1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113 * @irq: interrupt number to wait for
114 *
115 * This function waits for any pending IRQ handlers for this interrupt
116 * to complete before returning. If you use this function while
117 * holding a resource the IRQ handler may need you will deadlock.
118 *
119 * Can only be called from preemptible code as it might sleep when
120 * an interrupt thread is associated to @irq.
121 *
122 * It optionally makes sure (when the irq chip supports that method)
123 * that the interrupt is not pending in any CPU and waiting for
124 * service.
125 */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 struct irq_desc *desc = irq_to_desc(irq);
129
130 if (desc) {
131 __synchronize_hardirq(desc, true);
132 /*
133 * We made sure that no hardirq handler is
134 * running. Now verify that no threaded handlers are
135 * active.
136 */
137 wait_event(desc->wait_for_threads,
138 !atomic_read(&desc->threads_active));
139 }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 return false;
151 return true;
152 }
153
154 /**
155 * irq_can_set_affinity - Check if the affinity of a given irq can be set
156 * @irq: Interrupt to check
157 *
158 */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166 * @irq: Interrupt to check
167 *
168 * Like irq_can_set_affinity() above, but additionally checks for the
169 * AFFINITY_MANAGED flag.
170 */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 struct irq_desc *desc = irq_to_desc(irq);
174
175 return __irq_can_set_affinity(desc) &&
176 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180 * irq_set_thread_affinity - Notify irq threads to adjust affinity
181 * @desc: irq descriptor which has affinity changed
182 *
183 * We just set IRQTF_AFFINITY and delegate the affinity setting
184 * to the interrupt thread itself. We can not call
185 * set_cpus_allowed_ptr() here as we hold desc->lock and this
186 * code can be called from hard interrupt context.
187 */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 struct irqaction *action;
191
192 for_each_action_of_desc(desc, action)
193 if (action->thread)
194 set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203 if (!cpumask_empty(m))
204 return;
205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 chip->name, data->irq);
207 }
208
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)209 static inline void irq_init_effective_affinity(struct irq_data *data,
210 const struct cpumask *mask)
211 {
212 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
irq_validate_effective_affinity(struct irq_data * data)215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)216 static inline void irq_init_effective_affinity(struct irq_data *data,
217 const struct cpumask *mask) { }
218 #endif
219
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 bool force)
222 {
223 struct irq_desc *desc = irq_data_to_desc(data);
224 struct irq_chip *chip = irq_data_get_irq_chip(data);
225 const struct cpumask *prog_mask;
226 int ret;
227
228 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
229 static struct cpumask tmp_mask;
230
231 if (!chip || !chip->irq_set_affinity)
232 return -EINVAL;
233
234 raw_spin_lock(&tmp_mask_lock);
235 /*
236 * If this is a managed interrupt and housekeeping is enabled on
237 * it check whether the requested affinity mask intersects with
238 * a housekeeping CPU. If so, then remove the isolated CPUs from
239 * the mask and just keep the housekeeping CPU(s). This prevents
240 * the affinity setter from routing the interrupt to an isolated
241 * CPU to avoid that I/O submitted from a housekeeping CPU causes
242 * interrupts on an isolated one.
243 *
244 * If the masks do not intersect or include online CPU(s) then
245 * keep the requested mask. The isolated target CPUs are only
246 * receiving interrupts when the I/O operation was submitted
247 * directly from them.
248 *
249 * If all housekeeping CPUs in the affinity mask are offline, the
250 * interrupt will be migrated by the CPU hotplug code once a
251 * housekeeping CPU which belongs to the affinity mask comes
252 * online.
253 */
254 if (irqd_affinity_is_managed(data) &&
255 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
256 const struct cpumask *hk_mask;
257
258 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
259
260 cpumask_and(&tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = &tmp_mask;
265 } else {
266 prog_mask = mask;
267 }
268
269 /*
270 * Make sure we only provide online CPUs to the irqchip,
271 * unless we are being asked to force the affinity (in which
272 * case we do as we are told).
273 */
274 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
275 if (!force && !cpumask_empty(&tmp_mask))
276 ret = chip->irq_set_affinity(data, &tmp_mask, force);
277 else if (force)
278 ret = chip->irq_set_affinity(data, mask, force);
279 else
280 ret = -EINVAL;
281
282 raw_spin_unlock(&tmp_mask_lock);
283
284 switch (ret) {
285 case IRQ_SET_MASK_OK:
286 case IRQ_SET_MASK_OK_DONE:
287 cpumask_copy(desc->irq_common_data.affinity, mask);
288 fallthrough;
289 case IRQ_SET_MASK_OK_NOCOPY:
290 irq_validate_effective_affinity(data);
291 irq_set_thread_affinity(desc);
292 ret = 0;
293 }
294
295 return ret;
296 }
297 EXPORT_SYMBOL_GPL(irq_do_set_affinity);
298
299 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)300 static inline int irq_set_affinity_pending(struct irq_data *data,
301 const struct cpumask *dest)
302 {
303 struct irq_desc *desc = irq_data_to_desc(data);
304
305 irqd_set_move_pending(data);
306 irq_copy_pending(desc, dest);
307 return 0;
308 }
309 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)310 static inline int irq_set_affinity_pending(struct irq_data *data,
311 const struct cpumask *dest)
312 {
313 return -EBUSY;
314 }
315 #endif
316
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)317 static int irq_try_set_affinity(struct irq_data *data,
318 const struct cpumask *dest, bool force)
319 {
320 int ret = irq_do_set_affinity(data, dest, force);
321
322 /*
323 * In case that the underlying vector management is busy and the
324 * architecture supports the generic pending mechanism then utilize
325 * this to avoid returning an error to user space.
326 */
327 if (ret == -EBUSY && !force)
328 ret = irq_set_affinity_pending(data, dest);
329 return ret;
330 }
331
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)332 static bool irq_set_affinity_deactivated(struct irq_data *data,
333 const struct cpumask *mask, bool force)
334 {
335 struct irq_desc *desc = irq_data_to_desc(data);
336
337 /*
338 * Handle irq chips which can handle affinity only in activated
339 * state correctly
340 *
341 * If the interrupt is not yet activated, just store the affinity
342 * mask and do not call the chip driver at all. On activation the
343 * driver has to make sure anyway that the interrupt is in a
344 * usable state so startup works.
345 */
346 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348 return false;
349
350 cpumask_copy(desc->irq_common_data.affinity, mask);
351 irq_init_effective_affinity(data, mask);
352 irqd_set(data, IRQD_AFFINITY_SET);
353 return true;
354 }
355
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357 bool force)
358 {
359 struct irq_chip *chip = irq_data_get_irq_chip(data);
360 struct irq_desc *desc = irq_data_to_desc(data);
361 int ret = 0;
362
363 if (!chip || !chip->irq_set_affinity)
364 return -EINVAL;
365
366 if (irq_set_affinity_deactivated(data, mask, force))
367 return 0;
368
369 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370 ret = irq_try_set_affinity(data, mask, force);
371 } else {
372 irqd_set_move_pending(data);
373 irq_copy_pending(desc, mask);
374 }
375
376 if (desc->affinity_notify) {
377 kref_get(&desc->affinity_notify->kref);
378 if (!schedule_work(&desc->affinity_notify->work)) {
379 /* Work was already scheduled, drop our extra ref */
380 kref_put(&desc->affinity_notify->kref,
381 desc->affinity_notify->release);
382 }
383 }
384 irqd_set(data, IRQD_AFFINITY_SET);
385
386 return ret;
387 }
388
389 /**
390 * irq_update_affinity_desc - Update affinity management for an interrupt
391 * @irq: The interrupt number to update
392 * @affinity: Pointer to the affinity descriptor
393 *
394 * This interface can be used to configure the affinity management of
395 * interrupts which have been allocated already.
396 *
397 * There are certain limitations on when it may be used - attempts to use it
398 * for when the kernel is configured for generic IRQ reservation mode (in
399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400 * managed/non-managed interrupt accounting. In addition, attempts to use it on
401 * an interrupt which is already started or which has already been configured
402 * as managed will also fail, as these mean invalid init state or double init.
403 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)404 int irq_update_affinity_desc(unsigned int irq,
405 struct irq_affinity_desc *affinity)
406 {
407 struct irq_desc *desc;
408 unsigned long flags;
409 bool activated;
410 int ret = 0;
411
412 /*
413 * Supporting this with the reservation scheme used by x86 needs
414 * some more thought. Fail it for now.
415 */
416 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417 return -EOPNOTSUPP;
418
419 desc = irq_get_desc_buslock(irq, &flags, 0);
420 if (!desc)
421 return -EINVAL;
422
423 /* Requires the interrupt to be shut down */
424 if (irqd_is_started(&desc->irq_data)) {
425 ret = -EBUSY;
426 goto out_unlock;
427 }
428
429 /* Interrupts which are already managed cannot be modified */
430 if (irqd_affinity_is_managed(&desc->irq_data)) {
431 ret = -EBUSY;
432 goto out_unlock;
433 }
434
435 /*
436 * Deactivate the interrupt. That's required to undo
437 * anything an earlier activation has established.
438 */
439 activated = irqd_is_activated(&desc->irq_data);
440 if (activated)
441 irq_domain_deactivate_irq(&desc->irq_data);
442
443 if (affinity->is_managed) {
444 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446 }
447
448 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449
450 /* Restore the activation state */
451 if (activated)
452 irq_domain_activate_irq(&desc->irq_data, false);
453
454 out_unlock:
455 irq_put_desc_busunlock(desc, flags);
456 return ret;
457 }
458
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)459 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460 bool force)
461 {
462 struct irq_desc *desc = irq_to_desc(irq);
463 unsigned long flags;
464 int ret;
465
466 if (!desc)
467 return -EINVAL;
468
469 raw_spin_lock_irqsave(&desc->lock, flags);
470 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471 raw_spin_unlock_irqrestore(&desc->lock, flags);
472 return ret;
473 }
474
475 /**
476 * irq_set_affinity - Set the irq affinity of a given irq
477 * @irq: Interrupt to set affinity
478 * @cpumask: cpumask
479 *
480 * Fails if cpumask does not contain an online CPU
481 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)482 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483 {
484 return __irq_set_affinity(irq, cpumask, false);
485 }
486 EXPORT_SYMBOL_GPL(irq_set_affinity);
487
488 /**
489 * irq_force_affinity - Force the irq affinity of a given irq
490 * @irq: Interrupt to set affinity
491 * @cpumask: cpumask
492 *
493 * Same as irq_set_affinity, but without checking the mask against
494 * online cpus.
495 *
496 * Solely for low level cpu hotplug code, where we need to make per
497 * cpu interrupts affine before the cpu becomes online.
