1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/freezer.h>
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/mman.h>
36 #include <linux/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/compat.h>
40 #include <linux/rculist.h>
41 #include <net/busy_poll.h>
42
43 #include <trace/hooks/fs.h>
44
45 /*
46 * LOCKING:
47 * There are three level of locking required by epoll :
48 *
49 * 1) epmutex (mutex)
50 * 2) ep->mtx (mutex)
51 * 3) ep->lock (rwlock)
52 *
53 * The acquire order is the one listed above, from 1 to 3.
54 * We need a rwlock (ep->lock) because we manipulate objects
55 * from inside the poll callback, that might be triggered from
56 * a wake_up() that in turn might be called from IRQ context.
57 * So we can't sleep inside the poll callback and hence we need
58 * a spinlock. During the event transfer loop (from kernel to
59 * user space) we could end up sleeping due a copy_to_user(), so
60 * we need a lock that will allow us to sleep. This lock is a
61 * mutex (ep->mtx). It is acquired during the event transfer loop,
62 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
63 * Then we also need a global mutex to serialize eventpoll_release_file()
64 * and ep_free().
65 * This mutex is acquired by ep_free() during the epoll file
66 * cleanup path and it is also acquired by eventpoll_release_file()
67 * if a file has been pushed inside an epoll set and it is then
68 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
69 * It is also acquired when inserting an epoll fd onto another epoll
70 * fd. We do this so that we walk the epoll tree and ensure that this
71 * insertion does not create a cycle of epoll file descriptors, which
72 * could lead to deadlock. We need a global mutex to prevent two
73 * simultaneous inserts (A into B and B into A) from racing and
74 * constructing a cycle without either insert observing that it is
75 * going to.
76 * It is necessary to acquire multiple "ep->mtx"es at once in the
77 * case when one epoll fd is added to another. In this case, we
78 * always acquire the locks in the order of nesting (i.e. after
79 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
80 * before e2->mtx). Since we disallow cycles of epoll file
81 * descriptors, this ensures that the mutexes are well-ordered. In
82 * order to communicate this nesting to lockdep, when walking a tree
83 * of epoll file descriptors, we use the current recursion depth as
84 * the lockdep subkey.
85 * It is possible to drop the "ep->mtx" and to use the global
86 * mutex "epmutex" (together with "ep->lock") to have it working,
87 * but having "ep->mtx" will make the interface more scalable.
88 * Events that require holding "epmutex" are very rare, while for
89 * normal operations the epoll private "ep->mtx" will guarantee
90 * a better scalability.
91 */
92
93 /* Epoll private bits inside the event mask */
94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
95
96 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
97
98 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
99 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
100
101 /* Maximum number of nesting allowed inside epoll sets */
102 #define EP_MAX_NESTS 4
103
104 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
105
106 #define EP_UNACTIVE_PTR ((void *) -1L)
107
108 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
109
110 struct epoll_filefd {
111 struct file *file;
112 int fd;
113 } __packed;
114
115 /* Wait structure used by the poll hooks */
116 struct eppoll_entry {
117 /* List header used to link this structure to the "struct epitem" */
118 struct eppoll_entry *next;
119
120 /* The "base" pointer is set to the container "struct epitem" */
121 struct epitem *base;
122
123 /*
124 * Wait queue item that will be linked to the target file wait
125 * queue head.
126 */
127 wait_queue_entry_t wait;
128
129 /* The wait queue head that linked the "wait" wait queue item */
130 wait_queue_head_t *whead;
131 };
132
133 /*
134 * Each file descriptor added to the eventpoll interface will
135 * have an entry of this type linked to the "rbr" RB tree.
136 * Avoid increasing the size of this struct, there can be many thousands
137 * of these on a server and we do not want this to take another cache line.
138 */
139 struct epitem {
140 union {
141 /* RB tree node links this structure to the eventpoll RB tree */
142 struct rb_node rbn;
143 /* Used to free the struct epitem */
144 struct rcu_head rcu;
145 };
146
147 /* List header used to link this structure to the eventpoll ready list */
148 struct list_head rdllink;
149
150 /*
151 * Works together "struct eventpoll"->ovflist in keeping the
152 * single linked chain of items.
153 */
154 struct epitem *next;
155
156 /* The file descriptor information this item refers to */
157 struct epoll_filefd ffd;
158
159 /* List containing poll wait queues */
160 struct eppoll_entry *pwqlist;
161
162 /* The "container" of this item */
163 struct eventpoll *ep;
164
165 /* List header used to link this item to the "struct file" items list */
166 struct hlist_node fllink;
167
168 /* wakeup_source used when EPOLLWAKEUP is set */
169 struct wakeup_source __rcu *ws;
170
171 /* The structure that describe the interested events and the source fd */
172 struct epoll_event event;
173 };
174
175 /*
176 * This structure is stored inside the "private_data" member of the file
177 * structure and represents the main data structure for the eventpoll
178 * interface.
179 */
180 struct eventpoll {
181 /*
182 * This mutex is used to ensure that files are not removed
183 * while epoll is using them. This is held during the event
184 * collection loop, the file cleanup path, the epoll file exit
185 * code and the ctl operations.
186 */
187 struct mutex mtx;
188
189 /* Wait queue used by sys_epoll_wait() */
190 wait_queue_head_t wq;
191
192 /* Wait queue used by file->poll() */
193 wait_queue_head_t poll_wait;
194
195 /* List of ready file descriptors */
196 struct list_head rdllist;
197
198 /* Lock which protects rdllist and ovflist */
199 rwlock_t lock;
200
201 /* RB tree root used to store monitored fd structs */
202 struct rb_root_cached rbr;
203
204 /*
205 * This is a single linked list that chains all the "struct epitem" that
206 * happened while transferring ready events to userspace w/out
207 * holding ->lock.
208 */
209 struct epitem *ovflist;
210
211 /* wakeup_source used when ep_scan_ready_list is running */
212 struct wakeup_source *ws;
213
214 /* The user that created the eventpoll descriptor */
215 struct user_struct *user;
216
217 struct file *file;
218
219 /* used to optimize loop detection check */
220 u64 gen;
221 struct hlist_head refs;
222
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 /* used to track busy poll napi_id */
225 unsigned int napi_id;
226 #endif
227
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 /* tracks wakeup nests for lockdep validation */
230 u8 nests;
231 #endif
232 };
233
234 /* Wrapper struct used by poll queueing */
235 struct ep_pqueue {
236 poll_table pt;
237 struct epitem *epi;
238 };
239
240 /*
241 * Configuration options available inside /proc/sys/fs/epoll/
242 */
243 /* Maximum number of epoll watched descriptors, per user */
244 static long max_user_watches __read_mostly;
245
246 /*
247 * This mutex is used to serialize ep_free() and eventpoll_release_file().
248 */
249 static DEFINE_MUTEX(epmutex);
250
251 static u64 loop_check_gen = 0;
252
253 /* Used to check for epoll file descriptor inclusion loops */
254 static struct eventpoll *inserting_into;
255
256 /* Slab cache used to allocate "struct epitem" */
257 static struct kmem_cache *epi_cache __read_mostly;
258
259 /* Slab cache used to allocate "struct eppoll_entry" */
260 static struct kmem_cache *pwq_cache __read_mostly;
261
262 /*
263 * List of files with newly added links, where we may need to limit the number
264 * of emanating paths. Protected by the epmutex.
265 */
266 struct epitems_head {
267 struct hlist_head epitems;
268 struct epitems_head *next;
269 };
270 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
271
272 static struct kmem_cache *ephead_cache __read_mostly;
273
free_ephead(struct epitems_head * head)274 static inline void free_ephead(struct epitems_head *head)
275 {
276 if (head)
277 kmem_cache_free(ephead_cache, head);
278 }
279
list_file(struct file * file)280 static void list_file(struct file *file)
281 {
282 struct epitems_head *head;
283
284 head = container_of(file->f_ep, struct epitems_head, epitems);
285 if (!head->next) {
286 head->next = tfile_check_list;
287 tfile_check_list = head;
288 }
289 }
290
unlist_file(struct epitems_head * head)291 static void unlist_file(struct epitems_head *head)
292 {
293 struct epitems_head *to_free = head;
294 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
295 if (p) {
296 struct epitem *epi= container_of(p, struct epitem, fllink);
297 spin_lock(&epi->ffd.file->f_lock);
298 if (!hlist_empty(&head->epitems))
299 to_free = NULL;
300 head->next = NULL;
301 spin_unlock(&epi->ffd.file->f_lock);
302 }
303 free_ephead(to_free);
304 }
305
306 #ifdef CONFIG_SYSCTL
307
308 #include <linux/sysctl.h>
309
310 static long long_zero;
311 static long long_max = LONG_MAX;
312
313 struct ctl_table epoll_table[] = {
314 {
315 .procname = "max_user_watches",
316 .data = &max_user_watches,
317 .maxlen = sizeof(max_user_watches),
318 .mode = 0644,
319 .proc_handler = proc_doulongvec_minmax,
320 .extra1 = &long_zero,
321 .extra2 = &long_max,
322 },
323 { }
324 };
325 #endif /* CONFIG_SYSCTL */
326
327 static const struct file_operations eventpoll_fops;
328
is_file_epoll(struct file * f)329 static inline int is_file_epoll(struct file *f)
330 {
331 return f->f_op == &eventpoll_fops;
332 }
333
334 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)335 static inline void ep_set_ffd(struct epoll_filefd *ffd,
336 struct file *file, int fd)
337 {
338 ffd->file = file;
339 ffd->fd = fd;
340 }
341
342 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)343 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
344 struct epoll_filefd *p2)
345 {
346 return (p1->file > p2->file ? +1:
347 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
348 }
349
350 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)351 static inline int ep_is_linked(struct epitem *epi)
352 {
353 return !list_empty(&epi->rdllink);
354 }
355
ep_pwq_from_wait(wait_queue_entry_t * p)356 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
357 {
358 return container_of(p, struct eppoll_entry, wait);
359 }
360
361 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)362 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
363 {
364 return container_of(p, struct eppoll_entry, wait)->base;
365 }
366
367 /**
368 * ep_events_available - Checks if ready events might be available.
