• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH MSIOF SPI Controller Interface
4  *
5  * Copyright (c) 2009 Magnus Damm
6  * Copyright (C) 2014 Renesas Electronics Corporation
7  * Copyright (C) 2014-2017 Glider bvba
8  */
9 
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/sh_dma.h>
27 
28 #include <linux/spi/sh_msiof.h>
29 #include <linux/spi/spi.h>
30 
31 #include <asm/unaligned.h>
32 
33 #define SH_MSIOF_FLAG_FIXED_DTDL_200	BIT(0)
34 
35 struct sh_msiof_chipdata {
36 	u32 bits_per_word_mask;
37 	u16 tx_fifo_size;
38 	u16 rx_fifo_size;
39 	u16 ctlr_flags;
40 	u16 min_div_pow;
41 	u32 flags;
42 };
43 
44 struct sh_msiof_spi_priv {
45 	struct spi_controller *ctlr;
46 	void __iomem *mapbase;
47 	struct clk *clk;
48 	struct platform_device *pdev;
49 	struct sh_msiof_spi_info *info;
50 	struct completion done;
51 	struct completion done_txdma;
52 	unsigned int tx_fifo_size;
53 	unsigned int rx_fifo_size;
54 	unsigned int min_div_pow;
55 	void *tx_dma_page;
56 	void *rx_dma_page;
57 	dma_addr_t tx_dma_addr;
58 	dma_addr_t rx_dma_addr;
59 	bool native_cs_inited;
60 	bool native_cs_high;
61 	bool slave_aborted;
62 };
63 
64 #define MAX_SS	3	/* Maximum number of native chip selects */
65 
66 #define SITMDR1	0x00	/* Transmit Mode Register 1 */
67 #define SITMDR2	0x04	/* Transmit Mode Register 2 */
68 #define SITMDR3	0x08	/* Transmit Mode Register 3 */
69 #define SIRMDR1	0x10	/* Receive Mode Register 1 */
70 #define SIRMDR2	0x14	/* Receive Mode Register 2 */
71 #define SIRMDR3	0x18	/* Receive Mode Register 3 */
72 #define SITSCR	0x20	/* Transmit Clock Select Register */
73 #define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
74 #define SICTR	0x28	/* Control Register */
75 #define SIFCTR	0x30	/* FIFO Control Register */
76 #define SISTR	0x40	/* Status Register */
77 #define SIIER	0x44	/* Interrupt Enable Register */
78 #define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
79 #define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
80 #define SITFDR	0x50	/* Transmit FIFO Data Register */
81 #define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
82 #define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
83 #define SIRFDR	0x60	/* Receive FIFO Data Register */
84 
85 /* SITMDR1 and SIRMDR1 */
86 #define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
87 #define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
88 #define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
89 #define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
90 #define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
91 #define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
92 #define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
93 #define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
94 #define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
95 #define SIMDR1_FLD_SHIFT	2
96 #define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
97 /* SITMDR1 */
98 #define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
99 #define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
100 #define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
101 
102 /* SITMDR2 and SIRMDR2 */
103 #define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
104 #define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
105 #define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
106 
107 /* SITSCR and SIRSCR */
108 #define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
109 #define SISCR_BRPS(i)		(((i) - 1) << 8)
110 #define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
111 #define SISCR_BRDV_DIV_2	0
112 #define SISCR_BRDV_DIV_4	1
113 #define SISCR_BRDV_DIV_8	2
114 #define SISCR_BRDV_DIV_16	3
115 #define SISCR_BRDV_DIV_32	4
116 #define SISCR_BRDV_DIV_1	7
117 
118 /* SICTR */
119 #define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
120 #define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
121 #define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
122 #define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
123 #define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
124 #define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
125 #define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
126 #define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
127 #define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
128 #define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
129 #define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
130 #define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
131 #define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
132 #define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
133 #define SICTR_TXE		BIT(9)		/* Transmit Enable */
134 #define SICTR_RXE		BIT(8)		/* Receive Enable */
135 #define SICTR_TXRST		BIT(1)		/* Transmit Reset */
136 #define SICTR_RXRST		BIT(0)		/* Receive Reset */
137 
138 /* SIFCTR */
139 #define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
140 #define SIFCTR_TFWM_64		(0UL << 29)	/*  Transfer Request when 64 empty stages */
141 #define SIFCTR_TFWM_32		(1UL << 29)	/*  Transfer Request when 32 empty stages */
142 #define SIFCTR_TFWM_24		(2UL << 29)	/*  Transfer Request when 24 empty stages */
143 #define SIFCTR_TFWM_16		(3UL << 29)	/*  Transfer Request when 16 empty stages */
144 #define SIFCTR_TFWM_12		(4UL << 29)	/*  Transfer Request when 12 empty stages */
145 #define SIFCTR_TFWM_8		(5UL << 29)	/*  Transfer Request when 8 empty stages */
146 #define SIFCTR_TFWM_4		(6UL << 29)	/*  Transfer Request when 4 empty stages */
147 #define SIFCTR_TFWM_1		(7UL << 29)	/*  Transfer Request when 1 empty stage */
148 #define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
149 #define SIFCTR_TFUA_SHIFT	20
150 #define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
151 #define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
152 #define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
153 #define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
154 #define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
155 #define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
156 #define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
157 #define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
