• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/kernel_read_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/proc_fs.h>
26 #include <linux/security.h>
27 #include <linux/seq_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/fcntl.h>
30 #include <linux/rcupdate.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/moduleparam.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/vermagic.h>
37 #include <linux/notifier.h>
38 #include <linux/sched.h>
39 #include <linux/device.h>
40 #include <linux/string.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/uaccess.h>
44 #include <asm/cacheflush.h>
45 #include <linux/set_memory.h>
46 #include <asm/mmu_context.h>
47 #include <linux/license.h>
48 #include <asm/sections.h>
49 #include <linux/tracepoint.h>
50 #include <linux/ftrace.h>
51 #include <linux/livepatch.h>
52 #include <linux/async.h>
53 #include <linux/percpu.h>
54 #include <linux/kmemleak.h>
55 #include <linux/jump_label.h>
56 #include <linux/pfn.h>
57 #include <linux/bsearch.h>
58 #include <linux/dynamic_debug.h>
59 #include <linux/audit.h>
60 #include <uapi/linux/module.h>
61 #include "module-internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65 
66 #undef CREATE_TRACE_POINTS
67 #include <trace/hooks/module.h>
68 #include <trace/hooks/memory.h>
69 
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73 
74 /*
75  * Modules' sections will be aligned on page boundaries
76  * to ensure complete separation of code and data, but
77  * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
78  */
79 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84 
85 /* If this is set, the section belongs in the init part of the module */
86 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87 
88 /*
89  * Mutex protects:
90  * 1) List of modules (also safely readable with preempt_disable),
91  * 2) module_use links,
92  * 3) module_addr_min/module_addr_max.
93  * (delete and add uses RCU list operations).
94  */
95 static DEFINE_MUTEX(module_mutex);
96 static LIST_HEAD(modules);
97 
98 /* Work queue for freeing init sections in success case */
99 static void do_free_init(struct work_struct *w);
100 static DECLARE_WORK(init_free_wq, do_free_init);
101 static LLIST_HEAD(init_free_list);
102 
103 #ifdef CONFIG_MODULES_TREE_LOOKUP
104 
105 /*
106  * Use a latched RB-tree for __module_address(); this allows us to use
107  * RCU-sched lookups of the address from any context.
108  *
109  * This is conditional on PERF_EVENTS || TRACING because those can really hit
110  * __module_address() hard by doing a lot of stack unwinding; potentially from
111  * NMI context.
112  */
113 
__mod_tree_val(struct latch_tree_node * n)114 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
115 {
116 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
117 
118 	return (unsigned long)layout->base;
119 }
120 
__mod_tree_size(struct latch_tree_node * n)121 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
122 {
123 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
124 
125 	return (unsigned long)layout->size;
126 }
127 
128 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)129 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
130 {
131 	return __mod_tree_val(a) < __mod_tree_val(b);
132 }
133 
134 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)135 mod_tree_comp(void *key, struct latch_tree_node *n)
136 {
137 	unsigned long val = (unsigned long)key;
138 	unsigned long start, end;
139 
140 	start = __mod_tree_val(n);
141 	if (val < start)
142 		return -1;
143 
144 	end = start + __mod_tree_size(n);
145 	if (val >= end)
146 		return 1;
147 
148 	return 0;
149 }
150 
151 static const struct latch_tree_ops mod_tree_ops = {
152 	.less = mod_tree_less,
153 	.comp = mod_tree_comp,
154 };
155 
156 static struct mod_tree_root {
157 	struct latch_tree_root root;
158 	unsigned long addr_min;
159 	unsigned long addr_max;
160 } mod_tree __cacheline_aligned = {
161 	.addr_min = -1UL,
162 };
163 
164 #define module_addr_min mod_tree.addr_min
165 #define module_addr_max mod_tree.addr_max
166 
__mod_tree_insert(struct mod_tree_node * node)167 static noinline void __mod_tree_insert(struct mod_tree_node *node)
168 {
169 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171 
__mod_tree_remove(struct mod_tree_node * node)172 static void __mod_tree_remove(struct mod_tree_node *node)
173 {
174 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
175 }
176 
177 /*
178  * These modifications: insert, remove_init and remove; are serialized by the
179  * module_mutex.
180  */
mod_tree_insert(struct module * mod)181 static void mod_tree_insert(struct module *mod)
182 {
183 	mod->core_layout.mtn.mod = mod;
184 	mod->init_layout.mtn.mod = mod;
185 
186 	__mod_tree_insert(&mod->core_layout.mtn);
187 	if (mod->init_layout.size)
188 		__mod_tree_insert(&mod->init_layout.mtn);
189 }
190 
mod_tree_remove_init(struct module * mod)191 static void mod_tree_remove_init(struct module *mod)
192 {
193 	if (mod->init_layout.size)
194 		__mod_tree_remove(&mod->init_layout.mtn);
195 }
196 
mod_tree_remove(struct module * mod)197 static void mod_tree_remove(struct module *mod)
198 {
199 	__mod_tree_remove(&mod->core_layout.mtn);
200 	mod_tree_remove_init(mod);
201 }
202 
mod_find(unsigned long addr)203 static struct module *mod_find(unsigned long addr)
204 {
205 	struct latch_tree_node *ltn;
206 
207 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
208 	if (!ltn)
209 		return NULL;
210 
211 	return container_of(ltn, struct mod_tree_node, node)->mod;
212 }
213 
214 #else /* MODULES_TREE_LOOKUP */
215 
216 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
217 
mod_tree_insert(struct module * mod)218 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)219 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)220 static void mod_tree_remove(struct module *mod) { }
221 
mod_find(unsigned long addr)222 static struct module *mod_find(unsigned long addr)
223 {
224 	struct module *mod;
225 
226 	list_for_each_entry_rcu(mod, &modules, list,
227 				lockdep_is_held(&module_mutex)) {
228 		if (within_module(addr, mod))
229 			return mod;
230 	}
231 
232 	return NULL;
233 }
234 
235 #endif /* MODULES_TREE_LOOKUP */
236 
237 /*
238  * Bounds of module text, for speeding up __module_address.
239  * Protected by module_mutex.
240  */
__mod_update_bounds(void * base,unsigned int size)241 static void __mod_update_bounds(void *base, unsigned int size)
242 {
243 	unsigned long min = (unsigned long)base;
244 	unsigned long max = min + size;
245 
246 	if (min < module_addr_min)
247 		module_addr_min = min;
248 	if (max > module_addr_max)
249 		module_addr_max = max;
250 }
251 
mod_update_bounds(struct module * mod)252 static void mod_update_bounds(struct module *mod)
253 {
254 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
255 	if (mod->init_layout.size)
256 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
257 }
258 
259 #ifdef CONFIG_KGDB_KDB
260 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
261 #endif /* CONFIG_KGDB_KDB */
262 
module_assert_mutex_or_preempt(void)263 static void module_assert_mutex_or_preempt(void)
264 {
265 #ifdef CONFIG_LOCKDEP
266 	if (unlikely(!debug_locks))
267 		return;
268 
269 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
270 		!lockdep_is_held(&module_mutex));
271 #endif
272 }
273 
274 #if defined(CONFIG_MODULE_SIG) && !defined(CONFIG_MODULE_SIG_PROTECT)
275 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
276 module_param(sig_enforce, bool_enable_only, 0644);
277 
set_module_sig_enforced(void)278 void set_module_sig_enforced(void)
279 {
280 	sig_enforce = true;
281 }
282 #else
283 #define sig_enforce false
284 #endif
285 
286 /*
287  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
288  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
289  */
is_module_sig_enforced(void)290 bool is_module_sig_enforced(void)
291 {
292 	return sig_enforce;
293 }
294 EXPORT_SYMBOL(is_module_sig_enforced);
295 
296 /* Block module loading/unloading? */
297 int modules_disabled = 0;
298 core_param(nomodule, modules_disabled, bint, 0);
299 
300 /* Waiting for a module to finish initializing? */
301 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
302 
303 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
304 
register_module_notifier(struct notifier_block * nb)305 int register_module_notifier(struct notifier_block *nb)
306 {
307 	return blocking_notifier_chain_register(&module_notify_list, nb);
308 }
309 EXPORT_SYMBOL(register_module_notifier);
310 
unregister_module_notifier(struct notifier_block * nb)311 int unregister_module_notifier(struct notifier_block *nb)
312 {
313 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
314 }
315 EXPORT_SYMBOL(unregister_module_notifier);
316 
317 /*
318  * We require a truly strong try_module_get(): 0 means success.
319  * Otherwise an error is returned due to ongoing or failed
320  * initialization etc.
321  */
strong_try_module_get(struct module * mod)322 static inline int strong_try_module_get(struct module *mod)
323 {
324 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
325 	if (mod && mod->state == MODULE_STATE_COMING)
326 		return -EBUSY;
327 	if (try_module_get(mod))
328 		return 0;
329 	else
330 		return -ENOENT;
331 }
332 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)333 static inline void add_taint_module(struct module *mod, unsigned flag,
334 				    enum lockdep_ok lockdep_ok)
335 {
336 	add_taint(flag, lockdep_ok);
337 	set_bit(flag, &mod->taints);
338 }
339 
340 /*
341  * A thread that wants to hold a reference to a module only while it
342  * is running can call this to safely exit.  nfsd and lockd use this.
343  */
__module_put_and_exit(struct module * mod,long code)344 void __noreturn __module_put_and_exit(struct module *mod, long code)
345 {
346 	module_put(mod);
347 	do_exit(code);
348 }
349 EXPORT_SYMBOL(__module_put_and_exit);
350 
351 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)352 static unsigned int find_sec(const struct load_info *info, const char *name)
353 {
354 	unsigned int i;
355 
356 	for (i = 1; i < info->hdr->e_shnum; i++) {
357 		Elf_Shdr *shdr = &info->sechdrs[i];
358 		/* Alloc bit cleared means "ignore it." */
359 		if ((shdr->sh_flags & SHF_ALLOC)
360 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
361 			return i;
362 	}
363 	return 0;
364 }
365 
366 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)367 static void *section_addr(const struct load_info *info, const char *name)
368 {
369 	/* Section 0 has sh_addr 0. */
370 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
371 }
372 
373 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)374 static void *section_objs(const struct load_info *info,
375 			  const char *name,
376 			  size_t object_size,
377 			  unsigned int *num)
378 {
379 	unsigned int sec = find_sec(info, name);
380 
381 	/* Section 0 has sh_addr 0 and sh_size 0. */
382 	*num = info->sechdrs[sec].sh_size / object_size;
383 	return (void *)info->sechdrs[sec].sh_addr;
384 }
385 
386 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)387 static unsigned int find_any_sec(const struct load_info *info, const char *name)
388 {
389 	unsigned int i;
390 
391 	for (i = 1; i < info->hdr->e_shnum; i++) {
392 		Elf_Shdr *shdr = &info->sechdrs[i];
393 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
394 			return i;
395 	}
396 	return 0;
397 }
398 
399 /*
400  * Find a module section, or NULL. Fill in number of "objects" in section.
401  * Ignores SHF_ALLOC flag.
402  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)403 static __maybe_unused void *any_section_objs(const struct load_info *info,
404 					     const char *name,
405 					     size_t object_size,
406 					     unsigned int *num)
407 {
408 	unsigned int sec = find_any_sec(info, name);
409 
410 	/* Section 0 has sh_addr 0 and sh_size 0. */
411 	*num = info->sechdrs[sec].sh_size / object_size;
412 	return (void *)info->sechdrs[sec].sh_addr;
413 }
414 
415 /* Provided by the linker */
416 extern const struct kernel_symbol __start___ksymtab[];
417 extern const struct kernel_symbol __stop___ksymtab[];
418 extern const struct kernel_symbol __start___ksymtab_gpl[];
419 extern const struct kernel_symbol __stop___ksymtab_gpl[];
420 extern const s32 __start___kcrctab[];
421 extern const s32 __start___kcrctab_gpl[];
422 
423 #ifndef CONFIG_MODVERSIONS
424 #define symversion(base, idx) NULL
425 #else
426 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
427 #endif
428 
429 struct symsearch {
430 	const struct kernel_symbol *start, *stop;
431 	const s32 *crcs;
432 	enum mod_license {
433 		NOT_GPL_ONLY,
434 		GPL_ONLY,
435 	} license;
436 };
437 
438 struct find_symbol_arg {
439 	/* Input */
440 	const char *name;
441 	bool gplok;
442 	bool warn;
443 
444 	/* Output */
445 	struct module *owner;
446 	const s32 *crc;
447 	const struct kernel_symbol *sym;
448 	enum mod_license license;
449 };
450 
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)451 static bool check_exported_symbol(const struct symsearch *syms,
452 				  struct module *owner,
453 				  unsigned int symnum, void *data)
454 {
455 	struct find_symbol_arg *fsa = data;
456 
457 	if (!fsa->gplok && syms->license == GPL_ONLY)
458 		return false;
459 	fsa->owner = owner;
460 	fsa->crc = symversion(syms->crcs, symnum);
461 	fsa->sym = &syms->start[symnum];
462 	fsa->license = syms->license;
463 	return true;
464 }
465 
kernel_symbol_value(const struct kernel_symbol * sym)466 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
467 {
468 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
469 	return (unsigned long)offset_to_ptr(&sym->value_offset);
470 #else
471 	return sym->value;
472 #endif
473 }
474 
kernel_symbol_name(const struct kernel_symbol * sym)475 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
476 {
477 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
478 	return offset_to_ptr(&sym->name_offset);
479 #else
480 	return sym->name;
481 #endif
482 }
483 
kernel_symbol_namespace(const struct kernel_symbol * sym)484 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
485 {
486 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
487 	if (!sym->namespace_offset)
488 		return NULL;
489 	return offset_to_ptr(&sym->namespace_offset);
490 #else
491 	return sym->namespace;
492 #endif
493 }
494 
cmp_name(const void * name,const void * sym)495 static int cmp_name(const void *name, const void *sym)
496 {
497 	return strcmp(name, kernel_symbol_name(sym));
498 }
499 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)500 static bool find_exported_symbol_in_section(const struct symsearch *syms,
501 					    struct module *owner,
502 					    void *data)
503 {
504 	struct find_symbol_arg *fsa = data;
505 	struct kernel_symbol *sym;
506 
507 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
508 			sizeof(struct kernel_symbol), cmp_name);
509 
510 	if (sym != NULL && check_exported_symbol(syms, owner,
511 						 sym - syms->start, data))
512 		return true;
513 
514 	return false;
515 }
516 
517 /*
518  * Find an exported symbol and return it, along with, (optional) crc and
519  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
520  */
find_symbol(struct find_symbol_arg * fsa)521 static bool find_symbol(struct find_symbol_arg *fsa)
522 {
523 	static const struct symsearch arr[] = {
524 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
525 		  NOT_GPL_ONLY },
526 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
527 		  __start___kcrctab_gpl,
528 		  GPL_ONLY },
529 	};
530 	struct module *mod;
531 	unsigned int i;
532 
533 	module_assert_mutex_or_preempt();
534 
535 	for (i = 0; i < ARRAY_SIZE(arr); i++)
536 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
537 			return true;
538 
539 	list_for_each_entry_rcu(mod, &modules, list,
540 				lockdep_is_held(&module_mutex)) {
541 		struct symsearch arr[] = {
542 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
543 			  NOT_GPL_ONLY },
544 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
545 			  mod->gpl_crcs,
546 			  GPL_ONLY },
547 		};
548 
549 		if (mod->state == MODULE_STATE_UNFORMED)
550 			continue;
551 
552 		for (i = 0; i < ARRAY_SIZE(arr); i++)
553 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
554 				return true;
555 	}
556 
557 	pr_debug("Failed to find symbol %s\n", fsa->name);
558 	return false;
559 }
560 
561 /*
562  * Search for module by name: must hold module_mutex (or preempt disabled
563  * for read-only access).
564  */
find_module_all(const char * name,size_t len,bool even_unformed)565 static struct module *find_module_all(const char *name, size_t len,
566 				      bool even_unformed)
567 {
568 	struct module *mod;
569 
570 	module_assert_mutex_or_preempt();
571 
572 	list_for_each_entry_rcu(mod, &modules, list,
573 				lockdep_is_held(&module_mutex)) {
574 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
575 			continue;
576 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
577 			return mod;
578 	}
579 	return NULL;
580 }
581 
find_module(const char * name)582 struct module *find_module(const char *name)
583 {
584 	return find_module_all(name, strlen(name), false);
585 }
586 
587 #ifdef CONFIG_SMP
588 
mod_percpu(struct module * mod)589 static inline void __percpu *mod_percpu(struct module *mod)
590 {
591 	return mod->percpu;
592 }
593 
percpu_modalloc(struct module * mod,struct load_info * info)594 static int percpu_modalloc(struct module *mod, struct load_info *info)
595 {
596 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
597 	unsigned long align = pcpusec->sh_addralign;
598 
599 	if (!pcpusec->sh_size)
600 		return 0;
601 
602 	if (align > PAGE_SIZE) {
603 		pr_warn("%s: per-cpu alignment %li > %li\n",
604 			mod->name, align, PAGE_SIZE);
605 		align = PAGE_SIZE;
606 	}
607 
608 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
609 	if (!mod->percpu) {
610 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
611 			mod->name, (unsigned long)pcpusec->sh_size);
612 		return -ENOMEM;
613 	}
614 	mod->percpu_size = pcpusec->sh_size;
615 	return 0;
616 }
617 
percpu_modfree(struct module * mod)618 static void percpu_modfree(struct module *mod)
619 {
620 	free_percpu(mod->percpu);
621 }
622 
find_pcpusec(struct load_info * info)623 static unsigned int find_pcpusec(struct load_info *info)
624 {
625 	return find_sec(info, ".data..percpu");
626 }
627 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)628 static void percpu_modcopy(struct module *mod,
629 			   const void *from, unsigned long size)
630 {
631 	int cpu;
632 
633 	for_each_possible_cpu(cpu)
634 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
635 }
636 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)637 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
638 {
639 	struct module *mod;
640 	unsigned int cpu;
641 
642 	preempt_disable();
643 
644 	list_for_each_entry_rcu(mod, &modules, list) {
645 		if (mod->state == MODULE_STATE_UNFORMED)
646 			continue;
647 		if (!mod->percpu_size)
648 			continue;
649 		for_each_possible_cpu(cpu) {
650 			void *start = per_cpu_ptr(mod->percpu, cpu);
651 			void *va = (void *)addr;
652 
653 			if (va >= start && va < start + mod->percpu_size) {
654 				if (can_addr) {
655 					*can_addr = (unsigned long) (va - start);
656 					*can_addr += (unsigned long)
657 						per_cpu_ptr(mod->percpu,
658 							    get_boot_cpu_id());
659 				}
660 				preempt_enable();
661 				return true;
662 			}
663 		}
664 	}
665 
666 	preempt_enable();
667 	return false;
668 }
669 
670 /**
671  * is_module_percpu_address() - test whether address is from module static percpu
672  * @addr: address to test
673  *
674  * Test whether @addr belongs to module static percpu area.
