1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/mm_inline.h>
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_rwsem making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
shmem_default_max_inodes(void)132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
141 struct page **pagep, enum sgp_type sgp,
142 gfp_t gfp, struct vm_area_struct *vma,
143 vm_fault_t *fault_type);
144 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
145 struct page **pagep, enum sgp_type sgp,
146 gfp_t gfp, struct vm_area_struct *vma,
147 struct vm_fault *vmf, vm_fault_t *fault_type);
148
shmem_getpage(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp)149 int shmem_getpage(struct inode *inode, pgoff_t index,
150 struct page **pagep, enum sgp_type sgp)
151 {
152 return shmem_getpage_gfp(inode, index, pagep, sgp,
153 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
154 }
155
SHMEM_SB(struct super_block * sb)156 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
157 {
158 return sb->s_fs_info;
159 }
160
161 /*
162 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
163 * for shared memory and for shared anonymous (/dev/zero) mappings
164 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
165 * consistent with the pre-accounting of private mappings ...
166 */
shmem_acct_size(unsigned long flags,loff_t size)167 static inline int shmem_acct_size(unsigned long flags, loff_t size)
168 {
169 return (flags & VM_NORESERVE) ?
170 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
171 }
172
shmem_unacct_size(unsigned long flags,loff_t size)173 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
174 {
175 if (!(flags & VM_NORESERVE))
176 vm_unacct_memory(VM_ACCT(size));
177 }
178
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)179 static inline int shmem_reacct_size(unsigned long flags,
180 loff_t oldsize, loff_t newsize)
181 {
182 if (!(flags & VM_NORESERVE)) {
183 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
184 return security_vm_enough_memory_mm(current->mm,
185 VM_ACCT(newsize) - VM_ACCT(oldsize));
186 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
187 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
188 }
189 return 0;
190 }
191
192 /*
193 * ... whereas tmpfs objects are accounted incrementally as
194 * pages are allocated, in order to allow large sparse files.
195 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
196 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
197 */
shmem_acct_block(unsigned long flags,long pages)198 static inline int shmem_acct_block(unsigned long flags, long pages)
199 {
200 if (!(flags & VM_NORESERVE))
201 return 0;
202
203 return security_vm_enough_memory_mm(current->mm,
204 pages * VM_ACCT(PAGE_SIZE));
205 }
206
shmem_unacct_blocks(unsigned long flags,long pages)207 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
208 {
209 if (flags & VM_NORESERVE)
210 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
211 }
212
shmem_inode_acct_block(struct inode * inode,long pages)213 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
214 {
215 struct shmem_inode_info *info = SHMEM_I(inode);
216 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
217
218 if (shmem_acct_block(info->flags, pages))
219 return false;
220
221 if (sbinfo->max_blocks) {
222 if (percpu_counter_compare(&sbinfo->used_blocks,
223 sbinfo->max_blocks - pages) > 0)
224 goto unacct;
225 percpu_counter_add(&sbinfo->used_blocks, pages);
226 }
227
228 return true;
229
230 unacct:
231 shmem_unacct_blocks(info->flags, pages);
232 return false;
233 }
234
shmem_inode_unacct_blocks(struct inode * inode,long pages)235 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
236 {
237 struct shmem_inode_info *info = SHMEM_I(inode);
238 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
239
240 if (sbinfo->max_blocks)
241 percpu_counter_sub(&sbinfo->used_blocks, pages);
242 shmem_unacct_blocks(info->flags, pages);
243 }
244
245 static const struct super_operations shmem_ops;
246 const struct address_space_operations shmem_aops;
247 static const struct file_operations shmem_file_operations;
248 static const struct inode_operations shmem_inode_operations;
249 static const struct inode_operations shmem_dir_inode_operations;
250 static const struct inode_operations shmem_special_inode_operations;
251 static const struct vm_operations_struct shmem_vm_ops;
252 static struct file_system_type shmem_fs_type;
253
vma_is_shmem(struct vm_area_struct * vma)254 bool vma_is_shmem(struct vm_area_struct *vma)
255 {
256 return vma->vm_ops == &shmem_vm_ops;
257 }
258
259 static LIST_HEAD(shmem_swaplist);
260 static DEFINE_MUTEX(shmem_swaplist_mutex);
261
262 /*
263 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
264 * produces a novel ino for the newly allocated inode.
265 *
266 * It may also be called when making a hard link to permit the space needed by
267 * each dentry. However, in that case, no new inode number is needed since that
268 * internally draws from another pool of inode numbers (currently global
269 * get_next_ino()). This case is indicated by passing NULL as inop.
