• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/kref.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/rbtree.h>
12 #include <linux/rwsem.h>
13 #include <linux/completion.h>
14 #include <linux/cpumask.h>
15 #include <linux/uprobes.h>
16 #include <linux/page-flags-layout.h>
17 #include <linux/workqueue.h>
18 #include <linux/seqlock.h>
19 #include <linux/android_kabi.h>
20 
21 #include <asm/mmu.h>
22 
23 #ifndef AT_VECTOR_SIZE_ARCH
24 #define AT_VECTOR_SIZE_ARCH 0
25 #endif
26 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
27 
28 #define INIT_PASID	0
29 
30 struct address_space;
31 struct mem_cgroup;
32 
33 /*
34  * Each physical page in the system has a struct page associated with
35  * it to keep track of whatever it is we are using the page for at the
36  * moment. Note that we have no way to track which tasks are using
37  * a page, though if it is a pagecache page, rmap structures can tell us
38  * who is mapping it.
39  *
40  * If you allocate the page using alloc_pages(), you can use some of the
41  * space in struct page for your own purposes.  The five words in the main
42  * union are available, except for bit 0 of the first word which must be
43  * kept clear.  Many users use this word to store a pointer to an object
44  * which is guaranteed to be aligned.  If you use the same storage as
45  * page->mapping, you must restore it to NULL before freeing the page.
46  *
47  * If your page will not be mapped to userspace, you can also use the four
48  * bytes in the mapcount union, but you must call page_mapcount_reset()
49  * before freeing it.
50  *
51  * If you want to use the refcount field, it must be used in such a way
52  * that other CPUs temporarily incrementing and then decrementing the
53  * refcount does not cause problems.  On receiving the page from
54  * alloc_pages(), the refcount will be positive.
55  *
56  * If you allocate pages of order > 0, you can use some of the fields
57  * in each subpage, but you may need to restore some of their values
58  * afterwards.
59  *
60  * SLUB uses cmpxchg_double() to atomically update its freelist and
61  * counters.  That requires that freelist & counters be adjacent and
62  * double-word aligned.  We align all struct pages to double-word
63  * boundaries, and ensure that 'freelist' is aligned within the
64  * struct.
65  */
66 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
67 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
68 #else
69 #define _struct_page_alignment
70 #endif
71 
72 struct page {
73 	unsigned long flags;		/* Atomic flags, some possibly
74 					 * updated asynchronously */
75 	/*
76 	 * Five words (20/40 bytes) are available in this union.
77 	 * WARNING: bit 0 of the first word is used for PageTail(). That
78 	 * means the other users of this union MUST NOT use the bit to
79 	 * avoid collision and false-positive PageTail().
80 	 */
81 	union {
82 		struct {	/* Page cache and anonymous pages */
83 			union {
84 				/**
85 				 * @lru: Pageout list, eg. active_list protected by
86 				 * lruvec->lru_lock.  Sometimes used as a generic list
87 				 * by the page owner.
88 				 */
89 				struct list_head lru;
90 
91 				/* Or, free page */
92 				struct list_head buddy_list;
93 				struct list_head pcp_list;
94 			};
95 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
96 			struct address_space *mapping;
97 			pgoff_t index;		/* Our offset within mapping. */
98 			/**
99 			 * @private: Mapping-private opaque data.
100 			 * Usually used for buffer_heads if PagePrivate.
101 			 * Used for swp_entry_t if PageSwapCache.
102 			 * Indicates order in the buddy system if PageBuddy.
103 			 */
104 			unsigned long private;
105 		};
106 		struct {	/* page_pool used by netstack */
107 			/**
108 			 * @pp_magic: magic value to avoid recycling non
109 			 * page_pool allocated pages.
110 			 */
111 			unsigned long pp_magic;
112 			struct page_pool *pp;
113 			unsigned long _pp_mapping_pad;
114 			unsigned long dma_addr;
115 			union {
116 				/**
117 				 * dma_addr_upper: might require a 64-bit
118 				 * value on 32-bit architectures.