158 #define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
159 #define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
160 #define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
161 #define SIFCTR_RFUA_SHIFT	4
162 #define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
163 
164 /* SISTR */
165 #define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
166 #define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
167 #define SISTR_TEOF		BIT(23) /* Frame Transmission End */
168 #define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
169 #define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
170 #define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
171 #define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
172 #define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
173 #define SISTR_REOF		BIT(7)  /* Frame Reception End */
174 #define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
175 #define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
176 #define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
177 
178 /* SIIER */
179 #define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
180 #define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
181 #define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
182 #define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
183 #define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
184 #define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
185 #define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
186 #define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
187 #define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
188 #define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
189 #define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
190 #define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
191 #define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
192 #define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
193 
194 
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)195 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
196 {
197 	switch (reg_offs) {
198 	case SITSCR:
199 	case SIRSCR:
200 		return ioread16(p->mapbase + reg_offs);
201 	default:
202 		return ioread32(p->mapbase + reg_offs);
203 	}
204 }
205 
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)206 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
207 			   u32 value)
208 {
209 	switch (reg_offs) {
210 	case SITSCR:
211 	case SIRSCR:
212 		iowrite16(value, p->mapbase + reg_offs);
213 		break;
214 	default:
215 		iowrite32(value, p->mapbase + reg_offs);
216 		break;
217 	}
218 }
219 
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)220 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
221 				    u32 clr, u32 set)
222 {
223 	u32 mask = clr | set;
224 	u32 data;
225 
226 	data = sh_msiof_read(p, SICTR);
227 	data &= ~clr;
228 	data |= set;
229 	sh_msiof_write(p, SICTR, data);
230 
231 	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
232 					 (data & mask) == set, 1, 100);
233 }
234 
sh_msiof_spi_irq(int irq,void * data)235 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
236 {
237 	struct sh_msiof_spi_priv *p = data;
238 
239 	/* just disable the interrupt and wake up */
240 	sh_msiof_write(p, SIIER, 0);
241 	complete(&p->done);
242 
243 	return IRQ_HANDLED;
244 }
245 
sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv * p)246 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
247 {
248 	u32 mask = SICTR_TXRST | SICTR_RXRST;
249 	u32 data;
250 
251 	data = sh_msiof_read(p, SICTR);
252 	data |= mask;
253 	sh_msiof_write(p, SICTR, data);
254 
255 	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
256 				  100);
257 }
258 
259 static const u32 sh_msiof_spi_div_array[] = {
260 	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
261 	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
262 };
263 
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,struct spi_transfer * t)264 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265 				      struct spi_transfer *t)
266 {
267 	unsigned long parent_rate = clk_get_rate(p->clk);
268 	unsigned int div_pow = p->min_div_pow;
269 	u32 spi_hz = t->speed_hz;
270 	unsigned long div;
271 	u32 brps, scr;
272 
273 	if (!spi_hz || !parent_rate) {
274 		WARN(1, "Invalid clock rate parameters %lu and %u\n",
275 		     parent_rate, spi_hz);
276 		return;
277 	}
278 
279 	div = DIV_ROUND_UP(parent_rate, spi_hz);
280 	if (div <= 1024) {
281 		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
282 		if (!div_pow && div <= 32 && div > 2)
283 			div_pow = 1;
284 
285 		if (div_pow)
286 			brps = (div + 1) >> div_pow;
287 		else
288 			brps = div;
289 
290 		for (; brps > 32; div_pow++)
291 			brps = (brps + 1) >> 1;
292 	} else {
293 		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
294 		dev_err(&p->pdev->dev,
295 			"Requested SPI transfer rate %d is too low\n", spi_hz);
296 		div_pow = 5;
297 		brps = 32;
298 	}
299 
300 	t->effective_speed_hz = parent_rate / (brps << div_pow);
301 
302 	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
303 	sh_msiof_write(p, SITSCR, scr);
304 	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
305 		sh_msiof_write(p, SIRSCR, scr);
306 }
307 
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)308 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
309 {
310 	/*
311 	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
312 	 * b'000		: 0
313 	 * b'001		: 100
314 	 * b'010		: 200
315 	 * b'011 (SYNCDL only)	: 300
316 	 * b'101		: 50
317 	 * b'110		: 150
318 	 */
319 	if (dtdl_or_syncdl % 100)
320 		return dtdl_or_syncdl / 100 + 5;
321 	else
322 		return dtdl_or_syncdl / 100;
323 }
324 
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)325 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
326 {
327 	u32 val;
328 
329 	if (!p->info)
330 		return 0;
331 
332 	/* check if DTDL and SYNCDL is allowed value */
333 	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
334 		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
335 		return 0;
336 	}
337 
338 	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
339 	if ((p->info->dtdl + p->info->syncdl) % 100) {
