1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 const struct vmci_event_data *ed,
36 void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 struct sock *sk,
43 struct sock *pending,
44 struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 struct sock *sk,
47 struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 struct sock *sk,
50 struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61
62 struct vmci_transport_recv_pkt_info {
63 struct work_struct work;
64 struct sock *sk;
65 struct vmci_transport_packet pkt;
66 };
67
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76 static int PROTOCOL_OVERRIDE = -1;
77
78 static struct vsock_transport vmci_transport; /* forward declaration */
79
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
81
vmci_transport_error_to_vsock_error(s32 vmci_error)82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83 {
84 switch (vmci_error) {
85 case VMCI_ERROR_NO_MEM:
86 return -ENOMEM;
87 case VMCI_ERROR_DUPLICATE_ENTRY:
88 case VMCI_ERROR_ALREADY_EXISTS:
89 return -EADDRINUSE;
90 case VMCI_ERROR_NO_ACCESS:
91 return -EPERM;
92 case VMCI_ERROR_NO_RESOURCES:
93 return -ENOBUFS;
94 case VMCI_ERROR_INVALID_RESOURCE:
95 return -EHOSTUNREACH;
96 case VMCI_ERROR_INVALID_ARGS:
97 default:
98 break;
99 }
100 return -EINVAL;
101 }
102
vmci_transport_peer_rid(u32 peer_cid)103 static u32 vmci_transport_peer_rid(u32 peer_cid)
104 {
105 if (VMADDR_CID_HYPERVISOR == peer_cid)
106 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107
108 return VMCI_TRANSPORT_PACKET_RID;
109 }
110
111 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113 struct sockaddr_vm *src,
114 struct sockaddr_vm *dst,
115 u8 type,
116 u64 size,
117 u64 mode,
118 struct vmci_transport_waiting_info *wait,
119 u16 proto,
120 struct vmci_handle handle)
121 {
122 /* We register the stream control handler as an any cid handle so we
123 * must always send from a source address of VMADDR_CID_ANY
124 */
125 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126 VMCI_TRANSPORT_PACKET_RID);
127 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128 vmci_transport_peer_rid(dst->svm_cid));
129 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131 pkt->type = type;
132 pkt->src_port = src->svm_port;
133 pkt->dst_port = dst->svm_port;
134 memset(&pkt->proto, 0, sizeof(pkt->proto));
135 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136
137 switch (pkt->type) {
138 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139 pkt->u.size = 0;
140 break;
141
142 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144 pkt->u.size = size;
145 break;
146
147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149 pkt->u.handle = handle;
150 break;
151
152 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153 case VMCI_TRANSPORT_PACKET_TYPE_READ:
154 case VMCI_TRANSPORT_PACKET_TYPE_RST:
155 pkt->u.size = 0;
156 break;
157
158 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159 pkt->u.mode = mode;
160 break;
161
162 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165 break;
166
167 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169 pkt->u.size = size;
170 pkt->proto = proto;
171 break;
172 }
173 }
174
175 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177 struct sockaddr_vm *local,
178 struct sockaddr_vm *remote)
179 {
180 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182 }
183
184 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186 struct sockaddr_vm *src,
187 struct sockaddr_vm *dst,
188 enum vmci_transport_packet_type type,
189 u64 size,
190 u64 mode,
191 struct vmci_transport_waiting_info *wait,
192 u16 proto,
193 struct vmci_handle handle,
194 bool convert_error)
195 {
196 int err;
197
198 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199 proto, handle);
200 err = vmci_datagram_send(&pkt->dg);
201 if (convert_error && (err < 0))
202 return vmci_transport_error_to_vsock_error(err);
203
204 return err;
205 }
206
207 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209 enum vmci_transport_packet_type type,
210 u64 size,
211 u64 mode,
212 struct vmci_transport_waiting_info *wait,
213 struct vmci_handle handle)
214 {
215 struct vmci_transport_packet reply;
216 struct sockaddr_vm src, dst;
217
218 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219 return 0;
220 } else {
221 vmci_transport_packet_get_addresses(pkt, &src, &dst);
222 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223 type,
224 size, mode, wait,
225 VSOCK_PROTO_INVALID,
226 handle, true);
227 }
228 }
229
230 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232 struct sockaddr_vm *dst,
233 enum vmci_transport_packet_type type,
234 u64 size,
235 u64 mode,
236 struct vmci_transport_waiting_info *wait,
237 struct vmci_handle handle)
238 {
239 /* Note that it is safe to use a single packet across all CPUs since
240 * two tasklets of the same type are guaranteed to not ever run
241 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242 * we can use per-cpu packets.
243 */
244 static struct vmci_transport_packet pkt;
245
246 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247 size, mode, wait,
248 VSOCK_PROTO_INVALID, handle,
249 false);
250 }
251
252 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254 struct sockaddr_vm *dst,
255 enum vmci_transport_packet_type type,
256 u64 size,
257 u64 mode,
258 struct vmci_transport_waiting_info *wait,
259 u16 proto,
260 struct vmci_handle handle)
261 {
262 struct vmci_transport_packet *pkt;
263 int err;
264
265 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266 if (!pkt)
267 return -ENOMEM;
268
269 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270 mode, wait, proto, handle,
271 true);
272 kfree(pkt);
273
274 return err;
275 }
276
277 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)278 vmci_transport_send_control_pkt(struct sock *sk,
279 enum vmci_transport_packet_type type,
280 u64 size,
281 u64 mode,
282 struct vmci_transport_waiting_info *wait,
283 u16 proto,
284 struct vmci_handle handle)
285 {
286 struct vsock_sock *vsk;
287
288 vsk = vsock_sk(sk);
289
290 if (!vsock_addr_bound(&vsk->local_addr))
291 return -EINVAL;
292
293 if (!vsock_addr_bound(&vsk->remote_addr))
294 return -EINVAL;
295
296 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297 &vsk->remote_addr,
298 type, size, mode,
299 wait, proto, handle);
300 }
301
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303 struct sockaddr_vm *src,
304 struct vmci_transport_packet *pkt)
305 {
306 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307 return 0;
308 return vmci_transport_send_control_pkt_bh(
309 dst, src,
310 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311 0, NULL, VMCI_INVALID_HANDLE);
312 }
313
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)314 static int vmci_transport_send_reset(struct sock *sk,
315 struct vmci_transport_packet *pkt)
316 {
317 struct sockaddr_vm *dst_ptr;
318 struct sockaddr_vm dst;
319 struct vsock_sock *vsk;
320
321 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322 return 0;
323
324 vsk = vsock_sk(sk);
325
326 if (!vsock_addr_bound(&vsk->local_addr))
327 return -EINVAL;
328
329 if (vsock_addr_bound(&vsk->remote_addr)) {
330 dst_ptr = &vsk->remote_addr;
331 } else {
332 vsock_addr_init(&dst, pkt->dg.src.context,
333 pkt->src_port);
334 dst_ptr = &dst;
335 }
336 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337 VMCI_TRANSPORT_PACKET_TYPE_RST,
338 0, 0, NULL, VSOCK_PROTO_INVALID,
339 VMCI_INVALID_HANDLE);
340 }
341
vmci_transport_send_negotiate(struct sock * sk,size_t size)342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343 {
344 return vmci_transport_send_control_pkt(
345 sk,
346 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347 size, 0, NULL,
348 VSOCK_PROTO_INVALID,
349 VMCI_INVALID_HANDLE);
350 }
351
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353 u16 version)
354 {
355 return vmci_transport_send_control_pkt(
356 sk,
357 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358 size, 0, NULL, version,
359 VMCI_INVALID_HANDLE);
360 }
361
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)362 static int vmci_transport_send_qp_offer(struct sock *sk,
363 struct vmci_handle handle)
364 {
365 return vmci_transport_send_control_pkt(
366 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367 0, NULL,
368 VSOCK_PROTO_INVALID, handle);
369 }
370
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)371 static int vmci_transport_send_attach(struct sock *sk,
372 struct vmci_handle handle)
373 {
