1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #define DRV_NAME "yellowfin"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sep 11, 2006"
31
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
51
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59 */
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #define yellowfin_debug debug
86
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/init.h>
96 #include <linux/mii.h>
97 #include <linux/netdevice.h>
98 #include <linux/etherdevice.h>
99 #include <linux/skbuff.h>
100 #include <linux/ethtool.h>
101 #include <linux/crc32.h>
102 #include <linux/bitops.h>
103 #include <linux/uaccess.h>
104 #include <asm/processor.h> /* Processor type for cache alignment. */
105 #include <asm/unaligned.h>
106 #include <asm/io.h>
107
108 /* These identify the driver base version and may not be removed. */
109 static const char version[] =
110 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
111 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
112
113 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
114 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
115 MODULE_LICENSE("GPL");
116
117 module_param(max_interrupt_work, int, 0);
118 module_param(mtu, int, 0);
119 module_param(debug, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param_array(options, int, NULL, 0);
122 module_param_array(full_duplex, int, NULL, 0);
123 module_param(gx_fix, int, 0);
124 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
125 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
126 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
127 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
128 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
129 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
130 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
131
132 /*
133 Theory of Operation
134
135 I. Board Compatibility
136
137 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
138 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
139 Symbios 53C885E dual function chip.
140
141 II. Board-specific settings
142
143 PCI bus devices are configured by the system at boot time, so no jumpers
144 need to be set on the board. The system BIOS preferably should assign the
145 PCI INTA signal to an otherwise unused system IRQ line.
146 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
147 interrupt lines.
148
149 III. Driver operation
150
151 IIIa. Ring buffers
152
153 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
154 This is a descriptor list scheme similar to that used by the EEPro100 and
155 Tulip. This driver uses two statically allocated fixed-size descriptor lists
156 formed into rings by a branch from the final descriptor to the beginning of
157 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
158
159 The driver allocates full frame size skbuffs for the Rx ring buffers at
160 open() time and passes the skb->data field to the Yellowfin as receive data
161 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
162 a fresh skbuff is allocated and the frame is copied to the new skbuff.
163 When the incoming frame is larger, the skbuff is passed directly up the
164 protocol stack and replaced by a newly allocated skbuff.
165
166 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
167 using a full-sized skbuff for small frames vs. the copying costs of larger
168 frames. For small frames the copying cost is negligible (esp. considering
169 that we are pre-loading the cache with immediately useful header
170 information). For large frames the copying cost is non-trivial, and the
171 larger copy might flush the cache of useful data.
172
173 IIIC. Synchronization
174
175 The driver runs as two independent, single-threaded flows of control. One
176 is the send-packet routine, which enforces single-threaded use by the
177 dev->tbusy flag. The other thread is the interrupt handler, which is single
178 threaded by the hardware and other software.
179
180 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
181 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
182 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
183 the 'yp->tx_full' flag.
184
185 The interrupt handler has exclusive control over the Rx ring and records stats
186 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
187 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
188 clears both the tx_full and tbusy flags.
189
190 IV. Notes
191
192 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
193 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
194 and an AlphaStation to verifty the Alpha port!
195
196 IVb. References
197
198 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
199 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
200 Data Manual v3.0
201 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
202 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
203
204 IVc. Errata
205
206 See Packet Engines confidential appendix (prototype chips only).
207 */
208
209
210
211 enum capability_flags {
212 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
213 HasMACAddrBug=32, /* Only on early revs. */
214 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
215 };
216
217 /* The PCI I/O space extent. */
218 enum {
219 YELLOWFIN_SIZE = 0x100,
220 };
221
222 struct pci_id_info {
223 const char *name;
224 struct match_info {
225 int pci, pci_mask, subsystem, subsystem_mask;
226 int revision, revision_mask; /* Only 8 bits. */
227 } id;
228 int drv_flags; /* Driver use, intended as capability flags. */
229 };
230
231 static const struct pci_id_info pci_id_tbl[] = {
232 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
233 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
234 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
235 HasMII | DontUseEeprom },
236 { }
237 };
238
239 static const struct pci_device_id yellowfin_pci_tbl[] = {
240 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
241 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
242 { }
243 };
244 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
245
246
247 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
248 enum yellowfin_offsets {
249 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
250 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
251 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
252 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
253 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
254 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
255 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
256 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
257 MII_Status=0xAE,
258 RxDepth=0xB8, FlowCtrl=0xBC,
259 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
260 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
261 EEFeature=0xF5,
262 };
263
264 /* The Yellowfin Rx and Tx buffer descriptors.
265 Elements are written as 32 bit for endian portability. */
266 struct yellowfin_desc {
267 __le32 dbdma_cmd;
268 __le32 addr;
269 __le32 branch_addr;
270 __le32 result_status;
271 };
272
273 struct tx_status_words {
274 #ifdef __BIG_ENDIAN
275 u16 tx_errs;
276 u16 tx_cnt;
277 u16 paused;
278 u16 total_tx_cnt;
279 #else /* Little endian chips. */
280 u16 tx_cnt;
281 u16 tx_errs;
282 u16 total_tx_cnt;
283 u16 paused;
284 #endif /* __BIG_ENDIAN */
285 };
286
287 /* Bits in yellowfin_desc.cmd */
288 enum desc_cmd_bits {
289 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
290 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
291 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
292 BRANCH_IFTRUE=0x040000,
293 };
294
295 /* Bits in yellowfin_desc.status */
296 enum desc_status_bits { RX_EOP=0x0040, };
297
298 /* Bits in the interrupt status/mask registers. */
299 enum intr_status_bits {
300 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
301 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
302 IntrEarlyRx=0x100, IntrWakeup=0x200, };
303
304 #define PRIV_ALIGN 31 /* Required alignment mask */
305 #define MII_CNT 4
306 struct yellowfin_private {
307 /* Descriptor rings first for alignment.