119 				 */
120 				unsigned long dma_addr_upper;
121 				/**
122 				 * For frag page support, not supported in
123 				 * 32-bit architectures with 64-bit DMA.
124 				 */
125 				atomic_long_t pp_frag_count;
126 			};
127 		};
128 		struct {	/* slab, slob and slub */
129 			union {
130 				struct list_head slab_list;
131 				struct {	/* Partial pages */
132 					struct page *next;
133 #ifdef CONFIG_64BIT
134 					int pages;	/* Nr of pages left */
135 					int pobjects;	/* Approximate count */
136 #else
137 					short int pages;
138 					short int pobjects;
139 #endif
140 				};
141 			};
142 			struct kmem_cache *slab_cache; /* not slob */
143 			/* Double-word boundary */
144 			void *freelist;		/* first free object */
145 			union {
146 				void *s_mem;	/* slab: first object */
147 				unsigned long counters;		/* SLUB */
148 				struct {			/* SLUB */
149 					unsigned inuse:16;
150 					unsigned objects:15;
151 					unsigned frozen:1;
152 				};
153 			};
154 		};
155 		struct {	/* Tail pages of compound page */
156 			unsigned long compound_head;	/* Bit zero is set */
157 
158 			/* First tail page only */
159 			unsigned char compound_dtor;
160 			unsigned char compound_order;
161 			atomic_t compound_mapcount;
162 			unsigned int compound_nr; /* 1 << compound_order */
163 		};
164 		struct {	/* Second tail page of compound page */
165 			unsigned long _compound_pad_1;	/* compound_head */
166 			atomic_t hpage_pinned_refcount;
167 			/* For both global and memcg */
168 			struct list_head deferred_list;
169 		};
170 		struct {	/* Page table pages */
171 			unsigned long _pt_pad_1;	/* compound_head */
172 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
173 			unsigned long _pt_pad_2;	/* mapping */
174 			union {
175 				struct mm_struct *pt_mm; /* x86 pgds only */
176 				atomic_t pt_frag_refcount; /* powerpc */
177 			};
178 #if ALLOC_SPLIT_PTLOCKS
179 			spinlock_t *ptl;
180 #else
181 			spinlock_t ptl;
182 #endif
183 		};
184 		struct {	/* ZONE_DEVICE pages */
185 			/** @pgmap: Points to the hosting device page map. */
186 			struct dev_pagemap *pgmap;
187 			void *zone_device_data;
188 			/*
189 			 * ZONE_DEVICE private pages are counted as being
190 			 * mapped so the next 3 words hold the mapping, index,
191 			 * and private fields from the source anonymous or
192 			 * page cache page while the page is migrated to device
193 			 * private memory.
194 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
195 			 * use the mapping, index, and private fields when
196 			 * pmem backed DAX files are mapped.
197 			 */
198 		};
199 
200 		/** @rcu_head: You can use this to free a page by RCU. */
201 		struct rcu_head rcu_head;
202 	};
203 
204 	union {		/* This union is 4 bytes in size. */
205 		/*
206 		 * If the page can be mapped to userspace, encodes the number
207 		 * of times this page is referenced by a page table.
208 		 */
209 		atomic_t _mapcount;
210 
211 		/*
212 		 * If the page is neither PageSlab nor mappable to userspace,
213 		 * the value stored here may help determine what this page
214 		 * is used for.  See page-flags.h for a list of page types
215 		 * which are currently stored here.
216 		 */
217 		unsigned int page_type;
218 
219 		unsigned int active;		/* SLAB */
220 		int units;			/* SLOB */
221 	};
222 
223 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
224 	atomic_t _refcount;
225 
226 #ifdef CONFIG_MEMCG
227 	unsigned long memcg_data;
228 #endif
229 
230 	/*
231 	 * On machines where all RAM is mapped into kernel address space,
232 	 * we can simply calculate the virtual address. On machines with
233 	 * highmem some memory is mapped into kernel virtual memory
234 	 * dynamically, so we need a place to store that address.