270 */
271 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)272 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
273 {
274 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
275 ino_t ino;
276
277 if (!(sb->s_flags & SB_KERNMOUNT)) {
278 raw_spin_lock(&sbinfo->stat_lock);
279 if (sbinfo->max_inodes) {
280 if (!sbinfo->free_inodes) {
281 raw_spin_unlock(&sbinfo->stat_lock);
282 return -ENOSPC;
283 }
284 sbinfo->free_inodes--;
285 }
286 if (inop) {
287 ino = sbinfo->next_ino++;
288 if (unlikely(is_zero_ino(ino)))
289 ino = sbinfo->next_ino++;
290 if (unlikely(!sbinfo->full_inums &&
291 ino > UINT_MAX)) {
292 /*
293 * Emulate get_next_ino uint wraparound for
294 * compatibility
295 */
296 if (IS_ENABLED(CONFIG_64BIT))
297 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
298 __func__, MINOR(sb->s_dev));
299 sbinfo->next_ino = 1;
300 ino = sbinfo->next_ino++;
301 }
302 *inop = ino;
303 }
304 raw_spin_unlock(&sbinfo->stat_lock);
305 } else if (inop) {
306 /*
307 * __shmem_file_setup, one of our callers, is lock-free: it
308 * doesn't hold stat_lock in shmem_reserve_inode since
309 * max_inodes is always 0, and is called from potentially
310 * unknown contexts. As such, use a per-cpu batched allocator
311 * which doesn't require the per-sb stat_lock unless we are at
312 * the batch boundary.
313 *
314 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
315 * shmem mounts are not exposed to userspace, so we don't need
316 * to worry about things like glibc compatibility.
317 */
318 ino_t *next_ino;
319
320 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321 ino = *next_ino;
322 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323 raw_spin_lock(&sbinfo->stat_lock);
324 ino = sbinfo->next_ino;
325 sbinfo->next_ino += SHMEM_INO_BATCH;
326 raw_spin_unlock(&sbinfo->stat_lock);
327 if (unlikely(is_zero_ino(ino)))
328 ino++;
329 }
330 *inop = ino;
331 *next_ino = ++ino;
332 put_cpu();
333 }
334
335 return 0;
336 }
337
shmem_free_inode(struct super_block * sb)338 static void shmem_free_inode(struct super_block *sb)
339 {
340 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341 if (sbinfo->max_inodes) {
342 raw_spin_lock(&sbinfo->stat_lock);
343 sbinfo->free_inodes++;
344 raw_spin_unlock(&sbinfo->stat_lock);
345 }
346 }
347
348 /**
349 * shmem_recalc_inode - recalculate the block usage of an inode
350 * @inode: inode to recalc
351 *
352 * We have to calculate the free blocks since the mm can drop
353 * undirtied hole pages behind our back.
354 *
355 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
356 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357 *
358 * It has to be called with the spinlock held.
359 */
shmem_recalc_inode(struct inode * inode)360 static void shmem_recalc_inode(struct inode *inode)
361 {
362 struct shmem_inode_info *info = SHMEM_I(inode);
363 long freed;
364
365 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366 if (freed > 0) {
367 info->alloced -= freed;
368 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369 shmem_inode_unacct_blocks(inode, freed);
370 }
371 }
372
shmem_charge(struct inode * inode,long pages)373 bool shmem_charge(struct inode *inode, long pages)
374 {
375 struct shmem_inode_info *info = SHMEM_I(inode);
376 unsigned long flags;
377
378 if (!shmem_inode_acct_block(inode, pages))
379 return false;
380
381 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382 inode->i_mapping->nrpages += pages;
383
384 spin_lock_irqsave(&info->lock, flags);
385 info->alloced += pages;
386 inode->i_blocks += pages * BLOCKS_PER_PAGE;
387 shmem_recalc_inode(inode);
388 spin_unlock_irqrestore(&info->lock, flags);
389
390 return true;
391 }
392
shmem_uncharge(struct inode * inode,long pages)393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395 struct shmem_inode_info *info = SHMEM_I(inode);
396 unsigned long flags;
397
398 /* nrpages adjustment done by __delete_from_page_cache() or caller */
399
400 spin_lock_irqsave(&info->lock, flags);
401 info->alloced -= pages;
402 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403 shmem_recalc_inode(inode);
404 spin_unlock_irqrestore(&info->lock, flags);
405
406 shmem_inode_unacct_blocks(inode, pages);
407 }
408
409 /*
410 * Replace item expected in xarray by a new item, while holding xa_lock.
