340 	/*
341 	 * preload cache can only be used to determine whether a SLB
342 	 * entry exists if it does not start to overflow.
343 	 */
344 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
345 		return;
346 
347 	hard_irq_disable();
348 
349 	/*
350 	 * We have no good place to clear the slb preload cache on exec,
351 	 * flush_thread is about the earliest arch hook but that happens
352 	 * after we switch to the mm and have aleady preloaded the SLBEs.
353 	 *
354 	 * For the most part that's probably okay to use entries from the
355 	 * previous exec, they will age out if unused. It may turn out to
356 	 * be an advantage to clear the cache before switching to it,
357 	 * however.
358 	 */
359 
360 	/*
361 	 * preload some userspace segments into the SLB.
362 	 * Almost all 32 and 64bit PowerPC executables are linked at
363 	 * 0x10000000 so it makes sense to preload this segment.
364 	 */
365 	if (!is_kernel_addr(exec)) {
366 		if (preload_add(ti, exec))
367 			slb_allocate_user(mm, exec);
368 	}
369 
370 	/* Libraries and mmaps. */
371 	if (!is_kernel_addr(mm->mmap_base)) {
372 		if (preload_add(ti, mm->mmap_base))
373 			slb_allocate_user(mm, mm->mmap_base);
374 	}
375 
376 	/* see switch_slb */
377 	asm volatile("isync" : : : "memory");
378 
379 	local_irq_enable();
380 }
381 
preload_new_slb_context(unsigned long start,unsigned long sp)382 void preload_new_slb_context(unsigned long start, unsigned long sp)
383 {
384 	struct thread_info *ti = current_thread_info();
385 	struct mm_struct *mm = current->mm;
386 	unsigned long heap = mm->start_brk;
387 
388 	WARN_ON(irqs_disabled());
389 
390 	/* see above */
391 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
392 		return;
393 
394 	hard_irq_disable();
395 
396 	/* Userspace entry address. */
397 	if (!is_kernel_addr(start)) {
398 		if (preload_add(ti, start))
399 			slb_allocate_user(mm, start);
400 	}
401 
402 	/* Top of stack, grows down. */
403 	if (!is_kernel_addr(sp)) {
404 		if (preload_add(ti, sp))
405 			slb_allocate_user(mm, sp);
406 	}
407 
408 	/* Bottom of heap, grows up. */
409 	if (heap && !is_kernel_addr(heap)) {
410 		if (preload_add(ti, heap))
411 			slb_allocate_user(mm, heap);
412 	}
413 
414 	/* see switch_slb */
415 	asm volatile("isync" : : : "memory");
416 
417 	local_irq_enable();
418 }
419 
slb_cache_slbie_kernel(unsigned int index)420 static void slb_cache_slbie_kernel(unsigned int index)
421 {
422 	unsigned long slbie_data = get_paca()->slb_cache[index];
423 	unsigned long ksp = get_paca()->kstack;
424 
425 	slbie_data <<= SID_SHIFT;
426 	slbie_data |= 0xc000000000000000ULL;
427 	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
428 		return;
429 	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
430 
431 	asm volatile("slbie %0" : : "r" (slbie_data));
432 }
433 
slb_cache_slbie_user(unsigned int index)434 static void slb_cache_slbie_user(unsigned int index)
435 {
436 	unsigned long slbie_data = get_paca()->slb_cache[index];
437 
438 	slbie_data <<= SID_SHIFT;
439 	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
440 	slbie_data |= SLBIE_C; /* user slbs have C=1 */
441 
442 	asm volatile("slbie %0" : : "r" (slbie_data));
443 }
444 
445 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)446 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
447 {
448 	struct thread_info *ti = task_thread_info(tsk);
449 	unsigned char i;
450 
451 	/*
452 	 * We need interrupts hard-disabled here, not just soft-disabled,
453 	 * so that a PMU interrupt can't occur, which might try to access
454 	 * user memory (to get a stack trace) and possible cause an SLB miss
455 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
456 	 */
457 	hard_irq_disable();
458 	isync();
459 	if (stress_slb()) {
460 		__slb_flush_and_restore_bolted(false);
461 		isync();
462 		get_paca()->slb_cache_ptr = 0;
463 		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
464 
465 	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
466 		/*
467 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
468 		 * associated lookaside structures, which matches what
469 		 * switch_slb wants. So ARCH_300 does not use the slb
470 		 * cache.
