1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/pagemap.h>
57 #include <linux/file.h>
58 #include <linux/stat.h>
59 #include <linux/errno.h>
60 #include <linux/major.h>
61 #include <linux/wait.h>
62 #include <linux/blkdev.h>
63 #include <linux/blkpg.h>
64 #include <linux/init.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 #include <linux/sched/mm.h>
82 #include <linux/statfs.h>
83
84 #include "loop.h"
85
86 #include <linux/uaccess.h>
87
88 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
89 #define LOOP_DEFAULT_HW_Q_DEPTH (128)
90
91 static DEFINE_IDR(loop_index_idr);
92 static DEFINE_MUTEX(loop_ctl_mutex);
93 static DEFINE_MUTEX(loop_validate_mutex);
94
95 /**
96 * loop_global_lock_killable() - take locks for safe loop_validate_file() test
97 *
98 * @lo: struct loop_device
99 * @global: true if @lo is about to bind another "struct loop_device", false otherwise
100 *
101 * Returns 0 on success, -EINTR otherwise.
102 *
103 * Since loop_validate_file() traverses on other "struct loop_device" if
104 * is_loop_device() is true, we need a global lock for serializing concurrent
105 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
106 */
loop_global_lock_killable(struct loop_device * lo,bool global)107 static int loop_global_lock_killable(struct loop_device *lo, bool global)
108 {
109 int err;
110
111 if (global) {
112 err = mutex_lock_killable(&loop_validate_mutex);
113 if (err)
114 return err;
115 }
116 err = mutex_lock_killable(&lo->lo_mutex);
117 if (err && global)
118 mutex_unlock(&loop_validate_mutex);
119 return err;
120 }
121
122 /**
123 * loop_global_unlock() - release locks taken by loop_global_lock_killable()
124 *
125 * @lo: struct loop_device
126 * @global: true if @lo was about to bind another "struct loop_device", false otherwise
127 */
loop_global_unlock(struct loop_device * lo,bool global)128 static void loop_global_unlock(struct loop_device *lo, bool global)
129 {
130 mutex_unlock(&lo->lo_mutex);
131 if (global)
132 mutex_unlock(&loop_validate_mutex);
133 }
134
135 static int max_part;
136 static int part_shift;
137
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)138 static int transfer_xor(struct loop_device *lo, int cmd,
139 struct page *raw_page, unsigned raw_off,
140 struct page *loop_page, unsigned loop_off,
141 int size, sector_t real_block)
142 {
143 char *raw_buf = kmap_atomic(raw_page) + raw_off;
144 char *loop_buf = kmap_atomic(loop_page) + loop_off;
145 char *in, *out, *key;
146 int i, keysize;
147
148 if (cmd == READ) {
149 in = raw_buf;
150 out = loop_buf;
151 } else {
152 in = loop_buf;
153 out = raw_buf;
154 }
155
156 key = lo->lo_encrypt_key;
157 keysize = lo->lo_encrypt_key_size;
158 for (i = 0; i < size; i++)
159 *out++ = *in++ ^ key[(i & 511) % keysize];
160
161 kunmap_atomic(loop_buf);
162 kunmap_atomic(raw_buf);
163 cond_resched();
164 return 0;
165 }
166
xor_init(struct loop_device * lo,const struct loop_info64 * info)167 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
168 {
169 if (unlikely(info->lo_encrypt_key_size <= 0))
170 return -EINVAL;
171 return 0;
172 }
173
174 static struct loop_func_table none_funcs = {
175 .number = LO_CRYPT_NONE,
176 };
177
178 static struct loop_func_table xor_funcs = {
179 .number = LO_CRYPT_XOR,
180 .transfer = transfer_xor,
181 .init = xor_init
182 };
183
184 /* xfer_funcs[0] is special - its release function is never called */
185 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
186 &none_funcs,
187 &xor_funcs
188 };
189
get_size(loff_t offset,loff_t sizelimit,struct file * file)190 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
191 {
192 loff_t loopsize;
193
194 /* Compute loopsize in bytes */
195 loopsize = i_size_read(file->f_mapping->host);
196 if (offset > 0)
197 loopsize -= offset;
198 /* offset is beyond i_size, weird but possible */
199 if (loopsize < 0)
200 return 0;
201
202 if (sizelimit > 0 && sizelimit < loopsize)
203 loopsize = sizelimit;
204 /*
205 * Unfortunately, if we want to do I/O on the device,
206 * the number of 512-byte sectors has to fit into a sector_t.
207 */
208 return loopsize >> 9;
209 }
210
get_loop_size(struct loop_device * lo,struct file * file)211 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
212 {
213 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
214 }
215
__loop_update_dio(struct loop_device * lo,bool dio)216 static void __loop_update_dio(struct loop_device *lo, bool dio)
217 {
218 struct file *file = lo->lo_backing_file;
219 struct address_space *mapping = file->f_mapping;
220 struct inode *inode = mapping->host;
221 unsigned short sb_bsize = 0;
222 unsigned dio_align = 0;
223 bool use_dio;
224
225 if (inode->i_sb->s_bdev) {
226 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
227 dio_align = sb_bsize - 1;
228 }
229
230 /*
231 * We support direct I/O only if lo_offset is aligned with the
232 * logical I/O size of backing device, and the logical block
233 * size of loop is bigger than the backing device's and the loop
234 * needn't transform transfer.
235 *
236 * TODO: the above condition may be loosed in the future, and
237 * direct I/O may be switched runtime at that time because most
238 * of requests in sane applications should be PAGE_SIZE aligned
239 */
240 if (dio) {
241 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
242 !(lo->lo_offset & dio_align) &&
243 mapping->a_ops->direct_IO &&
244 !lo->transfer)
245 use_dio = true;
246 else
247 use_dio = false;
248 } else {
249 use_dio = false;
250 }
251
252 if (lo->use_dio == use_dio)
253 return;
254
255 /* flush dirty pages before changing direct IO */
256 vfs_fsync(file, 0);
257
258 /*
259 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
260 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
261 * will get updated by ioctl(LOOP_GET_STATUS)
262 */
263 if (lo->lo_state == Lo_bound)
264 blk_mq_freeze_queue(lo->lo_queue);
265 lo->use_dio = use_dio;
266 if (use_dio) {
267 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
268 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
269 } else {
270 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
271 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
272 }
273 if (lo->lo_state == Lo_bound)
274 blk_mq_unfreeze_queue(lo->lo_queue);
275 }
276
277 /**
278 * loop_set_size() - sets device size and notifies userspace
279 * @lo: struct loop_device to set the size for
280 * @size: new size of the loop device
281 *
282 * Callers must validate that the size passed into this function fits into
283 * a sector_t, eg using loop_validate_size()
284 */
loop_set_size(struct loop_device * lo,loff_t size)285 static void loop_set_size(struct loop_device *lo, loff_t size)
286 {
287 if (!set_capacity_and_notify(lo->lo_disk, size))
288 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
289 }
290
291 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)292 lo_do_transfer(struct loop_device *lo, int cmd,
293 struct page *rpage, unsigned roffs,
294 struct page *lpage, unsigned loffs,
295 int size, sector_t rblock)
296 {
297 int ret;
298
299 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
300 if (likely(!ret))
301 return 0;
302
303 printk_ratelimited(KERN_ERR
304 "loop: Transfer error at byte offset %llu, length %i.\n",
305 (unsigned long long)rblock << 9, size);
306 return ret;
307 }
308
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)309 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
310 {
311 struct iov_iter i;
312 ssize_t bw;
313
314 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
315
316 file_start_write(file);
317 bw = vfs_iter_write(file, &i, ppos, 0);
318 file_end_write(file);
319
320 if (likely(bw == bvec->bv_len))
321 return 0;
322
323 printk_ratelimited(KERN_ERR
324 "loop: Write error at byte offset %llu, length %i.\n",
325 (unsigned long long)*ppos, bvec->bv_len);
326 if (bw >= 0)
327 bw = -EIO;
328 return bw;
329 }
330
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)331 static int lo_write_simple(struct loop_device *lo, struct request *rq,
332 loff_t pos)
333 {
334 struct bio_vec bvec;
335 struct req_iterator iter;
336 int ret = 0;
337
338 rq_for_each_segment(bvec, rq, iter) {
339 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
340 if (ret < 0)
341 break;
342 cond_resched();
343 }
344
345 return ret;
346 }
347
348 /*
349 * This is the slow, transforming version that needs to double buffer the
350 * data as it cannot do the transformations in place without having direct
351 * access to the destination pages of the backing file.
352 */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)353 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
354 loff_t pos)
355 {
356 struct bio_vec bvec, b;
357 struct req_iterator iter;
358 struct page *page;
359 int ret = 0;
360
361 page = alloc_page(GFP_NOIO);
362 if (unlikely(!page))
363 return -ENOMEM;
364
365 rq_for_each_segment(bvec, rq, iter) {
366 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
367 bvec.bv_offset, bvec.bv_len, pos >> 9);
368 if (unlikely(ret))
369 break;
370
371 b.bv_page = page;
372 b.bv_offset = 0;
373 b.bv_len = bvec.bv_len;
374 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
375 if (ret < 0)
376 break;
377 }
378
379 __free_page(page);
380 return ret;
381 }
382
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)383 static int lo_read_simple(struct loop_device *lo, struct request *rq,
384 loff_t pos)
385 {
386 struct bio_vec bvec;
387 struct req_iterator iter;
388 struct iov_iter i;
389 ssize_t len;
390
391 rq_for_each_segment(bvec, rq, iter) {
392 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
393 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
394 if (len < 0)
395 return len;
396
397 flush_dcache_page(bvec.bv_page);
398
399 if (len != bvec.bv_len) {
400 struct bio *bio;
401
402 __rq_for_each_bio(bio, rq)
403 zero_fill_bio(bio);
404 break;
405 }
406 cond_resched();
407 }
408
409 return 0;
410 }
411
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)412 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
413 loff_t pos)
414 {
415 struct bio_vec bvec, b;
416 struct req_iterator iter;
417 struct iov_iter i;
418 struct page *page;
419 ssize_t len;
420 int ret = 0;
421
422 page = alloc_page(GFP_NOIO);
423 if (unlikely(!page))
424 return -ENOMEM;
425
426 rq_for_each_segment(bvec, rq, iter) {
427 loff_t offset = pos;
428
429 b.bv_page = page;
430 b.bv_offset = 0;
431 b.bv_len = bvec.bv_len;
432
433 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
434 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
435 if (len < 0) {
436 ret = len;
437 goto out_free_page;
438 }
439
440 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
441 bvec.bv_offset, len, offset >> 9);
442 if (ret)
443 goto out_free_page;
444
445 flush_dcache_page(bvec.bv_page);
446
447 if (len != bvec.bv_len) {
448 struct bio *bio;
449
450 __rq_for_each_bio(bio, rq)
451 zero_fill_bio(bio);
452 break;
453 }
454 }
455
456 ret = 0;
457 out_free_page:
458 __free_page(page);
459 return ret;
460 }
461
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)462 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
463 int mode)
464 {
465 /*
466 * We use fallocate to manipulate the space mappings used by the image
467 * a.k.a. discard/zerorange. However we do not support this if
468 * encryption is enabled, because it may give an attacker useful
469 * information.
