1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
11 */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22
23 /*
24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25 * arbitrary modules to be loaded. Loading from userspace may still need the
26 * unprefixed names, so retains those aliases as well.
27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29 * expands twice on the same line. Instead, use a separate base name for the
30 * alias.
31 */
32 #define MODULE_ALIAS_CRYPTO(name) \
33 __MODULE_INFO(alias, alias_userspace, name); \
34 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
35
36 /*
37 * Algorithm masks and types.
38 */
39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
44 #define CRYPTO_ALG_TYPE_KPP 0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
52
53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
56
57 #define CRYPTO_ALG_LARVAL 0x00000010
58 #define CRYPTO_ALG_DEAD 0x00000020
59 #define CRYPTO_ALG_DYING 0x00000040
60 #define CRYPTO_ALG_ASYNC 0x00000080
61
62 /*
63 * Set if the algorithm (or an algorithm which it uses) requires another
64 * algorithm of the same type to handle corner cases.
65 */
66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
67
68 /*
69 * Set if the algorithm has passed automated run-time testing. Note that
70 * if there is no run-time testing for a given algorithm it is considered
71 * to have passed.
72 */
73
74 #define CRYPTO_ALG_TESTED 0x00000400
75
76 /*
77 * Set if the algorithm is an instance that is built from templates.
78 */
79 #define CRYPTO_ALG_INSTANCE 0x00000800
80
81 /* Set this bit if the algorithm provided is hardware accelerated but
82 * not available to userspace via instruction set or so.
83 */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
85
86 /*
87 * Mark a cipher as a service implementation only usable by another
88 * cipher and never by a normal user of the kernel crypto API
89 */
90 #define CRYPTO_ALG_INTERNAL 0x00002000
91
92 /*
93 * Set if the algorithm has a ->setkey() method but can be used without
94 * calling it first, i.e. there is a default key.
95 */
96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
97
98 /*
99 * Don't trigger module loading
100 */
101 #define CRYPTO_NOLOAD 0x00008000
102
103 /*
104 * The algorithm may allocate memory during request processing, i.e. during
105 * encryption, decryption, or hashing. Users can request an algorithm with this
106 * flag unset if they can't handle memory allocation failures.
107 *
108 * This flag is currently only implemented for algorithms of type "skcipher",
109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
110 * have this flag set even if they allocate memory.
111 *
112 * In some edge cases, algorithms can allocate memory regardless of this flag.
113 * To avoid these cases, users must obey the following usage constraints:
114 * skcipher:
115 * - The IV buffer and all scatterlist elements must be aligned to the
116 * algorithm's alignmask.
117 * - If the data were to be divided into chunks of size
118 * crypto_skcipher_walksize() (with any remainder going at the end), no
119 * chunk can cross a page boundary or a scatterlist element boundary.
120 * aead:
121 * - The IV buffer and all scatterlist elements must be aligned to the
122 * algorithm's alignmask.
123 * - The first scatterlist element must contain all the associated data,
124 * and its pages must be !PageHighMem.
125 * - If the plaintext/ciphertext were to be divided into chunks of size
126 * crypto_aead_walksize() (with the remainder going at the end), no chunk
127 * can cross a page boundary or a scatterlist element boundary.
128 * ahash:
129 * - The result buffer must be aligned to the algorithm's alignmask.
130 * - crypto_ahash_finup() must not be used unless the algorithm implements
131 * ->finup() natively.
132 */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
134
135 /*
136 * Transform masks and values (for crt_flags).
137 */
138 #define CRYPTO_TFM_NEED_KEY 0x00000001
139
140 #define CRYPTO_TFM_REQ_MASK 0x000fff00
141 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
142 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
143 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
144
145 /*
146 * Miscellaneous stuff.
147 */
148 #define CRYPTO_MAX_ALG_NAME 128
149
150 /*
151 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
152 * declaration) is used to ensure that the crypto_tfm context structure is
153 * aligned correctly for the given architecture so that there are no alignment
154 * faults for C data types. On architectures that support non-cache coherent
155 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
156 * that is required to ensure that the context struct member does not share any
157 * cachelines with the rest of the struct. This is needed to ensure that cache
158 * maintenance for non-coherent DMA (cache invalidation in particular) does not
159 * affect data that may be accessed by the CPU concurrently.
