1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51
52 #undef CREATE_TRACE_POINTS
53 #include <trace/hooks/mm.h>
54
55 /*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60 #include <asm/mman.h>
61
62 /*
63 * Shared mappings implemented 30.11.1994. It's not fully working yet,
64 * though.
65 *
66 * Shared mappings now work. 15.8.1995 Bruno.
67 *
68 * finished 'unifying' the page and buffer cache and SMP-threaded the
69 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
70 *
71 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
72 */
73
74 /*
75 * Lock ordering:
76 *
77 * ->i_mmap_rwsem (truncate_pagecache)
78 * ->private_lock (__free_pte->__set_page_dirty_buffers)
79 * ->swap_lock (exclusive_swap_page, others)
80 * ->i_pages lock
81 *
82 * ->i_rwsem
83 * ->invalidate_lock (acquired by fs in truncate path)
84 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
85 *
86 * ->mmap_lock
87 * ->i_mmap_rwsem
88 * ->page_table_lock or pte_lock (various, mainly in memory.c)
89 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
90 *
91 * ->mmap_lock
92 * ->invalidate_lock (filemap_fault)
93 * ->lock_page (filemap_fault, access_process_vm)
94 *
95 * ->i_rwsem (generic_perform_write)
96 * ->mmap_lock (fault_in_readable->do_page_fault)
97 *
98 * bdi->wb.list_lock
99 * sb_lock (fs/fs-writeback.c)
100 * ->i_pages lock (__sync_single_inode)
101 *
102 * ->i_mmap_rwsem
103 * ->anon_vma.lock (vma_adjust)
104 *
105 * ->anon_vma.lock
106 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
107 *
108 * ->page_table_lock or pte_lock
109 * ->swap_lock (try_to_unmap_one)
110 * ->private_lock (try_to_unmap_one)
111 * ->i_pages lock (try_to_unmap_one)
112 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
113 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
114 * ->private_lock (page_remove_rmap->set_page_dirty)
115 * ->i_pages lock (page_remove_rmap->set_page_dirty)
116 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
117 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
118 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
119 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
120 * ->inode->i_lock (zap_pte_range->set_page_dirty)
121 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
122 *
123 * ->i_mmap_rwsem
124 * ->tasklist_lock (memory_failure, collect_procs_ao)
125 */
126
page_cache_delete(struct address_space * mapping,struct page * page,void * shadow)127 static void page_cache_delete(struct address_space *mapping,
128 struct page *page, void *shadow)
129 {
130 XA_STATE(xas, &mapping->i_pages, page->index);
131 unsigned int nr = 1;
132
133 mapping_set_update(&xas, mapping);
134
135 /* hugetlb pages are represented by a single entry in the xarray */
136 if (!PageHuge(page)) {
137 xas_set_order(&xas, page->index, compound_order(page));
138 nr = compound_nr(page);
139 }
140
141 VM_BUG_ON_PAGE(!PageLocked(page), page);
142 VM_BUG_ON_PAGE(PageTail(page), page);
143 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
144
145 xas_store(&xas, shadow);
146 xas_init_marks(&xas);
147
148 page->mapping = NULL;
149 /* Leave page->index set: truncation lookup relies upon it */
150 mapping->nrpages -= nr;
151 }
152
unaccount_page_cache_page(struct address_space * mapping,struct page * page)153 static void unaccount_page_cache_page(struct address_space *mapping,
154 struct page *page)
155 {
156 int nr;
157
158 /*
159 * if we're uptodate, flush out into the cleancache, otherwise
160 * invalidate any existing cleancache entries. We can't leave
161 * stale data around in the cleancache once our page is gone
162 */
163 if (PageUptodate(page) && PageMappedToDisk(page))
164 cleancache_put_page(page);
165 else
166 cleancache_invalidate_page(mapping, page);
167
168 VM_BUG_ON_PAGE(PageTail(page), page);
169 VM_BUG_ON_PAGE(page_mapped(page), page);
170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 int mapcount;
172
173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
174 current->comm, page_to_pfn(page));
175 dump_page(page, "still mapped when deleted");
176 dump_stack();
177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
178
179 mapcount = page_mapcount(page);
180 if (mapping_exiting(mapping) &&
181 page_count(page) >= mapcount + 2) {
182 /*
183 * All vmas have already been torn down, so it's
184 * a good bet that actually the page is unmapped,
185 * and we'd prefer not to leak it: if we're wrong,
186 * some other bad page check should catch it later.
187 */
188 page_mapcount_reset(page);
189 page_ref_sub(page, mapcount);
190 }
191 }
192
193 /* hugetlb pages do not participate in page cache accounting. */
194 if (PageHuge(page))
195 return;
196
197 nr = thp_nr_pages(page);
198
199 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
200 if (PageSwapBacked(page)) {
201 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
202 if (PageTransHuge(page))
203 __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
204 } else if (PageTransHuge(page)) {
205 __mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
206 filemap_nr_thps_dec(mapping);
207 }
208
209 /*
210 * At this point page must be either written or cleaned by
211 * truncate. Dirty page here signals a bug and loss of
212 * unwritten data.
213 *
214 * This fixes dirty accounting after removing the page entirely
215 * but leaves PageDirty set: it has no effect for truncated
216 * page and anyway will be cleared before returning page into
217 * buddy allocator.
218 */
219 if (WARN_ON_ONCE(PageDirty(page)))
220 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
221 }
222
223 /*
224 * Delete a page from the page cache and free it. Caller has to make
225 * sure the page is locked and that nobody else uses it - or that usage
226 * is safe. The caller must hold the i_pages lock.
227 */
__delete_from_page_cache(struct page * page,void * shadow)228 void __delete_from_page_cache(struct page *page, void *shadow)
229 {
230 struct address_space *mapping = page->mapping;
231
232 trace_mm_filemap_delete_from_page_cache(page);
233
234 unaccount_page_cache_page(mapping, page);
235 page_cache_delete(mapping, page, shadow);
236 }
237
page_cache_free_page(struct address_space * mapping,struct page * page)238 static void page_cache_free_page(struct address_space *mapping,
239 struct page *page)
240 {
241 void (*freepage)(struct page *);
242
243 freepage = mapping->a_ops->freepage;
244 if (freepage)
245 freepage(page);
246
247 if (PageTransHuge(page) && !PageHuge(page)) {
248 page_ref_sub(page, thp_nr_pages(page));
249 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
250 } else {
251 put_page(page);
252 }
253 }
254
255 /**
256 * delete_from_page_cache - delete page from page cache
257 * @page: the page which the kernel is trying to remove from page cache
258 *
259 * This must be called only on pages that have been verified to be in the page
260 * cache and locked. It will never put the page into the free list, the caller
261 * has a reference on the page.
262 */
delete_from_page_cache(struct page * page)263 void delete_from_page_cache(struct page *page)
264 {
265 struct address_space *mapping = page_mapping(page);
266
267 BUG_ON(!PageLocked(page));
268 xa_lock_irq(&mapping->i_pages);
269 __delete_from_page_cache(page, NULL);
270 xa_unlock_irq(&mapping->i_pages);
271
272 page_cache_free_page(mapping, page);
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275
276 /*
277 * page_cache_delete_batch - delete several pages from page cache
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
280 *
281 * The function walks over mapping->i_pages and removes pages passed in @pvec
282 * from the mapping. The function expects @pvec to be sorted by page index
283 * and is optimised for it to be dense.
284 * It tolerates holes in @pvec (mapping entries at those indices are not
285 * modified). The function expects only THP head pages to be present in the
286 * @pvec.
287 *
288 * The function expects the i_pages lock to be held.
289 */
page_cache_delete_batch(struct address_space * mapping,struct pagevec * pvec)290 static void page_cache_delete_batch(struct address_space *mapping,
291 struct pagevec *pvec)
292 {
293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 int total_pages = 0;
295 int i = 0;
296 struct page *page;
297
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
300 if (i >= pagevec_count(pvec))
301 break;
302
303 /* A swap/dax/shadow entry got inserted? Skip it. */
304 if (xa_is_value(page))
305 continue;
306 /*
307 * A page got inserted in our range? Skip it. We have our
308 * pages locked so they are protected from being removed.
309 * If we see a page whose index is higher than ours, it
310 * means our page has been removed, which shouldn't be
311 * possible because we're holding the PageLock.
312 */
313 if (page != pvec->pages[i]) {
314 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
315 page);
316 continue;
317 }
318
319 WARN_ON_ONCE(!PageLocked(page));
320
321 if (page->index == xas.xa_index)
322 page->mapping = NULL;
323 /* Leave page->index set: truncation lookup relies on it */
324
325 /*
326 * Move to the next page in the vector if this is a regular
327 * page or the index is of the last sub-page of this compound
328 * page.
329 */
330 if (page->index + compound_nr(page) - 1 == xas.xa_index)
331 i++;
332 xas_store(&xas, NULL);
333 total_pages++;
334 }
335 mapping->nrpages -= total_pages;
336 }
337
delete_from_page_cache_batch(struct address_space * mapping,struct pagevec * pvec)338 void delete_from_page_cache_batch(struct address_space *mapping,
339 struct pagevec *pvec)
340 {
341 int i;
342
343 if (!pagevec_count(pvec))
344 return;
345
346 xa_lock_irq(&mapping->i_pages);
347 for (i = 0; i < pagevec_count(pvec); i++) {
348 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
349
350 unaccount_page_cache_page(mapping, pvec->pages[i]);
351 }
352 page_cache_delete_batch(mapping, pvec);
353 xa_unlock_irq(&mapping->i_pages);
354
355 for (i = 0; i < pagevec_count(pvec); i++)
356 page_cache_free_page(mapping, pvec->pages[i]);
357 }
358
filemap_check_errors(struct address_space * mapping)359 int filemap_check_errors(struct address_space *mapping)
360 {
361 int ret = 0;
362 /* Check for outstanding write errors */
363 if (test_bit(AS_ENOSPC, &mapping->flags) &&
364 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
365 ret = -ENOSPC;
366 if (test_bit(AS_EIO, &mapping->flags) &&
367 test_and_clear_bit(AS_EIO, &mapping->flags))
368 ret = -EIO;
369 return ret;
370 }
371 EXPORT_SYMBOL(filemap_check_errors);
372
filemap_check_and_keep_errors(struct address_space * mapping)373 static int filemap_check_and_keep_errors(struct address_space *mapping)
374 {
375 /* Check for outstanding write errors */
376 if (test_bit(AS_EIO, &mapping->flags))
377 return -EIO;
378 if (test_bit(AS_ENOSPC, &mapping->flags))
379 return -ENOSPC;
380 return 0;
381 }
382
383 /**
384 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
385 * @mapping: address space structure to write
386 * @wbc: the writeback_control controlling the writeout
387 *
388 * Call writepages on the mapping using the provided wbc to control the
389 * writeout.
390 *
391 * Return: %0 on success, negative error code otherwise.
392 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)393 int filemap_fdatawrite_wbc(struct address_space *mapping,
394 struct writeback_control *wbc)
395 {
396 int ret;
397
398 if (!mapping_can_writeback(mapping) ||
399 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
400 return 0;
401
402 wbc_attach_fdatawrite_inode(wbc, mapping->host);
403 ret = do_writepages(mapping, wbc);
404 wbc_detach_inode(wbc);
405 return ret;
406 }
407 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
408
409 /**
410 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
411 * @mapping: address space structure to write
412 * @start: offset in bytes where the range starts
413 * @end: offset in bytes where the range ends (inclusive)
414 * @sync_mode: enable synchronous operation
415 *
416 * Start writeback against all of a mapping's dirty pages that lie
417 * within the byte offsets <start, end> inclusive.
418 *
419 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
420 * opposed to a regular memory cleansing writeback. The difference between
421 * these two operations is that if a dirty page/buffer is encountered, it must
422 * be waited upon, and not just skipped over.
423 *
424 * Return: %0 on success, negative error code otherwise.
425 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)426 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
427 loff_t end, int sync_mode)
428 {
429 struct writeback_control wbc = {
430 .sync_mode = sync_mode,
431 .nr_to_write = LONG_MAX,
432 .range_start = start,
433 .range_end = end,
434 };
435
436 return filemap_fdatawrite_wbc(mapping, &wbc);
437 }
438
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)439 static inline int __filemap_fdatawrite(struct address_space *mapping,
440 int sync_mode)
441 {
442 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
443 }
444
filemap_fdatawrite(struct address_space * mapping)445 int filemap_fdatawrite(struct address_space *mapping)
446 {
447 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
448 }
449 EXPORT_SYMBOL(filemap_fdatawrite);
450
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)451 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
452 loff_t end)
453 {
454 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
455 }
456 EXPORT_SYMBOL(filemap_fdatawrite_range);
457
458 /**
459 * filemap_flush - mostly a non-blocking flush
460 * @mapping: target address_space
461 *
462 * This is a mostly non-blocking flush. Not suitable for data-integrity
463 * purposes - I/O may not be started against all dirty pages.
464 *
465 * Return: %0 on success, negative error code otherwise.
466 */
filemap_flush(struct address_space * mapping)467 int filemap_flush(struct address_space *mapping)
468 {
469 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
470 }
471 EXPORT_SYMBOL(filemap_flush);
472
473 /**
474 * filemap_range_has_page - check if a page exists in range.
475 * @mapping: address space within which to check
476 * @start_byte: offset in bytes where the range starts
477 * @end_byte: offset in bytes where the range ends (inclusive)
478 *
479 * Find at least one page in the range supplied, usually used to check if
480 * direct writing in this range will trigger a writeback.
481 *
482 * Return: %true if at least one page exists in the specified range,
483 * %false otherwise.
484 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)485 bool filemap_range_has_page(struct address_space *mapping,
486 loff_t start_byte, loff_t end_byte)
487 {
488 struct page *page;
489 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
490 pgoff_t max = end_byte >> PAGE_SHIFT;
491
492 if (end_byte < start_byte)
493 return false;
494
495 rcu_read_lock();
496 for (;;) {
497 page = xas_find(&xas, max);
498 if (xas_retry(&xas, page))
499 continue;
500 /* Shadow entries don't count */
501 if (xa_is_value(page))
502 continue;
503 /*
504 * We don't need to try to pin this page; we're about to
505 * release the RCU lock anyway. It is enough to know that
506 * there was a page here recently.
507 */
508 break;
509 }
510 rcu_read_unlock();
511
512 return page != NULL;
513 }
514 EXPORT_SYMBOL(filemap_range_has_page);
515
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)516 static void __filemap_fdatawait_range(struct address_space *mapping,
517 loff_t start_byte, loff_t end_byte)
518 {
519 pgoff_t index = start_byte >> PAGE_SHIFT;
520 pgoff_t end = end_byte >> PAGE_SHIFT;
521 struct pagevec pvec;
522 int nr_pages;
523
524 if (end_byte < start_byte)
525 return;
526
527 pagevec_init(&pvec);
528 while (index <= end) {
529 unsigned i;
530
531 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
532 end, PAGECACHE_TAG_WRITEBACK);
533 if (!nr_pages)
534 break;
535
536 for (i = 0; i < nr_pages; i++) {
537 struct page *page = pvec.pages[i];
538
539 wait_on_page_writeback(page);
540 ClearPageError(page);
541 }
542 pagevec_release(&pvec);
543 cond_resched();
544 }
545 }
546
547 /**
548 * filemap_fdatawait_range - wait for writeback to complete
549 * @mapping: address space structure to wait for
550 * @start_byte: offset in bytes where the range starts
551 * @end_byte: offset in bytes where the range ends (inclusive)
552 *
553 * Walk the list of under-writeback pages of the given address space
554 * in the given range and wait for all of them. Check error status of
555 * the address space and return it.
556 *
557 * Since the error status of the address space is cleared by this function,
558 * callers are responsible for checking the return value and handling and/or
559 * reporting the error.
560 *
561 * Return: error status of the address space.
562 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)563 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
564 loff_t end_byte)
565 {
566 __filemap_fdatawait_range(mapping, start_byte, end_byte);
567 return filemap_check_errors(mapping);
568 }
569 EXPORT_SYMBOL(filemap_fdatawait_range);
570
571 /**
572 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
573 * @mapping: address space structure to wait for
574 * @start_byte: offset in bytes where the range starts
575 * @end_byte: offset in bytes where the range ends (inclusive)
576 *
577 * Walk the list of under-writeback pages of the given address space in the
578 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
579 * this function does not clear error status of the address space.