470 */
471 struct file *file = lo->lo_backing_file;
472 struct request_queue *q = lo->lo_queue;
473 int ret;
474
475 mode |= FALLOC_FL_KEEP_SIZE;
476
477 if (!blk_queue_discard(q)) {
478 ret = -EOPNOTSUPP;
479 goto out;
480 }
481
482 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
483 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
484 ret = -EIO;
485 out:
486 return ret;
487 }
488
lo_req_flush(struct loop_device * lo,struct request * rq)489 static int lo_req_flush(struct loop_device *lo, struct request *rq)
490 {
491 struct file *file = lo->lo_backing_file;
492 int ret = vfs_fsync(file, 0);
493 if (unlikely(ret && ret != -EINVAL))
494 ret = -EIO;
495
496 return ret;
497 }
498
lo_complete_rq(struct request * rq)499 static void lo_complete_rq(struct request *rq)
500 {
501 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
502 blk_status_t ret = BLK_STS_OK;
503
504 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
505 req_op(rq) != REQ_OP_READ) {
506 if (cmd->ret < 0)
507 ret = errno_to_blk_status(cmd->ret);
508 goto end_io;
509 }
510
511 /*
512 * Short READ - if we got some data, advance our request and
513 * retry it. If we got no data, end the rest with EIO.
514 */
515 if (cmd->ret) {
516 blk_update_request(rq, BLK_STS_OK, cmd->ret);
517 cmd->ret = 0;
518 blk_mq_requeue_request(rq, true);
519 } else {
520 if (cmd->use_aio) {
521 struct bio *bio = rq->bio;
522
523 while (bio) {
524 zero_fill_bio(bio);
525 bio = bio->bi_next;
526 }
527 }
528 ret = BLK_STS_IOERR;
529 end_io:
530 blk_mq_end_request(rq, ret);
531 }
532 }
533
lo_rw_aio_do_completion(struct loop_cmd * cmd)534 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
535 {
536 struct request *rq = blk_mq_rq_from_pdu(cmd);
537
538 if (!atomic_dec_and_test(&cmd->ref))
539 return;
540 kfree(cmd->bvec);
541 cmd->bvec = NULL;
542 if (likely(!blk_should_fake_timeout(rq->q)))
543 blk_mq_complete_request(rq);
544 }
545
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)546 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
547 {
548 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
549
550 cmd->ret = ret;
551 lo_rw_aio_do_completion(cmd);
552 }
553
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)554 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
555 loff_t pos, bool rw)
556 {
557 struct iov_iter iter;
558 struct req_iterator rq_iter;
559 struct bio_vec *bvec;
560 struct request *rq = blk_mq_rq_from_pdu(cmd);
561 struct bio *bio = rq->bio;
562 struct file *file = lo->lo_backing_file;
563 struct bio_vec tmp;
564 unsigned int offset;
565 int nr_bvec = 0;
566 int ret;
567
568 rq_for_each_bvec(tmp, rq, rq_iter)
569 nr_bvec++;
570
571 if (rq->bio != rq->biotail) {
572
573 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
574 GFP_NOIO);
575 if (!bvec)
576 return -EIO;
577 cmd->bvec = bvec;
578
579 /*
580 * The bios of the request may be started from the middle of
581 * the 'bvec' because of bio splitting, so we can't directly
582 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
583 * API will take care of all details for us.
584 */
585 rq_for_each_bvec(tmp, rq, rq_iter) {
586 *bvec = tmp;
587 bvec++;
588 }
589 bvec = cmd->bvec;
590 offset = 0;
591 } else {
592 /*
593 * Same here, this bio may be started from the middle of the
594 * 'bvec' because of bio splitting, so offset from the bvec
595 * must be passed to iov iterator
596 */
597 offset = bio->bi_iter.bi_bvec_done;
598 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
599 }
600 atomic_set(&cmd->ref, 2);
601
602 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
603 iter.iov_offset = offset;
604
605 cmd->iocb.ki_pos = pos;
606 cmd->iocb.ki_filp = file;
607 cmd->iocb.ki_complete = lo_rw_aio_complete;
608 cmd->iocb.ki_flags = IOCB_DIRECT;
609 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
610
611 if (rw == WRITE)
612 ret = call_write_iter(file, &cmd->iocb, &iter);
613 else
614 ret = call_read_iter(file, &cmd->iocb, &iter);
615
616 lo_rw_aio_do_completion(cmd);
617
618 if (ret != -EIOCBQUEUED)
619 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
620 return 0;
621 }
622
do_req_filebacked(struct loop_device * lo,struct request * rq)623 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
624 {
625 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
626 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
627
628 /*
629 * lo_write_simple and lo_read_simple should have been covered
630 * by io submit style function like lo_rw_aio(), one blocker
631 * is that lo_read_simple() need to call flush_dcache_page after
632 * the page is written from kernel, and it isn't easy to handle
633 * this in io submit style function which submits all segments
634 * of the req at one time. And direct read IO doesn't need to
635 * run flush_dcache_page().
636 */
637 switch (req_op(rq)) {
638 case REQ_OP_FLUSH:
639 return lo_req_flush(lo, rq);
640 case REQ_OP_WRITE_ZEROES:
641 /*
642 * If the caller doesn't want deallocation, call zeroout to
643 * write zeroes the range. Otherwise, punch them out.
644 */
645 return lo_fallocate(lo, rq, pos,
646 (rq->cmd_flags & REQ_NOUNMAP) ?
647 FALLOC_FL_ZERO_RANGE :
648 FALLOC_FL_PUNCH_HOLE);
649 case REQ_OP_DISCARD:
650 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
651 case REQ_OP_WRITE:
652 if (lo->transfer)
653 return lo_write_transfer(lo, rq, pos);
654 else if (cmd->use_aio)
655 return lo_rw_aio(lo, cmd, pos, WRITE);
656 else
657 return lo_write_simple(lo, rq, pos);
658 case REQ_OP_READ:
659 if (lo->transfer)
660 return lo_read_transfer(lo, rq, pos);
661 else if (cmd->use_aio)
662 return lo_rw_aio(lo, cmd, pos, READ);
663 else
664 return lo_read_simple(lo, rq, pos);
665 default:
666 WARN_ON_ONCE(1);
667 return -EIO;
668 }
669 }
670
loop_update_dio(struct loop_device * lo)671 static inline void loop_update_dio(struct loop_device *lo)
672 {
673 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
674 lo->use_dio);
675 }
676
loop_reread_partitions(struct loop_device * lo)677 static void loop_reread_partitions(struct loop_device *lo)
678 {
679 int rc;
680
681 mutex_lock(&lo->lo_disk->open_mutex);
682 rc = bdev_disk_changed(lo->lo_disk, false);
683 mutex_unlock(&lo->lo_disk->open_mutex);
684 if (rc)
685 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
686 __func__, lo->lo_number, lo->lo_file_name, rc);
687 }
688
is_loop_device(struct file * file)689 static inline int is_loop_device(struct file *file)
690 {
691 struct inode *i = file->f_mapping->host;
692
693 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
694 }
695
loop_validate_file(struct file * file,struct block_device * bdev)696 static int loop_validate_file(struct file *file, struct block_device *bdev)
697 {
698 struct inode *inode = file->f_mapping->host;
699 struct file *f = file;
700
701 /* Avoid recursion */
702 while (is_loop_device(f)) {
703 struct loop_device *l;
704
705 lockdep_assert_held(&loop_validate_mutex);
706 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
707 return -EBADF;
708
709 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
710 if (l->lo_state != Lo_bound)
711 return -EINVAL;
712 /* Order wrt setting lo->lo_backing_file in loop_configure(). */
713 rmb();
714 f = l->lo_backing_file;
715 }
716 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
717 return -EINVAL;
718 return 0;
719 }
720
721 /*
722 * loop_change_fd switched the backing store of a loopback device to
723 * a new file. This is useful for operating system installers to free up
724 * the original file and in High Availability environments to switch to
725 * an alternative location for the content in case of server meltdown.
726 * This can only work if the loop device is used read-only, and if the
727 * new backing store is the same size and type as the old backing store.
728 */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)729 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
730 unsigned int arg)
731 {
732 struct file *file = fget(arg);
733 struct file *old_file;
734 int error;
735 bool partscan;
736 bool is_loop;
737
738 if (!file)
739 return -EBADF;
740
741 /* suppress uevents while reconfiguring the device */
742 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
743
744 is_loop = is_loop_device(file);
745 error = loop_global_lock_killable(lo, is_loop);
746 if (error)
747 goto out_putf;
748 error = -ENXIO;
749 if (lo->lo_state != Lo_bound)
750 goto out_err;
751
752 /* the loop device has to be read-only */
753 error = -EINVAL;
754 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
755 goto out_err;
756
757 error = loop_validate_file(file, bdev);
758 if (error)
759 goto out_err;
760
761 old_file = lo->lo_backing_file;
762
763 error = -EINVAL;
764
765 /* size of the new backing store needs to be the same */
766 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
767 goto out_err;
768
769 /* and ... switch */
770 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
771 blk_mq_freeze_queue(lo->lo_queue);
772 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
773 lo->lo_backing_file = file;
774 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
775 mapping_set_gfp_mask(file->f_mapping,
776 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
777 loop_update_dio(lo);
778 blk_mq_unfreeze_queue(lo->lo_queue);
779 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
780 loop_global_unlock(lo, is_loop);
781
782 /*
783 * Flush loop_validate_file() before fput(), for l->lo_backing_file
784 * might be pointing at old_file which might be the last reference.