675  *
676  * Return: %true if @addr is from module static percpu area
677  */
is_module_percpu_address(unsigned long addr)678 bool is_module_percpu_address(unsigned long addr)
679 {
680 	return __is_module_percpu_address(addr, NULL);
681 }
682 
683 #else /* ... !CONFIG_SMP */
684 
mod_percpu(struct module * mod)685 static inline void __percpu *mod_percpu(struct module *mod)
686 {
687 	return NULL;
688 }
percpu_modalloc(struct module * mod,struct load_info * info)689 static int percpu_modalloc(struct module *mod, struct load_info *info)
690 {
691 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
692 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
693 		return -ENOMEM;
694 	return 0;
695 }
percpu_modfree(struct module * mod)696 static inline void percpu_modfree(struct module *mod)
697 {
698 }
find_pcpusec(struct load_info * info)699 static unsigned int find_pcpusec(struct load_info *info)
700 {
701 	return 0;
702 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)703 static inline void percpu_modcopy(struct module *mod,
704 				  const void *from, unsigned long size)
705 {
706 	/* pcpusec should be 0, and size of that section should be 0. */
707 	BUG_ON(size != 0);
708 }
is_module_percpu_address(unsigned long addr)709 bool is_module_percpu_address(unsigned long addr)
710 {
711 	return false;
712 }
713 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)714 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
715 {
716 	return false;
717 }
718 
719 #endif /* CONFIG_SMP */
720 
721 #define MODINFO_ATTR(field)	\
722 static void setup_modinfo_##field(struct module *mod, const char *s)  \
723 {                                                                     \
724 	mod->field = kstrdup(s, GFP_KERNEL);                          \
725 }                                                                     \
726 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
727 			struct module_kobject *mk, char *buffer)      \
728 {                                                                     \
729 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
730 }                                                                     \
731 static int modinfo_##field##_exists(struct module *mod)               \
732 {                                                                     \
733 	return mod->field != NULL;                                    \
734 }                                                                     \
735 static void free_modinfo_##field(struct module *mod)                  \
736 {                                                                     \
737 	kfree(mod->field);                                            \
738 	mod->field = NULL;                                            \
739 }                                                                     \
740 static struct module_attribute modinfo_##field = {                    \
741 	.attr = { .name = __stringify(field), .mode = 0444 },         \
742 	.show = show_modinfo_##field,                                 \
743 	.setup = setup_modinfo_##field,                               \
744 	.test = modinfo_##field##_exists,                             \
745 	.free = free_modinfo_##field,                                 \
746 };
747 
748 MODINFO_ATTR(version);
749 MODINFO_ATTR(srcversion);
750 MODINFO_ATTR(scmversion);
751 
752 static char last_unloaded_module[MODULE_NAME_LEN+1];
753 
754 #ifdef CONFIG_MODULE_UNLOAD
755 
756 EXPORT_TRACEPOINT_SYMBOL(module_get);
757 
758 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
759 #define MODULE_REF_BASE	1
760 
761 /* Init the unload section of the module. */
module_unload_init(struct module * mod)762 static int module_unload_init(struct module *mod)
763 {
764 	/*
765 	 * Initialize reference counter to MODULE_REF_BASE.
766 	 * refcnt == 0 means module is going.
767 	 */
768 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
769 
770 	INIT_LIST_HEAD(&mod->source_list);
771 	INIT_LIST_HEAD(&mod->target_list);
772 
773 	/* Hold reference count during initialization. */
774 	atomic_inc(&mod->refcnt);
775 
776 	return 0;
777 }
778 
779 /* Does a already use b? */
already_uses(struct module * a,struct module * b)780 static int already_uses(struct module *a, struct module *b)
781 {
782 	struct module_use *use;
783 
784 	list_for_each_entry(use, &b->source_list, source_list) {
785 		if (use->source == a) {
786 			pr_debug("%s uses %s!\n", a->name, b->name);
787 			return 1;
788 		}
789 	}
790 	pr_debug("%s does not use %s!\n", a->name, b->name);
791 	return 0;
792 }
793 
794 /*
795  * Module a uses b
796  *  - we add 'a' as a "source", 'b' as a "target" of module use
797  *  - the module_use is added to the list of 'b' sources (so
798  *    'b' can walk the list to see who sourced them), and of 'a'
799  *    targets (so 'a' can see what modules it targets).
800  */
add_module_usage(struct module * a,struct module * b)801 static int add_module_usage(struct module *a, struct module *b)
802 {
803 	struct module_use *use;
804 
805 	pr_debug("Allocating new usage for %s.\n", a->name);
806 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
807 	if (!use)
808 		return -ENOMEM;
809 
810 	use->source = a;
811 	use->target = b;
812 	list_add(&use->source_list, &b->source_list);
813 	list_add(&use->target_list, &a->target_list);
814 	return 0;
815 }
816 
817 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)818 static int ref_module(struct module *a, struct module *b)
819 {
820 	int err;
821 
822 	if (b == NULL || already_uses(a, b))
823 		return 0;
824 
825 	/* If module isn't available, we fail. */
826 	err = strong_try_module_get(b);
827 	if (err)
828 		return err;
829 
830 	err = add_module_usage(a, b);
831 	if (err) {
832 		module_put(b);
833 		return err;
834 	}
835 	return 0;
836 }
837 
838 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)839 static void module_unload_free(struct module *mod)
840 {
841 	struct module_use *use, *tmp;
842 
843 	mutex_lock(&module_mutex);
844 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
845 		struct module *i = use->target;
846 		pr_debug("%s unusing %s\n", mod->name, i->name);
847 		module_put(i);
848 		list_del(&use->source_list);
849 		list_del(&use->target_list);
850 		kfree(use);
851 	}
852 	mutex_unlock(&module_mutex);
853 }
854 
855 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)856 static inline int try_force_unload(unsigned int flags)
857 {
858 	int ret = (flags & O_TRUNC);
859 	if (ret)
860 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
861 	return ret;
862 }
863 #else
try_force_unload(unsigned int flags)864 static inline int try_force_unload(unsigned int flags)
865 {
866 	return 0;
867 }
868 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
869 
870 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)871 static int try_release_module_ref(struct module *mod)
872 {
873 	int ret;
874 
875 	/* Try to decrement refcnt which we set at loading */
876 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
877 	BUG_ON(ret < 0);
878 	if (ret)
879 		/* Someone can put this right now, recover with checking */
880 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
881 
882 	return ret;
883 }
884 
try_stop_module(struct module * mod,int flags,int * forced)885 static int try_stop_module(struct module *mod, int flags, int *forced)
886 {
887 	/* If it's not unused, quit unless we're forcing. */
888 	if (try_release_module_ref(mod) != 0) {
889 		*forced = try_force_unload(flags);
890 		if (!(*forced))
891 			return -EWOULDBLOCK;
892 	}
893 
894 	/* Mark it as dying. */
895 	mod->state = MODULE_STATE_GOING;
896 
897 	return 0;
898 }
899 
900 /**
901  * module_refcount() - return the refcount or -1 if unloading
902  * @mod:	the module we're checking
903  *
904  * Return:
905  *	-1 if the module is in the process of unloading
906  *	otherwise the number of references in the kernel to the module
907  */
module_refcount(struct module * mod)908 int module_refcount(struct module *mod)
909 {
910 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
911 }
912 EXPORT_SYMBOL(module_refcount);
913 
914 /* This exists whether we can unload or not */
915 static void free_module(struct module *mod);
916 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)917 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
918 		unsigned int, flags)
919 {
920 	struct module *mod;
921 	char name[MODULE_NAME_LEN];
922 	int ret, forced = 0;
923 
924 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
925 		return -EPERM;
926 
927 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
928 		return -EFAULT;
929 	name[MODULE_NAME_LEN-1] = '\0';
930 
931 	audit_log_kern_module(name);
932 
933 	if (mutex_lock_interruptible(&module_mutex) != 0)
934 		return -EINTR;
935 
936 	mod = find_module(name);
937 	if (!mod) {
938 		ret = -ENOENT;
939 		goto out;
940 	}
941 
942 	if (!list_empty(&mod->source_list)) {
943 		/* Other modules depend on us: get rid of them first. */
944 		ret = -EWOULDBLOCK;
945 		goto out;
946 	}
947 
948 	/* Doing init or already dying? */
949 	if (mod->state != MODULE_STATE_LIVE) {
950 		/* FIXME: if (force), slam module count damn the torpedoes */
951 		pr_debug("%s already dying\n", mod->name);
952 		ret = -EBUSY;
953 		goto out;
954 	}
955 
956 	/* If it has an init func, it must have an exit func to unload */
957 	if (mod->init && !mod->exit) {
958 		forced = try_force_unload(flags);
959 		if (!forced) {
960 			/* This module can't be removed */
961 			ret = -EBUSY;
962 			goto out;
963 		}
964 	}
965 
966 	/* Stop the machine so refcounts can't move and disable module. */
967 	ret = try_stop_module(mod, flags, &forced);
968 	if (ret != 0)
969 		goto out;
970 
971 	mutex_unlock(&module_mutex);
972 	/* Final destruction now no one is using it. */
973 	if (mod->exit != NULL)
974 		mod->exit();
975 	blocking_notifier_call_chain(&module_notify_list,
976 				     MODULE_STATE_GOING, mod);
977 	klp_module_going(mod);
978 	ftrace_release_mod(mod);
979 
980 	async_synchronize_full();
981 
982 	/* Store the name of the last unloaded module for diagnostic purposes */
983 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
984 
985 	free_module(mod);
986 	/* someone could wait for the module in add_unformed_module() */
987 	wake_up_all(&module_wq);
988 	return 0;
989 out:
990 	mutex_unlock(&module_mutex);
991 	return ret;
992 }
993 
print_unload_info(struct seq_file * m,struct module * mod)994 static inline void print_unload_info(struct seq_file *m, struct module *mod)
995 {
996 	struct module_use *use;
997 	int printed_something = 0;
998 
999 	seq_printf(m, " %i ", module_refcount(mod));
1000 
1001 	/*
1002 	 * Always include a trailing , so userspace can differentiate
1003 	 * between this and the old multi-field proc format.
1004 	 */
1005 	list_for_each_entry(use, &mod->source_list, source_list) {
1006 		printed_something = 1;
1007 		seq_printf(m, "%s,", use->source->name);
1008 	}
1009 
1010 	if (mod->init != NULL && mod->exit == NULL) {
1011 		printed_something = 1;
1012 		seq_puts(m, "[permanent],");
1013 	}
1014 
1015 	if (!printed_something)
1016 		seq_puts(m, "-");
1017 }
1018 
__symbol_put(const char * symbol)1019 void __symbol_put(const char *symbol)
1020 {
1021 	struct find_symbol_arg fsa = {
1022 		.name	= symbol,
1023 		.gplok	= true,
1024 	};
1025 
1026 	preempt_disable();
1027 	BUG_ON(!find_symbol(&fsa));
1028 	module_put(fsa.owner);
1029 	preempt_enable();
1030 }
1031 EXPORT_SYMBOL(__symbol_put);
1032 
1033 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1034 void symbol_put_addr(void *addr)
1035 {
1036 	struct module *modaddr;
1037 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1038 
1039 	if (core_kernel_text(a))
1040 		return;
1041 
1042 	/*
1043 	 * Even though we hold a reference on the module; we still need to
1044 	 * disable preemption in order to safely traverse the data structure.
1045 	 */
1046 	preempt_disable();
1047 	modaddr = __module_text_address(a);
1048 	BUG_ON(!modaddr);
1049 	module_put(modaddr);
1050 	preempt_enable();
1051 }
1052 EXPORT_SYMBOL_GPL(symbol_put_addr);
1053 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1054 static ssize_t show_refcnt(struct module_attribute *mattr,
1055 			   struct module_kobject *mk, char *buffer)
1056 {
1057 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1058 }
1059 
1060 static struct module_attribute modinfo_refcnt =
1061 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1062 
__module_get(struct module * module)1063 void __module_get(struct module *module)
1064 {
1065 	if (module) {
1066 		preempt_disable();
1067 		atomic_inc(&module->refcnt);
1068 		trace_module_get(module, _RET_IP_);
1069 		preempt_enable();
1070 	}
1071 }
1072 EXPORT_SYMBOL(__module_get);
1073 
try_module_get(struct module * module)1074 bool try_module_get(struct module *module)
1075 {
1076 	bool ret = true;
1077 
1078 	if (module) {
1079 		preempt_disable();
1080 		/* Note: here, we can fail to get a reference */
1081 		if (likely(module_is_live(module) &&
1082 			   atomic_inc_not_zero(&module->refcnt) != 0))
1083 			trace_module_get(module, _RET_IP_);
1084 		else
1085 			ret = false;
1086 
1087 		preempt_enable();
1088 	}
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL(try_module_get);
1092 
module_put(struct module * module)1093 void module_put(struct module *module)
1094 {
1095 	int ret;
1096 
1097 	if (module) {
1098 		preempt_disable();
1099 		ret = atomic_dec_if_positive(&module->refcnt);
1100 		WARN_ON(ret < 0);	/* Failed to put refcount */
1101 		trace_module_put(module, _RET_IP_);
1102 		preempt_enable();
1103 	}
1104 }
1105 EXPORT_SYMBOL(module_put);
1106 
1107 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1108 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1109 {
1110 	/* We don't know the usage count, or what modules are using. */
1111 	seq_puts(m, " - -");
1112 }
1113 
module_unload_free(struct module * mod)1114 static inline void module_unload_free(struct module *mod)
1115 {
1116 }
1117 
ref_module(struct module * a,struct module * b)1118 static int ref_module(struct module *a, struct module *b)
1119 {
1120 	return strong_try_module_get(b);
1121 }
1122 
module_unload_init(struct module * mod)1123 static inline int module_unload_init(struct module *mod)
1124 {
1125 	return 0;
1126 }
1127 #endif /* CONFIG_MODULE_UNLOAD */
1128 
module_flags_taint(struct module * mod,char * buf)1129 static size_t module_flags_taint(struct module *mod, char *buf)
1130 {
1131 	size_t l = 0;
1132 	int i;
1133 
1134 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1135 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1136 			buf[l++] = taint_flags[i].c_true;
1137 	}
1138 
1139 	return l;
1140 }
1141 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1142 static ssize_t show_initstate(struct module_attribute *mattr,
1143 			      struct module_kobject *mk, char *buffer)
1144 {
1145 	const char *state = "unknown";
1146 
1147 	switch (mk->mod->state) {
1148 	case MODULE_STATE_LIVE:
1149 		state = "live";
1150 		break;
1151 	case MODULE_STATE_COMING:
1152 		state = "coming";
1153 		break;
1154 	case MODULE_STATE_GOING:
1155 		state = "going";
1156 		break;
1157 	default:
1158 		BUG();
1159 	}
1160 	return sprintf(buffer, "%s\n", state);
1161 }
1162 
1163 static struct module_attribute modinfo_initstate =
1164 	__ATTR(initstate, 0444, show_initstate, NULL);
1165 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1166 static ssize_t store_uevent(struct module_attribute *mattr,
1167 			    struct module_kobject *mk,
1168 			    const char *buffer, size_t count)
1169 {
1170 	int rc;
1171 
1172 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1173 	return rc ? rc : count;
1174 }
1175 
1176 struct module_attribute module_uevent =
1177 	__ATTR(uevent, 0200, NULL, store_uevent);
1178 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1179 static ssize_t show_coresize(struct module_attribute *mattr,
1180 			     struct module_kobject *mk, char *buffer)
1181 {
1182 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1183 }
1184 
1185 static struct module_attribute modinfo_coresize =
1186 	__ATTR(coresize, 0444, show_coresize, NULL);
1187 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1188 static ssize_t show_initsize(struct module_attribute *mattr,
1189 			     struct module_kobject *mk, char *buffer)
1190 {
1191 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1192 }
1193 
1194 static struct module_attribute modinfo_initsize =
1195 	__ATTR(initsize, 0444, show_initsize, NULL);
1196 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1197 static ssize_t show_taint(struct module_attribute *mattr,
1198 			  struct module_kobject *mk, char *buffer)
1199 {
1200 	size_t l;
1201 
1202 	l = module_flags_taint(mk->mod, buffer);
1203 	buffer[l++] = '\n';
1204 	return l;
1205 }
1206 
1207 static struct module_attribute modinfo_taint =
1208 	__ATTR(taint, 0444, show_taint, NULL);
1209 
1210 static struct module_attribute *modinfo_attrs[] = {
1211 	&module_uevent,
1212 	&modinfo_version,
1213 	&modinfo_srcversion,
1214 	&modinfo_scmversion,
1215 	&modinfo_initstate,
1216 	&modinfo_coresize,
1217 	&modinfo_initsize,
1218 	&modinfo_taint,
1219 #ifdef CONFIG_MODULE_UNLOAD
1220 	&modinfo_refcnt,
1221 #endif
1222 	NULL,
1223 };
1224 
1225 static const char vermagic[] = VERMAGIC_STRING;
1226 
try_to_force_load(struct module * mod,const char * reason)1227 static int try_to_force_load(struct module *mod, const char *reason)
1228 {
1229 #ifdef CONFIG_MODULE_FORCE_LOAD
1230 	if (!test_taint(TAINT_FORCED_MODULE))
1231 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1232 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1233 	return 0;
1234 #else
1235 	return -ENOEXEC;
1236 #endif
1237 }
1238 
1239 #ifdef CONFIG_MODVERSIONS
1240 
resolve_rel_crc(const s32 * crc)1241 static u32 resolve_rel_crc(const s32 *crc)
1242 {
1243 	return *(u32 *)((void *)crc + *crc);
1244 }
1245 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1246 static int check_version(const struct load_info *info,
1247 			 const char *symname,
1248 			 struct module *mod,
1249 			 const s32 *crc)
1250 {
1251 	Elf_Shdr *sechdrs = info->sechdrs;
1252 	unsigned int versindex = info->index.vers;
1253 	unsigned int i, num_versions;
1254 	struct modversion_info *versions;
1255 
1256 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1257 	if (!crc)
1258 		return 1;
1259 
1260 	/* No versions at all?  modprobe --force does this. */
1261 	if (versindex == 0)
1262 		return try_to_force_load(mod, symname) == 0;
1263 
1264 	versions = (void *) sechdrs[versindex].sh_addr;
1265 	num_versions = sechdrs[versindex].sh_size
1266 		/ sizeof(struct modversion_info);
1267 
1268 	for (i = 0; i < num_versions; i++) {
1269 		u32 crcval;
1270 
1271 		if (strcmp(versions[i].name, symname) != 0)
1272 			continue;
1273 
1274 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1275 			crcval = resolve_rel_crc(crc);
1276 		else
1277 			crcval = *crc;
1278 		if (versions[i].crc == crcval)
1279 			return 1;
1280 		pr_debug("Found checksum %X vs module %lX\n",
1281 			 crcval, versions[i].crc);
1282 		goto bad_version;
1283 	}
1284 
1285 	/* Broken toolchain. Warn once, then let it go.. */
1286 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1287 	return 1;
1288 
1289 bad_version:
1290 	pr_warn("%s: disagrees about version of symbol %s\n",
1291 	       info->name, symname);
1292 	return 0;
1293 }
1294 
check_modstruct_version(const struct load_info * info,struct module * mod)1295 static inline int check_modstruct_version(const struct load_info *info,
1296 					  struct module *mod)
1297 {
1298 	struct find_symbol_arg fsa = {
1299 		.name	= "module_layout",
1300 		.gplok	= true,
1301 	};
1302 
1303 	/*
1304 	 * Since this should be found in kernel (which can't be removed), no
1305 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1306 	 */
1307 	preempt_disable();
1308 	if (!find_symbol(&fsa)) {
1309 		preempt_enable();
1310 		BUG();
1311 	}
1312 	preempt_enable();
1313 	return check_version(info, "module_layout", mod, fsa.crc);
1314 }
1315 
1316 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1317 static inline int same_magic(const char *amagic, const char *bmagic,
1318 			     bool has_crcs)
1319 {
1320 	if (has_crcs) {
1321 		amagic += strcspn(amagic, " ");
1322 		bmagic += strcspn(bmagic, " ");
1323 	}
1324 	return strcmp(amagic, bmagic) == 0;
1325 }
1326 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1327 static inline int check_version(const struct load_info *info,
1328 				const char *symname,
1329 				struct module *mod,
1330 				const s32 *crc)
1331 {
1332 	return 1;
1333 }
1334 
check_modstruct_version(const struct load_info * info,struct module * mod)1335 static inline int check_modstruct_version(const struct load_info *info,
1336 					  struct module *mod)
1337 {
1338 	return 1;
1339 }
1340 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1341 static inline int same_magic(const char *amagic, const char *bmagic,
1342 			     bool has_crcs)
1343 {
1344 	return strcmp(amagic, bmagic) == 0;
1345 }
1346 #endif /* CONFIG_MODVERSIONS */
1347 
1348 static char *get_modinfo(const struct load_info *info, const char *tag);
1349 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1350 			      char *prev);
1351 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1352 static int verify_namespace_is_imported(const struct load_info *info,
1353 					const struct kernel_symbol *sym,
1354 					struct module *mod)
1355 {
1356 	const char *namespace;
1357 	char *imported_namespace;
1358 
1359 	namespace = kernel_symbol_namespace(sym);
1360 	if (namespace && namespace[0]) {
1361 		imported_namespace = get_modinfo(info, "import_ns");
1362 		while (imported_namespace) {
1363 			if (strcmp(namespace, imported_namespace) == 0)
1364 				return 0;
1365 			imported_namespace = get_next_modinfo(
1366 				info, "import_ns", imported_namespace);
1367 		}
1368 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1369 		pr_warn(
1370 #else
1371 		pr_err(
1372 #endif
1373 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1374 			mod->name, kernel_symbol_name(sym), namespace);
1375 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1376 		return -EINVAL;
1377 #endif
1378 	}
1379 	return 0;
1380 }
1381 
inherit_taint(struct module * mod,struct module * owner)1382 static bool inherit_taint(struct module *mod, struct module *owner)
1383 {
1384 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1385 		return true;
1386 
1387 	if (mod->using_gplonly_symbols) {
1388 		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1389 			mod->name, owner->name);
1390 		return false;
1391 	}
1392 
1393 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1394 		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1395 			mod->name, owner->name);
1396 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1397 	}
1398 	return true;
1399 }
1400 
1401 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1402 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1403 						  const struct load_info *info,
1404 						  const char *name,
1405 						  char ownername[])
1406 {
1407 	struct find_symbol_arg fsa = {
1408 		.name	= name,
1409 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1410 		.warn	= true,
1411 	};
1412 	int err;
1413 
1414 	/*
1415 	 * The module_mutex should not be a heavily contended lock;
1416 	 * if we get the occasional sleep here, we'll go an extra iteration
1417 	 * in the wait_event_interruptible(), which is harmless.