235 	 * Note that this field could be 16 bits on x86 ... ;)
236 	 *
237 	 * Architectures with slow multiplication can define
238 	 * WANT_PAGE_VIRTUAL in asm/page.h
239 	 */
240 #if defined(WANT_PAGE_VIRTUAL)
241 	void *virtual;			/* Kernel virtual address (NULL if
242 					   not kmapped, ie. highmem) */
243 #endif /* WANT_PAGE_VIRTUAL */
244 
245 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
246 	int _last_cpupid;
247 #endif
248 } _struct_page_alignment;
249 
compound_mapcount_ptr(struct page * page)250 static inline atomic_t *compound_mapcount_ptr(struct page *page)
251 {
252 	return &page[1].compound_mapcount;
253 }
254 
compound_pincount_ptr(struct page * page)255 static inline atomic_t *compound_pincount_ptr(struct page *page)
256 {
257 	return &page[2].hpage_pinned_refcount;
258 }
259 
260 /*
261  * Used for sizing the vmemmap region on some architectures
262  */
263 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
264 
265 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
266 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
267 
268 #define page_private(page)		((page)->private)
269 
set_page_private(struct page * page,unsigned long private)270 static inline void set_page_private(struct page *page, unsigned long private)
271 {
272 	page->private = private;
273 }
274 
275 struct page_frag_cache {
276 	void * va;
277 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
278 	__u16 offset;
279 	__u16 size;
280 #else
281 	__u32 offset;
282 #endif
283 	/* we maintain a pagecount bias, so that we dont dirty cache line
284 	 * containing page->_refcount every time we allocate a fragment.
285 	 */
286 	unsigned int		pagecnt_bias;
287 	bool pfmemalloc;
288 };
289 
290 typedef unsigned long vm_flags_t;
291 
292 /*
293  * A region containing a mapping of a non-memory backed file under NOMMU
294  * conditions.  These are held in a global tree and are pinned by the VMAs that
295  * map parts of them.
296  */
297 struct vm_region {
298 	struct rb_node	vm_rb;		/* link in global region tree */
299 	vm_flags_t	vm_flags;	/* VMA vm_flags */
300 	unsigned long	vm_start;	/* start address of region */
301 	unsigned long	vm_end;		/* region initialised to here */
302 	unsigned long	vm_top;		/* region allocated to here */
303 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
304 	struct file	*vm_file;	/* the backing file or NULL */
305 
306 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
307 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
308 						* this region */
309 };
310 
311 #ifdef CONFIG_USERFAULTFD
312 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
313 struct vm_userfaultfd_ctx {
314 	struct userfaultfd_ctx __rcu *ctx;
315 };
316 #else /* CONFIG_USERFAULTFD */
317 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
318 struct vm_userfaultfd_ctx {};
319 #endif /* CONFIG_USERFAULTFD */
320 
321 struct anon_vma_name {
322 	struct kref kref;
323 	/* The name needs to be at the end because it is dynamically sized. */
324 	char name[];
325 };
326 
327 /*
328  * This struct describes a virtual memory area. There is one of these
329  * per VM-area/task. A VM area is any part of the process virtual memory
330  * space that has a special rule for the page-fault handlers (ie a shared
331  * library, the executable area etc).
332  *
333  * Note that speculative page faults make an on-stack copy of the VMA,
334  * so the structure size matters.
335  * (TODO - it would be preferable to copy only the required vma attributes
336  *  rather than the entire vma).
337  */
338 struct vm_area_struct {
339 	/* The first cache line has the info for VMA tree walking. */
340 
341 	union {
342 		struct {
343 			/* VMA covers [vm_start; vm_end) addresses within mm */
344 			unsigned long vm_start, vm_end;
345 
346 			/* linked list of VMAs per task, sorted by address */
347 			struct vm_area_struct *vm_next, *vm_prev;
348 		};
349 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
350 		struct rcu_head vm_rcu;	/* Used for deferred freeing. */
351 #endif
352 	};
353 
354 	struct rb_node vm_rb;
355 
356 	/*
357 	 * Largest free memory gap in bytes to the left of this VMA.