374 return vmci_transport_send_control_pkt(
375 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376 0, 0, NULL, VSOCK_PROTO_INVALID,
377 handle);
378 }
379
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381 {
382 return vmci_transport_reply_control_pkt_fast(
383 pkt,
384 VMCI_TRANSPORT_PACKET_TYPE_RST,
385 0, 0, NULL,
386 VMCI_INVALID_HANDLE);
387 }
388
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390 struct sockaddr_vm *src)
391 {
392 return vmci_transport_send_control_pkt_bh(
393 dst, src,
394 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395 0, 0, NULL, VMCI_INVALID_HANDLE);
396 }
397
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399 struct sockaddr_vm *src)
400 {
401 return vmci_transport_send_control_pkt_bh(
402 dst, src,
403 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404 0, NULL, VMCI_INVALID_HANDLE);
405 }
406
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408 struct sockaddr_vm *src)
409 {
410 return vmci_transport_send_control_pkt_bh(
411 dst, src,
412 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413 0, NULL, VMCI_INVALID_HANDLE);
414 }
415
vmci_transport_send_wrote(struct sock * sk)416 int vmci_transport_send_wrote(struct sock *sk)
417 {
418 return vmci_transport_send_control_pkt(
419 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420 0, NULL, VSOCK_PROTO_INVALID,
421 VMCI_INVALID_HANDLE);
422 }
423
vmci_transport_send_read(struct sock * sk)424 int vmci_transport_send_read(struct sock *sk)
425 {
426 return vmci_transport_send_control_pkt(
427 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428 0, NULL, VSOCK_PROTO_INVALID,
429 VMCI_INVALID_HANDLE);
430 }
431
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)432 int vmci_transport_send_waiting_write(struct sock *sk,
433 struct vmci_transport_waiting_info *wait)
434 {
435 return vmci_transport_send_control_pkt(
436 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437 0, 0, wait, VSOCK_PROTO_INVALID,
438 VMCI_INVALID_HANDLE);
439 }
440
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)441 int vmci_transport_send_waiting_read(struct sock *sk,
442 struct vmci_transport_waiting_info *wait)
443 {
444 return vmci_transport_send_control_pkt(
445 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446 0, 0, wait, VSOCK_PROTO_INVALID,
447 VMCI_INVALID_HANDLE);
448 }
449
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451 {
452 return vmci_transport_send_control_pkt(
453 &vsk->sk,
454 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455 0, mode, NULL,
456 VSOCK_PROTO_INVALID,
457 VMCI_INVALID_HANDLE);
458 }
459
vmci_transport_send_conn_request(struct sock * sk,size_t size)460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461 {
462 return vmci_transport_send_control_pkt(sk,
463 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464 size, 0, NULL,
465 VSOCK_PROTO_INVALID,
466 VMCI_INVALID_HANDLE);
467 }
468
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470 u16 version)
471 {
472 return vmci_transport_send_control_pkt(
473 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474 size, 0, NULL, version,
475 VMCI_INVALID_HANDLE);
476 }
477
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)478 static struct sock *vmci_transport_get_pending(
479 struct sock *listener,
480 struct vmci_transport_packet *pkt)
481 {
482 struct vsock_sock *vlistener;
483 struct vsock_sock *vpending;
484 struct sock *pending;
485 struct sockaddr_vm src;
486
487 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488
489 vlistener = vsock_sk(listener);
490
491 list_for_each_entry(vpending, &vlistener->pending_links,
492 pending_links) {
493 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494 pkt->dst_port == vpending->local_addr.svm_port) {
495 pending = sk_vsock(vpending);
496 sock_hold(pending);
497 goto found;
498 }
499 }
500
501 pending = NULL;
502 found:
503 return pending;
504
505 }
506
vmci_transport_release_pending(struct sock * pending)507 static void vmci_transport_release_pending(struct sock *pending)
508 {
509 sock_put(pending);
510 }
511
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513 * trusted sockets 2) sockets from applications running as the same user as the
514 * VM (this is only true for the host side and only when using hosted products)
515 */
516
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518 {
519 return vsock->trusted ||
520 vmci_is_context_owner(peer_cid, vsock->owner->uid);
521 }
522
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524 * only if it is trusted as described in vmci_transport_is_trusted.
525 */
526
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528 {
529 if (VMADDR_CID_HYPERVISOR == peer_cid)
530 return true;
531
532 if (vsock->cached_peer != peer_cid) {
533 vsock->cached_peer = peer_cid;
534 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535 (vmci_context_get_priv_flags(peer_cid) &
536 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537 vsock->cached_peer_allow_dgram = false;
538 } else {
539 vsock->cached_peer_allow_dgram = true;
540 }
541 }
542
543 return vsock->cached_peer_allow_dgram;
544 }
545
546 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548 struct vmci_handle *handle,
549 u64 produce_size,
550 u64 consume_size,
551 u32 peer, u32 flags, bool trusted)
552 {
553 int err = 0;
554
555 if (trusted) {
556 /* Try to allocate our queue pair as trusted. This will only
557 * work if vsock is running in the host.
558 */
559
560 err = vmci_qpair_alloc(qpair, handle, produce_size,
561 consume_size,
562 peer, flags,
563 VMCI_PRIVILEGE_FLAG_TRUSTED);
564 if (err != VMCI_ERROR_NO_ACCESS)
565 goto out;
566
567 }
568
569 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572 if (err < 0) {
573 pr_err_once("Could not attach to queue pair with %d\n", err);
574 err = vmci_transport_error_to_vsock_error(err);
575 }
576
577 return err;
578 }
579
580 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)581 vmci_transport_datagram_create_hnd(u32 resource_id,
582 u32 flags,
583 vmci_datagram_recv_cb recv_cb,
584 void *client_data,
585 struct vmci_handle *out_handle)
586 {
587 int err = 0;
588
589 /* Try to allocate our datagram handler as trusted. This will only work
590 * if vsock is running in the host.
591 */
592
593 err = vmci_datagram_create_handle_priv(resource_id, flags,
594 VMCI_PRIVILEGE_FLAG_TRUSTED,
595 recv_cb,
596 client_data, out_handle);
597
598 if (err == VMCI_ERROR_NO_ACCESS)
599 err = vmci_datagram_create_handle(resource_id, flags,
600 recv_cb, client_data,
601 out_handle);
602
603 return err;
604 }
605
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607 * interrupt fires. This is run in bottom-half context and if it ever needs to
608 * sleep it should defer that work to a work queue.
609 */
610
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612 {
613 struct sock *sk;
614 size_t size;
615 struct sk_buff *skb;
616 struct vsock_sock *vsk;
617
618 sk = (struct sock *)data;
619
620 /* This handler is privileged when this module is running on the host.
621 * We will get datagrams from all endpoints (even VMs that are in a
622 * restricted context). If we get one from a restricted context then
623 * the destination socket must be trusted.
624 *
625 * NOTE: We access the socket struct without holding the lock here.
626 * This is ok because the field we are interested is never modified
627 * outside of the create and destruct socket functions.
628 */
629 vsk = vsock_sk(sk);
630 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631 return VMCI_ERROR_NO_ACCESS;
632
633 size = VMCI_DG_SIZE(dg);
634
635 /* Attach the packet to the socket's receive queue as an sk_buff. */
636 skb = alloc_skb(size, GFP_ATOMIC);
637 if (!skb)
638 return VMCI_ERROR_NO_MEM;
639
640 /* sk_receive_skb() will do a sock_put(), so hold here. */
641 sock_hold(sk);
642 skb_put(skb, size);
643 memcpy(skb->data, dg, size);
644 sk_receive_skb(sk, skb, 0);
645
646 return VMCI_SUCCESS;
647 }
648
vmci_transport_stream_allow(u32 cid,u32 port)649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
650 {
651 static const u32 non_socket_contexts[] = {
652 VMADDR_CID_LOCAL,
653 };
654 int i;
655
656 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657
658 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659 if (cid == non_socket_contexts[i])
660 return false;
661 }
662
663 return true;
664 }
665
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667 * interrupt fires. This is run in bottom-half context but it defers most of
668 * its work to the packet handling work queue.