498 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)499 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500 {
501 return __irq_set_affinity(irq, cpumask, true);
502 }
503 EXPORT_SYMBOL_GPL(irq_force_affinity);
504
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)505 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
506 {
507 unsigned long flags;
508 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
509
510 if (!desc)
511 return -EINVAL;
512 desc->affinity_hint = m;
513 irq_put_desc_unlock(desc, flags);
514 /* set the initial affinity to prevent every interrupt being on CPU0 */
515 if (m)
516 __irq_set_affinity(irq, m, false);
517 return 0;
518 }
519 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
520
irq_affinity_notify(struct work_struct * work)521 static void irq_affinity_notify(struct work_struct *work)
522 {
523 struct irq_affinity_notify *notify =
524 container_of(work, struct irq_affinity_notify, work);
525 struct irq_desc *desc = irq_to_desc(notify->irq);
526 cpumask_var_t cpumask;
527 unsigned long flags;
528
529 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530 goto out;
531
532 raw_spin_lock_irqsave(&desc->lock, flags);
533 if (irq_move_pending(&desc->irq_data))
534 irq_get_pending(cpumask, desc);
535 else
536 cpumask_copy(cpumask, desc->irq_common_data.affinity);
537 raw_spin_unlock_irqrestore(&desc->lock, flags);
538
539 notify->notify(notify, cpumask);
540
541 free_cpumask_var(cpumask);
542 out:
543 kref_put(¬ify->kref, notify->release);
544 }
545
546 /**
547 * irq_set_affinity_notifier - control notification of IRQ affinity changes
548 * @irq: Interrupt for which to enable/disable notification
549 * @notify: Context for notification, or %NULL to disable
550 * notification. Function pointers must be initialised;
551 * the other fields will be initialised by this function.
552 *
553 * Must be called in process context. Notification may only be enabled
554 * after the IRQ is allocated and must be disabled before the IRQ is
555 * freed using free_irq().
556 */
557 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)558 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559 {
560 struct irq_desc *desc = irq_to_desc(irq);
561 struct irq_affinity_notify *old_notify;
562 unsigned long flags;
563
564 /* The release function is promised process context */
565 might_sleep();
566
567 if (!desc || desc->istate & IRQS_NMI)
568 return -EINVAL;
569
570 /* Complete initialisation of *notify */
571 if (notify) {
572 notify->irq = irq;
573 kref_init(¬ify->kref);
574 INIT_WORK(¬ify->work, irq_affinity_notify);
575 }
576
577 raw_spin_lock_irqsave(&desc->lock, flags);
578 old_notify = desc->affinity_notify;
579 desc->affinity_notify = notify;
580 raw_spin_unlock_irqrestore(&desc->lock, flags);
581
582 if (old_notify) {
583 if (cancel_work_sync(&old_notify->work)) {
584 /* Pending work had a ref, put that one too */
585 kref_put(&old_notify->kref, old_notify->release);
586 }
587 kref_put(&old_notify->kref, old_notify->release);
588 }
589
590 return 0;
591 }
592 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593
594 #ifndef CONFIG_AUTO_IRQ_AFFINITY
595 /*
596 * Generic version of the affinity autoselector.
597 */
irq_setup_affinity(struct irq_desc * desc)598 int irq_setup_affinity(struct irq_desc *desc)
599 {
600 struct cpumask *set = irq_default_affinity;
601 int ret, node = irq_desc_get_node(desc);
602 static DEFINE_RAW_SPINLOCK(mask_lock);
603 static struct cpumask mask;
604
605 /* Excludes PER_CPU and NO_BALANCE interrupts */
606 if (!__irq_can_set_affinity(desc))
607 return 0;
608
609 raw_spin_lock(&mask_lock);
610 /*
611 * Preserve the managed affinity setting and a userspace affinity
612 * setup, but make sure that one of the targets is online.
613 */
614 if (irqd_affinity_is_managed(&desc->irq_data) ||
615 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616 if (cpumask_intersects(desc->irq_common_data.affinity,
617 cpu_online_mask))
618 set = desc->irq_common_data.affinity;
619 else
620 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621 }
622
623 cpumask_and(&mask, cpu_online_mask, set);
624 if (cpumask_empty(&mask))
625 cpumask_copy(&mask, cpu_online_mask);
626
627 if (node != NUMA_NO_NODE) {
628 const struct cpumask *nodemask = cpumask_of_node(node);
629
630 /* make sure at least one of the cpus in nodemask is online */
631 if (cpumask_intersects(&mask, nodemask))
632 cpumask_and(&mask, &mask, nodemask);
633 }
634 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635 raw_spin_unlock(&mask_lock);
636 return ret;
637 }
638 #else
639 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)640 int irq_setup_affinity(struct irq_desc *desc)
641 {
642 return irq_select_affinity(irq_desc_get_irq(desc));
643 }
644 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
645 #endif /* CONFIG_SMP */
646
647
648 /**
649 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650 * @irq: interrupt number to set affinity
651 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652 * specific data for percpu_devid interrupts
653 *
654 * This function uses the vCPU specific data to set the vCPU
655 * affinity for an irq. The vCPU specific data is passed from
656 * outside, such as KVM. One example code path is as below:
657 * KVM -> IOMMU -> irq_set_vcpu_affinity().
658 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)659 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660 {
661 unsigned long flags;
662 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663 struct irq_data *data;
664 struct irq_chip *chip;
665 int ret = -ENOSYS;
666
667 if (!desc)
668 return -EINVAL;
669
670 data = irq_desc_get_irq_data(desc);
671 do {
672 chip = irq_data_get_irq_chip(data);
673 if (chip && chip->irq_set_vcpu_affinity)
674 break;
675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676 data = data->parent_data;
677 #else
678 data = NULL;
679 #endif
680 } while (data);
681
682 if (data)
683 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684 irq_put_desc_unlock(desc, flags);
685
686 return ret;
687 }
688 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689
__disable_irq(struct irq_desc * desc)690 void __disable_irq(struct irq_desc *desc)
691 {
692 if (!desc->depth++)
693 irq_disable(desc);
694 }
695
__disable_irq_nosync(unsigned int irq)696 static int __disable_irq_nosync(unsigned int irq)
697 {
698 unsigned long flags;
699 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700
701 if (!desc)
702 return -EINVAL;
703 __disable_irq(desc);
704 irq_put_desc_busunlock(desc, flags);
705 return 0;
706 }
707
708 /**
709 * disable_irq_nosync - disable an irq without waiting
710 * @irq: Interrupt to disable
711 *
712 * Disable the selected interrupt line. Disables and Enables are
713 * nested.
714 * Unlike disable_irq(), this function does not ensure existing
715 * instances of the IRQ handler have completed before returning.
716 *
717 * This function may be called from IRQ context.
718 */
disable_irq_nosync(unsigned int irq)719 void disable_irq_nosync(unsigned int irq)
720 {
721 __disable_irq_nosync(irq);
722 }
723 EXPORT_SYMBOL(disable_irq_nosync);
724
725 /**
726 * disable_irq - disable an irq and wait for completion
727 * @irq: Interrupt to disable
728 *
729 * Disable the selected interrupt line. Enables and Disables are
730 * nested.
731 * This function waits for any pending IRQ handlers for this interrupt
732 * to complete before returning. If you use this function while
733 * holding a resource the IRQ handler may need you will deadlock.
734 *
735 * This function may be called - with care - from IRQ context.
736 */
disable_irq(unsigned int irq)737 void disable_irq(unsigned int irq)
738 {
739 if (!__disable_irq_nosync(irq))
740 synchronize_irq(irq);
741 }
742 EXPORT_SYMBOL(disable_irq);
743
744 /**
745 * disable_hardirq - disables an irq and waits for hardirq completion
746 * @irq: Interrupt to disable
747 *
748 * Disable the selected interrupt line. Enables and Disables are
749 * nested.
750 * This function waits for any pending hard IRQ handlers for this
751 * interrupt to complete before returning. If you use this function while
752 * holding a resource the hard IRQ handler may need you will deadlock.
753 *
754 * When used to optimistically disable an interrupt from atomic context
755 * the return value must be checked.
756 *
757 * Returns: false if a threaded handler is active.
758 *
759 * This function may be called - with care - from IRQ context.
760 */
disable_hardirq(unsigned int irq)761 bool disable_hardirq(unsigned int irq)
762 {
763 if (!__disable_irq_nosync(irq))
764 return synchronize_hardirq(irq);
765
766 return false;
767 }
768 EXPORT_SYMBOL_GPL(disable_hardirq);
769
770 /**
771 * disable_nmi_nosync - disable an nmi without waiting
772 * @irq: Interrupt to disable
773 *
774 * Disable the selected interrupt line. Disables and enables are
775 * nested.
776 * The interrupt to disable must have been requested through request_nmi.
777 * Unlike disable_nmi(), this function does not ensure existing
778 * instances of the IRQ handler have completed before returning.
779 */
disable_nmi_nosync(unsigned int irq)780 void disable_nmi_nosync(unsigned int irq)
781 {
782 disable_irq_nosync(irq);
783 }
784
__enable_irq(struct irq_desc * desc)785 void __enable_irq(struct irq_desc *desc)
786 {
787 switch (desc->depth) {
788 case 0:
789 err_out:
790 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
791 irq_desc_get_irq(desc));
792 break;
793 case 1: {
794 if (desc->istate & IRQS_SUSPENDED)
795 goto err_out;
796 /* Prevent probing on this irq: */
797 irq_settings_set_noprobe(desc);
798 /*
799 * Call irq_startup() not irq_enable() here because the
800 * interrupt might be marked NOAUTOEN. So irq_startup()
801 * needs to be invoked when it gets enabled the first
802 * time. If it was already started up, then irq_startup()
803 * will invoke irq_enable() under the hood.
804 */
805 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
806 break;
807 }
808 default:
809 desc->depth--;
810 }
811 }
812
813 /**
814 * enable_irq - enable handling of an irq
815 * @irq: Interrupt to enable
816 *
817 * Undoes the effect of one call to disable_irq(). If this
818 * matches the last disable, processing of interrupts on this
819 * IRQ line is re-enabled.
820 *
821 * This function may be called from IRQ context only when
822 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
823 */
enable_irq(unsigned int irq)824 void enable_irq(unsigned int irq)
825 {
826 unsigned long flags;
827 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
828
829 if (!desc)
830 return;
831 if (WARN(!desc->irq_data.chip,
832 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
833 goto out;
834
835 __enable_irq(desc);
836 out:
837 irq_put_desc_busunlock(desc, flags);
838 }
839 EXPORT_SYMBOL(enable_irq);
840
841 /**
842 * enable_nmi - enable handling of an nmi
843 * @irq: Interrupt to enable
844 *
845 * The interrupt to enable must have been requested through request_nmi.
846 * Undoes the effect of one call to disable_nmi(). If this
847 * matches the last disable, processing of interrupts on this
848 * IRQ line is re-enabled.
