1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44 #include <linux/android_kabi.h>
45 #include <linux/android_vendor.h>
46
47 /* The interface for checksum offload between the stack and networking drivers
48 * is as follows...
49 *
50 * A. IP checksum related features
51 *
52 * Drivers advertise checksum offload capabilities in the features of a device.
53 * From the stack's point of view these are capabilities offered by the driver.
54 * A driver typically only advertises features that it is capable of offloading
55 * to its device.
56 *
57 * The checksum related features are:
58 *
59 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
60 * IP (one's complement) checksum for any combination
61 * of protocols or protocol layering. The checksum is
62 * computed and set in a packet per the CHECKSUM_PARTIAL
63 * interface (see below).
64 *
65 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
66 * TCP or UDP packets over IPv4. These are specifically
67 * unencapsulated packets of the form IPv4|TCP or
68 * IPv4|UDP where the Protocol field in the IPv4 header
69 * is TCP or UDP. The IPv4 header may contain IP options.
70 * This feature cannot be set in features for a device
71 * with NETIF_F_HW_CSUM also set. This feature is being
72 * DEPRECATED (see below).
73 *
74 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
75 * TCP or UDP packets over IPv6. These are specifically
76 * unencapsulated packets of the form IPv6|TCP or
77 * IPv6|UDP where the Next Header field in the IPv6
78 * header is either TCP or UDP. IPv6 extension headers
79 * are not supported with this feature. This feature
80 * cannot be set in features for a device with
81 * NETIF_F_HW_CSUM also set. This feature is being
82 * DEPRECATED (see below).
83 *
84 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
85 * This flag is only used to disable the RX checksum
86 * feature for a device. The stack will accept receive
87 * checksum indication in packets received on a device
88 * regardless of whether NETIF_F_RXCSUM is set.
89 *
90 * B. Checksumming of received packets by device. Indication of checksum
91 * verification is set in skb->ip_summed. Possible values are:
92 *
93 * CHECKSUM_NONE:
94 *
95 * Device did not checksum this packet e.g. due to lack of capabilities.
96 * The packet contains full (though not verified) checksum in packet but
97 * not in skb->csum. Thus, skb->csum is undefined in this case.
98 *
99 * CHECKSUM_UNNECESSARY:
100 *
101 * The hardware you're dealing with doesn't calculate the full checksum
102 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
103 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
104 * if their checksums are okay. skb->csum is still undefined in this case
105 * though. A driver or device must never modify the checksum field in the
106 * packet even if checksum is verified.
107 *
108 * CHECKSUM_UNNECESSARY is applicable to following protocols:
109 * TCP: IPv6 and IPv4.
110 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
111 * zero UDP checksum for either IPv4 or IPv6, the networking stack
112 * may perform further validation in this case.
113 * GRE: only if the checksum is present in the header.
114 * SCTP: indicates the CRC in SCTP header has been validated.
115 * FCOE: indicates the CRC in FC frame has been validated.
116 *
117 * skb->csum_level indicates the number of consecutive checksums found in
118 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
119 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
120 * and a device is able to verify the checksums for UDP (possibly zero),
121 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
122 * two. If the device were only able to verify the UDP checksum and not
123 * GRE, either because it doesn't support GRE checksum or because GRE
124 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
125 * not considered in this case).
126 *
127 * CHECKSUM_COMPLETE:
128 *
129 * This is the most generic way. The device supplied checksum of the _whole_
130 * packet as seen by netif_rx() and fills in skb->csum. This means the
131 * hardware doesn't need to parse L3/L4 headers to implement this.
132 *
133 * Notes:
134 * - Even if device supports only some protocols, but is able to produce
135 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
136 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
137 *
138 * CHECKSUM_PARTIAL:
139 *
140 * A checksum is set up to be offloaded to a device as described in the
141 * output description for CHECKSUM_PARTIAL. This may occur on a packet
142 * received directly from another Linux OS, e.g., a virtualized Linux kernel
143 * on the same host, or it may be set in the input path in GRO or remote
144 * checksum offload. For the purposes of checksum verification, the checksum
145 * referred to by skb->csum_start + skb->csum_offset and any preceding
146 * checksums in the packet are considered verified. Any checksums in the
147 * packet that are after the checksum being offloaded are not considered to
148 * be verified.
149 *
150 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
151 * in the skb->ip_summed for a packet. Values are:
152 *
153 * CHECKSUM_PARTIAL:
154 *
155 * The driver is required to checksum the packet as seen by hard_start_xmit()
156 * from skb->csum_start up to the end, and to record/write the checksum at
157 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
158 * csum_start and csum_offset values are valid values given the length and
159 * offset of the packet, but it should not attempt to validate that the
160 * checksum refers to a legitimate transport layer checksum -- it is the
161 * purview of the stack to validate that csum_start and csum_offset are set
162 * correctly.
163 *
164 * When the stack requests checksum offload for a packet, the driver MUST
165 * ensure that the checksum is set correctly. A driver can either offload the
166 * checksum calculation to the device, or call skb_checksum_help (in the case
167 * that the device does not support offload for a particular checksum).
168 *
169 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
170 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
171 * checksum offload capability.
172 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
173 * on network device checksumming capabilities: if a packet does not match
174 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
175 * csum_not_inet, see item D.) is called to resolve the checksum.
176 *
177 * CHECKSUM_NONE:
178 *
179 * The skb was already checksummed by the protocol, or a checksum is not
180 * required.
181 *
182 * CHECKSUM_UNNECESSARY:
183 *
184 * This has the same meaning as CHECKSUM_NONE for checksum offload on
185 * output.
186 *
187 * CHECKSUM_COMPLETE:
188 * Not used in checksum output. If a driver observes a packet with this value
189 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
190 *
191 * D. Non-IP checksum (CRC) offloads
192 *
193 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
194 * offloading the SCTP CRC in a packet. To perform this offload the stack
195 * will set csum_start and csum_offset accordingly, set ip_summed to
196 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
197 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
198 * A driver that supports both IP checksum offload and SCTP CRC32c offload
199 * must verify which offload is configured for a packet by testing the
200 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
201 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
202 *
203 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
204 * offloading the FCOE CRC in a packet. To perform this offload the stack
205 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
206 * accordingly. Note that there is no indication in the skbuff that the
207 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
208 * both IP checksum offload and FCOE CRC offload must verify which offload
209 * is configured for a packet, presumably by inspecting packet headers.
210 *
211 * E. Checksumming on output with GSO.
212 *
213 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
214 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
215 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
216 * part of the GSO operation is implied. If a checksum is being offloaded
217 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
218 * csum_offset are set to refer to the outermost checksum being offloaded
219 * (two offloaded checksums are possible with UDP encapsulation).
220 */
221
222 /* Don't change this without changing skb_csum_unnecessary! */
223 #define CHECKSUM_NONE 0
224 #define CHECKSUM_UNNECESSARY 1
225 #define CHECKSUM_COMPLETE 2
226 #define CHECKSUM_PARTIAL 3
227
228 /* Maximum value in skb->csum_level */
229 #define SKB_MAX_CSUM_LEVEL 3
230
231 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
232 #define SKB_WITH_OVERHEAD(X) \
233 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
234 #define SKB_MAX_ORDER(X, ORDER) \
235 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
236 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
237 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
238
239 /* return minimum truesize of one skb containing X bytes of data */
240 #define SKB_TRUESIZE(X) ((X) + \
241 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
242 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
243
244 struct ahash_request;
245 struct net_device;
246 struct scatterlist;
247 struct pipe_inode_info;
248 struct iov_iter;
249 struct napi_struct;
250 struct bpf_prog;
251 union bpf_attr;
252 struct skb_ext;
253
254 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
255 struct nf_bridge_info {
256 enum {
257 BRNF_PROTO_UNCHANGED,
258 BRNF_PROTO_8021Q,
259 BRNF_PROTO_PPPOE
260 } orig_proto:8;
261 u8 pkt_otherhost:1;
262 u8 in_prerouting:1;
263 u8 bridged_dnat:1;
264 u8 sabotage_in_done:1;
265 __u16 frag_max_size;
266 struct net_device *physindev;
267
268 /* always valid & non-NULL from FORWARD on, for physdev match */
269 struct net_device *physoutdev;
270 union {
271 /* prerouting: detect dnat in orig/reply direction */
272 __be32 ipv4_daddr;
273 struct in6_addr ipv6_daddr;
274
275 /* after prerouting + nat detected: store original source
276 * mac since neigh resolution overwrites it, only used while
277 * skb is out in neigh layer.
278 */
279 char neigh_header[8];
280 };
281 };
282 #endif
283
284 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
285 /* Chain in tc_skb_ext will be used to share the tc chain with
286 * ovs recirc_id. It will be set to the current chain by tc
287 * and read by ovs to recirc_id.
288 */
289 struct tc_skb_ext {
290 __u32 chain;
291 __u16 mru;
292 __u16 zone;
293 u8 post_ct:1;
294 u8 post_ct_snat:1;
295 u8 post_ct_dnat:1;
296 };
297 #endif
298
299 struct sk_buff_head {
300 /* These two members must be first. */
301 struct sk_buff *next;
302 struct sk_buff *prev;
303
304 __u32 qlen;
305 spinlock_t lock;
306 };
307
308 struct sk_buff;
309
310 /* The reason of skb drop, which is used in kfree_skb_reason().
311 * en...maybe they should be splited by group?
312 *
313 * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
314 * used to translate the reason to string.
315 */
316 enum skb_drop_reason {
317 SKB_DROP_REASON_NOT_SPECIFIED, /* drop reason is not specified */
318 SKB_DROP_REASON_NO_SOCKET, /* socket not found */
319 SKB_DROP_REASON_PKT_TOO_SMALL, /* packet size is too small */
320 SKB_DROP_REASON_TCP_CSUM, /* TCP checksum error */
321 SKB_DROP_REASON_SOCKET_FILTER, /* dropped by socket filter */
322 SKB_DROP_REASON_UDP_CSUM, /* UDP checksum error */
323 SKB_DROP_REASON_NETFILTER_DROP, /* dropped by netfilter */
324 SKB_DROP_REASON_OTHERHOST, /* packet don't belong to current
325 * host (interface is in promisc
326 * mode)
327 */
328 SKB_DROP_REASON_IP_CSUM, /* IP checksum error */
329 SKB_DROP_REASON_IP_INHDR, /* there is something wrong with
330 * IP header (see
331 * IPSTATS_MIB_INHDRERRORS)
332 */
333 SKB_DROP_REASON_IP_RPFILTER, /* IP rpfilter validate failed.
334 * see the document for rp_filter
335 * in ip-sysctl.rst for more
336 * information
337 */
338 SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
339 * is multicast, but L3 is
340 * unicast.
341 */
342 SKB_DROP_REASON_MAX,
343 };
344
345 /* To allow 64K frame to be packed as single skb without frag_list we
346 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
347 * buffers which do not start on a page boundary.
348 *
349 * Since GRO uses frags we allocate at least 16 regardless of page
350 * size.
351 */
352 #if (65536/PAGE_SIZE + 1) < 16
353 #define MAX_SKB_FRAGS 16UL
354 #else
355 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
356 #endif
357 extern int sysctl_max_skb_frags;
358
359 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
360 * segment using its current segmentation instead.
361 */
362 #define GSO_BY_FRAGS 0xFFFF
363
364 typedef struct bio_vec skb_frag_t;
365
366 /**
367 * skb_frag_size() - Returns the size of a skb fragment
368 * @frag: skb fragment
369 */
skb_frag_size(const skb_frag_t * frag)370 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
371 {
372 return frag->bv_len;
373 }
374
375 /**
376 * skb_frag_size_set() - Sets the size of a skb fragment
377 * @frag: skb fragment
378 * @size: size of fragment
379 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)380 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
381 {
382 frag->bv_len = size;
383 }
384
385 /**
386 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
387 * @frag: skb fragment
388 * @delta: value to add
389 */
skb_frag_size_add(skb_frag_t * frag,int delta)390 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
391 {
392 frag->bv_len += delta;
393 }
394
395 /**
396 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
397 * @frag: skb fragment
398 * @delta: value to subtract
399 */
skb_frag_size_sub(skb_frag_t * frag,int delta)400 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
401 {
402 frag->bv_len -= delta;
403 }
404
405 /**
406 * skb_frag_must_loop - Test if %p is a high memory page
407 * @p: fragment's page
408 */
skb_frag_must_loop(struct page * p)409 static inline bool skb_frag_must_loop(struct page *p)
410 {
411 #if defined(CONFIG_HIGHMEM)
412 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
413 return true;
414 #endif
415 return false;
416 }
417
418 /**
419 * skb_frag_foreach_page - loop over pages in a fragment
420 *
421 * @f: skb frag to operate on
422 * @f_off: offset from start of f->bv_page
423 * @f_len: length from f_off to loop over
424 * @p: (temp var) current page
425 * @p_off: (temp var) offset from start of current page,
426 * non-zero only on first page.
427 * @p_len: (temp var) length in current page,
428 * < PAGE_SIZE only on first and last page.
429 * @copied: (temp var) length so far, excluding current p_len.
430 *
431 * A fragment can hold a compound page, in which case per-page
432 * operations, notably kmap_atomic, must be called for each
433 * regular page.
434 */
435 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
436 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
437 p_off = (f_off) & (PAGE_SIZE - 1), \
438 p_len = skb_frag_must_loop(p) ? \
439 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
440 copied = 0; \
441 copied < f_len; \
442 copied += p_len, p++, p_off = 0, \
443 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
444
445 #define HAVE_HW_TIME_STAMP
446
447 /**
448 * struct skb_shared_hwtstamps - hardware time stamps
449 * @hwtstamp: hardware time stamp transformed into duration
450 * since arbitrary point in time
451 *
452 * Software time stamps generated by ktime_get_real() are stored in
453 * skb->tstamp.
454 *
455 * hwtstamps can only be compared against other hwtstamps from
456 * the same device.
457 *
458 * This structure is attached to packets as part of the
459 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
460 */
461 struct skb_shared_hwtstamps {
462 ktime_t hwtstamp;
463 };
464
465 /* Definitions for tx_flags in struct skb_shared_info */
466 enum {
467 /* generate hardware time stamp */
468 SKBTX_HW_TSTAMP = 1 << 0,
469
470 /* generate software time stamp when queueing packet to NIC */
471 SKBTX_SW_TSTAMP = 1 << 1,
472
473 /* device driver is going to provide hardware time stamp */
474 SKBTX_IN_PROGRESS = 1 << 2,
475
476 /* generate wifi status information (where possible) */
477 SKBTX_WIFI_STATUS = 1 << 4,
478
479 /* generate software time stamp when entering packet scheduling */
480 SKBTX_SCHED_TSTAMP = 1 << 6,
481 };
482
483 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
484 SKBTX_SCHED_TSTAMP)
485 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
486
487 /* Definitions for flags in struct skb_shared_info */
488 enum {
489 /* use zcopy routines */
490 SKBFL_ZEROCOPY_ENABLE = BIT(0),
491
492 /* This indicates at least one fragment might be overwritten
493 * (as in vmsplice(), sendfile() ...)
494 * If we need to compute a TX checksum, we'll need to copy
495 * all frags to avoid possible bad checksum
496 */
497 SKBFL_SHARED_FRAG = BIT(1),
498 };
499
500 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
501
502 /*
503 * The callback notifies userspace to release buffers when skb DMA is done in
504 * lower device, the skb last reference should be 0 when calling this.
505 * The zerocopy_success argument is true if zero copy transmit occurred,
506 * false on data copy or out of memory error caused by data copy attempt.
507 * The ctx field is used to track device context.
508 * The desc field is used to track userspace buffer index.
509 */
510 struct ubuf_info {
511 void (*callback)(struct sk_buff *, struct ubuf_info *,
512 bool zerocopy_success);
513 union {
514 struct {
515 unsigned long desc;
516 void *ctx;
517 };
518 struct {
519 u32 id;
520 u16 len;
521 u16 zerocopy:1;
522 u32 bytelen;
523 };
524 };
525 refcount_t refcnt;
526 u8 flags;
527
528 struct mmpin {
529 struct user_struct *user;
530 unsigned int num_pg;
531 } mmp;
532 };
533
534 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
535
536 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
537 void mm_unaccount_pinned_pages(struct mmpin *mmp);
538
539 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
540 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
541 struct ubuf_info *uarg);
542
543 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
544
545 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
546 bool success);
547
548 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
549 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
550 struct msghdr *msg, int len,
551 struct ubuf_info *uarg);
552
553 /* This data is invariant across clones and lives at
554 * the end of the header data, ie. at skb->end.
555 */
556 struct skb_shared_info {
557 __u8 flags;
558 __u8 meta_len;
559 __u8 nr_frags;
560 __u8 tx_flags;
561 unsigned short gso_size;
562 /* Warning: this field is not always filled in (UFO)! */
563 unsigned short gso_segs;
564 struct sk_buff *frag_list;
565 struct skb_shared_hwtstamps hwtstamps;
566 unsigned int gso_type;
567 u32 tskey;
568
569 /*
570 * Warning : all fields before dataref are cleared in __alloc_skb()
571 */
572 atomic_t dataref;
573
574 /* Intermediate layers must ensure that destructor_arg
575 * remains valid until skb destructor */
576 void * destructor_arg;
577
578 ANDROID_OEM_DATA_ARRAY(1, 3);
579
580 /* must be last field, see pskb_expand_head() */
581 skb_frag_t frags[MAX_SKB_FRAGS];
582 };
583
584 /* We divide dataref into two halves. The higher 16 bits hold references
585 * to the payload part of skb->data. The lower 16 bits hold references to
586 * the entire skb->data. A clone of a headerless skb holds the length of
587 * the header in skb->hdr_len.
588 *
589 * All users must obey the rule that the skb->data reference count must be
590 * greater than or equal to the payload reference count.
591 *
592 * Holding a reference to the payload part means that the user does not
593 * care about modifications to the header part of skb->data.