669 */
670
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672 {
673 struct sock *sk;
674 struct sockaddr_vm dst;
675 struct sockaddr_vm src;
676 struct vmci_transport_packet *pkt;
677 struct vsock_sock *vsk;
678 bool bh_process_pkt;
679 int err;
680
681 sk = NULL;
682 err = VMCI_SUCCESS;
683 bh_process_pkt = false;
684
685 /* Ignore incoming packets from contexts without sockets, or resources
686 * that aren't vsock implementations.
687 */
688
689 if (!vmci_transport_stream_allow(dg->src.context, -1)
690 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691 return VMCI_ERROR_NO_ACCESS;
692
693 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694 /* Drop datagrams that do not contain full VSock packets. */
695 return VMCI_ERROR_INVALID_ARGS;
696
697 pkt = (struct vmci_transport_packet *)dg;
698
699 /* Find the socket that should handle this packet. First we look for a
700 * connected socket and if there is none we look for a socket bound to
701 * the destintation address.
702 */
703 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705
706 sk = vsock_find_connected_socket(&src, &dst);
707 if (!sk) {
708 sk = vsock_find_bound_socket(&dst);
709 if (!sk) {
710 /* We could not find a socket for this specified
711 * address. If this packet is a RST, we just drop it.
712 * If it is another packet, we send a RST. Note that
713 * we do not send a RST reply to RSTs so that we do not
714 * continually send RSTs between two endpoints.
715 *
716 * Note that since this is a reply, dst is src and src
717 * is dst.
718 */
719 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720 pr_err("unable to send reset\n");
721
722 err = VMCI_ERROR_NOT_FOUND;
723 goto out;
724 }
725 }
726
727 /* If the received packet type is beyond all types known to this
728 * implementation, reply with an invalid message. Hopefully this will
729 * help when implementing backwards compatibility in the future.
730 */
731 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732 vmci_transport_send_invalid_bh(&dst, &src);
733 err = VMCI_ERROR_INVALID_ARGS;
734 goto out;
735 }
736
737 /* This handler is privileged when this module is running on the host.
738 * We will get datagram connect requests from all endpoints (even VMs
739 * that are in a restricted context). If we get one from a restricted
740 * context then the destination socket must be trusted.
741 *
742 * NOTE: We access the socket struct without holding the lock here.
743 * This is ok because the field we are interested is never modified
744 * outside of the create and destruct socket functions.
745 */
746 vsk = vsock_sk(sk);
747 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748 err = VMCI_ERROR_NO_ACCESS;
749 goto out;
750 }
751
752 /* We do most everything in a work queue, but let's fast path the
753 * notification of reads and writes to help data transfer performance.
754 * We can only do this if there is no process context code executing
755 * for this socket since that may change the state.
756 */
757 bh_lock_sock(sk);
758
759 if (!sock_owned_by_user(sk)) {
760 /* The local context ID may be out of date, update it. */
761 vsk->local_addr.svm_cid = dst.svm_cid;
762
763 if (sk->sk_state == TCP_ESTABLISHED)
764 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765 sk, pkt, true, &dst, &src,
766 &bh_process_pkt);
767 }
768
769 bh_unlock_sock(sk);
770
771 if (!bh_process_pkt) {
772 struct vmci_transport_recv_pkt_info *recv_pkt_info;
773
774 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775 if (!recv_pkt_info) {
776 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777 pr_err("unable to send reset\n");
778
779 err = VMCI_ERROR_NO_MEM;
780 goto out;
781 }
782
783 recv_pkt_info->sk = sk;
784 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786
787 schedule_work(&recv_pkt_info->work);
788 /* Clear sk so that the reference count incremented by one of
789 * the Find functions above is not decremented below. We need
790 * that reference count for the packet handler we've scheduled
791 * to run.
792 */
793 sk = NULL;
794 }
795
796 out:
797 if (sk)
798 sock_put(sk);
799
800 return err;
801 }
802
vmci_transport_handle_detach(struct sock * sk)803 static void vmci_transport_handle_detach(struct sock *sk)
804 {
805 struct vsock_sock *vsk;
806
807 vsk = vsock_sk(sk);
808
809 /* Only handle our own sockets */
810 if (vsk->transport != &vmci_transport)
811 return;
812
813 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
814 sock_set_flag(sk, SOCK_DONE);
815
816 /* On a detach the peer will not be sending or receiving
817 * anymore.
818 */
819 vsk->peer_shutdown = SHUTDOWN_MASK;
820
821 /* We should not be sending anymore since the peer won't be
822 * there to receive, but we can still receive if there is data
823 * left in our consume queue. If the local endpoint is a host,
824 * we can't call vsock_stream_has_data, since that may block,
825 * but a host endpoint can't read data once the VM has
826 * detached, so there is no available data in that case.
827 */
828 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
829 vsock_stream_has_data(vsk) <= 0) {
830 if (sk->sk_state == TCP_SYN_SENT) {
831 /* The peer may detach from a queue pair while
832 * we are still in the connecting state, i.e.,
833 * if the peer VM is killed after attaching to
834 * a queue pair, but before we complete the
835 * handshake. In that case, we treat the detach
836 * event like a reset.
837 */
838
839 sk->sk_state = TCP_CLOSE;
840 sk->sk_err = ECONNRESET;
841 sk_error_report(sk);
842 return;
843 }
844 sk->sk_state = TCP_CLOSE;
845 }
846 sk->sk_state_change(sk);
847 }
848 }
849
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)850 static void vmci_transport_peer_detach_cb(u32 sub_id,
851 const struct vmci_event_data *e_data,
852 void *client_data)
853 {
854 struct vmci_transport *trans = client_data;
855 const struct vmci_event_payload_qp *e_payload;
856
857 e_payload = vmci_event_data_const_payload(e_data);
858
859 /* XXX This is lame, we should provide a way to lookup sockets by
860 * qp_handle.
861 */
862 if (vmci_handle_is_invalid(e_payload->handle) ||
863 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
864 return;
865
866 /* We don't ask for delayed CBs when we subscribe to this event (we
867 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
868 * guarantees in that case about what context we might be running in,
869 * so it could be BH or process, blockable or non-blockable. So we
870 * need to account for all possible contexts here.
871 */
872 spin_lock_bh(&trans->lock);
873 if (!trans->sk)
874 goto out;
875
876 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
877 * where trans->sk isn't locked.
878 */
879 bh_lock_sock(trans->sk);
880
881 vmci_transport_handle_detach(trans->sk);
882
883 bh_unlock_sock(trans->sk);
884 out:
885 spin_unlock_bh(&trans->lock);
886 }
887
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)888 static void vmci_transport_qp_resumed_cb(u32 sub_id,
889 const struct vmci_event_data *e_data,
890 void *client_data)
891 {
892 vsock_for_each_connected_socket(vmci_transport_handle_detach);
893 }
894
vmci_transport_recv_pkt_work(struct work_struct * work)895 static void vmci_transport_recv_pkt_work(struct work_struct *work)
896 {
897 struct vmci_transport_recv_pkt_info *recv_pkt_info;
898 struct vmci_transport_packet *pkt;
899 struct sock *sk;
900
901 recv_pkt_info =
902 container_of(work, struct vmci_transport_recv_pkt_info, work);
903 sk = recv_pkt_info->sk;
904 pkt = &recv_pkt_info->pkt;
905
906 lock_sock(sk);
907
908 /* The local context ID may be out of date. */
909 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
910
911 switch (sk->sk_state) {
912 case TCP_LISTEN:
913 vmci_transport_recv_listen(sk, pkt);
914 break;
915 case TCP_SYN_SENT:
916 /* Processing of pending connections for servers goes through
917 * the listening socket, so see vmci_transport_recv_listen()
918 * for that path.