849 */
enable_nmi(unsigned int irq)850 void enable_nmi(unsigned int irq)
851 {
852 enable_irq(irq);
853 }
854
set_irq_wake_real(unsigned int irq,unsigned int on)855 static int set_irq_wake_real(unsigned int irq, unsigned int on)
856 {
857 struct irq_desc *desc = irq_to_desc(irq);
858 int ret = -ENXIO;
859
860 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
861 return 0;
862
863 if (desc->irq_data.chip->irq_set_wake)
864 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
865
866 return ret;
867 }
868
869 /**
870 * irq_set_irq_wake - control irq power management wakeup
871 * @irq: interrupt to control
872 * @on: enable/disable power management wakeup
873 *
874 * Enable/disable power management wakeup mode, which is
875 * disabled by default. Enables and disables must match,
876 * just as they match for non-wakeup mode support.
877 *
878 * Wakeup mode lets this IRQ wake the system from sleep
879 * states like "suspend to RAM".
880 *
881 * Note: irq enable/disable state is completely orthogonal
882 * to the enable/disable state of irq wake. An irq can be
883 * disabled with disable_irq() and still wake the system as
884 * long as the irq has wake enabled. If this does not hold,
885 * then the underlying irq chip and the related driver need
886 * to be investigated.
887 */
irq_set_irq_wake(unsigned int irq,unsigned int on)888 int irq_set_irq_wake(unsigned int irq, unsigned int on)
889 {
890 unsigned long flags;
891 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
892 int ret = 0;
893
894 if (!desc)
895 return -EINVAL;
896
897 /* Don't use NMIs as wake up interrupts please */
898 if (desc->istate & IRQS_NMI) {
899 ret = -EINVAL;
900 goto out_unlock;
901 }
902
903 /* wakeup-capable irqs can be shared between drivers that
904 * don't need to have the same sleep mode behaviors.
905 */
906 if (on) {
907 if (desc->wake_depth++ == 0) {
908 ret = set_irq_wake_real(irq, on);
909 if (ret)
910 desc->wake_depth = 0;
911 else
912 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
913 }
914 } else {
915 if (desc->wake_depth == 0) {
916 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
917 } else if (--desc->wake_depth == 0) {
918 ret = set_irq_wake_real(irq, on);
919 if (ret)
920 desc->wake_depth = 1;
921 else
922 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
923 }
924 }
925
926 out_unlock:
927 irq_put_desc_busunlock(desc, flags);
928 return ret;
929 }
930 EXPORT_SYMBOL(irq_set_irq_wake);
931
932 /*
933 * Internal function that tells the architecture code whether a
934 * particular irq has been exclusively allocated or is available
935 * for driver use.
936 */
can_request_irq(unsigned int irq,unsigned long irqflags)937 int can_request_irq(unsigned int irq, unsigned long irqflags)
938 {
939 unsigned long flags;
940 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
941 int canrequest = 0;
942
943 if (!desc)
944 return 0;
945
946 if (irq_settings_can_request(desc)) {
947 if (!desc->action ||
948 irqflags & desc->action->flags & IRQF_SHARED)
949 canrequest = 1;
950 }
951 irq_put_desc_unlock(desc, flags);
952 return canrequest;
953 }
954
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)955 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
956 {
957 struct irq_chip *chip = desc->irq_data.chip;
958 int ret, unmask = 0;
959
960 if (!chip || !chip->irq_set_type) {
961 /*
962 * IRQF_TRIGGER_* but the PIC does not support multiple
963 * flow-types?
964 */
965 pr_debug("No set_type function for IRQ %d (%s)\n",
966 irq_desc_get_irq(desc),
967 chip ? (chip->name ? : "unknown") : "unknown");
968 return 0;
969 }
970
971 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
972 if (!irqd_irq_masked(&desc->irq_data))
973 mask_irq(desc);
974 if (!irqd_irq_disabled(&desc->irq_data))
975 unmask = 1;
976 }
977
978 /* Mask all flags except trigger mode */
979 flags &= IRQ_TYPE_SENSE_MASK;
980 ret = chip->irq_set_type(&desc->irq_data, flags);
981
982 switch (ret) {
983 case IRQ_SET_MASK_OK:
984 case IRQ_SET_MASK_OK_DONE:
985 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
986 irqd_set(&desc->irq_data, flags);
987 fallthrough;
988
989 case IRQ_SET_MASK_OK_NOCOPY:
990 flags = irqd_get_trigger_type(&desc->irq_data);
991 irq_settings_set_trigger_mask(desc, flags);
992 irqd_clear(&desc->irq_data, IRQD_LEVEL);
993 irq_settings_clr_level(desc);
994 if (flags & IRQ_TYPE_LEVEL_MASK) {
995 irq_settings_set_level(desc);
996 irqd_set(&desc->irq_data, IRQD_LEVEL);
997 }
998
999 ret = 0;
1000 break;
1001 default:
1002 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1003 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1004 }
1005 if (unmask)
1006 unmask_irq(desc);
1007 return ret;
1008 }
1009
1010 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1011 int irq_set_parent(int irq, int parent_irq)
1012 {
1013 unsigned long flags;
1014 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1015
1016 if (!desc)
1017 return -EINVAL;
1018
1019 desc->parent_irq = parent_irq;
1020
1021 irq_put_desc_unlock(desc, flags);
1022 return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(irq_set_parent);
1025 #endif
1026
1027 /*
1028 * Default primary interrupt handler for threaded interrupts. Is
1029 * assigned as primary handler when request_threaded_irq is called
1030 * with handler == NULL. Useful for oneshot interrupts.
1031 */
irq_default_primary_handler(int irq,void * dev_id)1032 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1033 {
1034 return IRQ_WAKE_THREAD;
1035 }
1036
1037 /*
1038 * Primary handler for nested threaded interrupts. Should never be
1039 * called.
1040 */
irq_nested_primary_handler(int irq,void * dev_id)1041 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1042 {
1043 WARN(1, "Primary handler called for nested irq %d\n", irq);
1044 return IRQ_NONE;
1045 }
1046
irq_forced_secondary_handler(int irq,void * dev_id)1047 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1048 {
1049 WARN(1, "Secondary action handler called for irq %d\n", irq);
1050 return IRQ_NONE;
1051 }
1052
irq_wait_for_interrupt(struct irqaction * action)1053 static int irq_wait_for_interrupt(struct irqaction *action)
1054 {
1055 for (;;) {
1056 set_current_state(TASK_INTERRUPTIBLE);
1057
1058 if (kthread_should_stop()) {
1059 /* may need to run one last time */
1060 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1061 &action->thread_flags)) {
1062 __set_current_state(TASK_RUNNING);
1063 return 0;
1064 }
1065 __set_current_state(TASK_RUNNING);
1066 return -1;
1067 }
1068
1069 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1070 &action->thread_flags)) {
1071 __set_current_state(TASK_RUNNING);
1072 return 0;
1073 }
1074 schedule();
1075 }
1076 }
1077
1078 /*
1079 * Oneshot interrupts keep the irq line masked until the threaded
1080 * handler finished. unmask if the interrupt has not been disabled and
1081 * is marked MASKED.
1082 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1083 static void irq_finalize_oneshot(struct irq_desc *desc,
1084 struct irqaction *action)
1085 {
1086 if (!(desc->istate & IRQS_ONESHOT) ||
1087 action->handler == irq_forced_secondary_handler)
1088 return;
1089 again:
1090 chip_bus_lock(desc);
1091 raw_spin_lock_irq(&desc->lock);
1092
1093 /*
1094 * Implausible though it may be we need to protect us against
1095 * the following scenario:
1096 *
1097 * The thread is faster done than the hard interrupt handler
1098 * on the other CPU. If we unmask the irq line then the
1099 * interrupt can come in again and masks the line, leaves due
1100 * to IRQS_INPROGRESS and the irq line is masked forever.
1101 *
1102 * This also serializes the state of shared oneshot handlers
1103 * versus "desc->threads_oneshot |= action->thread_mask;" in
1104 * irq_wake_thread(). See the comment there which explains the
1105 * serialization.
1106 */
1107 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1108 raw_spin_unlock_irq(&desc->lock);
1109 chip_bus_sync_unlock(desc);
1110 cpu_relax();
1111 goto again;
1112 }
1113
1114 /*
1115 * Now check again, whether the thread should run. Otherwise
1116 * we would clear the threads_oneshot bit of this thread which
1117 * was just set.
1118 */
1119 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1120 goto out_unlock;
1121
1122 desc->threads_oneshot &= ~action->thread_mask;
1123
1124 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1125 irqd_irq_masked(&desc->irq_data))
1126 unmask_threaded_irq(desc);
1127
1128 out_unlock:
1129 raw_spin_unlock_irq(&desc->lock);
1130 chip_bus_sync_unlock(desc);
1131 }
1132
1133 #ifdef CONFIG_SMP
1134 /*
1135 * Check whether we need to change the affinity of the interrupt thread.
1136 */
1137 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1138 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1139 {
1140 cpumask_var_t mask;
1141 bool valid = true;
1142
1143 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1144 return;
1145
1146 /*
1147 * In case we are out of memory we set IRQTF_AFFINITY again and
1148 * try again next time
1149 */
1150 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1151 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1152 return;
1153 }
1154
1155 raw_spin_lock_irq(&desc->lock);
1156 /*
1157 * This code is triggered unconditionally. Check the affinity
1158 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1159 */
1160 if (cpumask_available(desc->irq_common_data.affinity)) {
1161 const struct cpumask *m;
1162
1163 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1164 cpumask_copy(mask, m);
1165 } else {
1166 valid = false;
1167 }
1168 raw_spin_unlock_irq(&desc->lock);
1169
1170 if (valid)
1171 set_cpus_allowed_ptr(current, mask);
1172 free_cpumask_var(mask);
1173 }
1174 #else
1175 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1176 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1177 #endif
1178
1179 /*
1180 * Interrupts which are not explicitly requested as threaded
1181 * interrupts rely on the implicit bh/preempt disable of the hard irq
1182 * context. So we need to disable bh here to avoid deadlocks and other
1183 * side effects.
1184 */
1185 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1186 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1187 {
1188 irqreturn_t ret;
1189
1190 local_bh_disable();
1191 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1192 local_irq_disable();
1193 ret = action->thread_fn(action->irq, action->dev_id);
1194 if (ret == IRQ_HANDLED)
1195 atomic_inc(&desc->threads_handled);
1196
1197 irq_finalize_oneshot(desc, action);
1198 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1199 local_irq_enable();
1200 local_bh_enable();
1201 return ret;
1202 }
1203
1204 /*
1205 * Interrupts explicitly requested as threaded interrupts want to be
1206 * preemptible - many of them need to sleep and wait for slow busses to
1207 * complete.