160 */
161 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
162
163 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
164
165 struct scatterlist;
166 struct crypto_async_request;
167 struct crypto_tfm;
168 struct crypto_type;
169
170 typedef struct crypto_async_request crypto_completion_data_t;
171 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
172
173 /**
174 * DOC: Block Cipher Context Data Structures
175 *
176 * These data structures define the operating context for each block cipher
177 * type.
178 */
179
180 struct crypto_async_request {
181 struct list_head list;
182 crypto_completion_t complete;
183 void *data;
184 struct crypto_tfm *tfm;
185
186 u32 flags;
187 };
188
189 /**
190 * DOC: Block Cipher Algorithm Definitions
191 *
192 * These data structures define modular crypto algorithm implementations,
193 * managed via crypto_register_alg() and crypto_unregister_alg().
194 */
195
196 /**
197 * struct cipher_alg - single-block symmetric ciphers definition
198 * @cia_min_keysize: Minimum key size supported by the transformation. This is
199 * the smallest key length supported by this transformation
200 * algorithm. This must be set to one of the pre-defined
201 * values as this is not hardware specific. Possible values
202 * for this field can be found via git grep "_MIN_KEY_SIZE"
203 * include/crypto/
204 * @cia_max_keysize: Maximum key size supported by the transformation. This is
205 * the largest key length supported by this transformation
206 * algorithm. This must be set to one of the pre-defined values
207 * as this is not hardware specific. Possible values for this
208 * field can be found via git grep "_MAX_KEY_SIZE"
209 * include/crypto/
210 * @cia_setkey: Set key for the transformation. This function is used to either
211 * program a supplied key into the hardware or store the key in the
212 * transformation context for programming it later. Note that this
213 * function does modify the transformation context. This function
214 * can be called multiple times during the existence of the
215 * transformation object, so one must make sure the key is properly
216 * reprogrammed into the hardware. This function is also
217 * responsible for checking the key length for validity.
218 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
219 * single block of data, which must be @cra_blocksize big. This
220 * always operates on a full @cra_blocksize and it is not possible
221 * to encrypt a block of smaller size. The supplied buffers must
222 * therefore also be at least of @cra_blocksize size. Both the
223 * input and output buffers are always aligned to @cra_alignmask.
224 * In case either of the input or output buffer supplied by user
225 * of the crypto API is not aligned to @cra_alignmask, the crypto
226 * API will re-align the buffers. The re-alignment means that a
227 * new buffer will be allocated, the data will be copied into the
228 * new buffer, then the processing will happen on the new buffer,
229 * then the data will be copied back into the original buffer and
230 * finally the new buffer will be freed. In case a software
231 * fallback was put in place in the @cra_init call, this function
232 * might need to use the fallback if the algorithm doesn't support
233 * all of the key sizes. In case the key was stored in
234 * transformation context, the key might need to be re-programmed
235 * into the hardware in this function. This function shall not
236 * modify the transformation context, as this function may be
237 * called in parallel with the same transformation object.
238 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
239 * @cia_encrypt, and the conditions are exactly the same.
240 *
241 * All fields are mandatory and must be filled.
242 */
243 struct cipher_alg {
244 unsigned int cia_min_keysize;
245 unsigned int cia_max_keysize;
246 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
247 unsigned int keylen);
248 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
249 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
250 };
251
252 /**
253 * struct compress_alg - compression/decompression algorithm
254 * @coa_compress: Compress a buffer of specified length, storing the resulting
255 * data in the specified buffer. Return the length of the
256 * compressed data in dlen.
257 * @coa_decompress: Decompress the source buffer, storing the uncompressed
258 * data in the specified buffer. The length of the data is
259 * returned in dlen.
260 *
261 * All fields are mandatory.