1418 	 */
1419 	sched_annotate_sleep();
1420 	mutex_lock(&module_mutex);
1421 	if (!find_symbol(&fsa))
1422 		goto unlock;
1423 
1424 	if (fsa.license == GPL_ONLY)
1425 		mod->using_gplonly_symbols = true;
1426 
1427 	if (!inherit_taint(mod, fsa.owner)) {
1428 		fsa.sym = NULL;
1429 		goto getname;
1430 	}
1431 
1432 	if (!check_version(info, name, mod, fsa.crc)) {
1433 		fsa.sym = ERR_PTR(-EINVAL);
1434 		goto getname;
1435 	}
1436 
1437 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1438 	if (err) {
1439 		fsa.sym = ERR_PTR(err);
1440 		goto getname;
1441 	}
1442 
1443 	/*
1444 	 * ANDROID: GKI:
1445 	 * In case of an unsigned module symbol resolves only if:
1446 	 * 1. Symbol is in the list of unprotected symbol list OR
1447 	 * 2. If symbol owner is not NULL i.e. owner is another module;
1448 	 *    it has to be an unsigned module and not signed GKI module
1449 	 *    to protect symbols exported by signed GKI modules.
1450 	 */
1451 	if (!mod->sig_ok &&
1452 	    !gki_is_module_unprotected_symbol(name) &&
1453 	    fsa.owner && fsa.owner->sig_ok) {
1454 		fsa.sym = ERR_PTR(-EACCES);
1455 		goto getname;
1456 	}
1457 
1458 	err = ref_module(mod, fsa.owner);
1459 	if (err) {
1460 		fsa.sym = ERR_PTR(err);
1461 		goto getname;
1462 	}
1463 
1464 getname:
1465 	/* We must make copy under the lock if we failed to get ref. */
1466 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1467 unlock:
1468 	mutex_unlock(&module_mutex);
1469 	return fsa.sym;
1470 }
1471 
1472 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1473 resolve_symbol_wait(struct module *mod,
1474 		    const struct load_info *info,
1475 		    const char *name)
1476 {
1477 	const struct kernel_symbol *ksym;
1478 	char owner[MODULE_NAME_LEN];
1479 
1480 	if (wait_event_interruptible_timeout(module_wq,
1481 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1482 			|| PTR_ERR(ksym) != -EBUSY,
1483 					     30 * HZ) <= 0) {
1484 		pr_warn("%s: gave up waiting for init of module %s.\n",
1485 			mod->name, owner);
1486 	}
1487 	return ksym;
1488 }
1489 
1490 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1491 static inline bool sect_empty(const Elf_Shdr *sect)
1492 {
1493 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1494 }
1495 #endif
1496 
1497 /*
1498  * /sys/module/foo/sections stuff
1499  * J. Corbet <corbet@lwn.net>
1500  */
1501 #ifdef CONFIG_SYSFS
1502 
1503 #ifdef CONFIG_KALLSYMS
1504 struct module_sect_attr {
1505 	struct bin_attribute battr;
1506 	unsigned long address;
1507 };
1508 
1509 struct module_sect_attrs {
1510 	struct attribute_group grp;
1511 	unsigned int nsections;
1512 	struct module_sect_attr attrs[];
1513 };
1514 
1515 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1516 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1517 				struct bin_attribute *battr,
1518 				char *buf, loff_t pos, size_t count)
1519 {
1520 	struct module_sect_attr *sattr =
1521 		container_of(battr, struct module_sect_attr, battr);
1522 	char bounce[MODULE_SECT_READ_SIZE + 1];
1523 	size_t wrote;
1524 
1525 	if (pos != 0)
1526 		return -EINVAL;
1527 
1528 	/*
1529 	 * Since we're a binary read handler, we must account for the
1530 	 * trailing NUL byte that sprintf will write: if "buf" is
1531 	 * too small to hold the NUL, or the NUL is exactly the last
1532 	 * byte, the read will look like it got truncated by one byte.
1533 	 * Since there is no way to ask sprintf nicely to not write
1534 	 * the NUL, we have to use a bounce buffer.
1535 	 */
1536 	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1537 			 kallsyms_show_value(file->f_cred)
1538 				? (void *)sattr->address : NULL);
1539 	count = min(count, wrote);
1540 	memcpy(buf, bounce, count);
1541 
1542 	return count;
1543 }
1544 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1545 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1546 {
1547 	unsigned int section;
1548 
1549 	for (section = 0; section < sect_attrs->nsections; section++)
1550 		kfree(sect_attrs->attrs[section].battr.attr.name);
1551 	kfree(sect_attrs);
1552 }
1553 
add_sect_attrs(struct module * mod,const struct load_info * info)1554 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1555 {
1556 	unsigned int nloaded = 0, i, size[2];
1557 	struct module_sect_attrs *sect_attrs;
1558 	struct module_sect_attr *sattr;
1559 	struct bin_attribute **gattr;
1560 
1561 	/* Count loaded sections and allocate structures */
1562 	for (i = 0; i < info->hdr->e_shnum; i++)
1563 		if (!sect_empty(&info->sechdrs[i]))
1564 			nloaded++;
1565 	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1566 			sizeof(sect_attrs->grp.bin_attrs[0]));
1567 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1568 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1569 	if (sect_attrs == NULL)
1570 		return;
1571 
1572 	/* Setup section attributes. */
1573 	sect_attrs->grp.name = "sections";
1574 	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1575 
1576 	sect_attrs->nsections = 0;
1577 	sattr = &sect_attrs->attrs[0];
1578 	gattr = &sect_attrs->grp.bin_attrs[0];
1579 	for (i = 0; i < info->hdr->e_shnum; i++) {
1580 		Elf_Shdr *sec = &info->sechdrs[i];
1581 		if (sect_empty(sec))
1582 			continue;
1583 		sysfs_bin_attr_init(&sattr->battr);
1584 		sattr->address = sec->sh_addr;
1585 		sattr->battr.attr.name =
1586 			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1587 		if (sattr->battr.attr.name == NULL)
1588 			goto out;
1589 		sect_attrs->nsections++;
1590 		sattr->battr.read = module_sect_read;
1591 		sattr->battr.size = MODULE_SECT_READ_SIZE;
1592 		sattr->battr.attr.mode = 0400;
1593 		*(gattr++) = &(sattr++)->battr;
1594 	}
1595 	*gattr = NULL;
1596 
1597 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1598 		goto out;
1599 
1600 	mod->sect_attrs = sect_attrs;
1601 	return;
1602   out:
1603 	free_sect_attrs(sect_attrs);
1604 }
1605 
remove_sect_attrs(struct module * mod)1606 static void remove_sect_attrs(struct module *mod)
1607 {
1608 	if (mod->sect_attrs) {
1609 		sysfs_remove_group(&mod->mkobj.kobj,
1610 				   &mod->sect_attrs->grp);
1611 		/*
1612 		 * We are positive that no one is using any sect attrs
1613 		 * at this point.  Deallocate immediately.
1614 		 */
1615 		free_sect_attrs(mod->sect_attrs);
1616 		mod->sect_attrs = NULL;
1617 	}
1618 }
1619 
1620 /*
1621  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1622  */
1623 
1624 struct module_notes_attrs {
1625 	struct kobject *dir;
1626 	unsigned int notes;
1627 	struct bin_attribute attrs[];
1628 };
1629 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1630 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1631 				 struct bin_attribute *bin_attr,
1632 				 char *buf, loff_t pos, size_t count)
1633 {
1634 	/*
1635 	 * The caller checked the pos and count against our size.
1636 	 */
1637 	memcpy(buf, bin_attr->private + pos, count);
1638 	return count;
1639 }
1640 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1641 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1642 			     unsigned int i)
1643 {
1644 	if (notes_attrs->dir) {
1645 		while (i-- > 0)
1646 			sysfs_remove_bin_file(notes_attrs->dir,
1647 					      &notes_attrs->attrs[i]);
1648 		kobject_put(notes_attrs->dir);
1649 	}
1650 	kfree(notes_attrs);
1651 }
1652 
add_notes_attrs(struct module * mod,const struct load_info * info)1653 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1654 {
1655 	unsigned int notes, loaded, i;
1656 	struct module_notes_attrs *notes_attrs;
1657 	struct bin_attribute *nattr;
1658 
1659 	/* failed to create section attributes, so can't create notes */
1660 	if (!mod->sect_attrs)
1661 		return;
1662 
1663 	/* Count notes sections and allocate structures.  */
1664 	notes = 0;
1665 	for (i = 0; i < info->hdr->e_shnum; i++)
1666 		if (!sect_empty(&info->sechdrs[i]) &&
1667 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1668 			++notes;
1669 
1670 	if (notes == 0)
1671 		return;
1672 
1673 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1674 			      GFP_KERNEL);
1675 	if (notes_attrs == NULL)
1676 		return;
1677 
1678 	notes_attrs->notes = notes;
1679 	nattr = &notes_attrs->attrs[0];
1680 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1681 		if (sect_empty(&info->sechdrs[i]))
1682 			continue;
1683 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1684 			sysfs_bin_attr_init(nattr);
1685 			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1686 			nattr->attr.mode = S_IRUGO;
1687 			nattr->size = info->sechdrs[i].sh_size;
1688 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1689 			nattr->read = module_notes_read;
1690 			++nattr;
1691 		}
1692 		++loaded;
1693 	}
1694 
1695 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1696 	if (!notes_attrs->dir)
1697 		goto out;
1698 
1699 	for (i = 0; i < notes; ++i)
1700 		if (sysfs_create_bin_file(notes_attrs->dir,
1701 					  &notes_attrs->attrs[i]))
1702 			goto out;
1703 
1704 	mod->notes_attrs = notes_attrs;
1705 	return;
1706 
1707   out:
1708 	free_notes_attrs(notes_attrs, i);
1709 }
1710 
remove_notes_attrs(struct module * mod)1711 static void remove_notes_attrs(struct module *mod)
1712 {
1713 	if (mod->notes_attrs)
1714 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1715 }
1716 
1717 #else
1718 
add_sect_attrs(struct module * mod,const struct load_info * info)1719 static inline void add_sect_attrs(struct module *mod,
1720 				  const struct load_info *info)
1721 {
1722 }
1723 
remove_sect_attrs(struct module * mod)1724 static inline void remove_sect_attrs(struct module *mod)
1725 {
1726 }
1727 
add_notes_attrs(struct module * mod,const struct load_info * info)1728 static inline void add_notes_attrs(struct module *mod,
1729 				   const struct load_info *info)
1730 {
1731 }
1732 
remove_notes_attrs(struct module * mod)1733 static inline void remove_notes_attrs(struct module *mod)
1734 {
1735 }
1736 #endif /* CONFIG_KALLSYMS */
1737 
del_usage_links(struct module * mod)1738 static void del_usage_links(struct module *mod)
1739 {
1740 #ifdef CONFIG_MODULE_UNLOAD
1741 	struct module_use *use;
1742 
1743 	mutex_lock(&module_mutex);
1744 	list_for_each_entry(use, &mod->target_list, target_list)
1745 		sysfs_remove_link(use->target->holders_dir, mod->name);
1746 	mutex_unlock(&module_mutex);
1747 #endif
1748 }
1749 
add_usage_links(struct module * mod)1750 static int add_usage_links(struct module *mod)
1751 {
1752 	int ret = 0;
1753 #ifdef CONFIG_MODULE_UNLOAD
1754 	struct module_use *use;
1755 
1756 	mutex_lock(&module_mutex);
1757 	list_for_each_entry(use, &mod->target_list, target_list) {
1758 		ret = sysfs_create_link(use->target->holders_dir,
1759 					&mod->mkobj.kobj, mod->name);
1760 		if (ret)
1761 			break;
1762 	}
1763 	mutex_unlock(&module_mutex);
1764 	if (ret)
1765 		del_usage_links(mod);
1766 #endif
1767 	return ret;
1768 }
1769 
1770 static void module_remove_modinfo_attrs(struct module *mod, int end);
1771 
module_add_modinfo_attrs(struct module * mod)1772 static int module_add_modinfo_attrs(struct module *mod)
1773 {
1774 	struct module_attribute *attr;
1775 	struct module_attribute *temp_attr;
1776 	int error = 0;
1777 	int i;
1778 
1779 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1780 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1781 					GFP_KERNEL);
1782 	if (!mod->modinfo_attrs)
1783 		return -ENOMEM;
1784 
1785 	temp_attr = mod->modinfo_attrs;
1786 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1787 		if (!attr->test || attr->test(mod)) {
1788 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1789 			sysfs_attr_init(&temp_attr->attr);
1790 			error = sysfs_create_file(&mod->mkobj.kobj,
1791 					&temp_attr->attr);
1792 			if (error)
1793 				goto error_out;
1794 			++temp_attr;
1795 		}
1796 	}
1797 
1798 	return 0;
1799 
1800 error_out:
1801 	if (i > 0)
1802 		module_remove_modinfo_attrs(mod, --i);
1803 	else
1804 		kfree(mod->modinfo_attrs);
1805 	return error;
1806 }
1807 
module_remove_modinfo_attrs(struct module * mod,int end)1808 static void module_remove_modinfo_attrs(struct module *mod, int end)
1809 {
1810 	struct module_attribute *attr;
1811 	int i;
1812 
1813 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1814 		if (end >= 0 && i > end)
1815 			break;
1816 		/* pick a field to test for end of list */
1817 		if (!attr->attr.name)
1818 			break;
1819 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1820 		if (attr->free)
1821 			attr->free(mod);
1822 	}
1823 	kfree(mod->modinfo_attrs);
1824 }
1825 
mod_kobject_put(struct module * mod)1826 static void mod_kobject_put(struct module *mod)
1827 {
1828 	DECLARE_COMPLETION_ONSTACK(c);
1829 	mod->mkobj.kobj_completion = &c;
1830 	kobject_put(&mod->mkobj.kobj);
1831 	wait_for_completion(&c);
1832 }
1833 
mod_sysfs_init(struct module * mod)1834 static int mod_sysfs_init(struct module *mod)
1835 {
1836 	int err;
1837 	struct kobject *kobj;
1838 
1839 	if (!module_sysfs_initialized) {
1840 		pr_err("%s: module sysfs not initialized\n", mod->name);
1841 		err = -EINVAL;
1842 		goto out;
1843 	}
1844 
1845 	kobj = kset_find_obj(module_kset, mod->name);
1846 	if (kobj) {
1847 		pr_err("%s: module is already loaded\n", mod->name);
1848 		kobject_put(kobj);
1849 		err = -EINVAL;
1850 		goto out;
1851 	}
1852 
1853 	mod->mkobj.mod = mod;
1854 
1855 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1856 	mod->mkobj.kobj.kset = module_kset;
1857 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1858 				   "%s", mod->name);
1859 	if (err)
1860 		mod_kobject_put(mod);
1861 
1862 out:
1863 	return err;
1864 }
1865 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1866 static int mod_sysfs_setup(struct module *mod,
1867 			   const struct load_info *info,
1868 			   struct kernel_param *kparam,
1869 			   unsigned int num_params)
1870 {
1871 	int err;
1872 
1873 	err = mod_sysfs_init(mod);
1874 	if (err)
1875 		goto out;
1876 
1877 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1878 	if (!mod->holders_dir) {
1879 		err = -ENOMEM;
1880 		goto out_unreg;
1881 	}
1882 
1883 	err = module_param_sysfs_setup(mod, kparam, num_params);
1884 	if (err)
1885 		goto out_unreg_holders;
1886 
1887 	err = module_add_modinfo_attrs(mod);
1888 	if (err)
1889 		goto out_unreg_param;
1890 
1891 	err = add_usage_links(mod);
1892 	if (err)
1893 		goto out_unreg_modinfo_attrs;
1894 
1895 	add_sect_attrs(mod, info);
1896 	add_notes_attrs(mod, info);
1897 
1898 	return 0;
1899 
1900 out_unreg_modinfo_attrs:
1901 	module_remove_modinfo_attrs(mod, -1);
1902 out_unreg_param:
1903 	module_param_sysfs_remove(mod);
1904 out_unreg_holders:
1905 	kobject_put(mod->holders_dir);
1906 out_unreg:
1907 	mod_kobject_put(mod);
1908 out:
1909 	return err;
1910 }
1911 
mod_sysfs_fini(struct module * mod)1912 static void mod_sysfs_fini(struct module *mod)
1913 {
1914 	remove_notes_attrs(mod);
1915 	remove_sect_attrs(mod);
1916 	mod_kobject_put(mod);
1917 }
1918 
init_param_lock(struct module * mod)1919 static void init_param_lock(struct module *mod)
1920 {
1921 	mutex_init(&mod->param_lock);
1922 }
1923 #else /* !CONFIG_SYSFS */
1924 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1925 static int mod_sysfs_setup(struct module *mod,
1926 			   const struct load_info *info,
1927 			   struct kernel_param *kparam,
1928 			   unsigned int num_params)
1929 {
1930 	return 0;
1931 }
1932 
mod_sysfs_fini(struct module * mod)1933 static void mod_sysfs_fini(struct module *mod)
1934 {
1935 }
1936 
module_remove_modinfo_attrs(struct module * mod,int end)1937 static void module_remove_modinfo_attrs(struct module *mod, int end)
1938 {
1939 }
1940 
del_usage_links(struct module * mod)1941 static void del_usage_links(struct module *mod)
1942 {
1943 }
1944 
init_param_lock(struct module * mod)1945 static void init_param_lock(struct module *mod)
1946 {
1947 }
1948 #endif /* CONFIG_SYSFS */
1949 
mod_sysfs_teardown(struct module * mod)1950 static void mod_sysfs_teardown(struct module *mod)
1951 {
1952 	del_usage_links(mod);
1953 	module_remove_modinfo_attrs(mod, -1);
1954 	module_param_sysfs_remove(mod);
1955 	kobject_put(mod->mkobj.drivers_dir);
1956 	kobject_put(mod->holders_dir);
1957 	mod_sysfs_fini(mod);
1958 }
1959 
1960 /*
1961  * LKM RO/NX protection: protect module's text/ro-data
1962  * from modification and any data from execution.