1208 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1209 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1210 struct irqaction *action)
1211 {
1212 irqreturn_t ret;
1213
1214 ret = action->thread_fn(action->irq, action->dev_id);
1215 if (ret == IRQ_HANDLED)
1216 atomic_inc(&desc->threads_handled);
1217
1218 irq_finalize_oneshot(desc, action);
1219 return ret;
1220 }
1221
wake_threads_waitq(struct irq_desc * desc)1222 static void wake_threads_waitq(struct irq_desc *desc)
1223 {
1224 if (atomic_dec_and_test(&desc->threads_active))
1225 wake_up(&desc->wait_for_threads);
1226 }
1227
irq_thread_dtor(struct callback_head * unused)1228 static void irq_thread_dtor(struct callback_head *unused)
1229 {
1230 struct task_struct *tsk = current;
1231 struct irq_desc *desc;
1232 struct irqaction *action;
1233
1234 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1235 return;
1236
1237 action = kthread_data(tsk);
1238
1239 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1240 tsk->comm, tsk->pid, action->irq);
1241
1242
1243 desc = irq_to_desc(action->irq);
1244 /*
1245 * If IRQTF_RUNTHREAD is set, we need to decrement
1246 * desc->threads_active and wake possible waiters.
1247 */
1248 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1249 wake_threads_waitq(desc);
1250
1251 /* Prevent a stale desc->threads_oneshot */
1252 irq_finalize_oneshot(desc, action);
1253 }
1254
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1255 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1256 {
1257 struct irqaction *secondary = action->secondary;
1258
1259 if (WARN_ON_ONCE(!secondary))
1260 return;
1261
1262 raw_spin_lock_irq(&desc->lock);
1263 __irq_wake_thread(desc, secondary);
1264 raw_spin_unlock_irq(&desc->lock);
1265 }
1266
1267 /*
1268 * Internal function to notify that a interrupt thread is ready.
1269 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1270 static void irq_thread_set_ready(struct irq_desc *desc,
1271 struct irqaction *action)
1272 {
1273 set_bit(IRQTF_READY, &action->thread_flags);
1274 wake_up(&desc->wait_for_threads);
1275 }
1276
1277 /*
1278 * Internal function to wake up a interrupt thread and wait until it is
1279 * ready.
1280 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1281 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1282 struct irqaction *action)
1283 {
1284 if (!action || !action->thread)
1285 return;
1286
1287 wake_up_process(action->thread);
1288 wait_event(desc->wait_for_threads,
1289 test_bit(IRQTF_READY, &action->thread_flags));
1290 }
1291
1292 /*
1293 * Interrupt handler thread
1294 */
irq_thread(void * data)1295 static int irq_thread(void *data)
1296 {
1297 struct callback_head on_exit_work;
1298 struct irqaction *action = data;
1299 struct irq_desc *desc = irq_to_desc(action->irq);
1300 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1301 struct irqaction *action);
1302
1303 irq_thread_set_ready(desc, action);
1304
1305 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1306 &action->thread_flags))
1307 handler_fn = irq_forced_thread_fn;
1308 else
1309 handler_fn = irq_thread_fn;
1310
1311 init_task_work(&on_exit_work, irq_thread_dtor);
1312 task_work_add(current, &on_exit_work, TWA_NONE);
1313
1314 irq_thread_check_affinity(desc, action);
1315
1316 while (!irq_wait_for_interrupt(action)) {
1317 irqreturn_t action_ret;
1318
1319 irq_thread_check_affinity(desc, action);
1320
1321 action_ret = handler_fn(desc, action);
1322 if (action_ret == IRQ_WAKE_THREAD)
1323 irq_wake_secondary(desc, action);
1324
1325 wake_threads_waitq(desc);
1326 }
1327
1328 /*
1329 * This is the regular exit path. __free_irq() is stopping the
1330 * thread via kthread_stop() after calling
1331 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1332 * oneshot mask bit can be set.
1333 */
1334 task_work_cancel(current, irq_thread_dtor);
1335 return 0;
1336 }
1337
1338 /**
1339 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1340 * @irq: Interrupt line
1341 * @dev_id: Device identity for which the thread should be woken
1342 *
1343 */
irq_wake_thread(unsigned int irq,void * dev_id)1344 void irq_wake_thread(unsigned int irq, void *dev_id)
1345 {
1346 struct irq_desc *desc = irq_to_desc(irq);
1347 struct irqaction *action;
1348 unsigned long flags;
1349
1350 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1351 return;
1352
1353 raw_spin_lock_irqsave(&desc->lock, flags);
1354 for_each_action_of_desc(desc, action) {
1355 if (action->dev_id == dev_id) {
1356 if (action->thread)
1357 __irq_wake_thread(desc, action);
1358 break;
1359 }
1360 }
1361 raw_spin_unlock_irqrestore(&desc->lock, flags);
1362 }
1363 EXPORT_SYMBOL_GPL(irq_wake_thread);
1364
irq_setup_forced_threading(struct irqaction * new)1365 static int irq_setup_forced_threading(struct irqaction *new)
1366 {
1367 if (!force_irqthreads())
1368 return 0;
1369 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1370 return 0;
1371
1372 /*
1373 * No further action required for interrupts which are requested as
1374 * threaded interrupts already
1375 */
1376 if (new->handler == irq_default_primary_handler)
1377 return 0;
1378
1379 new->flags |= IRQF_ONESHOT;
1380
1381 /*
1382 * Handle the case where we have a real primary handler and a
1383 * thread handler. We force thread them as well by creating a
1384 * secondary action.
1385 */
1386 if (new->handler && new->thread_fn) {
1387 /* Allocate the secondary action */
1388 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1389 if (!new->secondary)
1390 return -ENOMEM;
1391 new->secondary->handler = irq_forced_secondary_handler;
1392 new->secondary->thread_fn = new->thread_fn;
1393 new->secondary->dev_id = new->dev_id;
1394 new->secondary->irq = new->irq;
1395 new->secondary->name = new->name;
1396 }
1397 /* Deal with the primary handler */
1398 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1399 new->thread_fn = new->handler;
1400 new->handler = irq_default_primary_handler;
1401 return 0;
1402 }
1403
irq_request_resources(struct irq_desc * desc)1404 static int irq_request_resources(struct irq_desc *desc)
1405 {
1406 struct irq_data *d = &desc->irq_data;
1407 struct irq_chip *c = d->chip;
1408
1409 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1410 }
1411
irq_release_resources(struct irq_desc * desc)1412 static void irq_release_resources(struct irq_desc *desc)
1413 {
1414 struct irq_data *d = &desc->irq_data;
1415 struct irq_chip *c = d->chip;
1416
1417 if (c->irq_release_resources)
1418 c->irq_release_resources(d);
1419 }
1420
irq_supports_nmi(struct irq_desc * desc)1421 static bool irq_supports_nmi(struct irq_desc *desc)
1422 {
1423 struct irq_data *d = irq_desc_get_irq_data(desc);
1424
1425 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1426 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1427 if (d->parent_data)
1428 return false;
1429 #endif
1430 /* Don't support NMIs for chips behind a slow bus */
1431 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1432 return false;
1433
1434 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1435 }
1436
irq_nmi_setup(struct irq_desc * desc)1437 static int irq_nmi_setup(struct irq_desc *desc)
1438 {
1439 struct irq_data *d = irq_desc_get_irq_data(desc);
1440 struct irq_chip *c = d->chip;
1441
1442 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1443 }
1444
irq_nmi_teardown(struct irq_desc * desc)1445 static void irq_nmi_teardown(struct irq_desc *desc)
1446 {
1447 struct irq_data *d = irq_desc_get_irq_data(desc);
1448 struct irq_chip *c = d->chip;
1449
1450 if (c->irq_nmi_teardown)
1451 c->irq_nmi_teardown(d);
1452 }
1453
1454 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1455 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1456 {
1457 struct task_struct *t;
1458
1459 if (!secondary) {
1460 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1461 new->name);
1462 } else {
1463 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1464 new->name);
1465 }
1466
1467 if (IS_ERR(t))
1468 return PTR_ERR(t);
1469
1470 sched_set_fifo(t);
1471
1472 /*
1473 * We keep the reference to the task struct even if
1474 * the thread dies to avoid that the interrupt code
1475 * references an already freed task_struct.
1476 */
1477 new->thread = get_task_struct(t);
1478 /*
1479 * Tell the thread to set its affinity. This is
1480 * important for shared interrupt handlers as we do
1481 * not invoke setup_affinity() for the secondary
1482 * handlers as everything is already set up. Even for
1483 * interrupts marked with IRQF_NO_BALANCE this is
1484 * correct as we want the thread to move to the cpu(s)
1485 * on which the requesting code placed the interrupt.
1486 */
1487 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488 return 0;
1489 }
1490
1491 /*
1492 * Internal function to register an irqaction - typically used to
1493 * allocate special interrupts that are part of the architecture.
1494 *
1495 * Locking rules:
1496 *
1497 * desc->request_mutex Provides serialization against a concurrent free_irq()
1498 * chip_bus_lock Provides serialization for slow bus operations
1499 * desc->lock Provides serialization against hard interrupts
1500 *
1501 * chip_bus_lock and desc->lock are sufficient for all other management and
1502 * interrupt related functions. desc->request_mutex solely serializes
1503 * request/free_irq().
1504 */
1505 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1506 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507 {
1508 struct irqaction *old, **old_ptr;
1509 unsigned long flags, thread_mask = 0;
1510 int ret, nested, shared = 0;
1511
1512 if (!desc)
1513 return -EINVAL;
1514
1515 if (desc->irq_data.chip == &no_irq_chip)
1516 return -ENOSYS;
1517 if (!try_module_get(desc->owner))
1518 return -ENODEV;
1519
1520 new->irq = irq;
1521
1522 /*
1523 * If the trigger type is not specified by the caller,
1524 * then use the default for this interrupt.
1525 */
1526 if (!(new->flags & IRQF_TRIGGER_MASK))
1527 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1528
1529 /*
1530 * Check whether the interrupt nests into another interrupt
1531 * thread.
1532 */
1533 nested = irq_settings_is_nested_thread(desc);
1534 if (nested) {
1535 if (!new->thread_fn) {
1536 ret = -EINVAL;
1537 goto out_mput;
1538 }
1539 /*
1540 * Replace the primary handler which was provided from
1541 * the driver for non nested interrupt handling by the
1542 * dummy function which warns when called.
1543 */
1544 new->handler = irq_nested_primary_handler;
1545 } else {
1546 if (irq_settings_can_thread(desc)) {
1547 ret = irq_setup_forced_threading(new);
1548 if (ret)
1549 goto out_mput;
1550 }
1551 }
1552
1553 /*
1554 * Create a handler thread when a thread function is supplied
1555 * and the interrupt does not nest into another interrupt
1556 * thread.