358 	 * Either between this VMA and vma->vm_prev, or between one of the
359 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
360 	 * get_unmapped_area find a free area of the right size.
361 	 */
362 	unsigned long rb_subtree_gap;
363 
364 	/* Second cache line starts here. */
365 
366 	struct mm_struct *vm_mm;	/* The address space we belong to. */
367 
368 	/*
369 	 * Access permissions of this VMA.
370 	 * See vmf_insert_mixed_prot() for discussion.
371 	 */
372 	pgprot_t vm_page_prot;
373 	unsigned long vm_flags;		/* Flags, see mm.h. */
374 
375 	/*
376 	 * For areas with an address space and backing store,
377 	 * linkage into the address_space->i_mmap interval tree.
378 	 *
379 	 * For private anonymous mappings, a pointer to a null terminated string
380 	 * containing the name given to the vma, or NULL if unnamed.
381 	 */
382 
383 	union {
384 		struct {
385 			struct rb_node rb;
386 			unsigned long rb_subtree_last;
387 		} shared;
388 		/*
389 		 * Serialized by mmap_sem. Never use directly because it is
390 		 * valid only when vm_file is NULL. Use anon_vma_name instead.
391 		 */
392 		struct anon_vma_name *anon_name;
393 	};
394 
395 	/*
396 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
397 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
398 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
399 	 * or brk vma (with NULL file) can only be in an anon_vma list.
400 	 */
401 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
402 					  * page_table_lock */
403 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
404 
405 	/* Function pointers to deal with this struct. */
406 	const struct vm_operations_struct *vm_ops;
407 
408 	/* Information about our backing store: */
409 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
410 					   units */
411 	struct file * vm_file;		/* File we map to (can be NULL). */
412 	void * vm_private_data;		/* was vm_pte (shared mem) */
413 
414 #ifdef CONFIG_SWAP
415 	atomic_long_t swap_readahead_info;
416 #endif
417 #ifndef CONFIG_MMU
418 	struct vm_region *vm_region;	/* NOMMU mapping region */
419 #endif
420 #ifdef CONFIG_NUMA
421 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
422 #endif
423 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
424 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
425 	/*
426 	 * The name does not reflect the usage and is not renamed to keep
427 	 * the ABI intact.
428 	 * This is used to refcount VMA in get_vma/put_vma.
429 	 */
430 	atomic_t file_ref_count;
431 #endif
432 
433 	ANDROID_KABI_RESERVE(1);
434 	ANDROID_KABI_RESERVE(2);
435 	ANDROID_KABI_RESERVE(3);
436 	ANDROID_KABI_RESERVE(4);
437 } __randomize_layout;
438 
439 struct core_thread {
440 	struct task_struct *task;
441 	struct core_thread *next;
442 };
443 
444 struct core_state {
445 	atomic_t nr_threads;
446 	struct core_thread dumper;
447 	struct completion startup;
448 };
449 
450 struct kioctx_table;
451 struct percpu_rw_semaphore;
452 struct mm_struct {
453 	struct {
454 		struct vm_area_struct *mmap;		/* list of VMAs */
455 		struct rb_root mm_rb;
456 		u64 vmacache_seqnum;                   /* per-thread vmacache */
457 #ifdef CONFIG_MMU
458 		unsigned long (*get_unmapped_area) (struct file *filp,
459 				unsigned long addr, unsigned long len,
460 				unsigned long pgoff, unsigned long flags);
461 #endif
462 		unsigned long mmap_base;	/* base of mmap area */
463 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
464 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
465 		/* Base addresses for compatible mmap() */
466 		unsigned long mmap_compat_base;
467 		unsigned long mmap_compat_legacy_base;
468 #endif
469 		unsigned long task_size;	/* size of task vm space */
470 		unsigned long highest_vm_end;	/* highest vma end address */
471 		pgd_t * pgd;
472 
473 #ifdef CONFIG_MEMBARRIER
474 		/**
475 		 * @membarrier_state: Flags controlling membarrier behavior.