369 *
370 * @ep: Pointer to the eventpoll context.
371 *
372 * Return: a value different than %zero if ready events are available,
373 * or %zero otherwise.
374 */
ep_events_available(struct eventpoll * ep)375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 return !list_empty_careful(&ep->rdllist) ||
378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380
381 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 struct eventpoll *ep = p;
385
386 return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388
389 /*
390 * Busy poll if globally on and supporting sockets found && no events,
391 * busy loop will return if need_resched or ep_events_available.
392 *
393 * we must do our busy polling with irqs enabled
394 */
ep_busy_loop(struct eventpoll * ep,int nonblock)395 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 unsigned int napi_id = READ_ONCE(ep->napi_id);
398
399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
401 BUSY_POLL_BUDGET);
402 if (ep_events_available(ep))
403 return true;
404 /*
405 * Busy poll timed out. Drop NAPI ID for now, we can add
406 * it back in when we have moved a socket with a valid NAPI
407 * ID onto the ready list.
408 */
409 ep->napi_id = 0;
410 return false;
411 }
412 return false;
413 }
414
415 /*
416 * Set epoll busy poll NAPI ID from sk.
417 */
ep_set_busy_poll_napi_id(struct epitem * epi)418 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
419 {
420 struct eventpoll *ep;
421 unsigned int napi_id;
422 struct socket *sock;
423 struct sock *sk;
424
425 if (!net_busy_loop_on())
426 return;
427
428 sock = sock_from_file(epi->ffd.file);
429 if (!sock)
430 return;
431
432 sk = sock->sk;
433 if (!sk)
434 return;
435
436 napi_id = READ_ONCE(sk->sk_napi_id);
437 ep = epi->ep;
438
439 /* Non-NAPI IDs can be rejected
440 * or
441 * Nothing to do if we already have this ID
442 */
443 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
444 return;
445
446 /* record NAPI ID for use in next busy poll */
447 ep->napi_id = napi_id;
448 }
449
450 #else
451
ep_busy_loop(struct eventpoll * ep,int nonblock)452 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
453 {
454 return false;
455 }
456
ep_set_busy_poll_napi_id(struct epitem * epi)457 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
458 {
459 }
460
461 #endif /* CONFIG_NET_RX_BUSY_POLL */
462
463 /*
464 * As described in commit 0ccf831cb lockdep: annotate epoll
465 * the use of wait queues used by epoll is done in a very controlled
466 * manner. Wake ups can nest inside each other, but are never done
467 * with the same locking. For example:
468 *
469 * dfd = socket(...);
470 * efd1 = epoll_create();
471 * efd2 = epoll_create();
472 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
473 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
474 *
475 * When a packet arrives to the device underneath "dfd", the net code will
476 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
477 * callback wakeup entry on that queue, and the wake_up() performed by the
478 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
479 * (efd1) notices that it may have some event ready, so it needs to wake up
480 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
481 * that ends up in another wake_up(), after having checked about the
482 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
483 * avoid stack blasting.
484 *
485 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
486 * this special case of epoll.
487 */
488 #ifdef CONFIG_DEBUG_LOCK_ALLOC
489
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)490 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
491 unsigned pollflags)
492 {
493 struct eventpoll *ep_src;
494 unsigned long flags;
495 u8 nests = 0;
496
497 /*
498 * To set the subclass or nesting level for spin_lock_irqsave_nested()
499 * it might be natural to create a per-cpu nest count. However, since
500 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
501 * schedule() in the -rt kernel, the per-cpu variable are no longer
502 * protected. Thus, we are introducing a per eventpoll nest field.
503 * If we are not being call from ep_poll_callback(), epi is NULL and
504 * we are at the first level of nesting, 0. Otherwise, we are being
505 * called from ep_poll_callback() and if a previous wakeup source is
506 * not an epoll file itself, we are at depth 1 since the wakeup source
507 * is depth 0. If the wakeup source is a previous epoll file in the
508 * wakeup chain then we use its nests value and record ours as
509 * nests + 1. The previous epoll file nests value is stable since its
510 * already holding its own poll_wait.lock.
511 */
512 if (epi) {
513 if ((is_file_epoll(epi->ffd.file))) {
514 ep_src = epi->ffd.file->private_data;
515 nests = ep_src->nests;
516 } else {
517 nests = 1;
518 }
519 }
520 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
521 ep->nests = nests + 1;
522 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
523 ep->nests = 0;
524 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
525 }
526
527 #else
528
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)529 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
530 unsigned pollflags)
531 {
532 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
533 }
534
535 #endif
536
ep_remove_wait_queue(struct eppoll_entry * pwq)537 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
538 {
539 wait_queue_head_t *whead;
540
541 rcu_read_lock();
542 /*
543 * If it is cleared by POLLFREE, it should be rcu-safe.
544 * If we read NULL we need a barrier paired with
545 * smp_store_release() in ep_poll_callback(), otherwise
546 * we rely on whead->lock.
547 */
548 whead = smp_load_acquire(&pwq->whead);
549 if (whead)
550 remove_wait_queue(whead, &pwq->wait);
551 rcu_read_unlock();
552 }
553
554 /*
555 * This function unregisters poll callbacks from the associated file
556 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
557 * ep_free).
558 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)559 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
560 {
561 struct eppoll_entry **p = &epi->pwqlist;
562 struct eppoll_entry *pwq;
563
564 while ((pwq = *p) != NULL) {
565 *p = pwq->next;
566 ep_remove_wait_queue(pwq);
567 kmem_cache_free(pwq_cache, pwq);
568 }
569 }
570
571 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)572 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
573 {
574 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
575 }
576
577 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)578 static inline void ep_pm_stay_awake(struct epitem *epi)
579 {
580 struct wakeup_source *ws = ep_wakeup_source(epi);
581
582 if (ws)
583 __pm_stay_awake(ws);
584 }
585
ep_has_wakeup_source(struct epitem * epi)586 static inline bool ep_has_wakeup_source(struct epitem *epi)
587 {
588 return rcu_access_pointer(epi->ws) ? true : false;
589 }
590
591 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)592 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
593 {
594 struct wakeup_source *ws;
595
596 rcu_read_lock();
597 ws = rcu_dereference(epi->ws);
598 if (ws)
599 __pm_stay_awake(ws);
600 rcu_read_unlock();
601 }
602
603
604 /*
605 * ep->mutex needs to be held because we could be hit by
606 * eventpoll_release_file() and epoll_ctl().
607 */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)608 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
609 {
610 /*
611 * Steal the ready list, and re-init the original one to the
612 * empty list. Also, set ep->ovflist to NULL so that events
613 * happening while looping w/out locks, are not lost. We cannot
614 * have the poll callback to queue directly on ep->rdllist,
615 * because we want the "sproc" callback to be able to do it
616 * in a lockless way.
617 */
618 lockdep_assert_irqs_enabled();
619 write_lock_irq(&ep->lock);
620 list_splice_init(&ep->rdllist, txlist);
621 WRITE_ONCE(ep->ovflist, NULL);
622 write_unlock_irq(&ep->lock);
623 }
624
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)625 static void ep_done_scan(struct eventpoll *ep,
626 struct list_head *txlist)
627 {
628 struct epitem *epi, *nepi;
629
630 write_lock_irq(&ep->lock);
631 /*
632 * During the time we spent inside the "sproc" callback, some
633 * other events might have been queued by the poll callback.
634 * We re-insert them inside the main ready-list here.
635 */
636 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
637 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
638 /*
639 * We need to check if the item is already in the list.
640 * During the "sproc" callback execution time, items are
641 * queued into ->ovflist but the "txlist" might already
642 * contain them, and the list_splice() below takes care of them.
643 */
644 if (!ep_is_linked(epi)) {
645 /*
646 * ->ovflist is LIFO, so we have to reverse it in order
647 * to keep in FIFO.
648 */
649 list_add(&epi->rdllink, &ep->rdllist);
650 ep_pm_stay_awake(epi);
651 }
652 }
653 /*
654 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
655 * releasing the lock, events will be queued in the normal way inside
656 * ep->rdllist.
657 */
658 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
659
660 /*
661 * Quickly re-inject items left on "txlist".