785 */
786 if (!is_loop) {
787 mutex_lock(&loop_validate_mutex);
788 mutex_unlock(&loop_validate_mutex);
789 }
790 /*
791 * We must drop file reference outside of lo_mutex as dropping
792 * the file ref can take open_mutex which creates circular locking
793 * dependency.
794 */
795 fput(old_file);
796 if (partscan)
797 loop_reread_partitions(lo);
798
799 error = 0;
800 done:
801 /* enable and uncork uevent now that we are done */
802 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
803 return error;
804
805 out_err:
806 loop_global_unlock(lo, is_loop);
807 out_putf:
808 fput(file);
809 goto done;
810 }
811
812 /* loop sysfs attributes */
813
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))814 static ssize_t loop_attr_show(struct device *dev, char *page,
815 ssize_t (*callback)(struct loop_device *, char *))
816 {
817 struct gendisk *disk = dev_to_disk(dev);
818 struct loop_device *lo = disk->private_data;
819
820 return callback(lo, page);
821 }
822
823 #define LOOP_ATTR_RO(_name) \
824 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
825 static ssize_t loop_attr_do_show_##_name(struct device *d, \
826 struct device_attribute *attr, char *b) \
827 { \
828 return loop_attr_show(d, b, loop_attr_##_name##_show); \
829 } \
830 static struct device_attribute loop_attr_##_name = \
831 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
832
loop_attr_backing_file_show(struct loop_device * lo,char * buf)833 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
834 {
835 ssize_t ret;
836 char *p = NULL;
837
838 spin_lock_irq(&lo->lo_lock);
839 if (lo->lo_backing_file)
840 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
841 spin_unlock_irq(&lo->lo_lock);
842
843 if (IS_ERR_OR_NULL(p))
844 ret = PTR_ERR(p);
845 else {
846 ret = strlen(p);
847 memmove(buf, p, ret);
848 buf[ret++] = '\n';
849 buf[ret] = 0;
850 }
851
852 return ret;
853 }
854
loop_attr_offset_show(struct loop_device * lo,char * buf)855 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
856 {
857 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
858 }
859
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)860 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
861 {
862 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
863 }
864
loop_attr_autoclear_show(struct loop_device * lo,char * buf)865 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
866 {
867 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
868
869 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
870 }
871
loop_attr_partscan_show(struct loop_device * lo,char * buf)872 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
873 {
874 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
875
876 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
877 }
878
loop_attr_dio_show(struct loop_device * lo,char * buf)879 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
880 {
881 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
882
883 return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
884 }
885
886 LOOP_ATTR_RO(backing_file);
887 LOOP_ATTR_RO(offset);
888 LOOP_ATTR_RO(sizelimit);
889 LOOP_ATTR_RO(autoclear);
890 LOOP_ATTR_RO(partscan);
891 LOOP_ATTR_RO(dio);
892
893 static struct attribute *loop_attrs[] = {
894 &loop_attr_backing_file.attr,
895 &loop_attr_offset.attr,
896 &loop_attr_sizelimit.attr,
897 &loop_attr_autoclear.attr,
898 &loop_attr_partscan.attr,
899 &loop_attr_dio.attr,
900 NULL,
901 };
902
903 static struct attribute_group loop_attribute_group = {
904 .name = "loop",
905 .attrs= loop_attrs,
906 };
907
loop_sysfs_init(struct loop_device * lo)908 static void loop_sysfs_init(struct loop_device *lo)
909 {
910 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
911 &loop_attribute_group);
912 }
913
loop_sysfs_exit(struct loop_device * lo)914 static void loop_sysfs_exit(struct loop_device *lo)
915 {
916 if (lo->sysfs_inited)
917 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
918 &loop_attribute_group);
919 }
920
loop_config_discard(struct loop_device * lo)921 static void loop_config_discard(struct loop_device *lo)
922 {
923 struct file *file = lo->lo_backing_file;
924 struct inode *inode = file->f_mapping->host;
925 struct request_queue *q = lo->lo_queue;
926 u32 granularity, max_discard_sectors;
927
928 /*
929 * If the backing device is a block device, mirror its zeroing
930 * capability. Set the discard sectors to the block device's zeroing
931 * capabilities because loop discards result in blkdev_issue_zeroout(),
932 * not blkdev_issue_discard(). This maintains consistent behavior with
933 * file-backed loop devices: discarded regions read back as zero.
934 */
935 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
936 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
937
938 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
939 granularity = backingq->limits.discard_granularity ?:
940 queue_physical_block_size(backingq);
941
942 /*
943 * We use punch hole to reclaim the free space used by the
944 * image a.k.a. discard. However we do not support discard if
945 * encryption is enabled, because it may give an attacker
946 * useful information.
947 */
948 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
949 max_discard_sectors = 0;
950 granularity = 0;
951
952 } else {
953 struct kstatfs sbuf;
954
955 max_discard_sectors = UINT_MAX >> 9;
956 if (!vfs_statfs(&file->f_path, &sbuf))
957 granularity = sbuf.f_bsize;
958 else
959 max_discard_sectors = 0;
960 }
961
962 if (max_discard_sectors) {
963 q->limits.discard_granularity = granularity;
964 blk_queue_max_discard_sectors(q, max_discard_sectors);
965 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
966 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
967 } else {
968 q->limits.discard_granularity = 0;
969 blk_queue_max_discard_sectors(q, 0);
970 blk_queue_max_write_zeroes_sectors(q, 0);
971 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
972 }
973 q->limits.discard_alignment = 0;
974 }
975
976 struct loop_worker {
977 struct rb_node rb_node;
978 struct work_struct work;
979 struct list_head cmd_list;
980 struct list_head idle_list;
981 struct loop_device *lo;
982 struct cgroup_subsys_state *blkcg_css;
983 unsigned long last_ran_at;
984 };
985
986 static void loop_workfn(struct work_struct *work);
987 static void loop_rootcg_workfn(struct work_struct *work);
988 static void loop_free_idle_workers(struct timer_list *timer);
989
990 #ifdef CONFIG_BLK_CGROUP
queue_on_root_worker(struct cgroup_subsys_state * css)991 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
992 {
993 return !css || css == blkcg_root_css;
994 }
995 #else
queue_on_root_worker(struct cgroup_subsys_state * css)996 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
997 {
998 return !css;
999 }
1000 #endif
1001
loop_queue_work(struct loop_device * lo,struct loop_cmd * cmd)1002 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
1003 {
1004 struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL;
1005 struct loop_worker *cur_worker, *worker = NULL;
1006 struct work_struct *work;
1007 struct list_head *cmd_list;
1008
1009 spin_lock_irq(&lo->lo_work_lock);
1010
1011 if (queue_on_root_worker(cmd->blkcg_css))
1012 goto queue_work;
1013
1014 node = &lo->worker_tree.rb_node;
1015
1016 while (*node) {
1017 parent = *node;
1018 cur_worker = container_of(*node, struct loop_worker, rb_node);
1019 if (cur_worker->blkcg_css == cmd->blkcg_css) {
1020 worker = cur_worker;
1021 break;
1022 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
1023 node = &(*node)->rb_left;
1024 } else {
1025 node = &(*node)->rb_right;
1026 }
1027 }
1028 if (worker)
1029 goto queue_work;
1030
1031 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
1032 /*
1033 * In the event we cannot allocate a worker, just queue on the
1034 * rootcg worker and issue the I/O as the rootcg
1035 */
1036 if (!worker) {
1037 cmd->blkcg_css = NULL;
1038 if (cmd->memcg_css)
1039 css_put(cmd->memcg_css);
1040 cmd->memcg_css = NULL;
1041 goto queue_work;
1042 }
1043
1044 worker->blkcg_css = cmd->blkcg_css;
1045 css_get(worker->blkcg_css);
1046 INIT_WORK(&worker->work, loop_workfn);
1047 INIT_LIST_HEAD(&worker->cmd_list);
1048 INIT_LIST_HEAD(&worker->idle_list);
1049 worker->lo = lo;
1050 rb_link_node(&worker->rb_node, parent, node);
1051 rb_insert_color(&worker->rb_node, &lo->worker_tree);
1052 queue_work:
1053 if (worker) {
1054 /*
1055 * We need to remove from the idle list here while
1056 * holding the lock so that the idle timer doesn't
1057 * free the worker
1058 */
1059 if (!list_empty(&worker->idle_list))
1060 list_del_init(&worker->idle_list);
1061 work = &worker->work;
1062 cmd_list = &worker->cmd_list;
1063 } else {
1064 work = &lo->rootcg_work;
1065 cmd_list = &lo->rootcg_cmd_list;
1066 }
1067 list_add_tail(&cmd->list_entry, cmd_list);
1068 queue_work(lo->workqueue, work);
1069 spin_unlock_irq(&lo->lo_work_lock);
1070 }
1071
loop_update_rotational(struct loop_device * lo)1072 static void loop_update_rotational(struct loop_device *lo)
1073 {
1074 struct file *file = lo->lo_backing_file;
1075 struct inode *file_inode = file->f_mapping->host;
1076 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
1077 struct request_queue *q = lo->lo_queue;
1078 bool nonrot = true;
1079
1080 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
1081 if (file_bdev)
1082 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
1083
1084 if (nonrot)
1085 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1086 else
1087 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1088 }
1089
1090 static int
loop_release_xfer(struct loop_device * lo)1091 loop_release_xfer(struct loop_device *lo)
1092 {
1093 int err = 0;
1094 struct loop_func_table *xfer = lo->lo_encryption;
1095
1096 if (xfer) {
1097 if (xfer->release)
1098 err = xfer->release(lo);
1099 lo->transfer = NULL;
1100 lo->lo_encryption = NULL;
1101 module_put(xfer->owner);
1102 }
1103 return err;
1104 }
1105
1106 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)1107 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1108 const struct loop_info64 *i)
1109 {
1110 int err = 0;
1111
1112 if (xfer) {
1113 struct module *owner = xfer->owner;
1114
1115 if (!try_module_get(owner))
1116 return -EINVAL;
1117 if (xfer->init)
1118 err = xfer->init(lo, i);
1119 if (err)
1120 module_put(owner);
1121 else
1122 lo->lo_encryption = xfer;
1123 }
1124 return err;
1125 }
1126
1127 /**
1128 * loop_set_status_from_info - configure device from loop_info
1129 * @lo: struct loop_device to configure
1130 * @info: struct loop_info64 to configure the device with
1131 *
1132 * Configures the loop device parameters according to the passed
1133 * in loop_info64 configuration.