594 */
595 #define SKB_DATAREF_SHIFT 16
596 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
597
598
599 enum {
600 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
601 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
602 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
603 };
604
605 enum {
606 SKB_GSO_TCPV4 = 1 << 0,
607
608 /* This indicates the skb is from an untrusted source. */
609 SKB_GSO_DODGY = 1 << 1,
610
611 /* This indicates the tcp segment has CWR set. */
612 SKB_GSO_TCP_ECN = 1 << 2,
613
614 SKB_GSO_TCP_FIXEDID = 1 << 3,
615
616 SKB_GSO_TCPV6 = 1 << 4,
617
618 SKB_GSO_FCOE = 1 << 5,
619
620 SKB_GSO_GRE = 1 << 6,
621
622 SKB_GSO_GRE_CSUM = 1 << 7,
623
624 SKB_GSO_IPXIP4 = 1 << 8,
625
626 SKB_GSO_IPXIP6 = 1 << 9,
627
628 SKB_GSO_UDP_TUNNEL = 1 << 10,
629
630 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
631
632 SKB_GSO_PARTIAL = 1 << 12,
633
634 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
635
636 SKB_GSO_SCTP = 1 << 14,
637
638 SKB_GSO_ESP = 1 << 15,
639
640 SKB_GSO_UDP = 1 << 16,
641
642 SKB_GSO_UDP_L4 = 1 << 17,
643
644 SKB_GSO_FRAGLIST = 1 << 18,
645 };
646
647 #if BITS_PER_LONG > 32
648 #define NET_SKBUFF_DATA_USES_OFFSET 1
649 #endif
650
651 #ifdef NET_SKBUFF_DATA_USES_OFFSET
652 typedef unsigned int sk_buff_data_t;
653 #else
654 typedef unsigned char *sk_buff_data_t;
655 #endif
656
657 /**
658 * struct sk_buff - socket buffer
659 * @next: Next buffer in list
660 * @prev: Previous buffer in list
661 * @tstamp: Time we arrived/left
662 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
663 * for retransmit timer
664 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
665 * @list: queue head
666 * @sk: Socket we are owned by
667 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
668 * fragmentation management
669 * @dev: Device we arrived on/are leaving by
670 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
671 * @cb: Control buffer. Free for use by every layer. Put private vars here
672 * @_skb_refdst: destination entry (with norefcount bit)
673 * @sp: the security path, used for xfrm
674 * @len: Length of actual data
675 * @data_len: Data length
676 * @mac_len: Length of link layer header
677 * @hdr_len: writable header length of cloned skb
678 * @csum: Checksum (must include start/offset pair)
679 * @csum_start: Offset from skb->head where checksumming should start
680 * @csum_offset: Offset from csum_start where checksum should be stored
681 * @priority: Packet queueing priority
682 * @ignore_df: allow local fragmentation
683 * @cloned: Head may be cloned (check refcnt to be sure)
684 * @ip_summed: Driver fed us an IP checksum
685 * @nohdr: Payload reference only, must not modify header
686 * @pkt_type: Packet class
687 * @fclone: skbuff clone status
688 * @ipvs_property: skbuff is owned by ipvs
689 * @inner_protocol_type: whether the inner protocol is
690 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
691 * @remcsum_offload: remote checksum offload is enabled
692 * @offload_fwd_mark: Packet was L2-forwarded in hardware
693 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
694 * @tc_skip_classify: do not classify packet. set by IFB device
695 * @tc_at_ingress: used within tc_classify to distinguish in/egress
696 * @redirected: packet was redirected by packet classifier
697 * @from_ingress: packet was redirected from the ingress path
698 * @peeked: this packet has been seen already, so stats have been
699 * done for it, don't do them again
700 * @nf_trace: netfilter packet trace flag
701 * @protocol: Packet protocol from driver
702 * @destructor: Destruct function
703 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
704 * @_sk_redir: socket redirection information for skmsg
705 * @_nfct: Associated connection, if any (with nfctinfo bits)
706 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
707 * @skb_iif: ifindex of device we arrived on
708 * @tc_index: Traffic control index
709 * @hash: the packet hash
710 * @queue_mapping: Queue mapping for multiqueue devices
711 * @head_frag: skb was allocated from page fragments,
712 * not allocated by kmalloc() or vmalloc().
713 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
714 * @pp_recycle: mark the packet for recycling instead of freeing (implies
715 * page_pool support on driver)
716 * @active_extensions: active extensions (skb_ext_id types)
717 * @ndisc_nodetype: router type (from link layer)
718 * @ooo_okay: allow the mapping of a socket to a queue to be changed
719 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
720 * ports.
721 * @sw_hash: indicates hash was computed in software stack
722 * @wifi_acked_valid: wifi_acked was set
723 * @wifi_acked: whether frame was acked on wifi or not
724 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
725 * @encapsulation: indicates the inner headers in the skbuff are valid
726 * @encap_hdr_csum: software checksum is needed
727 * @csum_valid: checksum is already valid
728 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
729 * @csum_complete_sw: checksum was completed by software
730 * @csum_level: indicates the number of consecutive checksums found in
731 * the packet minus one that have been verified as
732 * CHECKSUM_UNNECESSARY (max 3)
733 * @scm_io_uring: SKB holds io_uring registered files
734 * @dst_pending_confirm: need to confirm neighbour
735 * @decrypted: Decrypted SKB
736 * @slow_gro: state present at GRO time, slower prepare step required
737 * @napi_id: id of the NAPI struct this skb came from
738 * @sender_cpu: (aka @napi_id) source CPU in XPS
739 * @secmark: security marking
740 * @mark: Generic packet mark
741 * @reserved_tailroom: (aka @mark) number of bytes of free space available
742 * at the tail of an sk_buff
743 * @vlan_present: VLAN tag is present
744 * @vlan_proto: vlan encapsulation protocol
745 * @vlan_tci: vlan tag control information
746 * @inner_protocol: Protocol (encapsulation)
747 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
748 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
749 * @inner_transport_header: Inner transport layer header (encapsulation)
750 * @inner_network_header: Network layer header (encapsulation)
751 * @inner_mac_header: Link layer header (encapsulation)
752 * @transport_header: Transport layer header
753 * @network_header: Network layer header
754 * @mac_header: Link layer header
755 * @kcov_handle: KCOV remote handle for remote coverage collection
756 * @tail: Tail pointer
757 * @end: End pointer
758 * @head: Head of buffer
759 * @data: Data head pointer
760 * @truesize: Buffer size
761 * @users: User count - see {datagram,tcp}.c
762 * @extensions: allocated extensions, valid if active_extensions is nonzero
763 */
764
765 struct sk_buff {
766 union {
767 struct {
768 /* These two members must be first. */
769 struct sk_buff *next;
770 struct sk_buff *prev;
771
772 union {
773 struct net_device *dev;
774 /* Some protocols might use this space to store information,
775 * while device pointer would be NULL.
776 * UDP receive path is one user.
777 */
778 unsigned long dev_scratch;
779 };
780 };
781 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
782 struct list_head list;
783 };
784
785 union {
786 struct sock *sk;
787 int ip_defrag_offset;
788 };
789
790 union {
791 ktime_t tstamp;
792 u64 skb_mstamp_ns; /* earliest departure time */
793 };
794 /*
795 * This is the control buffer. It is free to use for every
796 * layer. Please put your private variables there. If you
797 * want to keep them across layers you have to do a skb_clone()
798 * first. This is owned by whoever has the skb queued ATM.
799 */
800 char cb[48] __aligned(8);
801
802 union {
803 struct {
804 unsigned long _skb_refdst;
805 void (*destructor)(struct sk_buff *skb);
806 };
807 struct list_head tcp_tsorted_anchor;
808 #ifdef CONFIG_NET_SOCK_MSG
809 unsigned long _sk_redir;
810 #endif
811 };
812
813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
814 unsigned long _nfct;
815 #endif
816 unsigned int len,
817 data_len;
818 __u16 mac_len,
819 hdr_len;
820
821 /* Following fields are _not_ copied in __copy_skb_header()
822 * Note that queue_mapping is here mostly to fill a hole.
823 */
824 __u16 queue_mapping;
825
826 /* if you move cloned around you also must adapt those constants */
827 #ifdef __BIG_ENDIAN_BITFIELD
828 #define CLONED_MASK (1 << 7)
829 #else
830 #define CLONED_MASK 1
831 #endif
832 #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
833
834 /* private: */
835 __u8 __cloned_offset[0];
836 /* public: */
837 __u8 cloned:1,
838 nohdr:1,
839 fclone:2,
840 peeked:1,
841 head_frag:1,
842 pfmemalloc:1,
843 pp_recycle:1; /* page_pool recycle indicator */
844 #ifdef CONFIG_SKB_EXTENSIONS
845 __u8 active_extensions;
846 #endif
847
848 /* fields enclosed in headers_start/headers_end are copied
849 * using a single memcpy() in __copy_skb_header()
850 */
851 /* private: */
852 __u32 headers_start[0];
853 /* public: */
854
855 /* if you move pkt_type around you also must adapt those constants */
856 #ifdef __BIG_ENDIAN_BITFIELD
857 #define PKT_TYPE_MAX (7 << 5)
858 #else
859 #define PKT_TYPE_MAX 7
860 #endif
861 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
862
863 /* private: */
864 __u8 __pkt_type_offset[0];
865 /* public: */
866 __u8 pkt_type:3;
867 __u8 ignore_df:1;
868 __u8 nf_trace:1;
869 __u8 ip_summed:2;
870 __u8 ooo_okay:1;
871
872 __u8 l4_hash:1;
873 __u8 sw_hash:1;
874 __u8 wifi_acked_valid:1;
875 __u8 wifi_acked:1;
876 __u8 no_fcs:1;
877 /* Indicates the inner headers are valid in the skbuff. */
878 __u8 encapsulation:1;
879 __u8 encap_hdr_csum:1;
880 __u8 csum_valid:1;
881
882 #ifdef __BIG_ENDIAN_BITFIELD
883 #define PKT_VLAN_PRESENT_BIT 7
884 #else
885 #define PKT_VLAN_PRESENT_BIT 0
886 #endif
887 #define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
888 /* private: */
889 __u8 __pkt_vlan_present_offset[0];
890 /* public: */
891 __u8 vlan_present:1;
892 __u8 csum_complete_sw:1;
893 __u8 csum_level:2;
894 __u8 csum_not_inet:1;
895 __u8 dst_pending_confirm:1;
896 #ifdef CONFIG_IPV6_NDISC_NODETYPE
897 __u8 ndisc_nodetype:2;
898 #endif
899
900 __u8 ipvs_property:1;
901 __u8 inner_protocol_type:1;
902 __u8 remcsum_offload:1;
903 #ifdef CONFIG_NET_SWITCHDEV
904 __u8 offload_fwd_mark:1;
905 __u8 offload_l3_fwd_mark:1;
906 #endif
907 #ifdef CONFIG_NET_CLS_ACT
908 __u8 tc_skip_classify:1;
909 __u8 tc_at_ingress:1;
910 #endif
911 __u8 redirected:1;
912 #ifdef CONFIG_NET_REDIRECT
913 __u8 from_ingress:1;
914 #endif
915 #ifdef CONFIG_TLS_DEVICE
916 __u8 decrypted:1;
917 #endif
918 __u8 slow_gro:1;
919 __u8 scm_io_uring:1;
920
921 #ifdef CONFIG_NET_SCHED
922 __u16 tc_index; /* traffic control index */
923 #endif
924
925 union {
926 __wsum csum;
927 struct {
928 __u16 csum_start;
929 __u16 csum_offset;
930 };
931 };
932 __u32 priority;
933 int skb_iif;
934 __u32 hash;
935 __be16 vlan_proto;
936 __u16 vlan_tci;
937 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
938 union {
939 unsigned int napi_id;
940 unsigned int sender_cpu;
941 };
942 #endif
943 #ifdef CONFIG_NETWORK_SECMARK
944 __u32 secmark;
945 #endif
946
947 union {
948 __u32 mark;
949 __u32 reserved_tailroom;
950 };
951
952 union {
953 __be16 inner_protocol;
954 __u8 inner_ipproto;
955 };
956
957 __u16 inner_transport_header;
958 __u16 inner_network_header;
959 __u16 inner_mac_header;
960
961 __be16 protocol;
962 __u16 transport_header;
963 __u16 network_header;
964 __u16 mac_header;
965
966 #ifdef CONFIG_KCOV
967 u64 kcov_handle;
968 #endif
969
970 /* private: */
971 __u32 headers_end[0];
972 /* public: */
973
974 ANDROID_KABI_RESERVE(1);
975 ANDROID_KABI_RESERVE(2);
976
977 /* These elements must be at the end, see alloc_skb() for details. */
978 sk_buff_data_t tail;
979 sk_buff_data_t end;
980 unsigned char *head,
981 *data;
982 unsigned int truesize;
983 refcount_t users;
984
985 #ifdef CONFIG_SKB_EXTENSIONS
986 /* only useable after checking ->active_extensions != 0 */
987 struct skb_ext *extensions;
988 #endif
989 };
990
991 #ifdef __KERNEL__
992 /*
993 * Handling routines are only of interest to the kernel
994 */
995
996 #define SKB_ALLOC_FCLONE 0x01
997 #define SKB_ALLOC_RX 0x02
998 #define SKB_ALLOC_NAPI 0x04
999
1000 /**
1001 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1002 * @skb: buffer
1003 */
skb_pfmemalloc(const struct sk_buff * skb)1004 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1005 {
1006 return unlikely(skb->pfmemalloc);
1007 }
1008
1009 /*
1010 * skb might have a dst pointer attached, refcounted or not.
1011 * _skb_refdst low order bit is set if refcount was _not_ taken
1012 */
1013 #define SKB_DST_NOREF 1UL
1014 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1015
1016 /**
1017 * skb_dst - returns skb dst_entry
1018 * @skb: buffer
1019 *
1020 * Returns skb dst_entry, regardless of reference taken or not.
1021 */
skb_dst(const struct sk_buff * skb)1022 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1023 {
1024 /* If refdst was not refcounted, check we still are in a
1025 * rcu_read_lock section
1026 */
1027 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1028 !rcu_read_lock_held() &&
1029 !rcu_read_lock_bh_held());
1030 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1031 }
1032
1033 /**
1034 * skb_dst_set - sets skb dst
1035 * @skb: buffer
1036 * @dst: dst entry
1037 *
1038 * Sets skb dst, assuming a reference was taken on dst and should
1039 * be released by skb_dst_drop()
1040 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1041 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1042 {
1043 skb->slow_gro |= !!dst;
1044 skb->_skb_refdst = (unsigned long)dst;
1045 }
1046
1047 /**
1048 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1049 * @skb: buffer
1050 * @dst: dst entry
1051 *
1052 * Sets skb dst, assuming a reference was not taken on dst.
1053 * If dst entry is cached, we do not take reference and dst_release
1054 * will be avoided by refdst_drop. If dst entry is not cached, we take
1055 * reference, so that last dst_release can destroy the dst immediately.
1056 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1057 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1058 {
1059 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1060 skb->slow_gro |= !!dst;
1061 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1062 }
1063
1064 /**
1065 * skb_dst_is_noref - Test if skb dst isn't refcounted
1066 * @skb: buffer
1067 */
skb_dst_is_noref(const struct sk_buff * skb)1068 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1069 {
1070 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1071 }
1072
1073 /**
1074 * skb_rtable - Returns the skb &rtable
1075 * @skb: buffer
1076 */
skb_rtable(const struct sk_buff * skb)1077 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1078 {
1079 return (struct rtable *)skb_dst(skb);
1080 }
1081
1082 /* For mangling skb->pkt_type from user space side from applications
1083 * such as nft, tc, etc, we only allow a conservative subset of
1084 * possible pkt_types to be set.
1085 */
skb_pkt_type_ok(u32 ptype)1086 static inline bool skb_pkt_type_ok(u32 ptype)
1087 {
1088 return ptype <= PACKET_OTHERHOST;
1089 }
1090
1091 /**
1092 * skb_napi_id - Returns the skb's NAPI id
1093 * @skb: buffer
1094 */
skb_napi_id(const struct sk_buff * skb)1095 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1096 {
1097 #ifdef CONFIG_NET_RX_BUSY_POLL
1098 return skb->napi_id;
1099 #else
1100 return 0;
1101 #endif
1102 }
1103
1104 /**
1105 * skb_unref - decrement the skb's reference count
1106 * @skb: buffer
1107 *
1108 * Returns true if we can free the skb.
1109 */
skb_unref(struct sk_buff * skb)1110 static inline bool skb_unref(struct sk_buff *skb)
1111 {
1112 if (unlikely(!skb))
1113 return false;
1114 if (likely(refcount_read(&skb->users) == 1))
1115 smp_rmb();
1116 else if (likely(!refcount_dec_and_test(&skb->users)))
1117 return false;
1118
1119 return true;
1120 }
1121
1122 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1123
1124 /**
1125 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1126 * @skb: buffer to free
1127 */
kfree_skb(struct sk_buff * skb)1128 static inline void kfree_skb(struct sk_buff *skb)
1129 {
1130 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1131 }
1132
1133 void skb_release_head_state(struct sk_buff *skb);
1134 void kfree_skb_list(struct sk_buff *segs);
1135 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1136 void skb_tx_error(struct sk_buff *skb);
1137
1138 #ifdef CONFIG_TRACEPOINTS
1139 void consume_skb(struct sk_buff *skb);
1140 #else
consume_skb(struct sk_buff * skb)1141 static inline void consume_skb(struct sk_buff *skb)
1142 {
1143 return kfree_skb(skb);
1144 }
1145 #endif
1146
1147 void __consume_stateless_skb(struct sk_buff *skb);
1148 void __kfree_skb(struct sk_buff *skb);
1149 extern struct kmem_cache *skbuff_head_cache;
1150
1151 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1152 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1153 bool *fragstolen, int *delta_truesize);
1154
1155 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1156 int node);
1157 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1158 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1159 struct sk_buff *build_skb_around(struct sk_buff *skb,
1160 void *data, unsigned int frag_size);
1161
1162 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1163
1164 /**
1165 * alloc_skb - allocate a network buffer
1166 * @size: size to allocate
1167 * @priority: allocation mask
1168 *
1169 * This function is a convenient wrapper around __alloc_skb().