411 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)412 static int shmem_replace_entry(struct address_space *mapping,
413 pgoff_t index, void *expected, void *replacement)
414 {
415 XA_STATE(xas, &mapping->i_pages, index);
416 void *item;
417
418 VM_BUG_ON(!expected);
419 VM_BUG_ON(!replacement);
420 item = xas_load(&xas);
421 if (item != expected)
422 return -ENOENT;
423 xas_store(&xas, replacement);
424 return 0;
425 }
426
427 /*
428 * Sometimes, before we decide whether to proceed or to fail, we must check
429 * that an entry was not already brought back from swap by a racing thread.
430 *
431 * Checking page is not enough: by the time a SwapCache page is locked, it
432 * might be reused, and again be SwapCache, using the same swap as before.
433 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)434 static bool shmem_confirm_swap(struct address_space *mapping,
435 pgoff_t index, swp_entry_t swap)
436 {
437 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439
440 /*
441 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442 *
443 * SHMEM_HUGE_NEVER:
444 * disables huge pages for the mount;
445 * SHMEM_HUGE_ALWAYS:
446 * enables huge pages for the mount;
447 * SHMEM_HUGE_WITHIN_SIZE:
448 * only allocate huge pages if the page will be fully within i_size,
449 * also respect fadvise()/madvise() hints;
450 * SHMEM_HUGE_ADVISE:
451 * only allocate huge pages if requested with fadvise()/madvise();
452 */
453
454 #define SHMEM_HUGE_NEVER 0
455 #define SHMEM_HUGE_ALWAYS 1
456 #define SHMEM_HUGE_WITHIN_SIZE 2
457 #define SHMEM_HUGE_ADVISE 3
458
459 /*
460 * Special values.
461 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462 *
463 * SHMEM_HUGE_DENY:
464 * disables huge on shm_mnt and all mounts, for emergency use;
465 * SHMEM_HUGE_FORCE:
466 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467 *
468 */
469 #define SHMEM_HUGE_DENY (-1)
470 #define SHMEM_HUGE_FORCE (-2)
471
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474
475 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
476
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)477 bool shmem_is_huge(struct vm_area_struct *vma,
478 struct inode *inode, pgoff_t index)
479 {
480 loff_t i_size;
481
482 if (shmem_huge == SHMEM_HUGE_DENY)
483 return false;
484 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486 return false;
487 if (shmem_huge == SHMEM_HUGE_FORCE)
488 return true;
489
490 switch (SHMEM_SB(inode->i_sb)->huge) {
491 case SHMEM_HUGE_ALWAYS:
492 return true;
493 case SHMEM_HUGE_WITHIN_SIZE:
494 index = round_up(index + 1, HPAGE_PMD_NR);
495 i_size = round_up(i_size_read(inode), PAGE_SIZE);
496 if (i_size >> PAGE_SHIFT >= index)
497 return true;
498 fallthrough;
499 case SHMEM_HUGE_ADVISE:
500 if (vma && (vma->vm_flags & VM_HUGEPAGE))
501 return true;
502 fallthrough;
503 default:
504 return false;
505 }
506 }
507
508 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)509 static int shmem_parse_huge(const char *str)
510 {
511 if (!strcmp(str, "never"))
512 return SHMEM_HUGE_NEVER;
513 if (!strcmp(str, "always"))
514 return SHMEM_HUGE_ALWAYS;
515 if (!strcmp(str, "within_size"))
516 return SHMEM_HUGE_WITHIN_SIZE;
517 if (!strcmp(str, "advise"))
518 return SHMEM_HUGE_ADVISE;
519 if (!strcmp(str, "deny"))
520 return SHMEM_HUGE_DENY;
521 if (!strcmp(str, "force"))
522 return SHMEM_HUGE_FORCE;
523 return -EINVAL;
524 }
525 #endif
526
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)528 static const char *shmem_format_huge(int huge)
529 {
530 switch (huge) {
531 case SHMEM_HUGE_NEVER:
532 return "never";
533 case SHMEM_HUGE_ALWAYS:
534 return "always";
535 case SHMEM_HUGE_WITHIN_SIZE:
536 return "within_size";
537 case SHMEM_HUGE_ADVISE:
538 return "advise";
539 case SHMEM_HUGE_DENY:
540 return "deny";
541 case SHMEM_HUGE_FORCE:
542 return "force";
543 default:
544 VM_BUG_ON(1);
545 return "bad_val";
546 }
547 }
548 #endif
549
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551 struct shrink_control *sc, unsigned long nr_to_split)