1134 */
1135 static int
loop_set_status_from_info(struct loop_device * lo,const struct loop_info64 * info)1136 loop_set_status_from_info(struct loop_device *lo,
1137 const struct loop_info64 *info)
1138 {
1139 int err;
1140 struct loop_func_table *xfer;
1141 kuid_t uid = current_uid();
1142
1143 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1144 return -EINVAL;
1145
1146 err = loop_release_xfer(lo);
1147 if (err)
1148 return err;
1149
1150 if (info->lo_encrypt_type) {
1151 unsigned int type = info->lo_encrypt_type;
1152
1153 if (type >= MAX_LO_CRYPT)
1154 return -EINVAL;
1155 xfer = xfer_funcs[type];
1156 if (xfer == NULL)
1157 return -EINVAL;
1158 } else
1159 xfer = NULL;
1160
1161 err = loop_init_xfer(lo, xfer, info);
1162 if (err)
1163 return err;
1164
1165 /* Avoid assigning overflow values */
1166 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
1167 return -EOVERFLOW;
1168
1169 lo->lo_offset = info->lo_offset;
1170 lo->lo_sizelimit = info->lo_sizelimit;
1171
1172 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1173 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1174 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1175 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1176
1177 if (!xfer)
1178 xfer = &none_funcs;
1179 lo->transfer = xfer->transfer;
1180 lo->ioctl = xfer->ioctl;
1181
1182 lo->lo_flags = info->lo_flags;
1183
1184 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1185 lo->lo_init[0] = info->lo_init[0];
1186 lo->lo_init[1] = info->lo_init[1];
1187 if (info->lo_encrypt_key_size) {
1188 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1189 info->lo_encrypt_key_size);
1190 lo->lo_key_owner = uid;
1191 }
1192
1193 return 0;
1194 }
1195
loop_configure(struct loop_device * lo,fmode_t mode,struct block_device * bdev,const struct loop_config * config)1196 static int loop_configure(struct loop_device *lo, fmode_t mode,
1197 struct block_device *bdev,
1198 const struct loop_config *config)
1199 {
1200 struct file *file = fget(config->fd);
1201 struct inode *inode;
1202 struct address_space *mapping;
1203 int error;
1204 loff_t size;
1205 bool partscan;
1206 unsigned short bsize;
1207 bool is_loop;
1208
1209 if (!file)
1210 return -EBADF;
1211 is_loop = is_loop_device(file);
1212
1213 /* This is safe, since we have a reference from open(). */
1214 __module_get(THIS_MODULE);
1215
1216 /*
1217 * If we don't hold exclusive handle for the device, upgrade to it
1218 * here to avoid changing device under exclusive owner.
1219 */
1220 if (!(mode & FMODE_EXCL)) {
1221 error = bd_prepare_to_claim(bdev, loop_configure);
1222 if (error)
1223 goto out_putf;
1224 }
1225
1226 error = loop_global_lock_killable(lo, is_loop);
1227 if (error)
1228 goto out_bdev;
1229
1230 error = -EBUSY;
1231 if (lo->lo_state != Lo_unbound)
1232 goto out_unlock;
1233
1234 error = loop_validate_file(file, bdev);
1235 if (error)
1236 goto out_unlock;
1237
1238 mapping = file->f_mapping;
1239 inode = mapping->host;
1240
1241 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1242 error = -EINVAL;
1243 goto out_unlock;
1244 }
1245
1246 if (config->block_size) {
1247 error = blk_validate_block_size(config->block_size);
1248 if (error)
1249 goto out_unlock;
1250 }
1251
1252 error = loop_set_status_from_info(lo, &config->info);
1253 if (error)
1254 goto out_unlock;
1255
1256 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1257 !file->f_op->write_iter)
1258 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1259
1260 lo->workqueue = alloc_workqueue("loop%d",
1261 WQ_UNBOUND | WQ_FREEZABLE,
1262 0,
1263 lo->lo_number);
1264 if (!lo->workqueue) {
1265 error = -ENOMEM;
1266 goto out_unlock;
1267 }
1268
1269 /* suppress uevents while reconfiguring the device */
1270 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1271
1272 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
1273 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1274
1275 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
1276 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
1277 INIT_LIST_HEAD(&lo->idle_worker_list);
1278 lo->worker_tree = RB_ROOT;
1279 timer_setup(&lo->timer, loop_free_idle_workers,
1280 TIMER_DEFERRABLE);
1281 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1282 lo->lo_device = bdev;
1283 lo->lo_backing_file = file;
1284 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1285 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1286
1287 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1288 blk_queue_write_cache(lo->lo_queue, true, false);
1289
1290 if (config->block_size)
1291 bsize = config->block_size;
1292 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1293 /* In case of direct I/O, match underlying block size */
1294 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1295 else
1296 bsize = 512;
1297
1298 blk_queue_logical_block_size(lo->lo_queue, bsize);
1299 blk_queue_physical_block_size(lo->lo_queue, bsize);
1300 blk_queue_io_min(lo->lo_queue, bsize);
1301
1302 loop_config_discard(lo);
1303 loop_update_rotational(lo);
1304 loop_update_dio(lo);
1305 loop_sysfs_init(lo);
1306
1307 size = get_loop_size(lo, file);
1308 loop_set_size(lo, size);
1309
1310 /* Order wrt reading lo_state in loop_validate_file(). */
1311 wmb();
1312
1313 lo->lo_state = Lo_bound;
1314 if (part_shift)
1315 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1316 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1317 if (partscan)
1318 lo->lo_disk->flags &= ~GENHD_FL_NO_PART;
1319
1320 /* enable and uncork uevent now that we are done */
1321 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1322
1323 loop_global_unlock(lo, is_loop);
1324 if (partscan)
1325 loop_reread_partitions(lo);
1326
1327 if (!(mode & FMODE_EXCL))
1328 bd_abort_claiming(bdev, loop_configure);
1329
1330 return 0;
1331
1332 out_unlock:
1333 loop_global_unlock(lo, is_loop);
1334 out_bdev:
1335 if (!(mode & FMODE_EXCL))
1336 bd_abort_claiming(bdev, loop_configure);
1337 out_putf:
1338 fput(file);
1339 /* This is safe: open() is still holding a reference. */
1340 module_put(THIS_MODULE);
1341 return error;
1342 }
1343
__loop_clr_fd(struct loop_device * lo,bool release)1344 static int __loop_clr_fd(struct loop_device *lo, bool release)
1345 {
1346 struct file *filp = NULL;
1347 gfp_t gfp = lo->old_gfp_mask;
1348 struct block_device *bdev = lo->lo_device;
1349 int err = 0;
1350 bool partscan = false;
1351 int lo_number;
1352 struct loop_worker *pos, *worker;
1353
1354 /*
1355 * Flush loop_configure() and loop_change_fd(). It is acceptable for
1356 * loop_validate_file() to succeed, for actual clear operation has not
1357 * started yet.
1358 */
1359 mutex_lock(&loop_validate_mutex);
1360 mutex_unlock(&loop_validate_mutex);
1361 /*
1362 * loop_validate_file() now fails because l->lo_state != Lo_bound
1363 * became visible.
1364 */
1365
1366 mutex_lock(&lo->lo_mutex);
1367 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1368 err = -ENXIO;
1369 goto out_unlock;
1370 }
1371
1372 filp = lo->lo_backing_file;
1373 if (filp == NULL) {
1374 err = -EINVAL;
1375 goto out_unlock;
1376 }
1377
1378 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1379 blk_queue_write_cache(lo->lo_queue, false, false);
1380
1381 /* freeze request queue during the transition */
1382 blk_mq_freeze_queue(lo->lo_queue);
1383
1384 destroy_workqueue(lo->workqueue);
1385 spin_lock_irq(&lo->lo_work_lock);
1386 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
1387 idle_list) {
1388 list_del(&worker->idle_list);
1389 rb_erase(&worker->rb_node, &lo->worker_tree);
1390 css_put(worker->blkcg_css);
1391 kfree(worker);
1392 }
1393 spin_unlock_irq(&lo->lo_work_lock);
1394 del_timer_sync(&lo->timer);
1395
1396 spin_lock_irq(&lo->lo_lock);
1397 lo->lo_backing_file = NULL;
1398 spin_unlock_irq(&lo->lo_lock);
1399
1400 loop_release_xfer(lo);
1401 lo->transfer = NULL;
1402 lo->ioctl = NULL;
1403 lo->lo_device = NULL;
1404 lo->lo_encryption = NULL;
1405 lo->lo_offset = 0;
1406 lo->lo_sizelimit = 0;
1407 lo->lo_encrypt_key_size = 0;
1408 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1409 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1410 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1411 blk_queue_logical_block_size(lo->lo_queue, 512);
1412 blk_queue_physical_block_size(lo->lo_queue, 512);
1413 blk_queue_io_min(lo->lo_queue, 512);
1414 if (bdev) {
1415 invalidate_bdev(bdev);
1416 bdev->bd_inode->i_mapping->wb_err = 0;
1417 }
1418 set_capacity(lo->lo_disk, 0);
1419 loop_sysfs_exit(lo);
1420 if (bdev) {
1421 /* let user-space know about this change */
1422 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1423 }
1424 mapping_set_gfp_mask(filp->f_mapping, gfp);
1425 /* This is safe: open() is still holding a reference. */
1426 module_put(THIS_MODULE);
1427 blk_mq_unfreeze_queue(lo->lo_queue);
1428
1429 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1430 lo_number = lo->lo_number;
1431 disk_force_media_change(lo->lo_disk, DISK_EVENT_MEDIA_CHANGE);
1432 out_unlock:
1433 mutex_unlock(&lo->lo_mutex);
1434 if (partscan) {
1435 /*
1436 * open_mutex has been held already in release path, so don't
1437 * acquire it if this function is called in such case.