262 */
263 struct compress_alg {
264 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
265 unsigned int slen, u8 *dst, unsigned int *dlen);
266 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
267 unsigned int slen, u8 *dst, unsigned int *dlen);
268 };
269
270 #ifdef CONFIG_CRYPTO_STATS
271 /*
272 * struct crypto_istat_aead - statistics for AEAD algorithm
273 * @encrypt_cnt: number of encrypt requests
274 * @encrypt_tlen: total data size handled by encrypt requests
275 * @decrypt_cnt: number of decrypt requests
276 * @decrypt_tlen: total data size handled by decrypt requests
277 * @err_cnt: number of error for AEAD requests
278 */
279 struct crypto_istat_aead {
280 atomic64_t encrypt_cnt;
281 atomic64_t encrypt_tlen;
282 atomic64_t decrypt_cnt;
283 atomic64_t decrypt_tlen;
284 atomic64_t err_cnt;
285 };
286
287 /*
288 * struct crypto_istat_akcipher - statistics for akcipher algorithm
289 * @encrypt_cnt: number of encrypt requests
290 * @encrypt_tlen: total data size handled by encrypt requests
291 * @decrypt_cnt: number of decrypt requests
292 * @decrypt_tlen: total data size handled by decrypt requests
293 * @verify_cnt: number of verify operation
294 * @sign_cnt: number of sign requests
295 * @err_cnt: number of error for akcipher requests
296 */
297 struct crypto_istat_akcipher {
298 atomic64_t encrypt_cnt;
299 atomic64_t encrypt_tlen;
300 atomic64_t decrypt_cnt;
301 atomic64_t decrypt_tlen;
302 atomic64_t verify_cnt;
303 atomic64_t sign_cnt;
304 atomic64_t err_cnt;
305 };
306
307 /*
308 * struct crypto_istat_cipher - statistics for cipher algorithm
309 * @encrypt_cnt: number of encrypt requests
310 * @encrypt_tlen: total data size handled by encrypt requests
311 * @decrypt_cnt: number of decrypt requests
312 * @decrypt_tlen: total data size handled by decrypt requests
313 * @err_cnt: number of error for cipher requests
314 */
315 struct crypto_istat_cipher {
316 atomic64_t encrypt_cnt;
317 atomic64_t encrypt_tlen;
318 atomic64_t decrypt_cnt;
319 atomic64_t decrypt_tlen;
320 atomic64_t err_cnt;
321 };
322
323 /*
324 * struct crypto_istat_compress - statistics for compress algorithm
325 * @compress_cnt: number of compress requests
326 * @compress_tlen: total data size handled by compress requests
327 * @decompress_cnt: number of decompress requests
328 * @decompress_tlen: total data size handled by decompress requests
329 * @err_cnt: number of error for compress requests
330 */
331 struct crypto_istat_compress {
332 atomic64_t compress_cnt;
333 atomic64_t compress_tlen;
334 atomic64_t decompress_cnt;
335 atomic64_t decompress_tlen;
336 atomic64_t err_cnt;
337 };
338
339 /*
340 * struct crypto_istat_hash - statistics for has algorithm
341 * @hash_cnt: number of hash requests
342 * @hash_tlen: total data size hashed
343 * @err_cnt: number of error for hash requests
344 */
345 struct crypto_istat_hash {
346 atomic64_t hash_cnt;
347 atomic64_t hash_tlen;
348 atomic64_t err_cnt;
349 };
350
351 /*
352 * struct crypto_istat_kpp - statistics for KPP algorithm
353 * @setsecret_cnt: number of setsecrey operation
354 * @generate_public_key_cnt: number of generate_public_key operation
355 * @compute_shared_secret_cnt: number of compute_shared_secret operation
356 * @err_cnt: number of error for KPP requests
357 */
358 struct crypto_istat_kpp {
359 atomic64_t setsecret_cnt;
360 atomic64_t generate_public_key_cnt;
361 atomic64_t compute_shared_secret_cnt;
362 atomic64_t err_cnt;
363 };
364
365 /*
366 * struct crypto_istat_rng: statistics for RNG algorithm
367 * @generate_cnt: number of RNG generate requests
368 * @generate_tlen: total data size of generated data by the RNG
369 * @seed_cnt: number of times the RNG was seeded
370 * @err_cnt: number of error for RNG requests
371 */
372 struct crypto_istat_rng {
373 atomic64_t generate_cnt;
374 atomic64_t generate_tlen;
375 atomic64_t seed_cnt;
376 atomic64_t err_cnt;
377 };
378 #endif /* CONFIG_CRYPTO_STATS */
379
380 #define cra_cipher cra_u.cipher
381 #define cra_compress cra_u.compress
382
383 /**
384 * struct crypto_alg - definition of a cryptograpic cipher algorithm
385 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
386 * CRYPTO_ALG_* flags for the flags which go in here. Those are
387 * used for fine-tuning the description of the transformation
388 * algorithm.