308 Tx requires a second descriptor for status. */
309 struct yellowfin_desc *rx_ring;
310 struct yellowfin_desc *tx_ring;
311 struct sk_buff* rx_skbuff[RX_RING_SIZE];
312 struct sk_buff* tx_skbuff[TX_RING_SIZE];
313 dma_addr_t rx_ring_dma;
314 dma_addr_t tx_ring_dma;
315
316 struct tx_status_words *tx_status;
317 dma_addr_t tx_status_dma;
318
319 struct timer_list timer; /* Media selection timer. */
320 /* Frequently used and paired value: keep adjacent for cache effect. */
321 int chip_id, drv_flags;
322 struct pci_dev *pci_dev;
323 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
324 unsigned int rx_buf_sz; /* Based on MTU+slack. */
325 struct tx_status_words *tx_tail_desc;
326 unsigned int cur_tx, dirty_tx;
327 int tx_threshold;
328 unsigned int tx_full:1; /* The Tx queue is full. */
329 unsigned int full_duplex:1; /* Full-duplex operation requested. */
330 unsigned int duplex_lock:1;
331 unsigned int medialock:1; /* Do not sense media. */
332 unsigned int default_port:4; /* Last dev->if_port value. */
333 /* MII transceiver section. */
334 int mii_cnt; /* MII device addresses. */
335 u16 advertising; /* NWay media advertisement */
336 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
337 spinlock_t lock;
338 void __iomem *base;
339 };
340
341 static int read_eeprom(void __iomem *ioaddr, int location);
342 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
343 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static int yellowfin_open(struct net_device *dev);
346 static void yellowfin_timer(struct timer_list *t);
347 static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue);
348 static int yellowfin_init_ring(struct net_device *dev);
349 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
350 struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
357
358 static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_rx_mode = set_rx_mode,
363 .ndo_validate_addr = eth_validate_addr,
364 .ndo_set_mac_address = eth_mac_addr,
365 .ndo_eth_ioctl = netdev_ioctl,
366 .ndo_tx_timeout = yellowfin_tx_timeout,
367 };
368
yellowfin_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)369 static int yellowfin_init_one(struct pci_dev *pdev,
370 const struct pci_device_id *ent)
371 {
372 struct net_device *dev;
373 struct yellowfin_private *np;
374 int irq;
375 int chip_idx = ent->driver_data;
376 static int find_cnt;
377 void __iomem *ioaddr;
378 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
379 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
380 void *ring_space;
381 dma_addr_t ring_dma;
382 #ifdef USE_IO_OPS
383 int bar = 0;
384 #else
385 int bar = 1;
386 #endif
387
388 /* when built into the kernel, we only print version if device is found */
389 #ifndef MODULE
390 static int printed_version;
391 if (!printed_version++)
392 printk(version);
393 #endif
394
395 i = pci_enable_device(pdev);
396 if (i) return i;
397
398 dev = alloc_etherdev(sizeof(*np));
399 if (!dev)
400 return -ENOMEM;
401
402 SET_NETDEV_DEV(dev, &pdev->dev);
403
404 np = netdev_priv(dev);
405
406 if (pci_request_regions(pdev, DRV_NAME))
407 goto err_out_free_netdev;
408
409 pci_set_master (pdev);
410
411 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
412 if (!ioaddr)
413 goto err_out_free_res;
414
415 irq = pdev->irq;
416
417 if (drv_flags & DontUseEeprom)
418 for (i = 0; i < 6; i++)
419 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
420 else {
421 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
422 for (i = 0; i < 6; i++)
423 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
424 }
425
426 /* Reset the chip. */
427 iowrite32(0x80000000, ioaddr + DMACtrl);
428
429 pci_set_drvdata(pdev, dev);
430 spin_lock_init(&np->lock);
431
432 np->pci_dev = pdev;
433 np->chip_id = chip_idx;
434 np->drv_flags = drv_flags;
435 np->base = ioaddr;
436
437 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
438 GFP_KERNEL);
439 if (!ring_space)
440 goto err_out_cleardev;
441 np->tx_ring = ring_space;
442 np->tx_ring_dma = ring_dma;
443
444 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
445 GFP_KERNEL);
446 if (!ring_space)
447 goto err_out_unmap_tx;
448 np->rx_ring = ring_space;
449 np->rx_ring_dma = ring_dma;
450
451 ring_space = dma_alloc_coherent(&pdev->dev, STATUS_TOTAL_SIZE,
452 &ring_dma, GFP_KERNEL);
453 if (!ring_space)
454 goto err_out_unmap_rx;
455 np->tx_status = ring_space;
456 np->tx_status_dma = ring_dma;
457
458 if (dev->mem_start)
459 option = dev->mem_start;
460
461 /* The lower four bits are the media type. */
462 if (option > 0) {
463 if (option & 0x200)
464 np->full_duplex = 1;
465 np->default_port = option & 15;
466 if (np->default_port)
467 np->medialock = 1;
468 }
469 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
470 np->full_duplex = 1;
471
472 if (np->full_duplex)
473 np->duplex_lock = 1;
474
475 /* The Yellowfin-specific entries in the device structure. */
476 dev->netdev_ops = &netdev_ops;
477 dev->ethtool_ops = ðtool_ops;
478 dev->watchdog_timeo = TX_TIMEOUT;
479
480 if (mtu)
481 dev->mtu = mtu;
482
483 i = register_netdev(dev);
484 if (i)
485 goto err_out_unmap_status;
486
487 netdev_info(dev, "%s type %8x at %p, %pM, IRQ %d\n",
488 pci_id_tbl[chip_idx].name,
489 ioread32(ioaddr + ChipRev), ioaddr,