1438 *
1439 * If the reread partition isn't from release path, lo_refcnt
1440 * must be at least one and it can only become zero when the
1441 * current holder is released.
1442 */
1443 if (!release)
1444 mutex_lock(&lo->lo_disk->open_mutex);
1445 err = bdev_disk_changed(lo->lo_disk, false);
1446 if (!release)
1447 mutex_unlock(&lo->lo_disk->open_mutex);
1448 if (err)
1449 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1450 __func__, lo_number, err);
1451 /* Device is gone, no point in returning error */
1452 err = 0;
1453 }
1454
1455 /*
1456 * lo->lo_state is set to Lo_unbound here after above partscan has
1457 * finished.
1458 *
1459 * There cannot be anybody else entering __loop_clr_fd() as
1460 * lo->lo_backing_file is already cleared and Lo_rundown state
1461 * protects us from all the other places trying to change the 'lo'
1462 * device.
1463 */
1464 mutex_lock(&lo->lo_mutex);
1465 lo->lo_flags = 0;
1466 if (!part_shift)
1467 lo->lo_disk->flags |= GENHD_FL_NO_PART;
1468 lo->lo_state = Lo_unbound;
1469 mutex_unlock(&lo->lo_mutex);
1470
1471 /*
1472 * Need not hold lo_mutex to fput backing file. Calling fput holding
1473 * lo_mutex triggers a circular lock dependency possibility warning as
1474 * fput can take open_mutex which is usually taken before lo_mutex.
1475 */
1476 if (filp)
1477 fput(filp);
1478 return err;
1479 }
1480
loop_clr_fd(struct loop_device * lo)1481 static int loop_clr_fd(struct loop_device *lo)
1482 {
1483 int err;
1484
1485 err = mutex_lock_killable(&lo->lo_mutex);
1486 if (err)
1487 return err;
1488 if (lo->lo_state != Lo_bound) {
1489 mutex_unlock(&lo->lo_mutex);
1490 return -ENXIO;
1491 }
1492 /*
1493 * If we've explicitly asked to tear down the loop device,
1494 * and it has an elevated reference count, set it for auto-teardown when
1495 * the last reference goes away. This stops $!~#$@ udev from
1496 * preventing teardown because it decided that it needs to run blkid on
1497 * the loopback device whenever they appear. xfstests is notorious for
1498 * failing tests because blkid via udev races with a losetup
1499 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1500 * command to fail with EBUSY.
1501 */
1502 if (atomic_read(&lo->lo_refcnt) > 1) {
1503 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1504 mutex_unlock(&lo->lo_mutex);
1505 return 0;
1506 }
1507 lo->lo_state = Lo_rundown;
1508 mutex_unlock(&lo->lo_mutex);
1509
1510 return __loop_clr_fd(lo, false);
1511 }
1512
1513 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1514 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1515 {
1516 int err;
1517 kuid_t uid = current_uid();
1518 int prev_lo_flags;
1519 bool partscan = false;
1520 bool size_changed = false;
1521
1522 err = mutex_lock_killable(&lo->lo_mutex);
1523 if (err)
1524 return err;
1525 if (lo->lo_encrypt_key_size &&
1526 !uid_eq(lo->lo_key_owner, uid) &&
1527 !capable(CAP_SYS_ADMIN)) {
1528 err = -EPERM;
1529 goto out_unlock;
1530 }
1531 if (lo->lo_state != Lo_bound) {
1532 err = -ENXIO;
1533 goto out_unlock;
1534 }
1535
1536 if (lo->lo_offset != info->lo_offset ||
1537 lo->lo_sizelimit != info->lo_sizelimit) {
1538 size_changed = true;
1539 sync_blockdev(lo->lo_device);
1540 invalidate_bdev(lo->lo_device);
1541 }
1542
1543 /* I/O need to be drained during transfer transition */
1544 blk_mq_freeze_queue(lo->lo_queue);
1545
1546 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1547 /* If any pages were dirtied after invalidate_bdev(), try again */
1548 err = -EAGAIN;
1549 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1550 __func__, lo->lo_number, lo->lo_file_name,
1551 lo->lo_device->bd_inode->i_mapping->nrpages);
1552 goto out_unfreeze;
1553 }
1554
1555 prev_lo_flags = lo->lo_flags;
1556
1557 err = loop_set_status_from_info(lo, info);
1558 if (err)
1559 goto out_unfreeze;
1560
1561 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1562 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1563 /* For those flags, use the previous values instead */
1564 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1565 /* For flags that can't be cleared, use previous values too */
1566 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1567
1568 if (size_changed) {
1569 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1570 lo->lo_backing_file);
1571 loop_set_size(lo, new_size);
1572 }
1573
1574 loop_config_discard(lo);
1575
1576 /* update dio if lo_offset or transfer is changed */
1577 __loop_update_dio(lo, lo->use_dio);
1578
1579 out_unfreeze:
1580 blk_mq_unfreeze_queue(lo->lo_queue);
1581
1582 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1583 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1584 lo->lo_disk->flags &= ~GENHD_FL_NO_PART;
1585 partscan = true;
1586 }
1587 out_unlock:
1588 mutex_unlock(&lo->lo_mutex);
1589 if (partscan)
1590 loop_reread_partitions(lo);
1591
1592 return err;
1593 }
1594
1595 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1596 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1597 {
1598 struct path path;
1599 struct kstat stat;
1600 int ret;
1601
1602 ret = mutex_lock_killable(&lo->lo_mutex);
1603 if (ret)
1604 return ret;
1605 if (lo->lo_state != Lo_bound) {
1606 mutex_unlock(&lo->lo_mutex);
1607 return -ENXIO;
1608 }
1609
1610 memset(info, 0, sizeof(*info));
1611 info->lo_number = lo->lo_number;
1612 info->lo_offset = lo->lo_offset;
1613 info->lo_sizelimit = lo->lo_sizelimit;
1614 info->lo_flags = lo->lo_flags;
1615 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1616 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1617 info->lo_encrypt_type =
1618 lo->lo_encryption ? lo->lo_encryption->number : 0;
1619 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1620 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1621 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1622 lo->lo_encrypt_key_size);
1623 }
1624
1625 /* Drop lo_mutex while we call into the filesystem. */
1626 path = lo->lo_backing_file->f_path;
1627 path_get(&path);
1628 mutex_unlock(&lo->lo_mutex);
1629 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1630 if (!ret) {
1631 info->lo_device = huge_encode_dev(stat.dev);
1632 info->lo_inode = stat.ino;
1633 info->lo_rdevice = huge_encode_dev(stat.rdev);
1634 }
1635 path_put(&path);
1636 return ret;
1637 }
1638
1639 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1640 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1641 {
1642 memset(info64, 0, sizeof(*info64));
1643 info64->lo_number = info->lo_number;
1644 info64->lo_device = info->lo_device;
1645 info64->lo_inode = info->lo_inode;
1646 info64->lo_rdevice = info->lo_rdevice;
1647 info64->lo_offset = info->lo_offset;
1648 info64->lo_sizelimit = 0;
1649 info64->lo_encrypt_type = info->lo_encrypt_type;
1650 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1651 info64->lo_flags = info->lo_flags;
1652 info64->lo_init[0] = info->lo_init[0];
1653 info64->lo_init[1] = info->lo_init[1];
1654 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1655 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1656 else
1657 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1658 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1659 }
1660
1661 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1662 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1663 {
1664 memset(info, 0, sizeof(*info));
1665 info->lo_number = info64->lo_number;
1666 info->lo_device = info64->lo_device;
1667 info->lo_inode = info64->lo_inode;
1668 info->lo_rdevice = info64->lo_rdevice;
1669 info->lo_offset = info64->lo_offset;
1670 info->lo_encrypt_type = info64->lo_encrypt_type;
1671 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1672 info->lo_flags = info64->lo_flags;
1673 info->lo_init[0] = info64->lo_init[0];
1674 info->lo_init[1] = info64->lo_init[1];
1675 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1676 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1677 else
1678 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1679 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1680
1681 /* error in case values were truncated */
1682 if (info->lo_device != info64->lo_device ||
1683 info->lo_rdevice != info64->lo_rdevice ||
1684 info->lo_inode != info64->lo_inode ||
1685 info->lo_offset != info64->lo_offset)
1686 return -EOVERFLOW;
1687
1688 return 0;
1689 }
1690
1691 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1692 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1693 {
1694 struct loop_info info;
1695 struct loop_info64 info64;
1696
1697 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1698 return -EFAULT;
1699 loop_info64_from_old(&info, &info64);
1700 return loop_set_status(lo, &info64);
1701 }
1702
1703 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1704 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1705 {
1706 struct loop_info64 info64;
1707
1708 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1709 return -EFAULT;
1710 return loop_set_status(lo, &info64);
1711 }
1712
1713 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1714 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1715 struct loop_info info;
1716 struct loop_info64 info64;
1717 int err;
1718
1719 if (!arg)
1720 return -EINVAL;
1721 err = loop_get_status(lo, &info64);
1722 if (!err)
1723 err = loop_info64_to_old(&info64, &info);
1724 if (!err && copy_to_user(arg, &info, sizeof(info)))
1725 err = -EFAULT;
1726
1727 return err;
1728 }
1729
1730 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1731 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1732 struct loop_info64 info64;
1733 int err;
1734
1735 if (!arg)
1736 return -EINVAL;
1737 err = loop_get_status(lo, &info64);
1738 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1739 err = -EFAULT;
1740
1741 return err;
1742 }
1743
loop_set_capacity(struct loop_device * lo)1744 static int loop_set_capacity(struct loop_device *lo)
1745 {
1746 loff_t size;
1747
1748 if (unlikely(lo->lo_state != Lo_bound))
1749 return -ENXIO;
1750
1751 size = get_loop_size(lo, lo->lo_backing_file);
1752 loop_set_size(lo, size);
1753
1754 return 0;
1755 }
1756
loop_set_dio(struct loop_device * lo,unsigned long arg)1757 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1758 {
1759 int error = -ENXIO;
1760 if (lo->lo_state != Lo_bound)
1761 goto out;
1762
1763 __loop_update_dio(lo, !!arg);
1764 if (lo->use_dio == !!arg)
1765 return 0;
1766 error = -EINVAL;
1767 out:
1768 return error;
1769 }
1770
loop_set_block_size(struct loop_device * lo,unsigned long arg)1771 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1772 {
1773 int err = 0;
1774
1775 if (lo->lo_state != Lo_bound)
1776 return -ENXIO;
1777
1778 err = blk_validate_block_size(arg);
1779 if (err)
1780 return err;
1781
1782 if (lo->lo_queue->limits.logical_block_size == arg)
1783 return 0;
1784
1785 sync_blockdev(lo->lo_device);
1786 invalidate_bdev(lo->lo_device);
1787
1788 blk_mq_freeze_queue(lo->lo_queue);
1789
1790 /* invalidate_bdev should have truncated all the pages */
1791 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1792 err = -EAGAIN;
1793 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1794 __func__, lo->lo_number, lo->lo_file_name,
1795 lo->lo_device->bd_inode->i_mapping->nrpages);
1796 goto out_unfreeze;
1797 }
1798
1799 blk_queue_logical_block_size(lo->lo_queue, arg);
1800 blk_queue_physical_block_size(lo->lo_queue, arg);
1801 blk_queue_io_min(lo->lo_queue, arg);
1802 loop_update_dio(lo);
1803 out_unfreeze:
1804 blk_mq_unfreeze_queue(lo->lo_queue);
1805
1806 return err;
1807 }
1808
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1809 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1810 unsigned long arg)
1811 {
1812 int err;
1813
1814 err = mutex_lock_killable(&lo->lo_mutex);
1815 if (err)
1816 return err;
1817 switch (cmd) {
1818 case LOOP_SET_CAPACITY:
1819 err = loop_set_capacity(lo);
1820 break;
1821 case LOOP_SET_DIRECT_IO:
1822 err = loop_set_dio(lo, arg);
1823 break;
1824 case LOOP_SET_BLOCK_SIZE:
1825 err = loop_set_block_size(lo, arg);
1826 break;
1827 default:
1828 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1829 }
1830 mutex_unlock(&lo->lo_mutex);
1831 return err;
1832 }
1833
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1834 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1835 unsigned int cmd, unsigned long arg)
1836 {
1837 struct loop_device *lo = bdev->bd_disk->private_data;
1838 void __user *argp = (void __user *) arg;
1839 int err;
1840
1841 switch (cmd) {
1842 case LOOP_SET_FD: {
1843 /*
1844 * Legacy case - pass in a zeroed out struct loop_config with
1845 * only the file descriptor set , which corresponds with the
1846 * default parameters we'd have used otherwise.