552 {
553 LIST_HEAD(list), *pos, *next;
554 LIST_HEAD(to_remove);
555 struct inode *inode;
556 struct shmem_inode_info *info;
557 struct page *page;
558 unsigned long batch = sc ? sc->nr_to_scan : 128;
559 int split = 0;
560
561 if (list_empty(&sbinfo->shrinklist))
562 return SHRINK_STOP;
563
564 spin_lock(&sbinfo->shrinklist_lock);
565 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566 info = list_entry(pos, struct shmem_inode_info, shrinklist);
567
568 /* pin the inode */
569 inode = igrab(&info->vfs_inode);
570
571 /* inode is about to be evicted */
572 if (!inode) {
573 list_del_init(&info->shrinklist);
574 goto next;
575 }
576
577 /* Check if there's anything to gain */
578 if (round_up(inode->i_size, PAGE_SIZE) ==
579 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580 list_move(&info->shrinklist, &to_remove);
581 goto next;
582 }
583
584 list_move(&info->shrinklist, &list);
585 next:
586 sbinfo->shrinklist_len--;
587 if (!--batch)
588 break;
589 }
590 spin_unlock(&sbinfo->shrinklist_lock);
591
592 list_for_each_safe(pos, next, &to_remove) {
593 info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 inode = &info->vfs_inode;
595 list_del_init(&info->shrinklist);
596 iput(inode);
597 }
598
599 list_for_each_safe(pos, next, &list) {
600 int ret;
601
602 info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 inode = &info->vfs_inode;
604
605 if (nr_to_split && split >= nr_to_split)
606 goto move_back;
607
608 page = find_get_page(inode->i_mapping,
609 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610 if (!page)
611 goto drop;
612
613 /* No huge page at the end of the file: nothing to split */
614 if (!PageTransHuge(page)) {
615 put_page(page);
616 goto drop;
617 }
618
619 /*
620 * Move the inode on the list back to shrinklist if we failed
621 * to lock the page at this time.
622 *
623 * Waiting for the lock may lead to deadlock in the
624 * reclaim path.
625 */
626 if (!trylock_page(page)) {
627 put_page(page);
628 goto move_back;
629 }
630
631 ret = split_huge_page(page);
632 unlock_page(page);
633 put_page(page);
634
635 /* If split failed move the inode on the list back to shrinklist */
636 if (ret)
637 goto move_back;
638
639 split++;
640 drop:
641 list_del_init(&info->shrinklist);
642 goto put;
643 move_back:
644 /*
645 * Make sure the inode is either on the global list or deleted
646 * from any local list before iput() since it could be deleted
647 * in another thread once we put the inode (then the local list
648 * is corrupted).
649 */
650 spin_lock(&sbinfo->shrinklist_lock);
651 list_move(&info->shrinklist, &sbinfo->shrinklist);
652 sbinfo->shrinklist_len++;
653 spin_unlock(&sbinfo->shrinklist_lock);
654 put:
655 iput(inode);
656 }
657
658 return split;
659 }
660
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)661 static long shmem_unused_huge_scan(struct super_block *sb,
662 struct shrink_control *sc)
663 {
664 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
665
666 if (!READ_ONCE(sbinfo->shrinklist_len))
667 return SHRINK_STOP;
668
669 return shmem_unused_huge_shrink(sbinfo, sc, 0);
670 }
671
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)672 static long shmem_unused_huge_count(struct super_block *sb,
673 struct shrink_control *sc)
674 {
675 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
676 return READ_ONCE(sbinfo->shrinklist_len);
677 }
678 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
679
680 #define shmem_huge SHMEM_HUGE_DENY
681
shmem_is_huge(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)682 bool shmem_is_huge(struct vm_area_struct *vma,
683 struct inode *inode, pgoff_t index)
684 {
685 return false;
686 }
687
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)688 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
689 struct shrink_control *sc, unsigned long nr_to_split)
690 {
691 return 0;
692 }
693 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
694
695 /*
696 * Like add_to_page_cache_locked, but error if expected item has gone.