476 		 *
477 		 * This field is close to @pgd to hopefully fit in the same
478 		 * cache-line, which needs to be touched by switch_mm().
479 		 */
480 		atomic_t membarrier_state;
481 #endif
482 
483 		/**
484 		 * @mm_users: The number of users including userspace.
485 		 *
486 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
487 		 * drops to 0 (i.e. when the task exits and there are no other
488 		 * temporary reference holders), we also release a reference on
489 		 * @mm_count (which may then free the &struct mm_struct if
490 		 * @mm_count also drops to 0).
491 		 */
492 		atomic_t mm_users;
493 
494 		/**
495 		 * @mm_count: The number of references to &struct mm_struct
496 		 * (@mm_users count as 1).
497 		 *
498 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
499 		 * &struct mm_struct is freed.
500 		 */
501 		atomic_t mm_count;
502 
503 #ifdef CONFIG_MMU
504 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
505 #endif
506 		int map_count;			/* number of VMAs */
507 
508 		spinlock_t page_table_lock; /* Protects page tables and some
509 					     * counters
510 					     */
511 		/*
512 		 * With some kernel config, the current mmap_lock's offset
513 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
514 		 * its two hot fields 'count' and 'owner' sit in 2 different
515 		 * cachelines,  and when mmap_lock is highly contended, both
516 		 * of the 2 fields will be accessed frequently, current layout
517 		 * will help to reduce cache bouncing.
518 		 *
519 		 * So please be careful with adding new fields before
520 		 * mmap_lock, which can easily push the 2 fields into one
521 		 * cacheline.
522 		 */
523 		struct rw_semaphore mmap_lock;
524 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
525 		unsigned long mmap_seq;
526 #endif
527 
528 
529 		struct list_head mmlist; /* List of maybe swapped mm's.	These
530 					  * are globally strung together off
531 					  * init_mm.mmlist, and are protected
532 					  * by mmlist_lock
533 					  */
534 
535 
536 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
537 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
538 
539 		unsigned long total_vm;	   /* Total pages mapped */
540 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
541 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
542 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
543 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
544 		unsigned long stack_vm;	   /* VM_STACK */
545 		unsigned long def_flags;
546 
547 		/**
548 		 * @write_protect_seq: Locked when any thread is write
549 		 * protecting pages mapped by this mm to enforce a later COW,
550 		 * for instance during page table copying for fork().
551 		 */
552 		seqcount_t write_protect_seq;
553 
554 		spinlock_t arg_lock; /* protect the below fields */
555 
556 		unsigned long start_code, end_code, start_data, end_data;
557 		unsigned long start_brk, brk, start_stack;
558 		unsigned long arg_start, arg_end, env_start, env_end;
559 
560 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
561 
562 		/*
563 		 * Special counters, in some configurations protected by the
564 		 * page_table_lock, in other configurations by being atomic.
565 		 */
566 		struct mm_rss_stat rss_stat;
567 
568 		struct linux_binfmt *binfmt;
569 
570 		/* Architecture-specific MM context */
571 		mm_context_t context;
572 
573 		unsigned long flags; /* Must use atomic bitops to access */
574 
575 		struct core_state *core_state; /* coredumping support */
576 
577 #ifdef CONFIG_AIO
578 		spinlock_t			ioctx_lock;
579 		struct kioctx_table __rcu	*ioctx_table;
580 #endif
581 #ifdef CONFIG_MEMCG
582 		/*
583 		 * "owner" points to a task that is regarded as the canonical
584 		 * user/owner of this mm. All of the following must be true in
585 		 * order for it to be changed:
586 		 *
587 		 * current == mm->owner
588 		 * current->mm != mm
589 		 * new_owner->mm == mm
590 		 * new_owner->alloc_lock is held
591 		 */
592 		struct task_struct __rcu *owner;
593 #endif
594 		struct user_namespace *user_ns;
595 
596 		/* store ref to file /proc/<pid>/exe symlink points to */
597 		struct file __rcu *exe_file;
598 #ifdef CONFIG_MMU_NOTIFIER
599 		struct mmu_notifier_subscriptions *notifier_subscriptions;
600 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
601 		struct percpu_rw_semaphore *mmu_notifier_lock;
602 #endif	/* CONFIG_SPECULATIVE_PAGE_FAULT */
603 #endif	/* CONFIG_MMU_NOTIFIER */
604 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
605 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
606 #endif
607 #ifdef CONFIG_NUMA_BALANCING
608 		/*
609 		 * numa_next_scan is the next time that the PTEs will be marked
610 		 * pte_numa. NUMA hinting faults will gather statistics and
611 		 * migrate pages to new nodes if necessary.