1847 */
1848 struct loop_config config;
1849
1850 memset(&config, 0, sizeof(config));
1851 config.fd = arg;
1852
1853 return loop_configure(lo, mode, bdev, &config);
1854 }
1855 case LOOP_CONFIGURE: {
1856 struct loop_config config;
1857
1858 if (copy_from_user(&config, argp, sizeof(config)))
1859 return -EFAULT;
1860
1861 return loop_configure(lo, mode, bdev, &config);
1862 }
1863 case LOOP_CHANGE_FD:
1864 return loop_change_fd(lo, bdev, arg);
1865 case LOOP_CLR_FD:
1866 return loop_clr_fd(lo);
1867 case LOOP_SET_STATUS:
1868 err = -EPERM;
1869 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1870 err = loop_set_status_old(lo, argp);
1871 }
1872 break;
1873 case LOOP_GET_STATUS:
1874 return loop_get_status_old(lo, argp);
1875 case LOOP_SET_STATUS64:
1876 err = -EPERM;
1877 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1878 err = loop_set_status64(lo, argp);
1879 }
1880 break;
1881 case LOOP_GET_STATUS64:
1882 return loop_get_status64(lo, argp);
1883 case LOOP_SET_CAPACITY:
1884 case LOOP_SET_DIRECT_IO:
1885 case LOOP_SET_BLOCK_SIZE:
1886 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1887 return -EPERM;
1888 fallthrough;
1889 default:
1890 err = lo_simple_ioctl(lo, cmd, arg);
1891 break;
1892 }
1893
1894 return err;
1895 }
1896
1897 #ifdef CONFIG_COMPAT
1898 struct compat_loop_info {
1899 compat_int_t lo_number; /* ioctl r/o */
1900 compat_dev_t lo_device; /* ioctl r/o */
1901 compat_ulong_t lo_inode; /* ioctl r/o */
1902 compat_dev_t lo_rdevice; /* ioctl r/o */
1903 compat_int_t lo_offset;
1904 compat_int_t lo_encrypt_type;
1905 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1906 compat_int_t lo_flags; /* ioctl r/o */
1907 char lo_name[LO_NAME_SIZE];
1908 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1909 compat_ulong_t lo_init[2];
1910 char reserved[4];
1911 };
1912
1913 /*
1914 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1915 * - noinlined to reduce stack space usage in main part of driver
1916 */
1917 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1918 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1919 struct loop_info64 *info64)
1920 {
1921 struct compat_loop_info info;
1922
1923 if (copy_from_user(&info, arg, sizeof(info)))
1924 return -EFAULT;
1925
1926 memset(info64, 0, sizeof(*info64));
1927 info64->lo_number = info.lo_number;
1928 info64->lo_device = info.lo_device;
1929 info64->lo_inode = info.lo_inode;
1930 info64->lo_rdevice = info.lo_rdevice;
1931 info64->lo_offset = info.lo_offset;
1932 info64->lo_sizelimit = 0;
1933 info64->lo_encrypt_type = info.lo_encrypt_type;
1934 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1935 info64->lo_flags = info.lo_flags;
1936 info64->lo_init[0] = info.lo_init[0];
1937 info64->lo_init[1] = info.lo_init[1];
1938 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1939 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1940 else
1941 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1942 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1943 return 0;
1944 }
1945
1946 /*
1947 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1948 * - noinlined to reduce stack space usage in main part of driver
1949 */
1950 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1951 loop_info64_to_compat(const struct loop_info64 *info64,
1952 struct compat_loop_info __user *arg)
1953 {
1954 struct compat_loop_info info;
1955
1956 memset(&info, 0, sizeof(info));
1957 info.lo_number = info64->lo_number;
1958 info.lo_device = info64->lo_device;
1959 info.lo_inode = info64->lo_inode;
1960 info.lo_rdevice = info64->lo_rdevice;
1961 info.lo_offset = info64->lo_offset;
1962 info.lo_encrypt_type = info64->lo_encrypt_type;
1963 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1964 info.lo_flags = info64->lo_flags;
1965 info.lo_init[0] = info64->lo_init[0];
1966 info.lo_init[1] = info64->lo_init[1];
1967 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1968 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1969 else
1970 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1971 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1972
1973 /* error in case values were truncated */
1974 if (info.lo_device != info64->lo_device ||
1975 info.lo_rdevice != info64->lo_rdevice ||
1976 info.lo_inode != info64->lo_inode ||
1977 info.lo_offset != info64->lo_offset ||
1978 info.lo_init[0] != info64->lo_init[0] ||
1979 info.lo_init[1] != info64->lo_init[1])
1980 return -EOVERFLOW;
1981
1982 if (copy_to_user(arg, &info, sizeof(info)))
1983 return -EFAULT;
1984 return 0;
1985 }
1986
1987 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1988 loop_set_status_compat(struct loop_device *lo,
1989 const struct compat_loop_info __user *arg)
1990 {
1991 struct loop_info64 info64;
1992 int ret;
1993
1994 ret = loop_info64_from_compat(arg, &info64);
1995 if (ret < 0)
1996 return ret;
1997 return loop_set_status(lo, &info64);
1998 }
1999
2000 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)2001 loop_get_status_compat(struct loop_device *lo,
2002 struct compat_loop_info __user *arg)
2003 {
2004 struct loop_info64 info64;
2005 int err;
2006
2007 if (!arg)
2008 return -EINVAL;
2009 err = loop_get_status(lo, &info64);
2010 if (!err)
2011 err = loop_info64_to_compat(&info64, arg);
2012 return err;
2013 }
2014
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)2015 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
2016 unsigned int cmd, unsigned long arg)
2017 {
2018 struct loop_device *lo = bdev->bd_disk->private_data;
2019 int err;
2020
2021 switch(cmd) {
2022 case LOOP_SET_STATUS:
2023 err = loop_set_status_compat(lo,
2024 (const struct compat_loop_info __user *)arg);
2025 break;
2026 case LOOP_GET_STATUS:
2027 err = loop_get_status_compat(lo,
2028 (struct compat_loop_info __user *)arg);
2029 break;
2030 case LOOP_SET_CAPACITY:
2031 case LOOP_CLR_FD:
2032 case LOOP_GET_STATUS64:
2033 case LOOP_SET_STATUS64:
2034 case LOOP_CONFIGURE:
2035 arg = (unsigned long) compat_ptr(arg);
2036 fallthrough;
2037 case LOOP_SET_FD:
2038 case LOOP_CHANGE_FD:
2039 case LOOP_SET_BLOCK_SIZE:
2040 case LOOP_SET_DIRECT_IO:
2041 err = lo_ioctl(bdev, mode, cmd, arg);
2042 break;
2043 default:
2044 err = -ENOIOCTLCMD;
2045 break;
2046 }
2047 return err;
2048 }
2049 #endif
2050
lo_open(struct block_device * bdev,fmode_t mode)2051 static int lo_open(struct block_device *bdev, fmode_t mode)
2052 {
2053 struct loop_device *lo = bdev->bd_disk->private_data;
2054 int err;
2055
2056 err = mutex_lock_killable(&lo->lo_mutex);
2057 if (err)
2058 return err;
2059 if (lo->lo_state == Lo_deleting)
2060 err = -ENXIO;
2061 else
2062 atomic_inc(&lo->lo_refcnt);
2063 mutex_unlock(&lo->lo_mutex);
2064 return err;
2065 }
2066
lo_release(struct gendisk * disk,fmode_t mode)2067 static void lo_release(struct gendisk *disk, fmode_t mode)
2068 {
2069 struct loop_device *lo = disk->private_data;
2070
2071 mutex_lock(&lo->lo_mutex);
2072 if (atomic_dec_return(&lo->lo_refcnt))
2073 goto out_unlock;
2074
2075 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
2076 if (lo->lo_state != Lo_bound)
2077 goto out_unlock;
2078 lo->lo_state = Lo_rundown;
2079 mutex_unlock(&lo->lo_mutex);
2080 /*
2081 * In autoclear mode, stop the loop thread
2082 * and remove configuration after last close.