1963  *
1964  * General layout of module is:
1965  *          [text] [read-only-data] [ro-after-init] [writable data]
1966  * text_size -----^                ^               ^               ^
1967  * ro_size ------------------------|               |               |
1968  * ro_after_init_size -----------------------------|               |
1969  * size -----------------------------------------------------------|
1970  *
1971  * These values are always page-aligned (as is base)
1972  */
1973 
1974 /*
1975  * Since some arches are moving towards PAGE_KERNEL module allocations instead
1976  * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1977  * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1978  * whether we are strict.
1979  */
1980 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1981 static void frob_text(const struct module_layout *layout,
1982 		      int (*set_memory)(unsigned long start, int num_pages))
1983 {
1984 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1985 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1986 	set_memory((unsigned long)layout->base,
1987 		   layout->text_size >> PAGE_SHIFT);
1988 }
1989 
module_enable_x(const struct module * mod)1990 static void module_enable_x(const struct module *mod)
1991 {
1992 	frob_text(&mod->core_layout, set_memory_x);
1993 	frob_text(&mod->init_layout, set_memory_x);
1994 }
1995 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)1996 static void module_enable_x(const struct module *mod) { }
1997 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1998 
1999 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2000 static void frob_rodata(const struct module_layout *layout,
2001 			int (*set_memory)(unsigned long start, int num_pages))
2002 {
2003 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2004 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2005 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2006 	set_memory((unsigned long)layout->base + layout->text_size,
2007 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2008 }
2009 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2010 static void frob_ro_after_init(const struct module_layout *layout,
2011 				int (*set_memory)(unsigned long start, int num_pages))
2012 {
2013 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2014 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2015 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2016 	set_memory((unsigned long)layout->base + layout->ro_size,
2017 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2018 }
2019 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2020 static void frob_writable_data(const struct module_layout *layout,
2021 			       int (*set_memory)(unsigned long start, int num_pages))
2022 {
2023 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2024 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2025 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2026 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2027 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2028 }
2029 
module_enable_ro(const struct module * mod,bool after_init)2030 static void module_enable_ro(const struct module *mod, bool after_init)
2031 {
2032 	if (!rodata_enabled)
2033 		return;
2034 
2035 	set_vm_flush_reset_perms(mod->core_layout.base);
2036 	set_vm_flush_reset_perms(mod->init_layout.base);
2037 	frob_text(&mod->core_layout, set_memory_ro);
2038 
2039 	frob_rodata(&mod->core_layout, set_memory_ro);
2040 	frob_text(&mod->init_layout, set_memory_ro);
2041 	frob_rodata(&mod->init_layout, set_memory_ro);
2042 
2043 	if (after_init)
2044 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2045 }
2046 
module_enable_nx(const struct module * mod)2047 static void module_enable_nx(const struct module *mod)
2048 {
2049 	frob_rodata(&mod->core_layout, set_memory_nx);
2050 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2051 	frob_writable_data(&mod->core_layout, set_memory_nx);
2052 	frob_rodata(&mod->init_layout, set_memory_nx);
2053 	frob_writable_data(&mod->init_layout, set_memory_nx);
2054 }
2055 
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2056 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2057 				       char *secstrings, struct module *mod)
2058 {
2059 	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2060 	int i;
2061 
2062 	for (i = 0; i < hdr->e_shnum; i++) {
2063 		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2064 			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2065 				mod->name, secstrings + sechdrs[i].sh_name, i);
2066 			return -ENOEXEC;
2067 		}
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2074 static void module_enable_nx(const struct module *mod) { }
module_enable_ro(const struct module * mod,bool after_init)2075 static void module_enable_ro(const struct module *mod, bool after_init) {}
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2076 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2077 				       char *secstrings, struct module *mod)
2078 {
2079 	return 0;
2080 }
2081 #endif /*  CONFIG_STRICT_MODULE_RWX */
2082 
2083 #ifdef CONFIG_LIVEPATCH
2084 /*
2085  * Persist Elf information about a module. Copy the Elf header,
2086  * section header table, section string table, and symtab section
2087  * index from info to mod->klp_info.
2088  */
copy_module_elf(struct module * mod,struct load_info * info)2089 static int copy_module_elf(struct module *mod, struct load_info *info)
2090 {
2091 	unsigned int size, symndx;
2092 	int ret;
2093 
2094 	size = sizeof(*mod->klp_info);
2095 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2096 	if (mod->klp_info == NULL)
2097 		return -ENOMEM;
2098 
2099 	/* Elf header */
2100 	size = sizeof(mod->klp_info->hdr);
2101 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2102 
2103 	/* Elf section header table */
2104 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2105 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2106 	if (mod->klp_info->sechdrs == NULL) {
2107 		ret = -ENOMEM;
2108 		goto free_info;
2109 	}
2110 
2111 	/* Elf section name string table */
2112 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2113 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2114 	if (mod->klp_info->secstrings == NULL) {
2115 		ret = -ENOMEM;
2116 		goto free_sechdrs;
2117 	}
2118 
2119 	/* Elf symbol section index */
2120 	symndx = info->index.sym;
2121 	mod->klp_info->symndx = symndx;
2122 
2123 	/*
2124 	 * For livepatch modules, core_kallsyms.symtab is a complete
2125 	 * copy of the original symbol table. Adjust sh_addr to point
2126 	 * to core_kallsyms.symtab since the copy of the symtab in module
2127 	 * init memory is freed at the end of do_init_module().
2128 	 */
2129 	mod->klp_info->sechdrs[symndx].sh_addr = \
2130 		(unsigned long) mod->core_kallsyms.symtab;
2131 
2132 	return 0;
2133 
2134 free_sechdrs:
2135 	kfree(mod->klp_info->sechdrs);
2136 free_info:
2137 	kfree(mod->klp_info);
2138 	return ret;
2139 }
2140 
free_module_elf(struct module * mod)2141 static void free_module_elf(struct module *mod)
2142 {
2143 	kfree(mod->klp_info->sechdrs);
2144 	kfree(mod->klp_info->secstrings);
2145 	kfree(mod->klp_info);
2146 }
2147 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2148 static int copy_module_elf(struct module *mod, struct load_info *info)
2149 {
2150 	return 0;
2151 }
2152 
free_module_elf(struct module * mod)2153 static void free_module_elf(struct module *mod)
2154 {
2155 }
2156 #endif /* CONFIG_LIVEPATCH */
2157 
module_memfree(void * module_region)2158 void __weak module_memfree(void *module_region)
2159 {
2160 	/*
2161 	 * This memory may be RO, and freeing RO memory in an interrupt is not
2162 	 * supported by vmalloc.
2163 	 */
2164 	WARN_ON(in_interrupt());
2165 	vfree(module_region);
2166 }
2167 
module_arch_cleanup(struct module * mod)2168 void __weak module_arch_cleanup(struct module *mod)
2169 {
2170 }
2171 
module_arch_freeing_init(struct module * mod)2172 void __weak module_arch_freeing_init(struct module *mod)
2173 {
2174 }
2175 
2176 static void cfi_cleanup(struct module *mod);
2177 
2178 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2179 static void free_module(struct module *mod)
2180 {
2181 	trace_module_free(mod);
2182 
2183 	mod_sysfs_teardown(mod);
2184 
2185 	/*
2186 	 * We leave it in list to prevent duplicate loads, but make sure
2187 	 * that noone uses it while it's being deconstructed.
2188 	 */
2189 	mutex_lock(&module_mutex);
2190 	mod->state = MODULE_STATE_UNFORMED;
2191 	mutex_unlock(&module_mutex);
2192 
2193 	/* Remove dynamic debug info */
2194 	ddebug_remove_module(mod->name);
2195 
2196 	/* Arch-specific cleanup. */
2197 	module_arch_cleanup(mod);
2198 
2199 	/* Module unload stuff */
2200 	module_unload_free(mod);
2201 
2202 	/* Free any allocated parameters. */
2203 	destroy_params(mod->kp, mod->num_kp);
2204 
2205 	if (is_livepatch_module(mod))
2206 		free_module_elf(mod);
2207 
2208 	/* Now we can delete it from the lists */
2209 	mutex_lock(&module_mutex);
2210 	/* Unlink carefully: kallsyms could be walking list. */
2211 	list_del_rcu(&mod->list);
2212 	mod_tree_remove(mod);
2213 	/* Remove this module from bug list, this uses list_del_rcu */
2214 	module_bug_cleanup(mod);
2215 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2216 	synchronize_rcu();
2217 	mutex_unlock(&module_mutex);
2218 
2219 	/* Clean up CFI for the module. */
2220 	cfi_cleanup(mod);
2221 
2222 	/* This may be empty, but that's OK */
2223 	module_arch_freeing_init(mod);
2224 	trace_android_vh_set_memory_rw((unsigned long)mod->init_layout.base,
2225 		(mod->init_layout.size)>>PAGE_SHIFT);
2226 	trace_android_vh_set_memory_nx((unsigned long)mod->init_layout.base,
2227 		(mod->init_layout.size)>>PAGE_SHIFT);
2228 	module_memfree(mod->init_layout.base);
2229 	kfree(mod->args);
2230 	percpu_modfree(mod);
2231 
2232 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2233 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2234 
2235 	/* Finally, free the core (containing the module structure) */
2236 	trace_android_vh_set_memory_rw((unsigned long)mod->core_layout.base,
2237 		(mod->core_layout.size)>>PAGE_SHIFT);
2238 	trace_android_vh_set_memory_nx((unsigned long)mod->core_layout.base,
2239 		(mod->core_layout.size)>>PAGE_SHIFT);
2240 	module_memfree(mod->core_layout.base);
2241 }
2242 
__symbol_get(const char * symbol)2243 void *__symbol_get(const char *symbol)
2244 {
2245 	struct find_symbol_arg fsa = {
2246 		.name	= symbol,
2247 		.gplok	= true,
2248 		.warn	= true,
2249 	};
2250 
2251 	preempt_disable();
2252 	if (!find_symbol(&fsa))
2253 		goto fail;
2254 	if (fsa.license != GPL_ONLY) {
2255 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
2256 			symbol);
2257 		goto fail;
2258 	}
2259 	if (strong_try_module_get(fsa.owner))
2260 		goto fail;
2261 	preempt_enable();
2262 	return (void *)kernel_symbol_value(fsa.sym);
2263 fail:
2264 	preempt_enable();
2265 	return NULL;
2266 }
2267 EXPORT_SYMBOL_GPL(__symbol_get);
2268 
2269 /*
2270  * Ensure that an exported symbol [global namespace] does not already exist
2271  * in the kernel or in some other module's exported symbol table.
2272  *
2273  * You must hold the module_mutex.
2274  */
verify_exported_symbols(struct module * mod)2275 static int verify_exported_symbols(struct module *mod)
2276 {
2277 	unsigned int i;
2278 	const struct kernel_symbol *s;
2279 	struct {
2280 		const struct kernel_symbol *sym;
2281 		unsigned int num;
2282 	} arr[] = {
2283 		{ mod->syms, mod->num_syms },
2284 		{ mod->gpl_syms, mod->num_gpl_syms },
2285 	};
2286 
2287 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2288 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2289 			struct find_symbol_arg fsa = {
2290 				.name	= kernel_symbol_name(s),
2291 				.gplok	= true,
2292 			};
2293 
2294 			if (!mod->sig_ok && gki_is_module_protected_export(
2295 						kernel_symbol_name(s))) {
2296 				pr_err("%s: exports protected symbol %s\n",
2297 				       mod->name, kernel_symbol_name(s));
2298 				return -EACCES;
2299 			}
2300 
2301 			if (find_symbol(&fsa)) {
2302 				pr_err("%s: exports duplicate symbol %s"
2303 				       " (owned by %s)\n",
2304 				       mod->name, kernel_symbol_name(s),
2305 				       module_name(fsa.owner));
2306 				return -ENOEXEC;
2307 			}
2308 		}
2309 	}
2310 	return 0;
2311 }
2312 
ignore_undef_symbol(Elf_Half emachine,const char * name)2313 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2314 {
2315 	/*
2316 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2317 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2318 	 * i386 has a similar problem but may not deserve a fix.
2319 	 *
2320 	 * If we ever have to ignore many symbols, consider refactoring the code to
2321 	 * only warn if referenced by a relocation.
2322 	 */
2323 	if (emachine == EM_386 || emachine == EM_X86_64)
2324 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2325 	return false;
2326 }
2327 
2328 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2329 static int simplify_symbols(struct module *mod, const struct load_info *info)
2330 {
2331 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2332 	Elf_Sym *sym = (void *)symsec->sh_addr;
2333 	unsigned long secbase;
2334 	unsigned int i;
2335 	int ret = 0;
2336 	const struct kernel_symbol *ksym;
2337 
2338 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2339 		const char *name = info->strtab + sym[i].st_name;
2340 
2341 		switch (sym[i].st_shndx) {
2342 		case SHN_COMMON:
2343 			/* Ignore common symbols */
2344 			if (!strncmp(name, "__gnu_lto", 9))
2345 				break;
2346 
2347 			/*
2348 			 * We compiled with -fno-common.  These are not
2349 			 * supposed to happen.
2350 			 */
2351 			pr_debug("Common symbol: %s\n", name);
2352 			pr_warn("%s: please compile with -fno-common\n",
2353 			       mod->name);
2354 			ret = -ENOEXEC;
2355 			break;
2356 
2357 		case SHN_ABS:
2358 			/* Don't need to do anything */
2359 			pr_debug("Absolute symbol: 0x%08lx\n",
2360 			       (long)sym[i].st_value);
2361 			break;
2362 
2363 		case SHN_LIVEPATCH:
2364 			/* Livepatch symbols are resolved by livepatch */
2365 			break;
2366 
2367 		case SHN_UNDEF:
2368 			ksym = resolve_symbol_wait(mod, info, name);
2369 			/* Ok if resolved.  */
2370 			if (ksym && !IS_ERR(ksym)) {
2371 				sym[i].st_value = kernel_symbol_value(ksym);
2372 				break;
2373 			}
2374 
2375 			/* Ok if weak or ignored.  */
2376 			if (!ksym &&
2377 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2378 			     ignore_undef_symbol(info->hdr->e_machine, name)))
2379 				break;
2380 
2381 			if (PTR_ERR(ksym) == -EACCES) {
2382 				ret = -EACCES;
2383 				pr_warn("%s: Protected symbol: %s (err %d)\n",
2384 					mod->name, name, ret);
2385 			} else {
2386 				ret = PTR_ERR(ksym) ?: -ENOENT;
2387 				pr_warn("%s: Unknown symbol %s (err %d)\n",
2388 					mod->name, name, ret);
2389 			}
2390 			break;
2391 
2392 		default:
2393 			/* Divert to percpu allocation if a percpu var. */
2394 			if (sym[i].st_shndx == info->index.pcpu)
2395 				secbase = (unsigned long)mod_percpu(mod);
2396 			else
2397 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2398 			sym[i].st_value += secbase;
2399 			break;
2400 		}
2401 	}
2402 
2403 	return ret;
2404 }
2405 
apply_relocations(struct module * mod,const struct load_info * info)2406 static int apply_relocations(struct module *mod, const struct load_info *info)
2407 {
2408 	unsigned int i;
2409 	int err = 0;
2410 
2411 	/* Now do relocations. */
2412 	for (i = 1; i < info->hdr->e_shnum; i++) {
2413 		unsigned int infosec = info->sechdrs[i].sh_info;
2414 
2415 		/* Not a valid relocation section? */
2416 		if (infosec >= info->hdr->e_shnum)
2417 			continue;
2418 
2419 		/* Don't bother with non-allocated sections */
2420 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2421 			continue;
2422 
2423 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2424 			err = klp_apply_section_relocs(mod, info->sechdrs,
2425 						       info->secstrings,
2426 						       info->strtab,
2427 						       info->index.sym, i,
2428 						       NULL);
2429 		else if (info->sechdrs[i].sh_type == SHT_REL)
2430 			err = apply_relocate(info->sechdrs, info->strtab,
2431 					     info->index.sym, i, mod);
2432 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2433 			err = apply_relocate_add(info->sechdrs, info->strtab,
2434 						 info->index.sym, i, mod);
2435 		if (err < 0)
2436 			break;
2437 	}
2438 	return err;
2439 }
2440 
2441 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2442 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2443 					     unsigned int section)
2444 {
2445 	/* default implementation just returns zero */
2446 	return 0;
2447 }
2448 
2449 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2450 static long get_offset(struct module *mod, unsigned int *size,
2451 		       Elf_Shdr *sechdr, unsigned int section)
2452 {
2453 	long ret;
2454 
2455 	*size += arch_mod_section_prepend(mod, section);
2456 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2457 	*size = ret + sechdr->sh_size;
2458 	return ret;
2459 }
2460 
module_init_layout_section(const char * sname)2461 bool module_init_layout_section(const char *sname)
2462 {
2463 #ifndef CONFIG_MODULE_UNLOAD
2464 	if (module_exit_section(sname))
2465 		return true;
2466 #endif
2467 	return module_init_section(sname);
2468 }
2469 
2470 /*
2471  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2472  * might -- code, read-only data, read-write data, small data.  Tally
2473  * sizes, and place the offsets into sh_entsize fields: high bit means it
2474  * belongs in init.