471 		 */
472 		asm volatile(PPC_SLBIA(3));
473 
474 	} else {
475 		unsigned long offset = get_paca()->slb_cache_ptr;
476 
477 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
478 		    offset <= SLB_CACHE_ENTRIES) {
479 			/*
480 			 * Could assert_slb_presence(true) here, but
481 			 * hypervisor or machine check could have come
482 			 * in and removed the entry at this point.
483 			 */
484 
485 			for (i = 0; i < offset; i++)
486 				slb_cache_slbie_user(i);
487 
488 			/* Workaround POWER5 < DD2.1 issue */
489 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
490 				slb_cache_slbie_user(0);
491 
492 		} else {
493 			/* Flush but retain kernel lookaside information */
494 			__slb_flush_and_restore_bolted(true);
495 			isync();
496 
497 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
498 		}
499 
500 		get_paca()->slb_cache_ptr = 0;
501 	}
502 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
503 
504 	copy_mm_to_paca(mm);
505 
506 	/*
507 	 * We gradually age out SLBs after a number of context switches to
508 	 * reduce reload overhead of unused entries (like we do with FP/VEC
509 	 * reload). Each time we wrap 256 switches, take an entry out of the
510 	 * SLB preload cache.
511 	 */
512 	tsk->thread.load_slb++;
513 	if (!tsk->thread.load_slb) {
514 		unsigned long pc = KSTK_EIP(tsk);
515 
516 		preload_age(ti);
517 		preload_add(ti, pc);
518 	}
519 
520 	for (i = 0; i < ti->slb_preload_nr; i++) {
521 		unsigned char idx;
522 		unsigned long ea;
523 
524 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
525 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
526 
527 		slb_allocate_user(mm, ea);
528 	}
529 
530 	/*
531 	 * Synchronize slbmte preloads with possible subsequent user memory
532 	 * address accesses by the kernel (user mode won't happen until
533 	 * rfid, which is safe).
534 	 */
535 	isync();
536 }
537 
slb_set_size(u16 size)538 void slb_set_size(u16 size)
539 {
540 	mmu_slb_size = size;
541 }
542 
slb_initialize(void)543 void slb_initialize(void)
544 {
545 	unsigned long linear_llp, vmalloc_llp, io_llp;
546 	unsigned long lflags;
547 	static int slb_encoding_inited;
548 #ifdef CONFIG_SPARSEMEM_VMEMMAP
549 	unsigned long vmemmap_llp;
550 #endif
551 
552 	/* Prepare our SLB miss handler based on our page size */
553 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
554 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
555 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
556 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
557 #ifdef CONFIG_SPARSEMEM_VMEMMAP
558 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
559 #endif
560 	if (!slb_encoding_inited) {
561 		slb_encoding_inited = 1;
562 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
563 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
564 #ifdef CONFIG_SPARSEMEM_VMEMMAP
565 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
566 #endif
567 	}
568 
569 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
570 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
571 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
572 
573 	lflags = SLB_VSID_KERNEL | linear_llp;
574 
575 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
576 	asm volatile("isync":::"memory");
577 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
578 	asm volatile("isync; slbia; isync":::"memory");
579 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
580 
581 	/*
582 	 * For the boot cpu, we're running on the stack in init_thread_union,
583 	 * which is in the first segment of the linear mapping, and also
584 	 * get_paca()->kstack hasn't been initialized yet.
585 	 * For secondary cpus, we need to bolt the kernel stack entry now.
586 	 */
587 	slb_shadow_clear(KSTACK_INDEX);
588 	if (raw_smp_processor_id() != boot_cpuid &&
589 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
590 		create_shadowed_slbe(get_paca()->kstack,
591 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
592 
593 	asm volatile("isync":::"memory");
594 }
595 
slb_cache_update(unsigned long esid_data)596 static void slb_cache_update(unsigned long esid_data)
597 {
598 	int slb_cache_index;
599 
600 	if (cpu_has_feature(CPU_FTR_ARCH_300))
601 		return; /* ISAv3.0B and later does not use slb_cache */
602 
603 	if (stress_slb())
604 		return;
605 
606 	/*
607 	 * Now update slb cache entries
608 	 */
609 	slb_cache_index = local_paca->slb_cache_ptr;
610 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
611 		/*
612 		 * We have space in slb cache for optimized switch_slb().
613 		 * Top 36 bits from esid_data as per ISA
614 		 */
615 		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
616 		local_paca->slb_cache_ptr++;
617 	} else {
618 		/*
619 		 * Our cache is full and the current cache content strictly
620 		 * doesn't indicate the active SLB conents. Bump the ptr
621 		 * so that switch_slb() will ignore the cache.