580 *
581 * Use this function if callers don't handle errors themselves. Expected
582 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
583 * fsfreeze(8)
584 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)585 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
586 loff_t start_byte, loff_t end_byte)
587 {
588 __filemap_fdatawait_range(mapping, start_byte, end_byte);
589 return filemap_check_and_keep_errors(mapping);
590 }
591 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
592
593 /**
594 * file_fdatawait_range - wait for writeback to complete
595 * @file: file pointing to address space structure to wait for
596 * @start_byte: offset in bytes where the range starts
597 * @end_byte: offset in bytes where the range ends (inclusive)
598 *
599 * Walk the list of under-writeback pages of the address space that file
600 * refers to, in the given range and wait for all of them. Check error
601 * status of the address space vs. the file->f_wb_err cursor and return it.
602 *
603 * Since the error status of the file is advanced by this function,
604 * callers are responsible for checking the return value and handling and/or
605 * reporting the error.
606 *
607 * Return: error status of the address space vs. the file->f_wb_err cursor.
608 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)609 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
610 {
611 struct address_space *mapping = file->f_mapping;
612
613 __filemap_fdatawait_range(mapping, start_byte, end_byte);
614 return file_check_and_advance_wb_err(file);
615 }
616 EXPORT_SYMBOL(file_fdatawait_range);
617
618 /**
619 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
620 * @mapping: address space structure to wait for
621 *
622 * Walk the list of under-writeback pages of the given address space
623 * and wait for all of them. Unlike filemap_fdatawait(), this function
624 * does not clear error status of the address space.
625 *
626 * Use this function if callers don't handle errors themselves. Expected
627 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
628 * fsfreeze(8)
629 *
630 * Return: error status of the address space.
631 */
filemap_fdatawait_keep_errors(struct address_space * mapping)632 int filemap_fdatawait_keep_errors(struct address_space *mapping)
633 {
634 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
635 return filemap_check_and_keep_errors(mapping);
636 }
637 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
638
639 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)640 static bool mapping_needs_writeback(struct address_space *mapping)
641 {
642 return mapping->nrpages;
643 }
644
645 /**
646 * filemap_range_needs_writeback - check if range potentially needs writeback
647 * @mapping: address space within which to check
648 * @start_byte: offset in bytes where the range starts
649 * @end_byte: offset in bytes where the range ends (inclusive)
650 *
651 * Find at least one page in the range supplied, usually used to check if
652 * direct writing in this range will trigger a writeback. Used by O_DIRECT
653 * read/write with IOCB_NOWAIT, to see if the caller needs to do
654 * filemap_write_and_wait_range() before proceeding.
655 *
656 * Return: %true if the caller should do filemap_write_and_wait_range() before
657 * doing O_DIRECT to a page in this range, %false otherwise.
658 */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)659 bool filemap_range_needs_writeback(struct address_space *mapping,
660 loff_t start_byte, loff_t end_byte)
661 {
662 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
663 pgoff_t max = end_byte >> PAGE_SHIFT;
664 struct page *page;
665
666 if (!mapping_needs_writeback(mapping))
667 return false;
668 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
669 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
670 return false;
671 if (end_byte < start_byte)
672 return false;
673
674 rcu_read_lock();
675 xas_for_each(&xas, page, max) {
676 if (xas_retry(&xas, page))
677 continue;
678 if (xa_is_value(page))
679 continue;
680 if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
681 break;
682 }
683 rcu_read_unlock();
684 return page != NULL;
685 }
686 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
687
688 /**
689 * filemap_write_and_wait_range - write out & wait on a file range
690 * @mapping: the address_space for the pages
691 * @lstart: offset in bytes where the range starts
692 * @lend: offset in bytes where the range ends (inclusive)
693 *
694 * Write out and wait upon file offsets lstart->lend, inclusive.
695 *
696 * Note that @lend is inclusive (describes the last byte to be written) so
697 * that this function can be used to write to the very end-of-file (end = -1).
698 *
699 * Return: error status of the address space.
700 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)701 int filemap_write_and_wait_range(struct address_space *mapping,
702 loff_t lstart, loff_t lend)
703 {
704 int err = 0;
705
706 if (mapping_needs_writeback(mapping)) {
707 err = __filemap_fdatawrite_range(mapping, lstart, lend,
708 WB_SYNC_ALL);
709 /*
710 * Even if the above returned error, the pages may be
711 * written partially (e.g. -ENOSPC), so we wait for it.
712 * But the -EIO is special case, it may indicate the worst
713 * thing (e.g. bug) happened, so we avoid waiting for it.
714 */
715 if (err != -EIO) {
716 int err2 = filemap_fdatawait_range(mapping,
717 lstart, lend);
718 if (!err)
719 err = err2;
720 } else {
721 /* Clear any previously stored errors */
722 filemap_check_errors(mapping);
723 }
724 } else {
725 err = filemap_check_errors(mapping);
726 }
727 return err;
728 }
729 EXPORT_SYMBOL(filemap_write_and_wait_range);
730
__filemap_set_wb_err(struct address_space * mapping,int err)731 void __filemap_set_wb_err(struct address_space *mapping, int err)
732 {
733 errseq_t eseq = errseq_set(&mapping->wb_err, err);
734
735 trace_filemap_set_wb_err(mapping, eseq);
736 }
737 EXPORT_SYMBOL(__filemap_set_wb_err);
738
739 /**
740 * file_check_and_advance_wb_err - report wb error (if any) that was previously
741 * and advance wb_err to current one
742 * @file: struct file on which the error is being reported
743 *
744 * When userland calls fsync (or something like nfsd does the equivalent), we
745 * want to report any writeback errors that occurred since the last fsync (or
746 * since the file was opened if there haven't been any).
747 *
748 * Grab the wb_err from the mapping. If it matches what we have in the file,
749 * then just quickly return 0. The file is all caught up.
750 *
751 * If it doesn't match, then take the mapping value, set the "seen" flag in
752 * it and try to swap it into place. If it works, or another task beat us
753 * to it with the new value, then update the f_wb_err and return the error
754 * portion. The error at this point must be reported via proper channels
755 * (a'la fsync, or NFS COMMIT operation, etc.).
756 *
757 * While we handle mapping->wb_err with atomic operations, the f_wb_err
758 * value is protected by the f_lock since we must ensure that it reflects
759 * the latest value swapped in for this file descriptor.
760 *
761 * Return: %0 on success, negative error code otherwise.
762 */
file_check_and_advance_wb_err(struct file * file)763 int file_check_and_advance_wb_err(struct file *file)
764 {
765 int err = 0;
766 errseq_t old = READ_ONCE(file->f_wb_err);
767 struct address_space *mapping = file->f_mapping;
768
769 /* Locklessly handle the common case where nothing has changed */
770 if (errseq_check(&mapping->wb_err, old)) {
771 /* Something changed, must use slow path */
772 spin_lock(&file->f_lock);
773 old = file->f_wb_err;
774 err = errseq_check_and_advance(&mapping->wb_err,
775 &file->f_wb_err);
776 trace_file_check_and_advance_wb_err(file, old);
777 spin_unlock(&file->f_lock);
778 }
779
780 /*
781 * We're mostly using this function as a drop in replacement for
782 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
783 * that the legacy code would have had on these flags.
784 */
785 clear_bit(AS_EIO, &mapping->flags);
786 clear_bit(AS_ENOSPC, &mapping->flags);
787 return err;
788 }
789 EXPORT_SYMBOL(file_check_and_advance_wb_err);
790
791 /**
792 * file_write_and_wait_range - write out & wait on a file range
793 * @file: file pointing to address_space with pages
794 * @lstart: offset in bytes where the range starts
795 * @lend: offset in bytes where the range ends (inclusive)
796 *
797 * Write out and wait upon file offsets lstart->lend, inclusive.
798 *
799 * Note that @lend is inclusive (describes the last byte to be written) so
800 * that this function can be used to write to the very end-of-file (end = -1).
801 *
802 * After writing out and waiting on the data, we check and advance the
803 * f_wb_err cursor to the latest value, and return any errors detected there.
804 *
805 * Return: %0 on success, negative error code otherwise.
806 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)807 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
808 {
809 int err = 0, err2;
810 struct address_space *mapping = file->f_mapping;
811
812 if (mapping_needs_writeback(mapping)) {
813 err = __filemap_fdatawrite_range(mapping, lstart, lend,
814 WB_SYNC_ALL);
815 /* See comment of filemap_write_and_wait() */
816 if (err != -EIO)
817 __filemap_fdatawait_range(mapping, lstart, lend);
818 }
819 err2 = file_check_and_advance_wb_err(file);
820 if (!err)
821 err = err2;
822 return err;
823 }
824 EXPORT_SYMBOL(file_write_and_wait_range);
825
826 /**
827 * replace_page_cache_page - replace a pagecache page with a new one
828 * @old: page to be replaced
829 * @new: page to replace with
830 *
831 * This function replaces a page in the pagecache with a new one. On
832 * success it acquires the pagecache reference for the new page and
833 * drops it for the old page. Both the old and new pages must be
834 * locked. This function does not add the new page to the LRU, the
835 * caller must do that.
836 *
837 * The remove + add is atomic. This function cannot fail.
838 */
replace_page_cache_page(struct page * old,struct page * new)839 void replace_page_cache_page(struct page *old, struct page *new)
840 {
841 struct address_space *mapping = old->mapping;
842 void (*freepage)(struct page *) = mapping->a_ops->freepage;
843 pgoff_t offset = old->index;
844 XA_STATE(xas, &mapping->i_pages, offset);
845
846 VM_BUG_ON_PAGE(!PageLocked(old), old);
847 VM_BUG_ON_PAGE(!PageLocked(new), new);
848 VM_BUG_ON_PAGE(new->mapping, new);
849
850 get_page(new);
851 new->mapping = mapping;
852 new->index = offset;
853
854 mem_cgroup_migrate(old, new);
855
856 xas_lock_irq(&xas);
857 xas_store(&xas, new);
858
859 old->mapping = NULL;
860 /* hugetlb pages do not participate in page cache accounting. */
861 if (!PageHuge(old))
862 __dec_lruvec_page_state(old, NR_FILE_PAGES);
863 if (!PageHuge(new))
864 __inc_lruvec_page_state(new, NR_FILE_PAGES);
865 if (PageSwapBacked(old))
866 __dec_lruvec_page_state(old, NR_SHMEM);
867 if (PageSwapBacked(new))
868 __inc_lruvec_page_state(new, NR_SHMEM);
869 xas_unlock_irq(&xas);
870 if (freepage)
871 freepage(old);
872 put_page(old);
873 }
874 EXPORT_SYMBOL_GPL(replace_page_cache_page);
875
__add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp,void ** shadowp)876 noinline int __add_to_page_cache_locked(struct page *page,
877 struct address_space *mapping,
878 pgoff_t offset, gfp_t gfp,
879 void **shadowp)
880 {
881 XA_STATE(xas, &mapping->i_pages, offset);
882 int huge = PageHuge(page);
883 int error;
884 bool charged = false;
885
886 VM_BUG_ON_PAGE(!PageLocked(page), page);
887 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
888 mapping_set_update(&xas, mapping);
889
890 get_page(page);
891 page->mapping = mapping;
892 page->index = offset;
893
894 if (!huge) {
895 error = mem_cgroup_charge(page, NULL, gfp);
896 if (error)
897 goto error;
898 charged = true;
899 }
900
901 gfp &= GFP_RECLAIM_MASK;
902
903 do {
904 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
905 void *entry, *old = NULL;
906
907 if (order > thp_order(page))
908 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
909 order, gfp);
910 xas_lock_irq(&xas);
911 xas_for_each_conflict(&xas, entry) {
912 old = entry;
913 if (!xa_is_value(entry)) {
914 xas_set_err(&xas, -EEXIST);
915 goto unlock;
916 }
917 }
918
919 if (old) {
920 if (shadowp)
921 *shadowp = old;
922 /* entry may have been split before we acquired lock */
923 order = xa_get_order(xas.xa, xas.xa_index);
924 if (order > thp_order(page)) {
925 xas_split(&xas, old, order);
926 xas_reset(&xas);
927 }
928 }
929
930 xas_store(&xas, page);
931 if (xas_error(&xas))
932 goto unlock;
933
934 mapping->nrpages++;
935
936 /* hugetlb pages do not participate in page cache accounting */
937 if (!huge)
938 __inc_lruvec_page_state(page, NR_FILE_PAGES);
939 unlock:
940 xas_unlock_irq(&xas);
941 } while (xas_nomem(&xas, gfp));
942
943 if (xas_error(&xas)) {
944 error = xas_error(&xas);
945 if (charged)
946 mem_cgroup_uncharge(page);
947 goto error;
948 }
949
950 trace_mm_filemap_add_to_page_cache(page);
951 return 0;
952 error:
953 page->mapping = NULL;
954 /* Leave page->index set: truncation relies upon it */
955 put_page(page);
956 return error;
957 }
958 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
959
960 /**
961 * add_to_page_cache_locked - add a locked page to the pagecache
962 * @page: page to add
963 * @mapping: the page's address_space
964 * @offset: page index
965 * @gfp_mask: page allocation mode
966 *
967 * This function is used to add a page to the pagecache. It must be locked.
968 * This function does not add the page to the LRU. The caller must do that.
969 *
970 * Return: %0 on success, negative error code otherwise.
971 */
add_to_page_cache_locked(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)972 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
973 pgoff_t offset, gfp_t gfp_mask)
974 {
975 return __add_to_page_cache_locked(page, mapping, offset,
976 gfp_mask, NULL);
977 }
978 EXPORT_SYMBOL(add_to_page_cache_locked);
979
add_to_page_cache_lru(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)980 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
981 pgoff_t offset, gfp_t gfp_mask)
982 {
983 void *shadow = NULL;
984 int ret;
985
986 __SetPageLocked(page);
987 ret = __add_to_page_cache_locked(page, mapping, offset,
988 gfp_mask, &shadow);
989 if (unlikely(ret))
990 __ClearPageLocked(page);
991 else {
992 /*
993 * The page might have been evicted from cache only
994 * recently, in which case it should be activated like
995 * any other repeatedly accessed page.
996 * The exception is pages getting rewritten; evicting other
997 * data from the working set, only to cache data that will
998 * get overwritten with something else, is a waste of memory.
999 */
1000 WARN_ON_ONCE(PageActive(page));
1001 if (!(gfp_mask & __GFP_WRITE) && shadow)
1002 workingset_refault(page, shadow);
1003 lru_cache_add(page);
1004 }
1005 return ret;
1006 }
1007 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1008
1009 #ifdef CONFIG_NUMA
__page_cache_alloc(gfp_t gfp)1010 struct page *__page_cache_alloc(gfp_t gfp)
1011 {
1012 int n;
1013 struct page *page;
1014
1015 if (cpuset_do_page_mem_spread()) {
1016 unsigned int cpuset_mems_cookie;
1017 do {
1018 cpuset_mems_cookie = read_mems_allowed_begin();
1019 n = cpuset_mem_spread_node();
1020 page = __alloc_pages_node(n, gfp, 0);
1021 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1022
1023 return page;
1024 }
1025 return alloc_pages(gfp, 0);
1026 }
1027 EXPORT_SYMBOL(__page_cache_alloc);
1028 #endif
1029
1030 /*
1031 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1032 *
1033 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1034 *
1035 * @mapping1: the first mapping to lock
1036 * @mapping2: the second mapping to lock
1037 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1038 void filemap_invalidate_lock_two(struct address_space *mapping1,
1039 struct address_space *mapping2)
1040 {
1041 if (mapping1 > mapping2)
1042 swap(mapping1, mapping2);
1043 if (mapping1)
1044 down_write(&mapping1->invalidate_lock);
1045 if (mapping2 && mapping1 != mapping2)
1046 down_write_nested(&mapping2->invalidate_lock, 1);
1047 }
1048 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1049
1050 /*
1051 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1052 *
1053 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1054 *
1055 * @mapping1: the first mapping to unlock
1056 * @mapping2: the second mapping to unlock
1057 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1058 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1059 struct address_space *mapping2)
1060 {
1061 if (mapping1)
1062 up_write(&mapping1->invalidate_lock);
1063 if (mapping2 && mapping1 != mapping2)
1064 up_write(&mapping2->invalidate_lock);
1065 }
1066 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1067
1068 /*
1069 * In order to wait for pages to become available there must be
1070 * waitqueues associated with pages. By using a hash table of
1071 * waitqueues where the bucket discipline is to maintain all
1072 * waiters on the same queue and wake all when any of the pages
1073 * become available, and for the woken contexts to check to be
1074 * sure the appropriate page became available, this saves space
1075 * at a cost of "thundering herd" phenomena during rare hash
1076 * collisions.