340 		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
341 		return 0;
342 	}
343 
344 	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
345 	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
346 
347 	return val;
348 }
349 
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 ss,u32 cpol,u32 cpha,u32 tx_hi_z,u32 lsb_first,u32 cs_high)350 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
351 				      u32 cpol, u32 cpha,
352 				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
353 {
354 	u32 tmp;
355 	int edge;
356 
357 	/*
358 	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
359 	 *    0    0         10     10    1    1
360 	 *    0    1         10     10    0    0
361 	 *    1    0         11     11    0    0
362 	 *    1    1         11     11    1    1
363 	 */
364 	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
365 	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
366 	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
367 	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
368 	if (spi_controller_is_slave(p->ctlr)) {
369 		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
370 	} else {
371 		sh_msiof_write(p, SITMDR1,
372 			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
373 			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
374 	}
375 	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
376 		/* These bits are reserved if RX needs TX */
377 		tmp &= ~0x0000ffff;
378 	}
379 	sh_msiof_write(p, SIRMDR1, tmp);
380 
381 	tmp = 0;
382 	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
383 	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
384 
385 	edge = cpol ^ !cpha;
386 
387 	tmp |= edge << SICTR_TEDG_SHIFT;
388 	tmp |= edge << SICTR_REDG_SHIFT;
389 	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
390 	sh_msiof_write(p, SICTR, tmp);
391 }
392 
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words)393 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
394 				       const void *tx_buf, void *rx_buf,
395 				       u32 bits, u32 words)
396 {
397 	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
398 
399 	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
400 		sh_msiof_write(p, SITMDR2, dr2);
401 	else
402 		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
403 
404 	if (rx_buf)
405 		sh_msiof_write(p, SIRMDR2, dr2);
406 }
407 
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)408 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
409 {
410 	sh_msiof_write(p, SISTR,
411 		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
412 }
413 
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)414 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
415 				      const void *tx_buf, int words, int fs)
416 {
417 	const u8 *buf_8 = tx_buf;
418 	int k;
419 
420 	for (k = 0; k < words; k++)
421 		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
422 }
423 
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)424 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
425 				       const void *tx_buf, int words, int fs)
426 {
427 	const u16 *buf_16 = tx_buf;
428 	int k;
429 
430 	for (k = 0; k < words; k++)
431 		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
432 }
433 
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)434 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
435 					const void *tx_buf, int words, int fs)
436 {
437 	const u16 *buf_16 = tx_buf;
438 	int k;
439 
440 	for (k = 0; k < words; k++)
441 		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
442 }
443 
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)444 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
445 				       const void *tx_buf, int words, int fs)
446 {
447 	const u32 *buf_32 = tx_buf;
448 	int k;
449 
450 	for (k = 0; k < words; k++)
451 		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
452 }
453 
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)454 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
455 					const void *tx_buf, int words, int fs)
456 {
457 	const u32 *buf_32 = tx_buf;
458 	int k;
459 
460 	for (k = 0; k < words; k++)
461 		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
462 }
463 
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)464 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
465 					const void *tx_buf, int words, int fs)
466 {
467 	const u32 *buf_32 = tx_buf;
468 	int k;
469 
470 	for (k = 0; k < words; k++)
471 		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
472 }
473 
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)474 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
475 					 const void *tx_buf, int words, int fs)
476 {
477 	const u32 *buf_32 = tx_buf;
478 	int k;
479 
480 	for (k = 0; k < words; k++)
481 		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
482 }
483 
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)484 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
485 				     void *rx_buf, int words, int fs)
486 {
487 	u8 *buf_8 = rx_buf;
488 	int k;
489 
490 	for (k = 0; k < words; k++)
491 		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
492 }
493 
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)494 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
495 				      void *rx_buf, int words, int fs)
496 {
497 	u16 *buf_16 = rx_buf;
498 	int k;
499 
500 	for (k = 0; k < words; k++)
501 		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
502 }
503 
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)504 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
505 				       void *rx_buf, int words, int fs)
506 {
507 	u16 *buf_16 = rx_buf;
508 	int k;
509 
510 	for (k = 0; k < words; k++)
511 		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
512 }
513 
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)514 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
515 				      void *rx_buf, int words, int fs)
516 {
517 	u32 *buf_32 = rx_buf;
518 	int k;
519 
520 	for (k = 0; k < words; k++)
521 		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
522 }
523 
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)524 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
525 				       void *rx_buf, int words, int fs)
526 {