1170 */
alloc_skb(unsigned int size,gfp_t priority)1171 static inline struct sk_buff *alloc_skb(unsigned int size,
1172 gfp_t priority)
1173 {
1174 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1175 }
1176
1177 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1178 unsigned long data_len,
1179 int max_page_order,
1180 int *errcode,
1181 gfp_t gfp_mask);
1182 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1183
1184 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1185 struct sk_buff_fclones {
1186 struct sk_buff skb1;
1187
1188 struct sk_buff skb2;
1189
1190 refcount_t fclone_ref;
1191 };
1192
1193 /**
1194 * skb_fclone_busy - check if fclone is busy
1195 * @sk: socket
1196 * @skb: buffer
1197 *
1198 * Returns true if skb is a fast clone, and its clone is not freed.
1199 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1200 * so we also check that this didnt happen.
1201 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1202 static inline bool skb_fclone_busy(const struct sock *sk,
1203 const struct sk_buff *skb)
1204 {
1205 const struct sk_buff_fclones *fclones;
1206
1207 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1208
1209 return skb->fclone == SKB_FCLONE_ORIG &&
1210 refcount_read(&fclones->fclone_ref) > 1 &&
1211 READ_ONCE(fclones->skb2.sk) == sk;
1212 }
1213
1214 /**
1215 * alloc_skb_fclone - allocate a network buffer from fclone cache
1216 * @size: size to allocate
1217 * @priority: allocation mask
1218 *
1219 * This function is a convenient wrapper around __alloc_skb().
1220 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1221 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1222 gfp_t priority)
1223 {
1224 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1225 }
1226
1227 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1228 void skb_headers_offset_update(struct sk_buff *skb, int off);
1229 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1230 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1231 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1232 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1233 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1234 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1235 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1236 gfp_t gfp_mask)
1237 {
1238 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1239 }
1240
1241 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1242 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1243 unsigned int headroom);
1244 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1245 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1246 int newtailroom, gfp_t priority);
1247 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1248 int offset, int len);
1249 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1250 int offset, int len);
1251 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1252 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1253
1254 /**
1255 * skb_pad - zero pad the tail of an skb
1256 * @skb: buffer to pad
1257 * @pad: space to pad
1258 *
1259 * Ensure that a buffer is followed by a padding area that is zero
1260 * filled. Used by network drivers which may DMA or transfer data
1261 * beyond the buffer end onto the wire.
1262 *
1263 * May return error in out of memory cases. The skb is freed on error.
1264 */
skb_pad(struct sk_buff * skb,int pad)1265 static inline int skb_pad(struct sk_buff *skb, int pad)
1266 {
1267 return __skb_pad(skb, pad, true);
1268 }
1269 #define dev_kfree_skb(a) consume_skb(a)
1270
1271 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1272 int offset, size_t size);
1273
1274 struct skb_seq_state {
1275 __u32 lower_offset;
1276 __u32 upper_offset;
1277 __u32 frag_idx;
1278 __u32 stepped_offset;
1279 struct sk_buff *root_skb;
1280 struct sk_buff *cur_skb;
1281 __u8 *frag_data;
1282 __u32 frag_off;
1283 };
1284
1285 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1286 unsigned int to, struct skb_seq_state *st);
1287 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1288 struct skb_seq_state *st);
1289 void skb_abort_seq_read(struct skb_seq_state *st);
1290
1291 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1292 unsigned int to, struct ts_config *config);
1293
1294 /*
1295 * Packet hash types specify the type of hash in skb_set_hash.
1296 *
1297 * Hash types refer to the protocol layer addresses which are used to
1298 * construct a packet's hash. The hashes are used to differentiate or identify
1299 * flows of the protocol layer for the hash type. Hash types are either
1300 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1301 *
1302 * Properties of hashes:
1303 *
1304 * 1) Two packets in different flows have different hash values
1305 * 2) Two packets in the same flow should have the same hash value
1306 *
1307 * A hash at a higher layer is considered to be more specific. A driver should
1308 * set the most specific hash possible.
1309 *
1310 * A driver cannot indicate a more specific hash than the layer at which a hash
1311 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1312 *
1313 * A driver may indicate a hash level which is less specific than the
1314 * actual layer the hash was computed on. For instance, a hash computed
1315 * at L4 may be considered an L3 hash. This should only be done if the
1316 * driver can't unambiguously determine that the HW computed the hash at
1317 * the higher layer. Note that the "should" in the second property above
1318 * permits this.
1319 */
1320 enum pkt_hash_types {
1321 PKT_HASH_TYPE_NONE, /* Undefined type */
1322 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1323 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1324 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1325 };
1326
skb_clear_hash(struct sk_buff * skb)1327 static inline void skb_clear_hash(struct sk_buff *skb)
1328 {
1329 skb->hash = 0;
1330 skb->sw_hash = 0;
1331 skb->l4_hash = 0;
1332 }
1333
skb_clear_hash_if_not_l4(struct sk_buff * skb)1334 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1335 {
1336 if (!skb->l4_hash)
1337 skb_clear_hash(skb);
1338 }
1339
1340 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1341 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1342 {
1343 skb->l4_hash = is_l4;
1344 skb->sw_hash = is_sw;
1345 skb->hash = hash;
1346 }
1347
1348 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1349 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1350 {
1351 /* Used by drivers to set hash from HW */
1352 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1353 }
1354
1355 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1356 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1357 {
1358 __skb_set_hash(skb, hash, true, is_l4);
1359 }
1360
1361 void __skb_get_hash(struct sk_buff *skb);
1362 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1363 u32 skb_get_poff(const struct sk_buff *skb);
1364 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1365 const struct flow_keys_basic *keys, int hlen);
1366 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1367 const void *data, int hlen_proto);
1368
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1369 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1370 int thoff, u8 ip_proto)
1371 {
1372 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1373 }
1374
1375 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1376 const struct flow_dissector_key *key,
1377 unsigned int key_count);
1378
1379 struct bpf_flow_dissector;
1380 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1381 __be16 proto, int nhoff, int hlen, unsigned int flags);
1382
1383 bool __skb_flow_dissect(const struct net *net,
1384 const struct sk_buff *skb,
1385 struct flow_dissector *flow_dissector,
1386 void *target_container, const void *data,
1387 __be16 proto, int nhoff, int hlen, unsigned int flags);
1388
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1389 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1390 struct flow_dissector *flow_dissector,
1391 void *target_container, unsigned int flags)
1392 {
1393 return __skb_flow_dissect(NULL, skb, flow_dissector,
1394 target_container, NULL, 0, 0, 0, flags);
1395 }
1396
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1397 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1398 struct flow_keys *flow,
1399 unsigned int flags)
1400 {
1401 memset(flow, 0, sizeof(*flow));
1402 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1403 flow, NULL, 0, 0, 0, flags);
1404 }
1405
1406 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1407 skb_flow_dissect_flow_keys_basic(const struct net *net,
1408 const struct sk_buff *skb,
1409 struct flow_keys_basic *flow,
1410 const void *data, __be16 proto,
1411 int nhoff, int hlen, unsigned int flags)
1412 {
1413 memset(flow, 0, sizeof(*flow));
1414 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1415 data, proto, nhoff, hlen, flags);
1416 }
1417
1418 void skb_flow_dissect_meta(const struct sk_buff *skb,
1419 struct flow_dissector *flow_dissector,
1420 void *target_container);
1421
1422 /* Gets a skb connection tracking info, ctinfo map should be a
1423 * map of mapsize to translate enum ip_conntrack_info states
1424 * to user states.
1425 */
1426 void
1427 skb_flow_dissect_ct(const struct sk_buff *skb,
1428 struct flow_dissector *flow_dissector,
1429 void *target_container,
1430 u16 *ctinfo_map, size_t mapsize,
1431 bool post_ct, u16 zone);
1432 void
1433 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1434 struct flow_dissector *flow_dissector,
1435 void *target_container);
1436
1437 void skb_flow_dissect_hash(const struct sk_buff *skb,
1438 struct flow_dissector *flow_dissector,
1439 void *target_container);
1440
skb_get_hash(struct sk_buff * skb)1441 static inline __u32 skb_get_hash(struct sk_buff *skb)
1442 {
1443 if (!skb->l4_hash && !skb->sw_hash)
1444 __skb_get_hash(skb);
1445
1446 return skb->hash;
1447 }
1448
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1449 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1450 {
1451 if (!skb->l4_hash && !skb->sw_hash) {
1452 struct flow_keys keys;
1453 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1454
1455 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1456 }
1457
1458 return skb->hash;
1459 }
1460
1461 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1462 const siphash_key_t *perturb);
1463
skb_get_hash_raw(const struct sk_buff * skb)1464 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1465 {
1466 return skb->hash;
1467 }
1468
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1469 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1470 {
1471 to->hash = from->hash;
1472 to->sw_hash = from->sw_hash;
1473 to->l4_hash = from->l4_hash;
1474 };
1475
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1476 static inline void skb_copy_decrypted(struct sk_buff *to,
1477 const struct sk_buff *from)
1478 {
1479 #ifdef CONFIG_TLS_DEVICE
1480 to->decrypted = from->decrypted;
1481 #endif
1482 }
1483
1484 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1485 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1486 {
1487 return skb->head + skb->end;
1488 }
1489
skb_end_offset(const struct sk_buff * skb)1490 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1491 {
1492 return skb->end;
1493 }
1494
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1495 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1496 {
1497 skb->end = offset;
1498 }
1499 #else
skb_end_pointer(const struct sk_buff * skb)1500 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1501 {
1502 return skb->end;
1503 }
1504
skb_end_offset(const struct sk_buff * skb)1505 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1506 {
1507 return skb->end - skb->head;
1508 }
1509
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1510 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1511 {
1512 skb->end = skb->head + offset;
1513 }
1514 #endif
1515
1516 /* Internal */
1517 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1518
skb_hwtstamps(struct sk_buff * skb)1519 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1520 {
1521 return &skb_shinfo(skb)->hwtstamps;
1522 }
1523
skb_zcopy(struct sk_buff * skb)1524 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1525 {
1526 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1527
1528 return is_zcopy ? skb_uarg(skb) : NULL;
1529 }
1530
net_zcopy_get(struct ubuf_info * uarg)1531 static inline void net_zcopy_get(struct ubuf_info *uarg)
1532 {
1533 refcount_inc(&uarg->refcnt);
1534 }
1535
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1536 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1537 {
1538 skb_shinfo(skb)->destructor_arg = uarg;
1539 skb_shinfo(skb)->flags |= uarg->flags;
1540 }
1541
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1542 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1543 bool *have_ref)
1544 {
1545 if (skb && uarg && !skb_zcopy(skb)) {
1546 if (unlikely(have_ref && *have_ref))
1547 *have_ref = false;
1548 else
1549 net_zcopy_get(uarg);
1550 skb_zcopy_init(skb, uarg);
1551 }
1552 }
1553
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1554 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1555 {
1556 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1557 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1558 }
1559
skb_zcopy_is_nouarg(struct sk_buff * skb)1560 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1561 {
1562 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1563 }
1564
skb_zcopy_get_nouarg(struct sk_buff * skb)1565 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1566 {
1567 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1568 }
1569
net_zcopy_put(struct ubuf_info * uarg)1570 static inline void net_zcopy_put(struct ubuf_info *uarg)
1571 {
1572 if (uarg)
1573 uarg->callback(NULL, uarg, true);
1574 }
1575
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1576 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1577 {
1578 if (uarg) {
1579 if (uarg->callback == msg_zerocopy_callback)
1580 msg_zerocopy_put_abort(uarg, have_uref);
1581 else if (have_uref)
1582 net_zcopy_put(uarg);
1583 }
1584 }
1585
1586 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1587 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1588 {
1589 struct ubuf_info *uarg = skb_zcopy(skb);
1590
1591 if (uarg) {
1592 if (!skb_zcopy_is_nouarg(skb))
1593 uarg->callback(skb, uarg, zerocopy_success);
1594
1595 skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1596 }
1597 }
1598
skb_mark_not_on_list(struct sk_buff * skb)1599 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1600 {
1601 skb->next = NULL;
1602 }
1603
1604 /* Iterate through singly-linked GSO fragments of an skb. */
1605 #define skb_list_walk_safe(first, skb, next_skb) \
1606 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1607 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1608
skb_list_del_init(struct sk_buff * skb)1609 static inline void skb_list_del_init(struct sk_buff *skb)
1610 {
1611 __list_del_entry(&skb->list);
1612 skb_mark_not_on_list(skb);
1613 }
1614
1615 /**
1616 * skb_queue_empty - check if a queue is empty
1617 * @list: queue head
1618 *
1619 * Returns true if the queue is empty, false otherwise.
1620 */
skb_queue_empty(const struct sk_buff_head * list)1621 static inline int skb_queue_empty(const struct sk_buff_head *list)
1622 {
1623 return list->next == (const struct sk_buff *) list;
1624 }
1625
1626 /**
1627 * skb_queue_empty_lockless - check if a queue is empty
1628 * @list: queue head
1629 *
1630 * Returns true if the queue is empty, false otherwise.
1631 * This variant can be used in lockless contexts.
1632 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1633 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1634 {
1635 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1636 }
1637
1638
1639 /**
1640 * skb_queue_is_last - check if skb is the last entry in the queue
1641 * @list: queue head
1642 * @skb: buffer
1643 *
1644 * Returns true if @skb is the last buffer on the list.
1645 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1646 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1647 const struct sk_buff *skb)
1648 {
1649 return skb->next == (const struct sk_buff *) list;
1650 }
1651
1652 /**
1653 * skb_queue_is_first - check if skb is the first entry in the queue
1654 * @list: queue head
1655 * @skb: buffer
1656 *
1657 * Returns true if @skb is the first buffer on the list.
1658 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1659 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1660 const struct sk_buff *skb)
1661 {
1662 return skb->prev == (const struct sk_buff *) list;
1663 }
1664
1665 /**
1666 * skb_queue_next - return the next packet in the queue
1667 * @list: queue head
1668 * @skb: current buffer
1669 *
1670 * Return the next packet in @list after @skb. It is only valid to
1671 * call this if skb_queue_is_last() evaluates to false.
1672 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1673 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1674 const struct sk_buff *skb)
1675 {
1676 /* This BUG_ON may seem severe, but if we just return then we
1677 * are going to dereference garbage.
1678 */
1679 BUG_ON(skb_queue_is_last(list, skb));
1680 return skb->next;
1681 }
1682
1683 /**
1684 * skb_queue_prev - return the prev packet in the queue
1685 * @list: queue head
1686 * @skb: current buffer
1687 *
1688 * Return the prev packet in @list before @skb. It is only valid to
1689 * call this if skb_queue_is_first() evaluates to false.
1690 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1691 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1692 const struct sk_buff *skb)
1693 {
1694 /* This BUG_ON may seem severe, but if we just return then we
1695 * are going to dereference garbage.
1696 */
1697 BUG_ON(skb_queue_is_first(list, skb));
1698 return skb->prev;
1699 }
1700
1701 /**
1702 * skb_get - reference buffer
1703 * @skb: buffer to reference
1704 *
1705 * Makes another reference to a socket buffer and returns a pointer
1706 * to the buffer.
1707 */
skb_get(struct sk_buff * skb)1708 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1709 {
1710 refcount_inc(&skb->users);
1711 return skb;
1712 }
1713
1714 /*
1715 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1716 */
1717
1718 /**
1719 * skb_cloned - is the buffer a clone
1720 * @skb: buffer to check
1721 *
1722 * Returns true if the buffer was generated with skb_clone() and is
1723 * one of multiple shared copies of the buffer. Cloned buffers are
1724 * shared data so must not be written to under normal circumstances.
1725 */
skb_cloned(const struct sk_buff * skb)1726 static inline int skb_cloned(const struct sk_buff *skb)
1727 {
1728 return skb->cloned &&
1729 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1730 }
1731
skb_unclone(struct sk_buff * skb,gfp_t pri)1732 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1733 {
1734 might_sleep_if(gfpflags_allow_blocking(pri));
1735
1736 if (skb_cloned(skb))
1737 return pskb_expand_head(skb, 0, 0, pri);
1738
1739 return 0;
1740 }
1741
1742 /* This variant of skb_unclone() makes sure skb->truesize
1743 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1744 *
1745 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1746 * when various debugging features are in place.
1747 */
1748 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1749 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1750 {
1751 might_sleep_if(gfpflags_allow_blocking(pri));
1752
1753 if (skb_cloned(skb))
1754 return __skb_unclone_keeptruesize(skb, pri);
1755 return 0;
1756 }
1757
1758 /**
1759 * skb_header_cloned - is the header a clone
1760 * @skb: buffer to check
1761 *
1762 * Returns true if modifying the header part of the buffer requires
1763 * the data to be copied.
1764 */
skb_header_cloned(const struct sk_buff * skb)1765 static inline int skb_header_cloned(const struct sk_buff *skb)
1766 {
1767 int dataref;
1768
1769 if (!skb->cloned)
1770 return 0;
1771
1772 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1773 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1774 return dataref != 1;
1775 }
1776
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1777 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1778 {
1779 might_sleep_if(gfpflags_allow_blocking(pri));
1780
1781 if (skb_header_cloned(skb))
1782 return pskb_expand_head(skb, 0, 0, pri);
1783
1784 return 0;
1785 }
1786
1787 /**
1788 * __skb_header_release - release reference to header
1789 * @skb: buffer to operate on
1790 */
__skb_header_release(struct sk_buff * skb)1791 static inline void __skb_header_release(struct sk_buff *skb)
1792 {
1793 skb->nohdr = 1;
1794 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1795 }
1796
1797
1798 /**
1799 * skb_shared - is the buffer shared
1800 * @skb: buffer to check
1801 *
1802 * Returns true if more than one person has a reference to this
1803 * buffer.