490 dev->dev_addr, irq);
491
492 if (np->drv_flags & HasMII) {
493 int phy, phy_idx = 0;
494 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
495 int mii_status = mdio_read(ioaddr, phy, 1);
496 if (mii_status != 0xffff && mii_status != 0x0000) {
497 np->phys[phy_idx++] = phy;
498 np->advertising = mdio_read(ioaddr, phy, 4);
499 netdev_info(dev, "MII PHY found at address %d, status 0x%04x advertising %04x\n",
500 phy, mii_status, np->advertising);
501 }
502 }
503 np->mii_cnt = phy_idx;
504 }
505
506 find_cnt++;
507
508 return 0;
509
510 err_out_unmap_status:
511 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
512 np->tx_status_dma);
513 err_out_unmap_rx:
514 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
515 np->rx_ring_dma);
516 err_out_unmap_tx:
517 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
518 np->tx_ring_dma);
519 err_out_cleardev:
520 pci_iounmap(pdev, ioaddr);
521 err_out_free_res:
522 pci_release_regions(pdev);
523 err_out_free_netdev:
524 free_netdev (dev);
525 return -ENODEV;
526 }
527
read_eeprom(void __iomem * ioaddr,int location)528 static int read_eeprom(void __iomem *ioaddr, int location)
529 {
530 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
531
532 iowrite8(location, ioaddr + EEAddr);
533 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
534 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
535 ;
536 return ioread8(ioaddr + EERead);
537 }
538
539 /* MII Managemen Data I/O accesses.
540 These routines assume the MDIO controller is idle, and do not exit until
541 the command is finished. */
542
mdio_read(void __iomem * ioaddr,int phy_id,int location)543 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
544 {
545 int i;
546
547 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
548 iowrite16(1, ioaddr + MII_Cmd);
549 for (i = 10000; i >= 0; i--)
550 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
551 break;
552 return ioread16(ioaddr + MII_Rd_Data);
553 }
554
mdio_write(void __iomem * ioaddr,int phy_id,int location,int value)555 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
556 {
557 int i;
558
559 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
560 iowrite16(value, ioaddr + MII_Wr_Data);
561
562 /* Wait for the command to finish. */
563 for (i = 10000; i >= 0; i--)
564 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
565 break;
566 }
567
568
yellowfin_open(struct net_device * dev)569 static int yellowfin_open(struct net_device *dev)
570 {
571 struct yellowfin_private *yp = netdev_priv(dev);
572 const int irq = yp->pci_dev->irq;
573 void __iomem *ioaddr = yp->base;
574 int i, rc;
575
576 /* Reset the chip. */
577 iowrite32(0x80000000, ioaddr + DMACtrl);
578
579 rc = request_irq(irq, yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
580 if (rc)
581 return rc;
582
583 rc = yellowfin_init_ring(dev);
584 if (rc < 0)
585 goto err_free_irq;
586
587 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
588 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
589
590 for (i = 0; i < 6; i++)
591 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
592
593 /* Set up various condition 'select' registers.
594 There are no options here. */
595 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
596 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
597 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
598 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
599 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
600 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
601
602 /* Initialize other registers: with so many this eventually this will
603 converted to an offset/value list. */
604 iowrite32(dma_ctrl, ioaddr + DMACtrl);
605 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
606 /* Enable automatic generation of flow control frames, period 0xffff. */
607 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
608
609 yp->tx_threshold = 32;
610 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
611
612 if (dev->if_port == 0)
613 dev->if_port = yp->default_port;
614
615 netif_start_queue(dev);
616
617 /* Setting the Rx mode will start the Rx process. */
618 if (yp->drv_flags & IsGigabit) {
619 /* We are always in full-duplex mode with gigabit! */
620 yp->full_duplex = 1;
621 iowrite16(0x01CF, ioaddr + Cnfg);
622 } else {
623 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
624 iowrite16(0x1018, ioaddr + FrameGap1);
625 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
626 }
627 set_rx_mode(dev);
628
629 /* Enable interrupts by setting the interrupt mask. */
630 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
631 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
632 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
633 iowrite32(0x80008000, ioaddr + TxCtrl);
634
635 if (yellowfin_debug > 2) {
636 netdev_printk(KERN_DEBUG, dev, "Done %s()\n", __func__);
637 }
638
639 /* Set the timer to check for link beat. */
640 timer_setup(&yp->timer, yellowfin_timer, 0);
641 yp->timer.expires = jiffies + 3*HZ;
642 add_timer(&yp->timer);
643 out:
644 return rc;
645
646 err_free_irq:
647 free_irq(irq, dev);
648 goto out;
649 }
650
yellowfin_timer(struct timer_list * t)651 static void yellowfin_timer(struct timer_list *t)
652 {