1077 */
1078 #define PAGE_WAIT_TABLE_BITS 8
1079 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1080 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1081
page_waitqueue(struct page * page)1082 static wait_queue_head_t *page_waitqueue(struct page *page)
1083 {
1084 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1085 }
1086
pagecache_init(void)1087 void __init pagecache_init(void)
1088 {
1089 int i;
1090
1091 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1092 init_waitqueue_head(&page_wait_table[i]);
1093
1094 page_writeback_init();
1095 }
1096
1097 /*
1098 * The page wait code treats the "wait->flags" somewhat unusually, because
1099 * we have multiple different kinds of waits, not just the usual "exclusive"
1100 * one.
1101 *
1102 * We have:
1103 *
1104 * (a) no special bits set:
1105 *
1106 * We're just waiting for the bit to be released, and when a waker
1107 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1108 * and remove it from the wait queue.
1109 *
1110 * Simple and straightforward.
1111 *
1112 * (b) WQ_FLAG_EXCLUSIVE:
1113 *
1114 * The waiter is waiting to get the lock, and only one waiter should
1115 * be woken up to avoid any thundering herd behavior. We'll set the
1116 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1117 *
1118 * This is the traditional exclusive wait.
1119 *
1120 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1121 *
1122 * The waiter is waiting to get the bit, and additionally wants the
1123 * lock to be transferred to it for fair lock behavior. If the lock
1124 * cannot be taken, we stop walking the wait queue without waking
1125 * the waiter.
1126 *
1127 * This is the "fair lock handoff" case, and in addition to setting
1128 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1129 * that it now has the lock.
1130 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1131 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1132 {
1133 unsigned int flags;
1134 struct wait_page_key *key = arg;
1135 struct wait_page_queue *wait_page
1136 = container_of(wait, struct wait_page_queue, wait);
1137
1138 if (!wake_page_match(wait_page, key))
1139 return 0;
1140
1141 /*
1142 * If it's a lock handoff wait, we get the bit for it, and
1143 * stop walking (and do not wake it up) if we can't.
1144 */
1145 flags = wait->flags;
1146 if (flags & WQ_FLAG_EXCLUSIVE) {
1147 if (test_bit(key->bit_nr, &key->page->flags))
1148 return -1;
1149 if (flags & WQ_FLAG_CUSTOM) {
1150 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1151 return -1;
1152 flags |= WQ_FLAG_DONE;
1153 }
1154 }
1155
1156 /*
1157 * We are holding the wait-queue lock, but the waiter that
1158 * is waiting for this will be checking the flags without
1159 * any locking.
1160 *
1161 * So update the flags atomically, and wake up the waiter
1162 * afterwards to avoid any races. This store-release pairs
1163 * with the load-acquire in wait_on_page_bit_common().
1164 */
1165 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1166 wake_up_state(wait->private, mode);
1167
1168 /*
1169 * Ok, we have successfully done what we're waiting for,
1170 * and we can unconditionally remove the wait entry.
1171 *
1172 * Note that this pairs with the "finish_wait()" in the
1173 * waiter, and has to be the absolute last thing we do.
1174 * After this list_del_init(&wait->entry) the wait entry
1175 * might be de-allocated and the process might even have
1176 * exited.
1177 */
1178 list_del_init_careful(&wait->entry);
1179 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1180 }
1181
wake_up_page_bit(struct page * page,int bit_nr)1182 static void wake_up_page_bit(struct page *page, int bit_nr)
1183 {
1184 wait_queue_head_t *q = page_waitqueue(page);
1185 struct wait_page_key key;
1186 unsigned long flags;
1187 wait_queue_entry_t bookmark;
1188
1189 key.page = page;
1190 key.bit_nr = bit_nr;
1191 key.page_match = 0;
1192
1193 bookmark.flags = 0;
1194 bookmark.private = NULL;
1195 bookmark.func = NULL;
1196 INIT_LIST_HEAD(&bookmark.entry);
1197
1198 spin_lock_irqsave(&q->lock, flags);
1199 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1200
1201 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1202 /*
1203 * Take a breather from holding the lock,
1204 * allow pages that finish wake up asynchronously
1205 * to acquire the lock and remove themselves
1206 * from wait queue
1207 */
1208 spin_unlock_irqrestore(&q->lock, flags);
1209 cpu_relax();
1210 spin_lock_irqsave(&q->lock, flags);
1211 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1212 }
1213
1214 /*
1215 * It is possible for other pages to have collided on the waitqueue
1216 * hash, so in that case check for a page match. That prevents a long-
1217 * term waiter
1218 *
1219 * It is still possible to miss a case here, when we woke page waiters
1220 * and removed them from the waitqueue, but there are still other
1221 * page waiters.
1222 */
1223 if (!waitqueue_active(q) || !key.page_match) {
1224 ClearPageWaiters(page);
1225 /*
1226 * It's possible to miss clearing Waiters here, when we woke
1227 * our page waiters, but the hashed waitqueue has waiters for
1228 * other pages on it.
1229 *
1230 * That's okay, it's a rare case. The next waker will clear it.
1231 */
1232 }
1233 spin_unlock_irqrestore(&q->lock, flags);
1234 }
1235
wake_up_page(struct page * page,int bit)1236 static void wake_up_page(struct page *page, int bit)
1237 {
1238 if (!PageWaiters(page))
1239 return;
1240 wake_up_page_bit(page, bit);
1241 }
1242
1243 /*
1244 * A choice of three behaviors for wait_on_page_bit_common():
1245 */
1246 enum behavior {
1247 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1248 * __lock_page() waiting on then setting PG_locked.
1249 */
1250 SHARED, /* Hold ref to page and check the bit when woken, like
1251 * wait_on_page_writeback() waiting on PG_writeback.
1252 */
1253 DROP, /* Drop ref to page before wait, no check when woken,
1254 * like put_and_wait_on_page_locked() on PG_locked.
1255 */
1256 };
1257
1258 /*
1259 * Attempt to check (or get) the page bit, and mark us done
1260 * if successful.
1261 */
trylock_page_bit_common(struct page * page,int bit_nr,struct wait_queue_entry * wait)1262 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1263 struct wait_queue_entry *wait)
1264 {
1265 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1266 if (test_and_set_bit(bit_nr, &page->flags))
1267 return false;
1268 } else if (test_bit(bit_nr, &page->flags))
1269 return false;
1270
1271 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1272 return true;
1273 }
1274
1275 /* How many times do we accept lock stealing from under a waiter? */
1276 int sysctl_page_lock_unfairness = 5;
1277
wait_on_page_bit_common(wait_queue_head_t * q,struct page * page,int bit_nr,int state,enum behavior behavior)1278 static inline __sched int wait_on_page_bit_common(wait_queue_head_t *q,
1279 struct page *page, int bit_nr, int state, enum behavior behavior)
1280 {
1281 int unfairness = sysctl_page_lock_unfairness;
1282 struct wait_page_queue wait_page;
1283 wait_queue_entry_t *wait = &wait_page.wait;
1284 bool thrashing = false;
1285 bool delayacct = false;
1286 unsigned long pflags;
1287
1288 if (bit_nr == PG_locked &&
1289 !PageUptodate(page) && PageWorkingset(page)) {
1290 if (!PageSwapBacked(page)) {
1291 delayacct_thrashing_start();
1292 delayacct = true;
1293 }
1294 psi_memstall_enter(&pflags);
1295 thrashing = true;
1296 }
1297
1298 init_wait(wait);
1299 wait->func = wake_page_function;
1300 wait_page.page = page;
1301 wait_page.bit_nr = bit_nr;
1302
1303 repeat:
1304 wait->flags = 0;
1305 if (behavior == EXCLUSIVE) {
1306 wait->flags = WQ_FLAG_EXCLUSIVE;
1307 if (--unfairness < 0)
1308 wait->flags |= WQ_FLAG_CUSTOM;
1309 }
1310
1311 /*
1312 * Do one last check whether we can get the
1313 * page bit synchronously.
1314 *
1315 * Do the SetPageWaiters() marking before that
1316 * to let any waker we _just_ missed know they
1317 * need to wake us up (otherwise they'll never
1318 * even go to the slow case that looks at the
1319 * page queue), and add ourselves to the wait
1320 * queue if we need to sleep.
1321 *
1322 * This part needs to be done under the queue
1323 * lock to avoid races.
1324 */
1325 spin_lock_irq(&q->lock);
1326 SetPageWaiters(page);
1327 if (!trylock_page_bit_common(page, bit_nr, wait))
1328 __add_wait_queue_entry_tail(q, wait);
1329 spin_unlock_irq(&q->lock);
1330
1331 /*
1332 * From now on, all the logic will be based on
1333 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1334 * see whether the page bit testing has already
1335 * been done by the wake function.
1336 *
1337 * We can drop our reference to the page.
1338 */
1339 if (behavior == DROP)
1340 put_page(page);
1341
1342 /*
1343 * Note that until the "finish_wait()", or until
1344 * we see the WQ_FLAG_WOKEN flag, we need to
1345 * be very careful with the 'wait->flags', because
1346 * we may race with a waker that sets them.
1347 */
1348 for (;;) {
1349 unsigned int flags;
1350
1351 set_current_state(state);
1352
1353 /* Loop until we've been woken or interrupted */
1354 flags = smp_load_acquire(&wait->flags);
1355 if (!(flags & WQ_FLAG_WOKEN)) {
1356 if (signal_pending_state(state, current))
1357 break;
1358
1359 io_schedule();
1360 continue;
1361 }
1362
1363 /* If we were non-exclusive, we're done */
1364 if (behavior != EXCLUSIVE)
1365 break;
1366
1367 /* If the waker got the lock for us, we're done */
1368 if (flags & WQ_FLAG_DONE)
1369 break;
1370
1371 /*
1372 * Otherwise, if we're getting the lock, we need to
1373 * try to get it ourselves.
1374 *
1375 * And if that fails, we'll have to retry this all.
1376 */
1377 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1378 goto repeat;
1379
1380 wait->flags |= WQ_FLAG_DONE;
1381 break;
1382 }
1383
1384 /*
1385 * If a signal happened, this 'finish_wait()' may remove the last
1386 * waiter from the wait-queues, but the PageWaiters bit will remain
1387 * set. That's ok. The next wakeup will take care of it, and trying
1388 * to do it here would be difficult and prone to races.
1389 */
1390 finish_wait(q, wait);
1391
1392 if (thrashing) {
1393 if (delayacct)
1394 delayacct_thrashing_end();
1395 psi_memstall_leave(&pflags);
1396 }
1397
1398 /*
1399 * NOTE! The wait->flags weren't stable until we've done the
1400 * 'finish_wait()', and we could have exited the loop above due
1401 * to a signal, and had a wakeup event happen after the signal
1402 * test but before the 'finish_wait()'.
1403 *
1404 * So only after the finish_wait() can we reliably determine
1405 * if we got woken up or not, so we can now figure out the final
1406 * return value based on that state without races.
1407 *
1408 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1409 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1410 */
1411 if (behavior == EXCLUSIVE)
1412 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1413
1414 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1415 }
1416
wait_on_page_bit(struct page * page,int bit_nr)1417 __sched void wait_on_page_bit(struct page *page, int bit_nr)
1418 {
1419 wait_queue_head_t *q = page_waitqueue(page);
1420 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1421 }
1422 EXPORT_SYMBOL(wait_on_page_bit);
1423
wait_on_page_bit_killable(struct page * page,int bit_nr)1424 __sched int wait_on_page_bit_killable(struct page *page, int bit_nr)
1425 {
1426 wait_queue_head_t *q = page_waitqueue(page);
1427 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1428 }
1429 EXPORT_SYMBOL(wait_on_page_bit_killable);
1430
1431 /**
1432 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1433 * @page: The page to wait for.
1434 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1435 *
1436 * The caller should hold a reference on @page. They expect the page to
1437 * become unlocked relatively soon, but do not wish to hold up migration
1438 * (for example) by holding the reference while waiting for the page to
1439 * come unlocked. After this function returns, the caller should not
1440 * dereference @page.
1441 *
1442 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1443 */
put_and_wait_on_page_locked(struct page * page,int state)1444 int put_and_wait_on_page_locked(struct page *page, int state)
1445 {
1446 wait_queue_head_t *q;
1447
1448 page = compound_head(page);
1449 q = page_waitqueue(page);
1450 return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1451 }
1452
1453 /**
1454 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1455 * @page: Page defining the wait queue of interest
1456 * @waiter: Waiter to add to the queue
1457 *
1458 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1459 */
add_page_wait_queue(struct page * page,wait_queue_entry_t * waiter)1460 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1461 {
1462 wait_queue_head_t *q = page_waitqueue(page);
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(&q->lock, flags);
1466 __add_wait_queue_entry_tail(q, waiter);
1467 SetPageWaiters(page);
1468 spin_unlock_irqrestore(&q->lock, flags);
1469 }
1470 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1471
1472 #ifndef clear_bit_unlock_is_negative_byte
1473
1474 /*
1475 * PG_waiters is the high bit in the same byte as PG_lock.
1476 *
1477 * On x86 (and on many other architectures), we can clear PG_lock and
1478 * test the sign bit at the same time. But if the architecture does
1479 * not support that special operation, we just do this all by hand
1480 * instead.
1481 *
1482 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1483 * being cleared, but a memory barrier should be unnecessary since it is
1484 * in the same byte as PG_locked.
1485 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1486 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1487 {
1488 clear_bit_unlock(nr, mem);
1489 /* smp_mb__after_atomic(); */
1490 return test_bit(PG_waiters, mem);
1491 }
1492
1493 #endif
1494
1495 /**
1496 * unlock_page - unlock a locked page
1497 * @page: the page
1498 *
1499 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1500 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1501 * mechanism between PageLocked pages and PageWriteback pages is shared.
1502 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1503 *
1504 * Note that this depends on PG_waiters being the sign bit in the byte
1505 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1506 * clear the PG_locked bit and test PG_waiters at the same time fairly
1507 * portably (architectures that do LL/SC can test any bit, while x86 can
1508 * test the sign bit).
1509 */
unlock_page(struct page * page)1510 void unlock_page(struct page *page)
1511 {
1512 BUILD_BUG_ON(PG_waiters != 7);
1513 page = compound_head(page);
1514 VM_BUG_ON_PAGE(!PageLocked(page), page);
1515 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1516 wake_up_page_bit(page, PG_locked);
1517 }
1518 EXPORT_SYMBOL(unlock_page);
1519
1520 /**
1521 * end_page_private_2 - Clear PG_private_2 and release any waiters
1522 * @page: The page
1523 *
1524 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1525 * this. The page ref held for PG_private_2 being set is released.
1526 *
1527 * This is, for example, used when a netfs page is being written to a local
1528 * disk cache, thereby allowing writes to the cache for the same page to be
1529 * serialised.
1530 */
end_page_private_2(struct page * page)1531 void end_page_private_2(struct page *page)
1532 {
1533 page = compound_head(page);
1534 VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1535 clear_bit_unlock(PG_private_2, &page->flags);
1536 wake_up_page_bit(page, PG_private_2);
1537 put_page(page);
1538 }
1539 EXPORT_SYMBOL(end_page_private_2);
1540
1541 /**
1542 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1543 * @page: The page to wait on
1544 *
1545 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1546 */
wait_on_page_private_2(struct page * page)1547 void wait_on_page_private_2(struct page *page)
1548 {
1549 page = compound_head(page);
1550 while (PagePrivate2(page))
1551 wait_on_page_bit(page, PG_private_2);
1552 }
1553 EXPORT_SYMBOL(wait_on_page_private_2);
1554
1555 /**
1556 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1557 * @page: The page to wait on
1558 *
1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1560 * fatal signal is received by the calling task.
1561 *
1562 * Return:
1563 * - 0 if successful.
1564 * - -EINTR if a fatal signal was encountered.