612 		 */
613 		unsigned long numa_next_scan;
614 
615 		/* Restart point for scanning and setting pte_numa */
616 		unsigned long numa_scan_offset;
617 
618 		/* numa_scan_seq prevents two threads setting pte_numa */
619 		int numa_scan_seq;
620 #endif
621 		/*
622 		 * An operation with batched TLB flushing is going on. Anything
623 		 * that can move process memory needs to flush the TLB when
624 		 * moving a PROT_NONE or PROT_NUMA mapped page.
625 		 */
626 		atomic_t tlb_flush_pending;
627 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
628 		/* See flush_tlb_batched_pending() */
629 		bool tlb_flush_batched;
630 #endif
631 		struct uprobes_state uprobes_state;
632 #ifdef CONFIG_HUGETLB_PAGE
633 		atomic_long_t hugetlb_usage;
634 #endif
635 		struct work_struct async_put_work;
636 
637 #ifdef CONFIG_IOMMU_SUPPORT
638 		u32 pasid;
639 #endif
640 #ifdef CONFIG_LRU_GEN
641 		struct {
642 			/* this mm_struct is on lru_gen_mm_list */
643 			struct list_head list;
644 			/*
645 			 * Set when switching to this mm_struct, as a hint of
646 			 * whether it has been used since the last time per-node
647 			 * page table walkers cleared the corresponding bits.
648 			 */
649 			unsigned long bitmap;
650 #ifdef CONFIG_MEMCG
651 			/* points to the memcg of "owner" above */
652 			struct mem_cgroup *memcg;
653 #endif
654 		} lru_gen;
655 #endif /* CONFIG_LRU_GEN */
656 
657 		ANDROID_KABI_RESERVE(1);
658 	} __randomize_layout;
659 
660 	/*
661 	 * The mm_cpumask needs to be at the end of mm_struct, because it
662 	 * is dynamically sized based on nr_cpu_ids.
663 	 */
664 	unsigned long cpu_bitmap[];
665 };
666 
667 extern struct mm_struct init_mm;
668 
669 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)670 static inline void mm_init_cpumask(struct mm_struct *mm)
671 {
672 	unsigned long cpu_bitmap = (unsigned long)mm;
673 
674 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
675 	cpumask_clear((struct cpumask *)cpu_bitmap);
676 }
677 
678 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)679 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
680 {
681 	return (struct cpumask *)&mm->cpu_bitmap;
682 }
683 
684 #ifdef CONFIG_LRU_GEN
685 
686 struct lru_gen_mm_list {
687 	/* mm_struct list for page table walkers */
688 	struct list_head fifo;
689 	/* protects the list above */
690 	spinlock_t lock;
691 };
692 
693 void lru_gen_add_mm(struct mm_struct *mm);
694 void lru_gen_del_mm(struct mm_struct *mm);
695 #ifdef CONFIG_MEMCG
696 void lru_gen_migrate_mm(struct mm_struct *mm);
697 #endif
698 
lru_gen_init_mm(struct mm_struct * mm)699 static inline void lru_gen_init_mm(struct mm_struct *mm)
700 {
701 	INIT_LIST_HEAD(&mm->lru_gen.list);
702 	mm->lru_gen.bitmap = 0;
703 #ifdef CONFIG_MEMCG
704 	mm->lru_gen.memcg = NULL;
705 #endif
706 }
707 
lru_gen_use_mm(struct mm_struct * mm)708 static inline void lru_gen_use_mm(struct mm_struct *mm)
709 {
710 	/*
711 	 * When the bitmap is set, page reclaim knows this mm_struct has been
712 	 * used since the last time it cleared the bitmap. So it might be worth
713 	 * walking the page tables of this mm_struct to clear the accessed bit.