389 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
390 * of the smallest possible unit which can be transformed with
391 * this algorithm. The users must respect this value.
392 * In case of HASH transformation, it is possible for a smaller
393 * block than @cra_blocksize to be passed to the crypto API for
394 * transformation, in case of any other transformation type, an
395 * error will be returned upon any attempt to transform smaller
396 * than @cra_blocksize chunks.
397 * @cra_ctxsize: Size of the operational context of the transformation. This
398 * value informs the kernel crypto API about the memory size
399 * needed to be allocated for the transformation context.
400 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
401 * buffer containing the input data for the algorithm must be
402 * aligned to this alignment mask. The data buffer for the
403 * output data must be aligned to this alignment mask. Note that
404 * the Crypto API will do the re-alignment in software, but
405 * only under special conditions and there is a performance hit.
406 * The re-alignment happens at these occasions for different
407 * @cra_u types: cipher -- For both input data and output data
408 * buffer; ahash -- For output hash destination buf; shash --
409 * For output hash destination buf.
410 * This is needed on hardware which is flawed by design and
411 * cannot pick data from arbitrary addresses.
412 * @cra_priority: Priority of this transformation implementation. In case
413 * multiple transformations with same @cra_name are available to
414 * the Crypto API, the kernel will use the one with highest
415 * @cra_priority.
416 * @cra_name: Generic name (usable by multiple implementations) of the
417 * transformation algorithm. This is the name of the transformation
418 * itself. This field is used by the kernel when looking up the
419 * providers of particular transformation.
420 * @cra_driver_name: Unique name of the transformation provider. This is the
421 * name of the provider of the transformation. This can be any
422 * arbitrary value, but in the usual case, this contains the
423 * name of the chip or provider and the name of the
424 * transformation algorithm.
425 * @cra_type: Type of the cryptographic transformation. This is a pointer to
426 * struct crypto_type, which implements callbacks common for all
427 * transformation types. There are multiple options, such as
428 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
429 * This field might be empty. In that case, there are no common
430 * callbacks. This is the case for: cipher, compress, shash.
431 * @cra_u: Callbacks implementing the transformation. This is a union of
432 * multiple structures. Depending on the type of transformation selected
433 * by @cra_type and @cra_flags above, the associated structure must be
434 * filled with callbacks. This field might be empty. This is the case
435 * for ahash, shash.
436 * @cra_init: Initialize the cryptographic transformation object. This function
437 * is used to initialize the cryptographic transformation object.
438 * This function is called only once at the instantiation time, right
439 * after the transformation context was allocated. In case the
440 * cryptographic hardware has some special requirements which need to
441 * be handled by software, this function shall check for the precise
442 * requirement of the transformation and put any software fallbacks
443 * in place.
444 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
445 * counterpart to @cra_init, used to remove various changes set in
446 * @cra_init.
447 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
448 * definition. See @struct @cipher_alg.
449 * @cra_u.compress: Union member which contains a (de)compression algorithm.
450 * See @struct @compress_alg.
451 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
452 * @cra_list: internally used
453 * @cra_users: internally used
454 * @cra_refcnt: internally used
455 * @cra_destroy: internally used
456 *
457 * @stats: union of all possible crypto_istat_xxx structures
458 * @stats.aead: statistics for AEAD algorithm
459 * @stats.akcipher: statistics for akcipher algorithm
460 * @stats.cipher: statistics for cipher algorithm
461 * @stats.compress: statistics for compress algorithm
462 * @stats.hash: statistics for hash algorithm
463 * @stats.rng: statistics for rng algorithm
464 * @stats.kpp: statistics for KPP algorithm
465 *
466 * The struct crypto_alg describes a generic Crypto API algorithm and is common
467 * for all of the transformations. Any variable not documented here shall not
468 * be used by a cipher implementation as it is internal to the Crypto API.