653 struct yellowfin_private *yp = from_timer(yp, t, timer);
654 struct net_device *dev = pci_get_drvdata(yp->pci_dev);
655 void __iomem *ioaddr = yp->base;
656 int next_tick = 60*HZ;
657
658 if (yellowfin_debug > 3) {
659 netdev_printk(KERN_DEBUG, dev, "Yellowfin timer tick, status %08x\n",
660 ioread16(ioaddr + IntrStatus));
661 }
662
663 if (yp->mii_cnt) {
664 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
665 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
666 int negotiated = lpa & yp->advertising;
667 if (yellowfin_debug > 1)
668 netdev_printk(KERN_DEBUG, dev, "MII #%d status register is %04x, link partner capability %04x\n",
669 yp->phys[0], bmsr, lpa);
670
671 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
672
673 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
674
675 if (bmsr & BMSR_LSTATUS)
676 next_tick = 60*HZ;
677 else
678 next_tick = 3*HZ;
679 }
680
681 yp->timer.expires = jiffies + next_tick;
682 add_timer(&yp->timer);
683 }
684
yellowfin_tx_timeout(struct net_device * dev,unsigned int txqueue)685 static void yellowfin_tx_timeout(struct net_device *dev, unsigned int txqueue)
686 {
687 struct yellowfin_private *yp = netdev_priv(dev);
688 void __iomem *ioaddr = yp->base;
689
690 netdev_warn(dev, "Yellowfin transmit timed out at %d/%d Tx status %04x, Rx status %04x, resetting...\n",
691 yp->cur_tx, yp->dirty_tx,
692 ioread32(ioaddr + TxStatus),
693 ioread32(ioaddr + RxStatus));
694
695 /* Note: these should be KERN_DEBUG. */
696 if (yellowfin_debug) {
697 int i;
698 pr_warn(" Rx ring %p: ", yp->rx_ring);
699 for (i = 0; i < RX_RING_SIZE; i++)
700 pr_cont(" %08x", yp->rx_ring[i].result_status);
701 pr_cont("\n");
702 pr_warn(" Tx ring %p: ", yp->tx_ring);
703 for (i = 0; i < TX_RING_SIZE; i++)
704 pr_cont(" %04x /%08x",
705 yp->tx_status[i].tx_errs,
706 yp->tx_ring[i].result_status);
707 pr_cont("\n");
708 }
709
710 /* If the hardware is found to hang regularly, we will update the code
711 to reinitialize the chip here. */
712 dev->if_port = 0;
713
714 /* Wake the potentially-idle transmit channel. */
715 iowrite32(0x10001000, yp->base + TxCtrl);
716 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
717 netif_wake_queue (dev); /* Typical path */
718
719 netif_trans_update(dev); /* prevent tx timeout */
720 dev->stats.tx_errors++;
721 }
722
723 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
yellowfin_init_ring(struct net_device * dev)724 static int yellowfin_init_ring(struct net_device *dev)
725 {
726 struct yellowfin_private *yp = netdev_priv(dev);
727 int i, j;
728
729 yp->tx_full = 0;
730 yp->cur_rx = yp->cur_tx = 0;
731 yp->dirty_tx = 0;
732
733 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
734
735 for (i = 0; i < RX_RING_SIZE; i++) {
736 yp->rx_ring[i].dbdma_cmd =
737 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
738 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
739 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
740 }
741
742 for (i = 0; i < RX_RING_SIZE; i++) {
743 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
744 yp->rx_skbuff[i] = skb;
745 if (skb == NULL)
746 break;
747 skb_reserve(skb, 2); /* 16 byte align the IP header. */
748 yp->rx_ring[i].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
749 skb->data,
750 yp->rx_buf_sz,
751 DMA_FROM_DEVICE));
752 }
753 if (i != RX_RING_SIZE) {
754 for (j = 0; j < i; j++)
755 dev_kfree_skb(yp->rx_skbuff[j]);
756 return -ENOMEM;
757 }
758 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
759 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
760
761 #define NO_TXSTATS
762 #ifdef NO_TXSTATS
763 /* In this mode the Tx ring needs only a single descriptor. */
764 for (i = 0; i < TX_RING_SIZE; i++) {
765 yp->tx_skbuff[i] = NULL;
766 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
767 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
768 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
769 }
770 /* Wrap ring */
771 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
772 #else
773 {
774 /* Tx ring needs a pair of descriptors, the second for the status. */
775 for (i = 0; i < TX_RING_SIZE; i++) {
776 j = 2*i;
777 yp->tx_skbuff[i] = 0;
778 /* Branch on Tx error. */
779 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
780 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
781 (j+1)*sizeof(struct yellowfin_desc));
782 j++;
783 if (yp->flags & FullTxStatus) {
784 yp->tx_ring[j].dbdma_cmd =
785 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
786 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
787 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
788 i*sizeof(struct tx_status_words));
789 } else {
790 /* Symbios chips write only tx_errs word. */
791 yp->tx_ring[j].dbdma_cmd =
792 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
793 yp->tx_ring[j].request_cnt = 2;
794 /* Om pade ummmmm... */
795 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
796 i*sizeof(struct tx_status_words) +
797 &(yp->tx_status[0].tx_errs) -
798 &(yp->tx_status[0]));
799 }
800 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
801 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
802 }
803 /* Wrap ring */
804 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
805 }
806 #endif