2083 */
2084 __loop_clr_fd(lo, true);
2085 return;
2086 } else if (lo->lo_state == Lo_bound) {
2087 /*
2088 * Otherwise keep thread (if running) and config,
2089 * but flush possible ongoing bios in thread.
2090 */
2091 blk_mq_freeze_queue(lo->lo_queue);
2092 blk_mq_unfreeze_queue(lo->lo_queue);
2093 }
2094
2095 out_unlock:
2096 mutex_unlock(&lo->lo_mutex);
2097 }
2098
2099 static const struct block_device_operations lo_fops = {
2100 .owner = THIS_MODULE,
2101 .open = lo_open,
2102 .release = lo_release,
2103 .ioctl = lo_ioctl,
2104 #ifdef CONFIG_COMPAT
2105 .compat_ioctl = lo_compat_ioctl,
2106 #endif
2107 };
2108
2109 /*
2110 * And now the modules code and kernel interface.
2111 */
2112
2113 /*
2114 * If max_loop is specified, create that many devices upfront.
2115 * This also becomes a hard limit. If max_loop is not specified,
2116 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2117 * init time. Loop devices can be requested on-demand with the
2118 * /dev/loop-control interface, or be instantiated by accessing
2119 * a 'dead' device node.
2120 */
2121 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2122 module_param(max_loop, int, 0444);
2123 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
2124 module_param(max_part, int, 0444);
2125 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
2126
2127 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
2128
loop_set_hw_queue_depth(const char * s,const struct kernel_param * p)2129 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
2130 {
2131 int ret = kstrtoint(s, 10, &hw_queue_depth);
2132
2133 return (ret || (hw_queue_depth < 1)) ? -EINVAL : 0;
2134 }
2135
2136 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
2137 .set = loop_set_hw_queue_depth,
2138 .get = param_get_int,
2139 };
2140
2141 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
2142 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 128");
2143
2144 MODULE_LICENSE("GPL");
2145 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
2146
loop_register_transfer(struct loop_func_table * funcs)2147 int loop_register_transfer(struct loop_func_table *funcs)
2148 {
2149 unsigned int n = funcs->number;
2150
2151 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
2152 return -EINVAL;
2153 xfer_funcs[n] = funcs;
2154 return 0;
2155 }
2156
loop_unregister_transfer(int number)2157 int loop_unregister_transfer(int number)
2158 {
2159 unsigned int n = number;
2160 struct loop_func_table *xfer;
2161
2162 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
2163 return -EINVAL;
2164 /*
2165 * This function is called from only cleanup_cryptoloop().
2166 * Given that each loop device that has a transfer enabled holds a
2167 * reference to the module implementing it we should never get here
2168 * with a transfer that is set (unless forced module unloading is
2169 * requested). Thus, check module's refcount and warn if this is
2170 * not a clean unloading.
2171 */
2172 #ifdef CONFIG_MODULE_UNLOAD
2173 if (xfer->owner && module_refcount(xfer->owner) != -1)
2174 pr_err("Danger! Unregistering an in use transfer function.\n");
2175 #endif
2176
2177 xfer_funcs[n] = NULL;
2178 return 0;
2179 }
2180
2181 EXPORT_SYMBOL(loop_register_transfer);
2182 EXPORT_SYMBOL(loop_unregister_transfer);
2183
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2184 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2185 const struct blk_mq_queue_data *bd)
2186 {
2187 struct request *rq = bd->rq;
2188 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2189 struct loop_device *lo = rq->q->queuedata;
2190
2191 blk_mq_start_request(rq);
2192
2193 if (lo->lo_state != Lo_bound)
2194 return BLK_STS_IOERR;
2195
2196 switch (req_op(rq)) {
2197 case REQ_OP_FLUSH:
2198 case REQ_OP_DISCARD:
2199 case REQ_OP_WRITE_ZEROES:
2200 cmd->use_aio = false;
2201 break;
2202 default:
2203 cmd->use_aio = lo->use_dio;
2204 break;
2205 }
2206
2207 /* always use the first bio's css */
2208 cmd->blkcg_css = NULL;
2209 cmd->memcg_css = NULL;
2210 #ifdef CONFIG_BLK_CGROUP
2211 if (rq->bio && rq->bio->bi_blkg) {
2212 cmd->blkcg_css = &bio_blkcg(rq->bio)->css;
2213 #ifdef CONFIG_MEMCG
2214 cmd->memcg_css =
2215 cgroup_get_e_css(cmd->blkcg_css->cgroup,
2216 &memory_cgrp_subsys);
2217 #endif
2218 }
2219 #endif
2220 loop_queue_work(lo, cmd);
2221
2222 return BLK_STS_OK;
2223 }
2224
loop_handle_cmd(struct loop_cmd * cmd)2225 static void loop_handle_cmd(struct loop_cmd *cmd)
2226 {
2227 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
2228 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
2229 struct request *rq = blk_mq_rq_from_pdu(cmd);
2230 const bool write = op_is_write(req_op(rq));
2231 struct loop_device *lo = rq->q->queuedata;
2232 int ret = 0;
2233 struct mem_cgroup *old_memcg = NULL;
2234 const bool use_aio = cmd->use_aio;
2235
2236 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2237 ret = -EIO;
2238 goto failed;
2239 }
2240
2241 if (cmd_blkcg_css)
2242 kthread_associate_blkcg(cmd_blkcg_css);
2243 if (cmd_memcg_css)
2244 old_memcg = set_active_memcg(
2245 mem_cgroup_from_css(cmd_memcg_css));
2246
2247 /*
2248 * do_req_filebacked() may call blk_mq_complete_request() synchronously
2249 * or asynchronously if using aio. Hence, do not touch 'cmd' after
2250 * do_req_filebacked() has returned unless we are sure that 'cmd' has
2251 * not yet been completed.
2252 */
2253 ret = do_req_filebacked(lo, rq);
2254
2255 if (cmd_blkcg_css)
2256 kthread_associate_blkcg(NULL);
2257
2258 if (cmd_memcg_css) {
2259 set_active_memcg(old_memcg);
2260 css_put(cmd_memcg_css);
2261 }
2262 failed:
2263 /* complete non-aio request */
2264 if (!use_aio || ret) {
2265 if (ret == -EOPNOTSUPP)
2266 cmd->ret = ret;
2267 else
2268 cmd->ret = ret ? -EIO : 0;
2269 if (likely(!blk_should_fake_timeout(rq->q)))
2270 blk_mq_complete_request(rq);
2271 }
2272 }
2273
loop_set_timer(struct loop_device * lo)2274 static void loop_set_timer(struct loop_device *lo)
2275 {
2276 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
2277 }
2278
loop_process_work(struct loop_worker * worker,struct list_head * cmd_list,struct loop_device * lo)2279 static void loop_process_work(struct loop_worker *worker,
2280 struct list_head *cmd_list, struct loop_device *lo)
2281 {
2282 int orig_flags = current->flags;
2283 struct loop_cmd *cmd;
2284
2285 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
2286 spin_lock_irq(&lo->lo_work_lock);
2287 while (!list_empty(cmd_list)) {
2288 cmd = container_of(
2289 cmd_list->next, struct loop_cmd, list_entry);
2290 list_del(cmd_list->next);
2291 spin_unlock_irq(&lo->lo_work_lock);
2292
2293 loop_handle_cmd(cmd);
2294 cond_resched();
2295
2296 spin_lock_irq(&lo->lo_work_lock);
2297 }
2298
2299 /*
2300 * We only add to the idle list if there are no pending cmds
2301 * *and* the worker will not run again which ensures that it
2302 * is safe to free any worker on the idle list
2303 */
2304 if (worker && !work_pending(&worker->work)) {
2305 worker->last_ran_at = jiffies;
2306 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
2307 loop_set_timer(lo);
2308 }
2309 spin_unlock_irq(&lo->lo_work_lock);
2310 current->flags = orig_flags;
2311 }
2312
loop_workfn(struct work_struct * work)2313 static void loop_workfn(struct work_struct *work)
2314 {
2315 struct loop_worker *worker =
2316 container_of(work, struct loop_worker, work);
2317 loop_process_work(worker, &worker->cmd_list, worker->lo);
2318 }
2319
loop_rootcg_workfn(struct work_struct * work)2320 static void loop_rootcg_workfn(struct work_struct *work)
2321 {
2322 struct loop_device *lo =
2323 container_of(work, struct loop_device, rootcg_work);
2324 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2325 }
2326
loop_free_idle_workers(struct timer_list * timer)2327 static void loop_free_idle_workers(struct timer_list *timer)
2328 {
2329 struct loop_device *lo = container_of(timer, struct loop_device, timer);
2330 struct loop_worker *pos, *worker;
2331
2332 spin_lock_irq(&lo->lo_work_lock);
2333 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
2334 idle_list) {
2335 if (time_is_after_jiffies(worker->last_ran_at +
2336 LOOP_IDLE_WORKER_TIMEOUT))
2337 break;
2338 list_del(&worker->idle_list);
2339 rb_erase(&worker->rb_node, &lo->worker_tree);
2340 css_put(worker->blkcg_css);
2341 kfree(worker);
2342 }
2343 if (!list_empty(&lo->idle_worker_list))
2344 loop_set_timer(lo);
2345 spin_unlock_irq(&lo->lo_work_lock);
2346 }
2347
2348 static const struct blk_mq_ops loop_mq_ops = {
2349 .queue_rq = loop_queue_rq,
2350 .complete = lo_complete_rq,
2351 };
2352
loop_add(int i)2353 static int loop_add(int i)
2354 {
2355 struct loop_device *lo;
2356 struct gendisk *disk;
2357 int err;
2358
2359 err = -ENOMEM;
2360 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2361 if (!lo)
2362 goto out;
2363 lo->lo_state = Lo_unbound;
2364
2365 err = mutex_lock_killable(&loop_ctl_mutex);
2366 if (err)
2367 goto out_free_dev;
2368
2369 /* allocate id, if @id >= 0, we're requesting that specific id */
2370 if (i >= 0) {
2371 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2372 if (err == -ENOSPC)
2373 err = -EEXIST;
2374 } else {
2375 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2376 }
2377 mutex_unlock(&loop_ctl_mutex);
2378 if (err < 0)
2379 goto out_free_dev;
2380 i = err;
2381
2382 err = -ENOMEM;
2383 lo->tag_set.ops = &loop_mq_ops;
2384 lo->tag_set.nr_hw_queues = 1;
2385 lo->tag_set.queue_depth = hw_queue_depth;
2386 lo->tag_set.numa_node = NUMA_NO_NODE;
2387 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2388 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2389 BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2390 lo->tag_set.driver_data = lo;
2391
2392 err = blk_mq_alloc_tag_set(&lo->tag_set);
2393 if (err)
2394 goto out_free_idr;
2395
2396 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2397 if (IS_ERR(disk)) {
2398 err = PTR_ERR(disk);
2399 goto out_cleanup_tags;
2400 }
2401 lo->lo_queue = lo->lo_disk->queue;
2402
2403 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2404
2405 /*
2406 * By default, we do buffer IO, so it doesn't make sense to enable
2407 * merge because the I/O submitted to backing file is handled page by
2408 * page. For directio mode, merge does help to dispatch bigger request
2409 * to underlayer disk. We will enable merge once directio is enabled.