919 */
920 vmci_transport_recv_connecting_client(sk, pkt);
921 break;
922 case TCP_ESTABLISHED:
923 vmci_transport_recv_connected(sk, pkt);
924 break;
925 default:
926 /* Because this function does not run in the same context as
927 * vmci_transport_recv_stream_cb it is possible that the
928 * socket has closed. We need to let the other side know or it
929 * could be sitting in a connect and hang forever. Send a
930 * reset to prevent that.
931 */
932 vmci_transport_send_reset(sk, pkt);
933 break;
934 }
935
936 release_sock(sk);
937 kfree(recv_pkt_info);
938 /* Release reference obtained in the stream callback when we fetched
939 * this socket out of the bound or connected list.
940 */
941 sock_put(sk);
942 }
943
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)944 static int vmci_transport_recv_listen(struct sock *sk,
945 struct vmci_transport_packet *pkt)
946 {
947 struct sock *pending;
948 struct vsock_sock *vpending;
949 int err;
950 u64 qp_size;
951 bool old_request = false;
952 bool old_pkt_proto = false;
953
954 /* Because we are in the listen state, we could be receiving a packet
955 * for ourself or any previous connection requests that we received.
956 * If it's the latter, we try to find a socket in our list of pending
957 * connections and, if we do, call the appropriate handler for the
958 * state that that socket is in. Otherwise we try to service the
959 * connection request.
960 */
961 pending = vmci_transport_get_pending(sk, pkt);
962 if (pending) {
963 lock_sock(pending);
964
965 /* The local context ID may be out of date. */
966 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
967
968 switch (pending->sk_state) {
969 case TCP_SYN_SENT:
970 err = vmci_transport_recv_connecting_server(sk,
971 pending,
972 pkt);
973 break;
974 default:
975 vmci_transport_send_reset(pending, pkt);
976 err = -EINVAL;
977 }
978
979 if (err < 0)
980 vsock_remove_pending(sk, pending);
981
982 release_sock(pending);
983 vmci_transport_release_pending(pending);
984
985 return err;
986 }
987
988 /* The listen state only accepts connection requests. Reply with a
989 * reset unless we received a reset.
990 */
991
992 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
993 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
994 vmci_transport_reply_reset(pkt);
995 return -EINVAL;
996 }
997
998 if (pkt->u.size == 0) {
999 vmci_transport_reply_reset(pkt);
1000 return -EINVAL;
1001 }
1002
1003 /* If this socket can't accommodate this connection request, we send a
1004 * reset. Otherwise we create and initialize a child socket and reply
1005 * with a connection negotiation.
1006 */
1007 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1008 vmci_transport_reply_reset(pkt);
1009 return -ECONNREFUSED;
1010 }
1011
1012 pending = vsock_create_connected(sk);
1013 if (!pending) {
1014 vmci_transport_send_reset(sk, pkt);
1015 return -ENOMEM;
1016 }
1017
1018 vpending = vsock_sk(pending);
1019
1020 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1021 pkt->dst_port);
1022 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1023 pkt->src_port);
1024
1025 err = vsock_assign_transport(vpending, vsock_sk(sk));
1026 /* Transport assigned (looking at remote_addr) must be the same
1027 * where we received the request.
1028 */
1029 if (err || !vmci_check_transport(vpending)) {
1030 vmci_transport_send_reset(sk, pkt);
1031 sock_put(pending);
1032 return err;
1033 }
1034
1035 /* If the proposed size fits within our min/max, accept it. Otherwise
1036 * propose our own size.
1037 */
1038 if (pkt->u.size >= vpending->buffer_min_size &&
1039 pkt->u.size <= vpending->buffer_max_size) {
1040 qp_size = pkt->u.size;
1041 } else {
1042 qp_size = vpending->buffer_size;
1043 }
1044
1045 /* Figure out if we are using old or new requests based on the
1046 * overrides pkt types sent by our peer.
1047 */
1048 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1049 old_request = old_pkt_proto;
1050 } else {
1051 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1052 old_request = true;
1053 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1054 old_request = false;
1055
1056 }
1057
1058 if (old_request) {
1059 /* Handle a REQUEST (or override) */
1060 u16 version = VSOCK_PROTO_INVALID;
1061 if (vmci_transport_proto_to_notify_struct(
1062 pending, &version, true))
1063 err = vmci_transport_send_negotiate(pending, qp_size);
1064 else
1065 err = -EINVAL;
1066
1067 } else {
1068 /* Handle a REQUEST2 (or override) */
1069 int proto_int = pkt->proto;
1070 int pos;
1071 u16 active_proto_version = 0;
1072
1073 /* The list of possible protocols is the intersection of all
1074 * protocols the client supports ... plus all the protocols we
1075 * support.
1076 */
1077 proto_int &= vmci_transport_new_proto_supported_versions();
1078
1079 /* We choose the highest possible protocol version and use that
1080 * one.
1081 */
1082 pos = fls(proto_int);
1083 if (pos) {
1084 active_proto_version = (1 << (pos - 1));
1085 if (vmci_transport_proto_to_notify_struct(
1086 pending, &active_proto_version, false))
1087 err = vmci_transport_send_negotiate2(pending,
1088 qp_size,
1089 active_proto_version);
1090 else
1091 err = -EINVAL;
1092
1093 } else {
1094 err = -EINVAL;
1095 }
1096 }
1097
1098 if (err < 0) {
1099 vmci_transport_send_reset(sk, pkt);
1100 sock_put(pending);
1101 err = vmci_transport_error_to_vsock_error(err);
1102 goto out;
1103 }
1104
1105 vsock_add_pending(sk, pending);
1106 sk_acceptq_added(sk);
1107
1108 pending->sk_state = TCP_SYN_SENT;
1109 vmci_trans(vpending)->produce_size =
1110 vmci_trans(vpending)->consume_size = qp_size;
1111 vpending->buffer_size = qp_size;
1112
1113 vmci_trans(vpending)->notify_ops->process_request(pending);
1114
1115 /* We might never receive another message for this socket and it's not
1116 * connected to any process, so we have to ensure it gets cleaned up
1117 * ourself. Our delayed work function will take care of that. Note
1118 * that we do not ever cancel this function since we have few
1119 * guarantees about its state when calling cancel_delayed_work().
1120 * Instead we hold a reference on the socket for that function and make
1121 * it capable of handling cases where it needs to do nothing but
1122 * release that reference.
1123 */
1124 vpending->listener = sk;
1125 sock_hold(sk);
1126 sock_hold(pending);
1127 schedule_delayed_work(&vpending->pending_work, HZ);
1128
1129 out:
1130 return err;
1131 }
1132
1133 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1134 vmci_transport_recv_connecting_server(struct sock *listener,
1135 struct sock *pending,
1136 struct vmci_transport_packet *pkt)
1137 {
1138 struct vsock_sock *vpending;
1139 struct vmci_handle handle;
1140 struct vmci_qp *qpair;
1141 bool is_local;
1142 u32 flags;
1143 u32 detach_sub_id;
1144 int err;
1145 int skerr;
1146
1147 vpending = vsock_sk(pending);
1148 detach_sub_id = VMCI_INVALID_ID;
1149
1150 switch (pkt->type) {
1151 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1152 if (vmci_handle_is_invalid(pkt->u.handle)) {
1153 vmci_transport_send_reset(pending, pkt);
1154 skerr = EPROTO;
1155 err = -EINVAL;
1156 goto destroy;
1157 }
1158 break;
1159 default:
1160 /* Close and cleanup the connection. */
1161 vmci_transport_send_reset(pending, pkt);
1162 skerr = EPROTO;
1163 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1164 goto destroy;
1165 }
1166
1167 /* In order to complete the connection we need to attach to the offered
1168 * queue pair and send an attach notification. We also subscribe to the
1169 * detach event so we know when our peer goes away, and we do that
1170 * before attaching so we don't miss an event. If all this succeeds,
1171 * we update our state and wakeup anything waiting in accept() for a
1172 * connection.