1565 */
wait_on_page_private_2_killable(struct page * page)1566 int wait_on_page_private_2_killable(struct page *page)
1567 {
1568 int ret = 0;
1569
1570 page = compound_head(page);
1571 while (PagePrivate2(page)) {
1572 ret = wait_on_page_bit_killable(page, PG_private_2);
1573 if (ret < 0)
1574 break;
1575 }
1576
1577 return ret;
1578 }
1579 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1580
1581 /**
1582 * end_page_writeback - end writeback against a page
1583 * @page: the page
1584 */
end_page_writeback(struct page * page)1585 void end_page_writeback(struct page *page)
1586 {
1587 /*
1588 * TestClearPageReclaim could be used here but it is an atomic
1589 * operation and overkill in this particular case. Failing to
1590 * shuffle a page marked for immediate reclaim is too mild to
1591 * justify taking an atomic operation penalty at the end of
1592 * ever page writeback.
1593 */
1594 if (PageReclaim(page)) {
1595 ClearPageReclaim(page);
1596 rotate_reclaimable_page(page);
1597 }
1598
1599 /*
1600 * Writeback does not hold a page reference of its own, relying
1601 * on truncation to wait for the clearing of PG_writeback.
1602 * But here we must make sure that the page is not freed and
1603 * reused before the wake_up_page().
1604 */
1605 get_page(page);
1606 if (!test_clear_page_writeback(page))
1607 BUG();
1608
1609 smp_mb__after_atomic();
1610 wake_up_page(page, PG_writeback);
1611 put_page(page);
1612 }
1613 EXPORT_SYMBOL(end_page_writeback);
1614
1615 /*
1616 * After completing I/O on a page, call this routine to update the page
1617 * flags appropriately
1618 */
page_endio(struct page * page,bool is_write,int err)1619 void page_endio(struct page *page, bool is_write, int err)
1620 {
1621 if (!is_write) {
1622 if (!err) {
1623 SetPageUptodate(page);
1624 } else {
1625 ClearPageUptodate(page);
1626 SetPageError(page);
1627 }
1628 unlock_page(page);
1629 } else {
1630 if (err) {
1631 struct address_space *mapping;
1632
1633 SetPageError(page);
1634 mapping = page_mapping(page);
1635 if (mapping)
1636 mapping_set_error(mapping, err);
1637 }
1638 end_page_writeback(page);
1639 }
1640 }
1641 EXPORT_SYMBOL_GPL(page_endio);
1642
1643 /**
1644 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1645 * @__page: the page to lock
1646 */
__lock_page(struct page * __page)1647 __sched void __lock_page(struct page *__page)
1648 {
1649 struct page *page = compound_head(__page);
1650 wait_queue_head_t *q = page_waitqueue(page);
1651 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1652 EXCLUSIVE);
1653 }
1654 EXPORT_SYMBOL(__lock_page);
1655
__lock_page_killable(struct page * __page)1656 __sched int __lock_page_killable(struct page *__page)
1657 {
1658 struct page *page = compound_head(__page);
1659 wait_queue_head_t *q = page_waitqueue(page);
1660 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1661 EXCLUSIVE);
1662 }
1663 EXPORT_SYMBOL_GPL(__lock_page_killable);
1664
__lock_page_async(struct page * page,struct wait_page_queue * wait)1665 __sched int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1666 {
1667 struct wait_queue_head *q = page_waitqueue(page);
1668 int ret = 0;
1669
1670 wait->page = page;
1671 wait->bit_nr = PG_locked;
1672
1673 spin_lock_irq(&q->lock);
1674 __add_wait_queue_entry_tail(q, &wait->wait);
1675 SetPageWaiters(page);
1676 ret = !trylock_page(page);
1677 /*
1678 * If we were successful now, we know we're still on the
1679 * waitqueue as we're still under the lock. This means it's
1680 * safe to remove and return success, we know the callback
1681 * isn't going to trigger.
1682 */
1683 if (!ret)
1684 __remove_wait_queue(q, &wait->wait);
1685 else
1686 ret = -EIOCBQUEUED;
1687 spin_unlock_irq(&q->lock);
1688 return ret;
1689 }
1690
1691 /*
1692 * Return values:
1693 * 1 - page is locked; mmap_lock is still held.
1694 * 0 - page is not locked.
1695 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1696 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1697 * which case mmap_lock is still held.
1698 *
1699 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1700 * with the page locked and the mmap_lock unperturbed.
1701 */
__lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)1702 __sched int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1703 unsigned int flags)
1704 {
1705 if (fault_flag_allow_retry_first(flags)) {
1706 /*
1707 * CAUTION! In this case, mmap_lock is not released
1708 * even though return 0.
1709 */
1710 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1711 return 0;
1712
1713 if (!(flags & FAULT_FLAG_SPECULATIVE))
1714 mmap_read_unlock(mm);
1715 if (flags & FAULT_FLAG_KILLABLE)
1716 wait_on_page_locked_killable(page);
1717 else
1718 wait_on_page_locked(page);
1719 return 0;
1720 }
1721 if (flags & FAULT_FLAG_KILLABLE) {
1722 int ret;
1723
1724 ret = __lock_page_killable(page);
1725 if (ret) {
1726 if (!(flags & FAULT_FLAG_SPECULATIVE))
1727 mmap_read_unlock(mm);
1728 return 0;
1729 }
1730 } else {
1731 __lock_page(page);
1732 }
1733 return 1;
1734
1735 }
1736
1737 /**
1738 * page_cache_next_miss() - Find the next gap in the page cache.
1739 * @mapping: Mapping.
1740 * @index: Index.
1741 * @max_scan: Maximum range to search.
1742 *
1743 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1744 * gap with the lowest index.
1745 *
1746 * This function may be called under the rcu_read_lock. However, this will
1747 * not atomically search a snapshot of the cache at a single point in time.
1748 * For example, if a gap is created at index 5, then subsequently a gap is
1749 * created at index 10, page_cache_next_miss covering both indices may
1750 * return 10 if called under the rcu_read_lock.
1751 *
1752 * Return: The index of the gap if found, otherwise an index outside the
1753 * range specified (in which case 'return - index >= max_scan' will be true).
1754 * In the rare case of index wrap-around, 0 will be returned.
1755 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1756 pgoff_t page_cache_next_miss(struct address_space *mapping,
1757 pgoff_t index, unsigned long max_scan)
1758 {
1759 XA_STATE(xas, &mapping->i_pages, index);
1760
1761 while (max_scan--) {
1762 void *entry = xas_next(&xas);
1763 if (!entry || xa_is_value(entry))
1764 break;
1765 if (xas.xa_index == 0)
1766 break;
1767 }
1768
1769 return xas.xa_index;
1770 }
1771 EXPORT_SYMBOL(page_cache_next_miss);
1772
1773 /**
1774 * page_cache_prev_miss() - Find the previous gap in the page cache.
1775 * @mapping: Mapping.
1776 * @index: Index.
1777 * @max_scan: Maximum range to search.
1778 *
1779 * Search the range [max(index - max_scan + 1, 0), index] for the
1780 * gap with the highest index.
1781 *
1782 * This function may be called under the rcu_read_lock. However, this will
1783 * not atomically search a snapshot of the cache at a single point in time.
1784 * For example, if a gap is created at index 10, then subsequently a gap is
1785 * created at index 5, page_cache_prev_miss() covering both indices may
1786 * return 5 if called under the rcu_read_lock.
1787 *
1788 * Return: The index of the gap if found, otherwise an index outside the
1789 * range specified (in which case 'index - return >= max_scan' will be true).
1790 * In the rare case of wrap-around, ULONG_MAX will be returned.
1791 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1792 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1793 pgoff_t index, unsigned long max_scan)
1794 {
1795 XA_STATE(xas, &mapping->i_pages, index);
1796
1797 while (max_scan--) {
1798 void *entry = xas_prev(&xas);
1799 if (!entry || xa_is_value(entry))
1800 break;
1801 if (xas.xa_index == ULONG_MAX)
1802 break;
1803 }
1804
1805 return xas.xa_index;
1806 }
1807 EXPORT_SYMBOL(page_cache_prev_miss);
1808
1809 /*
1810 * mapping_get_entry - Get a page cache entry.
1811 * @mapping: the address_space to search
1812 * @index: The page cache index.
1813 *
1814 * Looks up the page cache slot at @mapping & @index. If there is a
1815 * page cache page, the head page is returned with an increased refcount.
1816 *
1817 * If the slot holds a shadow entry of a previously evicted page, or a
1818 * swap entry from shmem/tmpfs, it is returned.
1819 *
1820 * Return: The head page or shadow entry, %NULL if nothing is found.
1821 */
mapping_get_entry(struct address_space * mapping,pgoff_t index)1822 static struct page *mapping_get_entry(struct address_space *mapping,
1823 pgoff_t index)
1824 {
1825 XA_STATE(xas, &mapping->i_pages, index);
1826 struct page *page;
1827
1828 rcu_read_lock();
1829 repeat:
1830 xas_reset(&xas);
1831 page = xas_load(&xas);
1832 if (xas_retry(&xas, page))
1833 goto repeat;
1834 /*
1835 * A shadow entry of a recently evicted page, or a swap entry from
1836 * shmem/tmpfs. Return it without attempting to raise page count.
1837 */
1838 if (!page || xa_is_value(page))
1839 goto out;
1840
1841 if (!page_cache_get_speculative(page))
1842 goto repeat;
1843
1844 /*
1845 * Has the page moved or been split?
1846 * This is part of the lockless pagecache protocol. See
1847 * include/linux/pagemap.h for details.
1848 */
1849 if (unlikely(page != xas_reload(&xas))) {
1850 put_page(page);
1851 goto repeat;
1852 }
1853 out:
1854 rcu_read_unlock();
1855
1856 return page;
1857 }
1858
1859 /**
1860 * pagecache_get_page - Find and get a reference to a page.
1861 * @mapping: The address_space to search.
1862 * @index: The page index.
1863 * @fgp_flags: %FGP flags modify how the page is returned.
1864 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1865 *
1866 * Looks up the page cache entry at @mapping & @index.
1867 *
1868 * @fgp_flags can be zero or more of these flags:
1869 *
1870 * * %FGP_ACCESSED - The page will be marked accessed.
1871 * * %FGP_LOCK - The page is returned locked.
1872 * * %FGP_HEAD - If the page is present and a THP, return the head page
1873 * rather than the exact page specified by the index.
1874 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1875 * instead of allocating a new page to replace it.
1876 * * %FGP_CREAT - If no page is present then a new page is allocated using
1877 * @gfp_mask and added to the page cache and the VM's LRU list.
1878 * The page is returned locked and with an increased refcount.
1879 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1880 * page is already in cache. If the page was allocated, unlock it before
1881 * returning so the caller can do the same dance.
1882 * * %FGP_WRITE - The page will be written
1883 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1884 * * %FGP_NOWAIT - Don't get blocked by page lock
1885 *
1886 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1887 * if the %GFP flags specified for %FGP_CREAT are atomic.
1888 *
1889 * If there is a page cache page, it is returned with an increased refcount.
1890 *
1891 * Return: The found page or %NULL otherwise.
1892 */
pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1893 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1894 int fgp_flags, gfp_t gfp_mask)
1895 {
1896 struct page *page;
1897
1898 repeat:
1899 page = mapping_get_entry(mapping, index);
1900 if (xa_is_value(page)) {
1901 if (fgp_flags & FGP_ENTRY)
1902 return page;
1903 page = NULL;
1904 }
1905
1906 trace_android_vh_pagecache_get_page(mapping, index, fgp_flags,
1907 gfp_mask, page);
1908 if (!page)
1909 goto no_page;
1910
1911 if (fgp_flags & FGP_LOCK) {
1912 if (fgp_flags & FGP_NOWAIT) {
1913 if (!trylock_page(page)) {
1914 put_page(page);
1915 return NULL;
1916 }
1917 } else {
1918 lock_page(page);
1919 }
1920
1921 /* Has the page been truncated? */
1922 if (unlikely(page->mapping != mapping)) {
1923 unlock_page(page);
1924 put_page(page);
1925 goto repeat;
1926 }
1927 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1928 }
1929
1930 if (fgp_flags & FGP_ACCESSED)
1931 mark_page_accessed(page);
1932 else if (fgp_flags & FGP_WRITE) {
1933 /* Clear idle flag for buffer write */
1934 if (page_is_idle(page))
1935 clear_page_idle(page);
1936 }
1937 if (!(fgp_flags & FGP_HEAD))
1938 page = find_subpage(page, index);
1939
1940 no_page:
1941 if (!page && (fgp_flags & FGP_CREAT)) {
1942 int err;
1943 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1944 gfp_mask |= __GFP_WRITE;
1945 if (fgp_flags & FGP_NOFS)
1946 gfp_mask &= ~__GFP_FS;
1947
1948 page = __page_cache_alloc(gfp_mask);
1949 if (!page)
1950 return NULL;
1951
1952 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1953 fgp_flags |= FGP_LOCK;
1954
1955 /* Init accessed so avoid atomic mark_page_accessed later */
1956 if (fgp_flags & FGP_ACCESSED)
1957 __SetPageReferenced(page);
1958
1959 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1960 if (unlikely(err)) {
1961 put_page(page);
1962 page = NULL;
1963 if (err == -EEXIST)
1964 goto repeat;
1965 }
1966
1967 /*
1968 * add_to_page_cache_lru locks the page, and for mmap we expect
1969 * an unlocked page.
1970 */
1971 if (page && (fgp_flags & FGP_FOR_MMAP))
1972 unlock_page(page);
1973 }
1974
1975 return page;
1976 }
1977 EXPORT_SYMBOL(pagecache_get_page);
1978
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)1979 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1980 xa_mark_t mark)
1981 {
1982 struct page *page;
1983
1984 retry:
1985 if (mark == XA_PRESENT)
1986 page = xas_find(xas, max);
1987 else
1988 page = xas_find_marked(xas, max, mark);
1989
1990 if (xas_retry(xas, page))
1991 goto retry;
1992 /*
1993 * A shadow entry of a recently evicted page, a swap
1994 * entry from shmem/tmpfs or a DAX entry. Return it
1995 * without attempting to raise page count.
1996 */
1997 if (!page || xa_is_value(page))
1998 return page;
1999
2000 if (!page_cache_get_speculative(page))
2001 goto reset;
2002
2003 /* Has the page moved or been split? */
2004 if (unlikely(page != xas_reload(xas))) {
2005 put_page(page);
2006 goto reset;
2007 }
2008
2009 return page;
2010 reset:
2011 xas_reset(xas);
2012 goto retry;
2013 }
2014
2015 /**
2016 * find_get_entries - gang pagecache lookup
2017 * @mapping: The address_space to search
2018 * @start: The starting page cache index
2019 * @end: The final page index (inclusive).
2020 * @pvec: Where the resulting entries are placed.
2021 * @indices: The cache indices corresponding to the entries in @entries
2022 *
2023 * find_get_entries() will search for and return a batch of entries in
2024 * the mapping. The entries are placed in @pvec. find_get_entries()
2025 * takes a reference on any actual pages it returns.
2026 *
2027 * The search returns a group of mapping-contiguous page cache entries
2028 * with ascending indexes. There may be holes in the indices due to
2029 * not-present pages.
2030 *
2031 * Any shadow entries of evicted pages, or swap entries from
2032 * shmem/tmpfs, are included in the returned array.
2033 *
2034 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2035 * stops at that page: the caller is likely to have a better way to handle
2036 * the compound page as a whole, and then skip its extent, than repeatedly
2037 * calling find_get_entries() to return all its tails.
2038 *
2039 * Return: the number of pages and shadow entries which were found.
2040 */
find_get_entries(struct address_space * mapping,pgoff_t start,pgoff_t end,struct pagevec * pvec,pgoff_t * indices)2041 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2042 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2043 {
2044 XA_STATE(xas, &mapping->i_pages, start);
2045 struct page *page;
2046 unsigned int ret = 0;
2047 unsigned nr_entries = PAGEVEC_SIZE;
2048
2049 rcu_read_lock();
2050 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2051 /*
2052 * Terminate early on finding a THP, to allow the caller to
2053 * handle it all at once; but continue if this is hugetlbfs.