469 */
470 struct crypto_alg {
471 struct list_head cra_list;
472 struct list_head cra_users;
473
474 u32 cra_flags;
475 unsigned int cra_blocksize;
476 unsigned int cra_ctxsize;
477 unsigned int cra_alignmask;
478
479 int cra_priority;
480 refcount_t cra_refcnt;
481
482 char cra_name[CRYPTO_MAX_ALG_NAME];
483 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
484
485 const struct crypto_type *cra_type;
486
487 union {
488 struct cipher_alg cipher;
489 struct compress_alg compress;
490 } cra_u;
491
492 int (*cra_init)(struct crypto_tfm *tfm);
493 void (*cra_exit)(struct crypto_tfm *tfm);
494 void (*cra_destroy)(struct crypto_alg *alg);
495
496 struct module *cra_module;
497
498 #ifdef CONFIG_CRYPTO_STATS
499 union {
500 struct crypto_istat_aead aead;
501 struct crypto_istat_akcipher akcipher;
502 struct crypto_istat_cipher cipher;
503 struct crypto_istat_compress compress;
504 struct crypto_istat_hash hash;
505 struct crypto_istat_rng rng;
506 struct crypto_istat_kpp kpp;
507 } stats;
508 #endif /* CONFIG_CRYPTO_STATS */
509
510 } CRYPTO_MINALIGN_ATTR;
511
512 #ifdef CONFIG_CRYPTO_STATS
513 void crypto_stats_init(struct crypto_alg *alg);
514 void crypto_stats_get(struct crypto_alg *alg);
515 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
516 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
517 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
518 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
519 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
520 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
521 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
522 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
523 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
524 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
525 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
526 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
527 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
528 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
529 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
530 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
531 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
532 #else
crypto_stats_init(struct crypto_alg * alg)533 static inline void crypto_stats_init(struct crypto_alg *alg)
534 {}
crypto_stats_get(struct crypto_alg * alg)535 static inline void crypto_stats_get(struct crypto_alg *alg)
536 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)537 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
538 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)539 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
540 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)541 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
542 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)543 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
544 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)545 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
546 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)547 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
548 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)549 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
550 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)551 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
552 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)553 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
554 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)555 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
556 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)557 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
558 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)559 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
560 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)561 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
562 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)563 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
564 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)565 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
566 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)567 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
568 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)569 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
570 {}
571 #endif
572 /*
573 * A helper struct for waiting for completion of async crypto ops
574 */
575 struct crypto_wait {
576 struct completion completion;
577 int err;
578 };
579
580 /*
581 * Macro for declaring a crypto op async wait object on stack
582 */
583 #define DECLARE_CRYPTO_WAIT(_wait) \
584 struct crypto_wait _wait = { \
585 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
586
587 /*
588 * Async ops completion helper functioons
589 */
crypto_get_completion_data(crypto_completion_data_t * req)590 static inline void *crypto_get_completion_data(crypto_completion_data_t *req)
591 {
592 return req->data;
593 }
594
595 void crypto_req_done(struct crypto_async_request *req, int err);
596
crypto_wait_req(int err,struct crypto_wait * wait)597 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
598 {
599 switch (err) {
600 case -EINPROGRESS:
601 case -EBUSY:
602 wait_for_completion(&wait->completion);
603 reinit_completion(&wait->completion);
604 err = wait->err;
605 break;
606 }
607
608 return err;
609 }
610
crypto_init_wait(struct crypto_wait * wait)611 static inline void crypto_init_wait(struct crypto_wait *wait)
612 {
613 init_completion(&wait->completion);
614 }
615
616 /*
617 * Algorithm registration interface.
618 */
619 int crypto_register_alg(struct crypto_alg *alg);
620 void crypto_unregister_alg(struct crypto_alg *alg);
621 int crypto_register_algs(struct crypto_alg *algs, int count);
622 void crypto_unregister_algs(struct crypto_alg *algs, int count);
623
624 /*
625 * Algorithm query interface.