1804 */
skb_shared(const struct sk_buff * skb)1805 static inline int skb_shared(const struct sk_buff *skb)
1806 {
1807 return refcount_read(&skb->users) != 1;
1808 }
1809
1810 /**
1811 * skb_share_check - check if buffer is shared and if so clone it
1812 * @skb: buffer to check
1813 * @pri: priority for memory allocation
1814 *
1815 * If the buffer is shared the buffer is cloned and the old copy
1816 * drops a reference. A new clone with a single reference is returned.
1817 * If the buffer is not shared the original buffer is returned. When
1818 * being called from interrupt status or with spinlocks held pri must
1819 * be GFP_ATOMIC.
1820 *
1821 * NULL is returned on a memory allocation failure.
1822 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1823 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1824 {
1825 might_sleep_if(gfpflags_allow_blocking(pri));
1826 if (skb_shared(skb)) {
1827 struct sk_buff *nskb = skb_clone(skb, pri);
1828
1829 if (likely(nskb))
1830 consume_skb(skb);
1831 else
1832 kfree_skb(skb);
1833 skb = nskb;
1834 }
1835 return skb;
1836 }
1837
1838 /*
1839 * Copy shared buffers into a new sk_buff. We effectively do COW on
1840 * packets to handle cases where we have a local reader and forward
1841 * and a couple of other messy ones. The normal one is tcpdumping
1842 * a packet thats being forwarded.
1843 */
1844
1845 /**
1846 * skb_unshare - make a copy of a shared buffer
1847 * @skb: buffer to check
1848 * @pri: priority for memory allocation
1849 *
1850 * If the socket buffer is a clone then this function creates a new
1851 * copy of the data, drops a reference count on the old copy and returns
1852 * the new copy with the reference count at 1. If the buffer is not a clone
1853 * the original buffer is returned. When called with a spinlock held or
1854 * from interrupt state @pri must be %GFP_ATOMIC
1855 *
1856 * %NULL is returned on a memory allocation failure.
1857 */
skb_unshare(struct sk_buff * skb,gfp_t pri)1858 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1859 gfp_t pri)
1860 {
1861 might_sleep_if(gfpflags_allow_blocking(pri));
1862 if (skb_cloned(skb)) {
1863 struct sk_buff *nskb = skb_copy(skb, pri);
1864
1865 /* Free our shared copy */
1866 if (likely(nskb))
1867 consume_skb(skb);
1868 else
1869 kfree_skb(skb);
1870 skb = nskb;
1871 }
1872 return skb;
1873 }
1874
1875 /**
1876 * skb_peek - peek at the head of an &sk_buff_head
1877 * @list_: list to peek at
1878 *
1879 * Peek an &sk_buff. Unlike most other operations you _MUST_
1880 * be careful with this one. A peek leaves the buffer on the
1881 * list and someone else may run off with it. You must hold
1882 * the appropriate locks or have a private queue to do this.
1883 *
1884 * Returns %NULL for an empty list or a pointer to the head element.
1885 * The reference count is not incremented and the reference is therefore
1886 * volatile. Use with caution.
1887 */
skb_peek(const struct sk_buff_head * list_)1888 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1889 {
1890 struct sk_buff *skb = list_->next;
1891
1892 if (skb == (struct sk_buff *)list_)
1893 skb = NULL;
1894 return skb;
1895 }
1896
1897 /**
1898 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1899 * @list_: list to peek at
1900 *
1901 * Like skb_peek(), but the caller knows that the list is not empty.
1902 */
__skb_peek(const struct sk_buff_head * list_)1903 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1904 {
1905 return list_->next;
1906 }
1907
1908 /**
1909 * skb_peek_next - peek skb following the given one from a queue
1910 * @skb: skb to start from
1911 * @list_: list to peek at
1912 *
1913 * Returns %NULL when the end of the list is met or a pointer to the
1914 * next element. The reference count is not incremented and the
1915 * reference is therefore volatile. Use with caution.
1916 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1917 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1918 const struct sk_buff_head *list_)
1919 {
1920 struct sk_buff *next = skb->next;
1921
1922 if (next == (struct sk_buff *)list_)
1923 next = NULL;
1924 return next;
1925 }
1926
1927 /**
1928 * skb_peek_tail - peek at the tail of an &sk_buff_head
1929 * @list_: list to peek at
1930 *
1931 * Peek an &sk_buff. Unlike most other operations you _MUST_
1932 * be careful with this one. A peek leaves the buffer on the
1933 * list and someone else may run off with it. You must hold
1934 * the appropriate locks or have a private queue to do this.
1935 *
1936 * Returns %NULL for an empty list or a pointer to the tail element.
1937 * The reference count is not incremented and the reference is therefore
1938 * volatile. Use with caution.
1939 */
skb_peek_tail(const struct sk_buff_head * list_)1940 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1941 {
1942 struct sk_buff *skb = READ_ONCE(list_->prev);
1943
1944 if (skb == (struct sk_buff *)list_)
1945 skb = NULL;
1946 return skb;
1947
1948 }
1949
1950 /**
1951 * skb_queue_len - get queue length
1952 * @list_: list to measure
1953 *
1954 * Return the length of an &sk_buff queue.
1955 */
skb_queue_len(const struct sk_buff_head * list_)1956 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1957 {
1958 return list_->qlen;
1959 }
1960
1961 /**
1962 * skb_queue_len_lockless - get queue length
1963 * @list_: list to measure
1964 *
1965 * Return the length of an &sk_buff queue.
1966 * This variant can be used in lockless contexts.
1967 */
skb_queue_len_lockless(const struct sk_buff_head * list_)1968 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1969 {
1970 return READ_ONCE(list_->qlen);
1971 }
1972
1973 /**
1974 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1975 * @list: queue to initialize
1976 *
1977 * This initializes only the list and queue length aspects of
1978 * an sk_buff_head object. This allows to initialize the list
1979 * aspects of an sk_buff_head without reinitializing things like
1980 * the spinlock. It can also be used for on-stack sk_buff_head
1981 * objects where the spinlock is known to not be used.
1982 */
__skb_queue_head_init(struct sk_buff_head * list)1983 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1984 {
1985 list->prev = list->next = (struct sk_buff *)list;
1986 list->qlen = 0;
1987 }
1988
1989 /*
1990 * This function creates a split out lock class for each invocation;
1991 * this is needed for now since a whole lot of users of the skb-queue
1992 * infrastructure in drivers have different locking usage (in hardirq)
1993 * than the networking core (in softirq only). In the long run either the
1994 * network layer or drivers should need annotation to consolidate the
1995 * main types of usage into 3 classes.
1996 */
skb_queue_head_init(struct sk_buff_head * list)1997 static inline void skb_queue_head_init(struct sk_buff_head *list)
1998 {
1999 spin_lock_init(&list->lock);
2000 __skb_queue_head_init(list);
2001 }
2002
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2003 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2004 struct lock_class_key *class)
2005 {
2006 skb_queue_head_init(list);
2007 lockdep_set_class(&list->lock, class);
2008 }
2009
2010 /*
2011 * Insert an sk_buff on a list.
2012 *
2013 * The "__skb_xxxx()" functions are the non-atomic ones that
2014 * can only be called with interrupts disabled.
2015 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2016 static inline void __skb_insert(struct sk_buff *newsk,
2017 struct sk_buff *prev, struct sk_buff *next,
2018 struct sk_buff_head *list)
2019 {
2020 /* See skb_queue_empty_lockless() and skb_peek_tail()
2021 * for the opposite READ_ONCE()
2022 */
2023 WRITE_ONCE(newsk->next, next);
2024 WRITE_ONCE(newsk->prev, prev);
2025 WRITE_ONCE(next->prev, newsk);
2026 WRITE_ONCE(prev->next, newsk);
2027 WRITE_ONCE(list->qlen, list->qlen + 1);
2028 }
2029
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2030 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2031 struct sk_buff *prev,
2032 struct sk_buff *next)
2033 {
2034 struct sk_buff *first = list->next;
2035 struct sk_buff *last = list->prev;
2036
2037 WRITE_ONCE(first->prev, prev);
2038 WRITE_ONCE(prev->next, first);
2039
2040 WRITE_ONCE(last->next, next);
2041 WRITE_ONCE(next->prev, last);
2042 }
2043
2044 /**
2045 * skb_queue_splice - join two skb lists, this is designed for stacks
2046 * @list: the new list to add
2047 * @head: the place to add it in the first list
2048 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2049 static inline void skb_queue_splice(const struct sk_buff_head *list,
2050 struct sk_buff_head *head)
2051 {
2052 if (!skb_queue_empty(list)) {
2053 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2054 head->qlen += list->qlen;
2055 }
2056 }
2057
2058 /**
2059 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2060 * @list: the new list to add
2061 * @head: the place to add it in the first list
2062 *
2063 * The list at @list is reinitialised
2064 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2065 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2066 struct sk_buff_head *head)
2067 {
2068 if (!skb_queue_empty(list)) {
2069 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2070 head->qlen += list->qlen;
2071 __skb_queue_head_init(list);
2072 }
2073 }
2074
2075 /**
2076 * skb_queue_splice_tail - join two skb lists, each list being a queue
2077 * @list: the new list to add
2078 * @head: the place to add it in the first list
2079 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2080 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2081 struct sk_buff_head *head)
2082 {
2083 if (!skb_queue_empty(list)) {
2084 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2085 head->qlen += list->qlen;
2086 }
2087 }
2088
2089 /**
2090 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2091 * @list: the new list to add
2092 * @head: the place to add it in the first list
2093 *
2094 * Each of the lists is a queue.
2095 * The list at @list is reinitialised
2096 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2097 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2098 struct sk_buff_head *head)
2099 {
2100 if (!skb_queue_empty(list)) {
2101 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2102 head->qlen += list->qlen;
2103 __skb_queue_head_init(list);
2104 }
2105 }
2106
2107 /**
2108 * __skb_queue_after - queue a buffer at the list head
2109 * @list: list to use
2110 * @prev: place after this buffer
2111 * @newsk: buffer to queue
2112 *
2113 * Queue a buffer int the middle of a list. This function takes no locks
2114 * and you must therefore hold required locks before calling it.
2115 *
2116 * A buffer cannot be placed on two lists at the same time.
2117 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2118 static inline void __skb_queue_after(struct sk_buff_head *list,
2119 struct sk_buff *prev,
2120 struct sk_buff *newsk)
2121 {
2122 __skb_insert(newsk, prev, prev->next, list);
2123 }
2124
2125 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2126 struct sk_buff_head *list);
2127
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2128 static inline void __skb_queue_before(struct sk_buff_head *list,
2129 struct sk_buff *next,
2130 struct sk_buff *newsk)
2131 {
2132 __skb_insert(newsk, next->prev, next, list);
2133 }
2134
2135 /**
2136 * __skb_queue_head - queue a buffer at the list head
2137 * @list: list to use
2138 * @newsk: buffer to queue
2139 *
2140 * Queue a buffer at the start of a list. This function takes no locks
2141 * and you must therefore hold required locks before calling it.
2142 *
2143 * A buffer cannot be placed on two lists at the same time.
2144 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2145 static inline void __skb_queue_head(struct sk_buff_head *list,
2146 struct sk_buff *newsk)
2147 {
2148 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2149 }
2150 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2151
2152 /**
2153 * __skb_queue_tail - queue a buffer at the list tail
2154 * @list: list to use
2155 * @newsk: buffer to queue
2156 *
2157 * Queue a buffer at the end of a list. This function takes no locks
2158 * and you must therefore hold required locks before calling it.
2159 *
2160 * A buffer cannot be placed on two lists at the same time.
2161 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2162 static inline void __skb_queue_tail(struct sk_buff_head *list,
2163 struct sk_buff *newsk)
2164 {
2165 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2166 }
2167 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2168
2169 /*
2170 * remove sk_buff from list. _Must_ be called atomically, and with
2171 * the list known..
2172 */
2173 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2174 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2175 {
2176 struct sk_buff *next, *prev;
2177
2178 WRITE_ONCE(list->qlen, list->qlen - 1);
2179 next = skb->next;
2180 prev = skb->prev;
2181 skb->next = skb->prev = NULL;
2182 WRITE_ONCE(next->prev, prev);
2183 WRITE_ONCE(prev->next, next);
2184 }
2185
2186 /**
2187 * __skb_dequeue - remove from the head of the queue
2188 * @list: list to dequeue from
2189 *
2190 * Remove the head of the list. This function does not take any locks
2191 * so must be used with appropriate locks held only. The head item is
2192 * returned or %NULL if the list is empty.
2193 */
__skb_dequeue(struct sk_buff_head * list)2194 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2195 {
2196 struct sk_buff *skb = skb_peek(list);
2197 if (skb)
2198 __skb_unlink(skb, list);
2199 return skb;
2200 }
2201 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2202
2203 /**
2204 * __skb_dequeue_tail - remove from the tail of the queue
2205 * @list: list to dequeue from
2206 *
2207 * Remove the tail of the list. This function does not take any locks
2208 * so must be used with appropriate locks held only. The tail item is
2209 * returned or %NULL if the list is empty.
2210 */
__skb_dequeue_tail(struct sk_buff_head * list)2211 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2212 {
2213 struct sk_buff *skb = skb_peek_tail(list);
2214 if (skb)
2215 __skb_unlink(skb, list);
2216 return skb;
2217 }
2218 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2219
2220
skb_is_nonlinear(const struct sk_buff * skb)2221 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2222 {
2223 return skb->data_len;
2224 }
2225
skb_headlen(const struct sk_buff * skb)2226 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2227 {
2228 return skb->len - skb->data_len;
2229 }
2230
__skb_pagelen(const struct sk_buff * skb)2231 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2232 {
2233 unsigned int i, len = 0;
2234
2235 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2236 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2237 return len;
2238 }
2239
skb_pagelen(const struct sk_buff * skb)2240 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2241 {
2242 return skb_headlen(skb) + __skb_pagelen(skb);
2243 }
2244
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2245 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2246 int i, struct page *page,
2247 int off, int size)
2248 {
2249 skb_frag_t *frag = &shinfo->frags[i];
2250
2251 /*
2252 * Propagate page pfmemalloc to the skb if we can. The problem is
2253 * that not all callers have unique ownership of the page but rely
2254 * on page_is_pfmemalloc doing the right thing(tm).
2255 */
2256 frag->bv_page = page;
2257 frag->bv_offset = off;
2258 skb_frag_size_set(frag, size);
2259 }
2260
2261 /**
2262 * __skb_fill_page_desc - initialise a paged fragment in an skb
2263 * @skb: buffer containing fragment to be initialised
2264 * @i: paged fragment index to initialise
2265 * @page: the page to use for this fragment
2266 * @off: the offset to the data with @page
2267 * @size: the length of the data
2268 *
2269 * Initialises the @i'th fragment of @skb to point to &size bytes at
2270 * offset @off within @page.
2271 *
2272 * Does not take any additional reference on the fragment.
2273 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2274 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2275 struct page *page, int off, int size)
2276 {
2277 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2278 page = compound_head(page);
2279 if (page_is_pfmemalloc(page))
2280 skb->pfmemalloc = true;
2281 }
2282
2283 /**
2284 * skb_fill_page_desc - initialise a paged fragment in an skb
2285 * @skb: buffer containing fragment to be initialised
2286 * @i: paged fragment index to initialise
2287 * @page: the page to use for this fragment
2288 * @off: the offset to the data with @page
2289 * @size: the length of the data
2290 *
2291 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2292 * @skb to point to @size bytes at offset @off within @page. In
2293 * addition updates @skb such that @i is the last fragment.
2294 *
2295 * Does not take any additional reference on the fragment.
2296 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2297 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2298 struct page *page, int off, int size)
2299 {
2300 __skb_fill_page_desc(skb, i, page, off, size);
2301 skb_shinfo(skb)->nr_frags = i + 1;
2302 }
2303
2304 /**
2305 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2306 * @skb: buffer containing fragment to be initialised
2307 * @i: paged fragment index to initialise
2308 * @page: the page to use for this fragment
2309 * @off: the offset to the data with @page
2310 * @size: the length of the data
2311 *
2312 * Variant of skb_fill_page_desc() which does not deal with
2313 * pfmemalloc, if page is not owned by us.