622 		 */
623 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
624 	}
625 }
626 
alloc_slb_index(bool kernel)627 static enum slb_index alloc_slb_index(bool kernel)
628 {
629 	enum slb_index index;
630 
631 	/*
632 	 * The allocation bitmaps can become out of synch with the SLB
633 	 * when the _switch code does slbie when bolting a new stack
634 	 * segment and it must not be anywhere else in the SLB. This leaves
635 	 * a kernel allocated entry that is unused in the SLB. With very
636 	 * large systems or small segment sizes, the bitmaps could slowly
637 	 * fill with these entries. They will eventually be cleared out
638 	 * by the round robin allocator in that case, so it's probably not
639 	 * worth accounting for.
640 	 */
641 
642 	/*
643 	 * SLBs beyond 32 entries are allocated with stab_rr only
644 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
645 	 * future CPU has more.
646 	 */
647 	if (local_paca->slb_used_bitmap != U32_MAX) {
648 		index = ffz(local_paca->slb_used_bitmap);
649 		local_paca->slb_used_bitmap |= 1U << index;
650 		if (kernel)
651 			local_paca->slb_kern_bitmap |= 1U << index;
652 	} else {
653 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
654 		index = local_paca->stab_rr;
655 		if (index < (mmu_slb_size - 1))
656 			index++;
657 		else
658 			index = SLB_NUM_BOLTED;
659 		local_paca->stab_rr = index;
660 		if (index < 32) {
661 			if (kernel)
662 				local_paca->slb_kern_bitmap |= 1U << index;
663 			else
664 				local_paca->slb_kern_bitmap &= ~(1U << index);
665 		}
666 	}
667 	BUG_ON(index < SLB_NUM_BOLTED);
668 
669 	return index;
670 }
671 
slb_insert_entry(unsigned long ea,unsigned long context,unsigned long flags,int ssize,bool kernel)672 static long slb_insert_entry(unsigned long ea, unsigned long context,
673 				unsigned long flags, int ssize, bool kernel)
674 {
675 	unsigned long vsid;
676 	unsigned long vsid_data, esid_data;
677 	enum slb_index index;
678 
679 	vsid = get_vsid(context, ea, ssize);
680 	if (!vsid)
681 		return -EFAULT;
682 
683 	/*
684 	 * There must not be a kernel SLB fault in alloc_slb_index or before
685 	 * slbmte here or the allocation bitmaps could get out of whack with
686 	 * the SLB.
687 	 *
688 	 * User SLB faults or preloads take this path which might get inlined
689 	 * into the caller, so add compiler barriers here to ensure unsafe
690 	 * memory accesses do not come between.
691 	 */
692 	barrier();
693 
694 	index = alloc_slb_index(kernel);
695 
696 	vsid_data = __mk_vsid_data(vsid, ssize, flags);
697 	esid_data = mk_esid_data(ea, ssize, index);
698 
699 	/*
700 	 * No need for an isync before or after this slbmte. The exception
701 	 * we enter with and the rfid we exit with are context synchronizing.
702 	 * User preloads should add isync afterwards in case the kernel
703 	 * accesses user memory before it returns to userspace with rfid.
704 	 */
705 	assert_slb_presence(false, ea);
706 	if (stress_slb()) {
707 		int slb_cache_index = local_paca->slb_cache_ptr;
708 
709 		/*
710 		 * stress_slb() does not use slb cache, repurpose as a
711 		 * cache of inserted (non-bolted) kernel SLB entries. All
712 		 * non-bolted kernel entries are flushed on any user fault,
713 		 * or if there are already 3 non-boled kernel entries.