1557 */
1558 if (new->thread_fn && !nested) {
1559 ret = setup_irq_thread(new, irq, false);
1560 if (ret)
1561 goto out_mput;
1562 if (new->secondary) {
1563 ret = setup_irq_thread(new->secondary, irq, true);
1564 if (ret)
1565 goto out_thread;
1566 }
1567 }
1568
1569 /*
1570 * Drivers are often written to work w/o knowledge about the
1571 * underlying irq chip implementation, so a request for a
1572 * threaded irq without a primary hard irq context handler
1573 * requires the ONESHOT flag to be set. Some irq chips like
1574 * MSI based interrupts are per se one shot safe. Check the
1575 * chip flags, so we can avoid the unmask dance at the end of
1576 * the threaded handler for those.
1577 */
1578 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579 new->flags &= ~IRQF_ONESHOT;
1580
1581 /*
1582 * Protects against a concurrent __free_irq() call which might wait
1583 * for synchronize_hardirq() to complete without holding the optional
1584 * chip bus lock and desc->lock. Also protects against handing out
1585 * a recycled oneshot thread_mask bit while it's still in use by
1586 * its previous owner.
1587 */
1588 mutex_lock(&desc->request_mutex);
1589
1590 /*
1591 * Acquire bus lock as the irq_request_resources() callback below
1592 * might rely on the serialization or the magic power management
1593 * functions which are abusing the irq_bus_lock() callback,
1594 */
1595 chip_bus_lock(desc);
1596
1597 /* First installed action requests resources. */
1598 if (!desc->action) {
1599 ret = irq_request_resources(desc);
1600 if (ret) {
1601 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602 new->name, irq, desc->irq_data.chip->name);
1603 goto out_bus_unlock;
1604 }
1605 }
1606
1607 /*
1608 * The following block of code has to be executed atomically
1609 * protected against a concurrent interrupt and any of the other
1610 * management calls which are not serialized via
1611 * desc->request_mutex or the optional bus lock.
1612 */
1613 raw_spin_lock_irqsave(&desc->lock, flags);
1614 old_ptr = &desc->action;
1615 old = *old_ptr;
1616 if (old) {
1617 /*
1618 * Can't share interrupts unless both agree to and are
1619 * the same type (level, edge, polarity). So both flag
1620 * fields must have IRQF_SHARED set and the bits which
1621 * set the trigger type must match. Also all must
1622 * agree on ONESHOT.
1623 * Interrupt lines used for NMIs cannot be shared.
1624 */
1625 unsigned int oldtype;
1626
1627 if (desc->istate & IRQS_NMI) {
1628 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629 new->name, irq, desc->irq_data.chip->name);
1630 ret = -EINVAL;
1631 goto out_unlock;
1632 }
1633
1634 /*
1635 * If nobody did set the configuration before, inherit
1636 * the one provided by the requester.
1637 */
1638 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639 oldtype = irqd_get_trigger_type(&desc->irq_data);
1640 } else {
1641 oldtype = new->flags & IRQF_TRIGGER_MASK;
1642 irqd_set_trigger_type(&desc->irq_data, oldtype);
1643 }
1644
1645 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1647 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1648 goto mismatch;
1649
1650 /* All handlers must agree on per-cpuness */
1651 if ((old->flags & IRQF_PERCPU) !=
1652 (new->flags & IRQF_PERCPU))
1653 goto mismatch;
1654
1655 /* add new interrupt at end of irq queue */
1656 do {
1657 /*
1658 * Or all existing action->thread_mask bits,
1659 * so we can find the next zero bit for this
1660 * new action.
1661 */
1662 thread_mask |= old->thread_mask;
1663 old_ptr = &old->next;
1664 old = *old_ptr;
1665 } while (old);
1666 shared = 1;
1667 }
1668
1669 /*
1670 * Setup the thread mask for this irqaction for ONESHOT. For
1671 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1672 * conditional in irq_wake_thread().
1673 */
1674 if (new->flags & IRQF_ONESHOT) {
1675 /*
1676 * Unlikely to have 32 resp 64 irqs sharing one line,
1677 * but who knows.
1678 */
1679 if (thread_mask == ~0UL) {
1680 ret = -EBUSY;
1681 goto out_unlock;
1682 }
1683 /*
1684 * The thread_mask for the action is or'ed to
1685 * desc->thread_active to indicate that the
1686 * IRQF_ONESHOT thread handler has been woken, but not
1687 * yet finished. The bit is cleared when a thread
1688 * completes. When all threads of a shared interrupt
1689 * line have completed desc->threads_active becomes
1690 * zero and the interrupt line is unmasked. See
1691 * handle.c:irq_wake_thread() for further information.
1692 *
1693 * If no thread is woken by primary (hard irq context)
1694 * interrupt handlers, then desc->threads_active is
1695 * also checked for zero to unmask the irq line in the
1696 * affected hard irq flow handlers
1697 * (handle_[fasteoi|level]_irq).
1698 *
1699 * The new action gets the first zero bit of
1700 * thread_mask assigned. See the loop above which or's
1701 * all existing action->thread_mask bits.
1702 */
1703 new->thread_mask = 1UL << ffz(thread_mask);
1704
1705 } else if (new->handler == irq_default_primary_handler &&
1706 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1707 /*
1708 * The interrupt was requested with handler = NULL, so
1709 * we use the default primary handler for it. But it
1710 * does not have the oneshot flag set. In combination
1711 * with level interrupts this is deadly, because the
1712 * default primary handler just wakes the thread, then
1713 * the irq lines is reenabled, but the device still
1714 * has the level irq asserted. Rinse and repeat....
1715 *
1716 * While this works for edge type interrupts, we play
1717 * it safe and reject unconditionally because we can't
1718 * say for sure which type this interrupt really
1719 * has. The type flags are unreliable as the
1720 * underlying chip implementation can override them.
1721 */
1722 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1723 new->name, irq);
1724 ret = -EINVAL;
1725 goto out_unlock;
1726 }
1727
1728 if (!shared) {
1729 /* Setup the type (level, edge polarity) if configured: */
1730 if (new->flags & IRQF_TRIGGER_MASK) {
1731 ret = __irq_set_trigger(desc,
1732 new->flags & IRQF_TRIGGER_MASK);
1733
1734 if (ret)
1735 goto out_unlock;
1736 }
1737
1738 /*
1739 * Activate the interrupt. That activation must happen
1740 * independently of IRQ_NOAUTOEN. request_irq() can fail
1741 * and the callers are supposed to handle
1742 * that. enable_irq() of an interrupt requested with
1743 * IRQ_NOAUTOEN is not supposed to fail. The activation
1744 * keeps it in shutdown mode, it merily associates
1745 * resources if necessary and if that's not possible it
1746 * fails. Interrupts which are in managed shutdown mode
1747 * will simply ignore that activation request.
1748 */
1749 ret = irq_activate(desc);
1750 if (ret)
1751 goto out_unlock;
1752
1753 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1754 IRQS_ONESHOT | IRQS_WAITING);
1755 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1756
1757 if (new->flags & IRQF_PERCPU) {
1758 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1759 irq_settings_set_per_cpu(desc);
1760 if (new->flags & IRQF_NO_DEBUG)
1761 irq_settings_set_no_debug(desc);
1762 }
1763
1764 if (noirqdebug)
1765 irq_settings_set_no_debug(desc);
1766
1767 if (new->flags & IRQF_ONESHOT)
1768 desc->istate |= IRQS_ONESHOT;
1769
1770 /* Exclude IRQ from balancing if requested */
1771 if (new->flags & IRQF_NOBALANCING) {
1772 irq_settings_set_no_balancing(desc);
1773 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1774 }
1775
1776 if (!(new->flags & IRQF_NO_AUTOEN) &&
1777 irq_settings_can_autoenable(desc)) {
1778 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1779 } else {
1780 /*
1781 * Shared interrupts do not go well with disabling
1782 * auto enable. The sharing interrupt might request
1783 * it while it's still disabled and then wait for
1784 * interrupts forever.
1785 */
1786 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1787 /* Undo nested disables: */
1788 desc->depth = 1;
1789 }
1790
1791 } else if (new->flags & IRQF_TRIGGER_MASK) {
1792 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1793 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1794
1795 if (nmsk != omsk)
1796 /* hope the handler works with current trigger mode */
1797 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1798 irq, omsk, nmsk);
1799 }
1800
1801 *old_ptr = new;
1802
1803 irq_pm_install_action(desc, new);
1804
1805 /* Reset broken irq detection when installing new handler */
1806 desc->irq_count = 0;
1807 desc->irqs_unhandled = 0;
1808
1809 /*
1810 * Check whether we disabled the irq via the spurious handler
1811 * before. Reenable it and give it another chance.
1812 */
1813 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1814 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1815 __enable_irq(desc);
1816 }
1817
1818 raw_spin_unlock_irqrestore(&desc->lock, flags);
1819 chip_bus_sync_unlock(desc);
1820 mutex_unlock(&desc->request_mutex);
1821
1822 irq_setup_timings(desc, new);
1823
1824 wake_up_and_wait_for_irq_thread_ready(desc, new);
1825 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1826
1827 register_irq_proc(irq, desc);
1828 new->dir = NULL;
1829 register_handler_proc(irq, new);
1830 return 0;
1831
1832 mismatch:
1833 if (!(new->flags & IRQF_PROBE_SHARED)) {
1834 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1835 irq, new->flags, new->name, old->flags, old->name);
1836 #ifdef CONFIG_DEBUG_SHIRQ
1837 dump_stack();
1838 #endif
1839 }
1840 ret = -EBUSY;
1841
1842 out_unlock:
1843 raw_spin_unlock_irqrestore(&desc->lock, flags);
1844
1845 if (!desc->action)
1846 irq_release_resources(desc);
1847 out_bus_unlock:
1848 chip_bus_sync_unlock(desc);
1849 mutex_unlock(&desc->request_mutex);
1850
1851 out_thread:
1852 if (new->thread) {
1853 struct task_struct *t = new->thread;
1854
1855 new->thread = NULL;
1856 kthread_stop(t);
1857 put_task_struct(t);
1858 }
1859 if (new->secondary && new->secondary->thread) {
1860 struct task_struct *t = new->secondary->thread;
1861
1862 new->secondary->thread = NULL;
1863 kthread_stop(t);
1864 put_task_struct(t);
1865 }
1866 out_mput:
1867 module_put(desc->owner);
1868 return ret;
1869 }
1870
1871 /*
1872 * Internal function to unregister an irqaction - used to free
1873 * regular and special interrupts that are part of the architecture.