2475  */
layout_sections(struct module * mod,struct load_info * info)2476 static void layout_sections(struct module *mod, struct load_info *info)
2477 {
2478 	static unsigned long const masks[][2] = {
2479 		/*
2480 		 * NOTE: all executable code must be the first section
2481 		 * in this array; otherwise modify the text_size
2482 		 * finder in the two loops below
2483 		 */
2484 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2485 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2486 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2487 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2488 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2489 	};
2490 	unsigned int m, i;
2491 
2492 	for (i = 0; i < info->hdr->e_shnum; i++)
2493 		info->sechdrs[i].sh_entsize = ~0UL;
2494 
2495 	pr_debug("Core section allocation order:\n");
2496 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2497 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2498 			Elf_Shdr *s = &info->sechdrs[i];
2499 			const char *sname = info->secstrings + s->sh_name;
2500 
2501 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2502 			    || (s->sh_flags & masks[m][1])
2503 			    || s->sh_entsize != ~0UL
2504 			    || module_init_layout_section(sname))
2505 				continue;
2506 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2507 			pr_debug("\t%s\n", sname);
2508 		}
2509 		switch (m) {
2510 		case 0: /* executable */
2511 			mod->core_layout.size = debug_align(mod->core_layout.size);
2512 			mod->core_layout.text_size = mod->core_layout.size;
2513 			break;
2514 		case 1: /* RO: text and ro-data */
2515 			mod->core_layout.size = debug_align(mod->core_layout.size);
2516 			mod->core_layout.ro_size = mod->core_layout.size;
2517 			break;
2518 		case 2: /* RO after init */
2519 			mod->core_layout.size = debug_align(mod->core_layout.size);
2520 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2521 			break;
2522 		case 4: /* whole core */
2523 			mod->core_layout.size = debug_align(mod->core_layout.size);
2524 			break;
2525 		}
2526 	}
2527 
2528 	pr_debug("Init section allocation order:\n");
2529 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2530 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2531 			Elf_Shdr *s = &info->sechdrs[i];
2532 			const char *sname = info->secstrings + s->sh_name;
2533 
2534 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2535 			    || (s->sh_flags & masks[m][1])
2536 			    || s->sh_entsize != ~0UL
2537 			    || !module_init_layout_section(sname))
2538 				continue;
2539 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2540 					 | INIT_OFFSET_MASK);
2541 			pr_debug("\t%s\n", sname);
2542 		}
2543 		switch (m) {
2544 		case 0: /* executable */
2545 			mod->init_layout.size = debug_align(mod->init_layout.size);
2546 			mod->init_layout.text_size = mod->init_layout.size;
2547 			break;
2548 		case 1: /* RO: text and ro-data */
2549 			mod->init_layout.size = debug_align(mod->init_layout.size);
2550 			mod->init_layout.ro_size = mod->init_layout.size;
2551 			break;
2552 		case 2:
2553 			/*
2554 			 * RO after init doesn't apply to init_layout (only
2555 			 * core_layout), so it just takes the value of ro_size.
2556 			 */
2557 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2558 			break;
2559 		case 4: /* whole init */
2560 			mod->init_layout.size = debug_align(mod->init_layout.size);
2561 			break;
2562 		}
2563 	}
2564 }
2565 
set_license(struct module * mod,const char * license)2566 static void set_license(struct module *mod, const char *license)
2567 {
2568 	if (!license)
2569 		license = "unspecified";
2570 
2571 	if (!license_is_gpl_compatible(license)) {
2572 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2573 			pr_warn("%s: module license '%s' taints kernel.\n",
2574 				mod->name, license);
2575 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2576 				 LOCKDEP_NOW_UNRELIABLE);
2577 	}
2578 }
2579 
2580 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2581 static char *next_string(char *string, unsigned long *secsize)
2582 {
2583 	/* Skip non-zero chars */
2584 	while (string[0]) {
2585 		string++;
2586 		if ((*secsize)-- <= 1)
2587 			return NULL;
2588 	}
2589 
2590 	/* Skip any zero padding. */
2591 	while (!string[0]) {
2592 		string++;
2593 		if ((*secsize)-- <= 1)
2594 			return NULL;
2595 	}
2596 	return string;
2597 }
2598 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2599 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2600 			      char *prev)
2601 {
2602 	char *p;
2603 	unsigned int taglen = strlen(tag);
2604 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2605 	unsigned long size = infosec->sh_size;
2606 
2607 	/*
2608 	 * get_modinfo() calls made before rewrite_section_headers()
2609 	 * must use sh_offset, as sh_addr isn't set!
2610 	 */
2611 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2612 
2613 	if (prev) {
2614 		size -= prev - modinfo;
2615 		modinfo = next_string(prev, &size);
2616 	}
2617 
2618 	for (p = modinfo; p; p = next_string(p, &size)) {
2619 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2620 			return p + taglen + 1;
2621 	}
2622 	return NULL;
2623 }
2624 
get_modinfo(const struct load_info * info,const char * tag)2625 static char *get_modinfo(const struct load_info *info, const char *tag)
2626 {
2627 	return get_next_modinfo(info, tag, NULL);
2628 }
2629 
setup_modinfo(struct module * mod,struct load_info * info)2630 static void setup_modinfo(struct module *mod, struct load_info *info)
2631 {
2632 	struct module_attribute *attr;
2633 	int i;
2634 
2635 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2636 		if (attr->setup)
2637 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2638 	}
2639 }
2640 
free_modinfo(struct module * mod)2641 static void free_modinfo(struct module *mod)
2642 {
2643 	struct module_attribute *attr;
2644 	int i;
2645 
2646 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2647 		if (attr->free)
2648 			attr->free(mod);
2649 	}
2650 }
2651 
2652 #ifdef CONFIG_KALLSYMS
2653 
2654 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2655 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2656 							  const struct kernel_symbol *start,
2657 							  const struct kernel_symbol *stop)
2658 {
2659 	return bsearch(name, start, stop - start,
2660 			sizeof(struct kernel_symbol), cmp_name);
2661 }
2662 
is_exported(const char * name,unsigned long value,const struct module * mod)2663 static int is_exported(const char *name, unsigned long value,
2664 		       const struct module *mod)
2665 {
2666 	const struct kernel_symbol *ks;
2667 	if (!mod)
2668 		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2669 	else
2670 		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2671 
2672 	return ks != NULL && kernel_symbol_value(ks) == value;
2673 }
2674 
2675 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2676 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2677 {
2678 	const Elf_Shdr *sechdrs = info->sechdrs;
2679 
2680 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2681 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2682 			return 'v';
2683 		else
2684 			return 'w';
2685 	}
2686 	if (sym->st_shndx == SHN_UNDEF)
2687 		return 'U';
2688 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2689 		return 'a';
2690 	if (sym->st_shndx >= SHN_LORESERVE)
2691 		return '?';
2692 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2693 		return 't';
2694 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2695 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2696 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2697 			return 'r';
2698 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2699 			return 'g';
2700 		else
2701 			return 'd';
2702 	}
2703 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2704 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2705 			return 's';
2706 		else
2707 			return 'b';
2708 	}
2709 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2710 		      ".debug")) {
2711 		return 'n';
2712 	}
2713 	return '?';
2714 }
2715 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2716 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2717 			unsigned int shnum, unsigned int pcpundx)
2718 {
2719 	const Elf_Shdr *sec;
2720 
2721 	if (src->st_shndx == SHN_UNDEF
2722 	    || src->st_shndx >= shnum
2723 	    || !src->st_name)
2724 		return false;
2725 
2726 #ifdef CONFIG_KALLSYMS_ALL
2727 	if (src->st_shndx == pcpundx)
2728 		return true;
2729 #endif
2730 
2731 	sec = sechdrs + src->st_shndx;
2732 	if (!(sec->sh_flags & SHF_ALLOC)
2733 #ifndef CONFIG_KALLSYMS_ALL
2734 	    || !(sec->sh_flags & SHF_EXECINSTR)
2735 #endif
2736 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2737 		return false;
2738 
2739 	return true;
2740 }
2741 
2742 /*
2743  * We only allocate and copy the strings needed by the parts of symtab
2744  * we keep.  This is simple, but has the effect of making multiple
2745  * copies of duplicates.  We could be more sophisticated, see
2746  * linux-kernel thread starting with
2747  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2748  */
layout_symtab(struct module * mod,struct load_info * info)2749 static void layout_symtab(struct module *mod, struct load_info *info)
2750 {
2751 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2752 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2753 	const Elf_Sym *src;
2754 	unsigned int i, nsrc, ndst, strtab_size = 0;
2755 
2756 	/* Put symbol section at end of init part of module. */
2757 	symsect->sh_flags |= SHF_ALLOC;
2758 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2759 					 info->index.sym) | INIT_OFFSET_MASK;
2760 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2761 
2762 	src = (void *)info->hdr + symsect->sh_offset;
2763 	nsrc = symsect->sh_size / sizeof(*src);
2764 
2765 	/* Compute total space required for the core symbols' strtab. */
2766 	for (ndst = i = 0; i < nsrc; i++) {
2767 		if (i == 0 || is_livepatch_module(mod) ||
2768 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2769 				   info->index.pcpu)) {
2770 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2771 			ndst++;
2772 		}
2773 	}
2774 
2775 	/* Append room for core symbols at end of core part. */
2776 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2777 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2778 	mod->core_layout.size += strtab_size;
2779 	info->core_typeoffs = mod->core_layout.size;
2780 	mod->core_layout.size += ndst * sizeof(char);
2781 	mod->core_layout.size = debug_align(mod->core_layout.size);
2782 
2783 	/* Put string table section at end of init part of module. */
2784 	strsect->sh_flags |= SHF_ALLOC;
2785 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2786 					 info->index.str) | INIT_OFFSET_MASK;
2787 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2788 
2789 	/* We'll tack temporary mod_kallsyms on the end. */
2790 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2791 				      __alignof__(struct mod_kallsyms));
2792 	info->mod_kallsyms_init_off = mod->init_layout.size;
2793 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2794 	info->init_typeoffs = mod->init_layout.size;
2795 	mod->init_layout.size += nsrc * sizeof(char);
2796 	mod->init_layout.size = debug_align(mod->init_layout.size);
2797 }
2798 
2799 /*
2800  * We use the full symtab and strtab which layout_symtab arranged to
2801  * be appended to the init section.  Later we switch to the cut-down
2802  * core-only ones.
2803  */
add_kallsyms(struct module * mod,const struct load_info * info)2804 static void add_kallsyms(struct module *mod, const struct load_info *info)
2805 {
2806 	unsigned int i, ndst;
2807 	const Elf_Sym *src;
2808 	Elf_Sym *dst;
2809 	char *s;
2810 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2811 
2812 	/* Set up to point into init section. */
2813 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2814 
2815 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2816 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2817 	/* Make sure we get permanent strtab: don't use info->strtab. */
2818 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2819 	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2820 
2821 	/*
2822 	 * Now populate the cut down core kallsyms for after init
2823 	 * and set types up while we still have access to sections.
2824 	 */
2825 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2826 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2827 	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2828 	src = mod->kallsyms->symtab;
2829 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2830 		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2831 		if (i == 0 || is_livepatch_module(mod) ||
2832 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2833 				   info->index.pcpu)) {
2834 			mod->core_kallsyms.typetab[ndst] =
2835 			    mod->kallsyms->typetab[i];
2836 			dst[ndst] = src[i];
2837 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2838 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2839 				     KSYM_NAME_LEN) + 1;
2840 		}
2841 	}
2842 	mod->core_kallsyms.num_symtab = ndst;
2843 }
2844 #else
layout_symtab(struct module * mod,struct load_info * info)2845 static inline void layout_symtab(struct module *mod, struct load_info *info)
2846 {
2847 }
2848 
add_kallsyms(struct module * mod,const struct load_info * info)2849 static void add_kallsyms(struct module *mod, const struct load_info *info)
2850 {
2851 }
2852 #endif /* CONFIG_KALLSYMS */
2853 
2854 #if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
init_build_id(struct module * mod,const struct load_info * info)2855 static void init_build_id(struct module *mod, const struct load_info *info)
2856 {
2857 	const Elf_Shdr *sechdr;
2858 	unsigned int i;
2859 
2860 	for (i = 0; i < info->hdr->e_shnum; i++) {
2861 		sechdr = &info->sechdrs[i];
2862 		if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2863 		    !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2864 					sechdr->sh_size))
2865 			break;
2866 	}
2867 }
2868 #else
init_build_id(struct module * mod,const struct load_info * info)2869 static void init_build_id(struct module *mod, const struct load_info *info)
2870 {
2871 }
2872 #endif
2873 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2874 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2875 {
2876 	if (!debug)
2877 		return;
2878 	ddebug_add_module(debug, num, mod->name);
2879 }
2880 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2881 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2882 {
2883 	if (debug)
2884 		ddebug_remove_module(mod->name);
2885 }
2886 
module_alloc(unsigned long size)2887 void * __weak module_alloc(unsigned long size)
2888 {
2889 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2890 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2891 			NUMA_NO_NODE, __builtin_return_address(0));
2892 }
2893 
module_init_section(const char * name)2894 bool __weak module_init_section(const char *name)
2895 {
2896 	return strstarts(name, ".init");
2897 }
2898 
module_exit_section(const char * name)2899 bool __weak module_exit_section(const char *name)
2900 {
2901 	return strstarts(name, ".exit");
2902 }
2903 
2904 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2905 static void kmemleak_load_module(const struct module *mod,
2906 				 const struct load_info *info)
2907 {
2908 	unsigned int i;
2909 
2910 	/* only scan the sections containing data */
2911 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2912 
2913 	for (i = 1; i < info->hdr->e_shnum; i++) {
2914 		/* Scan all writable sections that's not executable */
2915 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2916 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2917 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2918 			continue;
2919 
2920 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2921 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2922 	}
2923 }
2924 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2925 static inline void kmemleak_load_module(const struct module *mod,
2926 					const struct load_info *info)
2927 {
2928 }
2929 #endif
2930 
2931 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2932 static int module_sig_check(struct load_info *info, int flags)
2933 {
2934 	int err = -ENODATA;
2935 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2936 	const char *reason;
2937 	const void *mod = info->hdr;
2938 
2939 	/*
2940 	 * Require flags == 0, as a module with version information
2941 	 * removed is no longer the module that was signed
2942 	 */
2943 	if (flags == 0 &&
2944 	    info->len > markerlen &&
2945 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2946 		/* We truncate the module to discard the signature */
2947 		info->len -= markerlen;
2948 		err = mod_verify_sig(mod, info);
2949 		if (!err) {
2950 			info->sig_ok = true;
2951 			return 0;
2952 		}
2953 	}
2954 
2955 	/*
2956 	 * We don't permit modules to be loaded into the trusted kernels
2957 	 * without a valid signature on them, but if we're not enforcing,
2958 	 * certain errors are non-fatal.
2959 	 */
2960 	switch (err) {
2961 	case -ENODATA:
2962 		reason = "unsigned module";
2963 		break;
2964 	case -ENOPKG:
2965 		reason = "module with unsupported crypto";
2966 		break;
2967 	case -ENOKEY:
2968 		reason = "module with unavailable key";
2969 		break;
2970 
2971 	default:
2972 		/*
2973 		 * All other errors are fatal, including lack of memory,
2974 		 * unparseable signatures, and signature check failures --
2975 		 * even if signatures aren't required.
2976 		 */
2977 		return err;
2978 	}
2979 
2980 	if (is_module_sig_enforced()) {
2981 		pr_notice("Loading of %s is rejected\n", reason);
2982 		return -EKEYREJECTED;
2983 	}
2984 
2985 /*
2986  * ANDROID: GKI: Do not prevent loading of unsigned modules;
2987  * as all modules except GKI modules are not signed.
2988  */
2989 #ifndef CONFIG_MODULE_SIG_PROTECT
2990 	return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2991 #else
2992 	return 0;
2993 #endif
2994 }
2995 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2996 static int module_sig_check(struct load_info *info, int flags)
2997 {
2998 	return 0;
2999 }
3000 #endif /* !CONFIG_MODULE_SIG */
3001 
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)3002 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
3003 {
3004 	unsigned long secend;
3005 
3006 	/*
3007 	 * Check for both overflow and offset/size being
3008 	 * too large.
3009 	 */
3010 	secend = shdr->sh_offset + shdr->sh_size;
3011 	if (secend < shdr->sh_offset || secend > info->len)
3012 		return -ENOEXEC;
3013 
3014 	return 0;
3015 }
3016 
3017 /*
3018  * Sanity checks against invalid binaries, wrong arch, weird elf version.
3019  *
3020  * Also do basic validity checks against section offsets and sizes, the
3021  * section name string table, and the indices used for it (sh_name).
3022  */
elf_validity_check(struct load_info * info)3023 static int elf_validity_check(struct load_info *info)
3024 {
3025 	unsigned int i;
3026 	Elf_Shdr *shdr, *strhdr;
3027 	int err;
3028 
3029 	if (info->len < sizeof(*(info->hdr))) {
3030 		pr_err("Invalid ELF header len %lu\n", info->len);
3031 		goto no_exec;
3032 	}
3033 
3034 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
3035 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
3036 		goto no_exec;
3037 	}
3038 	if (info->hdr->e_type != ET_REL) {
3039 		pr_err("Invalid ELF header type: %u != %u\n",
3040 		       info->hdr->e_type, ET_REL);
3041 		goto no_exec;
3042 	}
3043 	if (!elf_check_arch(info->hdr)) {
3044 		pr_err("Invalid architecture in ELF header: %u\n",
3045 		       info->hdr->e_machine);
3046 		goto no_exec;
3047 	}
3048 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
3049 		pr_err("Invalid ELF section header size\n");
3050 		goto no_exec;
3051 	}
3052 
3053 	/*
3054 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
3055 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
3056 	 * will not overflow unsigned long on any platform.
3057 	 */
3058 	if (info->hdr->e_shoff >= info->len
3059 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
3060 		info->len - info->hdr->e_shoff)) {
3061 		pr_err("Invalid ELF section header overflow\n");
3062 		goto no_exec;
3063 	}
3064 
3065 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3066 
3067 	/*
3068 	 * Verify if the section name table index is valid.
3069 	 */
3070 	if (info->hdr->e_shstrndx == SHN_UNDEF
3071 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
3072 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
3073 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
3074 		       info->hdr->e_shnum);
3075 		goto no_exec;
3076 	}
3077 
3078 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
3079 	err = validate_section_offset(info, strhdr);
3080 	if (err < 0) {
3081 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
3082 		return err;
3083 	}
3084 
3085 	/*
3086 	 * The section name table must be NUL-terminated, as required
3087 	 * by the spec. This makes strcmp and pr_* calls that access
3088 	 * strings in the section safe.
3089 	 */
3090 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3091 	if (strhdr->sh_size == 0) {
3092 		pr_err("empty section name table\n");
3093 		goto no_exec;
3094 	}
3095 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
3096 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
3097 		goto no_exec;
3098 	}
3099 
3100 	/*
3101 	 * The code assumes that section 0 has a length of zero and
3102 	 * an addr of zero, so check for it.