662 */
663 list_splice(txlist, &ep->rdllist);
664 __pm_relax(ep->ws);
665
666 if (!list_empty(&ep->rdllist)) {
667 if (waitqueue_active(&ep->wq))
668 wake_up(&ep->wq);
669 }
670
671 write_unlock_irq(&ep->lock);
672 }
673
epi_rcu_free(struct rcu_head * head)674 static void epi_rcu_free(struct rcu_head *head)
675 {
676 struct epitem *epi = container_of(head, struct epitem, rcu);
677 kmem_cache_free(epi_cache, epi);
678 }
679
680 /*
681 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
682 * all the associated resources. Must be called with "mtx" held.
683 */
ep_remove(struct eventpoll * ep,struct epitem * epi)684 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
685 {
686 struct file *file = epi->ffd.file;
687 struct epitems_head *to_free;
688 struct hlist_head *head;
689
690 lockdep_assert_irqs_enabled();
691
692 /*
693 * Removes poll wait queue hooks.
694 */
695 ep_unregister_pollwait(ep, epi);
696
697 /* Remove the current item from the list of epoll hooks */
698 spin_lock(&file->f_lock);
699 to_free = NULL;
700 head = file->f_ep;
701 if (head->first == &epi->fllink && !epi->fllink.next) {
702 file->f_ep = NULL;
703 if (!is_file_epoll(file)) {
704 struct epitems_head *v;
705 v = container_of(head, struct epitems_head, epitems);
706 if (!smp_load_acquire(&v->next))
707 to_free = v;
708 }
709 }
710 hlist_del_rcu(&epi->fllink);
711 spin_unlock(&file->f_lock);
712 free_ephead(to_free);
713
714 rb_erase_cached(&epi->rbn, &ep->rbr);
715
716 write_lock_irq(&ep->lock);
717 if (ep_is_linked(epi))
718 list_del_init(&epi->rdllink);
719 write_unlock_irq(&ep->lock);
720
721 wakeup_source_unregister(ep_wakeup_source(epi));
722 /*
723 * At this point it is safe to free the eventpoll item. Use the union
724 * field epi->rcu, since we are trying to minimize the size of
725 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
726 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
727 * use of the rbn field.
728 */
729 call_rcu(&epi->rcu, epi_rcu_free);
730
731 percpu_counter_dec(&ep->user->epoll_watches);
732
733 return 0;
734 }
735
ep_free(struct eventpoll * ep)736 static void ep_free(struct eventpoll *ep)
737 {
738 struct rb_node *rbp;
739 struct epitem *epi;
740
741 /* We need to release all tasks waiting for these file */
742 if (waitqueue_active(&ep->poll_wait))
743 ep_poll_safewake(ep, NULL, 0);
744
745 /*
746 * We need to lock this because we could be hit by
747 * eventpoll_release_file() while we're freeing the "struct eventpoll".
748 * We do not need to hold "ep->mtx" here because the epoll file
749 * is on the way to be removed and no one has references to it
750 * anymore. The only hit might come from eventpoll_release_file() but
751 * holding "epmutex" is sufficient here.
752 */
753 mutex_lock(&epmutex);
754
755 /*
756 * Walks through the whole tree by unregistering poll callbacks.
757 */
758 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
759 epi = rb_entry(rbp, struct epitem, rbn);
760
761 ep_unregister_pollwait(ep, epi);
762 cond_resched();
763 }
764
765 /*
766 * Walks through the whole tree by freeing each "struct epitem". At this
767 * point we are sure no poll callbacks will be lingering around, and also by
768 * holding "epmutex" we can be sure that no file cleanup code will hit
769 * us during this operation. So we can avoid the lock on "ep->lock".
770 * We do not need to lock ep->mtx, either, we only do it to prevent
771 * a lockdep warning.
772 */
773 mutex_lock(&ep->mtx);
774 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
775 epi = rb_entry(rbp, struct epitem, rbn);
776 ep_remove(ep, epi);
777 cond_resched();
778 }
779 mutex_unlock(&ep->mtx);
780
781 mutex_unlock(&epmutex);
782 mutex_destroy(&ep->mtx);
783 free_uid(ep->user);
784 wakeup_source_unregister(ep->ws);
785 kfree(ep);
786 }
787
ep_eventpoll_release(struct inode * inode,struct file * file)788 static int ep_eventpoll_release(struct inode *inode, struct file *file)
789 {
790 struct eventpoll *ep = file->private_data;
791
792 if (ep)
793 ep_free(ep);
794
795 return 0;
796 }
797
798 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
799
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)800 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
801 {
802 struct eventpoll *ep = file->private_data;
803 LIST_HEAD(txlist);
804 struct epitem *epi, *tmp;
805 poll_table pt;
806 __poll_t res = 0;
807
808 init_poll_funcptr(&pt, NULL);
809
810 /* Insert inside our poll wait queue */
811 poll_wait(file, &ep->poll_wait, wait);
812
813 /*
814 * Proceed to find out if wanted events are really available inside
815 * the ready list.
816 */
817 mutex_lock_nested(&ep->mtx, depth);
818 ep_start_scan(ep, &txlist);
819 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
820 if (ep_item_poll(epi, &pt, depth + 1)) {
821 res = EPOLLIN | EPOLLRDNORM;
822 break;
823 } else {
824 /*
825 * Item has been dropped into the ready list by the poll
826 * callback, but it's not actually ready, as far as
827 * caller requested events goes. We can remove it here.
828 */
829 __pm_relax(ep_wakeup_source(epi));
830 list_del_init(&epi->rdllink);
831 }
832 }
833 ep_done_scan(ep, &txlist);
834 mutex_unlock(&ep->mtx);
835 return res;
836 }
837
838 /*
839 * Differs from ep_eventpoll_poll() in that internal callers already have
840 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
841 * is correctly annotated.
842 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)843 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
844 int depth)
845 {
846 struct file *file = epi->ffd.file;
847 __poll_t res;
848
849 pt->_key = epi->event.events;
850 if (!is_file_epoll(file))
851 res = vfs_poll(file, pt);
852 else
853 res = __ep_eventpoll_poll(file, pt, depth);
854 return res & epi->event.events;
855 }
856
ep_eventpoll_poll(struct file * file,poll_table * wait)857 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
858 {
859 return __ep_eventpoll_poll(file, wait, 0);
860 }
861
862 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)863 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
864 {
865 struct eventpoll *ep = f->private_data;
866 struct rb_node *rbp;
867
868 mutex_lock(&ep->mtx);
869 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
870 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
871 struct inode *inode = file_inode(epi->ffd.file);
872
873 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
874 " pos:%lli ino:%lx sdev:%x\n",
875 epi->ffd.fd, epi->event.events,
876 (long long)epi->event.data,
877 (long long)epi->ffd.file->f_pos,
878 inode->i_ino, inode->i_sb->s_dev);
879 if (seq_has_overflowed(m))
880 break;
881 }
882 mutex_unlock(&ep->mtx);
883 }
884 #endif
885
886 /* File callbacks that implement the eventpoll file behaviour */
887 static const struct file_operations eventpoll_fops = {
888 #ifdef CONFIG_PROC_FS
889 .show_fdinfo = ep_show_fdinfo,
890 #endif
891 .release = ep_eventpoll_release,
892 .poll = ep_eventpoll_poll,
893 .llseek = noop_llseek,
894 };
895
896 /*
897 * This is called from eventpoll_release() to unlink files from the eventpoll
898 * interface. We need to have this facility to cleanup correctly files that are
899 * closed without being removed from the eventpoll interface.
900 */
eventpoll_release_file(struct file * file)901 void eventpoll_release_file(struct file *file)
902 {
903 struct eventpoll *ep;
904 struct epitem *epi;
905 struct hlist_node *next;
906
907 /*
908 * We don't want to get "file->f_lock" because it is not
909 * necessary. It is not necessary because we're in the "struct file"
910 * cleanup path, and this means that no one is using this file anymore.
911 * So, for example, epoll_ctl() cannot hit here since if we reach this
912 * point, the file counter already went to zero and fget() would fail.
913 * The only hit might come from ep_free() but by holding the mutex
914 * will correctly serialize the operation. We do need to acquire
915 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
916 * from anywhere but ep_free().
917 *
918 * Besides, ep_remove() acquires the lock, so we can't hold it here.
919 */
920 mutex_lock(&epmutex);
921 if (unlikely(!file->f_ep)) {
922 mutex_unlock(&epmutex);
923 return;
924 }
925 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
926 ep = epi->ep;
927 mutex_lock_nested(&ep->mtx, 0);
928 ep_remove(ep, epi);
929 mutex_unlock(&ep->mtx);
930 }
931 mutex_unlock(&epmutex);
932 }
933
ep_alloc(struct eventpoll ** pep)934 static int ep_alloc(struct eventpoll **pep)
935 {
936 int error;
937 struct user_struct *user;
938 struct eventpoll *ep;
939
940 user = get_current_user();
941 error = -ENOMEM;
942 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
943 if (unlikely(!ep))
944 goto free_uid;
945
946 mutex_init(&ep->mtx);
947 rwlock_init(&ep->lock);
948 init_waitqueue_head(&ep->wq);
949 init_waitqueue_head(&ep->poll_wait);
950 INIT_LIST_HEAD(&ep->rdllist);
951 ep->rbr = RB_ROOT_CACHED;
952 ep->ovflist = EP_UNACTIVE_PTR;
953 ep->user = user;
954
955 *pep = ep;
956
957 return 0;
958
959 free_uid:
960 free_uid(user);
961 return error;
962 }
963
964 /*
965 * Search the file inside the eventpoll tree. The RB tree operations
966 * are protected by the "mtx" mutex, and ep_find() must be called with
967 * "mtx" held.