1173 */
1174
1175 /* We don't care about attach since we ensure the other side has
1176 * attached by specifying the ATTACH_ONLY flag below.
1177 */
1178 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1179 vmci_transport_peer_detach_cb,
1180 vmci_trans(vpending), &detach_sub_id);
1181 if (err < VMCI_SUCCESS) {
1182 vmci_transport_send_reset(pending, pkt);
1183 err = vmci_transport_error_to_vsock_error(err);
1184 skerr = -err;
1185 goto destroy;
1186 }
1187
1188 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1189
1190 /* Now attach to the queue pair the client created. */
1191 handle = pkt->u.handle;
1192
1193 /* vpending->local_addr always has a context id so we do not need to
1194 * worry about VMADDR_CID_ANY in this case.
1195 */
1196 is_local =
1197 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1198 flags = VMCI_QPFLAG_ATTACH_ONLY;
1199 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1200
1201 err = vmci_transport_queue_pair_alloc(
1202 &qpair,
1203 &handle,
1204 vmci_trans(vpending)->produce_size,
1205 vmci_trans(vpending)->consume_size,
1206 pkt->dg.src.context,
1207 flags,
1208 vmci_transport_is_trusted(
1209 vpending,
1210 vpending->remote_addr.svm_cid));
1211 if (err < 0) {
1212 vmci_transport_send_reset(pending, pkt);
1213 skerr = -err;
1214 goto destroy;
1215 }
1216
1217 vmci_trans(vpending)->qp_handle = handle;
1218 vmci_trans(vpending)->qpair = qpair;
1219
1220 /* When we send the attach message, we must be ready to handle incoming
1221 * control messages on the newly connected socket. So we move the
1222 * pending socket to the connected state before sending the attach
1223 * message. Otherwise, an incoming packet triggered by the attach being
1224 * received by the peer may be processed concurrently with what happens
1225 * below after sending the attach message, and that incoming packet
1226 * will find the listening socket instead of the (currently) pending
1227 * socket. Note that enqueueing the socket increments the reference
1228 * count, so even if a reset comes before the connection is accepted,
1229 * the socket will be valid until it is removed from the queue.
1230 *
1231 * If we fail sending the attach below, we remove the socket from the
1232 * connected list and move the socket to TCP_CLOSE before
1233 * releasing the lock, so a pending slow path processing of an incoming
1234 * packet will not see the socket in the connected state in that case.
1235 */
1236 pending->sk_state = TCP_ESTABLISHED;
1237
1238 vsock_insert_connected(vpending);
1239
1240 /* Notify our peer of our attach. */
1241 err = vmci_transport_send_attach(pending, handle);
1242 if (err < 0) {
1243 vsock_remove_connected(vpending);
1244 pr_err("Could not send attach\n");
1245 vmci_transport_send_reset(pending, pkt);
1246 err = vmci_transport_error_to_vsock_error(err);
1247 skerr = -err;
1248 goto destroy;
1249 }
1250
1251 /* We have a connection. Move the now connected socket from the
1252 * listener's pending list to the accept queue so callers of accept()
1253 * can find it.
1254 */
1255 vsock_remove_pending(listener, pending);
1256 vsock_enqueue_accept(listener, pending);
1257
1258 /* Callers of accept() will be waiting on the listening socket, not
1259 * the pending socket.
1260 */
1261 listener->sk_data_ready(listener);
1262
1263 return 0;
1264
1265 destroy:
1266 pending->sk_err = skerr;
1267 pending->sk_state = TCP_CLOSE;
1268 /* As long as we drop our reference, all necessary cleanup will handle
1269 * when the cleanup function drops its reference and our destruct
1270 * implementation is called. Note that since the listen handler will
1271 * remove pending from the pending list upon our failure, the cleanup
1272 * function won't drop the additional reference, which is why we do it
1273 * here.
1274 */
1275 sock_put(pending);
1276
1277 return err;
1278 }
1279
1280 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1281 vmci_transport_recv_connecting_client(struct sock *sk,
1282 struct vmci_transport_packet *pkt)
1283 {
1284 struct vsock_sock *vsk;
1285 int err;
1286 int skerr;
1287
1288 vsk = vsock_sk(sk);
1289
1290 switch (pkt->type) {
1291 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1292 if (vmci_handle_is_invalid(pkt->u.handle) ||
1293 !vmci_handle_is_equal(pkt->u.handle,
1294 vmci_trans(vsk)->qp_handle)) {
1295 skerr = EPROTO;
1296 err = -EINVAL;
1297 goto destroy;
1298 }
1299
1300 /* Signify the socket is connected and wakeup the waiter in
1301 * connect(). Also place the socket in the connected table for
1302 * accounting (it can already be found since it's in the bound
1303 * table).
1304 */
1305 sk->sk_state = TCP_ESTABLISHED;
1306 sk->sk_socket->state = SS_CONNECTED;
1307 vsock_insert_connected(vsk);
1308 sk->sk_state_change(sk);
1309
1310 break;
1311 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1312 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1313 if (pkt->u.size == 0
1314 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1315 || pkt->src_port != vsk->remote_addr.svm_port
1316 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1317 || vmci_trans(vsk)->qpair
1318 || vmci_trans(vsk)->produce_size != 0
1319 || vmci_trans(vsk)->consume_size != 0
1320 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1321 skerr = EPROTO;
1322 err = -EINVAL;
1323
1324 goto destroy;
1325 }
1326
1327 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1328 if (err) {
1329 skerr = -err;
1330 goto destroy;
1331 }
1332
1333 break;
1334 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1335 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1336 if (err) {
1337 skerr = -err;
1338 goto destroy;
1339 }
1340
1341 break;
1342 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1343 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1344 * continue processing here after they sent an INVALID packet.
1345 * This meant that we got a RST after the INVALID. We ignore a
1346 * RST after an INVALID. The common code doesn't send the RST
1347 * ... so we can hang if an old version of the common code
1348 * fails between getting a REQUEST and sending an OFFER back.
1349 * Not much we can do about it... except hope that it doesn't
1350 * happen.
1351 */
1352 if (vsk->ignore_connecting_rst) {
1353 vsk->ignore_connecting_rst = false;
1354 } else {
1355 skerr = ECONNRESET;
1356 err = 0;
1357 goto destroy;
1358 }
1359
1360 break;
1361 default:
1362 /* Close and cleanup the connection. */
1363 skerr = EPROTO;
1364 err = -EINVAL;
1365 goto destroy;
1366 }
1367
1368 return 0;
1369
1370 destroy:
1371 vmci_transport_send_reset(sk, pkt);
1372
1373 sk->sk_state = TCP_CLOSE;
1374 sk->sk_err = skerr;
1375 sk_error_report(sk);
1376 return err;
1377 }
1378
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1379 static int vmci_transport_recv_connecting_client_negotiate(
1380 struct sock *sk,
1381 struct vmci_transport_packet *pkt)
1382 {
1383 int err;
1384 struct vsock_sock *vsk;
1385 struct vmci_handle handle;
1386 struct vmci_qp *qpair;
1387 u32 detach_sub_id;
1388 bool is_local;
1389 u32 flags;
1390 bool old_proto = true;
1391 bool old_pkt_proto;
1392 u16 version;
1393
1394 vsk = vsock_sk(sk);
1395 handle = VMCI_INVALID_HANDLE;
1396 detach_sub_id = VMCI_INVALID_ID;
1397
1398 /* If we have gotten here then we should be past the point where old
1399 * linux vsock could have sent the bogus rst.