1874 */
__free_irq(struct irq_desc * desc,void * dev_id)1875 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1876 {
1877 unsigned irq = desc->irq_data.irq;
1878 struct irqaction *action, **action_ptr;
1879 unsigned long flags;
1880
1881 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1882
1883 mutex_lock(&desc->request_mutex);
1884 chip_bus_lock(desc);
1885 raw_spin_lock_irqsave(&desc->lock, flags);
1886
1887 /*
1888 * There can be multiple actions per IRQ descriptor, find the right
1889 * one based on the dev_id:
1890 */
1891 action_ptr = &desc->action;
1892 for (;;) {
1893 action = *action_ptr;
1894
1895 if (!action) {
1896 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1897 raw_spin_unlock_irqrestore(&desc->lock, flags);
1898 chip_bus_sync_unlock(desc);
1899 mutex_unlock(&desc->request_mutex);
1900 return NULL;
1901 }
1902
1903 if (action->dev_id == dev_id)
1904 break;
1905 action_ptr = &action->next;
1906 }
1907
1908 /* Found it - now remove it from the list of entries: */
1909 *action_ptr = action->next;
1910
1911 irq_pm_remove_action(desc, action);
1912
1913 /* If this was the last handler, shut down the IRQ line: */
1914 if (!desc->action) {
1915 irq_settings_clr_disable_unlazy(desc);
1916 /* Only shutdown. Deactivate after synchronize_hardirq() */
1917 irq_shutdown(desc);
1918 }
1919
1920 #ifdef CONFIG_SMP
1921 /* make sure affinity_hint is cleaned up */
1922 if (WARN_ON_ONCE(desc->affinity_hint))
1923 desc->affinity_hint = NULL;
1924 #endif
1925
1926 raw_spin_unlock_irqrestore(&desc->lock, flags);
1927 /*
1928 * Drop bus_lock here so the changes which were done in the chip
1929 * callbacks above are synced out to the irq chips which hang
1930 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1931 *
1932 * Aside of that the bus_lock can also be taken from the threaded
1933 * handler in irq_finalize_oneshot() which results in a deadlock
1934 * because kthread_stop() would wait forever for the thread to
1935 * complete, which is blocked on the bus lock.
1936 *
1937 * The still held desc->request_mutex() protects against a
1938 * concurrent request_irq() of this irq so the release of resources
1939 * and timing data is properly serialized.
1940 */
1941 chip_bus_sync_unlock(desc);
1942
1943 unregister_handler_proc(irq, action);
1944
1945 /*
1946 * Make sure it's not being used on another CPU and if the chip
1947 * supports it also make sure that there is no (not yet serviced)
1948 * interrupt in flight at the hardware level.
1949 */
1950 __synchronize_hardirq(desc, true);
1951
1952 #ifdef CONFIG_DEBUG_SHIRQ
1953 /*
1954 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1955 * event to happen even now it's being freed, so let's make sure that
1956 * is so by doing an extra call to the handler ....
1957 *
1958 * ( We do this after actually deregistering it, to make sure that a
1959 * 'real' IRQ doesn't run in parallel with our fake. )
1960 */
1961 if (action->flags & IRQF_SHARED) {
1962 local_irq_save(flags);
1963 action->handler(irq, dev_id);
1964 local_irq_restore(flags);
1965 }
1966 #endif
1967
1968 /*
1969 * The action has already been removed above, but the thread writes
1970 * its oneshot mask bit when it completes. Though request_mutex is
1971 * held across this which prevents __setup_irq() from handing out
1972 * the same bit to a newly requested action.
1973 */
1974 if (action->thread) {
1975 kthread_stop(action->thread);
1976 put_task_struct(action->thread);
1977 if (action->secondary && action->secondary->thread) {
1978 kthread_stop(action->secondary->thread);
1979 put_task_struct(action->secondary->thread);
1980 }
1981 }
1982
1983 /* Last action releases resources */
1984 if (!desc->action) {
1985 /*
1986 * Reacquire bus lock as irq_release_resources() might
1987 * require it to deallocate resources over the slow bus.
1988 */
1989 chip_bus_lock(desc);
1990 /*
1991 * There is no interrupt on the fly anymore. Deactivate it
1992 * completely.
1993 */
1994 raw_spin_lock_irqsave(&desc->lock, flags);
1995 irq_domain_deactivate_irq(&desc->irq_data);
1996 raw_spin_unlock_irqrestore(&desc->lock, flags);
1997
1998 irq_release_resources(desc);
1999 chip_bus_sync_unlock(desc);
2000 irq_remove_timings(desc);
2001 }
2002
2003 mutex_unlock(&desc->request_mutex);
2004
2005 irq_chip_pm_put(&desc->irq_data);
2006 module_put(desc->owner);
2007 kfree(action->secondary);
2008 return action;
2009 }
2010
2011 /**
2012 * free_irq - free an interrupt allocated with request_irq
2013 * @irq: Interrupt line to free
2014 * @dev_id: Device identity to free
2015 *
2016 * Remove an interrupt handler. The handler is removed and if the
2017 * interrupt line is no longer in use by any driver it is disabled.
2018 * On a shared IRQ the caller must ensure the interrupt is disabled
2019 * on the card it drives before calling this function. The function
2020 * does not return until any executing interrupts for this IRQ
2021 * have completed.
2022 *
2023 * This function must not be called from interrupt context.
2024 *
2025 * Returns the devname argument passed to request_irq.
2026 */
free_irq(unsigned int irq,void * dev_id)2027 const void *free_irq(unsigned int irq, void *dev_id)
2028 {
2029 struct irq_desc *desc = irq_to_desc(irq);
2030 struct irqaction *action;
2031 const char *devname;
2032
2033 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2034 return NULL;
2035
2036 #ifdef CONFIG_SMP
2037 if (WARN_ON(desc->affinity_notify))
2038 desc->affinity_notify = NULL;
2039 #endif
2040
2041 action = __free_irq(desc, dev_id);
2042
2043 if (!action)
2044 return NULL;
2045
2046 devname = action->name;
2047 kfree(action);
2048 return devname;
2049 }
2050 EXPORT_SYMBOL(free_irq);
2051
2052 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2053 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2054 {
2055 const char *devname = NULL;
2056
2057 desc->istate &= ~IRQS_NMI;
2058
2059 if (!WARN_ON(desc->action == NULL)) {
2060 irq_pm_remove_action(desc, desc->action);
2061 devname = desc->action->name;
2062 unregister_handler_proc(irq, desc->action);
2063
2064 kfree(desc->action);
2065 desc->action = NULL;
2066 }
2067
2068 irq_settings_clr_disable_unlazy(desc);
2069 irq_shutdown_and_deactivate(desc);
2070
2071 irq_release_resources(desc);
2072
2073 irq_chip_pm_put(&desc->irq_data);
2074 module_put(desc->owner);
2075
2076 return devname;
2077 }
2078
free_nmi(unsigned int irq,void * dev_id)2079 const void *free_nmi(unsigned int irq, void *dev_id)
2080 {
2081 struct irq_desc *desc = irq_to_desc(irq);
2082 unsigned long flags;
2083 const void *devname;
2084
2085 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2086 return NULL;
2087
2088 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2089 return NULL;
2090
2091 /* NMI still enabled */
2092 if (WARN_ON(desc->depth == 0))
2093 disable_nmi_nosync(irq);
2094
2095 raw_spin_lock_irqsave(&desc->lock, flags);
2096
2097 irq_nmi_teardown(desc);
2098 devname = __cleanup_nmi(irq, desc);
2099
2100 raw_spin_unlock_irqrestore(&desc->lock, flags);
2101
2102 return devname;
2103 }
2104
2105 /**
2106 * request_threaded_irq - allocate an interrupt line
2107 * @irq: Interrupt line to allocate
2108 * @handler: Function to be called when the IRQ occurs.
2109 * Primary handler for threaded interrupts.
2110 * If handler is NULL and thread_fn != NULL
2111 * the default primary handler is installed.
2112 * @thread_fn: Function called from the irq handler thread
2113 * If NULL, no irq thread is created
2114 * @irqflags: Interrupt type flags
2115 * @devname: An ascii name for the claiming device
2116 * @dev_id: A cookie passed back to the handler function
2117 *
2118 * This call allocates interrupt resources and enables the
2119 * interrupt line and IRQ handling. From the point this
2120 * call is made your handler function may be invoked. Since
2121 * your handler function must clear any interrupt the board
2122 * raises, you must take care both to initialise your hardware
2123 * and to set up the interrupt handler in the right order.
2124 *
2125 * If you want to set up a threaded irq handler for your device
2126 * then you need to supply @handler and @thread_fn. @handler is
2127 * still called in hard interrupt context and has to check
2128 * whether the interrupt originates from the device. If yes it
2129 * needs to disable the interrupt on the device and return
2130 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2131 * @thread_fn. This split handler design is necessary to support
2132 * shared interrupts.
2133 *
2134 * Dev_id must be globally unique. Normally the address of the
2135 * device data structure is used as the cookie. Since the handler
2136 * receives this value it makes sense to use it.
2137 *
2138 * If your interrupt is shared you must pass a non NULL dev_id
2139 * as this is required when freeing the interrupt.
2140 *
2141 * Flags:
2142 *
2143 * IRQF_SHARED Interrupt is shared
2144 * IRQF_TRIGGER_* Specify active edge(s) or level
2145 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2146 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2147 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2148 irq_handler_t thread_fn, unsigned long irqflags,
2149 const char *devname, void *dev_id)
2150 {
2151 struct irqaction *action;
2152 struct irq_desc *desc;
2153 int retval;
2154
2155 if (irq == IRQ_NOTCONNECTED)
2156 return -ENOTCONN;
2157
2158 /*
2159 * Sanity-check: shared interrupts must pass in a real dev-ID,
2160 * otherwise we'll have trouble later trying to figure out
2161 * which interrupt is which (messes up the interrupt freeing
2162 * logic etc).
2163 *
2164 * Also shared interrupts do not go well with disabling auto enable.
2165 * The sharing interrupt might request it while it's still disabled
2166 * and then wait for interrupts forever.
2167 *
2168 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2169 * it cannot be set along with IRQF_NO_SUSPEND.
2170 */
2171 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2172 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2173 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2174 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2175 return -EINVAL;
2176
2177 desc = irq_to_desc(irq);
2178 if (!desc)
2179 return -EINVAL;
2180
2181 if (!irq_settings_can_request(desc) ||
2182 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2183 return -EINVAL;
2184
2185 if (!handler) {
2186 if (!thread_fn)
2187 return -EINVAL;
2188 handler = irq_default_primary_handler;
2189 }
2190
2191 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2192 if (!action)
2193 return -ENOMEM;
2194
2195 action->handler = handler;
2196 action->thread_fn = thread_fn;
2197 action->flags = irqflags;
2198 action->name = devname;
2199 action->dev_id = dev_id;
2200
2201 retval = irq_chip_pm_get(&desc->irq_data);
2202 if (retval < 0) {
2203 kfree(action);
2204 return retval;
2205 }
2206
2207 retval = __setup_irq(irq, desc, action);
2208
2209 if (retval) {
2210 irq_chip_pm_put(&desc->irq_data);
2211 kfree(action->secondary);
2212 kfree(action);
2213 }
2214
2215 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2216 if (!retval && (irqflags & IRQF_SHARED)) {
2217 /*
2218 * It's a shared IRQ -- the driver ought to be prepared for it
2219 * to happen immediately, so let's make sure....