3103 	 */
3104 	if (info->sechdrs[0].sh_type != SHT_NULL
3105 	    || info->sechdrs[0].sh_size != 0
3106 	    || info->sechdrs[0].sh_addr != 0) {
3107 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
3108 		       info->sechdrs[0].sh_type);
3109 		goto no_exec;
3110 	}
3111 
3112 	for (i = 1; i < info->hdr->e_shnum; i++) {
3113 		shdr = &info->sechdrs[i];
3114 		switch (shdr->sh_type) {
3115 		case SHT_NULL:
3116 		case SHT_NOBITS:
3117 			continue;
3118 		case SHT_SYMTAB:
3119 			if (shdr->sh_link == SHN_UNDEF
3120 			    || shdr->sh_link >= info->hdr->e_shnum) {
3121 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
3122 				       shdr->sh_link, shdr->sh_link,
3123 				       info->hdr->e_shnum);
3124 				goto no_exec;
3125 			}
3126 			fallthrough;
3127 		default:
3128 			err = validate_section_offset(info, shdr);
3129 			if (err < 0) {
3130 				pr_err("Invalid ELF section in module (section %u type %u)\n",
3131 					i, shdr->sh_type);
3132 				return err;
3133 			}
3134 
3135 			if (shdr->sh_flags & SHF_ALLOC) {
3136 				if (shdr->sh_name >= strhdr->sh_size) {
3137 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
3138 					       i, shdr->sh_type);
3139 					return -ENOEXEC;
3140 				}
3141 			}
3142 			break;
3143 		}
3144 	}
3145 
3146 	return 0;
3147 
3148 no_exec:
3149 	return -ENOEXEC;
3150 }
3151 
3152 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3153 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)3154 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3155 {
3156 	do {
3157 		unsigned long n = min(len, COPY_CHUNK_SIZE);
3158 
3159 		if (copy_from_user(dst, usrc, n) != 0)
3160 			return -EFAULT;
3161 		cond_resched();
3162 		dst += n;
3163 		usrc += n;
3164 		len -= n;
3165 	} while (len);
3166 	return 0;
3167 }
3168 
3169 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)3170 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3171 {
3172 	if (get_modinfo(info, "livepatch")) {
3173 		mod->klp = true;
3174 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3175 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3176 			       mod->name);
3177 	}
3178 
3179 	return 0;
3180 }
3181 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)3182 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3183 {
3184 	if (get_modinfo(info, "livepatch")) {
3185 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3186 		       mod->name);
3187 		return -ENOEXEC;
3188 	}
3189 
3190 	return 0;
3191 }
3192 #endif /* CONFIG_LIVEPATCH */
3193 
check_modinfo_retpoline(struct module * mod,struct load_info * info)3194 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3195 {
3196 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3197 		return;
3198 
3199 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3200 		mod->name);
3201 }
3202 
3203 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3204 static int copy_module_from_user(const void __user *umod, unsigned long len,
3205 				  struct load_info *info)
3206 {
3207 	int err;
3208 
3209 	info->len = len;
3210 	if (info->len < sizeof(*(info->hdr)))
3211 		return -ENOEXEC;
3212 
3213 	err = security_kernel_load_data(LOADING_MODULE, true);
3214 	if (err)
3215 		return err;
3216 
3217 	/* Suck in entire file: we'll want most of it. */
3218 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3219 	if (!info->hdr)
3220 		return -ENOMEM;
3221 
3222 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3223 		err = -EFAULT;
3224 		goto out;
3225 	}
3226 
3227 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3228 					     LOADING_MODULE, "init_module");
3229 out:
3230 	if (err)
3231 		vfree(info->hdr);
3232 
3233 	return err;
3234 }
3235 
free_copy(struct load_info * info)3236 static void free_copy(struct load_info *info)
3237 {
3238 	vfree(info->hdr);
3239 }
3240 
rewrite_section_headers(struct load_info * info,int flags)3241 static int rewrite_section_headers(struct load_info *info, int flags)
3242 {
3243 	unsigned int i;
3244 
3245 	/* This should always be true, but let's be sure. */
3246 	info->sechdrs[0].sh_addr = 0;
3247 
3248 	for (i = 1; i < info->hdr->e_shnum; i++) {
3249 		Elf_Shdr *shdr = &info->sechdrs[i];
3250 
3251 		/*
3252 		 * Mark all sections sh_addr with their address in the
3253 		 * temporary image.
3254 		 */
3255 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3256 
3257 	}
3258 
3259 	/* Track but don't keep modinfo and version sections. */
3260 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3261 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3262 
3263 	return 0;
3264 }
3265 
3266 /*
3267  * Set up our basic convenience variables (pointers to section headers,
3268  * search for module section index etc), and do some basic section
3269  * verification.
3270  *
3271  * Set info->mod to the temporary copy of the module in info->hdr. The final one
3272  * will be allocated in move_module().
3273  */
setup_load_info(struct load_info * info,int flags)3274 static int setup_load_info(struct load_info *info, int flags)
3275 {
3276 	unsigned int i;
3277 
3278 	/* Try to find a name early so we can log errors with a module name */
3279 	info->index.info = find_sec(info, ".modinfo");
3280 	if (info->index.info)
3281 		info->name = get_modinfo(info, "name");
3282 
3283 	/* Find internal symbols and strings. */
3284 	for (i = 1; i < info->hdr->e_shnum; i++) {
3285 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3286 			info->index.sym = i;
3287 			info->index.str = info->sechdrs[i].sh_link;
3288 			info->strtab = (char *)info->hdr
3289 				+ info->sechdrs[info->index.str].sh_offset;
3290 			break;
3291 		}
3292 	}
3293 
3294 	if (info->index.sym == 0) {
3295 		pr_warn("%s: module has no symbols (stripped?)\n",
3296 			info->name ?: "(missing .modinfo section or name field)");
3297 		return -ENOEXEC;
3298 	}
3299 
3300 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3301 	if (!info->index.mod) {
3302 		pr_warn("%s: No module found in object\n",
3303 			info->name ?: "(missing .modinfo section or name field)");
3304 		return -ENOEXEC;
3305 	}
3306 	/* This is temporary: point mod into copy of data. */
3307 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3308 
3309 	/*
3310 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3311 	 * on-disk struct mod 'name' field.
3312 	 */
3313 	if (!info->name)
3314 		info->name = info->mod->name;
3315 
3316 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3317 		info->index.vers = 0; /* Pretend no __versions section! */
3318 	else
3319 		info->index.vers = find_sec(info, "__versions");
3320 
3321 	info->index.pcpu = find_pcpusec(info);
3322 
3323 	return 0;
3324 }
3325 
check_modinfo(struct module * mod,struct load_info * info,int flags)3326 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3327 {
3328 	const char *modmagic = get_modinfo(info, "vermagic");
3329 	int err;
3330 
3331 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3332 		modmagic = NULL;
3333 
3334 	/* This is allowed: modprobe --force will invalidate it. */
3335 	if (!modmagic) {
3336 		err = try_to_force_load(mod, "bad vermagic");
3337 		if (err)
3338 			return err;
3339 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3340 		pr_err("%s: version magic '%s' should be '%s'\n",
3341 		       info->name, modmagic, vermagic);
3342 		return -ENOEXEC;
3343 	}
3344 
3345 	if (!get_modinfo(info, "intree")) {
3346 		if (!test_taint(TAINT_OOT_MODULE))
3347 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3348 				mod->name);
3349 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3350 	}
3351 
3352 	check_modinfo_retpoline(mod, info);
3353 
3354 	if (get_modinfo(info, "staging")) {
3355 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3356 		pr_warn("%s: module is from the staging directory, the quality "
3357 			"is unknown, you have been warned.\n", mod->name);
3358 	}
3359 
3360 	err = check_modinfo_livepatch(mod, info);
3361 	if (err)
3362 		return err;
3363 
3364 	/* Set up license info based on the info section */
3365 	set_license(mod, get_modinfo(info, "license"));
3366 
3367 	return 0;
3368 }
3369 
find_module_sections(struct module * mod,struct load_info * info)3370 static int find_module_sections(struct module *mod, struct load_info *info)
3371 {
3372 	mod->kp = section_objs(info, "__param",
3373 			       sizeof(*mod->kp), &mod->num_kp);
3374 	mod->syms = section_objs(info, "__ksymtab",
3375 				 sizeof(*mod->syms), &mod->num_syms);
3376 	mod->crcs = section_addr(info, "__kcrctab");
3377 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3378 				     sizeof(*mod->gpl_syms),
3379 				     &mod->num_gpl_syms);
3380 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3381 
3382 #ifdef CONFIG_CONSTRUCTORS
3383 	mod->ctors = section_objs(info, ".ctors",
3384 				  sizeof(*mod->ctors), &mod->num_ctors);
3385 	if (!mod->ctors)
3386 		mod->ctors = section_objs(info, ".init_array",
3387 				sizeof(*mod->ctors), &mod->num_ctors);
3388 	else if (find_sec(info, ".init_array")) {
3389 		/*
3390 		 * This shouldn't happen with same compiler and binutils
3391 		 * building all parts of the module.
3392 		 */
3393 		pr_warn("%s: has both .ctors and .init_array.\n",
3394 		       mod->name);
3395 		return -EINVAL;
3396 	}
3397 #endif
3398 
3399 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3400 						&mod->noinstr_text_size);
3401 
3402 #ifdef CONFIG_TRACEPOINTS
3403 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3404 					     sizeof(*mod->tracepoints_ptrs),
3405 					     &mod->num_tracepoints);
3406 #endif
3407 #ifdef CONFIG_TREE_SRCU
3408 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3409 					     sizeof(*mod->srcu_struct_ptrs),
3410 					     &mod->num_srcu_structs);
3411 #endif
3412 #ifdef CONFIG_BPF_EVENTS
3413 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3414 					   sizeof(*mod->bpf_raw_events),
3415 					   &mod->num_bpf_raw_events);
3416 #endif
3417 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3418 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3419 #endif
3420 #ifdef CONFIG_JUMP_LABEL
3421 	mod->jump_entries = section_objs(info, "__jump_table",
3422 					sizeof(*mod->jump_entries),
3423 					&mod->num_jump_entries);
3424 #endif
3425 #ifdef CONFIG_EVENT_TRACING
3426 	mod->trace_events = section_objs(info, "_ftrace_events",
3427 					 sizeof(*mod->trace_events),
3428 					 &mod->num_trace_events);
3429 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3430 					sizeof(*mod->trace_evals),
3431 					&mod->num_trace_evals);
3432 #endif
3433 #ifdef CONFIG_TRACING
3434 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3435 					 sizeof(*mod->trace_bprintk_fmt_start),
3436 					 &mod->num_trace_bprintk_fmt);
3437 #endif
3438 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3439 	/* sechdrs[0].sh_size is always zero */
3440 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3441 					     sizeof(*mod->ftrace_callsites),
3442 					     &mod->num_ftrace_callsites);
3443 #endif
3444 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3445 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3446 					    sizeof(*mod->ei_funcs),
3447 					    &mod->num_ei_funcs);
3448 #endif
3449 #ifdef CONFIG_KPROBES
3450 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3451 						&mod->kprobes_text_size);
3452 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3453 						sizeof(unsigned long),
3454 						&mod->num_kprobe_blacklist);
3455 #endif
3456 #ifdef CONFIG_PRINTK_INDEX
3457 	mod->printk_index_start = section_objs(info, ".printk_index",
3458 					       sizeof(*mod->printk_index_start),
3459 					       &mod->printk_index_size);
3460 #endif
3461 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3462 	mod->static_call_sites = section_objs(info, ".static_call_sites",
3463 					      sizeof(*mod->static_call_sites),
3464 					      &mod->num_static_call_sites);
3465 #endif
3466 	mod->extable = section_objs(info, "__ex_table",
3467 				    sizeof(*mod->extable), &mod->num_exentries);
3468 
3469 	if (section_addr(info, "__obsparm"))
3470 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3471 
3472 	info->debug = section_objs(info, "__dyndbg",
3473 				   sizeof(*info->debug), &info->num_debug);
3474 
3475 	return 0;
3476 }
3477 
move_module(struct module * mod,struct load_info * info)3478 static int move_module(struct module *mod, struct load_info *info)
3479 {
3480 	int i;
3481 	void *ptr;
3482 
3483 	/* Do the allocs. */
3484 	ptr = module_alloc(mod->core_layout.size);
3485 	/*
3486 	 * The pointer to this block is stored in the module structure
3487 	 * which is inside the block. Just mark it as not being a
3488 	 * leak.
3489 	 */
3490 	kmemleak_not_leak(ptr);
3491 	if (!ptr)
3492 		return -ENOMEM;
3493 
3494 	memset(ptr, 0, mod->core_layout.size);
3495 	mod->core_layout.base = ptr;
3496 
3497 	if (mod->init_layout.size) {
3498 		ptr = module_alloc(mod->init_layout.size);
3499 		/*
3500 		 * The pointer to this block is stored in the module structure
3501 		 * which is inside the block. This block doesn't need to be
3502 		 * scanned as it contains data and code that will be freed
3503 		 * after the module is initialized.
3504 		 */
3505 		kmemleak_ignore(ptr);
3506 		if (!ptr) {
3507 			module_memfree(mod->core_layout.base);
3508 			return -ENOMEM;
3509 		}
3510 		memset(ptr, 0, mod->init_layout.size);
3511 		mod->init_layout.base = ptr;
3512 	} else
3513 		mod->init_layout.base = NULL;
3514 
3515 	/* Transfer each section which specifies SHF_ALLOC */
3516 	pr_debug("final section addresses:\n");
3517 	for (i = 0; i < info->hdr->e_shnum; i++) {
3518 		void *dest;
3519 		Elf_Shdr *shdr = &info->sechdrs[i];
3520 
3521 		if (!(shdr->sh_flags & SHF_ALLOC))
3522 			continue;
3523 
3524 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3525 			dest = mod->init_layout.base
3526 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3527 		else
3528 			dest = mod->core_layout.base + shdr->sh_entsize;
3529 
3530 		if (shdr->sh_type != SHT_NOBITS)
3531 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3532 		/* Update sh_addr to point to copy in image. */
3533 		shdr->sh_addr = (unsigned long)dest;
3534 		pr_debug("\t0x%lx %s\n",
3535 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3536 	}
3537 
3538 	return 0;
3539 }
3540 
check_module_license_and_versions(struct module * mod)3541 static int check_module_license_and_versions(struct module *mod)
3542 {
3543 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3544 
3545 	/*
3546 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3547 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3548 	 * using GPL-only symbols it needs.
3549 	 */
3550 	if (strcmp(mod->name, "ndiswrapper") == 0)
3551 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3552 
3553 	/* driverloader was caught wrongly pretending to be under GPL */
3554 	if (strcmp(mod->name, "driverloader") == 0)
3555 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3556 				 LOCKDEP_NOW_UNRELIABLE);
3557 
3558 	/* lve claims to be GPL but upstream won't provide source */
3559 	if (strcmp(mod->name, "lve") == 0)
3560 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3561 				 LOCKDEP_NOW_UNRELIABLE);
3562 
3563 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3564 		pr_warn("%s: module license taints kernel.\n", mod->name);
3565 
3566 #ifdef CONFIG_MODVERSIONS
3567 	if ((mod->num_syms && !mod->crcs) ||
3568 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
3569 		return try_to_force_load(mod,
3570 					 "no versions for exported symbols");
3571 	}
3572 #endif
3573 	return 0;
3574 }
3575 
flush_module_icache(const struct module * mod)3576 static void flush_module_icache(const struct module *mod)
3577 {
3578 	/*
3579 	 * Flush the instruction cache, since we've played with text.
3580 	 * Do it before processing of module parameters, so the module
3581 	 * can provide parameter accessor functions of its own.
3582 	 */
3583 	if (mod->init_layout.base)
3584 		flush_icache_range((unsigned long)mod->init_layout.base,
3585 				   (unsigned long)mod->init_layout.base
3586 				   + mod->init_layout.size);
3587 	flush_icache_range((unsigned long)mod->core_layout.base,
3588 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3589 }
3590 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3591 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3592 				     Elf_Shdr *sechdrs,
3593 				     char *secstrings,
3594 				     struct module *mod)
3595 {
3596 	return 0;
3597 }
3598 
3599 /* module_blacklist is a comma-separated list of module names */
3600 static char *module_blacklist;
blacklisted(const char * module_name)3601 static bool blacklisted(const char *module_name)
3602 {
3603 	const char *p;
3604 	size_t len;
3605 
3606 	if (!module_blacklist)
3607 		return false;
3608 
3609 	for (p = module_blacklist; *p; p += len) {
3610 		len = strcspn(p, ",");
3611 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3612 			return true;
3613 		if (p[len] == ',')
3614 			len++;
3615 	}
3616 	return false;
3617 }
3618 core_param(module_blacklist, module_blacklist, charp, 0400);
3619 
layout_and_allocate(struct load_info * info,int flags)3620 static struct module *layout_and_allocate(struct load_info *info, int flags)
3621 {
3622 	struct module *mod;
3623 	unsigned int ndx;
3624 	int err;
3625 
3626 	err = check_modinfo(info->mod, info, flags);
3627 	if (err)
3628 		return ERR_PTR(err);
3629 
3630 	/* Allow arches to frob section contents and sizes.  */
3631 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3632 					info->secstrings, info->mod);
3633 	if (err < 0)
3634 		return ERR_PTR(err);
3635 
3636 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3637 					  info->secstrings, info->mod);
3638 	if (err < 0)
3639 		return ERR_PTR(err);
3640 
3641 	/* We will do a special allocation for per-cpu sections later. */
3642 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3643 
3644 	/*
3645 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3646 	 * layout_sections() can put it in the right place.
3647 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3648 	 */
3649 	ndx = find_sec(info, ".data..ro_after_init");
3650 	if (ndx)
3651 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3652 	/*
3653 	 * Mark the __jump_table section as ro_after_init as well: these data
3654 	 * structures are never modified, with the exception of entries that
3655 	 * refer to code in the __init section, which are annotated as such
3656 	 * at module load time.
3657 	 */
3658 	ndx = find_sec(info, "__jump_table");
3659 	if (ndx)
3660 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3661 
3662 	/*
3663 	 * Determine total sizes, and put offsets in sh_entsize.  For now
3664 	 * this is done generically; there doesn't appear to be any
3665 	 * special cases for the architectures.
3666 	 */
3667 	layout_sections(info->mod, info);
3668 	layout_symtab(info->mod, info);
3669 
3670 	/* Allocate and move to the final place */
3671 	err = move_module(info->mod, info);
3672 	if (err)
3673 		return ERR_PTR(err);
3674 
3675 	/* Module has been copied to its final place now: return it. */
3676 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3677 	kmemleak_load_module(mod, info);
3678 	return mod;
3679 }
3680 
3681 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3682 static void module_deallocate(struct module *mod, struct load_info *info)
3683 {
3684 	percpu_modfree(mod);
3685 	module_arch_freeing_init(mod);
3686 	trace_android_vh_set_memory_rw((unsigned long)mod->init_layout.base,
3687 		(mod->init_layout.size)>>PAGE_SHIFT);
3688 	trace_android_vh_set_memory_nx((unsigned long)mod->init_layout.base,
3689 		(mod->init_layout.size)>>PAGE_SHIFT);
3690 	module_memfree(mod->init_layout.base);
3691 	trace_android_vh_set_memory_rw((unsigned long)mod->core_layout.base,
3692 		(mod->core_layout.size)>>PAGE_SHIFT);
3693 	trace_android_vh_set_memory_nx((unsigned long)mod->core_layout.base,
3694 		(mod->core_layout.size)>>PAGE_SHIFT);
3695 	module_memfree(mod->core_layout.base);
3696 }
3697 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3698 int __weak module_finalize(const Elf_Ehdr *hdr,
3699 			   const Elf_Shdr *sechdrs,
3700 			   struct module *me)
3701 {
3702 	return 0;
3703 }
3704 
post_relocation(struct module * mod,const struct load_info * info)3705 static int post_relocation(struct module *mod, const struct load_info *info)
3706 {
3707 	/* Sort exception table now relocations are done. */
3708 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3709 
3710 	/* Copy relocated percpu area over. */
3711 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3712 		       info->sechdrs[info->index.pcpu].sh_size);
3713 
3714 	/* Setup kallsyms-specific fields. */
3715 	add_kallsyms(mod, info);
3716 
3717 	/* Arch-specific module finalizing. */
3718 	return module_finalize(info->hdr, info->sechdrs, mod);
3719 }
3720 
3721 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3722 static bool finished_loading(const char *name)
3723 {
3724 	struct module *mod;
3725 	bool ret;
3726 
3727 	/*
3728 	 * The module_mutex should not be a heavily contended lock;
3729 	 * if we get the occasional sleep here, we'll go an extra iteration
3730 	 * in the wait_event_interruptible(), which is harmless.