807 yp->tx_tail_desc = &yp->tx_status[0];
808 return 0;
809 }
810
yellowfin_start_xmit(struct sk_buff * skb,struct net_device * dev)811 static netdev_tx_t yellowfin_start_xmit(struct sk_buff *skb,
812 struct net_device *dev)
813 {
814 struct yellowfin_private *yp = netdev_priv(dev);
815 unsigned entry;
816 int len = skb->len;
817
818 netif_stop_queue (dev);
819
820 /* Note: Ordering is important here, set the field with the
821 "ownership" bit last, and only then increment cur_tx. */
822
823 /* Calculate the next Tx descriptor entry. */
824 entry = yp->cur_tx % TX_RING_SIZE;
825
826 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
827 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
828 /* Fix GX chipset errata. */
829 if (cacheline_end > 24 || cacheline_end == 0) {
830 len = skb->len + 32 - cacheline_end + 1;
831 if (skb_padto(skb, len)) {
832 yp->tx_skbuff[entry] = NULL;
833 netif_wake_queue(dev);
834 return NETDEV_TX_OK;
835 }
836 }
837 }
838 yp->tx_skbuff[entry] = skb;
839
840 #ifdef NO_TXSTATS
841 yp->tx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
842 skb->data,
843 len, DMA_TO_DEVICE));
844 yp->tx_ring[entry].result_status = 0;
845 if (entry >= TX_RING_SIZE-1) {
846 /* New stop command. */
847 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
848 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
849 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
850 } else {
851 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
852 yp->tx_ring[entry].dbdma_cmd =
853 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
854 }
855 yp->cur_tx++;
856 #else
857 yp->tx_ring[entry<<1].request_cnt = len;
858 yp->tx_ring[entry<<1].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
859 skb->data,
860 len, DMA_TO_DEVICE));
861 /* The input_last (status-write) command is constant, but we must
862 rewrite the subsequent 'stop' command. */
863
864 yp->cur_tx++;
865 {
866 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
867 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
868 }
869 /* Final step -- overwrite the old 'stop' command. */
870
871 yp->tx_ring[entry<<1].dbdma_cmd =
872 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
873 CMD_TX_PKT | BRANCH_IFTRUE) | len);
874 #endif
875
876 /* Non-x86 Todo: explicitly flush cache lines here. */
877
878 /* Wake the potentially-idle transmit channel. */
879 iowrite32(0x10001000, yp->base + TxCtrl);
880
881 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
882 netif_start_queue (dev); /* Typical path */
883 else
884 yp->tx_full = 1;
885
886 if (yellowfin_debug > 4) {
887 netdev_printk(KERN_DEBUG, dev, "Yellowfin transmit frame #%d queued in slot %d\n",
888 yp->cur_tx, entry);
889 }
890 return NETDEV_TX_OK;
891 }
892
893 /* The interrupt handler does all of the Rx thread work and cleans up
894 after the Tx thread. */
yellowfin_interrupt(int irq,void * dev_instance)895 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
896 {
897 struct net_device *dev = dev_instance;
898 struct yellowfin_private *yp;
899 void __iomem *ioaddr;
900 int boguscnt = max_interrupt_work;
901 unsigned int handled = 0;
902
903 yp = netdev_priv(dev);
904 ioaddr = yp->base;
905
906 spin_lock (&yp->lock);
907
908 do {
909 u16 intr_status = ioread16(ioaddr + IntrClear);
910
911 if (yellowfin_debug > 4)
912 netdev_printk(KERN_DEBUG, dev, "Yellowfin interrupt, status %04x\n",
913 intr_status);
914
915 if (intr_status == 0)
916 break;
917 handled = 1;
918
919 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
920 yellowfin_rx(dev);
921 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
922 }
923
924 #ifdef NO_TXSTATS
925 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
926 int entry = yp->dirty_tx % TX_RING_SIZE;
927 struct sk_buff *skb;
928
929 if (yp->tx_ring[entry].result_status == 0)
930 break;
931 skb = yp->tx_skbuff[entry];
932 dev->stats.tx_packets++;
933 dev->stats.tx_bytes += skb->len;
934 /* Free the original skb. */
935 dma_unmap_single(&yp->pci_dev->dev,
936 le32_to_cpu(yp->tx_ring[entry].addr),
937 skb->len, DMA_TO_DEVICE);
938 dev_consume_skb_irq(skb);
939 yp->tx_skbuff[entry] = NULL;
940 }
941 if (yp->tx_full &&
942 yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
943 /* The ring is no longer full, clear tbusy. */
944 yp->tx_full = 0;
945 netif_wake_queue(dev);
946 }
947 #else
948 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
949 unsigned dirty_tx = yp->dirty_tx;
950
951 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
952 dirty_tx++) {
953 /* Todo: optimize this. */
954 int entry = dirty_tx % TX_RING_SIZE;
955 u16 tx_errs = yp->tx_status[entry].tx_errs;
956 struct sk_buff *skb;
957
958 #ifndef final_version
959 if (yellowfin_debug > 5)
960 netdev_printk(KERN_DEBUG, dev, "Tx queue %d check, Tx status %04x %04x %04x %04x\n",
961 entry,
962 yp->tx_status[entry].tx_cnt,
963 yp->tx_status[entry].tx_errs,
964 yp->tx_status[entry].total_tx_cnt,
965 yp->tx_status[entry].paused);
966 #endif
967 if (tx_errs == 0)
968 break; /* It still hasn't been Txed */
969 skb = yp->tx_skbuff[entry];
970 if (tx_errs & 0xF810) {
971 /* There was an major error, log it. */
972 #ifndef final_version
973 if (yellowfin_debug > 1)
974 netdev_printk(KERN_DEBUG, dev, "Transmit error, Tx status %04x\n",