714 		 */
715 		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
716 		if (!kernel || slb_cache_index == 3) {
717 			int i;
718 
719 			for (i = 0; i < slb_cache_index; i++)
720 				slb_cache_slbie_kernel(i);
721 			slb_cache_index = 0;
722 		}
723 
724 		if (kernel)
725 			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
726 		local_paca->slb_cache_ptr = slb_cache_index;
727 	}
728 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
729 
730 	barrier();
731 
732 	if (!kernel)
733 		slb_cache_update(esid_data);
734 
735 	return 0;
736 }
737 
slb_allocate_kernel(unsigned long ea,unsigned long id)738 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
739 {
740 	unsigned long context;
741 	unsigned long flags;
742 	int ssize;
743 
744 	if (id == LINEAR_MAP_REGION_ID) {
745 
746 		/* We only support upto H_MAX_PHYSMEM_BITS */
747 		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
748 			return -EFAULT;
749 
750 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
751 
752 #ifdef CONFIG_SPARSEMEM_VMEMMAP
753 	} else if (id == VMEMMAP_REGION_ID) {
754 
755 		if (ea >= H_VMEMMAP_END)
756 			return -EFAULT;
757 
758 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
759 #endif
760 	} else if (id == VMALLOC_REGION_ID) {
761 
762 		if (ea >= H_VMALLOC_END)
763 			return -EFAULT;
764 
765 		flags = local_paca->vmalloc_sllp;
766 
767 	} else if (id == IO_REGION_ID) {
768 
769 		if (ea >= H_KERN_IO_END)
770 			return -EFAULT;
771 
772 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
773 
774 	} else {
775 		return -EFAULT;
776 	}
777 
778 	ssize = MMU_SEGSIZE_1T;
779 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
780 		ssize = MMU_SEGSIZE_256M;
781 
782 	context = get_kernel_context(ea);
783 
784 	return slb_insert_entry(ea, context, flags, ssize, true);
785 }
786 
slb_allocate_user(struct mm_struct * mm,unsigned long ea)787 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
788 {
789 	unsigned long context;
790 	unsigned long flags;
791 	int bpsize;
792 	int ssize;
793 
794 	/*
795 	 * consider this as bad access if we take a SLB miss
796 	 * on an address above addr limit.
797 	 */
798 	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
799 		return -EFAULT;
800 
801 	context = get_user_context(&mm->context, ea);
802 	if (!context)
803 		return -EFAULT;
804 
805 	if (unlikely(ea >= H_PGTABLE_RANGE)) {
806 		WARN_ON(1);
807 		return -EFAULT;
808 	}
809 
810 	ssize = user_segment_size(ea);
811 
812 	bpsize = get_slice_psize(mm, ea);
813 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
814 
815 	return slb_insert_entry(ea, context, flags, ssize, false);
816 }
817 
DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)818 DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)
819 {
820 	unsigned long ea = regs->dar;
821 	unsigned long id = get_region_id(ea);
822 
823 	/* IRQs are not reconciled here, so can't check irqs_disabled */
824 	VM_WARN_ON(mfmsr() & MSR_EE);
825 
826 	if (regs_is_unrecoverable(regs))
827 		return -EINVAL;
828 
829 	/*
830 	 * SLB kernel faults must be very careful not to touch anything that is
831 	 * not bolted. E.g., PACA and global variables are okay, mm->context
832 	 * stuff is not. SLB user faults may access all of memory (and induce
833 	 * one recursive SLB kernel fault), so the kernel fault must not
834 	 * trample on the user fault state at those points.
835 	 */
836 
837 	/*
838 	 * This is a raw interrupt handler, for performance, so that
839 	 * fast_interrupt_return can be used. The handler must not touch local
840 	 * irq state, or schedule. We could test for usermode and upgrade to a
841 	 * normal process context (synchronous) interrupt for those, which
842 	 * would make them first-class kernel code and able to be traced and
843 	 * instrumented, although performance would suffer a bit, it would
844 	 * probably be a good tradeoff.
845 	 */
846 	if (id >= LINEAR_MAP_REGION_ID) {
847 		long err;
848 #ifdef CONFIG_DEBUG_VM
849 		/* Catch recursive kernel SLB faults. */
850 		BUG_ON(local_paca->in_kernel_slb_handler);
851 		local_paca->in_kernel_slb_handler = 1;
852 #endif
853 		err = slb_allocate_kernel(ea, id);
854 #ifdef CONFIG_DEBUG_VM
855 		local_paca->in_kernel_slb_handler = 0;
856 #endif
857 		return err;
858 	} else {
859 		struct mm_struct *mm = current->mm;
860 		long err;
861 
862 		if (unlikely(!mm))
863 			return -EFAULT;
864 
865 		err = slb_allocate_user(mm, ea);
866 		if (!err)
867 			preload_add(current_thread_info(), ea);
868 
869 		return err;
870 	}
871 }
872 
DEFINE_INTERRUPT_HANDLER(do_bad_slb_fault)873 DEFINE_INTERRUPT_HANDLER(do_bad_slb_fault)
874 {
875 	int err = regs->result;
876 
877 	if (err == -EFAULT) {
878 		if (user_mode(regs))
879 			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
880 		else
881 			bad_page_fault(regs, SIGSEGV);
882 	} else if (err == -EINVAL) {
883 		unrecoverable_exception(regs);
884 	} else {
885 		BUG();
886 	}
887 }
888