3731 	 */
3732 	sched_annotate_sleep();
3733 	mutex_lock(&module_mutex);
3734 	mod = find_module_all(name, strlen(name), true);
3735 	ret = !mod || mod->state == MODULE_STATE_LIVE
3736 		|| mod->state == MODULE_STATE_GOING;
3737 	mutex_unlock(&module_mutex);
3738 
3739 	return ret;
3740 }
3741 
3742 /* Call module constructors. */
do_mod_ctors(struct module * mod)3743 static void do_mod_ctors(struct module *mod)
3744 {
3745 #ifdef CONFIG_CONSTRUCTORS
3746 	unsigned long i;
3747 
3748 	for (i = 0; i < mod->num_ctors; i++)
3749 		mod->ctors[i]();
3750 #endif
3751 }
3752 
3753 /* For freeing module_init on success, in case kallsyms traversing */
3754 struct mod_initfree {
3755 	struct llist_node node;
3756 	void *module_init;
3757 };
3758 
do_free_init(struct work_struct * w)3759 static void do_free_init(struct work_struct *w)
3760 {
3761 	struct llist_node *pos, *n, *list;
3762 	struct mod_initfree *initfree;
3763 
3764 	list = llist_del_all(&init_free_list);
3765 
3766 	synchronize_rcu();
3767 
3768 	llist_for_each_safe(pos, n, list) {
3769 		initfree = container_of(pos, struct mod_initfree, node);
3770 		module_memfree(initfree->module_init);
3771 		kfree(initfree);
3772 	}
3773 }
3774 
3775 /*
3776  * This is where the real work happens.
3777  *
3778  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3779  * helper command 'lx-symbols'.
3780  */
do_init_module(struct module * mod)3781 static noinline int do_init_module(struct module *mod)
3782 {
3783 	int ret = 0;
3784 	struct mod_initfree *freeinit;
3785 
3786 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3787 	if (!freeinit) {
3788 		ret = -ENOMEM;
3789 		goto fail;
3790 	}
3791 	freeinit->module_init = mod->init_layout.base;
3792 
3793 	do_mod_ctors(mod);
3794 	/* Start the module */
3795 	if (mod->init != NULL)
3796 		ret = do_one_initcall(mod->init);
3797 	if (ret < 0) {
3798 		goto fail_free_freeinit;
3799 	}
3800 	if (ret > 0) {
3801 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3802 			"follow 0/-E convention\n"
3803 			"%s: loading module anyway...\n",
3804 			__func__, mod->name, ret, __func__);
3805 		dump_stack();
3806 	}
3807 
3808 	/* Now it's a first class citizen! */
3809 	mod->state = MODULE_STATE_LIVE;
3810 	blocking_notifier_call_chain(&module_notify_list,
3811 				     MODULE_STATE_LIVE, mod);
3812 
3813 	/* Delay uevent until module has finished its init routine */
3814 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3815 
3816 	/*
3817 	 * We need to finish all async code before the module init sequence
3818 	 * is done. This has potential to deadlock if synchronous module
3819 	 * loading is requested from async (which is not allowed!).
3820 	 *
3821 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3822 	 * request_module() from async workers") for more details.
3823 	 */
3824 	if (!mod->async_probe_requested)
3825 		async_synchronize_full();
3826 
3827 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3828 			mod->init_layout.size);
3829 	mutex_lock(&module_mutex);
3830 	/* Drop initial reference. */
3831 	module_put(mod);
3832 	trim_init_extable(mod);
3833 #ifdef CONFIG_KALLSYMS
3834 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3835 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3836 #endif
3837 	module_enable_ro(mod, true);
3838 	trace_android_vh_set_module_permit_after_init(mod);
3839 	mod_tree_remove_init(mod);
3840 	module_arch_freeing_init(mod);
3841 	trace_android_vh_set_memory_rw((unsigned long)mod->init_layout.base,
3842 		(mod->init_layout.size)>>PAGE_SHIFT);
3843 	trace_android_vh_set_memory_nx((unsigned long)mod->init_layout.base,
3844 		(mod->init_layout.size)>>PAGE_SHIFT);
3845 	mod->init_layout.base = NULL;
3846 	mod->init_layout.size = 0;
3847 	mod->init_layout.ro_size = 0;
3848 	mod->init_layout.ro_after_init_size = 0;
3849 	mod->init_layout.text_size = 0;
3850 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3851 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3852 	mod->btf_data = NULL;
3853 #endif
3854 	/*
3855 	 * We want to free module_init, but be aware that kallsyms may be
3856 	 * walking this with preempt disabled.  In all the failure paths, we
3857 	 * call synchronize_rcu(), but we don't want to slow down the success
3858 	 * path. module_memfree() cannot be called in an interrupt, so do the
3859 	 * work and call synchronize_rcu() in a work queue.
3860 	 *
3861 	 * Note that module_alloc() on most architectures creates W+X page
3862 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3863 	 * code such as mark_rodata_ro() which depends on those mappings to
3864 	 * be cleaned up needs to sync with the queued work - ie
3865 	 * rcu_barrier()
3866 	 */
3867 	if (llist_add(&freeinit->node, &init_free_list))
3868 		schedule_work(&init_free_wq);
3869 
3870 	mutex_unlock(&module_mutex);
3871 	wake_up_all(&module_wq);
3872 
3873 	return 0;
3874 
3875 fail_free_freeinit:
3876 	kfree(freeinit);
3877 fail:
3878 	/* Try to protect us from buggy refcounters. */
3879 	mod->state = MODULE_STATE_GOING;
3880 	synchronize_rcu();
3881 	module_put(mod);
3882 	blocking_notifier_call_chain(&module_notify_list,
3883 				     MODULE_STATE_GOING, mod);
3884 	klp_module_going(mod);
3885 	ftrace_release_mod(mod);
3886 	free_module(mod);
3887 	wake_up_all(&module_wq);
3888 	return ret;
3889 }
3890 
may_init_module(void)3891 static int may_init_module(void)
3892 {
3893 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3894 		return -EPERM;
3895 
3896 	return 0;
3897 }
3898 
3899 /*
3900  * We try to place it in the list now to make sure it's unique before
3901  * we dedicate too many resources.  In particular, temporary percpu
3902  * memory exhaustion.
3903  */
add_unformed_module(struct module * mod)3904 static int add_unformed_module(struct module *mod)
3905 {
3906 	int err;
3907 	struct module *old;
3908 
3909 	mod->state = MODULE_STATE_UNFORMED;
3910 
3911 	mutex_lock(&module_mutex);
3912 	old = find_module_all(mod->name, strlen(mod->name), true);
3913 	if (old != NULL) {
3914 		if (old->state == MODULE_STATE_COMING
3915 		    || old->state == MODULE_STATE_UNFORMED) {
3916 			/* Wait in case it fails to load. */
3917 			mutex_unlock(&module_mutex);
3918 			err = wait_event_interruptible(module_wq,
3919 					       finished_loading(mod->name));
3920 			if (err)
3921 				goto out_unlocked;
3922 
3923 			/* The module might have gone in the meantime. */
3924 			mutex_lock(&module_mutex);
3925 			old = find_module_all(mod->name, strlen(mod->name),
3926 					      true);
3927 		}
3928 
3929 		/*
3930 		 * We are here only when the same module was being loaded. Do
3931 		 * not try to load it again right now. It prevents long delays
3932 		 * caused by serialized module load failures. It might happen
3933 		 * when more devices of the same type trigger load of
3934 		 * a particular module.
3935 		 */
3936 		if (old && old->state == MODULE_STATE_LIVE)
3937 			err = -EEXIST;
3938 		else
3939 			err = -EBUSY;
3940 		goto out;
3941 	}
3942 	mod_update_bounds(mod);
3943 	list_add_rcu(&mod->list, &modules);
3944 	mod_tree_insert(mod);
3945 	err = 0;
3946 
3947 out:
3948 	mutex_unlock(&module_mutex);
3949 out_unlocked:
3950 	return err;
3951 }
3952 
complete_formation(struct module * mod,struct load_info * info)3953 static int complete_formation(struct module *mod, struct load_info *info)
3954 {
3955 	int err;
3956 
3957 	mutex_lock(&module_mutex);
3958 
3959 	/* Find duplicate symbols (must be called under lock). */
3960 	err = verify_exported_symbols(mod);
3961 	if (err < 0)
3962 		goto out;
3963 
3964 	/* This relies on module_mutex for list integrity. */
3965 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3966 
3967 	module_enable_ro(mod, false);
3968 	module_enable_nx(mod);
3969 	module_enable_x(mod);
3970 	trace_android_vh_set_module_permit_before_init(mod);
3971 
3972 	/*
3973 	 * Mark state as coming so strong_try_module_get() ignores us,
3974 	 * but kallsyms etc. can see us.
3975 	 */
3976 	mod->state = MODULE_STATE_COMING;
3977 	mutex_unlock(&module_mutex);
3978 
3979 	return 0;
3980 
3981 out:
3982 	mutex_unlock(&module_mutex);
3983 	return err;
3984 }
3985 
prepare_coming_module(struct module * mod)3986 static int prepare_coming_module(struct module *mod)
3987 {
3988 	int err;
3989 
3990 	ftrace_module_enable(mod);
3991 	err = klp_module_coming(mod);
3992 	if (err)
3993 		return err;
3994 
3995 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3996 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3997 	err = notifier_to_errno(err);
3998 	if (err)
3999 		klp_module_going(mod);
4000 
4001 	return err;
4002 }
4003 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)4004 static int unknown_module_param_cb(char *param, char *val, const char *modname,
4005 				   void *arg)
4006 {
4007 	struct module *mod = arg;
4008 	int ret;
4009 
4010 	if (strcmp(param, "async_probe") == 0) {
4011 		mod->async_probe_requested = true;
4012 		return 0;
4013 	}
4014 
4015 	/* Check for magic 'dyndbg' arg */
4016 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
4017 	if (ret != 0)
4018 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
4019 	return 0;
4020 }
4021 
4022 static void cfi_init(struct module *mod);
4023 
4024 /*
4025  * Allocate and load the module: note that size of section 0 is always
4026  * zero, and we rely on this for optional sections.
4027  */
load_module(struct load_info * info,const char __user * uargs,int flags)4028 static int load_module(struct load_info *info, const char __user *uargs,
4029 		       int flags)
4030 {
4031 	struct module *mod;
4032 	long err = 0;
4033 	char *after_dashes;
4034 
4035 	/*
4036 	 * Do the signature check (if any) first. All that
4037 	 * the signature check needs is info->len, it does
4038 	 * not need any of the section info. That can be
4039 	 * set up later. This will minimize the chances
4040 	 * of a corrupt module causing problems before
4041 	 * we even get to the signature check.
4042 	 *
4043 	 * The check will also adjust info->len by stripping
4044 	 * off the sig length at the end of the module, making
4045 	 * checks against info->len more correct.
4046 	 */
4047 	err = module_sig_check(info, flags);
4048 	if (err)
4049 		goto free_copy;
4050 
4051 	/*
4052 	 * Do basic sanity checks against the ELF header and
4053 	 * sections.
4054 	 */
4055 	err = elf_validity_check(info);
4056 	if (err)
4057 		goto free_copy;
4058 
4059 	/*
4060 	 * Everything checks out, so set up the section info
4061 	 * in the info structure.
4062 	 */
4063 	err = setup_load_info(info, flags);
4064 	if (err)
4065 		goto free_copy;
4066 
4067 	/*
4068 	 * Now that we know we have the correct module name, check
4069 	 * if it's blacklisted.
4070 	 */
4071 	if (blacklisted(info->name)) {
4072 		err = -EPERM;
4073 		pr_err("Module %s is blacklisted\n", info->name);
4074 		goto free_copy;
4075 	}
4076 
4077 	err = rewrite_section_headers(info, flags);
4078 	if (err)
4079 		goto free_copy;
4080 
4081 	/* Check module struct version now, before we try to use module. */
4082 	if (!check_modstruct_version(info, info->mod)) {
4083 		err = -ENOEXEC;
4084 		goto free_copy;
4085 	}
4086 
4087 	/* Figure out module layout, and allocate all the memory. */
4088 	mod = layout_and_allocate(info, flags);
4089 	if (IS_ERR(mod)) {
4090 		err = PTR_ERR(mod);
4091 		goto free_copy;
4092 	}
4093 
4094 	audit_log_kern_module(mod->name);
4095 
4096 	/* Reserve our place in the list. */
4097 	err = add_unformed_module(mod);
4098 	if (err)
4099 		goto free_module;
4100 
4101 #ifdef CONFIG_MODULE_SIG
4102 	mod->sig_ok = info->sig_ok;
4103 	if (!mod->sig_ok) {
4104 		pr_notice_once("%s: module verification failed: signature "
4105 			       "and/or required key missing - tainting "
4106 			       "kernel\n", mod->name);
4107 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
4108 	}
4109 #else
4110 	mod->sig_ok = 0;
4111 #endif
4112 
4113 	/* To avoid stressing percpu allocator, do this once we're unique. */
4114 	err = percpu_modalloc(mod, info);
4115 	if (err)
4116 		goto unlink_mod;
4117 
4118 	/* Now module is in final location, initialize linked lists, etc. */
4119 	err = module_unload_init(mod);
4120 	if (err)
4121 		goto unlink_mod;
4122 
4123 	init_param_lock(mod);
4124 
4125 	/*
4126 	 * Now we've got everything in the final locations, we can
4127 	 * find optional sections.
4128 	 */
4129 	err = find_module_sections(mod, info);
4130 	if (err)
4131 		goto free_unload;
4132 
4133 	err = check_module_license_and_versions(mod);
4134 	if (err)
4135 		goto free_unload;
4136 
4137 	/* Set up MODINFO_ATTR fields */
4138 	setup_modinfo(mod, info);
4139 
4140 	/* Fix up syms, so that st_value is a pointer to location. */
4141 	err = simplify_symbols(mod, info);
4142 	if (err < 0)
4143 		goto free_modinfo;
4144 
4145 	err = apply_relocations(mod, info);
4146 	if (err < 0)
4147 		goto free_modinfo;
4148 
4149 	err = post_relocation(mod, info);
4150 	if (err < 0)
4151 		goto free_modinfo;
4152 
4153 	flush_module_icache(mod);
4154 
4155 	/* Setup CFI for the module. */
4156 	cfi_init(mod);
4157 
4158 	/* Now copy in args */
4159 	mod->args = strndup_user(uargs, ~0UL >> 1);
4160 	if (IS_ERR(mod->args)) {
4161 		err = PTR_ERR(mod->args);
4162 		goto free_arch_cleanup;
4163 	}
4164 
4165 	init_build_id(mod, info);
4166 	dynamic_debug_setup(mod, info->debug, info->num_debug);
4167 
4168 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4169 	ftrace_module_init(mod);
4170 
4171 	/* Finally it's fully formed, ready to start executing. */
4172 	err = complete_formation(mod, info);
4173 	if (err)
4174 		goto ddebug_cleanup;
4175 
4176 	err = prepare_coming_module(mod);
4177 	if (err)
4178 		goto bug_cleanup;
4179 
4180 	/* Module is ready to execute: parsing args may do that. */
4181 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4182 				  -32768, 32767, mod,
4183 				  unknown_module_param_cb);
4184 	if (IS_ERR(after_dashes)) {
4185 		err = PTR_ERR(after_dashes);
4186 		goto coming_cleanup;
4187 	} else if (after_dashes) {
4188 		pr_warn("%s: parameters '%s' after `--' ignored\n",
4189 		       mod->name, after_dashes);
4190 	}
4191 
4192 	/* Link in to sysfs. */
4193 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4194 	if (err < 0)
4195 		goto coming_cleanup;
4196 
4197 	if (is_livepatch_module(mod)) {
4198 		err = copy_module_elf(mod, info);
4199 		if (err < 0)
4200 			goto sysfs_cleanup;
4201 	}
4202 
4203 	/* Get rid of temporary copy. */
4204 	free_copy(info);
4205 
4206 	/* Done! */
4207 	trace_module_load(mod);
4208 
4209 	return do_init_module(mod);
4210 
4211  sysfs_cleanup:
4212 	mod_sysfs_teardown(mod);
4213  coming_cleanup:
4214 	mod->state = MODULE_STATE_GOING;
4215 	destroy_params(mod->kp, mod->num_kp);
4216 	blocking_notifier_call_chain(&module_notify_list,
4217 				     MODULE_STATE_GOING, mod);
4218 	klp_module_going(mod);
4219  bug_cleanup:
4220 	mod->state = MODULE_STATE_GOING;
4221 	/* module_bug_cleanup needs module_mutex protection */
4222 	mutex_lock(&module_mutex);
4223 	module_bug_cleanup(mod);
4224 	mutex_unlock(&module_mutex);
4225 
4226  ddebug_cleanup:
4227 	ftrace_release_mod(mod);
4228 	dynamic_debug_remove(mod, info->debug);
4229 	synchronize_rcu();
4230 	kfree(mod->args);
4231  free_arch_cleanup:
4232 	cfi_cleanup(mod);
4233 	module_arch_cleanup(mod);
4234  free_modinfo:
4235 	free_modinfo(mod);
4236  free_unload:
4237 	module_unload_free(mod);
4238  unlink_mod:
4239 	mutex_lock(&module_mutex);
4240 	/* Unlink carefully: kallsyms could be walking list. */
4241 	list_del_rcu(&mod->list);
4242 	mod_tree_remove(mod);
4243 	wake_up_all(&module_wq);
4244 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4245 	synchronize_rcu();
4246 	mutex_unlock(&module_mutex);
4247  free_module:
4248 	/* Free lock-classes; relies on the preceding sync_rcu() */
4249 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4250 
4251 	module_deallocate(mod, info);
4252  free_copy:
4253 	free_copy(info);
4254 	return err;
4255 }
4256 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4257 SYSCALL_DEFINE3(init_module, void __user *, umod,
4258 		unsigned long, len, const char __user *, uargs)
4259 {
4260 	int err;
4261 	struct load_info info = { };
4262 
4263 	err = may_init_module();
4264 	if (err)
4265 		return err;
4266 
4267 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4268 	       umod, len, uargs);
4269 
4270 	err = copy_module_from_user(umod, len, &info);
4271 	if (err)
4272 		return err;
4273 
4274 	return load_module(&info, uargs, 0);
4275 }
4276 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4277 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4278 {
4279 	struct load_info info = { };
4280 	void *hdr = NULL;
4281 	int err;
4282 
4283 	err = may_init_module();
4284 	if (err)
4285 		return err;
4286 
4287 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4288 
4289 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4290 		      |MODULE_INIT_IGNORE_VERMAGIC))
4291 		return -EINVAL;
4292 
4293 	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4294 				       READING_MODULE);
4295 	if (err < 0)
4296 		return err;
4297 	info.hdr = hdr;
4298 	info.len = err;
4299 
4300 	return load_module(&info, uargs, flags);
4301 }
4302 
within(unsigned long addr,void * start,unsigned long size)4303 static inline int within(unsigned long addr, void *start, unsigned long size)
4304 {
4305 	return ((void *)addr >= start && (void *)addr < start + size);
4306 }
4307 
4308 #ifdef CONFIG_KALLSYMS
4309 /*
4310  * This ignores the intensely annoying "mapping symbols" found
4311  * in ARM ELF files: $a, $t and $d.