2314 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2315 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2316 struct page *page, int off,
2317 int size)
2318 {
2319 struct skb_shared_info *shinfo = skb_shinfo(skb);
2320
2321 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2322 shinfo->nr_frags = i + 1;
2323 }
2324
2325 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2326 int size, unsigned int truesize);
2327
2328 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2329 unsigned int truesize);
2330
2331 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2332
2333 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2334 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2335 {
2336 return skb->head + skb->tail;
2337 }
2338
skb_reset_tail_pointer(struct sk_buff * skb)2339 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2340 {
2341 skb->tail = skb->data - skb->head;
2342 }
2343
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2344 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2345 {
2346 skb_reset_tail_pointer(skb);
2347 skb->tail += offset;
2348 }
2349
2350 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2351 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2352 {
2353 return skb->tail;
2354 }
2355
skb_reset_tail_pointer(struct sk_buff * skb)2356 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2357 {
2358 skb->tail = skb->data;
2359 }
2360
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2361 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2362 {
2363 skb->tail = skb->data + offset;
2364 }
2365
2366 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2367
skb_assert_len(struct sk_buff * skb)2368 static inline void skb_assert_len(struct sk_buff *skb)
2369 {
2370 #ifdef CONFIG_DEBUG_NET
2371 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2372 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2373 #endif /* CONFIG_DEBUG_NET */
2374 }
2375
2376 /*
2377 * Add data to an sk_buff
2378 */
2379 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2380 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2381 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2382 {
2383 void *tmp = skb_tail_pointer(skb);
2384 SKB_LINEAR_ASSERT(skb);
2385 skb->tail += len;
2386 skb->len += len;
2387 return tmp;
2388 }
2389
__skb_put_zero(struct sk_buff * skb,unsigned int len)2390 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2391 {
2392 void *tmp = __skb_put(skb, len);
2393
2394 memset(tmp, 0, len);
2395 return tmp;
2396 }
2397
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2398 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2399 unsigned int len)
2400 {
2401 void *tmp = __skb_put(skb, len);
2402
2403 memcpy(tmp, data, len);
2404 return tmp;
2405 }
2406
__skb_put_u8(struct sk_buff * skb,u8 val)2407 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2408 {
2409 *(u8 *)__skb_put(skb, 1) = val;
2410 }
2411
skb_put_zero(struct sk_buff * skb,unsigned int len)2412 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2413 {
2414 void *tmp = skb_put(skb, len);
2415
2416 memset(tmp, 0, len);
2417
2418 return tmp;
2419 }
2420
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2421 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2422 unsigned int len)
2423 {
2424 void *tmp = skb_put(skb, len);
2425
2426 memcpy(tmp, data, len);
2427
2428 return tmp;
2429 }
2430
skb_put_u8(struct sk_buff * skb,u8 val)2431 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2432 {
2433 *(u8 *)skb_put(skb, 1) = val;
2434 }
2435
2436 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2437 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2438 {
2439 skb->data -= len;
2440 skb->len += len;
2441 return skb->data;
2442 }
2443
2444 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2445 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2446 {
2447 skb->len -= len;
2448 BUG_ON(skb->len < skb->data_len);
2449 return skb->data += len;
2450 }
2451
skb_pull_inline(struct sk_buff * skb,unsigned int len)2452 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2453 {
2454 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2455 }
2456
2457 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2458
__pskb_pull(struct sk_buff * skb,unsigned int len)2459 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2460 {
2461 if (len > skb_headlen(skb) &&
2462 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2463 return NULL;
2464 skb->len -= len;
2465 return skb->data += len;
2466 }
2467
pskb_pull(struct sk_buff * skb,unsigned int len)2468 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2469 {
2470 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2471 }
2472
pskb_may_pull(struct sk_buff * skb,unsigned int len)2473 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2474 {
2475 if (likely(len <= skb_headlen(skb)))
2476 return true;
2477 if (unlikely(len > skb->len))
2478 return false;
2479 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2480 }
2481
2482 void skb_condense(struct sk_buff *skb);
2483
2484 /**
2485 * skb_headroom - bytes at buffer head
2486 * @skb: buffer to check
2487 *
2488 * Return the number of bytes of free space at the head of an &sk_buff.
2489 */
skb_headroom(const struct sk_buff * skb)2490 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2491 {
2492 return skb->data - skb->head;
2493 }
2494
2495 /**
2496 * skb_tailroom - bytes at buffer end
2497 * @skb: buffer to check
2498 *
2499 * Return the number of bytes of free space at the tail of an sk_buff
2500 */
skb_tailroom(const struct sk_buff * skb)2501 static inline int skb_tailroom(const struct sk_buff *skb)
2502 {
2503 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2504 }
2505
2506 /**
2507 * skb_availroom - bytes at buffer end
2508 * @skb: buffer to check
2509 *
2510 * Return the number of bytes of free space at the tail of an sk_buff
2511 * allocated by sk_stream_alloc()
2512 */
skb_availroom(const struct sk_buff * skb)2513 static inline int skb_availroom(const struct sk_buff *skb)
2514 {
2515 if (skb_is_nonlinear(skb))
2516 return 0;
2517
2518 return skb->end - skb->tail - skb->reserved_tailroom;
2519 }
2520
2521 /**
2522 * skb_reserve - adjust headroom
2523 * @skb: buffer to alter
2524 * @len: bytes to move
2525 *
2526 * Increase the headroom of an empty &sk_buff by reducing the tail
2527 * room. This is only allowed for an empty buffer.
2528 */
skb_reserve(struct sk_buff * skb,int len)2529 static inline void skb_reserve(struct sk_buff *skb, int len)
2530 {
2531 skb->data += len;
2532 skb->tail += len;
2533 }
2534
2535 /**
2536 * skb_tailroom_reserve - adjust reserved_tailroom
2537 * @skb: buffer to alter
2538 * @mtu: maximum amount of headlen permitted
2539 * @needed_tailroom: minimum amount of reserved_tailroom
2540 *
2541 * Set reserved_tailroom so that headlen can be as large as possible but
2542 * not larger than mtu and tailroom cannot be smaller than
2543 * needed_tailroom.
2544 * The required headroom should already have been reserved before using
2545 * this function.
2546 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2547 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2548 unsigned int needed_tailroom)
2549 {
2550 SKB_LINEAR_ASSERT(skb);
2551 if (mtu < skb_tailroom(skb) - needed_tailroom)
2552 /* use at most mtu */
2553 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2554 else
2555 /* use up to all available space */
2556 skb->reserved_tailroom = needed_tailroom;
2557 }
2558
2559 #define ENCAP_TYPE_ETHER 0
2560 #define ENCAP_TYPE_IPPROTO 1
2561
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2562 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2563 __be16 protocol)
2564 {
2565 skb->inner_protocol = protocol;
2566 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2567 }
2568
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2569 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2570 __u8 ipproto)
2571 {
2572 skb->inner_ipproto = ipproto;
2573 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2574 }
2575
skb_reset_inner_headers(struct sk_buff * skb)2576 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2577 {
2578 skb->inner_mac_header = skb->mac_header;
2579 skb->inner_network_header = skb->network_header;
2580 skb->inner_transport_header = skb->transport_header;
2581 }
2582
skb_reset_mac_len(struct sk_buff * skb)2583 static inline void skb_reset_mac_len(struct sk_buff *skb)
2584 {
2585 skb->mac_len = skb->network_header - skb->mac_header;
2586 }
2587
skb_inner_transport_header(const struct sk_buff * skb)2588 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2589 *skb)
2590 {
2591 return skb->head + skb->inner_transport_header;
2592 }
2593
skb_inner_transport_offset(const struct sk_buff * skb)2594 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2595 {
2596 return skb_inner_transport_header(skb) - skb->data;
2597 }
2598
skb_reset_inner_transport_header(struct sk_buff * skb)2599 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2600 {
2601 skb->inner_transport_header = skb->data - skb->head;
2602 }
2603
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2604 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2605 const int offset)
2606 {
2607 skb_reset_inner_transport_header(skb);
2608 skb->inner_transport_header += offset;
2609 }
2610
skb_inner_network_header(const struct sk_buff * skb)2611 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2612 {
2613 return skb->head + skb->inner_network_header;
2614 }
2615
skb_reset_inner_network_header(struct sk_buff * skb)2616 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2617 {
2618 skb->inner_network_header = skb->data - skb->head;
2619 }
2620
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2621 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2622 const int offset)
2623 {
2624 skb_reset_inner_network_header(skb);
2625 skb->inner_network_header += offset;
2626 }
2627
skb_inner_mac_header(const struct sk_buff * skb)2628 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2629 {
2630 return skb->head + skb->inner_mac_header;
2631 }
2632
skb_reset_inner_mac_header(struct sk_buff * skb)2633 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2634 {
2635 skb->inner_mac_header = skb->data - skb->head;
2636 }
2637
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2638 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2639 const int offset)
2640 {
2641 skb_reset_inner_mac_header(skb);
2642 skb->inner_mac_header += offset;
2643 }
skb_transport_header_was_set(const struct sk_buff * skb)2644 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2645 {
2646 return skb->transport_header != (typeof(skb->transport_header))~0U;
2647 }
2648
skb_transport_header(const struct sk_buff * skb)2649 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2650 {
2651 return skb->head + skb->transport_header;
2652 }
2653
skb_reset_transport_header(struct sk_buff * skb)2654 static inline void skb_reset_transport_header(struct sk_buff *skb)
2655 {
2656 skb->transport_header = skb->data - skb->head;
2657 }
2658
skb_set_transport_header(struct sk_buff * skb,const int offset)2659 static inline void skb_set_transport_header(struct sk_buff *skb,
2660 const int offset)
2661 {
2662 skb_reset_transport_header(skb);
2663 skb->transport_header += offset;
2664 }
2665
skb_network_header(const struct sk_buff * skb)2666 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2667 {
2668 return skb->head + skb->network_header;
2669 }
2670
skb_reset_network_header(struct sk_buff * skb)2671 static inline void skb_reset_network_header(struct sk_buff *skb)
2672 {
2673 skb->network_header = skb->data - skb->head;
2674 }
2675
skb_set_network_header(struct sk_buff * skb,const int offset)2676 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2677 {
2678 skb_reset_network_header(skb);
2679 skb->network_header += offset;
2680 }
2681
skb_mac_header(const struct sk_buff * skb)2682 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2683 {
2684 return skb->head + skb->mac_header;
2685 }
2686
skb_mac_offset(const struct sk_buff * skb)2687 static inline int skb_mac_offset(const struct sk_buff *skb)
2688 {
2689 return skb_mac_header(skb) - skb->data;
2690 }
2691
skb_mac_header_len(const struct sk_buff * skb)2692 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2693 {
2694 return skb->network_header - skb->mac_header;
2695 }
2696
skb_mac_header_was_set(const struct sk_buff * skb)2697 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2698 {
2699 return skb->mac_header != (typeof(skb->mac_header))~0U;
2700 }
2701
skb_unset_mac_header(struct sk_buff * skb)2702 static inline void skb_unset_mac_header(struct sk_buff *skb)
2703 {
2704 skb->mac_header = (typeof(skb->mac_header))~0U;
2705 }
2706
skb_reset_mac_header(struct sk_buff * skb)2707 static inline void skb_reset_mac_header(struct sk_buff *skb)
2708 {
2709 skb->mac_header = skb->data - skb->head;
2710 }
2711
skb_set_mac_header(struct sk_buff * skb,const int offset)2712 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2713 {
2714 skb_reset_mac_header(skb);
2715 skb->mac_header += offset;
2716 }
2717
skb_pop_mac_header(struct sk_buff * skb)2718 static inline void skb_pop_mac_header(struct sk_buff *skb)
2719 {
2720 skb->mac_header = skb->network_header;
2721 }
2722
skb_probe_transport_header(struct sk_buff * skb)2723 static inline void skb_probe_transport_header(struct sk_buff *skb)
2724 {
2725 struct flow_keys_basic keys;
2726
2727 if (skb_transport_header_was_set(skb))
2728 return;
2729
2730 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2731 NULL, 0, 0, 0, 0))
2732 skb_set_transport_header(skb, keys.control.thoff);
2733 }
2734
skb_mac_header_rebuild(struct sk_buff * skb)2735 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2736 {
2737 if (skb_mac_header_was_set(skb)) {
2738 const unsigned char *old_mac = skb_mac_header(skb);
2739
2740 skb_set_mac_header(skb, -skb->mac_len);
2741 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2742 }
2743 }
2744
skb_checksum_start_offset(const struct sk_buff * skb)2745 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2746 {
2747 return skb->csum_start - skb_headroom(skb);
2748 }
2749
skb_checksum_start(const struct sk_buff * skb)2750 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2751 {
2752 return skb->head + skb->csum_start;
2753 }
2754
skb_transport_offset(const struct sk_buff * skb)2755 static inline int skb_transport_offset(const struct sk_buff *skb)
2756 {
2757 return skb_transport_header(skb) - skb->data;
2758 }
2759
skb_network_header_len(const struct sk_buff * skb)2760 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2761 {
2762 return skb->transport_header - skb->network_header;
2763 }
2764
skb_inner_network_header_len(const struct sk_buff * skb)2765 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2766 {
2767 return skb->inner_transport_header - skb->inner_network_header;
2768 }
2769
skb_network_offset(const struct sk_buff * skb)2770 static inline int skb_network_offset(const struct sk_buff *skb)
2771 {
2772 return skb_network_header(skb) - skb->data;
2773 }
2774
skb_inner_network_offset(const struct sk_buff * skb)2775 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2776 {
2777 return skb_inner_network_header(skb) - skb->data;
2778 }
2779
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2780 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2781 {
2782 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2783 }
2784
2785 /*
2786 * CPUs often take a performance hit when accessing unaligned memory
2787 * locations. The actual performance hit varies, it can be small if the
2788 * hardware handles it or large if we have to take an exception and fix it
2789 * in software.
2790 *
2791 * Since an ethernet header is 14 bytes network drivers often end up with
2792 * the IP header at an unaligned offset. The IP header can be aligned by
2793 * shifting the start of the packet by 2 bytes. Drivers should do this
2794 * with:
2795 *
2796 * skb_reserve(skb, NET_IP_ALIGN);
2797 *
2798 * The downside to this alignment of the IP header is that the DMA is now
2799 * unaligned. On some architectures the cost of an unaligned DMA is high
2800 * and this cost outweighs the gains made by aligning the IP header.
2801 *
2802 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2803 * to be overridden.
2804 */
2805 #ifndef NET_IP_ALIGN
2806 #define NET_IP_ALIGN 2
2807 #endif
2808
2809 /*
2810 * The networking layer reserves some headroom in skb data (via
2811 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2812 * the header has to grow. In the default case, if the header has to grow
2813 * 32 bytes or less we avoid the reallocation.
2814 *
2815 * Unfortunately this headroom changes the DMA alignment of the resulting
2816 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2817 * on some architectures. An architecture can override this value,
2818 * perhaps setting it to a cacheline in size (since that will maintain
2819 * cacheline alignment of the DMA). It must be a power of 2.
2820 *
2821 * Various parts of the networking layer expect at least 32 bytes of
2822 * headroom, you should not reduce this.
2823 *
2824 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2825 * to reduce average number of cache lines per packet.
2826 * get_rps_cpu() for example only access one 64 bytes aligned block :
2827 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2828 */
2829 #ifndef NET_SKB_PAD
2830 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2831 #endif
2832
2833 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2834
__skb_set_length(struct sk_buff * skb,unsigned int len)2835 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2836 {
2837 if (WARN_ON(skb_is_nonlinear(skb)))
2838 return;
2839 skb->len = len;
2840 skb_set_tail_pointer(skb, len);
2841 }
2842
__skb_trim(struct sk_buff * skb,unsigned int len)2843 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2844 {
2845 __skb_set_length(skb, len);
2846 }
2847
2848 void skb_trim(struct sk_buff *skb, unsigned int len);
2849
__pskb_trim(struct sk_buff * skb,unsigned int len)2850 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2851 {
2852 if (skb->data_len)
2853 return ___pskb_trim(skb, len);
2854 __skb_trim(skb, len);
2855 return 0;
2856 }
2857
pskb_trim(struct sk_buff * skb,unsigned int len)2858 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2859 {
2860 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2861 }
2862
2863 /**
2864 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2865 * @skb: buffer to alter
2866 * @len: new length
2867 *
2868 * This is identical to pskb_trim except that the caller knows that
2869 * the skb is not cloned so we should never get an error due to out-
2870 * of-memory.
2871 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2872 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2873 {
2874 int err = pskb_trim(skb, len);
2875 BUG_ON(err);
2876 }
2877
__skb_grow(struct sk_buff * skb,unsigned int len)2878 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2879 {
2880 unsigned int diff = len - skb->len;
2881
2882 if (skb_tailroom(skb) < diff) {
2883 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2884 GFP_ATOMIC);
2885 if (ret)
2886 return ret;
2887 }
2888 __skb_set_length(skb, len);
2889 return 0;
2890 }
2891
2892 /**
2893 * skb_orphan - orphan a buffer
2894 * @skb: buffer to orphan
2895 *
2896 * If a buffer currently has an owner then we call the owner's
2897 * destructor function and make the @skb unowned. The buffer continues
2898 * to exist but is no longer charged to its former owner.
2899 */
skb_orphan(struct sk_buff * skb)2900 static inline void skb_orphan(struct sk_buff *skb)
2901 {
2902 if (skb->destructor) {
2903 skb->destructor(skb);
2904 skb->destructor = NULL;
2905 skb->sk = NULL;
2906 } else {
2907 BUG_ON(skb->sk);
2908 }
2909 }
2910
2911 /**
2912 * skb_orphan_frags - orphan the frags contained in a buffer
2913 * @skb: buffer to orphan frags from
2914 * @gfp_mask: allocation mask for replacement pages
2915 *
2916 * For each frag in the SKB which needs a destructor (i.e. has an
2917 * owner) create a copy of that frag and release the original
2918 * page by calling the destructor.
2919 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2920 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2921 {
2922 if (likely(!skb_zcopy(skb)))
2923 return 0;
2924 if (!skb_zcopy_is_nouarg(skb) &&
2925 skb_uarg(skb)->callback == msg_zerocopy_callback)
2926 return 0;
2927 return skb_copy_ubufs(skb, gfp_mask);
2928 }
2929
2930 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2931 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2932 {
2933 if (likely(!skb_zcopy(skb)))
2934 return 0;
2935 return skb_copy_ubufs(skb, gfp_mask);
2936 }
2937
2938 /**
2939 * __skb_queue_purge - empty a list
2940 * @list: list to empty
2941 *
2942 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2943 * the list and one reference dropped. This function does not take the
2944 * list lock and the caller must hold the relevant locks to use it.
2945 */
__skb_queue_purge(struct sk_buff_head * list)2946 static inline void __skb_queue_purge(struct sk_buff_head *list)
2947 {
2948 struct sk_buff *skb;
2949 while ((skb = __skb_dequeue(list)) != NULL)
2950 kfree_skb(skb);
2951 }
2952 void skb_queue_purge(struct sk_buff_head *list);
2953
2954 unsigned int skb_rbtree_purge(struct rb_root *root);
2955
2956 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2957
2958 /**
2959 * netdev_alloc_frag - allocate a page fragment
2960 * @fragsz: fragment size
2961 *
2962 * Allocates a frag from a page for receive buffer.