2220 * We disable the irq to make sure that a 'real' IRQ doesn't
2221 * run in parallel with our fake.
2222 */
2223 unsigned long flags;
2224
2225 disable_irq(irq);
2226 local_irq_save(flags);
2227
2228 handler(irq, dev_id);
2229
2230 local_irq_restore(flags);
2231 enable_irq(irq);
2232 }
2233 #endif
2234 return retval;
2235 }
2236 EXPORT_SYMBOL(request_threaded_irq);
2237
2238 /**
2239 * request_any_context_irq - allocate an interrupt line
2240 * @irq: Interrupt line to allocate
2241 * @handler: Function to be called when the IRQ occurs.
2242 * Threaded handler for threaded interrupts.
2243 * @flags: Interrupt type flags
2244 * @name: An ascii name for the claiming device
2245 * @dev_id: A cookie passed back to the handler function
2246 *
2247 * This call allocates interrupt resources and enables the
2248 * interrupt line and IRQ handling. It selects either a
2249 * hardirq or threaded handling method depending on the
2250 * context.
2251 *
2252 * On failure, it returns a negative value. On success,
2253 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2254 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2255 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2256 unsigned long flags, const char *name, void *dev_id)
2257 {
2258 struct irq_desc *desc;
2259 int ret;
2260
2261 if (irq == IRQ_NOTCONNECTED)
2262 return -ENOTCONN;
2263
2264 desc = irq_to_desc(irq);
2265 if (!desc)
2266 return -EINVAL;
2267
2268 if (irq_settings_is_nested_thread(desc)) {
2269 ret = request_threaded_irq(irq, NULL, handler,
2270 flags, name, dev_id);
2271 return !ret ? IRQC_IS_NESTED : ret;
2272 }
2273
2274 ret = request_irq(irq, handler, flags, name, dev_id);
2275 return !ret ? IRQC_IS_HARDIRQ : ret;
2276 }
2277 EXPORT_SYMBOL_GPL(request_any_context_irq);
2278
2279 /**
2280 * request_nmi - allocate an interrupt line for NMI delivery
2281 * @irq: Interrupt line to allocate
2282 * @handler: Function to be called when the IRQ occurs.
2283 * Threaded handler for threaded interrupts.
2284 * @irqflags: Interrupt type flags
2285 * @name: An ascii name for the claiming device
2286 * @dev_id: A cookie passed back to the handler function
2287 *
2288 * This call allocates interrupt resources and enables the
2289 * interrupt line and IRQ handling. It sets up the IRQ line
2290 * to be handled as an NMI.
2291 *
2292 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2293 * cannot be threaded.
2294 *
2295 * Interrupt lines requested for NMI delivering must produce per cpu
2296 * interrupts and have auto enabling setting disabled.
2297 *
2298 * Dev_id must be globally unique. Normally the address of the
2299 * device data structure is used as the cookie. Since the handler
2300 * receives this value it makes sense to use it.
2301 *
2302 * If the interrupt line cannot be used to deliver NMIs, function
2303 * will fail and return a negative value.
2304 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2305 int request_nmi(unsigned int irq, irq_handler_t handler,
2306 unsigned long irqflags, const char *name, void *dev_id)
2307 {
2308 struct irqaction *action;
2309 struct irq_desc *desc;
2310 unsigned long flags;
2311 int retval;
2312
2313 if (irq == IRQ_NOTCONNECTED)
2314 return -ENOTCONN;
2315
2316 /* NMI cannot be shared, used for Polling */
2317 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2318 return -EINVAL;
2319
2320 if (!(irqflags & IRQF_PERCPU))
2321 return -EINVAL;
2322
2323 if (!handler)
2324 return -EINVAL;
2325
2326 desc = irq_to_desc(irq);
2327
2328 if (!desc || (irq_settings_can_autoenable(desc) &&
2329 !(irqflags & IRQF_NO_AUTOEN)) ||
2330 !irq_settings_can_request(desc) ||
2331 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2332 !irq_supports_nmi(desc))
2333 return -EINVAL;
2334
2335 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2336 if (!action)
2337 return -ENOMEM;
2338
2339 action->handler = handler;
2340 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2341 action->name = name;
2342 action->dev_id = dev_id;
2343
2344 retval = irq_chip_pm_get(&desc->irq_data);
2345 if (retval < 0)
2346 goto err_out;
2347
2348 retval = __setup_irq(irq, desc, action);
2349 if (retval)
2350 goto err_irq_setup;
2351
2352 raw_spin_lock_irqsave(&desc->lock, flags);
2353
2354 /* Setup NMI state */
2355 desc->istate |= IRQS_NMI;
2356 retval = irq_nmi_setup(desc);
2357 if (retval) {
2358 __cleanup_nmi(irq, desc);
2359 raw_spin_unlock_irqrestore(&desc->lock, flags);
2360 return -EINVAL;
2361 }
2362
2363 raw_spin_unlock_irqrestore(&desc->lock, flags);
2364
2365 return 0;
2366
2367 err_irq_setup:
2368 irq_chip_pm_put(&desc->irq_data);
2369 err_out:
2370 kfree(action);
2371
2372 return retval;
2373 }
2374
enable_percpu_irq(unsigned int irq,unsigned int type)2375 void enable_percpu_irq(unsigned int irq, unsigned int type)
2376 {
2377 unsigned int cpu = smp_processor_id();
2378 unsigned long flags;
2379 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2380
2381 if (!desc)
2382 return;
2383
2384 /*
2385 * If the trigger type is not specified by the caller, then
2386 * use the default for this interrupt.
2387 */
2388 type &= IRQ_TYPE_SENSE_MASK;
2389 if (type == IRQ_TYPE_NONE)
2390 type = irqd_get_trigger_type(&desc->irq_data);
2391
2392 if (type != IRQ_TYPE_NONE) {
2393 int ret;
2394
2395 ret = __irq_set_trigger(desc, type);
2396
2397 if (ret) {
2398 WARN(1, "failed to set type for IRQ%d\n", irq);
2399 goto out;
2400 }
2401 }
2402
2403 irq_percpu_enable(desc, cpu);
2404 out:
2405 irq_put_desc_unlock(desc, flags);
2406 }
2407 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2408
enable_percpu_nmi(unsigned int irq,unsigned int type)2409 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2410 {
2411 enable_percpu_irq(irq, type);
2412 }
2413
2414 /**
2415 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2416 * @irq: Linux irq number to check for
2417 *
2418 * Must be called from a non migratable context. Returns the enable
2419 * state of a per cpu interrupt on the current cpu.
2420 */
irq_percpu_is_enabled(unsigned int irq)2421 bool irq_percpu_is_enabled(unsigned int irq)
2422 {
2423 unsigned int cpu = smp_processor_id();
2424 struct irq_desc *desc;
2425 unsigned long flags;
2426 bool is_enabled;
2427
2428 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2429 if (!desc)
2430 return false;
2431
2432 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2433 irq_put_desc_unlock(desc, flags);
2434
2435 return is_enabled;
2436 }
2437 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2438
disable_percpu_irq(unsigned int irq)2439 void disable_percpu_irq(unsigned int irq)
2440 {
2441 unsigned int cpu = smp_processor_id();
2442 unsigned long flags;
2443 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2444
2445 if (!desc)
2446 return;
2447
2448 irq_percpu_disable(desc, cpu);
2449 irq_put_desc_unlock(desc, flags);
2450 }
2451 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2452
disable_percpu_nmi(unsigned int irq)2453 void disable_percpu_nmi(unsigned int irq)
2454 {
2455 disable_percpu_irq(irq);
2456 }
2457
2458 /*
2459 * Internal function to unregister a percpu irqaction.
2460 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2461 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462 {
2463 struct irq_desc *desc = irq_to_desc(irq);
2464 struct irqaction *action;
2465 unsigned long flags;
2466
2467 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2468
2469 if (!desc)
2470 return NULL;
2471
2472 raw_spin_lock_irqsave(&desc->lock, flags);
2473
2474 action = desc->action;
2475 if (!action || action->percpu_dev_id != dev_id) {
2476 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2477 goto bad;
2478 }
2479
2480 if (!cpumask_empty(desc->percpu_enabled)) {
2481 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2482 irq, cpumask_first(desc->percpu_enabled));
2483 goto bad;
2484 }
2485
2486 /* Found it - now remove it from the list of entries: */
2487 desc->action = NULL;
2488
2489 desc->istate &= ~IRQS_NMI;
2490
2491 raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493 unregister_handler_proc(irq, action);
2494
2495 irq_chip_pm_put(&desc->irq_data);
2496 module_put(desc->owner);
2497 return action;
2498
2499 bad:
2500 raw_spin_unlock_irqrestore(&desc->lock, flags);
2501 return NULL;
2502 }
2503
2504 /**
2505 * remove_percpu_irq - free a per-cpu interrupt
2506 * @irq: Interrupt line to free
2507 * @act: irqaction for the interrupt
2508 *
2509 * Used to remove interrupts statically setup by the early boot process.
2510 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2511 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2512 {
2513 struct irq_desc *desc = irq_to_desc(irq);
2514
2515 if (desc && irq_settings_is_per_cpu_devid(desc))
2516 __free_percpu_irq(irq, act->percpu_dev_id);
2517 }
2518
2519 /**
2520 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2521 * @irq: Interrupt line to free
2522 * @dev_id: Device identity to free
2523 *
2524 * Remove a percpu interrupt handler. The handler is removed, but
2525 * the interrupt line is not disabled. This must be done on each
2526 * CPU before calling this function. The function does not return
2527 * until any executing interrupts for this IRQ have completed.
2528 *
2529 * This function must not be called from interrupt context.
2530 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2531 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2532 {
2533 struct irq_desc *desc = irq_to_desc(irq);
2534
2535 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536 return;
2537
2538 chip_bus_lock(desc);
2539 kfree(__free_percpu_irq(irq, dev_id));
2540 chip_bus_sync_unlock(desc);
2541 }
2542 EXPORT_SYMBOL_GPL(free_percpu_irq);
2543
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2544 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2545 {
2546 struct irq_desc *desc = irq_to_desc(irq);
2547
2548 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2549 return;
2550
2551 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2552 return;
2553
2554 kfree(__free_percpu_irq(irq, dev_id));
2555 }
2556
2557 /**
2558 * setup_percpu_irq - setup a per-cpu interrupt
2559 * @irq: Interrupt line to setup
2560 * @act: irqaction for the interrupt
2561 *
2562 * Used to statically setup per-cpu interrupts in the early boot process.