527 	u32 *buf_32 = rx_buf;
528 	int k;
529 
530 	for (k = 0; k < words; k++)
531 		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
532 }
533 
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)534 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
535 				       void *rx_buf, int words, int fs)
536 {
537 	u32 *buf_32 = rx_buf;
538 	int k;
539 
540 	for (k = 0; k < words; k++)
541 		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
542 }
543 
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)544 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
545 				       void *rx_buf, int words, int fs)
546 {
547 	u32 *buf_32 = rx_buf;
548 	int k;
549 
550 	for (k = 0; k < words; k++)
551 		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
552 }
553 
sh_msiof_spi_setup(struct spi_device * spi)554 static int sh_msiof_spi_setup(struct spi_device *spi)
555 {
556 	struct sh_msiof_spi_priv *p =
557 		spi_controller_get_devdata(spi->controller);
558 	u32 clr, set, tmp;
559 
560 	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
561 		return 0;
562 
563 	if (p->native_cs_inited &&
564 	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
565 		return 0;
566 
567 	/* Configure native chip select mode/polarity early */
568 	clr = SIMDR1_SYNCMD_MASK;
569 	set = SIMDR1_SYNCMD_SPI;
570 	if (spi->mode & SPI_CS_HIGH)
571 		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
572 	else
573 		set |= BIT(SIMDR1_SYNCAC_SHIFT);
574 	pm_runtime_get_sync(&p->pdev->dev);
575 	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
576 	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
577 	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
578 	sh_msiof_write(p, SIRMDR1, tmp | set);
579 	pm_runtime_put(&p->pdev->dev);
580 	p->native_cs_high = spi->mode & SPI_CS_HIGH;
581 	p->native_cs_inited = true;
582 	return 0;
583 }
584 
sh_msiof_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)585 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
586 				    struct spi_message *msg)
587 {
588 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
589 	const struct spi_device *spi = msg->spi;
590 	u32 ss, cs_high;
591 
592 	/* Configure pins before asserting CS */
593 	if (spi->cs_gpiod) {
594 		ss = ctlr->unused_native_cs;
595 		cs_high = p->native_cs_high;
596 	} else {
597 		ss = spi->chip_select;
598 		cs_high = !!(spi->mode & SPI_CS_HIGH);
599 	}
600 	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
601 				  !!(spi->mode & SPI_CPHA),
602 				  !!(spi->mode & SPI_3WIRE),
603 				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
604 	return 0;
605 }
606 
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)607 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
608 {
609 	bool slave = spi_controller_is_slave(p->ctlr);
610 	int ret = 0;
611 
612 	/* setup clock and rx/tx signals */
613 	if (!slave)
614 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
615 	if (rx_buf && !ret)
616 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
617 	if (!ret)
618 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
619 
620 	/* start by setting frame bit */
621 	if (!ret && !slave)
622 		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
623 
624 	return ret;
625 }
626 
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)627 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
628 {
629 	bool slave = spi_controller_is_slave(p->ctlr);
630 	int ret = 0;
631 
632 	/* shut down frame, rx/tx and clock signals */
633 	if (!slave)
634 		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
635 	if (!ret)
636 		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
637 	if (rx_buf && !ret)
638 		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
639 	if (!ret && !slave)
640 		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
641 
642 	return ret;
643 }
644 
sh_msiof_slave_abort(struct spi_controller * ctlr)645 static int sh_msiof_slave_abort(struct spi_controller *ctlr)
646 {
647 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
648 
649 	p->slave_aborted = true;
650 	complete(&p->done);
651 	complete(&p->done_txdma);
652 	return 0;
653 }
654 
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p,struct completion * x)655 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
656 					struct completion *x)
657 {
658 	if (spi_controller_is_slave(p->ctlr)) {
659 		if (wait_for_completion_interruptible(x) ||
660 		    p->slave_aborted) {
661 			dev_dbg(&p->pdev->dev, "interrupted\n");
662 			return -EINTR;
663 		}
664 	} else {
665 		if (!wait_for_completion_timeout(x, HZ)) {
666 			dev_err(&p->pdev->dev, "timeout\n");
667 			return -ETIMEDOUT;
668 		}
669 	}
670 
671 	return 0;
672 }
673 
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,int,int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,int,int),const void * tx_buf,void * rx_buf,int words,int bits)674 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
675 				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
676 						  const void *, int, int),
677 				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
678 						  void *, int, int),
679 				  const void *tx_buf, void *rx_buf,
680 				  int words, int bits)
681 {
682 	int fifo_shift;
683 	int ret;
684 
685 	/* limit maximum word transfer to rx/tx fifo size */
686 	if (tx_buf)
687 		words = min_t(int, words, p->tx_fifo_size);
688 	if (rx_buf)
689 		words = min_t(int, words, p->rx_fifo_size);
690 
691 	/* the fifo contents need shifting */
692 	fifo_shift = 32 - bits;
693 
694 	/* default FIFO watermarks for PIO */
695 	sh_msiof_write(p, SIFCTR, 0);
696 
697 	/* setup msiof transfer mode registers */
698 	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
699 	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
700 
701 	/* write tx fifo */
702 	if (tx_buf)
703 		tx_fifo(p, tx_buf, words, fifo_shift);
704 
705 	reinit_completion(&p->done);
706 	p->slave_aborted = false;
707 
708 	ret = sh_msiof_spi_start(p, rx_buf);
709 	if (ret) {
710 		dev_err(&p->pdev->dev, "failed to start hardware\n");
711 		goto stop_ier;
712 	}
713 
714 	/* wait for tx fifo to be emptied / rx fifo to be filled */
715 	ret = sh_msiof_wait_for_completion(p, &p->done);
716 	if (ret)
717 		goto stop_reset;
718 
719 	/* read rx fifo */
720 	if (rx_buf)