2054 */
2055 if (!xa_is_value(page) && PageTransHuge(page) &&
2056 !PageHuge(page)) {
2057 page = find_subpage(page, xas.xa_index);
2058 nr_entries = ret + 1;
2059 }
2060
2061 indices[ret] = xas.xa_index;
2062 pvec->pages[ret] = page;
2063 if (++ret == nr_entries)
2064 break;
2065 }
2066 rcu_read_unlock();
2067
2068 pvec->nr = ret;
2069 return ret;
2070 }
2071
2072 /**
2073 * find_lock_entries - Find a batch of pagecache entries.
2074 * @mapping: The address_space to search.
2075 * @start: The starting page cache index.
2076 * @end: The final page index (inclusive).
2077 * @pvec: Where the resulting entries are placed.
2078 * @indices: The cache indices of the entries in @pvec.
2079 *
2080 * find_lock_entries() will return a batch of entries from @mapping.
2081 * Swap, shadow and DAX entries are included. Pages are returned
2082 * locked and with an incremented refcount. Pages which are locked by
2083 * somebody else or under writeback are skipped. Only the head page of
2084 * a THP is returned. Pages which are partially outside the range are
2085 * not returned.
2086 *
2087 * The entries have ascending indexes. The indices may not be consecutive
2088 * due to not-present entries, THP pages, pages which could not be locked
2089 * or pages under writeback.
2090 *
2091 * Return: The number of entries which were found.
2092 */
find_lock_entries(struct address_space * mapping,pgoff_t start,pgoff_t end,struct pagevec * pvec,pgoff_t * indices)2093 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2094 pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2095 {
2096 XA_STATE(xas, &mapping->i_pages, start);
2097 struct page *page;
2098
2099 rcu_read_lock();
2100 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2101 unsigned long next_idx = xas.xa_index + 1;
2102
2103 if (!xa_is_value(page)) {
2104 if (PageTransHuge(page))
2105 next_idx = page->index + thp_nr_pages(page);
2106 if (page->index < start)
2107 goto put;
2108 if (page->index + thp_nr_pages(page) - 1 > end)
2109 goto put;
2110 if (!trylock_page(page))
2111 goto put;
2112 if (page->mapping != mapping || PageWriteback(page))
2113 goto unlock;
2114 VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2115 page);
2116 }
2117 indices[pvec->nr] = xas.xa_index;
2118 if (!pagevec_add(pvec, page))
2119 break;
2120 goto next;
2121 unlock:
2122 unlock_page(page);
2123 put:
2124 put_page(page);
2125 next:
2126 if (next_idx != xas.xa_index + 1) {
2127 /* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2128 if (next_idx < xas.xa_index)
2129 break;
2130 xas_set(&xas, next_idx);
2131 }
2132 }
2133 rcu_read_unlock();
2134
2135 return pagevec_count(pvec);
2136 }
2137
2138 /**
2139 * find_get_pages_range - gang pagecache lookup
2140 * @mapping: The address_space to search
2141 * @start: The starting page index
2142 * @end: The final page index (inclusive)
2143 * @nr_pages: The maximum number of pages
2144 * @pages: Where the resulting pages are placed
2145 *
2146 * find_get_pages_range() will search for and return a group of up to @nr_pages
2147 * pages in the mapping starting at index @start and up to index @end
2148 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
2149 * a reference against the returned pages.
2150 *
2151 * The search returns a group of mapping-contiguous pages with ascending
2152 * indexes. There may be holes in the indices due to not-present pages.
2153 * We also update @start to index the next page for the traversal.
2154 *
2155 * Return: the number of pages which were found. If this number is
2156 * smaller than @nr_pages, the end of specified range has been
2157 * reached.
2158 */
find_get_pages_range(struct address_space * mapping,pgoff_t * start,pgoff_t end,unsigned int nr_pages,struct page ** pages)2159 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2160 pgoff_t end, unsigned int nr_pages,
2161 struct page **pages)
2162 {
2163 XA_STATE(xas, &mapping->i_pages, *start);
2164 struct page *page;
2165 unsigned ret = 0;
2166
2167 if (unlikely(!nr_pages))
2168 return 0;
2169
2170 rcu_read_lock();
2171 while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2172 /* Skip over shadow, swap and DAX entries */
2173 if (xa_is_value(page))
2174 continue;
2175
2176 pages[ret] = find_subpage(page, xas.xa_index);
2177 if (++ret == nr_pages) {
2178 *start = xas.xa_index + 1;
2179 goto out;
2180 }
2181 }
2182
2183 /*
2184 * We come here when there is no page beyond @end. We take care to not
2185 * overflow the index @start as it confuses some of the callers. This
2186 * breaks the iteration when there is a page at index -1 but that is
2187 * already broken anyway.
2188 */
2189 if (end == (pgoff_t)-1)
2190 *start = (pgoff_t)-1;
2191 else
2192 *start = end + 1;
2193 out:
2194 rcu_read_unlock();
2195
2196 return ret;
2197 }
2198
2199 /**
2200 * find_get_pages_contig - gang contiguous pagecache lookup
2201 * @mapping: The address_space to search
2202 * @index: The starting page index
2203 * @nr_pages: The maximum number of pages
2204 * @pages: Where the resulting pages are placed
2205 *
2206 * find_get_pages_contig() works exactly like find_get_pages(), except
2207 * that the returned number of pages are guaranteed to be contiguous.
2208 *
2209 * Return: the number of pages which were found.
2210 */
find_get_pages_contig(struct address_space * mapping,pgoff_t index,unsigned int nr_pages,struct page ** pages)2211 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2212 unsigned int nr_pages, struct page **pages)
2213 {
2214 XA_STATE(xas, &mapping->i_pages, index);
2215 struct page *page;
2216 unsigned int ret = 0;
2217
2218 if (unlikely(!nr_pages))
2219 return 0;
2220
2221 rcu_read_lock();
2222 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2223 if (xas_retry(&xas, page))
2224 continue;
2225 /*
2226 * If the entry has been swapped out, we can stop looking.
2227 * No current caller is looking for DAX entries.
2228 */
2229 if (xa_is_value(page))
2230 break;
2231
2232 if (!page_cache_get_speculative(page))
2233 goto retry;
2234
2235 /* Has the page moved or been split? */
2236 if (unlikely(page != xas_reload(&xas)))
2237 goto put_page;
2238
2239 pages[ret] = find_subpage(page, xas.xa_index);
2240 if (++ret == nr_pages)
2241 break;
2242 continue;
2243 put_page:
2244 put_page(page);
2245 retry:
2246 xas_reset(&xas);
2247 }
2248 rcu_read_unlock();
2249 return ret;
2250 }
2251 EXPORT_SYMBOL(find_get_pages_contig);
2252
2253 /**
2254 * find_get_pages_range_tag - Find and return head pages matching @tag.
2255 * @mapping: the address_space to search
2256 * @index: the starting page index
2257 * @end: The final page index (inclusive)
2258 * @tag: the tag index
2259 * @nr_pages: the maximum number of pages
2260 * @pages: where the resulting pages are placed
2261 *
2262 * Like find_get_pages(), except we only return head pages which are tagged
2263 * with @tag. @index is updated to the index immediately after the last
2264 * page we return, ready for the next iteration.
2265 *
2266 * Return: the number of pages which were found.
2267 */
find_get_pages_range_tag(struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)2268 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2269 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2270 struct page **pages)
2271 {
2272 XA_STATE(xas, &mapping->i_pages, *index);
2273 struct page *page;
2274 unsigned ret = 0;
2275
2276 if (unlikely(!nr_pages))
2277 return 0;
2278
2279 rcu_read_lock();
2280 while ((page = find_get_entry(&xas, end, tag))) {
2281 /*
2282 * Shadow entries should never be tagged, but this iteration
2283 * is lockless so there is a window for page reclaim to evict
2284 * a page we saw tagged. Skip over it.
2285 */
2286 if (xa_is_value(page))
2287 continue;
2288
2289 pages[ret] = page;
2290 if (++ret == nr_pages) {
2291 *index = page->index + thp_nr_pages(page);
2292 goto out;
2293 }
2294 }
2295
2296 /*
2297 * We come here when we got to @end. We take care to not overflow the
2298 * index @index as it confuses some of the callers. This breaks the
2299 * iteration when there is a page at index -1 but that is already
2300 * broken anyway.
2301 */
2302 if (end == (pgoff_t)-1)
2303 *index = (pgoff_t)-1;
2304 else
2305 *index = end + 1;
2306 out:
2307 rcu_read_unlock();
2308
2309 return ret;
2310 }
2311 EXPORT_SYMBOL(find_get_pages_range_tag);
2312
2313 /*
2314 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2315 * a _large_ part of the i/o request. Imagine the worst scenario:
2316 *
2317 * ---R__________________________________________B__________
2318 * ^ reading here ^ bad block(assume 4k)
2319 *
2320 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2321 * => failing the whole request => read(R) => read(R+1) =>
2322 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2323 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2324 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2325 *
2326 * It is going insane. Fix it by quickly scaling down the readahead size.
2327 */
shrink_readahead_size_eio(struct file_ra_state * ra)2328 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2329 {
2330 ra->ra_pages /= 4;
2331 }
2332
2333 /*
2334 * filemap_get_read_batch - Get a batch of pages for read
2335 *
2336 * Get a batch of pages which represent a contiguous range of bytes
2337 * in the file. No tail pages will be returned. If @index is in the
2338 * middle of a THP, the entire THP will be returned. The last page in
2339 * the batch may have Readahead set or be not Uptodate so that the
2340 * caller can take the appropriate action.
2341 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct pagevec * pvec)2342 static void filemap_get_read_batch(struct address_space *mapping,
2343 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2344 {
2345 XA_STATE(xas, &mapping->i_pages, index);
2346 struct page *head;
2347
2348 rcu_read_lock();
2349 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2350 if (xas_retry(&xas, head))
2351 continue;
2352 if (xas.xa_index > max || xa_is_value(head))
2353 break;
2354 if (!page_cache_get_speculative(head))
2355 goto retry;
2356
2357 /* Has the page moved or been split? */
2358 if (unlikely(head != xas_reload(&xas)))
2359 goto put_page;
2360
2361 if (!pagevec_add(pvec, head))
2362 break;
2363 if (!PageUptodate(head))
2364 break;
2365 if (PageReadahead(head))
2366 break;
2367 if (PageHead(head)) {
2368 xas_set(&xas, head->index + thp_nr_pages(head));
2369 /* Handle wrap correctly */
2370 if (xas.xa_index - 1 >= max)
2371 break;
2372 }
2373 continue;
2374 put_page:
2375 put_page(head);
2376 retry:
2377 xas_reset(&xas);
2378 }
2379 rcu_read_unlock();
2380 }
2381
filemap_read_page(struct file * file,struct address_space * mapping,struct page * page)2382 static int filemap_read_page(struct file *file, struct address_space *mapping,
2383 struct page *page)
2384 {
2385 int error;
2386
2387 /*
2388 * A previous I/O error may have been due to temporary failures,
2389 * eg. multipath errors. PG_error will be set again if readpage
2390 * fails.
2391 */
2392 ClearPageError(page);
2393 /* Start the actual read. The read will unlock the page. */
2394 error = mapping->a_ops->readpage(file, page);
2395 if (error)
2396 return error;
2397
2398 error = wait_on_page_locked_killable(page);
2399 if (error)
2400 return error;
2401 if (PageUptodate(page))
2402 return 0;
2403 shrink_readahead_size_eio(&file->f_ra);
2404 return -EIO;
2405 }
2406
filemap_range_uptodate(struct address_space * mapping,loff_t pos,struct iov_iter * iter,struct page * page)2407 static bool filemap_range_uptodate(struct address_space *mapping,
2408 loff_t pos, struct iov_iter *iter, struct page *page)
2409 {
2410 int count;
2411
2412 if (PageUptodate(page))
2413 return true;
2414 /* pipes can't handle partially uptodate pages */
2415 if (iov_iter_is_pipe(iter))
2416 return false;
2417 if (!mapping->a_ops->is_partially_uptodate)
2418 return false;
2419 if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2420 return false;
2421
2422 count = iter->count;
2423 if (page_offset(page) > pos) {
2424 count -= page_offset(page) - pos;
2425 pos = 0;
2426 } else {
2427 pos -= page_offset(page);
2428 }
2429
2430 return mapping->a_ops->is_partially_uptodate(page, pos, count);
2431 }
2432
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * iter,struct page * page)2433 static int filemap_update_page(struct kiocb *iocb,
2434 struct address_space *mapping, struct iov_iter *iter,
2435 struct page *page)
2436 {
2437 int error;
2438
2439 if (iocb->ki_flags & IOCB_NOWAIT) {
2440 if (!filemap_invalidate_trylock_shared(mapping))
2441 return -EAGAIN;
2442 } else {
2443 filemap_invalidate_lock_shared(mapping);
2444 }
2445
2446 if (!trylock_page(page)) {
2447 error = -EAGAIN;
2448 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2449 goto unlock_mapping;
2450 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2451 filemap_invalidate_unlock_shared(mapping);
2452 put_and_wait_on_page_locked(page, TASK_KILLABLE);
2453 return AOP_TRUNCATED_PAGE;
2454 }
2455 error = __lock_page_async(page, iocb->ki_waitq);
2456 if (error)
2457 goto unlock_mapping;
2458 }
2459
2460 error = AOP_TRUNCATED_PAGE;
2461 if (!page->mapping)
2462 goto unlock;
2463
2464 error = 0;
2465 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2466 goto unlock;
2467
2468 error = -EAGAIN;
2469 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2470 goto unlock;
2471
2472 error = filemap_read_page(iocb->ki_filp, mapping, page);
2473 goto unlock_mapping;
2474 unlock:
2475 unlock_page(page);
2476 unlock_mapping:
2477 filemap_invalidate_unlock_shared(mapping);
2478 if (error == AOP_TRUNCATED_PAGE)
2479 put_page(page);
2480 return error;
2481 }
2482
filemap_create_page(struct file * file,struct address_space * mapping,pgoff_t index,struct pagevec * pvec)2483 static int filemap_create_page(struct file *file,
2484 struct address_space *mapping, pgoff_t index,
2485 struct pagevec *pvec)
2486 {
2487 struct page *page;
2488 int error;
2489
2490 page = page_cache_alloc(mapping);
2491 if (!page)
2492 return -ENOMEM;
2493
2494 /*
2495 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2496 * assures we cannot instantiate and bring uptodate new pagecache pages
2497 * after evicting page cache during truncate and before actually
2498 * freeing blocks. Note that we could release invalidate_lock after
2499 * inserting the page into page cache as the locked page would then be
2500 * enough to synchronize with hole punching. But there are code paths
2501 * such as filemap_update_page() filling in partially uptodate pages or
2502 * ->readpages() that need to hold invalidate_lock while mapping blocks
2503 * for IO so let's hold the lock here as well to keep locking rules
2504 * simple.