714 	 */
715 	WRITE_ONCE(mm->lru_gen.bitmap, -1);
716 }
717 
718 #else /* !CONFIG_LRU_GEN */
719 
lru_gen_add_mm(struct mm_struct * mm)720 static inline void lru_gen_add_mm(struct mm_struct *mm)
721 {
722 }
723 
lru_gen_del_mm(struct mm_struct * mm)724 static inline void lru_gen_del_mm(struct mm_struct *mm)
725 {
726 }
727 
728 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)729 static inline void lru_gen_migrate_mm(struct mm_struct *mm)
730 {
731 }
732 #endif
733 
lru_gen_init_mm(struct mm_struct * mm)734 static inline void lru_gen_init_mm(struct mm_struct *mm)
735 {
736 }
737 
lru_gen_use_mm(struct mm_struct * mm)738 static inline void lru_gen_use_mm(struct mm_struct *mm)
739 {
740 }
741 
742 #endif /* CONFIG_LRU_GEN */
743 
744 struct mmu_gather;
745 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
746 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
747 extern void tlb_finish_mmu(struct mmu_gather *tlb);
748 
init_tlb_flush_pending(struct mm_struct * mm)749 static inline void init_tlb_flush_pending(struct mm_struct *mm)
750 {
751 	atomic_set(&mm->tlb_flush_pending, 0);
752 }
753 
inc_tlb_flush_pending(struct mm_struct * mm)754 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
755 {
756 	atomic_inc(&mm->tlb_flush_pending);
757 	/*
758 	 * The only time this value is relevant is when there are indeed pages
759 	 * to flush. And we'll only flush pages after changing them, which
760 	 * requires the PTL.
761 	 *
762 	 * So the ordering here is:
763 	 *
764 	 *	atomic_inc(&mm->tlb_flush_pending);
765 	 *	spin_lock(&ptl);
766 	 *	...
767 	 *	set_pte_at();
768 	 *	spin_unlock(&ptl);
769 	 *
770 	 *				spin_lock(&ptl)
771 	 *				mm_tlb_flush_pending();
772 	 *				....
773 	 *				spin_unlock(&ptl);
774 	 *
775 	 *	flush_tlb_range();
776 	 *	atomic_dec(&mm->tlb_flush_pending);
777 	 *
778 	 * Where the increment if constrained by the PTL unlock, it thus
779 	 * ensures that the increment is visible if the PTE modification is
780 	 * visible. After all, if there is no PTE modification, nobody cares
781 	 * about TLB flushes either.
782 	 *
783 	 * This very much relies on users (mm_tlb_flush_pending() and
784 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
785 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
786 	 * locks (PPC) the unlock of one doesn't order against the lock of
787 	 * another PTL.
788 	 *
789 	 * The decrement is ordered by the flush_tlb_range(), such that
790 	 * mm_tlb_flush_pending() will not return false unless all flushes have
791 	 * completed.
792 	 */
793 }
794 
dec_tlb_flush_pending(struct mm_struct * mm)795 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
796 {
797 	/*
798 	 * See inc_tlb_flush_pending().
799 	 *
800 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
801 	 * not order against TLB invalidate completion, which is what we need.
802 	 *
803 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
804 	 */
805 	atomic_dec(&mm->tlb_flush_pending);
806 }
807 
mm_tlb_flush_pending(struct mm_struct * mm)808 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
809 {
810 	/*
811 	 * Must be called after having acquired the PTL; orders against that
812 	 * PTLs release and therefore ensures that if we observe the modified
813 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
814 	 *
815 	 * That is, it only guarantees to return true if there is a flush
816 	 * pending for _this_ PTL.