721 		rx_fifo(p, rx_buf, words, fifo_shift);
722 
723 	/* clear status bits */
724 	sh_msiof_reset_str(p);
725 
726 	ret = sh_msiof_spi_stop(p, rx_buf);
727 	if (ret) {
728 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
729 		return ret;
730 	}
731 
732 	return words;
733 
734 stop_reset:
735 	sh_msiof_reset_str(p);
736 	sh_msiof_spi_stop(p, rx_buf);
737 stop_ier:
738 	sh_msiof_write(p, SIIER, 0);
739 	return ret;
740 }
741 
sh_msiof_dma_complete(void * arg)742 static void sh_msiof_dma_complete(void *arg)
743 {
744 	complete(arg);
745 }
746 
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len)747 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
748 			     void *rx, unsigned int len)
749 {
750 	u32 ier_bits = 0;
751 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
752 	dma_cookie_t cookie;
753 	int ret;
754 
755 	/* First prepare and submit the DMA request(s), as this may fail */
756 	if (rx) {
757 		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
758 		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
759 					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
760 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
761 		if (!desc_rx)
762 			return -EAGAIN;
763 
764 		desc_rx->callback = sh_msiof_dma_complete;
765 		desc_rx->callback_param = &p->done;
766 		cookie = dmaengine_submit(desc_rx);
767 		if (dma_submit_error(cookie))
768 			return cookie;
769 	}
770 
771 	if (tx) {
772 		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
773 		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
774 					   p->tx_dma_addr, len, DMA_TO_DEVICE);
775 		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
776 					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
777 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
778 		if (!desc_tx) {
779 			ret = -EAGAIN;
780 			goto no_dma_tx;
781 		}
782 
783 		desc_tx->callback = sh_msiof_dma_complete;
784 		desc_tx->callback_param = &p->done_txdma;
785 		cookie = dmaengine_submit(desc_tx);
786 		if (dma_submit_error(cookie)) {
787 			ret = cookie;
788 			goto no_dma_tx;
789 		}
790 	}
791 
792 	/* 1 stage FIFO watermarks for DMA */
793 	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
794 
795 	/* setup msiof transfer mode registers (32-bit words) */
796 	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
797 
798 	sh_msiof_write(p, SIIER, ier_bits);
799 
800 	reinit_completion(&p->done);
801 	if (tx)
802 		reinit_completion(&p->done_txdma);
803 	p->slave_aborted = false;
804 
805 	/* Now start DMA */
806 	if (rx)
807 		dma_async_issue_pending(p->ctlr->dma_rx);
808 	if (tx)
809 		dma_async_issue_pending(p->ctlr->dma_tx);
810 
811 	ret = sh_msiof_spi_start(p, rx);
812 	if (ret) {
813 		dev_err(&p->pdev->dev, "failed to start hardware\n");
814 		goto stop_dma;
815 	}
816 
817 	if (tx) {
818 		/* wait for tx DMA completion */
819 		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
820 		if (ret)
821 			goto stop_reset;
822 	}
823 
824 	if (rx) {
825 		/* wait for rx DMA completion */
826 		ret = sh_msiof_wait_for_completion(p, &p->done);
827 		if (ret)
828 			goto stop_reset;
829 
830 		sh_msiof_write(p, SIIER, 0);
831 	} else {
832 		/* wait for tx fifo to be emptied */
833 		sh_msiof_write(p, SIIER, SIIER_TEOFE);
834 		ret = sh_msiof_wait_for_completion(p, &p->done);
835 		if (ret)
836 			goto stop_reset;
837 	}
838 
839 	/* clear status bits */
840 	sh_msiof_reset_str(p);
841 
842 	ret = sh_msiof_spi_stop(p, rx);
843 	if (ret) {
844 		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
845 		return ret;
846 	}
847 
848 	if (rx)
849 		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
850 					p->rx_dma_addr, len, DMA_FROM_DEVICE);
851 
852 	return 0;
853 
854 stop_reset:
855 	sh_msiof_reset_str(p);
856 	sh_msiof_spi_stop(p, rx);
857 stop_dma:
858 	if (tx)
859 		dmaengine_terminate_sync(p->ctlr->dma_tx);
860 no_dma_tx:
861 	if (rx)
862 		dmaengine_terminate_sync(p->ctlr->dma_rx);
863 	sh_msiof_write(p, SIIER, 0);
864 	return ret;
865 }
866 
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)867 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
868 {
869 	/* src or dst can be unaligned, but not both */
870 	if ((unsigned long)src & 3) {
871 		while (words--) {
872 			*dst++ = swab32(get_unaligned(src));
873 			src++;
874 		}
875 	} else if ((unsigned long)dst & 3) {
876 		while (words--) {
877 			put_unaligned(swab32(*src++), dst);
878 			dst++;
879 		}
880 	} else {
881 		while (words--)
882 			*dst++ = swab32(*src++);
883 	}
884 }
885 
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)886 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
887 {
888 	/* src or dst can be unaligned, but not both */
889 	if ((unsigned long)src & 3) {
890 		while (words--) {
891 			*dst++ = swahw32(get_unaligned(src));
892 			src++;
893 		}
894 	} else if ((unsigned long)dst & 3) {
895 		while (words--) {
896 			put_unaligned(swahw32(*src++), dst);
897 			dst++;
898 		}
899 	} else {
900 		while (words--)
901 			*dst++ = swahw32(*src++);
902 	}
903 }
904 
copy_plain32(u32 * dst,const u32 * src,unsigned int words)905 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
906 {
907 	memcpy(dst, src, words * 4);
908 }
909 
sh_msiof_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * t)910 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
911 				 struct spi_device *spi,
912 				 struct spi_transfer *t)
913 {
914 	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
915 	void (*copy32)(u32 *, const u32 *, unsigned int);
916 	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
917 	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
918 	const void *tx_buf = t->tx_buf;
919 	void *rx_buf = t->rx_buf;
920 	unsigned int len = t->len;
921 	unsigned int bits = t->bits_per_word;
922 	unsigned int bytes_per_word;
923 	unsigned int words;
924 	int n;
925 	bool swab;
926 	int ret;
927 
928 	/* reset registers */
929 	sh_msiof_spi_reset_regs(p);
930 
931 	/* setup clocks (clock already enabled in chipselect()) */
932 	if (!spi_controller_is_slave(p->ctlr))
933 		sh_msiof_spi_set_clk_regs(p, t);
934 
935 	while (ctlr->dma_tx && len > 15) {
936 		/*
937 		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
938 		 *  words, with byte resp. word swapping.