1400 */
1401 vsk->sent_request = false;
1402 vsk->ignore_connecting_rst = false;
1403
1404 /* Verify that we're OK with the proposed queue pair size */
1405 if (pkt->u.size < vsk->buffer_min_size ||
1406 pkt->u.size > vsk->buffer_max_size) {
1407 err = -EINVAL;
1408 goto destroy;
1409 }
1410
1411 /* At this point we know the CID the peer is using to talk to us. */
1412
1413 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1414 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1415
1416 /* Setup the notify ops to be the highest supported version that both
1417 * the server and the client support.
1418 */
1419
1420 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1421 old_proto = old_pkt_proto;
1422 } else {
1423 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1424 old_proto = true;
1425 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1426 old_proto = false;
1427
1428 }
1429
1430 if (old_proto)
1431 version = VSOCK_PROTO_INVALID;
1432 else
1433 version = pkt->proto;
1434
1435 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1436 err = -EINVAL;
1437 goto destroy;
1438 }
1439
1440 /* Subscribe to detach events first.
1441 *
1442 * XXX We attach once for each queue pair created for now so it is easy
1443 * to find the socket (it's provided), but later we should only
1444 * subscribe once and add a way to lookup sockets by queue pair handle.
1445 */
1446 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1447 vmci_transport_peer_detach_cb,
1448 vmci_trans(vsk), &detach_sub_id);
1449 if (err < VMCI_SUCCESS) {
1450 err = vmci_transport_error_to_vsock_error(err);
1451 goto destroy;
1452 }
1453
1454 /* Make VMCI select the handle for us. */
1455 handle = VMCI_INVALID_HANDLE;
1456 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1457 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1458
1459 err = vmci_transport_queue_pair_alloc(&qpair,
1460 &handle,
1461 pkt->u.size,
1462 pkt->u.size,
1463 vsk->remote_addr.svm_cid,
1464 flags,
1465 vmci_transport_is_trusted(
1466 vsk,
1467 vsk->
1468 remote_addr.svm_cid));
1469 if (err < 0)
1470 goto destroy;
1471
1472 err = vmci_transport_send_qp_offer(sk, handle);
1473 if (err < 0) {
1474 err = vmci_transport_error_to_vsock_error(err);
1475 goto destroy;
1476 }
1477
1478 vmci_trans(vsk)->qp_handle = handle;
1479 vmci_trans(vsk)->qpair = qpair;
1480
1481 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1482 pkt->u.size;
1483
1484 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1485
1486 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1487
1488 return 0;
1489
1490 destroy:
1491 if (detach_sub_id != VMCI_INVALID_ID)
1492 vmci_event_unsubscribe(detach_sub_id);
1493
1494 if (!vmci_handle_is_invalid(handle))
1495 vmci_qpair_detach(&qpair);
1496
1497 return err;
1498 }
1499
1500 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1501 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1502 struct vmci_transport_packet *pkt)
1503 {
1504 int err = 0;
1505 struct vsock_sock *vsk = vsock_sk(sk);
1506
1507 if (vsk->sent_request) {
1508 vsk->sent_request = false;
1509 vsk->ignore_connecting_rst = true;
1510
1511 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1512 if (err < 0)
1513 err = vmci_transport_error_to_vsock_error(err);
1514 else
1515 err = 0;
1516
1517 }
1518
1519 return err;
1520 }
1521
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1522 static int vmci_transport_recv_connected(struct sock *sk,
1523 struct vmci_transport_packet *pkt)
1524 {
1525 struct vsock_sock *vsk;
1526 bool pkt_processed = false;
1527
1528 /* In cases where we are closing the connection, it's sufficient to
1529 * mark the state change (and maybe error) and wake up any waiting
1530 * threads. Since this is a connected socket, it's owned by a user
1531 * process and will be cleaned up when the failure is passed back on
1532 * the current or next system call. Our system call implementations
1533 * must therefore check for error and state changes on entry and when
1534 * being awoken.
1535 */
1536 switch (pkt->type) {
1537 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1538 if (pkt->u.mode) {
1539 vsk = vsock_sk(sk);
1540
1541 vsk->peer_shutdown |= pkt->u.mode;
1542 sk->sk_state_change(sk);
1543 }
1544 break;
1545
1546 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1547 vsk = vsock_sk(sk);
1548 /* It is possible that we sent our peer a message (e.g a
1549 * WAITING_READ) right before we got notified that the peer had
1550 * detached. If that happens then we can get a RST pkt back
1551 * from our peer even though there is data available for us to
1552 * read. In that case, don't shutdown the socket completely but
1553 * instead allow the local client to finish reading data off
1554 * the queuepair. Always treat a RST pkt in connected mode like
1555 * a clean shutdown.
1556 */
1557 sock_set_flag(sk, SOCK_DONE);
1558 vsk->peer_shutdown = SHUTDOWN_MASK;
1559 if (vsock_stream_has_data(vsk) <= 0)
1560 sk->sk_state = TCP_CLOSING;
1561
1562 sk->sk_state_change(sk);
1563 break;
1564
1565 default:
1566 vsk = vsock_sk(sk);
1567 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1568 sk, pkt, false, NULL, NULL,
1569 &pkt_processed);
1570 if (!pkt_processed)
1571 return -EINVAL;
1572
1573 break;
1574 }
1575
1576 return 0;
1577 }
1578
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1579 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1580 struct vsock_sock *psk)
1581 {
1582 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1583 if (!vsk->trans)
1584 return -ENOMEM;
1585
1586 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1587 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1588 vmci_trans(vsk)->qpair = NULL;
1589 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1590 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1591 vmci_trans(vsk)->notify_ops = NULL;
1592 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1593 vmci_trans(vsk)->sk = &vsk->sk;
1594 spin_lock_init(&vmci_trans(vsk)->lock);
1595
1596 return 0;
1597 }
1598
vmci_transport_free_resources(struct list_head * transport_list)1599 static void vmci_transport_free_resources(struct list_head *transport_list)
1600 {
1601 while (!list_empty(transport_list)) {
1602 struct vmci_transport *transport =
1603 list_first_entry(transport_list, struct vmci_transport,
1604 elem);
1605 list_del(&transport->elem);
1606
1607 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1608 vmci_event_unsubscribe(transport->detach_sub_id);
1609 transport->detach_sub_id = VMCI_INVALID_ID;
1610 }
1611
1612 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1613 vmci_qpair_detach(&transport->qpair);
1614 transport->qp_handle = VMCI_INVALID_HANDLE;
1615 transport->produce_size = 0;
1616 transport->consume_size = 0;
1617 }
1618
1619 kfree(transport);
1620 }
1621 }
1622
vmci_transport_cleanup(struct work_struct * work)1623 static void vmci_transport_cleanup(struct work_struct *work)
1624 {
1625 LIST_HEAD(pending);
1626
1627 spin_lock_bh(&vmci_transport_cleanup_lock);
1628 list_replace_init(&vmci_transport_cleanup_list, &pending);
1629 spin_unlock_bh(&vmci_transport_cleanup_lock);
1630 vmci_transport_free_resources(&pending);
1631 }
1632
vmci_transport_destruct(struct vsock_sock * vsk)1633 static void vmci_transport_destruct(struct vsock_sock *vsk)
1634 {
1635 /* transport can be NULL if we hit a failure at init() time */
1636 if (!vmci_trans(vsk))
1637 return;
1638
1639 /* Ensure that the detach callback doesn't use the sk/vsk
1640 * we are about to destruct.