817 	 */
818 	return atomic_read(&mm->tlb_flush_pending);
819 }
820 
mm_tlb_flush_nested(struct mm_struct * mm)821 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
822 {
823 	/*
824 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
825 	 * for which there is a TLB flush pending in order to guarantee
826 	 * we've seen both that PTE modification and the increment.
827 	 *
828 	 * (no requirement on actually still holding the PTL, that is irrelevant)
829 	 */
830 	return atomic_read(&mm->tlb_flush_pending) > 1;
831 }
832 
833 struct vm_fault;
834 
835 /**
836  * typedef vm_fault_t - Return type for page fault handlers.
837  *
838  * Page fault handlers return a bitmask of %VM_FAULT values.
839  */
840 typedef __bitwise unsigned int vm_fault_t;
841 
842 /**
843  * enum vm_fault_reason - Page fault handlers return a bitmask of
844  * these values to tell the core VM what happened when handling the
845  * fault. Used to decide whether a process gets delivered SIGBUS or
846  * just gets major/minor fault counters bumped up.
847  *
848  * @VM_FAULT_OOM:		Out Of Memory
849  * @VM_FAULT_SIGBUS:		Bad access
850  * @VM_FAULT_MAJOR:		Page read from storage
851  * @VM_FAULT_WRITE:		Special case for get_user_pages
852  * @VM_FAULT_HWPOISON:		Hit poisoned small page
853  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
854  *				in upper bits
855  * @VM_FAULT_SIGSEGV:		segmentation fault
856  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
857  * @VM_FAULT_LOCKED:		->fault locked the returned page
858  * @VM_FAULT_RETRY:		->fault blocked, must retry
859  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
860  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
861  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
862  *				fsync() to complete (for synchronous page faults
863  *				in DAX)
864  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
865  *
866  */
867 enum vm_fault_reason {
868 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
869 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
870 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
871 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
872 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
873 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
874 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
875 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
876 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
877 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
878 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
879 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
880 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
881 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
882 };
883 
884 /* Encode hstate index for a hwpoisoned large page */
885 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
886 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
887 
888 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
889 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
890 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
891 
892 #define VM_FAULT_RESULT_TRACE \
893 	{ VM_FAULT_OOM,                 "OOM" },	\
894 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
895 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
896 	{ VM_FAULT_WRITE,               "WRITE" },	\
897 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
898 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
899 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
900 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
901 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
902 	{ VM_FAULT_RETRY,               "RETRY" },	\
903 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
904 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
905 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
906 
907 struct vm_special_mapping {
908 	const char *name;	/* The name, e.g. "[vdso]". */
909 
910 	/*
911 	 * If .fault is not provided, this points to a
912 	 * NULL-terminated array of pages that back the special mapping.
913 	 *
914 	 * This must not be NULL unless .fault is provided.
915 	 */
916 	struct page **pages;
917 
918 	/*
919 	 * If non-NULL, then this is called to resolve page faults
920 	 * on the special mapping.  If used, .pages is not checked.
921 	 */
922 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
923 				struct vm_area_struct *vma,
924 				struct vm_fault *vmf);
925 
926 	int (*mremap)(const struct vm_special_mapping *sm,
927 		     struct vm_area_struct *new_vma);
928 };
929 
930 enum tlb_flush_reason {
931 	TLB_FLUSH_ON_TASK_SWITCH,
932 	TLB_REMOTE_SHOOTDOWN,
933 	TLB_LOCAL_SHOOTDOWN,
934 	TLB_LOCAL_MM_SHOOTDOWN,
935 	TLB_REMOTE_SEND_IPI,
936 	NR_TLB_FLUSH_REASONS,
937 };
938 
939  /*
940   * A swap entry has to fit into a "unsigned long", as the entry is hidden
941   * in the "index" field of the swapper address space.
942   */
943 typedef struct {
944 	unsigned long val;
945 } swp_entry_t;
946 
947 #endif /* _LINUX_MM_TYPES_H */
948