939 		 */
940 		unsigned int l = 0;
941 
942 		if (tx_buf)
943 			l = min(round_down(len, 4), p->tx_fifo_size * 4);
944 		if (rx_buf)
945 			l = min(round_down(len, 4), p->rx_fifo_size * 4);
946 
947 		if (bits <= 8) {
948 			copy32 = copy_bswap32;
949 		} else if (bits <= 16) {
950 			copy32 = copy_wswap32;
951 		} else {
952 			copy32 = copy_plain32;
953 		}
954 
955 		if (tx_buf)
956 			copy32(p->tx_dma_page, tx_buf, l / 4);
957 
958 		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
959 		if (ret == -EAGAIN) {
960 			dev_warn_once(&p->pdev->dev,
961 				"DMA not available, falling back to PIO\n");
962 			break;
963 		}
964 		if (ret)
965 			return ret;
966 
967 		if (rx_buf) {
968 			copy32(rx_buf, p->rx_dma_page, l / 4);
969 			rx_buf += l;
970 		}
971 		if (tx_buf)
972 			tx_buf += l;
973 
974 		len -= l;
975 		if (!len)
976 			return 0;
977 	}
978 
979 	if (bits <= 8 && len > 15) {
980 		bits = 32;
981 		swab = true;
982 	} else {
983 		swab = false;
984 	}
985 
986 	/* setup bytes per word and fifo read/write functions */
987 	if (bits <= 8) {
988 		bytes_per_word = 1;
989 		tx_fifo = sh_msiof_spi_write_fifo_8;
990 		rx_fifo = sh_msiof_spi_read_fifo_8;
991 	} else if (bits <= 16) {
992 		bytes_per_word = 2;
993 		if ((unsigned long)tx_buf & 0x01)
994 			tx_fifo = sh_msiof_spi_write_fifo_16u;
995 		else
996 			tx_fifo = sh_msiof_spi_write_fifo_16;
997 
998 		if ((unsigned long)rx_buf & 0x01)
999 			rx_fifo = sh_msiof_spi_read_fifo_16u;
1000 		else
1001 			rx_fifo = sh_msiof_spi_read_fifo_16;
1002 	} else if (swab) {
1003 		bytes_per_word = 4;
1004 		if ((unsigned long)tx_buf & 0x03)
1005 			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1006 		else
1007 			tx_fifo = sh_msiof_spi_write_fifo_s32;
1008 
1009 		if ((unsigned long)rx_buf & 0x03)
1010 			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1011 		else
1012 			rx_fifo = sh_msiof_spi_read_fifo_s32;
1013 	} else {
1014 		bytes_per_word = 4;
1015 		if ((unsigned long)tx_buf & 0x03)
1016 			tx_fifo = sh_msiof_spi_write_fifo_32u;
1017 		else
1018 			tx_fifo = sh_msiof_spi_write_fifo_32;
1019 
1020 		if ((unsigned long)rx_buf & 0x03)
1021 			rx_fifo = sh_msiof_spi_read_fifo_32u;
1022 		else
1023 			rx_fifo = sh_msiof_spi_read_fifo_32;
1024 	}
1025 
1026 	/* transfer in fifo sized chunks */
1027 	words = len / bytes_per_word;
1028 
1029 	while (words > 0) {
1030 		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1031 					   words, bits);
1032 		if (n < 0)
1033 			return n;
1034 
1035 		if (tx_buf)
1036 			tx_buf += n * bytes_per_word;
1037 		if (rx_buf)
1038 			rx_buf += n * bytes_per_word;
1039 		words -= n;
1040 
1041 		if (words == 0 && (len % bytes_per_word)) {
1042 			words = len % bytes_per_word;
1043 			bits = t->bits_per_word;
1044 			bytes_per_word = 1;
1045 			tx_fifo = sh_msiof_spi_write_fifo_8;
1046 			rx_fifo = sh_msiof_spi_read_fifo_8;
1047 		}
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static const struct sh_msiof_chipdata sh_data = {
1054 	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1055 	.tx_fifo_size = 64,
1056 	.rx_fifo_size = 64,
1057 	.ctlr_flags = 0,
1058 	.min_div_pow = 0,
1059 };
1060 
1061 static const struct sh_msiof_chipdata rcar_gen2_data = {
1062 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1063 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1064 	.tx_fifo_size = 64,
1065 	.rx_fifo_size = 64,
1066 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1067 	.min_div_pow = 0,
1068 };
1069 
1070 static const struct sh_msiof_chipdata rcar_gen3_data = {
1071 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1072 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1073 	.tx_fifo_size = 64,
1074 	.rx_fifo_size = 64,
1075 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1076 	.min_div_pow = 1,
1077 };
1078 
1079 static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1080 	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1081 			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1082 	.tx_fifo_size = 64,
1083 	.rx_fifo_size = 64,
1084 	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1085 	.min_div_pow = 1,
1086 	.flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1087 };
1088 
1089 static const struct of_device_id sh_msiof_match[] = {
1090 	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1091 	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1092 	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1093 	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1094 	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1095 	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1096 	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1097 	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1098 	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1099 	{ .compatible = "renesas,msiof-r8a7795",   .data = &rcar_r8a7795_data },
1100 	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1101 	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1102 	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1103 	{},
1104 };
1105 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1106 
1107 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1108 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1109 {
1110 	struct sh_msiof_spi_info *info;