2410 */
2411 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2412
2413 /*
2414 * Disable partition scanning by default. The in-kernel partition
2415 * scanning can be requested individually per-device during its
2416 * setup. Userspace can always add and remove partitions from all
2417 * devices. The needed partition minors are allocated from the
2418 * extended minor space, the main loop device numbers will continue
2419 * to match the loop minors, regardless of the number of partitions
2420 * used.
2421 *
2422 * If max_part is given, partition scanning is globally enabled for
2423 * all loop devices. The minors for the main loop devices will be
2424 * multiples of max_part.
2425 *
2426 * Note: Global-for-all-devices, set-only-at-init, read-only module
2427 * parameteters like 'max_loop' and 'max_part' make things needlessly
2428 * complicated, are too static, inflexible and may surprise
2429 * userspace tools. Parameters like this in general should be avoided.
2430 */
2431 if (!part_shift)
2432 disk->flags |= GENHD_FL_NO_PART;
2433 disk->flags |= GENHD_FL_EXT_DEVT;
2434 atomic_set(&lo->lo_refcnt, 0);
2435 mutex_init(&lo->lo_mutex);
2436 lo->lo_number = i;
2437 spin_lock_init(&lo->lo_lock);
2438 spin_lock_init(&lo->lo_work_lock);
2439 disk->major = LOOP_MAJOR;
2440 disk->first_minor = i << part_shift;
2441 disk->minors = 1 << part_shift;
2442 disk->fops = &lo_fops;
2443 disk->private_data = lo;
2444 disk->queue = lo->lo_queue;
2445 disk->events = DISK_EVENT_MEDIA_CHANGE;
2446 disk->event_flags = DISK_EVENT_FLAG_UEVENT;
2447 sprintf(disk->disk_name, "loop%d", i);
2448 /* Make this loop device reachable from pathname. */
2449 add_disk(disk);
2450 /* Show this loop device. */
2451 mutex_lock(&loop_ctl_mutex);
2452 lo->idr_visible = true;
2453 mutex_unlock(&loop_ctl_mutex);
2454 return i;
2455
2456 out_cleanup_tags:
2457 blk_mq_free_tag_set(&lo->tag_set);
2458 out_free_idr:
2459 mutex_lock(&loop_ctl_mutex);
2460 idr_remove(&loop_index_idr, i);
2461 mutex_unlock(&loop_ctl_mutex);
2462 out_free_dev:
2463 kfree(lo);
2464 out:
2465 return err;
2466 }
2467
loop_remove(struct loop_device * lo)2468 static void loop_remove(struct loop_device *lo)
2469 {
2470 /* Make this loop device unreachable from pathname. */
2471 del_gendisk(lo->lo_disk);
2472 blk_cleanup_disk(lo->lo_disk);
2473 blk_mq_free_tag_set(&lo->tag_set);
2474 mutex_lock(&loop_ctl_mutex);
2475 idr_remove(&loop_index_idr, lo->lo_number);
2476 mutex_unlock(&loop_ctl_mutex);
2477 /* There is no route which can find this loop device. */
2478 mutex_destroy(&lo->lo_mutex);
2479 kfree(lo);
2480 }
2481
loop_probe(dev_t dev)2482 static void loop_probe(dev_t dev)
2483 {
2484 int idx = MINOR(dev) >> part_shift;
2485
2486 if (max_loop && idx >= max_loop)
2487 return;
2488 loop_add(idx);
2489 }
2490
loop_control_remove(int idx)2491 static int loop_control_remove(int idx)
2492 {
2493 struct loop_device *lo;
2494 int ret;
2495
2496 if (idx < 0) {
2497 pr_warn_once("deleting an unspecified loop device is not supported.\n");
2498 return -EINVAL;
2499 }
2500
2501 /* Hide this loop device for serialization. */
2502 ret = mutex_lock_killable(&loop_ctl_mutex);
2503 if (ret)
2504 return ret;
2505 lo = idr_find(&loop_index_idr, idx);
2506 if (!lo || !lo->idr_visible)
2507 ret = -ENODEV;
2508 else
2509 lo->idr_visible = false;
2510 mutex_unlock(&loop_ctl_mutex);
2511 if (ret)
2512 return ret;
2513
2514 /* Check whether this loop device can be removed. */
2515 ret = mutex_lock_killable(&lo->lo_mutex);
2516 if (ret)
2517 goto mark_visible;
2518 if (lo->lo_state != Lo_unbound ||
2519 atomic_read(&lo->lo_refcnt) > 0) {
2520 mutex_unlock(&lo->lo_mutex);
2521 ret = -EBUSY;
2522 goto mark_visible;
2523 }
2524 /* Mark this loop device no longer open()-able. */
2525 lo->lo_state = Lo_deleting;
2526 mutex_unlock(&lo->lo_mutex);
2527
2528 loop_remove(lo);
2529 return 0;
2530
2531 mark_visible:
2532 /* Show this loop device again. */
2533 mutex_lock(&loop_ctl_mutex);
2534 lo->idr_visible = true;
2535 mutex_unlock(&loop_ctl_mutex);
2536 return ret;
2537 }
2538
loop_control_get_free(int idx)2539 static int loop_control_get_free(int idx)
2540 {
2541 struct loop_device *lo;
2542 int id, ret;
2543
2544 ret = mutex_lock_killable(&loop_ctl_mutex);
2545 if (ret)
2546 return ret;
2547 idr_for_each_entry(&loop_index_idr, lo, id) {
2548 /* Hitting a race results in creating a new loop device which is harmless. */
2549 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2550 goto found;
2551 }
2552 mutex_unlock(&loop_ctl_mutex);
2553 return loop_add(-1);
2554 found:
2555 mutex_unlock(&loop_ctl_mutex);
2556 return id;
2557 }
2558
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2559 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2560 unsigned long parm)
2561 {
2562 switch (cmd) {
2563 case LOOP_CTL_ADD:
2564 return loop_add(parm);
2565 case LOOP_CTL_REMOVE:
2566 return loop_control_remove(parm);
2567 case LOOP_CTL_GET_FREE:
2568 return loop_control_get_free(parm);
2569 default:
2570 return -ENOSYS;
2571 }
2572 }
2573
2574 static const struct file_operations loop_ctl_fops = {
2575 .open = nonseekable_open,
2576 .unlocked_ioctl = loop_control_ioctl,
2577 .compat_ioctl = loop_control_ioctl,
2578 .owner = THIS_MODULE,
2579 .llseek = noop_llseek,
2580 };
2581
2582 static struct miscdevice loop_misc = {
2583 .minor = LOOP_CTRL_MINOR,
2584 .name = "loop-control",
2585 .fops = &loop_ctl_fops,
2586 };
2587
2588 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2589 MODULE_ALIAS("devname:loop-control");
2590
loop_init(void)2591 static int __init loop_init(void)
2592 {
2593 int i;
2594 int err;
2595
2596 part_shift = 0;
2597 if (max_part > 0) {
2598 part_shift = fls(max_part);
2599
2600 /*
2601 * Adjust max_part according to part_shift as it is exported
2602 * to user space so that user can decide correct minor number
2603 * if [s]he want to create more devices.
2604 *
2605 * Note that -1 is required because partition 0 is reserved
2606 * for the whole disk.
2607 */
2608 max_part = (1UL << part_shift) - 1;
2609 }
2610
2611 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2612 err = -EINVAL;
2613 goto err_out;
2614 }
2615
2616 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2617 err = -EINVAL;
2618 goto err_out;
2619 }
2620
2621 err = misc_register(&loop_misc);
2622 if (err < 0)
2623 goto err_out;
2624
2625
2626 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2627 err = -EIO;
2628 goto misc_out;
2629 }
2630
2631 /* pre-create number of devices given by config or max_loop */
2632 for (i = 0; i < max_loop; i++)
2633 loop_add(i);
2634
2635 printk(KERN_INFO "loop: module loaded\n");
2636 return 0;
2637
2638 misc_out:
2639 misc_deregister(&loop_misc);
2640 err_out:
2641 return err;
2642 }
2643
loop_exit(void)2644 static void __exit loop_exit(void)
2645 {
2646 struct loop_device *lo;
2647 int id;
2648
2649 unregister_blkdev(LOOP_MAJOR, "loop");
2650 misc_deregister(&loop_misc);
2651
2652 /*
2653 * There is no need to use loop_ctl_mutex here, for nobody else can
2654 * access loop_index_idr when this module is unloading (unless forced
2655 * module unloading is requested). If this is not a clean unloading,
2656 * we have no means to avoid kernel crash.
2657 */
2658 idr_for_each_entry(&loop_index_idr, lo, id)
2659 loop_remove(lo);
2660
2661 idr_destroy(&loop_index_idr);
2662 }
2663
2664 module_init(loop_init);
2665 module_exit(loop_exit);
2666
2667 #ifndef MODULE
max_loop_setup(char * str)2668 static int __init max_loop_setup(char *str)
2669 {
2670 max_loop = simple_strtol(str, NULL, 0);
2671 return 1;
2672 }
2673
2674 __setup("max_loop=", max_loop_setup);
2675 #endif
2676