968 */
ep_find(struct eventpoll * ep,struct file * file,int fd)969 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
970 {
971 int kcmp;
972 struct rb_node *rbp;
973 struct epitem *epi, *epir = NULL;
974 struct epoll_filefd ffd;
975
976 ep_set_ffd(&ffd, file, fd);
977 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
978 epi = rb_entry(rbp, struct epitem, rbn);
979 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
980 if (kcmp > 0)
981 rbp = rbp->rb_right;
982 else if (kcmp < 0)
983 rbp = rbp->rb_left;
984 else {
985 epir = epi;
986 break;
987 }
988 }
989
990 return epir;
991 }
992
993 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)994 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
995 {
996 struct rb_node *rbp;
997 struct epitem *epi;
998
999 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1000 epi = rb_entry(rbp, struct epitem, rbn);
1001 if (epi->ffd.fd == tfd) {
1002 if (toff == 0)
1003 return epi;
1004 else
1005 toff--;
1006 }
1007 cond_resched();
1008 }
1009
1010 return NULL;
1011 }
1012
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1013 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1014 unsigned long toff)
1015 {
1016 struct file *file_raw;
1017 struct eventpoll *ep;
1018 struct epitem *epi;
1019
1020 if (!is_file_epoll(file))
1021 return ERR_PTR(-EINVAL);
1022
1023 ep = file->private_data;
1024
1025 mutex_lock(&ep->mtx);
1026 epi = ep_find_tfd(ep, tfd, toff);
1027 if (epi)
1028 file_raw = epi->ffd.file;
1029 else
1030 file_raw = ERR_PTR(-ENOENT);
1031 mutex_unlock(&ep->mtx);
1032
1033 return file_raw;
1034 }
1035 #endif /* CONFIG_KCMP */
1036
1037 /*
1038 * Adds a new entry to the tail of the list in a lockless way, i.e.
1039 * multiple CPUs are allowed to call this function concurrently.
1040 *
1041 * Beware: it is necessary to prevent any other modifications of the
1042 * existing list until all changes are completed, in other words
1043 * concurrent list_add_tail_lockless() calls should be protected
1044 * with a read lock, where write lock acts as a barrier which
1045 * makes sure all list_add_tail_lockless() calls are fully
1046 * completed.
1047 *
1048 * Also an element can be locklessly added to the list only in one
1049 * direction i.e. either to the tail or to the head, otherwise
1050 * concurrent access will corrupt the list.
1051 *
1052 * Return: %false if element has been already added to the list, %true
1053 * otherwise.
1054 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1055 static inline bool list_add_tail_lockless(struct list_head *new,
1056 struct list_head *head)
1057 {
1058 struct list_head *prev;
1059
1060 /*
1061 * This is simple 'new->next = head' operation, but cmpxchg()
1062 * is used in order to detect that same element has been just
1063 * added to the list from another CPU: the winner observes
1064 * new->next == new.
1065 */
1066 if (cmpxchg(&new->next, new, head) != new)
1067 return false;
1068
1069 /*
1070 * Initially ->next of a new element must be updated with the head
1071 * (we are inserting to the tail) and only then pointers are atomically
1072 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1073 * updated before pointers are actually swapped and pointers are
1074 * swapped before prev->next is updated.
1075 */
1076
1077 prev = xchg(&head->prev, new);
1078
1079 /*
1080 * It is safe to modify prev->next and new->prev, because a new element
1081 * is added only to the tail and new->next is updated before XCHG.
1082 */
1083
1084 prev->next = new;
1085 new->prev = prev;
1086
1087 return true;
1088 }
1089
1090 /*
1091 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1092 * i.e. multiple CPUs are allowed to call this function concurrently.
1093 *
1094 * Return: %false if epi element has been already chained, %true otherwise.
1095 */
chain_epi_lockless(struct epitem * epi)1096 static inline bool chain_epi_lockless(struct epitem *epi)
1097 {
1098 struct eventpoll *ep = epi->ep;
1099
1100 /* Fast preliminary check */
1101 if (epi->next != EP_UNACTIVE_PTR)
1102 return false;
1103
1104 /* Check that the same epi has not been just chained from another CPU */
1105 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1106 return false;
1107
1108 /* Atomically exchange tail */
1109 epi->next = xchg(&ep->ovflist, epi);
1110
1111 return true;
1112 }
1113
1114 /*
1115 * This is the callback that is passed to the wait queue wakeup
1116 * mechanism. It is called by the stored file descriptors when they
1117 * have events to report.
1118 *
1119 * This callback takes a read lock in order not to contend with concurrent
1120 * events from another file descriptor, thus all modifications to ->rdllist
1121 * or ->ovflist are lockless. Read lock is paired with the write lock from
1122 * ep_scan_ready_list(), which stops all list modifications and guarantees
1123 * that lists state is seen correctly.
1124 *
1125 * Another thing worth to mention is that ep_poll_callback() can be called
1126 * concurrently for the same @epi from different CPUs if poll table was inited
1127 * with several wait queues entries. Plural wakeup from different CPUs of a
1128 * single wait queue is serialized by wq.lock, but the case when multiple wait
1129 * queues are used should be detected accordingly. This is detected using
1130 * cmpxchg() operation.
1131 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1132 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1133 {
1134 int pwake = 0;
1135 struct epitem *epi = ep_item_from_wait(wait);
1136 struct eventpoll *ep = epi->ep;
1137 __poll_t pollflags = key_to_poll(key);
1138 unsigned long flags;
1139 int ewake = 0;
1140
1141 read_lock_irqsave(&ep->lock, flags);
1142
1143 ep_set_busy_poll_napi_id(epi);
1144
1145 /*
1146 * If the event mask does not contain any poll(2) event, we consider the
1147 * descriptor to be disabled. This condition is likely the effect of the
1148 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1149 * until the next EPOLL_CTL_MOD will be issued.
1150 */
1151 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1152 goto out_unlock;
1153
1154 /*
1155 * Check the events coming with the callback. At this stage, not
1156 * every device reports the events in the "key" parameter of the
1157 * callback. We need to be able to handle both cases here, hence the
1158 * test for "key" != NULL before the event match test.
1159 */
1160 if (pollflags && !(pollflags & epi->event.events))
1161 goto out_unlock;
1162
1163 /*
1164 * If we are transferring events to userspace, we can hold no locks
1165 * (because we're accessing user memory, and because of linux f_op->poll()
1166 * semantics). All the events that happen during that period of time are
1167 * chained in ep->ovflist and requeued later on.
1168 */
1169 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1170 if (chain_epi_lockless(epi))
1171 ep_pm_stay_awake_rcu(epi);
1172 } else if (!ep_is_linked(epi)) {
1173 /* In the usual case, add event to ready list. */
1174 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1175 ep_pm_stay_awake_rcu(epi);
1176 }
1177
1178 /*
1179 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1180 * wait list.
1181 */
1182 if (waitqueue_active(&ep->wq)) {
1183 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1184 !(pollflags & POLLFREE)) {
1185 switch (pollflags & EPOLLINOUT_BITS) {
1186 case EPOLLIN:
1187 if (epi->event.events & EPOLLIN)
1188 ewake = 1;
1189 break;
1190 case EPOLLOUT:
1191 if (epi->event.events & EPOLLOUT)
1192 ewake = 1;
1193 break;
1194 case 0:
1195 ewake = 1;
1196 break;
1197 }
1198 }
1199 wake_up(&ep->wq);
1200 }
1201 if (waitqueue_active(&ep->poll_wait))
1202 pwake++;
1203
1204 out_unlock:
1205 read_unlock_irqrestore(&ep->lock, flags);
1206
1207 /* We have to call this outside the lock */
1208 if (pwake)
1209 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1210
1211 if (!(epi->event.events & EPOLLEXCLUSIVE))
1212 ewake = 1;
1213
1214 if (pollflags & POLLFREE) {
1215 /*
1216 * If we race with ep_remove_wait_queue() it can miss
1217 * ->whead = NULL and do another remove_wait_queue() after
1218 * us, so we can't use __remove_wait_queue().
1219 */
1220 list_del_init(&wait->entry);
1221 /*
1222 * ->whead != NULL protects us from the race with ep_free()
1223 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1224 * held by the caller. Once we nullify it, nothing protects
1225 * ep/epi or even wait.
1226 */
1227 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1228 }
1229
1230 return ewake;
1231 }
1232
1233 /*
1234 * This is the callback that is used to add our wait queue to the
1235 * target file wakeup lists.