1111 	struct device_node *np = dev->of_node;
1112 	u32 num_cs = 1;
1113 
1114 	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1115 	if (!info)
1116 		return NULL;
1117 
1118 	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1119 							    : MSIOF_SPI_MASTER;
1120 
1121 	/* Parse the MSIOF properties */
1122 	if (info->mode == MSIOF_SPI_MASTER)
1123 		of_property_read_u32(np, "num-cs", &num_cs);
1124 	of_property_read_u32(np, "renesas,tx-fifo-size",
1125 					&info->tx_fifo_override);
1126 	of_property_read_u32(np, "renesas,rx-fifo-size",
1127 					&info->rx_fifo_override);
1128 	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1129 	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1130 
1131 	info->num_chipselect = num_cs;
1132 
1133 	return info;
1134 }
1135 #else
sh_msiof_spi_parse_dt(struct device * dev)1136 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1137 {
1138 	return NULL;
1139 }
1140 #endif
1141 
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1142 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1143 	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1144 {
1145 	dma_cap_mask_t mask;
1146 	struct dma_chan *chan;
1147 	struct dma_slave_config cfg;
1148 	int ret;
1149 
1150 	dma_cap_zero(mask);
1151 	dma_cap_set(DMA_SLAVE, mask);
1152 
1153 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1154 				(void *)(unsigned long)id, dev,
1155 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1156 	if (!chan) {
1157 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1158 		return NULL;
1159 	}
1160 
1161 	memset(&cfg, 0, sizeof(cfg));
1162 	cfg.direction = dir;
1163 	if (dir == DMA_MEM_TO_DEV) {
1164 		cfg.dst_addr = port_addr;
1165 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1166 	} else {
1167 		cfg.src_addr = port_addr;
1168 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1169 	}
1170 
1171 	ret = dmaengine_slave_config(chan, &cfg);
1172 	if (ret) {
1173 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1174 		dma_release_channel(chan);
1175 		return NULL;
1176 	}
1177 
1178 	return chan;
1179 }
1180 
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1181 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1182 {
1183 	struct platform_device *pdev = p->pdev;
1184 	struct device *dev = &pdev->dev;
1185 	const struct sh_msiof_spi_info *info = p->info;
1186 	unsigned int dma_tx_id, dma_rx_id;
1187 	const struct resource *res;
1188 	struct spi_controller *ctlr;
1189 	struct device *tx_dev, *rx_dev;
1190 
1191 	if (dev->of_node) {
1192 		/* In the OF case we will get the slave IDs from the DT */
1193 		dma_tx_id = 0;
1194 		dma_rx_id = 0;
1195 	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1196 		dma_tx_id = info->dma_tx_id;
1197 		dma_rx_id = info->dma_rx_id;
1198 	} else {
1199 		/* The driver assumes no error */
1200 		return 0;
1201 	}
1202 
1203 	/* The DMA engine uses the second register set, if present */
1204 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1205 	if (!res)
1206 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207 
1208 	ctlr = p->ctlr;
1209 	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1210 						 dma_tx_id, res->start + SITFDR);
1211 	if (!ctlr->dma_tx)
1212 		return -ENODEV;
1213 
1214 	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1215 						 dma_rx_id, res->start + SIRFDR);
1216 	if (!ctlr->dma_rx)
1217 		goto free_tx_chan;
1218 
1219 	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1220 	if (!p->tx_dma_page)
1221 		goto free_rx_chan;
1222 
1223 	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1224 	if (!p->rx_dma_page)
1225 		goto free_tx_page;
1226 
1227 	tx_dev = ctlr->dma_tx->device->dev;
1228 	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1229 					DMA_TO_DEVICE);
1230 	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1231 		goto free_rx_page;
1232 
1233 	rx_dev = ctlr->dma_rx->device->dev;
1234 	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1235 					DMA_FROM_DEVICE);
1236 	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1237 		goto unmap_tx_page;
1238 
1239 	dev_info(dev, "DMA available");
1240 	return 0;
1241 
1242 unmap_tx_page:
1243 	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1244 free_rx_page:
1245 	free_page((unsigned long)p->rx_dma_page);
1246 free_tx_page:
1247 	free_page((unsigned long)p->tx_dma_page);
1248 free_rx_chan:
1249 	dma_release_channel(ctlr->dma_rx);
1250 free_tx_chan:
1251 	dma_release_channel(ctlr->dma_tx);
1252 	ctlr->dma_tx = NULL;
1253 	return -ENODEV;
1254 }
1255 
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1256 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1257 {
1258 	struct spi_controller *ctlr = p->ctlr;
1259 
1260 	if (!ctlr->dma_tx)
1261 		return;
1262 
1263 	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1264 			 DMA_FROM_DEVICE);
1265 	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1266 			 DMA_TO_DEVICE);
1267 	free_page((unsigned long)p->rx_dma_page);
1268 	free_page((unsigned long)p->tx_dma_page);
1269 	dma_release_channel(ctlr->dma_rx);
1270 	dma_release_channel(ctlr->dma_tx);
1271 }
1272 
sh_msiof_spi_probe(struct platform_device * pdev)1273 static int sh_msiof_spi_probe(struct platform_device *pdev)
1274 {
1275 	struct spi_controller *ctlr;