975 tx_errs);
976 #endif
977 dev->stats.tx_errors++;
978 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
979 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
980 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
981 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
982 } else {
983 #ifndef final_version
984 if (yellowfin_debug > 4)
985 netdev_printk(KERN_DEBUG, dev, "Normal transmit, Tx status %04x\n",
986 tx_errs);
987 #endif
988 dev->stats.tx_bytes += skb->len;
989 dev->stats.collisions += tx_errs & 15;
990 dev->stats.tx_packets++;
991 }
992 /* Free the original skb. */
993 dma_unmap_single(&yp->pci_dev->dev,
994 yp->tx_ring[entry << 1].addr,
995 skb->len, DMA_TO_DEVICE);
996 dev_consume_skb_irq(skb);
997 yp->tx_skbuff[entry] = 0;
998 /* Mark status as empty. */
999 yp->tx_status[entry].tx_errs = 0;
1000 }
1001
1002 #ifndef final_version
1003 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1004 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d\n",
1005 dirty_tx, yp->cur_tx, yp->tx_full);
1006 dirty_tx += TX_RING_SIZE;
1007 }
1008 #endif
1009
1010 if (yp->tx_full &&
1011 yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1012 /* The ring is no longer full, clear tbusy. */
1013 yp->tx_full = 0;
1014 netif_wake_queue(dev);
1015 }
1016
1017 yp->dirty_tx = dirty_tx;
1018 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1019 }
1020 #endif
1021
1022 /* Log errors and other uncommon events. */
1023 if (intr_status & 0x2ee) /* Abnormal error summary. */
1024 yellowfin_error(dev, intr_status);
1025
1026 if (--boguscnt < 0) {
1027 netdev_warn(dev, "Too much work at interrupt, status=%#04x\n",
1028 intr_status);
1029 break;
1030 }
1031 } while (1);
1032
1033 if (yellowfin_debug > 3)
1034 netdev_printk(KERN_DEBUG, dev, "exiting interrupt, status=%#04x\n",
1035 ioread16(ioaddr + IntrStatus));
1036
1037 spin_unlock (&yp->lock);
1038 return IRQ_RETVAL(handled);
1039 }
1040
1041 /* This routine is logically part of the interrupt handler, but separated
1042 for clarity and better register allocation. */
yellowfin_rx(struct net_device * dev)1043 static int yellowfin_rx(struct net_device *dev)
1044 {
1045 struct yellowfin_private *yp = netdev_priv(dev);
1046 int entry = yp->cur_rx % RX_RING_SIZE;
1047 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1048
1049 if (yellowfin_debug > 4) {
1050 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %08x\n",
1051 entry, yp->rx_ring[entry].result_status);
1052 printk(KERN_DEBUG " #%d desc. %08x %08x %08x\n",
1053 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1054 yp->rx_ring[entry].result_status);
1055 }
1056
1057 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1058 while (1) {
1059 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1060 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1061 s16 frame_status;
1062 u16 desc_status;
1063 int data_size, __maybe_unused yf_size;
1064 u8 *buf_addr;
1065
1066 if(!desc->result_status)
1067 break;
1068 dma_sync_single_for_cpu(&yp->pci_dev->dev,
1069 le32_to_cpu(desc->addr),
1070 yp->rx_buf_sz, DMA_FROM_DEVICE);
1071 desc_status = le32_to_cpu(desc->result_status) >> 16;
1072 buf_addr = rx_skb->data;
1073 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1074 le32_to_cpu(desc->result_status)) & 0xffff;
1075 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1076 if (yellowfin_debug > 4)
1077 printk(KERN_DEBUG " %s() status was %04x\n",
1078 __func__, frame_status);
1079 if (--boguscnt < 0)
1080 break;
1081
1082 yf_size = sizeof(struct yellowfin_desc);
1083
1084 if ( ! (desc_status & RX_EOP)) {
1085 if (data_size != 0)
1086 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %04x, data_size %d!\n",
1087 desc_status, data_size);
1088 dev->stats.rx_length_errors++;
1089 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1090 /* There was a error. */
1091 if (yellowfin_debug > 3)
1092 printk(KERN_DEBUG " %s() Rx error was %04x\n",
1093 __func__, frame_status);
1094 dev->stats.rx_errors++;
1095 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1096 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1097 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1098 if (frame_status < 0) dev->stats.rx_dropped++;
1099 } else if ( !(yp->drv_flags & IsGigabit) &&
1100 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1101 u8 status1 = buf_addr[data_size-2];
1102 u8 status2 = buf_addr[data_size-1];
1103 dev->stats.rx_errors++;
1104 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1105 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1106 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1107 if (status2 & 0x80) dev->stats.rx_dropped++;
1108 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1109 } else if ((yp->flags & HasMACAddrBug) &&
1110 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
1111 entry * yf_size),
1112 dev->dev_addr) &&
1113 !ether_addr_equal(le32_to_cpu(yp->rx_ring_dma +
1114 entry * yf_size),
1115 "\377\377\377\377\377\377")) {
1116 if (bogus_rx++ == 0)
1117 netdev_warn(dev, "Bad frame to %pM\n",
1118 buf_addr);
1119 #endif
1120 } else {
1121 struct sk_buff *skb;
1122 int pkt_len = data_size -
1123 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1124 /* To verify: Yellowfin Length should omit the CRC! */