1236 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1237 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1238 poll_table *pt)
1239 {
1240 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1241 struct epitem *epi = epq->epi;
1242 struct eppoll_entry *pwq;
1243
1244 if (unlikely(!epi)) // an earlier allocation has failed
1245 return;
1246
1247 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1248 if (unlikely(!pwq)) {
1249 epq->epi = NULL;
1250 return;
1251 }
1252
1253 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1254 pwq->whead = whead;
1255 pwq->base = epi;
1256 if (epi->event.events & EPOLLEXCLUSIVE)
1257 add_wait_queue_exclusive(whead, &pwq->wait);
1258 else
1259 add_wait_queue(whead, &pwq->wait);
1260 pwq->next = epi->pwqlist;
1261 epi->pwqlist = pwq;
1262 }
1263
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1264 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1265 {
1266 int kcmp;
1267 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1268 struct epitem *epic;
1269 bool leftmost = true;
1270
1271 while (*p) {
1272 parent = *p;
1273 epic = rb_entry(parent, struct epitem, rbn);
1274 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1275 if (kcmp > 0) {
1276 p = &parent->rb_right;
1277 leftmost = false;
1278 } else
1279 p = &parent->rb_left;
1280 }
1281 rb_link_node(&epi->rbn, parent, p);
1282 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1283 }
1284
1285
1286
1287 #define PATH_ARR_SIZE 5
1288 /*
1289 * These are the number paths of length 1 to 5, that we are allowing to emanate
1290 * from a single file of interest. For example, we allow 1000 paths of length
1291 * 1, to emanate from each file of interest. This essentially represents the
1292 * potential wakeup paths, which need to be limited in order to avoid massive
1293 * uncontrolled wakeup storms. The common use case should be a single ep which
1294 * is connected to n file sources. In this case each file source has 1 path
1295 * of length 1. Thus, the numbers below should be more than sufficient. These
1296 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1297 * and delete can't add additional paths. Protected by the epmutex.
1298 */
1299 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1300 static int path_count[PATH_ARR_SIZE];
1301
path_count_inc(int nests)1302 static int path_count_inc(int nests)
1303 {
1304 /* Allow an arbitrary number of depth 1 paths */
1305 if (nests == 0)
1306 return 0;
1307
1308 if (++path_count[nests] > path_limits[nests])
1309 return -1;
1310 return 0;
1311 }
1312
path_count_init(void)1313 static void path_count_init(void)
1314 {
1315 int i;
1316
1317 for (i = 0; i < PATH_ARR_SIZE; i++)
1318 path_count[i] = 0;
1319 }
1320
reverse_path_check_proc(struct hlist_head * refs,int depth)1321 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1322 {
1323 int error = 0;
1324 struct epitem *epi;
1325
1326 if (depth > EP_MAX_NESTS) /* too deep nesting */
1327 return -1;
1328
1329 /* CTL_DEL can remove links here, but that can't increase our count */
1330 hlist_for_each_entry_rcu(epi, refs, fllink) {
1331 struct hlist_head *refs = &epi->ep->refs;
1332 if (hlist_empty(refs))
1333 error = path_count_inc(depth);
1334 else
1335 error = reverse_path_check_proc(refs, depth + 1);
1336 if (error != 0)
1337 break;
1338 }
1339 return error;
1340 }
1341
1342 /**
1343 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1344 * links that are proposed to be newly added. We need to
1345 * make sure that those added links don't add too many
1346 * paths such that we will spend all our time waking up
1347 * eventpoll objects.
1348 *
1349 * Return: %zero if the proposed links don't create too many paths,
1350 * %-1 otherwise.
1351 */
reverse_path_check(void)1352 static int reverse_path_check(void)
1353 {
1354 struct epitems_head *p;
1355
1356 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1357 int error;
1358 path_count_init();
1359 rcu_read_lock();
1360 error = reverse_path_check_proc(&p->epitems, 0);
1361 rcu_read_unlock();
1362 if (error)
1363 return error;
1364 }
1365 return 0;
1366 }
1367
ep_create_wakeup_source(struct epitem * epi)1368 static int ep_create_wakeup_source(struct epitem *epi)
1369 {
1370 struct name_snapshot n;
1371 struct wakeup_source *ws;
1372 char ws_name[64];
1373
1374 strscpy(ws_name, "eventpoll", sizeof(ws_name));
1375 trace_android_vh_ep_create_wakeup_source(ws_name, sizeof(ws_name));
1376 if (!epi->ep->ws) {
1377 epi->ep->ws = wakeup_source_register(NULL, ws_name);
1378 if (!epi->ep->ws)
1379 return -ENOMEM;
1380 }
1381
1382 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1383 strscpy(ws_name, n.name.name, sizeof(ws_name));
1384 trace_android_vh_ep_create_wakeup_source(ws_name, sizeof(ws_name));
1385 ws = wakeup_source_register(NULL, ws_name);
1386 release_dentry_name_snapshot(&n);
1387
1388 if (!ws)
1389 return -ENOMEM;
1390 rcu_assign_pointer(epi->ws, ws);
1391
1392 return 0;
1393 }
1394
1395 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1396 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1397 {
1398 struct wakeup_source *ws = ep_wakeup_source(epi);
1399
1400 RCU_INIT_POINTER(epi->ws, NULL);
1401
1402 /*
1403 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1404 * used internally by wakeup_source_remove, too (called by
1405 * wakeup_source_unregister), so we cannot use call_rcu
1406 */
1407 synchronize_rcu();
1408 wakeup_source_unregister(ws);
1409 }
1410
attach_epitem(struct file * file,struct epitem * epi)1411 static int attach_epitem(struct file *file, struct epitem *epi)
1412 {
1413 struct epitems_head *to_free = NULL;
1414 struct hlist_head *head = NULL;
1415 struct eventpoll *ep = NULL;
1416
1417 if (is_file_epoll(file))
1418 ep = file->private_data;
1419
1420 if (ep) {
1421 head = &ep->refs;
1422 } else if (!READ_ONCE(file->f_ep)) {
1423 allocate:
1424 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1425 if (!to_free)
1426 return -ENOMEM;
1427 head = &to_free->epitems;
1428 }
1429 spin_lock(&file->f_lock);
1430 if (!file->f_ep) {
1431 if (unlikely(!head)) {
1432 spin_unlock(&file->f_lock);
1433 goto allocate;
1434 }
1435 file->f_ep = head;
1436 to_free = NULL;
1437 }
1438 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1439 spin_unlock(&file->f_lock);
1440 free_ephead(to_free);
1441 return 0;
1442 }
1443
1444 /*
1445 * Must be called with "mtx" held.
1446 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1447 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1448 struct file *tfile, int fd, int full_check)
1449 {
1450 int error, pwake = 0;
1451 __poll_t revents;
1452 struct epitem *epi;
1453 struct ep_pqueue epq;
1454 struct eventpoll *tep = NULL;
1455
1456 if (is_file_epoll(tfile))
1457 tep = tfile->private_data;
1458
1459 lockdep_assert_irqs_enabled();
1460
1461 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1462 max_user_watches) >= 0))
1463 return -ENOSPC;
1464 percpu_counter_inc(&ep->user->epoll_watches);
1465
1466 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1467 percpu_counter_dec(&ep->user->epoll_watches);
1468 return -ENOMEM;
1469 }
1470
1471 /* Item initialization follow here ... */
1472 INIT_LIST_HEAD(&epi->rdllink);
1473 epi->ep = ep;
1474 ep_set_ffd(&epi->ffd, tfile, fd);
1475 epi->event = *event;
1476 epi->next = EP_UNACTIVE_PTR;
1477
1478 if (tep)
1479 mutex_lock_nested(&tep->mtx, 1);
1480 /* Add the current item to the list of active epoll hook for this file */
1481 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1482 if (tep)
1483 mutex_unlock(&tep->mtx);
1484 kmem_cache_free(epi_cache, epi);
1485 percpu_counter_dec(&ep->user->epoll_watches);
1486 return -ENOMEM;
1487 }
1488
1489 if (full_check && !tep)
1490 list_file(tfile);
1491
1492 /*
1493 * Add the current item to the RB tree. All RB tree operations are
1494 * protected by "mtx", and ep_insert() is called with "mtx" held.
1495 */
1496 ep_rbtree_insert(ep, epi);
1497 if (tep)
1498 mutex_unlock(&tep->mtx);
1499
1500 /* now check if we've created too many backpaths */
1501 if (unlikely(full_check && reverse_path_check())) {
1502 ep_remove(ep, epi);
1503 return -EINVAL;
1504 }
1505
1506 if (epi->event.events & EPOLLWAKEUP) {
1507 error = ep_create_wakeup_source(epi);
1508 if (error) {
1509 ep_remove(ep, epi);
1510 return error;
1511 }
1512 }
1513
1514 /* Initialize the poll table using the queue callback */
1515 epq.epi = epi;
1516 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1517
1518 /*
1519 * Attach the item to the poll hooks and get current event bits.
1520 * We can safely use the file* here because its usage count has
1521 * been increased by the caller of this function. Note that after
1522 * this operation completes, the poll callback can start hitting
1523 * the new item.
1524 */
1525 revents = ep_item_poll(epi, &epq.pt, 1);
1526
1527 /*
1528 * We have to check if something went wrong during the poll wait queue
1529 * install process. Namely an allocation for a wait queue failed due
1530 * high memory pressure.