1276 	const struct sh_msiof_chipdata *chipdata;
1277 	struct sh_msiof_spi_info *info;
1278 	struct sh_msiof_spi_priv *p;
1279 	unsigned long clksrc;
1280 	int i;
1281 	int ret;
1282 
1283 	chipdata = of_device_get_match_data(&pdev->dev);
1284 	if (chipdata) {
1285 		info = sh_msiof_spi_parse_dt(&pdev->dev);
1286 	} else {
1287 		chipdata = (const void *)pdev->id_entry->driver_data;
1288 		info = dev_get_platdata(&pdev->dev);
1289 	}
1290 
1291 	if (!info) {
1292 		dev_err(&pdev->dev, "failed to obtain device info\n");
1293 		return -ENXIO;
1294 	}
1295 
1296 	if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1297 		info->dtdl = 200;
1298 
1299 	if (info->mode == MSIOF_SPI_SLAVE)
1300 		ctlr = spi_alloc_slave(&pdev->dev,
1301 				       sizeof(struct sh_msiof_spi_priv));
1302 	else
1303 		ctlr = spi_alloc_master(&pdev->dev,
1304 					sizeof(struct sh_msiof_spi_priv));
1305 	if (ctlr == NULL)
1306 		return -ENOMEM;
1307 
1308 	p = spi_controller_get_devdata(ctlr);
1309 
1310 	platform_set_drvdata(pdev, p);
1311 	p->ctlr = ctlr;
1312 	p->info = info;
1313 	p->min_div_pow = chipdata->min_div_pow;
1314 
1315 	init_completion(&p->done);
1316 	init_completion(&p->done_txdma);
1317 
1318 	p->clk = devm_clk_get(&pdev->dev, NULL);
1319 	if (IS_ERR(p->clk)) {
1320 		dev_err(&pdev->dev, "cannot get clock\n");
1321 		ret = PTR_ERR(p->clk);
1322 		goto err1;
1323 	}
1324 
1325 	i = platform_get_irq(pdev, 0);
1326 	if (i < 0) {
1327 		ret = i;
1328 		goto err1;
1329 	}
1330 
1331 	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1332 	if (IS_ERR(p->mapbase)) {
1333 		ret = PTR_ERR(p->mapbase);
1334 		goto err1;
1335 	}
1336 
1337 	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1338 			       dev_name(&pdev->dev), p);
1339 	if (ret) {
1340 		dev_err(&pdev->dev, "unable to request irq\n");
1341 		goto err1;
1342 	}
1343 
1344 	p->pdev = pdev;
1345 	pm_runtime_enable(&pdev->dev);
1346 
1347 	/* Platform data may override FIFO sizes */
1348 	p->tx_fifo_size = chipdata->tx_fifo_size;
1349 	p->rx_fifo_size = chipdata->rx_fifo_size;
1350 	if (p->info->tx_fifo_override)
1351 		p->tx_fifo_size = p->info->tx_fifo_override;
1352 	if (p->info->rx_fifo_override)
1353 		p->rx_fifo_size = p->info->rx_fifo_override;
1354 
1355 	/* init controller code */
1356 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1357 	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1358 	clksrc = clk_get_rate(p->clk);
1359 	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1360 	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1361 	ctlr->flags = chipdata->ctlr_flags;
1362 	ctlr->bus_num = pdev->id;
1363 	ctlr->num_chipselect = p->info->num_chipselect;
1364 	ctlr->dev.of_node = pdev->dev.of_node;
1365 	ctlr->setup = sh_msiof_spi_setup;
1366 	ctlr->prepare_message = sh_msiof_prepare_message;
1367 	ctlr->slave_abort = sh_msiof_slave_abort;
1368 	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1369 	ctlr->auto_runtime_pm = true;
1370 	ctlr->transfer_one = sh_msiof_transfer_one;
1371 	ctlr->use_gpio_descriptors = true;
1372 	ctlr->max_native_cs = MAX_SS;
1373 
1374 	ret = sh_msiof_request_dma(p);
1375 	if (ret < 0)
1376 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1377 
1378 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1379 	if (ret < 0) {
1380 		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1381 		goto err2;
1382 	}
1383 
1384 	return 0;
1385 
1386  err2:
1387 	sh_msiof_release_dma(p);
1388 	pm_runtime_disable(&pdev->dev);
1389  err1:
1390 	spi_controller_put(ctlr);
1391 	return ret;
1392 }
1393 
sh_msiof_spi_remove(struct platform_device * pdev)1394 static int sh_msiof_spi_remove(struct platform_device *pdev)
1395 {
1396 	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1397 
1398 	sh_msiof_release_dma(p);
1399 	pm_runtime_disable(&pdev->dev);
1400 	return 0;
1401 }
1402 
1403 static const struct platform_device_id spi_driver_ids[] = {
1404 	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1405 	{},
1406 };
1407 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1408 
1409 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1410 static int sh_msiof_spi_suspend(struct device *dev)
1411 {
1412 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1413 
1414 	return spi_controller_suspend(p->ctlr);
1415 }
1416 
sh_msiof_spi_resume(struct device * dev)1417 static int sh_msiof_spi_resume(struct device *dev)
1418 {
1419 	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1420 
1421 	return spi_controller_resume(p->ctlr);
1422 }
1423 
1424 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1425 			 sh_msiof_spi_resume);
1426 #define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1427 #else
1428 #define DEV_PM_OPS	NULL
1429 #endif /* CONFIG_PM_SLEEP */
1430 
1431 static struct platform_driver sh_msiof_spi_drv = {
1432 	.probe		= sh_msiof_spi_probe,
1433 	.remove		= sh_msiof_spi_remove,
1434 	.id_table	= spi_driver_ids,
1435 	.driver		= {
1436 		.name		= "spi_sh_msiof",
1437 		.pm		= DEV_PM_OPS,
1438 		.of_match_table = of_match_ptr(sh_msiof_match),
1439 	},
1440 };
1441 module_platform_driver(sh_msiof_spi_drv);
1442 
1443 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1444 MODULE_AUTHOR("Magnus Damm");
1445 MODULE_LICENSE("GPL v2");
1446 MODULE_ALIAS("platform:spi_sh_msiof");
1447