2963 * Uses GFP_ATOMIC allocations.
2964 */
netdev_alloc_frag(unsigned int fragsz)2965 static inline void *netdev_alloc_frag(unsigned int fragsz)
2966 {
2967 return __netdev_alloc_frag_align(fragsz, ~0u);
2968 }
2969
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)2970 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2971 unsigned int align)
2972 {
2973 WARN_ON_ONCE(!is_power_of_2(align));
2974 return __netdev_alloc_frag_align(fragsz, -align);
2975 }
2976
2977 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2978 gfp_t gfp_mask);
2979
2980 /**
2981 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2982 * @dev: network device to receive on
2983 * @length: length to allocate
2984 *
2985 * Allocate a new &sk_buff and assign it a usage count of one. The
2986 * buffer has unspecified headroom built in. Users should allocate
2987 * the headroom they think they need without accounting for the
2988 * built in space. The built in space is used for optimisations.
2989 *
2990 * %NULL is returned if there is no free memory. Although this function
2991 * allocates memory it can be called from an interrupt.
2992 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2993 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2994 unsigned int length)
2995 {
2996 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2997 }
2998
2999 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3000 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3001 gfp_t gfp_mask)
3002 {
3003 return __netdev_alloc_skb(NULL, length, gfp_mask);
3004 }
3005
3006 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3007 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3008 {
3009 return netdev_alloc_skb(NULL, length);
3010 }
3011
3012
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3013 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3014 unsigned int length, gfp_t gfp)
3015 {
3016 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3017
3018 if (NET_IP_ALIGN && skb)
3019 skb_reserve(skb, NET_IP_ALIGN);
3020 return skb;
3021 }
3022
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3023 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3024 unsigned int length)
3025 {
3026 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3027 }
3028
skb_free_frag(void * addr)3029 static inline void skb_free_frag(void *addr)
3030 {
3031 page_frag_free(addr);
3032 }
3033
3034 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3035
napi_alloc_frag(unsigned int fragsz)3036 static inline void *napi_alloc_frag(unsigned int fragsz)
3037 {
3038 return __napi_alloc_frag_align(fragsz, ~0u);
3039 }
3040
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3041 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3042 unsigned int align)
3043 {
3044 WARN_ON_ONCE(!is_power_of_2(align));
3045 return __napi_alloc_frag_align(fragsz, -align);
3046 }
3047
3048 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3049 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3050 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3051 unsigned int length)
3052 {
3053 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3054 }
3055 void napi_consume_skb(struct sk_buff *skb, int budget);
3056
3057 void napi_skb_free_stolen_head(struct sk_buff *skb);
3058 void __kfree_skb_defer(struct sk_buff *skb);
3059
3060 /**
3061 * __dev_alloc_pages - allocate page for network Rx
3062 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3063 * @order: size of the allocation
3064 *
3065 * Allocate a new page.
3066 *
3067 * %NULL is returned if there is no free memory.
3068 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3069 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3070 unsigned int order)
3071 {
3072 /* This piece of code contains several assumptions.
3073 * 1. This is for device Rx, therefor a cold page is preferred.
3074 * 2. The expectation is the user wants a compound page.
3075 * 3. If requesting a order 0 page it will not be compound
3076 * due to the check to see if order has a value in prep_new_page
3077 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3078 * code in gfp_to_alloc_flags that should be enforcing this.
3079 */
3080 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3081
3082 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3083 }
3084
dev_alloc_pages(unsigned int order)3085 static inline struct page *dev_alloc_pages(unsigned int order)
3086 {
3087 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3088 }
3089
3090 /**
3091 * __dev_alloc_page - allocate a page for network Rx
3092 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3093 *
3094 * Allocate a new page.
3095 *
3096 * %NULL is returned if there is no free memory.
3097 */
__dev_alloc_page(gfp_t gfp_mask)3098 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3099 {
3100 return __dev_alloc_pages(gfp_mask, 0);
3101 }
3102
dev_alloc_page(void)3103 static inline struct page *dev_alloc_page(void)
3104 {
3105 return dev_alloc_pages(0);
3106 }
3107
3108 /**
3109 * dev_page_is_reusable - check whether a page can be reused for network Rx
3110 * @page: the page to test
3111 *
3112 * A page shouldn't be considered for reusing/recycling if it was allocated
3113 * under memory pressure or at a distant memory node.
3114 *
3115 * Returns false if this page should be returned to page allocator, true
3116 * otherwise.
3117 */
dev_page_is_reusable(const struct page * page)3118 static inline bool dev_page_is_reusable(const struct page *page)
3119 {
3120 return likely(page_to_nid(page) == numa_mem_id() &&
3121 !page_is_pfmemalloc(page));
3122 }
3123
3124 /**
3125 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3126 * @page: The page that was allocated from skb_alloc_page
3127 * @skb: The skb that may need pfmemalloc set
3128 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3129 static inline void skb_propagate_pfmemalloc(const struct page *page,
3130 struct sk_buff *skb)
3131 {
3132 if (page_is_pfmemalloc(page))
3133 skb->pfmemalloc = true;
3134 }
3135
3136 /**
3137 * skb_frag_off() - Returns the offset of a skb fragment
3138 * @frag: the paged fragment
3139 */
skb_frag_off(const skb_frag_t * frag)3140 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3141 {
3142 return frag->bv_offset;
3143 }
3144
3145 /**
3146 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3147 * @frag: skb fragment
3148 * @delta: value to add
3149 */
skb_frag_off_add(skb_frag_t * frag,int delta)3150 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3151 {
3152 frag->bv_offset += delta;
3153 }
3154
3155 /**
3156 * skb_frag_off_set() - Sets the offset of a skb fragment
3157 * @frag: skb fragment
3158 * @offset: offset of fragment
3159 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3160 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3161 {
3162 frag->bv_offset = offset;
3163 }
3164
3165 /**
3166 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3167 * @fragto: skb fragment where offset is set
3168 * @fragfrom: skb fragment offset is copied from
3169 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3170 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3171 const skb_frag_t *fragfrom)
3172 {
3173 fragto->bv_offset = fragfrom->bv_offset;
3174 }
3175
3176 /**
3177 * skb_frag_page - retrieve the page referred to by a paged fragment
3178 * @frag: the paged fragment
3179 *
3180 * Returns the &struct page associated with @frag.
3181 */
skb_frag_page(const skb_frag_t * frag)3182 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3183 {
3184 return frag->bv_page;
3185 }
3186
3187 /**
3188 * __skb_frag_ref - take an addition reference on a paged fragment.
3189 * @frag: the paged fragment
3190 *
3191 * Takes an additional reference on the paged fragment @frag.
3192 */
__skb_frag_ref(skb_frag_t * frag)3193 static inline void __skb_frag_ref(skb_frag_t *frag)
3194 {
3195 get_page(skb_frag_page(frag));
3196 }
3197
3198 /**
3199 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3200 * @skb: the buffer
3201 * @f: the fragment offset.
3202 *
3203 * Takes an additional reference on the @f'th paged fragment of @skb.
3204 */
skb_frag_ref(struct sk_buff * skb,int f)3205 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3206 {
3207 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3208 }
3209
3210 /**
3211 * __skb_frag_unref - release a reference on a paged fragment.
3212 * @frag: the paged fragment
3213 * @recycle: recycle the page if allocated via page_pool
3214 *
3215 * Releases a reference on the paged fragment @frag
3216 * or recycles the page via the page_pool API.
3217 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3218 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3219 {
3220 struct page *page = skb_frag_page(frag);
3221
3222 #ifdef CONFIG_PAGE_POOL
3223 if (recycle && page_pool_return_skb_page(page))
3224 return;
3225 #endif
3226 put_page(page);
3227 }
3228
3229 /**
3230 * skb_frag_unref - release a reference on a paged fragment of an skb.
3231 * @skb: the buffer
3232 * @f: the fragment offset
3233 *
3234 * Releases a reference on the @f'th paged fragment of @skb.
3235 */
skb_frag_unref(struct sk_buff * skb,int f)3236 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3237 {
3238 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3239 }
3240
3241 /**
3242 * skb_frag_address - gets the address of the data contained in a paged fragment
3243 * @frag: the paged fragment buffer
3244 *
3245 * Returns the address of the data within @frag. The page must already
3246 * be mapped.
3247 */
skb_frag_address(const skb_frag_t * frag)3248 static inline void *skb_frag_address(const skb_frag_t *frag)
3249 {
3250 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3251 }
3252
3253 /**
3254 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3255 * @frag: the paged fragment buffer
3256 *
3257 * Returns the address of the data within @frag. Checks that the page
3258 * is mapped and returns %NULL otherwise.
3259 */
skb_frag_address_safe(const skb_frag_t * frag)3260 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3261 {
3262 void *ptr = page_address(skb_frag_page(frag));
3263 if (unlikely(!ptr))
3264 return NULL;
3265
3266 return ptr + skb_frag_off(frag);
3267 }
3268
3269 /**
3270 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3271 * @fragto: skb fragment where page is set
3272 * @fragfrom: skb fragment page is copied from
3273 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3274 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3275 const skb_frag_t *fragfrom)
3276 {
3277 fragto->bv_page = fragfrom->bv_page;
3278 }
3279
3280 /**
3281 * __skb_frag_set_page - sets the page contained in a paged fragment
3282 * @frag: the paged fragment
3283 * @page: the page to set
3284 *
3285 * Sets the fragment @frag to contain @page.
3286 */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3287 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3288 {
3289 frag->bv_page = page;
3290 }
3291
3292 /**
3293 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3294 * @skb: the buffer
3295 * @f: the fragment offset
3296 * @page: the page to set
3297 *
3298 * Sets the @f'th fragment of @skb to contain @page.
3299 */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3300 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3301 struct page *page)
3302 {
3303 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3304 }
3305
3306 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3307
3308 /**
3309 * skb_frag_dma_map - maps a paged fragment via the DMA API
3310 * @dev: the device to map the fragment to
3311 * @frag: the paged fragment to map
3312 * @offset: the offset within the fragment (starting at the
3313 * fragment's own offset)
3314 * @size: the number of bytes to map
3315 * @dir: the direction of the mapping (``PCI_DMA_*``)
3316 *
3317 * Maps the page associated with @frag to @device.
3318 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3319 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3320 const skb_frag_t *frag,
3321 size_t offset, size_t size,
3322 enum dma_data_direction dir)
3323 {
3324 return dma_map_page(dev, skb_frag_page(frag),
3325 skb_frag_off(frag) + offset, size, dir);
3326 }
3327
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3328 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3329 gfp_t gfp_mask)
3330 {
3331 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3332 }
3333
3334
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3335 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3336 gfp_t gfp_mask)
3337 {
3338 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3339 }
3340
3341
3342 /**
3343 * skb_clone_writable - is the header of a clone writable
3344 * @skb: buffer to check
3345 * @len: length up to which to write
3346 *
3347 * Returns true if modifying the header part of the cloned buffer
3348 * does not requires the data to be copied.
3349 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3350 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3351 {
3352 return !skb_header_cloned(skb) &&
3353 skb_headroom(skb) + len <= skb->hdr_len;
3354 }
3355
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3356 static inline int skb_try_make_writable(struct sk_buff *skb,
3357 unsigned int write_len)
3358 {
3359 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3360 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3361 }
3362
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3363 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3364 int cloned)
3365 {
3366 int delta = 0;
3367
3368 if (headroom > skb_headroom(skb))
3369 delta = headroom - skb_headroom(skb);
3370
3371 if (delta || cloned)
3372 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3373 GFP_ATOMIC);
3374 return 0;
3375 }
3376
3377 /**
3378 * skb_cow - copy header of skb when it is required
3379 * @skb: buffer to cow
3380 * @headroom: needed headroom
3381 *
3382 * If the skb passed lacks sufficient headroom or its data part
3383 * is shared, data is reallocated. If reallocation fails, an error
3384 * is returned and original skb is not changed.
3385 *
3386 * The result is skb with writable area skb->head...skb->tail
3387 * and at least @headroom of space at head.
3388 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3389 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3390 {
3391 return __skb_cow(skb, headroom, skb_cloned(skb));
3392 }
3393
3394 /**
3395 * skb_cow_head - skb_cow but only making the head writable
3396 * @skb: buffer to cow
3397 * @headroom: needed headroom
3398 *
3399 * This function is identical to skb_cow except that we replace the
3400 * skb_cloned check by skb_header_cloned. It should be used when
3401 * you only need to push on some header and do not need to modify
3402 * the data.
3403 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3404 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3405 {
3406 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3407 }
3408
3409 /**
3410 * skb_padto - pad an skbuff up to a minimal size
3411 * @skb: buffer to pad
3412 * @len: minimal length
3413 *
3414 * Pads up a buffer to ensure the trailing bytes exist and are
3415 * blanked. If the buffer already contains sufficient data it
3416 * is untouched. Otherwise it is extended. Returns zero on
3417 * success. The skb is freed on error.
3418 */
skb_padto(struct sk_buff * skb,unsigned int len)3419 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3420 {
3421 unsigned int size = skb->len;
3422 if (likely(size >= len))
3423 return 0;
3424 return skb_pad(skb, len - size);
3425 }
3426
3427 /**
3428 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3429 * @skb: buffer to pad
3430 * @len: minimal length
3431 * @free_on_error: free buffer on error
3432 *
3433 * Pads up a buffer to ensure the trailing bytes exist and are
3434 * blanked. If the buffer already contains sufficient data it
3435 * is untouched. Otherwise it is extended. Returns zero on
3436 * success. The skb is freed on error if @free_on_error is true.
3437 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3438 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3439 unsigned int len,
3440 bool free_on_error)
3441 {
3442 unsigned int size = skb->len;
3443
3444 if (unlikely(size < len)) {
3445 len -= size;
3446 if (__skb_pad(skb, len, free_on_error))
3447 return -ENOMEM;
3448 __skb_put(skb, len);
3449 }
3450 return 0;
3451 }
3452
3453 /**
3454 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3455 * @skb: buffer to pad
3456 * @len: minimal length
3457 *
3458 * Pads up a buffer to ensure the trailing bytes exist and are
3459 * blanked. If the buffer already contains sufficient data it
3460 * is untouched. Otherwise it is extended. Returns zero on
3461 * success. The skb is freed on error.
3462 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3463 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3464 {
3465 return __skb_put_padto(skb, len, true);
3466 }
3467
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3468 static inline int skb_add_data(struct sk_buff *skb,
3469 struct iov_iter *from, int copy)
3470 {
3471 const int off = skb->len;
3472
3473 if (skb->ip_summed == CHECKSUM_NONE) {
3474 __wsum csum = 0;
3475 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3476 &csum, from)) {
3477 skb->csum = csum_block_add(skb->csum, csum, off);
3478 return 0;
3479 }
3480 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3481 return 0;
3482
3483 __skb_trim(skb, off);
3484 return -EFAULT;
3485 }
3486
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3487 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3488 const struct page *page, int off)
3489 {
3490 if (skb_zcopy(skb))
3491 return false;
3492 if (i) {
3493 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3494
3495 return page == skb_frag_page(frag) &&
3496 off == skb_frag_off(frag) + skb_frag_size(frag);
3497 }
3498 return false;
3499 }
3500
__skb_linearize(struct sk_buff * skb)3501 static inline int __skb_linearize(struct sk_buff *skb)
3502 {
3503 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3504 }
3505
3506 /**
3507 * skb_linearize - convert paged skb to linear one
3508 * @skb: buffer to linarize
3509 *
3510 * If there is no free memory -ENOMEM is returned, otherwise zero
3511 * is returned and the old skb data released.
3512 */
skb_linearize(struct sk_buff * skb)3513 static inline int skb_linearize(struct sk_buff *skb)
3514 {
3515 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3516 }
3517
3518 /**
3519 * skb_has_shared_frag - can any frag be overwritten
3520 * @skb: buffer to test
3521 *
3522 * Return true if the skb has at least one frag that might be modified
3523 * by an external entity (as in vmsplice()/sendfile())
3524 */
skb_has_shared_frag(const struct sk_buff * skb)3525 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3526 {
3527 return skb_is_nonlinear(skb) &&
3528 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3529 }
3530
3531 /**
3532 * skb_linearize_cow - make sure skb is linear and writable
3533 * @skb: buffer to process
3534 *
3535 * If there is no free memory -ENOMEM is returned, otherwise zero
3536 * is returned and the old skb data released.
3537 */
skb_linearize_cow(struct sk_buff * skb)3538 static inline int skb_linearize_cow(struct sk_buff *skb)
3539 {
3540 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3541 __skb_linearize(skb) : 0;
3542 }
3543
3544 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3545 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3546 unsigned int off)
3547 {
3548 if (skb->ip_summed == CHECKSUM_COMPLETE)
3549 skb->csum = csum_block_sub(skb->csum,
3550 csum_partial(start, len, 0), off);
3551 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3552 skb_checksum_start_offset(skb) < 0)
3553 skb->ip_summed = CHECKSUM_NONE;
3554 }
3555
3556 /**
3557 * skb_postpull_rcsum - update checksum for received skb after pull
3558 * @skb: buffer to update
3559 * @start: start of data before pull
3560 * @len: length of data pulled
3561 *
3562 * After doing a pull on a received packet, you need to call this to
3563 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3564 * CHECKSUM_NONE so that it can be recomputed from scratch.
3565 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3566 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3567 const void *start, unsigned int len)
3568 {
3569 __skb_postpull_rcsum(skb, start, len, 0);
3570 }
3571
3572 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3573 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3574 unsigned int off)
3575 {
3576 if (skb->ip_summed == CHECKSUM_COMPLETE)
3577 skb->csum = csum_block_add(skb->csum,
3578 csum_partial(start, len, 0), off);
3579 }
3580
3581 /**
3582 * skb_postpush_rcsum - update checksum for received skb after push
3583 * @skb: buffer to update
3584 * @start: start of data after push
3585 * @len: length of data pushed
3586 *
3587 * After doing a push on a received packet, you need to call this to
3588 * update the CHECKSUM_COMPLETE checksum.