1531 */
1532 if (unlikely(!epq.epi)) {
1533 ep_remove(ep, epi);
1534 return -ENOMEM;
1535 }
1536
1537 /* We have to drop the new item inside our item list to keep track of it */
1538 write_lock_irq(&ep->lock);
1539
1540 /* record NAPI ID of new item if present */
1541 ep_set_busy_poll_napi_id(epi);
1542
1543 /* If the file is already "ready" we drop it inside the ready list */
1544 if (revents && !ep_is_linked(epi)) {
1545 list_add_tail(&epi->rdllink, &ep->rdllist);
1546 ep_pm_stay_awake(epi);
1547
1548 /* Notify waiting tasks that events are available */
1549 if (waitqueue_active(&ep->wq))
1550 wake_up(&ep->wq);
1551 if (waitqueue_active(&ep->poll_wait))
1552 pwake++;
1553 }
1554
1555 write_unlock_irq(&ep->lock);
1556
1557 /* We have to call this outside the lock */
1558 if (pwake)
1559 ep_poll_safewake(ep, NULL, 0);
1560
1561 return 0;
1562 }
1563
1564 /*
1565 * Modify the interest event mask by dropping an event if the new mask
1566 * has a match in the current file status. Must be called with "mtx" held.
1567 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1568 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1569 const struct epoll_event *event)
1570 {
1571 int pwake = 0;
1572 poll_table pt;
1573
1574 lockdep_assert_irqs_enabled();
1575
1576 init_poll_funcptr(&pt, NULL);
1577
1578 /*
1579 * Set the new event interest mask before calling f_op->poll();
1580 * otherwise we might miss an event that happens between the
1581 * f_op->poll() call and the new event set registering.
1582 */
1583 epi->event.events = event->events; /* need barrier below */
1584 epi->event.data = event->data; /* protected by mtx */
1585 if (epi->event.events & EPOLLWAKEUP) {
1586 if (!ep_has_wakeup_source(epi))
1587 ep_create_wakeup_source(epi);
1588 } else if (ep_has_wakeup_source(epi)) {
1589 ep_destroy_wakeup_source(epi);
1590 }
1591
1592 /*
1593 * The following barrier has two effects:
1594 *
1595 * 1) Flush epi changes above to other CPUs. This ensures
1596 * we do not miss events from ep_poll_callback if an
1597 * event occurs immediately after we call f_op->poll().
1598 * We need this because we did not take ep->lock while
1599 * changing epi above (but ep_poll_callback does take
1600 * ep->lock).
1601 *
1602 * 2) We also need to ensure we do not miss _past_ events
1603 * when calling f_op->poll(). This barrier also
1604 * pairs with the barrier in wq_has_sleeper (see
1605 * comments for wq_has_sleeper).
1606 *
1607 * This barrier will now guarantee ep_poll_callback or f_op->poll
1608 * (or both) will notice the readiness of an item.
1609 */
1610 smp_mb();
1611
1612 /*
1613 * Get current event bits. We can safely use the file* here because
1614 * its usage count has been increased by the caller of this function.
1615 * If the item is "hot" and it is not registered inside the ready
1616 * list, push it inside.
1617 */
1618 if (ep_item_poll(epi, &pt, 1)) {
1619 write_lock_irq(&ep->lock);
1620 if (!ep_is_linked(epi)) {
1621 list_add_tail(&epi->rdllink, &ep->rdllist);
1622 ep_pm_stay_awake(epi);
1623
1624 /* Notify waiting tasks that events are available */
1625 if (waitqueue_active(&ep->wq))
1626 wake_up(&ep->wq);
1627 if (waitqueue_active(&ep->poll_wait))
1628 pwake++;
1629 }
1630 write_unlock_irq(&ep->lock);
1631 }
1632
1633 /* We have to call this outside the lock */
1634 if (pwake)
1635 ep_poll_safewake(ep, NULL, 0);
1636
1637 return 0;
1638 }
1639
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1640 static int ep_send_events(struct eventpoll *ep,
1641 struct epoll_event __user *events, int maxevents)
1642 {
1643 struct epitem *epi, *tmp;
1644 LIST_HEAD(txlist);
1645 poll_table pt;
1646 int res = 0;
1647
1648 /*
1649 * Always short-circuit for fatal signals to allow threads to make a
1650 * timely exit without the chance of finding more events available and
1651 * fetching repeatedly.
1652 */
1653 if (fatal_signal_pending(current))
1654 return -EINTR;
1655
1656 init_poll_funcptr(&pt, NULL);
1657
1658 mutex_lock(&ep->mtx);
1659 ep_start_scan(ep, &txlist);
1660
1661 /*
1662 * We can loop without lock because we are passed a task private list.
1663 * Items cannot vanish during the loop we are holding ep->mtx.
1664 */
1665 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1666 struct wakeup_source *ws;
1667 __poll_t revents;
1668
1669 if (res >= maxevents)
1670 break;
1671
1672 /*
1673 * Activate ep->ws before deactivating epi->ws to prevent
1674 * triggering auto-suspend here (in case we reactive epi->ws
1675 * below).
1676 *
1677 * This could be rearranged to delay the deactivation of epi->ws
1678 * instead, but then epi->ws would temporarily be out of sync
1679 * with ep_is_linked().
1680 */
1681 ws = ep_wakeup_source(epi);
1682 if (ws) {
1683 if (ws->active)
1684 __pm_stay_awake(ep->ws);
1685 __pm_relax(ws);
1686 }
1687
1688 list_del_init(&epi->rdllink);
1689
1690 /*
1691 * If the event mask intersect the caller-requested one,
1692 * deliver the event to userspace. Again, we are holding ep->mtx,
1693 * so no operations coming from userspace can change the item.
1694 */
1695 revents = ep_item_poll(epi, &pt, 1);
1696 if (!revents)
1697 continue;
1698
1699 events = epoll_put_uevent(revents, epi->event.data, events);
1700 if (!events) {
1701 list_add(&epi->rdllink, &txlist);
1702 ep_pm_stay_awake(epi);
1703 if (!res)
1704 res = -EFAULT;
1705 break;
1706 }
1707 res++;
1708 if (epi->event.events & EPOLLONESHOT)
1709 epi->event.events &= EP_PRIVATE_BITS;
1710 else if (!(epi->event.events & EPOLLET)) {
1711 /*
1712 * If this file has been added with Level
1713 * Trigger mode, we need to insert back inside
1714 * the ready list, so that the next call to
1715 * epoll_wait() will check again the events
1716 * availability. At this point, no one can insert
1717 * into ep->rdllist besides us. The epoll_ctl()
1718 * callers are locked out by
1719 * ep_scan_ready_list() holding "mtx" and the
1720 * poll callback will queue them in ep->ovflist.
1721 */
1722 list_add_tail(&epi->rdllink, &ep->rdllist);
1723 ep_pm_stay_awake(epi);
1724 }
1725 }
1726 ep_done_scan(ep, &txlist);
1727 mutex_unlock(&ep->mtx);
1728
1729 return res;
1730 }
1731
ep_timeout_to_timespec(struct timespec64 * to,long ms)1732 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1733 {
1734 struct timespec64 now;
1735
1736 if (ms < 0)
1737 return NULL;
1738
1739 if (!ms) {
1740 to->tv_sec = 0;
1741 to->tv_nsec = 0;
1742 return to;
1743 }
1744
1745 to->tv_sec = ms / MSEC_PER_SEC;
1746 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1747
1748 ktime_get_ts64(&now);
1749 *to = timespec64_add_safe(now, *to);
1750 return to;
1751 }
1752
1753 /*
1754 * autoremove_wake_function, but remove even on failure to wake up, because we
1755 * know that default_wake_function/ttwu will only fail if the thread is already
1756 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1757 * try to reuse it.
1758 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1759 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1760 unsigned int mode, int sync, void *key)
1761 {
1762 int ret = default_wake_function(wq_entry, mode, sync, key);
1763
1764 /*
1765 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1766 * iterations see the cause of this wakeup.
1767 */
1768 list_del_init_careful(&wq_entry->entry);
1769 return ret;
1770 }
1771
1772 /**
1773 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1774 * event buffer.
1775 *
1776 * @ep: Pointer to the eventpoll context.
1777 * @events: Pointer to the userspace buffer where the ready events should be
1778 * stored.
1779 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1780 * @timeout: Maximum timeout for the ready events fetch operation, in
1781 * timespec. If the timeout is zero, the function will not block,
1782 * while if the @timeout ptr is NULL, the function will block
1783 * until at least one event has been retrieved (or an error
1784 * occurred).
1785 *
1786 * Return: the number of ready events which have been fetched, or an
1787 * error code, in case of error.
1788 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)1789 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1790 int maxevents, struct timespec64 *timeout)
1791 {
1792 int res, eavail, timed_out = 0;
1793 u64 slack = 0;
1794 wait_queue_entry_t wait;
1795 ktime_t expires, *to = NULL;
1796
1797 lockdep_assert_irqs_enabled();
1798
1799 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1800 slack = select_estimate_accuracy(timeout);
1801 to = &expires;
1802 *to = timespec64_to_ktime(*timeout);
1803 } else if (timeout) {
1804 /*
1805 * Avoid the unnecessary trip to the wait queue loop, if the
1806 * caller specified a non blocking operation.
1807 */
1808 timed_out = 1;
1809 }
1810
1811 /*
1812 * This call is racy: We may or may not see events that are being added
1813 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1814 * with a non-zero timeout, this thread will check the ready list under
1815 * lock and will add to the wait queue. For cases with a zero
1816 * timeout, the user by definition should not care and will have to
1817 * recheck again.
1818 */
1819 eavail = ep_events_available(ep);
1820
1821 while (1) {
1822 if (eavail) {
1823 /*
1824 * Try to transfer events to user space. In case we get
1825 * 0 events and there's still timeout left over, we go
1826 * trying again in search of more luck.