2505 */
2506 filemap_invalidate_lock_shared(mapping);
2507 error = add_to_page_cache_lru(page, mapping, index,
2508 mapping_gfp_constraint(mapping, GFP_KERNEL));
2509 if (error == -EEXIST)
2510 error = AOP_TRUNCATED_PAGE;
2511 if (error)
2512 goto error;
2513
2514 error = filemap_read_page(file, mapping, page);
2515 if (error)
2516 goto error;
2517
2518 filemap_invalidate_unlock_shared(mapping);
2519 pagevec_add(pvec, page);
2520 return 0;
2521 error:
2522 filemap_invalidate_unlock_shared(mapping);
2523 put_page(page);
2524 return error;
2525 }
2526
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct page * page,pgoff_t last_index)2527 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2528 struct address_space *mapping, struct page *page,
2529 pgoff_t last_index)
2530 {
2531 if (iocb->ki_flags & IOCB_NOIO)
2532 return -EAGAIN;
2533 page_cache_async_readahead(mapping, &file->f_ra, file, page,
2534 page->index, last_index - page->index);
2535 return 0;
2536 }
2537
filemap_get_pages(struct kiocb * iocb,struct iov_iter * iter,struct pagevec * pvec)2538 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2539 struct pagevec *pvec)
2540 {
2541 struct file *filp = iocb->ki_filp;
2542 struct address_space *mapping = filp->f_mapping;
2543 struct file_ra_state *ra = &filp->f_ra;
2544 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2545 pgoff_t last_index;
2546 struct page *page;
2547 int err = 0;
2548
2549 /* "last_index" is the index of the page beyond the end of the read */
2550 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2551 retry:
2552 if (fatal_signal_pending(current))
2553 return -EINTR;
2554
2555 filemap_get_read_batch(mapping, index, last_index - 1, pvec);
2556 if (!pagevec_count(pvec)) {
2557 if (iocb->ki_flags & IOCB_NOIO)
2558 return -EAGAIN;
2559 page_cache_sync_readahead(mapping, ra, filp, index,
2560 last_index - index);
2561 filemap_get_read_batch(mapping, index, last_index - 1, pvec);
2562 }
2563 if (!pagevec_count(pvec)) {
2564 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2565 return -EAGAIN;
2566 err = filemap_create_page(filp, mapping,
2567 iocb->ki_pos >> PAGE_SHIFT, pvec);
2568 if (err == AOP_TRUNCATED_PAGE)
2569 goto retry;
2570 return err;
2571 }
2572
2573 page = pvec->pages[pagevec_count(pvec) - 1];
2574 if (PageReadahead(page)) {
2575 err = filemap_readahead(iocb, filp, mapping, page, last_index);
2576 if (err)
2577 goto err;
2578 }
2579 if (!PageUptodate(page)) {
2580 if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2581 iocb->ki_flags |= IOCB_NOWAIT;
2582 err = filemap_update_page(iocb, mapping, iter, page);
2583 if (err)
2584 goto err;
2585 }
2586
2587 return 0;
2588 err:
2589 if (err < 0)
2590 put_page(page);
2591 if (likely(--pvec->nr))
2592 return 0;
2593 if (err == AOP_TRUNCATED_PAGE)
2594 goto retry;
2595 return err;
2596 }
2597
2598 /**
2599 * filemap_read - Read data from the page cache.
2600 * @iocb: The iocb to read.
2601 * @iter: Destination for the data.
2602 * @already_read: Number of bytes already read by the caller.
2603 *
2604 * Copies data from the page cache. If the data is not currently present,
2605 * uses the readahead and readpage address_space operations to fetch it.
2606 *
2607 * Return: Total number of bytes copied, including those already read by
2608 * the caller. If an error happens before any bytes are copied, returns
2609 * a negative error number.
2610 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2611 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2612 ssize_t already_read)
2613 {
2614 struct file *filp = iocb->ki_filp;
2615 struct file_ra_state *ra = &filp->f_ra;
2616 struct address_space *mapping = filp->f_mapping;
2617 struct inode *inode = mapping->host;
2618 struct pagevec pvec;
2619 int i, error = 0;
2620 bool writably_mapped;
2621 loff_t isize, end_offset;
2622 loff_t last_pos = ra->prev_pos;
2623
2624 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2625 return 0;
2626 if (unlikely(!iov_iter_count(iter)))
2627 return 0;
2628
2629 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2630 pagevec_init(&pvec);
2631
2632 do {
2633 cond_resched();
2634
2635 /*
2636 * If we've already successfully copied some data, then we
2637 * can no longer safely return -EIOCBQUEUED. Hence mark
2638 * an async read NOWAIT at that point.
2639 */
2640 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2641 iocb->ki_flags |= IOCB_NOWAIT;
2642
2643 error = filemap_get_pages(iocb, iter, &pvec);
2644 if (error < 0)
2645 break;
2646
2647 /*
2648 * i_size must be checked after we know the pages are Uptodate.
2649 *
2650 * Checking i_size after the check allows us to calculate
2651 * the correct value for "nr", which means the zero-filled
2652 * part of the page is not copied back to userspace (unless
2653 * another truncate extends the file - this is desired though).
2654 */
2655 isize = i_size_read(inode);
2656 if (unlikely(iocb->ki_pos >= isize))
2657 goto put_pages;
2658 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2659
2660 /*
2661 * Pairs with a barrier in
2662 * block_write_end()->mark_buffer_dirty() or other page
2663 * dirtying routines like iomap_write_end() to ensure
2664 * changes to page contents are visible before we see
2665 * increased inode size.
2666 */
2667 smp_rmb();
2668
2669 /*
2670 * Once we start copying data, we don't want to be touching any
2671 * cachelines that might be contended:
2672 */
2673 writably_mapped = mapping_writably_mapped(mapping);
2674
2675 /*
2676 * When a sequential read accesses a page several times, only
2677 * mark it as accessed the first time.
2678 */
2679 if (iocb->ki_pos >> PAGE_SHIFT !=
2680 last_pos >> PAGE_SHIFT)
2681 mark_page_accessed(pvec.pages[0]);
2682
2683 for (i = 0; i < pagevec_count(&pvec); i++) {
2684 struct page *page = pvec.pages[i];
2685 size_t page_size = thp_size(page);
2686 size_t offset = iocb->ki_pos & (page_size - 1);
2687 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2688 page_size - offset);
2689 size_t copied;
2690
2691 if (end_offset < page_offset(page))
2692 break;
2693 if (i > 0)
2694 mark_page_accessed(page);
2695 /*
2696 * If users can be writing to this page using arbitrary
2697 * virtual addresses, take care about potential aliasing
2698 * before reading the page on the kernel side.
2699 */
2700 if (writably_mapped) {
2701 int j;
2702
2703 for (j = 0; j < thp_nr_pages(page); j++)
2704 flush_dcache_page(page + j);
2705 }
2706
2707 copied = copy_page_to_iter(page, offset, bytes, iter);
2708
2709 already_read += copied;
2710 iocb->ki_pos += copied;
2711 last_pos = iocb->ki_pos;
2712
2713 if (copied < bytes) {
2714 error = -EFAULT;
2715 break;
2716 }
2717 }
2718 put_pages:
2719 for (i = 0; i < pagevec_count(&pvec); i++)
2720 put_page(pvec.pages[i]);
2721 pagevec_reinit(&pvec);
2722 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2723
2724 file_accessed(filp);
2725 ra->prev_pos = last_pos;
2726 return already_read ? already_read : error;
2727 }
2728 EXPORT_SYMBOL_GPL(filemap_read);
2729
2730 /**
2731 * generic_file_read_iter - generic filesystem read routine
2732 * @iocb: kernel I/O control block
2733 * @iter: destination for the data read
2734 *
2735 * This is the "read_iter()" routine for all filesystems
2736 * that can use the page cache directly.
2737 *
2738 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2739 * be returned when no data can be read without waiting for I/O requests
2740 * to complete; it doesn't prevent readahead.
2741 *
2742 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2743 * requests shall be made for the read or for readahead. When no data
2744 * can be read, -EAGAIN shall be returned. When readahead would be
2745 * triggered, a partial, possibly empty read shall be returned.
2746 *
2747 * Return:
2748 * * number of bytes copied, even for partial reads
2749 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2750 */
2751 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2752 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2753 {
2754 size_t count = iov_iter_count(iter);
2755 ssize_t retval = 0;
2756
2757 if (!count)
2758 return 0; /* skip atime */
2759
2760 if (iocb->ki_flags & IOCB_DIRECT) {
2761 struct file *file = iocb->ki_filp;
2762 struct address_space *mapping = file->f_mapping;
2763 struct inode *inode = mapping->host;
2764 loff_t size;
2765
2766 size = i_size_read(inode);
2767 if (iocb->ki_flags & IOCB_NOWAIT) {
2768 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2769 iocb->ki_pos + count - 1))
2770 return -EAGAIN;
2771 } else {
2772 retval = filemap_write_and_wait_range(mapping,
2773 iocb->ki_pos,
2774 iocb->ki_pos + count - 1);
2775 if (retval < 0)
2776 return retval;
2777 }
2778
2779 file_accessed(file);
2780
2781 retval = mapping->a_ops->direct_IO(iocb, iter);
2782 if (retval >= 0) {
2783 iocb->ki_pos += retval;
2784 count -= retval;
2785 }
2786 if (retval != -EIOCBQUEUED)
2787 iov_iter_revert(iter, count - iov_iter_count(iter));
2788
2789 /*
2790 * Btrfs can have a short DIO read if we encounter
2791 * compressed extents, so if there was an error, or if
2792 * we've already read everything we wanted to, or if
2793 * there was a short read because we hit EOF, go ahead
2794 * and return. Otherwise fallthrough to buffered io for
2795 * the rest of the read. Buffered reads will not work for
2796 * DAX files, so don't bother trying.
2797 */
2798 if (retval < 0 || !count || iocb->ki_pos >= size ||
2799 IS_DAX(inode))
2800 return retval;
2801 }
2802
2803 return filemap_read(iocb, iter, retval);
2804 }
2805 EXPORT_SYMBOL(generic_file_read_iter);
2806
page_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct page * page,loff_t start,loff_t end,bool seek_data)2807 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2808 struct address_space *mapping, struct page *page,
2809 loff_t start, loff_t end, bool seek_data)
2810 {
2811 const struct address_space_operations *ops = mapping->a_ops;
2812 size_t offset, bsz = i_blocksize(mapping->host);
2813
2814 if (xa_is_value(page) || PageUptodate(page))
2815 return seek_data ? start : end;
2816 if (!ops->is_partially_uptodate)
2817 return seek_data ? end : start;
2818
2819 xas_pause(xas);
2820 rcu_read_unlock();
2821 lock_page(page);
2822 if (unlikely(page->mapping != mapping))
2823 goto unlock;
2824
2825 offset = offset_in_thp(page, start) & ~(bsz - 1);
2826
2827 do {
2828 if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2829 break;
2830 start = (start + bsz) & ~(bsz - 1);
2831 offset += bsz;
2832 } while (offset < thp_size(page));
2833 unlock:
2834 unlock_page(page);
2835 rcu_read_lock();
2836 return start;
2837 }
2838
2839 static inline
seek_page_size(struct xa_state * xas,struct page * page)2840 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2841 {
2842 if (xa_is_value(page))
2843 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2844 return thp_size(page);
2845 }
2846
2847 /**
2848 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2849 * @mapping: Address space to search.
2850 * @start: First byte to consider.
2851 * @end: Limit of search (exclusive).
2852 * @whence: Either SEEK_HOLE or SEEK_DATA.
2853 *
2854 * If the page cache knows which blocks contain holes and which blocks
2855 * contain data, your filesystem can use this function to implement
2856 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2857 * entirely memory-based such as tmpfs, and filesystems which support
2858 * unwritten extents.
2859 *
2860 * Return: The requested offset on success, or -ENXIO if @whence specifies
2861 * SEEK_DATA and there is no data after @start. There is an implicit hole
2862 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2863 * and @end contain data.
2864 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)2865 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2866 loff_t end, int whence)
2867 {
2868 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2869 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2870 bool seek_data = (whence == SEEK_DATA);
2871 struct page *page;
2872
2873 if (end <= start)
2874 return -ENXIO;
2875
2876 rcu_read_lock();
2877 while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2878 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2879 unsigned int seek_size;
2880
2881 if (start < pos) {
2882 if (!seek_data)
2883 goto unlock;
2884 start = pos;
2885 }
2886
2887 seek_size = seek_page_size(&xas, page);
2888 pos = round_up(pos + 1, seek_size);
2889 start = page_seek_hole_data(&xas, mapping, page, start, pos,
2890 seek_data);
2891 if (start < pos)
2892 goto unlock;
2893 if (start >= end)
2894 break;
2895 if (seek_size > PAGE_SIZE)
2896 xas_set(&xas, pos >> PAGE_SHIFT);
2897 if (!xa_is_value(page))
2898 put_page(page);
2899 }
2900 if (seek_data)
2901 start = -ENXIO;
2902 unlock:
2903 rcu_read_unlock();
2904 if (page && !xa_is_value(page))
2905 put_page(page);
2906 if (start > end)
2907 return end;
2908 return start;
2909 }
2910
2911 #ifdef CONFIG_MMU
2912 #define MMAP_LOTSAMISS (100)
2913 /*
2914 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2915 * @vmf - the vm_fault for this fault.
2916 * @page - the page to lock.
2917 * @fpin - the pointer to the file we may pin (or is already pinned).
2918 *
2919 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2920 * It differs in that it actually returns the page locked if it returns 1 and 0
2921 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2922 * will point to the pinned file and needs to be fput()'ed at a later point.
2923 */
lock_page_maybe_drop_mmap(struct vm_fault * vmf,struct page * page,struct file ** fpin)2924 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2925 struct file **fpin)
2926 {
2927 if (trylock_page(page))
2928 return 1;
2929
2930 /*
2931 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2932 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2933 * is supposed to work. We have way too many special cases..
2934 */
2935 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2936 return 0;
2937
2938 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2939 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2940 if (__lock_page_killable(page)) {
2941 /*
2942 * We didn't have the right flags to drop the mmap_lock,
2943 * but all fault_handlers only check for fatal signals
2944 * if we return VM_FAULT_RETRY, so we need to drop the
2945 * mmap_lock here and return 0 if we don't have a fpin.
2946 */
2947 if (*fpin == NULL)
2948 mmap_read_unlock(vmf->vma->vm_mm);
2949 return 0;
2950 }
2951 } else
2952 __lock_page(page);
2953 return 1;
2954 }
2955
2956
2957 /*
2958 * Synchronous readahead happens when we don't even find a page in the page
2959 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2960 * to drop the mmap sem we return the file that was pinned in order for us to do
2961 * that. If we didn't pin a file then we return NULL. The file that is
2962 * returned needs to be fput()'ed when we're done with it.
2963 */
do_sync_mmap_readahead(struct vm_fault * vmf)2964 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2965 {
2966 struct file *file = vmf->vma->vm_file;
2967 struct file_ra_state *ra = &file->f_ra;
2968 struct address_space *mapping = file->f_mapping;
2969 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2970 struct file *fpin = NULL;
2971 unsigned int mmap_miss;
2972
2973 /* If we don't want any read-ahead, don't bother */
2974 if (vmf->vma->vm_flags & VM_RAND_READ)
2975 return fpin;
2976 if (!ra->ra_pages)
2977 return fpin;
2978
2979 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2980 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2981 page_cache_sync_ra(&ractl, ra->ra_pages);
2982 return fpin;
2983 }
2984
2985 /* Avoid banging the cache line if not needed */
2986 mmap_miss = READ_ONCE(ra->mmap_miss);
2987 if (mmap_miss < MMAP_LOTSAMISS * 10)
2988 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2989
2990 /*
2991 * Do we miss much more than hit in this file? If so,
2992 * stop bothering with read-ahead. It will only hurt.
2993 */
2994 if (mmap_miss > MMAP_LOTSAMISS)
2995 return fpin;
2996
2997 /*
2998 * mmap read-around
2999 */
3000 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3001 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3002 ra->size = ra->ra_pages;
3003 ra->async_size = ra->ra_pages / 4;
3004 ractl._index = ra->start;
3005 do_page_cache_ra(&ractl, ra->size, ra->async_size);
3006 return fpin;
3007 }
3008
3009 /*
3010 * Asynchronous readahead happens when we find the page and PG_readahead,
3011 * so we want to possibly extend the readahead further. We return the file that
3012 * was pinned if we have to drop the mmap_lock in order to do IO.
3013 */
do_async_mmap_readahead(struct vm_fault * vmf,struct page * page)3014 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3015 struct page *page)
3016 {
3017 struct file *file = vmf->vma->vm_file;
3018 struct file_ra_state *ra = &file->f_ra;
3019 struct address_space *mapping = file->f_mapping;
3020 struct file *fpin = NULL;
3021 unsigned int mmap_miss;
3022 pgoff_t offset = vmf->pgoff;
3023
3024 /* If we don't want any read-ahead, don't bother */
3025 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3026 return fpin;
3027 mmap_miss = READ_ONCE(ra->mmap_miss);
3028 if (mmap_miss)
3029 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3030 if (PageReadahead(page)) {
3031 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3032 page_cache_async_readahead(mapping, ra, file,
3033 page, offset, ra->ra_pages);
3034 }
3035 return fpin;
3036 }
3037
3038 /**
3039 * filemap_fault - read in file data for page fault handling
3040 * @vmf: struct vm_fault containing details of the fault
3041 *
3042 * filemap_fault() is invoked via the vma operations vector for a
3043 * mapped memory region to read in file data during a page fault.
3044 *
3045 * The goto's are kind of ugly, but this streamlines the normal case of having
3046 * it in the page cache, and handles the special cases reasonably without
3047 * having a lot of duplicated code.
3048 *
3049 * If FAULT_FLAG_SPECULATIVE is set, this function runs within an rcu
3050 * read locked section and with mmap lock not held.