4312  */
is_arm_mapping_symbol(const char * str)4313 static inline int is_arm_mapping_symbol(const char *str)
4314 {
4315 	if (str[0] == '.' && str[1] == 'L')
4316 		return true;
4317 	return str[0] == '$' && strchr("axtd", str[1])
4318 	       && (str[2] == '\0' || str[2] == '.');
4319 }
4320 
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4321 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4322 {
4323 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4324 }
4325 
4326 /*
4327  * Given a module and address, find the corresponding symbol and return its name
4328  * while providing its size and offset if needed.
4329  */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4330 static const char *find_kallsyms_symbol(struct module *mod,
4331 					unsigned long addr,
4332 					unsigned long *size,
4333 					unsigned long *offset)
4334 {
4335 	unsigned int i, best = 0;
4336 	unsigned long nextval, bestval;
4337 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4338 
4339 	/* At worse, next value is at end of module */
4340 	if (within_module_init(addr, mod))
4341 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4342 	else
4343 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4344 
4345 	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4346 
4347 	/*
4348 	 * Scan for closest preceding symbol, and next symbol. (ELF
4349 	 * starts real symbols at 1).
4350 	 */
4351 	for (i = 1; i < kallsyms->num_symtab; i++) {
4352 		const Elf_Sym *sym = &kallsyms->symtab[i];
4353 		unsigned long thisval = kallsyms_symbol_value(sym);
4354 
4355 		if (sym->st_shndx == SHN_UNDEF)
4356 			continue;
4357 
4358 		/*
4359 		 * We ignore unnamed symbols: they're uninformative
4360 		 * and inserted at a whim.
4361 		 */
4362 		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4363 		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4364 			continue;
4365 
4366 		if (thisval <= addr && thisval > bestval) {
4367 			best = i;
4368 			bestval = thisval;
4369 		}
4370 		if (thisval > addr && thisval < nextval)
4371 			nextval = thisval;
4372 	}
4373 
4374 	if (!best)
4375 		return NULL;
4376 
4377 	if (size)
4378 		*size = nextval - bestval;
4379 	if (offset)
4380 		*offset = addr - bestval;
4381 
4382 	return kallsyms_symbol_name(kallsyms, best);
4383 }
4384 
dereference_module_function_descriptor(struct module * mod,void * ptr)4385 void * __weak dereference_module_function_descriptor(struct module *mod,
4386 						     void *ptr)
4387 {
4388 	return ptr;
4389 }
4390 
4391 /*
4392  * For kallsyms to ask for address resolution.  NULL means not found.  Careful
4393  * not to lock to avoid deadlock on oopses, simply disable preemption.
4394  */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,const unsigned char ** modbuildid,char * namebuf)4395 const char *module_address_lookup(unsigned long addr,
4396 			    unsigned long *size,
4397 			    unsigned long *offset,
4398 			    char **modname,
4399 			    const unsigned char **modbuildid,
4400 			    char *namebuf)
4401 {
4402 	const char *ret = NULL;
4403 	struct module *mod;
4404 
4405 	preempt_disable();
4406 	mod = __module_address(addr);
4407 	if (mod) {
4408 		if (modname)
4409 			*modname = mod->name;
4410 		if (modbuildid) {
4411 #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4412 			*modbuildid = mod->build_id;
4413 #else
4414 			*modbuildid = NULL;
4415 #endif
4416 		}
4417 
4418 		ret = find_kallsyms_symbol(mod, addr, size, offset);
4419 	}
4420 	/* Make a copy in here where it's safe */
4421 	if (ret) {
4422 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4423 		ret = namebuf;
4424 	}
4425 	preempt_enable();
4426 
4427 	return ret;
4428 }
4429 
lookup_module_symbol_name(unsigned long addr,char * symname)4430 int lookup_module_symbol_name(unsigned long addr, char *symname)
4431 {
4432 	struct module *mod;
4433 
4434 	preempt_disable();
4435 	list_for_each_entry_rcu(mod, &modules, list) {
4436 		if (mod->state == MODULE_STATE_UNFORMED)
4437 			continue;
4438 		if (within_module(addr, mod)) {
4439 			const char *sym;
4440 
4441 			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4442 			if (!sym)
4443 				goto out;
4444 
4445 			strlcpy(symname, sym, KSYM_NAME_LEN);
4446 			preempt_enable();
4447 			return 0;
4448 		}
4449 	}
4450 out:
4451 	preempt_enable();
4452 	return -ERANGE;
4453 }
4454 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4455 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4456 			unsigned long *offset, char *modname, char *name)
4457 {
4458 	struct module *mod;
4459 
4460 	preempt_disable();
4461 	list_for_each_entry_rcu(mod, &modules, list) {
4462 		if (mod->state == MODULE_STATE_UNFORMED)
4463 			continue;
4464 		if (within_module(addr, mod)) {
4465 			const char *sym;
4466 
4467 			sym = find_kallsyms_symbol(mod, addr, size, offset);
4468 			if (!sym)
4469 				goto out;
4470 			if (modname)
4471 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4472 			if (name)
4473 				strlcpy(name, sym, KSYM_NAME_LEN);
4474 			preempt_enable();
4475 			return 0;
4476 		}
4477 	}
4478 out:
4479 	preempt_enable();
4480 	return -ERANGE;
4481 }
4482 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4483 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4484 			char *name, char *module_name, int *exported)
4485 {
4486 	struct module *mod;
4487 
4488 	preempt_disable();
4489 	list_for_each_entry_rcu(mod, &modules, list) {
4490 		struct mod_kallsyms *kallsyms;
4491 
4492 		if (mod->state == MODULE_STATE_UNFORMED)
4493 			continue;
4494 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4495 		if (symnum < kallsyms->num_symtab) {
4496 			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4497 
4498 			*value = kallsyms_symbol_value(sym);
4499 			*type = kallsyms->typetab[symnum];
4500 			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4501 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4502 			*exported = is_exported(name, *value, mod);
4503 			preempt_enable();
4504 			return 0;
4505 		}
4506 		symnum -= kallsyms->num_symtab;
4507 	}
4508 	preempt_enable();
4509 	return -ERANGE;
4510 }
4511 
4512 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4513 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4514 {
4515 	unsigned int i;
4516 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4517 
4518 	for (i = 0; i < kallsyms->num_symtab; i++) {
4519 		const Elf_Sym *sym = &kallsyms->symtab[i];
4520 
4521 		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4522 		    sym->st_shndx != SHN_UNDEF)
4523 			return kallsyms_symbol_value(sym);
4524 	}
4525 	return 0;
4526 }
4527 
4528 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4529 unsigned long module_kallsyms_lookup_name(const char *name)
4530 {
4531 	struct module *mod;
4532 	char *colon;
4533 	unsigned long ret = 0;
4534 
4535 	/* Don't lock: we're in enough trouble already. */
4536 	preempt_disable();
4537 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4538 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4539 			ret = find_kallsyms_symbol_value(mod, colon+1);
4540 	} else {
4541 		list_for_each_entry_rcu(mod, &modules, list) {
4542 			if (mod->state == MODULE_STATE_UNFORMED)
4543 				continue;
4544 			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4545 				break;
4546 		}
4547 	}
4548 	preempt_enable();
4549 	return ret;
4550 }
4551 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4552 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4553 					     struct module *, unsigned long),
4554 				   void *data)
4555 {
4556 	struct module *mod;
4557 	unsigned int i;
4558 	int ret = 0;
4559 
4560 	mutex_lock(&module_mutex);
4561 	list_for_each_entry(mod, &modules, list) {
4562 		/* We hold module_mutex: no need for rcu_dereference_sched */
4563 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4564 
4565 		if (mod->state == MODULE_STATE_UNFORMED)
4566 			continue;
4567 		for (i = 0; i < kallsyms->num_symtab; i++) {
4568 			const Elf_Sym *sym = &kallsyms->symtab[i];
4569 
4570 			if (sym->st_shndx == SHN_UNDEF)
4571 				continue;
4572 
4573 			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4574 				 mod, kallsyms_symbol_value(sym));
4575 			if (ret != 0)
4576 				goto out;
4577 		}
4578 	}
4579 out:
4580 	mutex_unlock(&module_mutex);
4581 	return ret;
4582 }
4583 #endif /* CONFIG_KALLSYMS */
4584 
cfi_init(struct module * mod)4585 static void cfi_init(struct module *mod)
4586 {
4587 #ifdef CONFIG_CFI_CLANG
4588 	initcall_t *init;
4589 	exitcall_t *exit;
4590 
4591 	rcu_read_lock_sched();
4592 	mod->cfi_check = (cfi_check_fn)
4593 		find_kallsyms_symbol_value(mod, "__cfi_check");
4594 	init = (initcall_t *)
4595 		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4596 	exit = (exitcall_t *)
4597 		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4598 	rcu_read_unlock_sched();
4599 
4600 	/* Fix init/exit functions to point to the CFI jump table */
4601 	if (init)
4602 		mod->init = *init;
4603 #ifdef CONFIG_MODULE_UNLOAD
4604 	if (exit)
4605 		mod->exit = *exit;
4606 #endif
4607 
4608 	cfi_module_add(mod, module_addr_min);
4609 #endif
4610 }
4611 
cfi_cleanup(struct module * mod)4612 static void cfi_cleanup(struct module *mod)
4613 {
4614 #ifdef CONFIG_CFI_CLANG
4615 	cfi_module_remove(mod, module_addr_min);
4616 #endif
4617 }
4618 
4619 /* Maximum number of characters written by module_flags() */
4620 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4621 
4622 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4623 static char *module_flags(struct module *mod, char *buf)
4624 {
4625 	int bx = 0;
4626 
4627 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4628 	if (mod->taints ||
4629 	    mod->state == MODULE_STATE_GOING ||
4630 	    mod->state == MODULE_STATE_COMING) {
4631 		buf[bx++] = '(';
4632 		bx += module_flags_taint(mod, buf + bx);
4633 		/* Show a - for module-is-being-unloaded */
4634 		if (mod->state == MODULE_STATE_GOING)
4635 			buf[bx++] = '-';
4636 		/* Show a + for module-is-being-loaded */
4637 		if (mod->state == MODULE_STATE_COMING)
4638 			buf[bx++] = '+';
4639 		buf[bx++] = ')';
4640 	}
4641 	buf[bx] = '\0';
4642 
4643 	return buf;
4644 }
4645 
4646 #ifdef CONFIG_PROC_FS
4647 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4648 static void *m_start(struct seq_file *m, loff_t *pos)
4649 {
4650 	mutex_lock(&module_mutex);
4651 	return seq_list_start(&modules, *pos);
4652 }
4653 
m_next(struct seq_file * m,void * p,loff_t * pos)4654 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4655 {
4656 	return seq_list_next(p, &modules, pos);
4657 }
4658 
m_stop(struct seq_file * m,void * p)4659 static void m_stop(struct seq_file *m, void *p)
4660 {
4661 	mutex_unlock(&module_mutex);
4662 }
4663 
m_show(struct seq_file * m,void * p)4664 static int m_show(struct seq_file *m, void *p)
4665 {
4666 	struct module *mod = list_entry(p, struct module, list);
4667 	char buf[MODULE_FLAGS_BUF_SIZE];
4668 	void *value;
4669 
4670 	/* We always ignore unformed modules. */
4671 	if (mod->state == MODULE_STATE_UNFORMED)
4672 		return 0;
4673 
4674 	seq_printf(m, "%s %u",
4675 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4676 	print_unload_info(m, mod);
4677 
4678 	/* Informative for users. */
4679 	seq_printf(m, " %s",
4680 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4681 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4682 		   "Live");
4683 	/* Used by oprofile and other similar tools. */
4684 	value = m->private ? NULL : mod->core_layout.base;
4685 	seq_printf(m, " 0x%px", value);
4686 
4687 	/* Taints info */
4688 	if (mod->taints)
4689 		seq_printf(m, " %s", module_flags(mod, buf));
4690 
4691 	seq_puts(m, "\n");
4692 	return 0;
4693 }
4694 
4695 /*
4696  * Format: modulename size refcount deps address
4697  *
4698  * Where refcount is a number or -, and deps is a comma-separated list
4699  * of depends or -.
4700  */
4701 static const struct seq_operations modules_op = {
4702 	.start	= m_start,
4703 	.next	= m_next,
4704 	.stop	= m_stop,
4705 	.show	= m_show
4706 };
4707 
4708 /*
4709  * This also sets the "private" pointer to non-NULL if the
4710  * kernel pointers should be hidden (so you can just test
4711  * "m->private" to see if you should keep the values private).
4712  *
4713  * We use the same logic as for /proc/kallsyms.
4714  */
modules_open(struct inode * inode,struct file * file)4715 static int modules_open(struct inode *inode, struct file *file)
4716 {
4717 	int err = seq_open(file, &modules_op);
4718 
4719 	if (!err) {
4720 		struct seq_file *m = file->private_data;
4721 		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4722 	}
4723 
4724 	return err;
4725 }
4726 
4727 static const struct proc_ops modules_proc_ops = {
4728 	.proc_flags	= PROC_ENTRY_PERMANENT,
4729 	.proc_open	= modules_open,
4730 	.proc_read	= seq_read,
4731 	.proc_lseek	= seq_lseek,
4732 	.proc_release	= seq_release,
4733 };
4734 
proc_modules_init(void)4735 static int __init proc_modules_init(void)
4736 {
4737 	proc_create("modules", 0, NULL, &modules_proc_ops);
4738 	return 0;
4739 }
4740 module_init(proc_modules_init);
4741 #endif
4742 
4743 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4744 const struct exception_table_entry *search_module_extables(unsigned long addr)
4745 {
4746 	const struct exception_table_entry *e = NULL;
4747 	struct module *mod;
4748 
4749 	preempt_disable();
4750 	mod = __module_address(addr);
4751 	if (!mod)
4752 		goto out;
4753 
4754 	if (!mod->num_exentries)
4755 		goto out;
4756 
4757 	e = search_extable(mod->extable,
4758 			   mod->num_exentries,
4759 			   addr);
4760 out:
4761 	preempt_enable();
4762 
4763 	/*
4764 	 * Now, if we found one, we are running inside it now, hence
4765 	 * we cannot unload the module, hence no refcnt needed.
4766 	 */
4767 	return e;
4768 }
4769 
4770 /**
4771  * is_module_address() - is this address inside a module?
4772  * @addr: the address to check.
4773  *
4774  * See is_module_text_address() if you simply want to see if the address
4775  * is code (not data).
4776  */
is_module_address(unsigned long addr)4777 bool is_module_address(unsigned long addr)
4778 {
4779 	bool ret;
4780 
4781 	preempt_disable();
4782 	ret = __module_address(addr) != NULL;
4783 	preempt_enable();
4784 
4785 	return ret;
4786 }
4787 
4788 /**
4789  * __module_address() - get the module which contains an address.
4790  * @addr: the address.
4791  *
4792  * Must be called with preempt disabled or module mutex held so that
4793  * module doesn't get freed during this.
4794  */
__module_address(unsigned long addr)4795 struct module *__module_address(unsigned long addr)
4796 {
4797 	struct module *mod;
4798 
4799 	if (addr < module_addr_min || addr > module_addr_max)
4800 		return NULL;
4801 
4802 	module_assert_mutex_or_preempt();
4803 
4804 	mod = mod_find(addr);
4805 	if (mod) {
4806 		BUG_ON(!within_module(addr, mod));
4807 		if (mod->state == MODULE_STATE_UNFORMED)
4808 			mod = NULL;
4809 	}
4810 	return mod;
4811 }
4812 
4813 /**
4814  * is_module_text_address() - is this address inside module code?
4815  * @addr: the address to check.
4816  *
4817  * See is_module_address() if you simply want to see if the address is
4818  * anywhere in a module.  See kernel_text_address() for testing if an
4819  * address corresponds to kernel or module code.
4820  */
is_module_text_address(unsigned long addr)4821 bool is_module_text_address(unsigned long addr)
4822 {
4823 	bool ret;
4824 
4825 	preempt_disable();
4826 	ret = __module_text_address(addr) != NULL;
4827 	preempt_enable();
4828 
4829 	return ret;
4830 }
4831 
4832 /**
4833  * __module_text_address() - get the module whose code contains an address.
4834  * @addr: the address.
4835  *
4836  * Must be called with preempt disabled or module mutex held so that
4837  * module doesn't get freed during this.
4838  */
__module_text_address(unsigned long addr)4839 struct module *__module_text_address(unsigned long addr)
4840 {
4841 	struct module *mod = __module_address(addr);
4842 	if (mod) {
4843 		/* Make sure it's within the text section. */
4844 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4845 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4846 			mod = NULL;
4847 	}
4848 	return mod;
4849 }
4850 
4851 /* Don't grab lock, we're oopsing. */
print_modules(void)4852 void print_modules(void)
4853 {
4854 	struct module *mod;
4855 	char buf[MODULE_FLAGS_BUF_SIZE];
4856 
4857 	printk(KERN_DEFAULT "Modules linked in:");
4858 	/* Most callers should already have preempt disabled, but make sure */
4859 	preempt_disable();
4860 	list_for_each_entry_rcu(mod, &modules, list) {
4861 		if (mod->state == MODULE_STATE_UNFORMED)
4862 			continue;
4863 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4864 	}
4865 	preempt_enable();
4866 	if (last_unloaded_module[0])
4867 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4868 	pr_cont("\n");
4869 }
4870 
4871 #ifdef CONFIG_ANDROID_DEBUG_SYMBOLS
android_debug_for_each_module(int (* fn)(const char * mod_name,void * mod_addr,void * data),void * data)4872 void android_debug_for_each_module(int (*fn)(const char *mod_name, void *mod_addr, void *data),
4873 	void *data)
4874 {
4875 	struct module *module;
4876 	preempt_disable();
4877 	list_for_each_entry_rcu(module, &modules, list) {
4878 		if (fn(module->name, module->core_layout.base, data))
4879 			goto out;
4880 	}
4881 out:
4882 	preempt_enable();
4883 }
4884 EXPORT_SYMBOL_NS_GPL(android_debug_for_each_module, MINIDUMP);
4885 #endif
4886 
4887 #ifdef CONFIG_MODVERSIONS
4888 /*
4889  * Generate the signature for all relevant module structures here.
4890  * If these change, we don't want to try to parse the module.
4891  */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4892 void module_layout(struct module *mod,
4893 		   struct modversion_info *ver,
4894 		   struct kernel_param *kp,
4895 		   struct kernel_symbol *ks,
4896 		   struct tracepoint * const *tp)
4897 {
4898 }
4899 EXPORT_SYMBOL(module_layout);
4900 #endif
4901