1125
1126 #ifndef final_version
1127 if (yellowfin_debug > 4)
1128 printk(KERN_DEBUG " %s() normal Rx pkt length %d of %d, bogus_cnt %d\n",
1129 __func__, pkt_len, data_size, boguscnt);
1130 #endif
1131 /* Check if the packet is long enough to just pass up the skbuff
1132 without copying to a properly sized skbuff. */
1133 if (pkt_len > rx_copybreak) {
1134 skb_put(skb = rx_skb, pkt_len);
1135 dma_unmap_single(&yp->pci_dev->dev,
1136 le32_to_cpu(yp->rx_ring[entry].addr),
1137 yp->rx_buf_sz,
1138 DMA_FROM_DEVICE);
1139 yp->rx_skbuff[entry] = NULL;
1140 } else {
1141 skb = netdev_alloc_skb(dev, pkt_len + 2);
1142 if (skb == NULL)
1143 break;
1144 skb_reserve(skb, 2); /* 16 byte align the IP header */
1145 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1146 skb_put(skb, pkt_len);
1147 dma_sync_single_for_device(&yp->pci_dev->dev,
1148 le32_to_cpu(desc->addr),
1149 yp->rx_buf_sz,
1150 DMA_FROM_DEVICE);
1151 }
1152 skb->protocol = eth_type_trans(skb, dev);
1153 netif_rx(skb);
1154 dev->stats.rx_packets++;
1155 dev->stats.rx_bytes += pkt_len;
1156 }
1157 entry = (++yp->cur_rx) % RX_RING_SIZE;
1158 }
1159
1160 /* Refill the Rx ring buffers. */
1161 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1162 entry = yp->dirty_rx % RX_RING_SIZE;
1163 if (yp->rx_skbuff[entry] == NULL) {
1164 struct sk_buff *skb = netdev_alloc_skb(dev, yp->rx_buf_sz + 2);
1165 if (skb == NULL)
1166 break; /* Better luck next round. */
1167 yp->rx_skbuff[entry] = skb;
1168 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1169 yp->rx_ring[entry].addr = cpu_to_le32(dma_map_single(&yp->pci_dev->dev,
1170 skb->data,
1171 yp->rx_buf_sz,
1172 DMA_FROM_DEVICE));
1173 }
1174 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1175 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1176 if (entry != 0)
1177 yp->rx_ring[entry - 1].dbdma_cmd =
1178 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1179 else
1180 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1181 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1182 | yp->rx_buf_sz);
1183 }
1184
1185 return 0;
1186 }
1187
yellowfin_error(struct net_device * dev,int intr_status)1188 static void yellowfin_error(struct net_device *dev, int intr_status)
1189 {
1190 netdev_err(dev, "Something Wicked happened! %04x\n", intr_status);
1191 /* Hmmmmm, it's not clear what to do here. */
1192 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1193 dev->stats.tx_errors++;
1194 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1195 dev->stats.rx_errors++;
1196 }
1197
yellowfin_close(struct net_device * dev)1198 static int yellowfin_close(struct net_device *dev)
1199 {
1200 struct yellowfin_private *yp = netdev_priv(dev);
1201 void __iomem *ioaddr = yp->base;
1202 int i;
1203
1204 netif_stop_queue (dev);
1205
1206 if (yellowfin_debug > 1) {
1207 netdev_printk(KERN_DEBUG, dev, "Shutting down ethercard, status was Tx %04x Rx %04x Int %02x\n",
1208 ioread16(ioaddr + TxStatus),
1209 ioread16(ioaddr + RxStatus),
1210 ioread16(ioaddr + IntrStatus));
1211 netdev_printk(KERN_DEBUG, dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n",
1212 yp->cur_tx, yp->dirty_tx,
1213 yp->cur_rx, yp->dirty_rx);
1214 }
1215
1216 /* Disable interrupts by clearing the interrupt mask. */
1217 iowrite16(0x0000, ioaddr + IntrEnb);
1218
1219 /* Stop the chip's Tx and Rx processes. */
1220 iowrite32(0x80000000, ioaddr + RxCtrl);
1221 iowrite32(0x80000000, ioaddr + TxCtrl);
1222
1223 del_timer(&yp->timer);
1224
1225 #if defined(__i386__)
1226 if (yellowfin_debug > 2) {
1227 printk(KERN_DEBUG " Tx ring at %08llx:\n",
1228 (unsigned long long)yp->tx_ring_dma);
1229 for (i = 0; i < TX_RING_SIZE*2; i++)
1230 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x %08x\n",
1231 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1232 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1233 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1234 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1235 for (i = 0; i < TX_RING_SIZE; i++)
1236 printk(KERN_DEBUG " #%d status %04x %04x %04x %04x\n",
1237 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1238 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1239
1240 printk(KERN_DEBUG " Rx ring %08llx:\n",
1241 (unsigned long long)yp->rx_ring_dma);
1242 for (i = 0; i < RX_RING_SIZE; i++) {
1243 printk(KERN_DEBUG " %c #%d desc. %08x %08x %08x\n",
1244 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1245 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1246 yp->rx_ring[i].result_status);
1247 if (yellowfin_debug > 6) {
1248 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1249 int j;
1250
1251 printk(KERN_DEBUG);
1252 for (j = 0; j < 0x50; j++)
1253 pr_cont(" %04x",
1254 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1255 pr_cont("\n");
1256 }
1257 }
1258 }
1259 }
1260 #endif /* __i386__ debugging only */
1261
1262 free_irq(yp->pci_dev->irq, dev);
1263
1264 /* Free all the skbuffs in the Rx queue. */
1265 for (i = 0; i < RX_RING_SIZE; i++) {
1266 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1267 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1268 if (yp->rx_skbuff[i]) {
1269 dev_kfree_skb(yp->rx_skbuff[i]);
1270 }
1271 yp->rx_skbuff[i] = NULL;
1272 }