1827 */
1828 res = ep_send_events(ep, events, maxevents);
1829 if (res)
1830 return res;
1831 }
1832
1833 if (timed_out)
1834 return 0;
1835
1836 eavail = ep_busy_loop(ep, timed_out);
1837 if (eavail)
1838 continue;
1839
1840 if (signal_pending(current))
1841 return -EINTR;
1842
1843 /*
1844 * Internally init_wait() uses autoremove_wake_function(),
1845 * thus wait entry is removed from the wait queue on each
1846 * wakeup. Why it is important? In case of several waiters
1847 * each new wakeup will hit the next waiter, giving it the
1848 * chance to harvest new event. Otherwise wakeup can be
1849 * lost. This is also good performance-wise, because on
1850 * normal wakeup path no need to call __remove_wait_queue()
1851 * explicitly, thus ep->lock is not taken, which halts the
1852 * event delivery.
1853 *
1854 * In fact, we now use an even more aggressive function that
1855 * unconditionally removes, because we don't reuse the wait
1856 * entry between loop iterations. This lets us also avoid the
1857 * performance issue if a process is killed, causing all of its
1858 * threads to wake up without being removed normally.
1859 */
1860 init_wait(&wait);
1861 wait.func = ep_autoremove_wake_function;
1862
1863 write_lock_irq(&ep->lock);
1864 /*
1865 * Barrierless variant, waitqueue_active() is called under
1866 * the same lock on wakeup ep_poll_callback() side, so it
1867 * is safe to avoid an explicit barrier.
1868 */
1869 __set_current_state(TASK_INTERRUPTIBLE);
1870
1871 /*
1872 * Do the final check under the lock. ep_scan_ready_list()
1873 * plays with two lists (->rdllist and ->ovflist) and there
1874 * is always a race when both lists are empty for short
1875 * period of time although events are pending, so lock is
1876 * important.
1877 */
1878 eavail = ep_events_available(ep);
1879 if (!eavail)
1880 __add_wait_queue_exclusive(&ep->wq, &wait);
1881
1882 write_unlock_irq(&ep->lock);
1883
1884 if (!eavail)
1885 timed_out = !freezable_schedule_hrtimeout_range(to, slack,
1886 HRTIMER_MODE_ABS);
1887 __set_current_state(TASK_RUNNING);
1888
1889 /*
1890 * We were woken up, thus go and try to harvest some events.
1891 * If timed out and still on the wait queue, recheck eavail
1892 * carefully under lock, below.
1893 */
1894 eavail = 1;
1895
1896 if (!list_empty_careful(&wait.entry)) {
1897 write_lock_irq(&ep->lock);
1898 /*
1899 * If the thread timed out and is not on the wait queue,
1900 * it means that the thread was woken up after its
1901 * timeout expired before it could reacquire the lock.
1902 * Thus, when wait.entry is empty, it needs to harvest
1903 * events.
1904 */
1905 if (timed_out)
1906 eavail = list_empty(&wait.entry);
1907 __remove_wait_queue(&ep->wq, &wait);
1908 write_unlock_irq(&ep->lock);
1909 }
1910 }
1911 }
1912
1913 /**
1914 * ep_loop_check_proc - verify that adding an epoll file inside another
1915 * epoll structure does not violate the constraints, in
1916 * terms of closed loops, or too deep chains (which can
1917 * result in excessive stack usage).
1918 *
1919 * @ep: the &struct eventpoll to be currently checked.
1920 * @depth: Current depth of the path being checked.
1921 *
1922 * Return: %zero if adding the epoll @file inside current epoll
1923 * structure @ep does not violate the constraints, or %-1 otherwise.
1924 */
ep_loop_check_proc(struct eventpoll * ep,int depth)1925 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1926 {
1927 int error = 0;
1928 struct rb_node *rbp;
1929 struct epitem *epi;
1930
1931 mutex_lock_nested(&ep->mtx, depth + 1);
1932 ep->gen = loop_check_gen;
1933 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1934 epi = rb_entry(rbp, struct epitem, rbn);
1935 if (unlikely(is_file_epoll(epi->ffd.file))) {
1936 struct eventpoll *ep_tovisit;
1937 ep_tovisit = epi->ffd.file->private_data;
1938 if (ep_tovisit->gen == loop_check_gen)
1939 continue;
1940 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1941 error = -1;
1942 else
1943 error = ep_loop_check_proc(ep_tovisit, depth + 1);
1944 if (error != 0)
1945 break;
1946 } else {
1947 /*
1948 * If we've reached a file that is not associated with
1949 * an ep, then we need to check if the newly added
1950 * links are going to add too many wakeup paths. We do
1951 * this by adding it to the tfile_check_list, if it's
1952 * not already there, and calling reverse_path_check()
1953 * during ep_insert().
1954 */
1955 list_file(epi->ffd.file);
1956 }
1957 }
1958 mutex_unlock(&ep->mtx);
1959
1960 return error;
1961 }
1962
1963 /**
1964 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1965 * into another epoll file (represented by @ep) does not create
1966 * closed loops or too deep chains.
1967 *
1968 * @ep: Pointer to the epoll we are inserting into.
1969 * @to: Pointer to the epoll to be inserted.
1970 *
1971 * Return: %zero if adding the epoll @to inside the epoll @from
1972 * does not violate the constraints, or %-1 otherwise.
1973 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)1974 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1975 {
1976 inserting_into = ep;
1977 return ep_loop_check_proc(to, 0);
1978 }
1979
clear_tfile_check_list(void)1980 static void clear_tfile_check_list(void)
1981 {
1982 rcu_read_lock();
1983 while (tfile_check_list != EP_UNACTIVE_PTR) {
1984 struct epitems_head *head = tfile_check_list;
1985 tfile_check_list = head->next;
1986 unlist_file(head);
1987 }
1988 rcu_read_unlock();
1989 }
1990
1991 /*
1992 * Open an eventpoll file descriptor.
1993 */
do_epoll_create(int flags)1994 static int do_epoll_create(int flags)
1995 {
1996 int error, fd;
1997 struct eventpoll *ep = NULL;
1998 struct file *file;
1999
2000 /* Check the EPOLL_* constant for consistency. */
2001 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2002
2003 if (flags & ~EPOLL_CLOEXEC)
2004 return -EINVAL;
2005 /*
2006 * Create the internal data structure ("struct eventpoll").
2007 */
2008 error = ep_alloc(&ep);
2009 if (error < 0)
2010 return error;
2011 /*
2012 * Creates all the items needed to setup an eventpoll file. That is,
2013 * a file structure and a free file descriptor.
2014 */
2015 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2016 if (fd < 0) {
2017 error = fd;
2018 goto out_free_ep;
2019 }
2020 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2021 O_RDWR | (flags & O_CLOEXEC));
2022 if (IS_ERR(file)) {
2023 error = PTR_ERR(file);
2024 goto out_free_fd;
2025 }
2026 ep->file = file;
2027 fd_install(fd, file);
2028 return fd;
2029
2030 out_free_fd:
2031 put_unused_fd(fd);
2032 out_free_ep:
2033 ep_free(ep);
2034 return error;
2035 }
2036
SYSCALL_DEFINE1(epoll_create1,int,flags)2037 SYSCALL_DEFINE1(epoll_create1, int, flags)
2038 {
2039 return do_epoll_create(flags);
2040 }
2041
SYSCALL_DEFINE1(epoll_create,int,size)2042 SYSCALL_DEFINE1(epoll_create, int, size)
2043 {
2044 if (size <= 0)
2045 return -EINVAL;
2046
2047 return do_epoll_create(0);
2048 }
2049
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2050 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2051 bool nonblock)
2052 {
2053 if (!nonblock) {
2054 mutex_lock_nested(mutex, depth);
2055 return 0;
2056 }
2057 if (mutex_trylock(mutex))
2058 return 0;
2059 return -EAGAIN;
2060 }
2061
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2062 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2063 bool nonblock)
2064 {
2065 int error;
2066 int full_check = 0;
2067 struct fd f, tf;
2068 struct eventpoll *ep;
2069 struct epitem *epi;
2070 struct eventpoll *tep = NULL;
2071
2072 error = -EBADF;
2073 f = fdget(epfd);
2074 if (!f.file)
2075 goto error_return;
2076
2077 /* Get the "struct file *" for the target file */
2078 tf = fdget(fd);
2079 if (!tf.file)
2080 goto error_fput;
2081
2082 /* The target file descriptor must support poll */
2083 error = -EPERM;
2084 if (!file_can_poll(tf.file))
2085 goto error_tgt_fput;
2086
2087 /* Check if EPOLLWAKEUP is allowed */
2088 if (ep_op_has_event(op))
2089 ep_take_care_of_epollwakeup(epds);
2090
2091 /*
2092 * We have to check that the file structure underneath the file descriptor
2093 * the user passed to us _is_ an eventpoll file. And also we do not permit
2094 * adding an epoll file descriptor inside itself.
2095 */
2096 error = -EINVAL;
2097 if (f.file == tf.file || !is_file_epoll(f.file))
2098 goto error_tgt_fput;
2099
2100 /*
2101 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2102 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2103 * Also, we do not currently supported nested exclusive wakeups.