626 */
627 int crypto_has_alg(const char *name, u32 type, u32 mask);
628
629 /*
630 * Transforms: user-instantiated objects which encapsulate algorithms
631 * and core processing logic. Managed via crypto_alloc_*() and
632 * crypto_free_*(), as well as the various helpers below.
633 */
634
635 struct crypto_tfm {
636
637 u32 crt_flags;
638
639 int node;
640
641 void (*exit)(struct crypto_tfm *tfm);
642
643 struct crypto_alg *__crt_alg;
644
645 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
646 };
647
648 struct crypto_comp {
649 struct crypto_tfm base;
650 };
651
652 /*
653 * Transform user interface.
654 */
655
656 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
657 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
658
crypto_free_tfm(struct crypto_tfm * tfm)659 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
660 {
661 return crypto_destroy_tfm(tfm, tfm);
662 }
663
664 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
665
666 /*
667 * Transform helpers which query the underlying algorithm.
668 */
crypto_tfm_alg_name(struct crypto_tfm * tfm)669 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
670 {
671 return tfm->__crt_alg->cra_name;
672 }
673
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)674 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
675 {
676 return tfm->__crt_alg->cra_driver_name;
677 }
678
crypto_tfm_alg_priority(struct crypto_tfm * tfm)679 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
680 {
681 return tfm->__crt_alg->cra_priority;
682 }
683
crypto_tfm_alg_type(struct crypto_tfm * tfm)684 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
685 {
686 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
687 }
688
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)689 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
690 {
691 return tfm->__crt_alg->cra_blocksize;
692 }
693
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)694 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
695 {
696 return tfm->__crt_alg->cra_alignmask;
697 }
698
crypto_tfm_get_flags(struct crypto_tfm * tfm)699 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
700 {
701 return tfm->crt_flags;
702 }
703
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)704 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
705 {
706 tfm->crt_flags |= flags;
707 }
708
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)709 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
710 {
711 tfm->crt_flags &= ~flags;
712 }
713
crypto_tfm_ctx(struct crypto_tfm * tfm)714 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
715 {
716 return tfm->__crt_ctx;
717 }
718
crypto_tfm_ctx_alignment(void)719 static inline unsigned int crypto_tfm_ctx_alignment(void)
720 {
721 struct crypto_tfm *tfm;
722 return __alignof__(tfm->__crt_ctx);
723 }
724
__crypto_comp_cast(struct crypto_tfm * tfm)725 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
726 {
727 return (struct crypto_comp *)tfm;
728 }
729
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)730 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
731 u32 type, u32 mask)
732 {
733 type &= ~CRYPTO_ALG_TYPE_MASK;
734 type |= CRYPTO_ALG_TYPE_COMPRESS;
735 mask |= CRYPTO_ALG_TYPE_MASK;
736
737 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
738 }
739
crypto_comp_tfm(struct crypto_comp * tfm)740 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
741 {
742 return &tfm->base;
743 }
744
crypto_free_comp(struct crypto_comp * tfm)745 static inline void crypto_free_comp(struct crypto_comp *tfm)
746 {
747 crypto_free_tfm(crypto_comp_tfm(tfm));
748 }
749
crypto_has_comp(const char * alg_name,u32 type,u32 mask)750 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
751 {
752 type &= ~CRYPTO_ALG_TYPE_MASK;
753 type |= CRYPTO_ALG_TYPE_COMPRESS;
754 mask |= CRYPTO_ALG_TYPE_MASK;
755
756 return crypto_has_alg(alg_name, type, mask);
757 }
758
crypto_comp_name(struct crypto_comp * tfm)759 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
760 {
761 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
762 }
763
764 int crypto_comp_compress(struct crypto_comp *tfm,
765 const u8 *src, unsigned int slen,
766 u8 *dst, unsigned int *dlen);
767
768 int crypto_comp_decompress(struct crypto_comp *tfm,
769 const u8 *src, unsigned int slen,
770 u8 *dst, unsigned int *dlen);
771
772 #endif /* _LINUX_CRYPTO_H */
773
774