1641 */
1642 spin_lock_bh(&vmci_trans(vsk)->lock);
1643 vmci_trans(vsk)->sk = NULL;
1644 spin_unlock_bh(&vmci_trans(vsk)->lock);
1645
1646 if (vmci_trans(vsk)->notify_ops)
1647 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1648
1649 spin_lock_bh(&vmci_transport_cleanup_lock);
1650 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1651 spin_unlock_bh(&vmci_transport_cleanup_lock);
1652 schedule_work(&vmci_transport_cleanup_work);
1653
1654 vsk->trans = NULL;
1655 }
1656
vmci_transport_release(struct vsock_sock * vsk)1657 static void vmci_transport_release(struct vsock_sock *vsk)
1658 {
1659 vsock_remove_sock(vsk);
1660
1661 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1662 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1663 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1664 }
1665 }
1666
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1667 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1668 struct sockaddr_vm *addr)
1669 {
1670 u32 port;
1671 u32 flags;
1672 int err;
1673
1674 /* VMCI will select a resource ID for us if we provide
1675 * VMCI_INVALID_ID.
1676 */
1677 port = addr->svm_port == VMADDR_PORT_ANY ?
1678 VMCI_INVALID_ID : addr->svm_port;
1679
1680 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1681 return -EACCES;
1682
1683 flags = addr->svm_cid == VMADDR_CID_ANY ?
1684 VMCI_FLAG_ANYCID_DG_HND : 0;
1685
1686 err = vmci_transport_datagram_create_hnd(port, flags,
1687 vmci_transport_recv_dgram_cb,
1688 &vsk->sk,
1689 &vmci_trans(vsk)->dg_handle);
1690 if (err < VMCI_SUCCESS)
1691 return vmci_transport_error_to_vsock_error(err);
1692 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1693 vmci_trans(vsk)->dg_handle.resource);
1694
1695 return 0;
1696 }
1697
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1698 static int vmci_transport_dgram_enqueue(
1699 struct vsock_sock *vsk,
1700 struct sockaddr_vm *remote_addr,
1701 struct msghdr *msg,
1702 size_t len)
1703 {
1704 int err;
1705 struct vmci_datagram *dg;
1706
1707 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1708 return -EMSGSIZE;
1709
1710 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1711 return -EPERM;
1712
1713 /* Allocate a buffer for the user's message and our packet header. */
1714 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1715 if (!dg)
1716 return -ENOMEM;
1717
1718 err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1719 if (err) {
1720 kfree(dg);
1721 return err;
1722 }
1723
1724 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1725 remote_addr->svm_port);
1726 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1727 vsk->local_addr.svm_port);
1728 dg->payload_size = len;
1729
1730 err = vmci_datagram_send(dg);
1731 kfree(dg);
1732 if (err < 0)
1733 return vmci_transport_error_to_vsock_error(err);
1734
1735 return err - sizeof(*dg);
1736 }
1737
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1738 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1739 struct msghdr *msg, size_t len,
1740 int flags)
1741 {
1742 int err;
1743 int noblock;
1744 struct vmci_datagram *dg;
1745 size_t payload_len;
1746 struct sk_buff *skb;
1747
1748 noblock = flags & MSG_DONTWAIT;
1749
1750 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1751 return -EOPNOTSUPP;
1752
1753 /* Retrieve the head sk_buff from the socket's receive queue. */
1754 err = 0;
1755 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1756 if (!skb)
1757 return err;
1758
1759 dg = (struct vmci_datagram *)skb->data;
1760 if (!dg)
1761 /* err is 0, meaning we read zero bytes. */
1762 goto out;
1763
1764 payload_len = dg->payload_size;
1765 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1766 if (payload_len != skb->len - sizeof(*dg)) {
1767 err = -EINVAL;
1768 goto out;
1769 }
1770
1771 if (payload_len > len) {
1772 payload_len = len;
1773 msg->msg_flags |= MSG_TRUNC;
1774 }
1775
1776 /* Place the datagram payload in the user's iovec. */
1777 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1778 if (err)
1779 goto out;
1780
1781 if (msg->msg_name) {
1782 /* Provide the address of the sender. */
1783 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1784 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1785 msg->msg_namelen = sizeof(*vm_addr);
1786 }
1787 err = payload_len;
1788
1789 out:
1790 skb_free_datagram(&vsk->sk, skb);
1791 return err;
1792 }
1793
vmci_transport_dgram_allow(u32 cid,u32 port)1794 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1795 {
1796 if (cid == VMADDR_CID_HYPERVISOR) {
1797 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1798 * state and are allowed.
1799 */
1800 return port == VMCI_UNITY_PBRPC_REGISTER;
1801 }
1802
1803 return true;
1804 }
1805
vmci_transport_connect(struct vsock_sock * vsk)1806 static int vmci_transport_connect(struct vsock_sock *vsk)
1807 {
1808 int err;
1809 bool old_pkt_proto = false;
1810 struct sock *sk = &vsk->sk;
1811
1812 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1813 old_pkt_proto) {
1814 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1815 if (err < 0) {
1816 sk->sk_state = TCP_CLOSE;
1817 return err;
1818 }
1819 } else {
1820 int supported_proto_versions =
1821 vmci_transport_new_proto_supported_versions();
1822 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1823 supported_proto_versions);
1824 if (err < 0) {
1825 sk->sk_state = TCP_CLOSE;
1826 return err;
1827 }
1828
1829 vsk->sent_request = true;
1830 }
1831
1832 return err;
1833 }
1834
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1835 static ssize_t vmci_transport_stream_dequeue(
1836 struct vsock_sock *vsk,
1837 struct msghdr *msg,
1838 size_t len,
1839 int flags)
1840 {
1841 if (flags & MSG_PEEK)
1842 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1843 else
1844 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1845 }
1846
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1847 static ssize_t vmci_transport_stream_enqueue(
1848 struct vsock_sock *vsk,
1849 struct msghdr *msg,
1850 size_t len)
1851 {
1852 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1853 }
1854
vmci_transport_stream_has_data(struct vsock_sock * vsk)1855 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1856 {
1857 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1858 }
1859
vmci_transport_stream_has_space(struct vsock_sock * vsk)1860 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1861 {
1862 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1863 }
1864
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1865 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1866 {
1867 return vmci_trans(vsk)->consume_size;
1868 }
1869
vmci_transport_stream_is_active(struct vsock_sock * vsk)1870 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1871 {
1872 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1873 }
1874
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1875 static int vmci_transport_notify_poll_in(
1876 struct vsock_sock *vsk,
1877 size_t target,
1878 bool *data_ready_now)
1879 {
1880 return vmci_trans(vsk)->notify_ops->poll_in(
1881 &vsk->sk, target, data_ready_now);
1882 }
1883
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1884 static int vmci_transport_notify_poll_out(
1885 struct vsock_sock *vsk,
1886 size_t target,
1887 bool *space_available_now)
1888 {
1889 return vmci_trans(vsk)->notify_ops->poll_out(
1890 &vsk->sk, target, space_available_now);
1891 }
1892
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1893 static int vmci_transport_notify_recv_init(
1894 struct vsock_sock *vsk,
1895 size_t target,
1896 struct vsock_transport_recv_notify_data *data)
1897 {
1898 return vmci_trans(vsk)->notify_ops->recv_init(
1899 &vsk->sk, target,
1900 (struct vmci_transport_recv_notify_data *)data);
1901 }
1902
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1903 static int vmci_transport_notify_recv_pre_block(
1904 struct vsock_sock *vsk,
1905 size_t target,
1906 struct vsock_transport_recv_notify_data *data)
1907 {
1908 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1909 &vsk->sk, target,
1910 (struct vmci_transport_recv_notify_data *)data);
1911 }
1912
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1913 static int vmci_transport_notify_recv_pre_dequeue(