1273 for (i = 0; i < TX_RING_SIZE; i++) {
1274 dev_kfree_skb(yp->tx_skbuff[i]);
1275 yp->tx_skbuff[i] = NULL;
1276 }
1277
1278 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1279 if (yellowfin_debug > 0) {
1280 netdev_printk(KERN_DEBUG, dev, "Received %d frames that we should not have\n",
1281 bogus_rx);
1282 }
1283 #endif
1284
1285 return 0;
1286 }
1287
1288 /* Set or clear the multicast filter for this adaptor. */
1289
set_rx_mode(struct net_device * dev)1290 static void set_rx_mode(struct net_device *dev)
1291 {
1292 struct yellowfin_private *yp = netdev_priv(dev);
1293 void __iomem *ioaddr = yp->base;
1294 u16 cfg_value = ioread16(ioaddr + Cnfg);
1295
1296 /* Stop the Rx process to change any value. */
1297 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1298 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1299 iowrite16(0x000F, ioaddr + AddrMode);
1300 } else if ((netdev_mc_count(dev) > 64) ||
1301 (dev->flags & IFF_ALLMULTI)) {
1302 /* Too many to filter well, or accept all multicasts. */
1303 iowrite16(0x000B, ioaddr + AddrMode);
1304 } else if (!netdev_mc_empty(dev)) { /* Must use the multicast hash table. */
1305 struct netdev_hw_addr *ha;
1306 u16 hash_table[4];
1307 int i;
1308
1309 memset(hash_table, 0, sizeof(hash_table));
1310 netdev_for_each_mc_addr(ha, dev) {
1311 unsigned int bit;
1312
1313 /* Due to a bug in the early chip versions, multiple filter
1314 slots must be set for each address. */
1315 if (yp->drv_flags & HasMulticastBug) {
1316 bit = (ether_crc_le(3, ha->addr) >> 3) & 0x3f;
1317 hash_table[bit >> 4] |= (1 << bit);
1318 bit = (ether_crc_le(4, ha->addr) >> 3) & 0x3f;
1319 hash_table[bit >> 4] |= (1 << bit);
1320 bit = (ether_crc_le(5, ha->addr) >> 3) & 0x3f;
1321 hash_table[bit >> 4] |= (1 << bit);
1322 }
1323 bit = (ether_crc_le(6, ha->addr) >> 3) & 0x3f;
1324 hash_table[bit >> 4] |= (1 << bit);
1325 }
1326 /* Copy the hash table to the chip. */
1327 for (i = 0; i < 4; i++)
1328 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1329 iowrite16(0x0003, ioaddr + AddrMode);
1330 } else { /* Normal, unicast/broadcast-only mode. */
1331 iowrite16(0x0001, ioaddr + AddrMode);
1332 }
1333 /* Restart the Rx process. */
1334 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1335 }
1336
yellowfin_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1337 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1338 {
1339 struct yellowfin_private *np = netdev_priv(dev);
1340
1341 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1342 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1343 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1344 }
1345
1346 static const struct ethtool_ops ethtool_ops = {
1347 .get_drvinfo = yellowfin_get_drvinfo
1348 };
1349
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1350 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1351 {
1352 struct yellowfin_private *np = netdev_priv(dev);
1353 void __iomem *ioaddr = np->base;
1354 struct mii_ioctl_data *data = if_mii(rq);
1355
1356 switch(cmd) {
1357 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1358 data->phy_id = np->phys[0] & 0x1f;
1359 fallthrough;
1360
1361 case SIOCGMIIREG: /* Read MII PHY register. */
1362 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1363 return 0;
1364
1365 case SIOCSMIIREG: /* Write MII PHY register. */
1366 if (data->phy_id == np->phys[0]) {
1367 u16 value = data->val_in;
1368 switch (data->reg_num) {
1369 case 0:
1370 /* Check for autonegotiation on or reset. */
1371 np->medialock = (value & 0x9000) ? 0 : 1;
1372 if (np->medialock)
1373 np->full_duplex = (value & 0x0100) ? 1 : 0;
1374 break;
1375 case 4: np->advertising = value; break;
1376 }
1377 /* Perhaps check_duplex(dev), depending on chip semantics. */
1378 }
1379 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1380 return 0;
1381 default:
1382 return -EOPNOTSUPP;
1383 }
1384 }
1385
1386
yellowfin_remove_one(struct pci_dev * pdev)1387 static void yellowfin_remove_one(struct pci_dev *pdev)
1388 {
1389 struct net_device *dev = pci_get_drvdata(pdev);
1390 struct yellowfin_private *np;
1391
1392 BUG_ON(!dev);
1393 np = netdev_priv(dev);
1394
1395 dma_free_coherent(&pdev->dev, STATUS_TOTAL_SIZE, np->tx_status,
1396 np->tx_status_dma);
1397 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1398 np->rx_ring_dma);
1399 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1400 np->tx_ring_dma);
1401 unregister_netdev (dev);
1402
1403 pci_iounmap(pdev, np->base);
1404
1405 pci_release_regions (pdev);
1406
1407 free_netdev (dev);
1408 }
1409
1410
1411 static struct pci_driver yellowfin_driver = {
1412 .name = DRV_NAME,
1413 .id_table = yellowfin_pci_tbl,
1414 .probe = yellowfin_init_one,
1415 .remove = yellowfin_remove_one,
1416 };
1417
1418
yellowfin_init(void)1419 static int __init yellowfin_init (void)
1420 {
1421 /* when a module, this is printed whether or not devices are found in probe */
1422 #ifdef MODULE
1423 printk(version);
1424 #endif
1425 return pci_register_driver(&yellowfin_driver);
1426 }
1427
1428
yellowfin_cleanup(void)1429 static void __exit yellowfin_cleanup (void)
1430 {
1431 pci_unregister_driver (&yellowfin_driver);
1432 }
1433
1434
1435 module_init(yellowfin_init);
1436 module_exit(yellowfin_cleanup);
1437