3589 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3590 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3591 const void *start, unsigned int len)
3592 {
3593 __skb_postpush_rcsum(skb, start, len, 0);
3594 }
3595
3596 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3597
3598 /**
3599 * skb_push_rcsum - push skb and update receive checksum
3600 * @skb: buffer to update
3601 * @len: length of data pulled
3602 *
3603 * This function performs an skb_push on the packet and updates
3604 * the CHECKSUM_COMPLETE checksum. It should be used on
3605 * receive path processing instead of skb_push unless you know
3606 * that the checksum difference is zero (e.g., a valid IP header)
3607 * or you are setting ip_summed to CHECKSUM_NONE.
3608 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3609 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3610 {
3611 skb_push(skb, len);
3612 skb_postpush_rcsum(skb, skb->data, len);
3613 return skb->data;
3614 }
3615
3616 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3617 /**
3618 * pskb_trim_rcsum - trim received skb and update checksum
3619 * @skb: buffer to trim
3620 * @len: new length
3621 *
3622 * This is exactly the same as pskb_trim except that it ensures the
3623 * checksum of received packets are still valid after the operation.
3624 * It can change skb pointers.
3625 */
3626
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3627 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3628 {
3629 if (likely(len >= skb->len))
3630 return 0;
3631 return pskb_trim_rcsum_slow(skb, len);
3632 }
3633
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3634 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3635 {
3636 if (skb->ip_summed == CHECKSUM_COMPLETE)
3637 skb->ip_summed = CHECKSUM_NONE;
3638 __skb_trim(skb, len);
3639 return 0;
3640 }
3641
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3642 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3643 {
3644 if (skb->ip_summed == CHECKSUM_COMPLETE)
3645 skb->ip_summed = CHECKSUM_NONE;
3646 return __skb_grow(skb, len);
3647 }
3648
3649 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3650 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3651 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3652 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3653 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3654
3655 #define skb_queue_walk(queue, skb) \
3656 for (skb = (queue)->next; \
3657 skb != (struct sk_buff *)(queue); \
3658 skb = skb->next)
3659
3660 #define skb_queue_walk_safe(queue, skb, tmp) \
3661 for (skb = (queue)->next, tmp = skb->next; \
3662 skb != (struct sk_buff *)(queue); \
3663 skb = tmp, tmp = skb->next)
3664
3665 #define skb_queue_walk_from(queue, skb) \
3666 for (; skb != (struct sk_buff *)(queue); \
3667 skb = skb->next)
3668
3669 #define skb_rbtree_walk(skb, root) \
3670 for (skb = skb_rb_first(root); skb != NULL; \
3671 skb = skb_rb_next(skb))
3672
3673 #define skb_rbtree_walk_from(skb) \
3674 for (; skb != NULL; \
3675 skb = skb_rb_next(skb))
3676
3677 #define skb_rbtree_walk_from_safe(skb, tmp) \
3678 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3679 skb = tmp)
3680
3681 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3682 for (tmp = skb->next; \
3683 skb != (struct sk_buff *)(queue); \
3684 skb = tmp, tmp = skb->next)
3685
3686 #define skb_queue_reverse_walk(queue, skb) \
3687 for (skb = (queue)->prev; \
3688 skb != (struct sk_buff *)(queue); \
3689 skb = skb->prev)
3690
3691 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3692 for (skb = (queue)->prev, tmp = skb->prev; \
3693 skb != (struct sk_buff *)(queue); \
3694 skb = tmp, tmp = skb->prev)
3695
3696 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3697 for (tmp = skb->prev; \
3698 skb != (struct sk_buff *)(queue); \
3699 skb = tmp, tmp = skb->prev)
3700
skb_has_frag_list(const struct sk_buff * skb)3701 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3702 {
3703 return skb_shinfo(skb)->frag_list != NULL;
3704 }
3705
skb_frag_list_init(struct sk_buff * skb)3706 static inline void skb_frag_list_init(struct sk_buff *skb)
3707 {
3708 skb_shinfo(skb)->frag_list = NULL;
3709 }
3710
3711 #define skb_walk_frags(skb, iter) \
3712 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3713
3714
3715 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3716 int *err, long *timeo_p,
3717 const struct sk_buff *skb);
3718 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3719 struct sk_buff_head *queue,
3720 unsigned int flags,
3721 int *off, int *err,
3722 struct sk_buff **last);
3723 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3724 struct sk_buff_head *queue,
3725 unsigned int flags, int *off, int *err,
3726 struct sk_buff **last);
3727 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3728 struct sk_buff_head *sk_queue,
3729 unsigned int flags, int *off, int *err);
3730 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3731 int *err);
3732 __poll_t datagram_poll(struct file *file, struct socket *sock,
3733 struct poll_table_struct *wait);
3734 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3735 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3736 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3737 struct msghdr *msg, int size)
3738 {
3739 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3740 }
3741 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3742 struct msghdr *msg);
3743 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3744 struct iov_iter *to, int len,
3745 struct ahash_request *hash);
3746 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3747 struct iov_iter *from, int len);
3748 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3749 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3750 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3751 static inline void skb_free_datagram_locked(struct sock *sk,
3752 struct sk_buff *skb)
3753 {
3754 __skb_free_datagram_locked(sk, skb, 0);
3755 }
3756 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3757 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3758 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3759 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3760 int len);
3761 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3762 struct pipe_inode_info *pipe, unsigned int len,
3763 unsigned int flags);
3764 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3765 int len);
3766 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3767 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3768 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3769 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3770 int len, int hlen);
3771 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3772 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3773 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3774 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3775 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3776 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3777 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3778 unsigned int offset);
3779 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3780 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3781 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3782 int skb_vlan_pop(struct sk_buff *skb);
3783 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3784 int skb_eth_pop(struct sk_buff *skb);
3785 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3786 const unsigned char *src);
3787 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3788 int mac_len, bool ethernet);
3789 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3790 bool ethernet);
3791 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3792 int skb_mpls_dec_ttl(struct sk_buff *skb);
3793 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3794 gfp_t gfp);
3795
memcpy_from_msg(void * data,struct msghdr * msg,int len)3796 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3797 {
3798 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3799 }
3800
memcpy_to_msg(struct msghdr * msg,void * data,int len)3801 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3802 {
3803 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3804 }
3805
3806 struct skb_checksum_ops {
3807 __wsum (*update)(const void *mem, int len, __wsum wsum);
3808 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3809 };
3810
3811 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3812
3813 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3814 __wsum csum, const struct skb_checksum_ops *ops);
3815 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3816 __wsum csum);
3817
3818 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)3819 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3820 const void *data, int hlen, void *buffer)
3821 {
3822 if (likely(hlen - offset >= len))
3823 return (void *)data + offset;
3824
3825 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3826 return NULL;
3827
3828 return buffer;
3829 }
3830
3831 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3832 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3833 {
3834 return __skb_header_pointer(skb, offset, len, skb->data,
3835 skb_headlen(skb), buffer);
3836 }
3837
3838 /**
3839 * skb_needs_linearize - check if we need to linearize a given skb
3840 * depending on the given device features.
3841 * @skb: socket buffer to check
3842 * @features: net device features
3843 *
3844 * Returns true if either:
3845 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3846 * 2. skb is fragmented and the device does not support SG.
3847 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3848 static inline bool skb_needs_linearize(struct sk_buff *skb,
3849 netdev_features_t features)
3850 {
3851 return skb_is_nonlinear(skb) &&
3852 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3853 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3854 }
3855
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3856 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3857 void *to,
3858 const unsigned int len)
3859 {
3860 memcpy(to, skb->data, len);
3861 }
3862
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3863 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3864 const int offset, void *to,
3865 const unsigned int len)
3866 {
3867 memcpy(to, skb->data + offset, len);
3868 }
3869
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3870 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3871 const void *from,
3872 const unsigned int len)
3873 {
3874 memcpy(skb->data, from, len);
3875 }
3876
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3877 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3878 const int offset,
3879 const void *from,
3880 const unsigned int len)
3881 {
3882 memcpy(skb->data + offset, from, len);
3883 }
3884
3885 void skb_init(void);
3886
skb_get_ktime(const struct sk_buff * skb)3887 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3888 {
3889 return skb->tstamp;
3890 }
3891
3892 /**
3893 * skb_get_timestamp - get timestamp from a skb
3894 * @skb: skb to get stamp from
3895 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3896 *
3897 * Timestamps are stored in the skb as offsets to a base timestamp.
3898 * This function converts the offset back to a struct timeval and stores
3899 * it in stamp.
3900 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3901 static inline void skb_get_timestamp(const struct sk_buff *skb,
3902 struct __kernel_old_timeval *stamp)
3903 {
3904 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3905 }
3906
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3907 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3908 struct __kernel_sock_timeval *stamp)
3909 {
3910 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3911
3912 stamp->tv_sec = ts.tv_sec;
3913 stamp->tv_usec = ts.tv_nsec / 1000;
3914 }
3915
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3916 static inline void skb_get_timestampns(const struct sk_buff *skb,
3917 struct __kernel_old_timespec *stamp)
3918 {
3919 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3920
3921 stamp->tv_sec = ts.tv_sec;
3922 stamp->tv_nsec = ts.tv_nsec;
3923 }
3924
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3925 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3926 struct __kernel_timespec *stamp)
3927 {
3928 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3929
3930 stamp->tv_sec = ts.tv_sec;
3931 stamp->tv_nsec = ts.tv_nsec;
3932 }
3933
__net_timestamp(struct sk_buff * skb)3934 static inline void __net_timestamp(struct sk_buff *skb)
3935 {
3936 skb->tstamp = ktime_get_real();
3937 }
3938
net_timedelta(ktime_t t)3939 static inline ktime_t net_timedelta(ktime_t t)
3940 {
3941 return ktime_sub(ktime_get_real(), t);
3942 }
3943
net_invalid_timestamp(void)3944 static inline ktime_t net_invalid_timestamp(void)
3945 {
3946 return 0;
3947 }
3948
skb_metadata_len(const struct sk_buff * skb)3949 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3950 {
3951 return skb_shinfo(skb)->meta_len;
3952 }
3953
skb_metadata_end(const struct sk_buff * skb)3954 static inline void *skb_metadata_end(const struct sk_buff *skb)
3955 {
3956 return skb_mac_header(skb);
3957 }
3958
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3959 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3960 const struct sk_buff *skb_b,
3961 u8 meta_len)
3962 {
3963 const void *a = skb_metadata_end(skb_a);
3964 const void *b = skb_metadata_end(skb_b);
3965 /* Using more efficient varaiant than plain call to memcmp(). */
3966 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3967 u64 diffs = 0;
3968
3969 switch (meta_len) {
3970 #define __it(x, op) (x -= sizeof(u##op))
3971 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3972 case 32: diffs |= __it_diff(a, b, 64);
3973 fallthrough;
3974 case 24: diffs |= __it_diff(a, b, 64);
3975 fallthrough;
3976 case 16: diffs |= __it_diff(a, b, 64);
3977 fallthrough;
3978 case 8: diffs |= __it_diff(a, b, 64);
3979 break;
3980 case 28: diffs |= __it_diff(a, b, 64);
3981 fallthrough;
3982 case 20: diffs |= __it_diff(a, b, 64);
3983 fallthrough;
3984 case 12: diffs |= __it_diff(a, b, 64);
3985 fallthrough;
3986 case 4: diffs |= __it_diff(a, b, 32);
3987 break;
3988 }
3989 return diffs;
3990 #else
3991 return memcmp(a - meta_len, b - meta_len, meta_len);
3992 #endif
3993 }
3994
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3995 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3996 const struct sk_buff *skb_b)
3997 {
3998 u8 len_a = skb_metadata_len(skb_a);
3999 u8 len_b = skb_metadata_len(skb_b);
4000
4001 if (!(len_a | len_b))
4002 return false;
4003
4004 return len_a != len_b ?
4005 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4006 }
4007
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4008 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4009 {
4010 skb_shinfo(skb)->meta_len = meta_len;
4011 }
4012
skb_metadata_clear(struct sk_buff * skb)4013 static inline void skb_metadata_clear(struct sk_buff *skb)
4014 {
4015 skb_metadata_set(skb, 0);
4016 }
4017
4018 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4019
4020 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4021
4022 void skb_clone_tx_timestamp(struct sk_buff *skb);
4023 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4024
4025 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4026
skb_clone_tx_timestamp(struct sk_buff * skb)4027 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4028 {
4029 }
4030
skb_defer_rx_timestamp(struct sk_buff * skb)4031 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4032 {
4033 return false;
4034 }
4035
4036 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4037
4038 /**
4039 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4040 *
4041 * PHY drivers may accept clones of transmitted packets for
4042 * timestamping via their phy_driver.txtstamp method. These drivers
4043 * must call this function to return the skb back to the stack with a
4044 * timestamp.
4045 *
4046 * @skb: clone of the original outgoing packet
4047 * @hwtstamps: hardware time stamps
4048 *
4049 */
4050 void skb_complete_tx_timestamp(struct sk_buff *skb,
4051 struct skb_shared_hwtstamps *hwtstamps);
4052
4053 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4054 struct skb_shared_hwtstamps *hwtstamps,
4055 struct sock *sk, int tstype);
4056
4057 /**
4058 * skb_tstamp_tx - queue clone of skb with send time stamps
4059 * @orig_skb: the original outgoing packet
4060 * @hwtstamps: hardware time stamps, may be NULL if not available
4061 *
4062 * If the skb has a socket associated, then this function clones the
4063 * skb (thus sharing the actual data and optional structures), stores
4064 * the optional hardware time stamping information (if non NULL) or
4065 * generates a software time stamp (otherwise), then queues the clone
4066 * to the error queue of the socket. Errors are silently ignored.
4067 */
4068 void skb_tstamp_tx(struct sk_buff *orig_skb,
4069 struct skb_shared_hwtstamps *hwtstamps);
4070
4071 /**
4072 * skb_tx_timestamp() - Driver hook for transmit timestamping
4073 *
4074 * Ethernet MAC Drivers should call this function in their hard_xmit()
4075 * function immediately before giving the sk_buff to the MAC hardware.
4076 *
4077 * Specifically, one should make absolutely sure that this function is
4078 * called before TX completion of this packet can trigger. Otherwise
4079 * the packet could potentially already be freed.
4080 *
4081 * @skb: A socket buffer.
4082 */
skb_tx_timestamp(struct sk_buff * skb)4083 static inline void skb_tx_timestamp(struct sk_buff *skb)
4084 {
4085 skb_clone_tx_timestamp(skb);
4086 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4087 skb_tstamp_tx(skb, NULL);
4088 }
4089
4090 /**
4091 * skb_complete_wifi_ack - deliver skb with wifi status
4092 *
4093 * @skb: the original outgoing packet
4094 * @acked: ack status
4095 *
4096 */
4097 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4098
4099 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4100 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4101
skb_csum_unnecessary(const struct sk_buff * skb)4102 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4103 {
4104 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4105 skb->csum_valid ||
4106 (skb->ip_summed == CHECKSUM_PARTIAL &&
4107 skb_checksum_start_offset(skb) >= 0));
4108 }
4109
4110 /**
4111 * skb_checksum_complete - Calculate checksum of an entire packet
4112 * @skb: packet to process
4113 *
4114 * This function calculates the checksum over the entire packet plus
4115 * the value of skb->csum. The latter can be used to supply the
4116 * checksum of a pseudo header as used by TCP/UDP. It returns the
4117 * checksum.
4118 *
4119 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4120 * this function can be used to verify that checksum on received
4121 * packets. In that case the function should return zero if the
4122 * checksum is correct. In particular, this function will return zero
4123 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4124 * hardware has already verified the correctness of the checksum.
4125 */
skb_checksum_complete(struct sk_buff * skb)4126 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4127 {
4128 return skb_csum_unnecessary(skb) ?
4129 0 : __skb_checksum_complete(skb);
4130 }
4131
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4132 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4133 {
4134 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4135 if (skb->csum_level == 0)
4136 skb->ip_summed = CHECKSUM_NONE;
4137 else
4138 skb->csum_level--;
4139 }
4140 }
4141
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4142 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4143 {
4144 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4145 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4146 skb->csum_level++;
4147 } else if (skb->ip_summed == CHECKSUM_NONE) {
4148 skb->ip_summed = CHECKSUM_UNNECESSARY;
4149 skb->csum_level = 0;
4150 }
4151 }
4152
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4153 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4154 {
4155 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4156 skb->ip_summed = CHECKSUM_NONE;
4157 skb->csum_level = 0;
4158 }
4159 }
4160
4161 /* Check if we need to perform checksum complete validation.
4162 *
4163 * Returns true if checksum complete is needed, false otherwise
4164 * (either checksum is unnecessary or zero checksum is allowed).
4165 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4166 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4167 bool zero_okay,
4168 __sum16 check)
4169 {
4170 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4171 skb->csum_valid = 1;
4172 __skb_decr_checksum_unnecessary(skb);
4173 return false;
4174 }
4175
4176 return true;
4177 }
4178
4179 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4180 * in checksum_init.
4181 */
4182 #define CHECKSUM_BREAK 76
4183
4184 /* Unset checksum-complete
4185 *
4186 * Unset checksum complete can be done when packet is being modified
4187 * (uncompressed for instance) and checksum-complete value is
4188 * invalidated.
4189 */
skb_checksum_complete_unset(struct sk_buff * skb)4190 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4191 {
4192 if (skb->ip_summed == CHECKSUM_COMPLETE)
4193 skb->ip_summed = CHECKSUM_NONE;
4194 }
4195
4196 /* Validate (init) checksum based on checksum complete.