3051 * Otherwise, vma->vm_mm->mmap_lock must be held on entry.
3052 *
3053 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3054 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3055 *
3056 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3057 * has not been released.
3058 *
3059 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3060 *
3061 * Return: bitwise-OR of %VM_FAULT_ codes.
3062 */
filemap_fault(struct vm_fault * vmf)3063 vm_fault_t filemap_fault(struct vm_fault *vmf)
3064 {
3065 int error;
3066 struct file *file = vmf->vma->vm_file;
3067 struct file *fpin = NULL;
3068 struct address_space *mapping = file->f_mapping;
3069 struct file_ra_state *ra = &file->f_ra;
3070 struct inode *inode = mapping->host;
3071 pgoff_t offset = vmf->pgoff;
3072 pgoff_t max_off;
3073 struct page *page;
3074 vm_fault_t ret = 0;
3075 bool mapping_locked = false;
3076
3077 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3078 page = find_get_page(mapping, offset);
3079 if (unlikely(!page))
3080 return VM_FAULT_RETRY;
3081
3082 if (unlikely(PageReadahead(page)))
3083 goto page_put;
3084
3085 if (!trylock_page(page))
3086 goto page_put;
3087
3088 if (unlikely(compound_head(page)->mapping != mapping))
3089 goto page_unlock;
3090 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3091 if (unlikely(!PageUptodate(page)))
3092 goto page_unlock;
3093
3094 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3095 if (unlikely(offset >= max_off))
3096 goto page_unlock;
3097
3098 /*
3099 * Update readahead mmap_miss statistic.
3100 *
3101 * Note that we are not sure if finish_fault() will
3102 * manage to complete the transaction. If it fails,
3103 * we'll come back to filemap_fault() non-speculative
3104 * case which will update mmap_miss a second time.
3105 * This is not ideal, we would prefer to guarantee the
3106 * update will happen exactly once.
3107 */
3108 if (!(vmf->vma->vm_flags & VM_RAND_READ) && ra->ra_pages) {
3109 unsigned int mmap_miss = READ_ONCE(ra->mmap_miss);
3110 if (mmap_miss)
3111 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3112 }
3113
3114 vmf->page = page;
3115 return VM_FAULT_LOCKED;
3116 page_unlock:
3117 unlock_page(page);
3118 page_put:
3119 put_page(page);
3120 return VM_FAULT_RETRY;
3121 }
3122
3123 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3124 if (unlikely(offset >= max_off))
3125 return VM_FAULT_SIGBUS;
3126
3127 /*
3128 * Do we have something in the page cache already?
3129 */
3130 page = find_get_page(mapping, offset);
3131 if (likely(page)) {
3132 /*
3133 * We found the page, so try async readahead before waiting for
3134 * the lock.
3135 */
3136 if (!(vmf->flags & FAULT_FLAG_TRIED))
3137 fpin = do_async_mmap_readahead(vmf, page);
3138 if (unlikely(!PageUptodate(page))) {
3139 filemap_invalidate_lock_shared(mapping);
3140 mapping_locked = true;
3141 }
3142 } else {
3143 /* No page in the page cache at all */
3144 count_vm_event(PGMAJFAULT);
3145 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3146 ret = VM_FAULT_MAJOR;
3147 fpin = do_sync_mmap_readahead(vmf);
3148 retry_find:
3149 /*
3150 * See comment in filemap_create_page() why we need
3151 * invalidate_lock
3152 */
3153 if (!mapping_locked) {
3154 filemap_invalidate_lock_shared(mapping);
3155 mapping_locked = true;
3156 }
3157 page = pagecache_get_page(mapping, offset,
3158 FGP_CREAT|FGP_FOR_MMAP,
3159 vmf->gfp_mask);
3160 if (!page) {
3161 if (fpin)
3162 goto out_retry;
3163 filemap_invalidate_unlock_shared(mapping);
3164 return VM_FAULT_OOM;
3165 }
3166 }
3167
3168 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3169 goto out_retry;
3170
3171 /* Did it get truncated? */
3172 if (unlikely(compound_head(page)->mapping != mapping)) {
3173 unlock_page(page);
3174 put_page(page);
3175 goto retry_find;
3176 }
3177 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3178
3179 /*
3180 * We have a locked page in the page cache, now we need to check
3181 * that it's up-to-date. If not, it is going to be due to an error.
3182 */
3183 if (unlikely(!PageUptodate(page))) {
3184 /*
3185 * The page was in cache and uptodate and now it is not.
3186 * Strange but possible since we didn't hold the page lock all
3187 * the time. Let's drop everything get the invalidate lock and
3188 * try again.
3189 */
3190 if (!mapping_locked) {
3191 unlock_page(page);
3192 put_page(page);
3193 goto retry_find;
3194 }
3195 goto page_not_uptodate;
3196 }
3197
3198 /*
3199 * We've made it this far and we had to drop our mmap_lock, now is the
3200 * time to return to the upper layer and have it re-find the vma and
3201 * redo the fault.
3202 */
3203 if (fpin) {
3204 unlock_page(page);
3205 goto out_retry;
3206 }
3207 if (mapping_locked)
3208 filemap_invalidate_unlock_shared(mapping);
3209
3210 /*
3211 * Found the page and have a reference on it.
3212 * We must recheck i_size under page lock.
3213 */
3214 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3215 if (unlikely(offset >= max_off)) {
3216 unlock_page(page);
3217 put_page(page);
3218 return VM_FAULT_SIGBUS;
3219 }
3220
3221 vmf->page = page;
3222 return ret | VM_FAULT_LOCKED;
3223
3224 page_not_uptodate:
3225 /*
3226 * Umm, take care of errors if the page isn't up-to-date.
3227 * Try to re-read it _once_. We do this synchronously,
3228 * because there really aren't any performance issues here
3229 * and we need to check for errors.
3230 */
3231 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3232 error = filemap_read_page(file, mapping, page);
3233 if (fpin)
3234 goto out_retry;
3235 put_page(page);
3236
3237 if (!error || error == AOP_TRUNCATED_PAGE)
3238 goto retry_find;
3239 filemap_invalidate_unlock_shared(mapping);
3240
3241 return VM_FAULT_SIGBUS;
3242
3243 out_retry:
3244 /*
3245 * We dropped the mmap_lock, we need to return to the fault handler to
3246 * re-find the vma and come back and find our hopefully still populated
3247 * page.
3248 */
3249 if (page)
3250 put_page(page);
3251 if (mapping_locked)
3252 filemap_invalidate_unlock_shared(mapping);
3253 if (fpin)
3254 fput(fpin);
3255 return ret | VM_FAULT_RETRY;
3256 }
3257 EXPORT_SYMBOL(filemap_fault);
3258
filemap_map_pmd(struct vm_fault * vmf,struct page * page)3259 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3260 {
3261 struct mm_struct *mm = vmf->vma->vm_mm;
3262
3263 /* Huge page is mapped? No need to proceed. */
3264 if (pmd_trans_huge(*vmf->pmd)) {
3265 unlock_page(page);
3266 put_page(page);
3267 return true;
3268 }
3269
3270 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3271 vm_fault_t ret = do_set_pmd(vmf, page);
3272 if (!ret) {
3273 /* The page is mapped successfully, reference consumed. */
3274 unlock_page(page);
3275 return true;
3276 }
3277 }
3278
3279 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) {
3280 vmf->ptl = pmd_lock(mm, vmf->pmd);
3281 if (likely(pmd_none(*vmf->pmd))) {
3282 mm_inc_nr_ptes(mm);
3283 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3284 vmf->prealloc_pte = NULL;
3285 }
3286 spin_unlock(vmf->ptl);
3287 }
3288
3289 /* See comment in handle_pte_fault() */
3290 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3291 unlock_page(page);
3292 put_page(page);
3293 return true;
3294 }
3295
3296 return false;
3297 }
3298
next_uptodate_page(struct page * page,struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3299 static struct page *next_uptodate_page(struct page *page,
3300 struct address_space *mapping,
3301 struct xa_state *xas, pgoff_t end_pgoff)
3302 {
3303 unsigned long max_idx;
3304
3305 do {
3306 if (!page)
3307 return NULL;
3308 if (xas_retry(xas, page))
3309 continue;
3310 if (xa_is_value(page))
3311 continue;
3312 if (PageLocked(page))
3313 continue;
3314 if (!page_cache_get_speculative(page))
3315 continue;
3316 /* Has the page moved or been split? */
3317 if (unlikely(page != xas_reload(xas)))
3318 goto skip;
3319 if (!PageUptodate(page) || PageReadahead(page))
3320 goto skip;
3321 if (PageHWPoison(page))
3322 goto skip;
3323 if (!trylock_page(page))
3324 goto skip;
3325 if (page->mapping != mapping)
3326 goto unlock;
3327 if (!PageUptodate(page))
3328 goto unlock;
3329 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3330 if (xas->xa_index >= max_idx)
3331 goto unlock;
3332 return page;
3333 unlock:
3334 unlock_page(page);
3335 skip:
3336 put_page(page);
3337 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3338
3339 return NULL;
3340 }
3341
first_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3342 static inline struct page *first_map_page(struct address_space *mapping,
3343 struct xa_state *xas,
3344 pgoff_t end_pgoff)
3345 {
3346 return next_uptodate_page(xas_find(xas, end_pgoff),
3347 mapping, xas, end_pgoff);
3348 }
3349
next_map_page(struct address_space * mapping,struct xa_state * xas,pgoff_t end_pgoff)3350 static inline struct page *next_map_page(struct address_space *mapping,
3351 struct xa_state *xas,
3352 pgoff_t end_pgoff)
3353 {
3354 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3355 mapping, xas, end_pgoff);
3356 }
3357
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3358 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3359 pgoff_t start_pgoff, pgoff_t end_pgoff)
3360 {
3361 struct vm_area_struct *vma = vmf->vma;
3362 struct file *file = vma->vm_file;
3363 struct address_space *mapping = file->f_mapping;
3364 pgoff_t last_pgoff;
3365 unsigned long addr;
3366 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3367 struct page *head, *page;
3368 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3369 vm_fault_t ret = (vmf->flags & FAULT_FLAG_SPECULATIVE) ?
3370 VM_FAULT_RETRY : 0;
3371
3372 /* filemap_map_pages() is called within an rcu read lock already. */
3373 head = first_map_page(mapping, &xas, end_pgoff);
3374 if (!head)
3375 return ret;
3376
3377 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3378 filemap_map_pmd(vmf, head))
3379 return VM_FAULT_NOPAGE;
3380
3381 if (!pte_map_lock(vmf)) {
3382 unlock_page(head);
3383 put_page(head);
3384 return VM_FAULT_RETRY;
3385 }
3386 addr = vmf->address;
3387 last_pgoff = vmf->pgoff;
3388
3389 do {
3390 page = find_subpage(head, xas.xa_index);
3391 if (PageHWPoison(page))
3392 goto unlock;
3393
3394 if (mmap_miss > 0)
3395 mmap_miss--;
3396
3397 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3398 vmf->pte += xas.xa_index - last_pgoff;
3399 last_pgoff = xas.xa_index;
3400
3401 if (!pte_none(*vmf->pte))
3402 goto unlock;
3403
3404 /* We're about to handle the fault */
3405 if (vmf->address == addr)
3406 ret = VM_FAULT_NOPAGE;
3407
3408 do_set_pte(vmf, page, addr);
3409 /* no need to invalidate: a not-present page won't be cached */
3410 update_mmu_cache(vma, addr, vmf->pte);
3411 unlock_page(head);
3412 continue;
3413 unlock:
3414 unlock_page(head);
3415 put_page(head);
3416 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3417 pte_unmap_unlock(vmf->pte, vmf->ptl);
3418 vmf->pte = NULL;
3419 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3420 return ret;
3421 }
3422 EXPORT_SYMBOL(filemap_map_pages);
3423
filemap_page_mkwrite(struct vm_fault * vmf)3424 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3425 {
3426 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3427 struct page *page = vmf->page;
3428 vm_fault_t ret = VM_FAULT_LOCKED;
3429
3430 sb_start_pagefault(mapping->host->i_sb);
3431 file_update_time(vmf->vma->vm_file);
3432 lock_page(page);
3433 if (page->mapping != mapping) {
3434 unlock_page(page);
3435 ret = VM_FAULT_NOPAGE;
3436 goto out;
3437 }
3438 /*
3439 * We mark the page dirty already here so that when freeze is in
3440 * progress, we are guaranteed that writeback during freezing will
3441 * see the dirty page and writeprotect it again.
3442 */
3443 set_page_dirty(page);
3444 wait_for_stable_page(page);
3445 out:
3446 sb_end_pagefault(mapping->host->i_sb);
3447 return ret;
3448 }
3449
3450 const struct vm_operations_struct generic_file_vm_ops = {
3451 .fault = filemap_fault,
3452 .map_pages = filemap_map_pages,
3453 .page_mkwrite = filemap_page_mkwrite,
3454 .speculative = true,
3455 };
3456
3457 /* This is used for a general mmap of a disk file */
3458
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3459 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3460 {
3461 struct address_space *mapping = file->f_mapping;
3462
3463 if (!mapping->a_ops->readpage)
3464 return -ENOEXEC;
3465 file_accessed(file);
3466 vma->vm_ops = &generic_file_vm_ops;
3467 return 0;
3468 }
3469
3470 /*
3471 * This is for filesystems which do not implement ->writepage.
3472 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3473 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3474 {
3475 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3476 return -EINVAL;
3477 return generic_file_mmap(file, vma);
3478 }
3479 #else
filemap_page_mkwrite(struct vm_fault * vmf)3480 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3481 {
3482 return VM_FAULT_SIGBUS;
3483 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3484 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3485 {
3486 return -ENOSYS;
3487 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3488 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3489 {
3490 return -ENOSYS;
3491 }
3492 #endif /* CONFIG_MMU */
3493
3494 EXPORT_SYMBOL(filemap_page_mkwrite);
3495 EXPORT_SYMBOL(generic_file_mmap);
3496 EXPORT_SYMBOL(generic_file_readonly_mmap);
3497
wait_on_page_read(struct page * page)3498 static struct page *wait_on_page_read(struct page *page)
3499 {
3500 if (!IS_ERR(page)) {
3501 wait_on_page_locked(page);
3502 if (!PageUptodate(page)) {
3503 put_page(page);
3504 page = ERR_PTR(-EIO);
3505 }
3506 }
3507 return page;
3508 }
3509
do_read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data,gfp_t gfp)3510 static struct page *do_read_cache_page(struct address_space *mapping,
3511 pgoff_t index,
3512 int (*filler)(void *, struct page *),
3513 void *data,
3514 gfp_t gfp)
3515 {
3516 struct page *page;
3517 int err;
3518 repeat:
3519 page = find_get_page(mapping, index);
3520 if (!page) {
3521 page = __page_cache_alloc(gfp);
3522 if (!page)
3523 return ERR_PTR(-ENOMEM);
3524 err = add_to_page_cache_lru(page, mapping, index, gfp);
3525 if (unlikely(err)) {
3526 put_page(page);
3527 if (err == -EEXIST)
3528 goto repeat;
3529 /* Presumably ENOMEM for xarray node */
3530 return ERR_PTR(err);
3531 }
3532
3533 filler:
3534 if (filler)
3535 err = filler(data, page);
3536 else
3537 err = mapping->a_ops->readpage(data, page);
3538
3539 if (err < 0) {
3540 put_page(page);
3541 return ERR_PTR(err);
3542 }
3543
3544 page = wait_on_page_read(page);
3545 if (IS_ERR(page))
3546 return page;
3547 goto out;
3548 }
3549 if (PageUptodate(page))
3550 goto out;
3551
3552 /*
3553 * Page is not up to date and may be locked due to one of the following
3554 * case a: Page is being filled and the page lock is held
3555 * case b: Read/write error clearing the page uptodate status
3556 * case c: Truncation in progress (page locked)
3557 * case d: Reclaim in progress
3558 *
3559 * Case a, the page will be up to date when the page is unlocked.
3560 * There is no need to serialise on the page lock here as the page
3561 * is pinned so the lock gives no additional protection. Even if the
3562 * page is truncated, the data is still valid if PageUptodate as
3563 * it's a race vs truncate race.