1914 struct vsock_sock *vsk,
1915 size_t target,
1916 struct vsock_transport_recv_notify_data *data)
1917 {
1918 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1919 &vsk->sk, target,
1920 (struct vmci_transport_recv_notify_data *)data);
1921 }
1922
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1923 static int vmci_transport_notify_recv_post_dequeue(
1924 struct vsock_sock *vsk,
1925 size_t target,
1926 ssize_t copied,
1927 bool data_read,
1928 struct vsock_transport_recv_notify_data *data)
1929 {
1930 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1931 &vsk->sk, target, copied, data_read,
1932 (struct vmci_transport_recv_notify_data *)data);
1933 }
1934
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1935 static int vmci_transport_notify_send_init(
1936 struct vsock_sock *vsk,
1937 struct vsock_transport_send_notify_data *data)
1938 {
1939 return vmci_trans(vsk)->notify_ops->send_init(
1940 &vsk->sk,
1941 (struct vmci_transport_send_notify_data *)data);
1942 }
1943
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1944 static int vmci_transport_notify_send_pre_block(
1945 struct vsock_sock *vsk,
1946 struct vsock_transport_send_notify_data *data)
1947 {
1948 return vmci_trans(vsk)->notify_ops->send_pre_block(
1949 &vsk->sk,
1950 (struct vmci_transport_send_notify_data *)data);
1951 }
1952
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1953 static int vmci_transport_notify_send_pre_enqueue(
1954 struct vsock_sock *vsk,
1955 struct vsock_transport_send_notify_data *data)
1956 {
1957 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1958 &vsk->sk,
1959 (struct vmci_transport_send_notify_data *)data);
1960 }
1961
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)1962 static int vmci_transport_notify_send_post_enqueue(
1963 struct vsock_sock *vsk,
1964 ssize_t written,
1965 struct vsock_transport_send_notify_data *data)
1966 {
1967 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1968 &vsk->sk, written,
1969 (struct vmci_transport_send_notify_data *)data);
1970 }
1971
vmci_transport_old_proto_override(bool * old_pkt_proto)1972 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1973 {
1974 if (PROTOCOL_OVERRIDE != -1) {
1975 if (PROTOCOL_OVERRIDE == 0)
1976 *old_pkt_proto = true;
1977 else
1978 *old_pkt_proto = false;
1979
1980 pr_info("Proto override in use\n");
1981 return true;
1982 }
1983
1984 return false;
1985 }
1986
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)1987 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1988 u16 *proto,
1989 bool old_pkt_proto)
1990 {
1991 struct vsock_sock *vsk = vsock_sk(sk);
1992
1993 if (old_pkt_proto) {
1994 if (*proto != VSOCK_PROTO_INVALID) {
1995 pr_err("Can't set both an old and new protocol\n");
1996 return false;
1997 }
1998 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
1999 goto exit;
2000 }
2001
2002 switch (*proto) {
2003 case VSOCK_PROTO_PKT_ON_NOTIFY:
2004 vmci_trans(vsk)->notify_ops =
2005 &vmci_transport_notify_pkt_q_state_ops;
2006 break;
2007 default:
2008 pr_err("Unknown notify protocol version\n");
2009 return false;
2010 }
2011
2012 exit:
2013 vmci_trans(vsk)->notify_ops->socket_init(sk);
2014 return true;
2015 }
2016
vmci_transport_new_proto_supported_versions(void)2017 static u16 vmci_transport_new_proto_supported_versions(void)
2018 {
2019 if (PROTOCOL_OVERRIDE != -1)
2020 return PROTOCOL_OVERRIDE;
2021
2022 return VSOCK_PROTO_ALL_SUPPORTED;
2023 }
2024
vmci_transport_get_local_cid(void)2025 static u32 vmci_transport_get_local_cid(void)
2026 {
2027 return vmci_get_context_id();
2028 }
2029
2030 static struct vsock_transport vmci_transport = {
2031 .module = THIS_MODULE,
2032 .init = vmci_transport_socket_init,
2033 .destruct = vmci_transport_destruct,
2034 .release = vmci_transport_release,
2035 .connect = vmci_transport_connect,
2036 .dgram_bind = vmci_transport_dgram_bind,
2037 .dgram_dequeue = vmci_transport_dgram_dequeue,
2038 .dgram_enqueue = vmci_transport_dgram_enqueue,
2039 .dgram_allow = vmci_transport_dgram_allow,
2040 .stream_dequeue = vmci_transport_stream_dequeue,
2041 .stream_enqueue = vmci_transport_stream_enqueue,
2042 .stream_has_data = vmci_transport_stream_has_data,
2043 .stream_has_space = vmci_transport_stream_has_space,
2044 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2045 .stream_is_active = vmci_transport_stream_is_active,
2046 .stream_allow = vmci_transport_stream_allow,
2047 .notify_poll_in = vmci_transport_notify_poll_in,
2048 .notify_poll_out = vmci_transport_notify_poll_out,
2049 .notify_recv_init = vmci_transport_notify_recv_init,
2050 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2051 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2052 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2053 .notify_send_init = vmci_transport_notify_send_init,
2054 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2055 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2056 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2057 .shutdown = vmci_transport_shutdown,
2058 .get_local_cid = vmci_transport_get_local_cid,
2059 };
2060
vmci_check_transport(struct vsock_sock * vsk)2061 static bool vmci_check_transport(struct vsock_sock *vsk)
2062 {
2063 return vsk->transport == &vmci_transport;
2064 }
2065
vmci_vsock_transport_cb(bool is_host)2066 static void vmci_vsock_transport_cb(bool is_host)
2067 {
2068 int features;
2069
2070 if (is_host)
2071 features = VSOCK_TRANSPORT_F_H2G;
2072 else
2073 features = VSOCK_TRANSPORT_F_G2H;
2074
2075 vsock_core_register(&vmci_transport, features);
2076 }
2077
vmci_transport_init(void)2078 static int __init vmci_transport_init(void)
2079 {
2080 int err;
2081
2082 /* Create the datagram handle that we will use to send and receive all
2083 * VSocket control messages for this context.
2084 */
2085 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2086 VMCI_FLAG_ANYCID_DG_HND,
2087 vmci_transport_recv_stream_cb,
2088 NULL,
2089 &vmci_transport_stream_handle);
2090 if (err < VMCI_SUCCESS) {
2091 pr_err("Unable to create datagram handle. (%d)\n", err);
2092 return vmci_transport_error_to_vsock_error(err);
2093 }
2094 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2095 vmci_transport_qp_resumed_cb,
2096 NULL, &vmci_transport_qp_resumed_sub_id);
2097 if (err < VMCI_SUCCESS) {
2098 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2099 err = vmci_transport_error_to_vsock_error(err);
2100 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2101 goto err_destroy_stream_handle;
2102 }
2103
2104 /* Register only with dgram feature, other features (H2G, G2H) will be
2105 * registered when the first host or guest becomes active.
2106 */
2107 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2108 if (err < 0)
2109 goto err_unsubscribe;
2110
2111 err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2112 if (err < 0)
2113 goto err_unregister;
2114
2115 return 0;
2116
2117 err_unregister:
2118 vsock_core_unregister(&vmci_transport);
2119 err_unsubscribe:
2120 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2121 err_destroy_stream_handle:
2122 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2123 return err;
2124 }
2125 module_init(vmci_transport_init);
2126
vmci_transport_exit(void)2127 static void __exit vmci_transport_exit(void)
2128 {
2129 cancel_work_sync(&vmci_transport_cleanup_work);
2130 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2131
2132 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2133 if (vmci_datagram_destroy_handle(
2134 vmci_transport_stream_handle) != VMCI_SUCCESS)
2135 pr_err("Couldn't destroy datagram handle\n");
2136 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2137 }
2138
2139 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2140 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2141 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2142 }
2143
2144 vmci_register_vsock_callback(NULL);
2145 vsock_core_unregister(&vmci_transport);
2146 }
2147 module_exit(vmci_transport_exit);
2148
2149 MODULE_AUTHOR("VMware, Inc.");
2150 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2151 MODULE_VERSION("1.0.5.0-k");
2152 MODULE_LICENSE("GPL v2");
2153 MODULE_ALIAS("vmware_vsock");
2154 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2155