4197 *
4198 * Return values:
4199 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4200 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4201 * checksum is stored in skb->csum for use in __skb_checksum_complete
4202 * non-zero: value of invalid checksum
4203 *
4204 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4205 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4206 bool complete,
4207 __wsum psum)
4208 {
4209 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4210 if (!csum_fold(csum_add(psum, skb->csum))) {
4211 skb->csum_valid = 1;
4212 return 0;
4213 }
4214 }
4215
4216 skb->csum = psum;
4217
4218 if (complete || skb->len <= CHECKSUM_BREAK) {
4219 __sum16 csum;
4220
4221 csum = __skb_checksum_complete(skb);
4222 skb->csum_valid = !csum;
4223 return csum;
4224 }
4225
4226 return 0;
4227 }
4228
null_compute_pseudo(struct sk_buff * skb,int proto)4229 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4230 {
4231 return 0;
4232 }
4233
4234 /* Perform checksum validate (init). Note that this is a macro since we only
4235 * want to calculate the pseudo header which is an input function if necessary.
4236 * First we try to validate without any computation (checksum unnecessary) and
4237 * then calculate based on checksum complete calling the function to compute
4238 * pseudo header.
4239 *
4240 * Return values:
4241 * 0: checksum is validated or try to in skb_checksum_complete
4242 * non-zero: value of invalid checksum
4243 */
4244 #define __skb_checksum_validate(skb, proto, complete, \
4245 zero_okay, check, compute_pseudo) \
4246 ({ \
4247 __sum16 __ret = 0; \
4248 skb->csum_valid = 0; \
4249 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4250 __ret = __skb_checksum_validate_complete(skb, \
4251 complete, compute_pseudo(skb, proto)); \
4252 __ret; \
4253 })
4254
4255 #define skb_checksum_init(skb, proto, compute_pseudo) \
4256 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4257
4258 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4259 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4260
4261 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4262 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4263
4264 #define skb_checksum_validate_zero_check(skb, proto, check, \
4265 compute_pseudo) \
4266 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4267
4268 #define skb_checksum_simple_validate(skb) \
4269 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4270
__skb_checksum_convert_check(struct sk_buff * skb)4271 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4272 {
4273 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4274 }
4275
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4276 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4277 {
4278 skb->csum = ~pseudo;
4279 skb->ip_summed = CHECKSUM_COMPLETE;
4280 }
4281
4282 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4283 do { \
4284 if (__skb_checksum_convert_check(skb)) \
4285 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4286 } while (0)
4287
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4288 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4289 u16 start, u16 offset)
4290 {
4291 skb->ip_summed = CHECKSUM_PARTIAL;
4292 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4293 skb->csum_offset = offset - start;
4294 }
4295
4296 /* Update skbuf and packet to reflect the remote checksum offload operation.
4297 * When called, ptr indicates the starting point for skb->csum when
4298 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4299 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4300 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4301 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4302 int start, int offset, bool nopartial)
4303 {
4304 __wsum delta;
4305
4306 if (!nopartial) {
4307 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4308 return;
4309 }
4310
4311 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4312 __skb_checksum_complete(skb);
4313 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4314 }
4315
4316 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4317
4318 /* Adjust skb->csum since we changed the packet */
4319 skb->csum = csum_add(skb->csum, delta);
4320 }
4321
skb_nfct(const struct sk_buff * skb)4322 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4323 {
4324 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4325 return (void *)(skb->_nfct & NFCT_PTRMASK);
4326 #else
4327 return NULL;
4328 #endif
4329 }
4330
skb_get_nfct(const struct sk_buff * skb)4331 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4332 {
4333 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4334 return skb->_nfct;
4335 #else
4336 return 0UL;
4337 #endif
4338 }
4339
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4340 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4341 {
4342 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4343 skb->slow_gro |= !!nfct;
4344 skb->_nfct = nfct;
4345 #endif
4346 }
4347
4348 #ifdef CONFIG_SKB_EXTENSIONS
4349 enum skb_ext_id {
4350 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4351 SKB_EXT_BRIDGE_NF,
4352 #endif
4353 #ifdef CONFIG_XFRM
4354 SKB_EXT_SEC_PATH,
4355 #endif
4356 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4357 TC_SKB_EXT,
4358 #endif
4359 #if IS_ENABLED(CONFIG_MPTCP)
4360 SKB_EXT_MPTCP,
4361 #endif
4362 SKB_EXT_NUM, /* must be last */
4363 };
4364
4365 /**
4366 * struct skb_ext - sk_buff extensions
4367 * @refcnt: 1 on allocation, deallocated on 0
4368 * @offset: offset to add to @data to obtain extension address
4369 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4370 * @data: start of extension data, variable sized
4371 *
4372 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4373 * to use 'u8' types while allowing up to 2kb worth of extension data.
4374 */
4375 struct skb_ext {
4376 refcount_t refcnt;
4377 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4378 u8 chunks; /* same */
4379 char data[] __aligned(8);
4380 };
4381
4382 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4383 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4384 struct skb_ext *ext);
4385 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4386 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4387 void __skb_ext_put(struct skb_ext *ext);
4388
skb_ext_put(struct sk_buff * skb)4389 static inline void skb_ext_put(struct sk_buff *skb)
4390 {
4391 if (skb->active_extensions)
4392 __skb_ext_put(skb->extensions);
4393 }
4394
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4395 static inline void __skb_ext_copy(struct sk_buff *dst,
4396 const struct sk_buff *src)
4397 {
4398 dst->active_extensions = src->active_extensions;
4399
4400 if (src->active_extensions) {
4401 struct skb_ext *ext = src->extensions;
4402
4403 refcount_inc(&ext->refcnt);
4404 dst->extensions = ext;
4405 }
4406 }
4407
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4408 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4409 {
4410 skb_ext_put(dst);
4411 __skb_ext_copy(dst, src);
4412 }
4413
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4414 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4415 {
4416 return !!ext->offset[i];
4417 }
4418
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4419 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4420 {
4421 return skb->active_extensions & (1 << id);
4422 }
4423
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4424 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4425 {
4426 if (skb_ext_exist(skb, id))
4427 __skb_ext_del(skb, id);
4428 }
4429
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4430 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4431 {
4432 if (skb_ext_exist(skb, id)) {
4433 struct skb_ext *ext = skb->extensions;
4434
4435 return (void *)ext + (ext->offset[id] << 3);
4436 }
4437
4438 return NULL;
4439 }
4440
skb_ext_reset(struct sk_buff * skb)4441 static inline void skb_ext_reset(struct sk_buff *skb)
4442 {
4443 if (unlikely(skb->active_extensions)) {
4444 __skb_ext_put(skb->extensions);
4445 skb->active_extensions = 0;
4446 }
4447 }
4448
skb_has_extensions(struct sk_buff * skb)4449 static inline bool skb_has_extensions(struct sk_buff *skb)
4450 {
4451 return unlikely(skb->active_extensions);
4452 }
4453 #else
skb_ext_put(struct sk_buff * skb)4454 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4455 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4456 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4457 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4458 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4459 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4460 #endif /* CONFIG_SKB_EXTENSIONS */
4461
nf_reset_ct(struct sk_buff * skb)4462 static inline void nf_reset_ct(struct sk_buff *skb)
4463 {
4464 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4465 nf_conntrack_put(skb_nfct(skb));
4466 skb->_nfct = 0;
4467 #endif
4468 }
4469
nf_reset_trace(struct sk_buff * skb)4470 static inline void nf_reset_trace(struct sk_buff *skb)
4471 {
4472 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4473 skb->nf_trace = 0;
4474 #endif
4475 }
4476
ipvs_reset(struct sk_buff * skb)4477 static inline void ipvs_reset(struct sk_buff *skb)
4478 {
4479 #if IS_ENABLED(CONFIG_IP_VS)
4480 skb->ipvs_property = 0;
4481 #endif
4482 }
4483
4484 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4485 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4486 bool copy)
4487 {
4488 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4489 dst->_nfct = src->_nfct;
4490 nf_conntrack_get(skb_nfct(src));
4491 #endif
4492 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4493 if (copy)
4494 dst->nf_trace = src->nf_trace;
4495 #endif
4496 }
4497
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4498 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4499 {
4500 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4501 nf_conntrack_put(skb_nfct(dst));
4502 #endif
4503 dst->slow_gro = src->slow_gro;
4504 __nf_copy(dst, src, true);
4505 }
4506
4507 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4508 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4509 {
4510 to->secmark = from->secmark;
4511 }
4512
skb_init_secmark(struct sk_buff * skb)4513 static inline void skb_init_secmark(struct sk_buff *skb)
4514 {
4515 skb->secmark = 0;
4516 }
4517 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4518 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4519 { }
4520
skb_init_secmark(struct sk_buff * skb)4521 static inline void skb_init_secmark(struct sk_buff *skb)
4522 { }
4523 #endif
4524
secpath_exists(const struct sk_buff * skb)4525 static inline int secpath_exists(const struct sk_buff *skb)
4526 {
4527 #ifdef CONFIG_XFRM
4528 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4529 #else
4530 return 0;
4531 #endif
4532 }
4533
skb_irq_freeable(const struct sk_buff * skb)4534 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4535 {
4536 return !skb->destructor &&
4537 !secpath_exists(skb) &&
4538 !skb_nfct(skb) &&
4539 !skb->_skb_refdst &&
4540 !skb_has_frag_list(skb);
4541 }
4542
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4543 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4544 {
4545 skb->queue_mapping = queue_mapping;
4546 }
4547
skb_get_queue_mapping(const struct sk_buff * skb)4548 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4549 {
4550 return skb->queue_mapping;
4551 }
4552
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4553 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4554 {
4555 to->queue_mapping = from->queue_mapping;
4556 }
4557
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4558 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4559 {
4560 skb->queue_mapping = rx_queue + 1;
4561 }
4562
skb_get_rx_queue(const struct sk_buff * skb)4563 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4564 {
4565 return skb->queue_mapping - 1;
4566 }
4567
skb_rx_queue_recorded(const struct sk_buff * skb)4568 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4569 {
4570 return skb->queue_mapping != 0;
4571 }
4572
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4573 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4574 {
4575 skb->dst_pending_confirm = val;
4576 }
4577
skb_get_dst_pending_confirm(const struct sk_buff * skb)4578 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4579 {
4580 return skb->dst_pending_confirm != 0;
4581 }
4582
skb_sec_path(const struct sk_buff * skb)4583 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4584 {
4585 #ifdef CONFIG_XFRM
4586 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4587 #else
4588 return NULL;
4589 #endif
4590 }
4591
4592 /* Keeps track of mac header offset relative to skb->head.
4593 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4594 * For non-tunnel skb it points to skb_mac_header() and for
4595 * tunnel skb it points to outer mac header.
4596 * Keeps track of level of encapsulation of network headers.
4597 */
4598 struct skb_gso_cb {
4599 union {
4600 int mac_offset;
4601 int data_offset;
4602 };
4603 int encap_level;
4604 __wsum csum;
4605 __u16 csum_start;
4606 };
4607 #define SKB_GSO_CB_OFFSET 32
4608 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4609
skb_tnl_header_len(const struct sk_buff * inner_skb)4610 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4611 {
4612 return (skb_mac_header(inner_skb) - inner_skb->head) -
4613 SKB_GSO_CB(inner_skb)->mac_offset;
4614 }
4615
gso_pskb_expand_head(struct sk_buff * skb,int extra)4616 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4617 {
4618 int new_headroom, headroom;
4619 int ret;
4620
4621 headroom = skb_headroom(skb);
4622 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4623 if (ret)
4624 return ret;
4625
4626 new_headroom = skb_headroom(skb);
4627 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4628 return 0;
4629 }
4630
gso_reset_checksum(struct sk_buff * skb,__wsum res)4631 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4632 {
4633 /* Do not update partial checksums if remote checksum is enabled. */
4634 if (skb->remcsum_offload)
4635 return;
4636
4637 SKB_GSO_CB(skb)->csum = res;
4638 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4639 }
4640
4641 /* Compute the checksum for a gso segment. First compute the checksum value
4642 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4643 * then add in skb->csum (checksum from csum_start to end of packet).
4644 * skb->csum and csum_start are then updated to reflect the checksum of the
4645 * resultant packet starting from the transport header-- the resultant checksum
4646 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4647 * header.
4648 */
gso_make_checksum(struct sk_buff * skb,__wsum res)4649 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4650 {
4651 unsigned char *csum_start = skb_transport_header(skb);
4652 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4653 __wsum partial = SKB_GSO_CB(skb)->csum;
4654
4655 SKB_GSO_CB(skb)->csum = res;
4656 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4657
4658 return csum_fold(csum_partial(csum_start, plen, partial));
4659 }
4660
skb_is_gso(const struct sk_buff * skb)4661 static inline bool skb_is_gso(const struct sk_buff *skb)
4662 {
4663 return skb_shinfo(skb)->gso_size;
4664 }
4665
4666 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4667 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4668 {
4669 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4670 }
4671
4672 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4673 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4674 {
4675 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4676 }
4677
4678 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4679 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4680 {
4681 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4682 }
4683
skb_gso_reset(struct sk_buff * skb)4684 static inline void skb_gso_reset(struct sk_buff *skb)
4685 {
4686 skb_shinfo(skb)->gso_size = 0;
4687 skb_shinfo(skb)->gso_segs = 0;
4688 skb_shinfo(skb)->gso_type = 0;
4689 }
4690
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4691 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4692 u16 increment)
4693 {
4694 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4695 return;
4696 shinfo->gso_size += increment;
4697 }
4698
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4699 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4700 u16 decrement)
4701 {
4702 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4703 return;
4704 shinfo->gso_size -= decrement;
4705 }
4706
4707 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4708
skb_warn_if_lro(const struct sk_buff * skb)4709 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4710 {
4711 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4712 * wanted then gso_type will be set. */
4713 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4714
4715 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4716 unlikely(shinfo->gso_type == 0)) {
4717 __skb_warn_lro_forwarding(skb);
4718 return true;
4719 }
4720 return false;
4721 }
4722
skb_forward_csum(struct sk_buff * skb)4723 static inline void skb_forward_csum(struct sk_buff *skb)
4724 {
4725 /* Unfortunately we don't support this one. Any brave souls? */
4726 if (skb->ip_summed == CHECKSUM_COMPLETE)
4727 skb->ip_summed = CHECKSUM_NONE;
4728 }
4729
4730 /**
4731 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4732 * @skb: skb to check
4733 *
4734 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4735 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4736 * use this helper, to document places where we make this assertion.
4737 */
skb_checksum_none_assert(const struct sk_buff * skb)4738 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4739 {
4740 #ifdef DEBUG
4741 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4742 #endif
4743 }
4744
4745 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4746
4747 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4748 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4749 unsigned int transport_len,
4750 __sum16(*skb_chkf)(struct sk_buff *skb));
4751
4752 /**
4753 * skb_head_is_locked - Determine if the skb->head is locked down
4754 * @skb: skb to check
4755 *
4756 * The head on skbs build around a head frag can be removed if they are
4757 * not cloned. This function returns true if the skb head is locked down
4758 * due to either being allocated via kmalloc, or by being a clone with
4759 * multiple references to the head.
4760 */
skb_head_is_locked(const struct sk_buff * skb)4761 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4762 {
4763 return !skb->head_frag || skb_cloned(skb);
4764 }
4765
4766 /* Local Checksum Offload.
4767 * Compute outer checksum based on the assumption that the
4768 * inner checksum will be offloaded later.
4769 * See Documentation/networking/checksum-offloads.rst for
4770 * explanation of how this works.
4771 * Fill in outer checksum adjustment (e.g. with sum of outer
4772 * pseudo-header) before calling.
4773 * Also ensure that inner checksum is in linear data area.
4774 */
lco_csum(struct sk_buff * skb)4775 static inline __wsum lco_csum(struct sk_buff *skb)
4776 {
4777 unsigned char *csum_start = skb_checksum_start(skb);
4778 unsigned char *l4_hdr = skb_transport_header(skb);
4779 __wsum partial;
4780
4781 /* Start with complement of inner checksum adjustment */
4782 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4783 skb->csum_offset));
4784
4785 /* Add in checksum of our headers (incl. outer checksum
4786 * adjustment filled in by caller) and return result.
4787 */
4788 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4789 }
4790
skb_is_redirected(const struct sk_buff * skb)4791 static inline bool skb_is_redirected(const struct sk_buff *skb)
4792 {
4793 return skb->redirected;
4794 }
4795
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4796 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4797 {
4798 skb->redirected = 1;
4799 #ifdef CONFIG_NET_REDIRECT
4800 skb->from_ingress = from_ingress;
4801 if (skb->from_ingress)
4802 skb->tstamp = 0;
4803 #endif
4804 }
4805
skb_reset_redirect(struct sk_buff * skb)4806 static inline void skb_reset_redirect(struct sk_buff *skb)
4807 {
4808 skb->redirected = 0;
4809 }
4810
skb_csum_is_sctp(struct sk_buff * skb)4811 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4812 {
4813 return skb->csum_not_inet;
4814 }
4815
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4816 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4817 const u64 kcov_handle)
4818 {
4819 #ifdef CONFIG_KCOV
4820 skb->kcov_handle = kcov_handle;
4821 #endif
4822 }
4823
skb_get_kcov_handle(struct sk_buff * skb)4824 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4825 {
4826 #ifdef CONFIG_KCOV
4827 return skb->kcov_handle;
4828 #else
4829 return 0;
4830 #endif
4831 }
4832
4833 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)4834 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4835 {
4836 skb->pp_recycle = 1;
4837 }
4838 #endif
4839
skb_pp_recycle(struct sk_buff * skb,void * data)4840 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4841 {
4842 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4843 return false;
4844 return page_pool_return_skb_page(virt_to_page(data));
4845 }
4846
4847 #endif /* __KERNEL__ */
4848 #endif /* _LINUX_SKBUFF_H */
4849