2563 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2564 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2565 {
2566 struct irq_desc *desc = irq_to_desc(irq);
2567 int retval;
2568
2569 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2570 return -EINVAL;
2571
2572 retval = irq_chip_pm_get(&desc->irq_data);
2573 if (retval < 0)
2574 return retval;
2575
2576 retval = __setup_irq(irq, desc, act);
2577
2578 if (retval)
2579 irq_chip_pm_put(&desc->irq_data);
2580
2581 return retval;
2582 }
2583
2584 /**
2585 * __request_percpu_irq - allocate a percpu interrupt line
2586 * @irq: Interrupt line to allocate
2587 * @handler: Function to be called when the IRQ occurs.
2588 * @flags: Interrupt type flags (IRQF_TIMER only)
2589 * @devname: An ascii name for the claiming device
2590 * @dev_id: A percpu cookie passed back to the handler function
2591 *
2592 * This call allocates interrupt resources and enables the
2593 * interrupt on the local CPU. If the interrupt is supposed to be
2594 * enabled on other CPUs, it has to be done on each CPU using
2595 * enable_percpu_irq().
2596 *
2597 * Dev_id must be globally unique. It is a per-cpu variable, and
2598 * the handler gets called with the interrupted CPU's instance of
2599 * that variable.
2600 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2601 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2602 unsigned long flags, const char *devname,
2603 void __percpu *dev_id)
2604 {
2605 struct irqaction *action;
2606 struct irq_desc *desc;
2607 int retval;
2608
2609 if (!dev_id)
2610 return -EINVAL;
2611
2612 desc = irq_to_desc(irq);
2613 if (!desc || !irq_settings_can_request(desc) ||
2614 !irq_settings_is_per_cpu_devid(desc))
2615 return -EINVAL;
2616
2617 if (flags && flags != IRQF_TIMER)
2618 return -EINVAL;
2619
2620 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621 if (!action)
2622 return -ENOMEM;
2623
2624 action->handler = handler;
2625 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2626 action->name = devname;
2627 action->percpu_dev_id = dev_id;
2628
2629 retval = irq_chip_pm_get(&desc->irq_data);
2630 if (retval < 0) {
2631 kfree(action);
2632 return retval;
2633 }
2634
2635 retval = __setup_irq(irq, desc, action);
2636
2637 if (retval) {
2638 irq_chip_pm_put(&desc->irq_data);
2639 kfree(action);
2640 }
2641
2642 return retval;
2643 }
2644 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2645
2646 /**
2647 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2648 * @irq: Interrupt line to allocate
2649 * @handler: Function to be called when the IRQ occurs.
2650 * @name: An ascii name for the claiming device
2651 * @dev_id: A percpu cookie passed back to the handler function
2652 *
2653 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2654 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2655 * being enabled on the same CPU by using enable_percpu_nmi().
2656 *
2657 * Dev_id must be globally unique. It is a per-cpu variable, and
2658 * the handler gets called with the interrupted CPU's instance of
2659 * that variable.
2660 *
2661 * Interrupt lines requested for NMI delivering should have auto enabling
2662 * setting disabled.
2663 *
2664 * If the interrupt line cannot be used to deliver NMIs, function
2665 * will fail returning a negative value.
2666 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2667 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2668 const char *name, void __percpu *dev_id)
2669 {
2670 struct irqaction *action;
2671 struct irq_desc *desc;
2672 unsigned long flags;
2673 int retval;
2674
2675 if (!handler)
2676 return -EINVAL;
2677
2678 desc = irq_to_desc(irq);
2679
2680 if (!desc || !irq_settings_can_request(desc) ||
2681 !irq_settings_is_per_cpu_devid(desc) ||
2682 irq_settings_can_autoenable(desc) ||
2683 !irq_supports_nmi(desc))
2684 return -EINVAL;
2685
2686 /* The line cannot already be NMI */
2687 if (desc->istate & IRQS_NMI)
2688 return -EINVAL;
2689
2690 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2691 if (!action)
2692 return -ENOMEM;
2693
2694 action->handler = handler;
2695 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2696 | IRQF_NOBALANCING;
2697 action->name = name;
2698 action->percpu_dev_id = dev_id;
2699
2700 retval = irq_chip_pm_get(&desc->irq_data);
2701 if (retval < 0)
2702 goto err_out;
2703
2704 retval = __setup_irq(irq, desc, action);
2705 if (retval)
2706 goto err_irq_setup;
2707
2708 raw_spin_lock_irqsave(&desc->lock, flags);
2709 desc->istate |= IRQS_NMI;
2710 raw_spin_unlock_irqrestore(&desc->lock, flags);
2711
2712 return 0;
2713
2714 err_irq_setup:
2715 irq_chip_pm_put(&desc->irq_data);
2716 err_out:
2717 kfree(action);
2718
2719 return retval;
2720 }
2721
2722 /**
2723 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2724 * @irq: Interrupt line to prepare for NMI delivery
2725 *
2726 * This call prepares an interrupt line to deliver NMI on the current CPU,
2727 * before that interrupt line gets enabled with enable_percpu_nmi().
2728 *
2729 * As a CPU local operation, this should be called from non-preemptible
2730 * context.
2731 *
2732 * If the interrupt line cannot be used to deliver NMIs, function
2733 * will fail returning a negative value.
2734 */
prepare_percpu_nmi(unsigned int irq)2735 int prepare_percpu_nmi(unsigned int irq)
2736 {
2737 unsigned long flags;
2738 struct irq_desc *desc;
2739 int ret = 0;
2740
2741 WARN_ON(preemptible());
2742
2743 desc = irq_get_desc_lock(irq, &flags,
2744 IRQ_GET_DESC_CHECK_PERCPU);
2745 if (!desc)
2746 return -EINVAL;
2747
2748 if (WARN(!(desc->istate & IRQS_NMI),
2749 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2750 irq)) {
2751 ret = -EINVAL;
2752 goto out;
2753 }
2754
2755 ret = irq_nmi_setup(desc);
2756 if (ret) {
2757 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2758 goto out;
2759 }
2760
2761 out:
2762 irq_put_desc_unlock(desc, flags);
2763 return ret;
2764 }
2765
2766 /**
2767 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2768 * @irq: Interrupt line from which CPU local NMI configuration should be
2769 * removed
2770 *
2771 * This call undoes the setup done by prepare_percpu_nmi().
2772 *
2773 * IRQ line should not be enabled for the current CPU.
2774 *
2775 * As a CPU local operation, this should be called from non-preemptible
2776 * context.
2777 */
teardown_percpu_nmi(unsigned int irq)2778 void teardown_percpu_nmi(unsigned int irq)
2779 {
2780 unsigned long flags;
2781 struct irq_desc *desc;
2782
2783 WARN_ON(preemptible());
2784
2785 desc = irq_get_desc_lock(irq, &flags,
2786 IRQ_GET_DESC_CHECK_PERCPU);
2787 if (!desc)
2788 return;
2789
2790 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2791 goto out;
2792
2793 irq_nmi_teardown(desc);
2794 out:
2795 irq_put_desc_unlock(desc, flags);
2796 }
2797
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2798 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2799 bool *state)
2800 {
2801 struct irq_chip *chip;
2802 int err = -EINVAL;
2803
2804 do {
2805 chip = irq_data_get_irq_chip(data);
2806 if (WARN_ON_ONCE(!chip))
2807 return -ENODEV;
2808 if (chip->irq_get_irqchip_state)
2809 break;
2810 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2811 data = data->parent_data;
2812 #else
2813 data = NULL;
2814 #endif
2815 } while (data);
2816
2817 if (data)
2818 err = chip->irq_get_irqchip_state(data, which, state);
2819 return err;
2820 }
2821
2822 /**
2823 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2824 * @irq: Interrupt line that is forwarded to a VM
2825 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2826 * @state: a pointer to a boolean where the state is to be stored
2827 *
2828 * This call snapshots the internal irqchip state of an
2829 * interrupt, returning into @state the bit corresponding to
2830 * stage @which
2831 *
2832 * This function should be called with preemption disabled if the
2833 * interrupt controller has per-cpu registers.
2834 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2835 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2836 bool *state)
2837 {
2838 struct irq_desc *desc;
2839 struct irq_data *data;
2840 unsigned long flags;
2841 int err = -EINVAL;
2842
2843 desc = irq_get_desc_buslock(irq, &flags, 0);
2844 if (!desc)
2845 return err;
2846
2847 data = irq_desc_get_irq_data(desc);
2848
2849 err = __irq_get_irqchip_state(data, which, state);
2850
2851 irq_put_desc_busunlock(desc, flags);
2852 return err;
2853 }
2854 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2855
2856 /**
2857 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2858 * @irq: Interrupt line that is forwarded to a VM
2859 * @which: State to be restored (one of IRQCHIP_STATE_*)
2860 * @val: Value corresponding to @which
2861 *
2862 * This call sets the internal irqchip state of an interrupt,
2863 * depending on the value of @which.
2864 *
2865 * This function should be called with preemption disabled if the
2866 * interrupt controller has per-cpu registers.
2867 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2868 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2869 bool val)
2870 {
2871 struct irq_desc *desc;
2872 struct irq_data *data;
2873 struct irq_chip *chip;
2874 unsigned long flags;
2875 int err = -EINVAL;
2876
2877 desc = irq_get_desc_buslock(irq, &flags, 0);
2878 if (!desc)
2879 return err;
2880
2881 data = irq_desc_get_irq_data(desc);
2882
2883 do {
2884 chip = irq_data_get_irq_chip(data);
2885 if (WARN_ON_ONCE(!chip)) {
2886 err = -ENODEV;
2887 goto out_unlock;
2888 }
2889 if (chip->irq_set_irqchip_state)
2890 break;
2891 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2892 data = data->parent_data;
2893 #else
2894 data = NULL;
2895 #endif
2896 } while (data);
2897
2898 if (data)
2899 err = chip->irq_set_irqchip_state(data, which, val);
2900
2901 out_unlock:
2902 irq_put_desc_busunlock(desc, flags);
2903 return err;
2904 }
2905 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2906
2907 /**
2908 * irq_has_action - Check whether an interrupt is requested
2909 * @irq: The linux irq number
2910 *
2911 * Returns: A snapshot of the current state
2912 */
irq_has_action(unsigned int irq)2913 bool irq_has_action(unsigned int irq)
2914 {
2915 bool res;
2916
2917 rcu_read_lock();
2918 res = irq_desc_has_action(irq_to_desc(irq));
2919 rcu_read_unlock();
2920 return res;
2921 }
2922 EXPORT_SYMBOL_GPL(irq_has_action);
2923
2924 /**
2925 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2926 * @irq: The linux irq number
2927 * @bitmask: The bitmask to evaluate
2928 *
2929 * Returns: True if one of the bits in @bitmask is set
2930 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2931 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2932 {
2933 struct irq_desc *desc;
2934 bool res = false;
2935
2936 rcu_read_lock();
2937 desc = irq_to_desc(irq);
2938 if (desc)
2939 res = !!(desc->status_use_accessors & bitmask);
2940 rcu_read_unlock();
2941 return res;
2942 }
2943 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2944