2104 */
2105 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2106 if (op == EPOLL_CTL_MOD)
2107 goto error_tgt_fput;
2108 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2109 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2110 goto error_tgt_fput;
2111 }
2112
2113 /*
2114 * At this point it is safe to assume that the "private_data" contains
2115 * our own data structure.
2116 */
2117 ep = f.file->private_data;
2118
2119 /*
2120 * When we insert an epoll file descriptor inside another epoll file
2121 * descriptor, there is the chance of creating closed loops, which are
2122 * better be handled here, than in more critical paths. While we are
2123 * checking for loops we also determine the list of files reachable
2124 * and hang them on the tfile_check_list, so we can check that we
2125 * haven't created too many possible wakeup paths.
2126 *
2127 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2128 * the epoll file descriptor is attaching directly to a wakeup source,
2129 * unless the epoll file descriptor is nested. The purpose of taking the
2130 * 'epmutex' on add is to prevent complex toplogies such as loops and
2131 * deep wakeup paths from forming in parallel through multiple
2132 * EPOLL_CTL_ADD operations.
2133 */
2134 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2135 if (error)
2136 goto error_tgt_fput;
2137 if (op == EPOLL_CTL_ADD) {
2138 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2139 is_file_epoll(tf.file)) {
2140 mutex_unlock(&ep->mtx);
2141 error = epoll_mutex_lock(&epmutex, 0, nonblock);
2142 if (error)
2143 goto error_tgt_fput;
2144 loop_check_gen++;
2145 full_check = 1;
2146 if (is_file_epoll(tf.file)) {
2147 tep = tf.file->private_data;
2148 error = -ELOOP;
2149 if (ep_loop_check(ep, tep) != 0)
2150 goto error_tgt_fput;
2151 }
2152 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2153 if (error)
2154 goto error_tgt_fput;
2155 }
2156 }
2157
2158 /*
2159 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2160 * above, we can be sure to be able to use the item looked up by
2161 * ep_find() till we release the mutex.
2162 */
2163 epi = ep_find(ep, tf.file, fd);
2164
2165 error = -EINVAL;
2166 switch (op) {
2167 case EPOLL_CTL_ADD:
2168 if (!epi) {
2169 epds->events |= EPOLLERR | EPOLLHUP;
2170 error = ep_insert(ep, epds, tf.file, fd, full_check);
2171 } else
2172 error = -EEXIST;
2173 break;
2174 case EPOLL_CTL_DEL:
2175 if (epi)
2176 error = ep_remove(ep, epi);
2177 else
2178 error = -ENOENT;
2179 break;
2180 case EPOLL_CTL_MOD:
2181 if (epi) {
2182 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2183 epds->events |= EPOLLERR | EPOLLHUP;
2184 error = ep_modify(ep, epi, epds);
2185 }
2186 } else
2187 error = -ENOENT;
2188 break;
2189 }
2190 mutex_unlock(&ep->mtx);
2191
2192 error_tgt_fput:
2193 if (full_check) {
2194 clear_tfile_check_list();
2195 loop_check_gen++;
2196 mutex_unlock(&epmutex);
2197 }
2198
2199 fdput(tf);
2200 error_fput:
2201 fdput(f);
2202 error_return:
2203
2204 return error;
2205 }
2206
2207 /*
2208 * The following function implements the controller interface for
2209 * the eventpoll file that enables the insertion/removal/change of
2210 * file descriptors inside the interest set.
2211 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2212 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2213 struct epoll_event __user *, event)
2214 {
2215 struct epoll_event epds;
2216
2217 if (ep_op_has_event(op) &&
2218 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2219 return -EFAULT;
2220
2221 return do_epoll_ctl(epfd, op, fd, &epds, false);
2222 }
2223
2224 /*
2225 * Implement the event wait interface for the eventpoll file. It is the kernel
2226 * part of the user space epoll_wait(2).
2227 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2228 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2229 int maxevents, struct timespec64 *to)
2230 {
2231 int error;
2232 struct fd f;
2233 struct eventpoll *ep;
2234
2235 /* The maximum number of event must be greater than zero */
2236 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2237 return -EINVAL;
2238
2239 /* Verify that the area passed by the user is writeable */
2240 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2241 return -EFAULT;
2242
2243 /* Get the "struct file *" for the eventpoll file */
2244 f = fdget(epfd);
2245 if (!f.file)
2246 return -EBADF;
2247
2248 /*
2249 * We have to check that the file structure underneath the fd
2250 * the user passed to us _is_ an eventpoll file.
2251 */
2252 error = -EINVAL;
2253 if (!is_file_epoll(f.file))
2254 goto error_fput;
2255
2256 /*
2257 * At this point it is safe to assume that the "private_data" contains
2258 * our own data structure.
2259 */
2260 ep = f.file->private_data;
2261
2262 /* Time to fish for events ... */
2263 error = ep_poll(ep, events, maxevents, to);
2264
2265 error_fput:
2266 fdput(f);
2267 return error;
2268 }
2269
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2270 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2271 int, maxevents, int, timeout)
2272 {
2273 struct timespec64 to;
2274
2275 return do_epoll_wait(epfd, events, maxevents,
2276 ep_timeout_to_timespec(&to, timeout));
2277 }
2278
2279 /*
2280 * Implement the event wait interface for the eventpoll file. It is the kernel
2281 * part of the user space epoll_pwait(2).
2282 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2283 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2284 int maxevents, struct timespec64 *to,
2285 const sigset_t __user *sigmask, size_t sigsetsize)
2286 {
2287 int error;
2288
2289 /*
2290 * If the caller wants a certain signal mask to be set during the wait,
2291 * we apply it here.
2292 */
2293 error = set_user_sigmask(sigmask, sigsetsize);
2294 if (error)
2295 return error;
2296
2297 error = do_epoll_wait(epfd, events, maxevents, to);
2298
2299 restore_saved_sigmask_unless(error == -EINTR);
2300
2301 return error;
2302 }
2303
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2304 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2305 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2306 size_t, sigsetsize)
2307 {
2308 struct timespec64 to;
2309
2310 return do_epoll_pwait(epfd, events, maxevents,
2311 ep_timeout_to_timespec(&to, timeout),
2312 sigmask, sigsetsize);
2313 }
2314
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2315 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2316 int, maxevents, const struct __kernel_timespec __user *, timeout,
2317 const sigset_t __user *, sigmask, size_t, sigsetsize)
2318 {
2319 struct timespec64 ts, *to = NULL;
2320
2321 if (timeout) {
2322 if (get_timespec64(&ts, timeout))
2323 return -EFAULT;
2324 to = &ts;
2325 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2326 return -EINVAL;
2327 }
2328
2329 return do_epoll_pwait(epfd, events, maxevents, to,
2330 sigmask, sigsetsize);
2331 }
2332
2333 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2334 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2335 int maxevents, struct timespec64 *timeout,
2336 const compat_sigset_t __user *sigmask,
2337 compat_size_t sigsetsize)
2338 {
2339 long err;
2340
2341 /*
2342 * If the caller wants a certain signal mask to be set during the wait,
2343 * we apply it here.
2344 */
2345 err = set_compat_user_sigmask(sigmask, sigsetsize);
2346 if (err)
2347 return err;
2348
2349 err = do_epoll_wait(epfd, events, maxevents, timeout);
2350
2351 restore_saved_sigmask_unless(err == -EINTR);
2352
2353 return err;
2354 }
2355
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2356 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2357 struct epoll_event __user *, events,
2358 int, maxevents, int, timeout,
2359 const compat_sigset_t __user *, sigmask,
2360 compat_size_t, sigsetsize)
2361 {
2362 struct timespec64 to;
2363
2364 return do_compat_epoll_pwait(epfd, events, maxevents,
2365 ep_timeout_to_timespec(&to, timeout),
2366 sigmask, sigsetsize);
2367 }
2368
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2369 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2370 struct epoll_event __user *, events,
2371 int, maxevents,
2372 const struct __kernel_timespec __user *, timeout,
2373 const compat_sigset_t __user *, sigmask,
2374 compat_size_t, sigsetsize)
2375 {
2376 struct timespec64 ts, *to = NULL;
2377
2378 if (timeout) {
2379 if (get_timespec64(&ts, timeout))
2380 return -EFAULT;
2381 to = &ts;
2382 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2383 return -EINVAL;
2384 }
2385
2386 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2387 sigmask, sigsetsize);
2388 }
2389
2390 #endif
2391
eventpoll_init(void)2392 static int __init eventpoll_init(void)
2393 {
2394 struct sysinfo si;
2395
2396 si_meminfo(&si);
2397 /*
2398 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2399 */
2400 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2401 EP_ITEM_COST;
2402 BUG_ON(max_user_watches < 0);
2403
2404 /*
2405 * We can have many thousands of epitems, so prevent this from
2406 * using an extra cache line on 64-bit (and smaller) CPUs
2407 */
2408 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2409
2410 /* Allocates slab cache used to allocate "struct epitem" items */
2411 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2412 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2413
2414 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2415 pwq_cache = kmem_cache_create("eventpoll_pwq",
2416 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2417
2418 ephead_cache = kmem_cache_create("ep_head",
2419 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2420
2421 return 0;
2422 }
2423 fs_initcall(eventpoll_init);
2424