3564 * Case b, the page will not be up to date
3565 * Case c, the page may be truncated but in itself, the data may still
3566 * be valid after IO completes as it's a read vs truncate race. The
3567 * operation must restart if the page is not uptodate on unlock but
3568 * otherwise serialising on page lock to stabilise the mapping gives
3569 * no additional guarantees to the caller as the page lock is
3570 * released before return.
3571 * Case d, similar to truncation. If reclaim holds the page lock, it
3572 * will be a race with remove_mapping that determines if the mapping
3573 * is valid on unlock but otherwise the data is valid and there is
3574 * no need to serialise with page lock.
3575 *
3576 * As the page lock gives no additional guarantee, we optimistically
3577 * wait on the page to be unlocked and check if it's up to date and
3578 * use the page if it is. Otherwise, the page lock is required to
3579 * distinguish between the different cases. The motivation is that we
3580 * avoid spurious serialisations and wakeups when multiple processes
3581 * wait on the same page for IO to complete.
3582 */
3583 wait_on_page_locked(page);
3584 if (PageUptodate(page))
3585 goto out;
3586
3587 /* Distinguish between all the cases under the safety of the lock */
3588 lock_page(page);
3589
3590 /* Case c or d, restart the operation */
3591 if (!page->mapping) {
3592 unlock_page(page);
3593 put_page(page);
3594 goto repeat;
3595 }
3596
3597 /* Someone else locked and filled the page in a very small window */
3598 if (PageUptodate(page)) {
3599 unlock_page(page);
3600 goto out;
3601 }
3602
3603 /*
3604 * A previous I/O error may have been due to temporary
3605 * failures.
3606 * Clear page error before actual read, PG_error will be
3607 * set again if read page fails.
3608 */
3609 ClearPageError(page);
3610 goto filler;
3611
3612 out:
3613 mark_page_accessed(page);
3614 return page;
3615 }
3616
3617 /**
3618 * read_cache_page - read into page cache, fill it if needed
3619 * @mapping: the page's address_space
3620 * @index: the page index
3621 * @filler: function to perform the read
3622 * @data: first arg to filler(data, page) function, often left as NULL
3623 *
3624 * Read into the page cache. If a page already exists, and PageUptodate() is
3625 * not set, try to fill the page and wait for it to become unlocked.
3626 *
3627 * If the page does not get brought uptodate, return -EIO.
3628 *
3629 * The function expects mapping->invalidate_lock to be already held.
3630 *
3631 * Return: up to date page on success, ERR_PTR() on failure.
3632 */
read_cache_page(struct address_space * mapping,pgoff_t index,int (* filler)(void *,struct page *),void * data)3633 struct page *read_cache_page(struct address_space *mapping,
3634 pgoff_t index,
3635 int (*filler)(void *, struct page *),
3636 void *data)
3637 {
3638 return do_read_cache_page(mapping, index, filler, data,
3639 mapping_gfp_mask(mapping));
3640 }
3641 EXPORT_SYMBOL(read_cache_page);
3642
3643 /**
3644 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3645 * @mapping: the page's address_space
3646 * @index: the page index
3647 * @gfp: the page allocator flags to use if allocating
3648 *
3649 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3650 * any new page allocations done using the specified allocation flags.
3651 *
3652 * If the page does not get brought uptodate, return -EIO.
3653 *
3654 * The function expects mapping->invalidate_lock to be already held.
3655 *
3656 * Return: up to date page on success, ERR_PTR() on failure.
3657 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3658 struct page *read_cache_page_gfp(struct address_space *mapping,
3659 pgoff_t index,
3660 gfp_t gfp)
3661 {
3662 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3663 }
3664 EXPORT_SYMBOL(read_cache_page_gfp);
3665
pagecache_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3666 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3667 loff_t pos, unsigned len, unsigned flags,
3668 struct page **pagep, void **fsdata)
3669 {
3670 const struct address_space_operations *aops = mapping->a_ops;
3671
3672 return aops->write_begin(file, mapping, pos, len, flags,
3673 pagep, fsdata);
3674 }
3675 EXPORT_SYMBOL(pagecache_write_begin);
3676
pagecache_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3677 int pagecache_write_end(struct file *file, struct address_space *mapping,
3678 loff_t pos, unsigned len, unsigned copied,
3679 struct page *page, void *fsdata)
3680 {
3681 const struct address_space_operations *aops = mapping->a_ops;
3682
3683 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3684 }
3685 EXPORT_SYMBOL(pagecache_write_end);
3686
3687 /*
3688 * Warn about a page cache invalidation failure during a direct I/O write.
3689 */
dio_warn_stale_pagecache(struct file * filp)3690 void dio_warn_stale_pagecache(struct file *filp)
3691 {
3692 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3693 char pathname[128];
3694 char *path;
3695
3696 errseq_set(&filp->f_mapping->wb_err, -EIO);
3697 if (__ratelimit(&_rs)) {
3698 path = file_path(filp, pathname, sizeof(pathname));
3699 if (IS_ERR(path))
3700 path = "(unknown)";
3701 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3702 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3703 current->comm);
3704 }
3705 }
3706
3707 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3708 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3709 {
3710 struct file *file = iocb->ki_filp;
3711 struct address_space *mapping = file->f_mapping;
3712 struct inode *inode = mapping->host;
3713 loff_t pos = iocb->ki_pos;
3714 ssize_t written;
3715 size_t write_len;
3716 pgoff_t end;
3717
3718 write_len = iov_iter_count(from);
3719 end = (pos + write_len - 1) >> PAGE_SHIFT;
3720
3721 if (iocb->ki_flags & IOCB_NOWAIT) {
3722 /* If there are pages to writeback, return */
3723 if (filemap_range_has_page(file->f_mapping, pos,
3724 pos + write_len - 1))
3725 return -EAGAIN;
3726 } else {
3727 written = filemap_write_and_wait_range(mapping, pos,
3728 pos + write_len - 1);
3729 if (written)
3730 goto out;
3731 }
3732
3733 /*
3734 * After a write we want buffered reads to be sure to go to disk to get
3735 * the new data. We invalidate clean cached page from the region we're
3736 * about to write. We do this *before* the write so that we can return
3737 * without clobbering -EIOCBQUEUED from ->direct_IO().
3738 */
3739 written = invalidate_inode_pages2_range(mapping,
3740 pos >> PAGE_SHIFT, end);
3741 /*
3742 * If a page can not be invalidated, return 0 to fall back
3743 * to buffered write.
3744 */
3745 if (written) {
3746 if (written == -EBUSY)
3747 return 0;
3748 goto out;
3749 }
3750
3751 written = mapping->a_ops->direct_IO(iocb, from);
3752
3753 /*
3754 * Finally, try again to invalidate clean pages which might have been
3755 * cached by non-direct readahead, or faulted in by get_user_pages()
3756 * if the source of the write was an mmap'ed region of the file
3757 * we're writing. Either one is a pretty crazy thing to do,
3758 * so we don't support it 100%. If this invalidation
3759 * fails, tough, the write still worked...
3760 *
3761 * Most of the time we do not need this since dio_complete() will do
3762 * the invalidation for us. However there are some file systems that
3763 * do not end up with dio_complete() being called, so let's not break
3764 * them by removing it completely.
3765 *
3766 * Noticeable example is a blkdev_direct_IO().
3767 *
3768 * Skip invalidation for async writes or if mapping has no pages.
3769 */
3770 if (written > 0 && mapping->nrpages &&
3771 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3772 dio_warn_stale_pagecache(file);
3773
3774 if (written > 0) {
3775 pos += written;
3776 write_len -= written;
3777 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3778 i_size_write(inode, pos);
3779 mark_inode_dirty(inode);
3780 }
3781 iocb->ki_pos = pos;
3782 }
3783 if (written != -EIOCBQUEUED)
3784 iov_iter_revert(from, write_len - iov_iter_count(from));
3785 out:
3786 return written;
3787 }
3788 EXPORT_SYMBOL(generic_file_direct_write);
3789
3790 /*
3791 * Find or create a page at the given pagecache position. Return the locked
3792 * page. This function is specifically for buffered writes.
3793 */
grab_cache_page_write_begin(struct address_space * mapping,pgoff_t index,unsigned flags)3794 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3795 pgoff_t index, unsigned flags)
3796 {
3797 struct page *page;
3798 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3799
3800 if (flags & AOP_FLAG_NOFS)
3801 fgp_flags |= FGP_NOFS;
3802
3803 page = pagecache_get_page(mapping, index, fgp_flags,
3804 mapping_gfp_mask(mapping));
3805 if (page)
3806 wait_for_stable_page(page);
3807
3808 return page;
3809 }
3810 EXPORT_SYMBOL(grab_cache_page_write_begin);
3811
generic_perform_write(struct file * file,struct iov_iter * i,loff_t pos)3812 ssize_t generic_perform_write(struct file *file,
3813 struct iov_iter *i, loff_t pos)
3814 {
3815 struct address_space *mapping = file->f_mapping;
3816 const struct address_space_operations *a_ops = mapping->a_ops;
3817 long status = 0;
3818 ssize_t written = 0;
3819 unsigned int flags = 0;
3820
3821 do {
3822 struct page *page;
3823 unsigned long offset; /* Offset into pagecache page */
3824 unsigned long bytes; /* Bytes to write to page */
3825 size_t copied; /* Bytes copied from user */
3826 void *fsdata = NULL;
3827
3828 offset = (pos & (PAGE_SIZE - 1));
3829 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3830 iov_iter_count(i));
3831
3832 again:
3833 /*
3834 * Bring in the user page that we will copy from _first_.
3835 * Otherwise there's a nasty deadlock on copying from the
3836 * same page as we're writing to, without it being marked
3837 * up-to-date.
3838 */
3839 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
3840 status = -EFAULT;
3841 break;
3842 }
3843
3844 if (fatal_signal_pending(current)) {
3845 status = -EINTR;
3846 break;
3847 }
3848
3849 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3850 &page, &fsdata);
3851 if (unlikely(status < 0))
3852 break;
3853
3854 if (mapping_writably_mapped(mapping))
3855 flush_dcache_page(page);
3856
3857 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3858 flush_dcache_page(page);
3859
3860 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3861 page, fsdata);
3862 if (unlikely(status != copied)) {
3863 iov_iter_revert(i, copied - max(status, 0L));
3864 if (unlikely(status < 0))
3865 break;
3866 }
3867 cond_resched();
3868
3869 if (unlikely(status == 0)) {
3870 /*
3871 * A short copy made ->write_end() reject the
3872 * thing entirely. Might be memory poisoning
3873 * halfway through, might be a race with munmap,
3874 * might be severe memory pressure.
3875 */
3876 if (copied)
3877 bytes = copied;
3878 goto again;
3879 }
3880 pos += status;
3881 written += status;
3882
3883 balance_dirty_pages_ratelimited(mapping);
3884 } while (iov_iter_count(i));
3885
3886 return written ? written : status;
3887 }
3888 EXPORT_SYMBOL(generic_perform_write);
3889
3890 /**
3891 * __generic_file_write_iter - write data to a file
3892 * @iocb: IO state structure (file, offset, etc.)
3893 * @from: iov_iter with data to write
3894 *
3895 * This function does all the work needed for actually writing data to a
3896 * file. It does all basic checks, removes SUID from the file, updates
3897 * modification times and calls proper subroutines depending on whether we
3898 * do direct IO or a standard buffered write.
3899 *
3900 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3901 * object which does not need locking at all.
3902 *
3903 * This function does *not* take care of syncing data in case of O_SYNC write.
3904 * A caller has to handle it. This is mainly due to the fact that we want to
3905 * avoid syncing under i_rwsem.
3906 *
3907 * Return:
3908 * * number of bytes written, even for truncated writes
3909 * * negative error code if no data has been written at all
3910 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3911 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3912 {
3913 struct file *file = iocb->ki_filp;
3914 struct address_space *mapping = file->f_mapping;
3915 struct inode *inode = mapping->host;
3916 ssize_t written = 0;
3917 ssize_t err;
3918 ssize_t status;
3919
3920 /* We can write back this queue in page reclaim */
3921 current->backing_dev_info = inode_to_bdi(inode);
3922 err = file_remove_privs(file);
3923 if (err)
3924 goto out;
3925
3926 err = file_update_time(file);
3927 if (err)
3928 goto out;
3929
3930 if (iocb->ki_flags & IOCB_DIRECT) {
3931 loff_t pos, endbyte;
3932
3933 written = generic_file_direct_write(iocb, from);
3934 /*
3935 * If the write stopped short of completing, fall back to
3936 * buffered writes. Some filesystems do this for writes to
3937 * holes, for example. For DAX files, a buffered write will
3938 * not succeed (even if it did, DAX does not handle dirty
3939 * page-cache pages correctly).
3940 */
3941 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3942 goto out;
3943
3944 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3945 /*
3946 * If generic_perform_write() returned a synchronous error
3947 * then we want to return the number of bytes which were
3948 * direct-written, or the error code if that was zero. Note
3949 * that this differs from normal direct-io semantics, which
3950 * will return -EFOO even if some bytes were written.
3951 */
3952 if (unlikely(status < 0)) {
3953 err = status;
3954 goto out;
3955 }
3956 /*
3957 * We need to ensure that the page cache pages are written to
3958 * disk and invalidated to preserve the expected O_DIRECT
3959 * semantics.
3960 */
3961 endbyte = pos + status - 1;
3962 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3963 if (err == 0) {
3964 iocb->ki_pos = endbyte + 1;
3965 written += status;
3966 invalidate_mapping_pages(mapping,
3967 pos >> PAGE_SHIFT,
3968 endbyte >> PAGE_SHIFT);
3969 } else {
3970 /*
3971 * We don't know how much we wrote, so just return
3972 * the number of bytes which were direct-written
3973 */
3974 }
3975 } else {
3976 written = generic_perform_write(file, from, iocb->ki_pos);
3977 if (likely(written > 0))
3978 iocb->ki_pos += written;
3979 }
3980 out:
3981 current->backing_dev_info = NULL;
3982 return written ? written : err;
3983 }
3984 EXPORT_SYMBOL(__generic_file_write_iter);
3985
3986 /**
3987 * generic_file_write_iter - write data to a file
3988 * @iocb: IO state structure
3989 * @from: iov_iter with data to write
3990 *
3991 * This is a wrapper around __generic_file_write_iter() to be used by most
3992 * filesystems. It takes care of syncing the file in case of O_SYNC file
3993 * and acquires i_rwsem as needed.
3994 * Return:
3995 * * negative error code if no data has been written at all of
3996 * vfs_fsync_range() failed for a synchronous write
3997 * * number of bytes written, even for truncated writes
3998 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3999 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4000 {
4001 struct file *file = iocb->ki_filp;
4002 struct inode *inode = file->f_mapping->host;
4003 ssize_t ret;
4004
4005 inode_lock(inode);
4006 ret = generic_write_checks(iocb, from);
4007 if (ret > 0)
4008 ret = __generic_file_write_iter(iocb, from);
4009 inode_unlock(inode);
4010
4011 if (ret > 0)
4012 ret = generic_write_sync(iocb, ret);
4013 return ret;
4014 }
4015 EXPORT_SYMBOL(generic_file_write_iter);
4016
4017 /**
4018 * try_to_release_page() - release old fs-specific metadata on a page
4019 *
4020 * @page: the page which the kernel is trying to free
4021 * @gfp_mask: memory allocation flags (and I/O mode)
4022 *
4023 * The address_space is to try to release any data against the page
4024 * (presumably at page->private).
4025 *
4026 * This may also be called if PG_fscache is set on a page, indicating that the
4027 * page is known to the local caching routines.
4028 *
4029 * The @gfp_mask argument specifies whether I/O may be performed to release
4030 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
4031 *
4032 * Return: %1 if the release was successful, otherwise return zero.
4033 */
try_to_release_page(struct page * page,gfp_t gfp_mask)4034 int try_to_release_page(struct page *page, gfp_t gfp_mask)
4035 {
4036 struct address_space * const mapping = page->mapping;
4037
4038 BUG_ON(!PageLocked(page));
4039 if (PageWriteback(page))
4040 return 0;
4041
4042 if (mapping && mapping->a_ops->releasepage)
4043 return mapping->a_ops->releasepage(page, gfp_mask);
4044 return try_to_free_buffers(page);
4045 }
4046
4047 EXPORT_SYMBOL(try_to_release_page);
4048