697 */
shmem_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)698 static int shmem_add_to_page_cache(struct page *page,
699 struct address_space *mapping,
700 pgoff_t index, void *expected, gfp_t gfp,
701 struct mm_struct *charge_mm)
702 {
703 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
704 unsigned long i = 0;
705 unsigned long nr = compound_nr(page);
706 int error;
707
708 VM_BUG_ON_PAGE(PageTail(page), page);
709 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
710 VM_BUG_ON_PAGE(!PageLocked(page), page);
711 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
712 VM_BUG_ON(expected && PageTransHuge(page));
713
714 page_ref_add(page, nr);
715 page->mapping = mapping;
716 page->index = index;
717
718 if (!PageSwapCache(page)) {
719 error = mem_cgroup_charge(page, charge_mm, gfp);
720 if (error) {
721 if (PageTransHuge(page)) {
722 count_vm_event(THP_FILE_FALLBACK);
723 count_vm_event(THP_FILE_FALLBACK_CHARGE);
724 }
725 goto error;
726 }
727 }
728 cgroup_throttle_swaprate(page, gfp);
729
730 do {
731 void *entry;
732 xas_lock_irq(&xas);
733 entry = xas_find_conflict(&xas);
734 if (entry != expected)
735 xas_set_err(&xas, -EEXIST);
736 xas_create_range(&xas);
737 if (xas_error(&xas))
738 goto unlock;
739 next:
740 xas_store(&xas, page);
741 if (++i < nr) {
742 xas_next(&xas);
743 goto next;
744 }
745 if (PageTransHuge(page)) {
746 count_vm_event(THP_FILE_ALLOC);
747 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
748 }
749 mapping->nrpages += nr;
750 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
751 __mod_lruvec_page_state(page, NR_SHMEM, nr);
752 unlock:
753 xas_unlock_irq(&xas);
754 } while (xas_nomem(&xas, gfp));
755
756 if (xas_error(&xas)) {
757 error = xas_error(&xas);
758 goto error;
759 }
760
761 return 0;
762 error:
763 page->mapping = NULL;
764 page_ref_sub(page, nr);
765 return error;
766 }
767
768 /*
769 * Like delete_from_page_cache, but substitutes swap for page.
770 */
shmem_delete_from_page_cache(struct page * page,void * radswap)771 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
772 {
773 struct address_space *mapping = page->mapping;
774 int error;
775
776 VM_BUG_ON_PAGE(PageCompound(page), page);
777
778 xa_lock_irq(&mapping->i_pages);
779 error = shmem_replace_entry(mapping, page->index, page, radswap);
780 page->mapping = NULL;
781 mapping->nrpages--;
782 __dec_lruvec_page_state(page, NR_FILE_PAGES);
783 __dec_lruvec_page_state(page, NR_SHMEM);
784 xa_unlock_irq(&mapping->i_pages);
785 put_page(page);
786 BUG_ON(error);
787 }
788
789 /*
790 * Remove swap entry from page cache, free the swap and its page cache.
791 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)792 static int shmem_free_swap(struct address_space *mapping,
793 pgoff_t index, void *radswap)
794 {
795 void *old;
796
797 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
798 if (old != radswap)
799 return -ENOENT;
800 free_swap_and_cache(radix_to_swp_entry(radswap));
801 return 0;
802 }
803
804 /*
805 * Determine (in bytes) how many of the shmem object's pages mapped by the
806 * given offsets are swapped out.
807 *
808 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
809 * as long as the inode doesn't go away and racy results are not a problem.
810 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)811 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
812 pgoff_t start, pgoff_t end)
813 {
814 XA_STATE(xas, &mapping->i_pages, start);
815 struct page *page;
816 unsigned long swapped = 0;
817
818 rcu_read_lock();
819 xas_for_each(&xas, page, end - 1) {
820 if (xas_retry(&xas, page))
821 continue;
822 if (xa_is_value(page))
823 swapped++;
824
825 if (need_resched()) {
826 xas_pause(&xas);
827 cond_resched_rcu();
828 }
829 }
830
831 rcu_read_unlock();
832
833 return swapped << PAGE_SHIFT;
834 }
835
836 /*
837 * Determine (in bytes) how many of the shmem object's pages mapped by the
838 * given vma is swapped out.
839 *
840 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
841 * as long as the inode doesn't go away and racy results are not a problem.
842 */
shmem_swap_usage(struct vm_area_struct * vma)843 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
844 {
845 struct inode *inode = file_inode(vma->vm_file);
846 struct shmem_inode_info *info = SHMEM_I(inode);
847 struct address_space *mapping = inode->i_mapping;
848 unsigned long swapped;
849
850 /* Be careful as we don't hold info->lock */
851 swapped = READ_ONCE(info->swapped);
852
853 /*
854 * The easier cases are when the shmem object has nothing in swap, or
855 * the vma maps it whole. Then we can simply use the stats that we
856 * already track.
857 */
858 if (!swapped)
859 return 0;
860
861 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
862 return swapped << PAGE_SHIFT;
863
864 /* Here comes the more involved part */
865 return shmem_partial_swap_usage(mapping,
866 linear_page_index(vma, vma->vm_start),
867 linear_page_index(vma, vma->vm_end));
868 }
869
870 /*
871 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
872 */
shmem_unlock_mapping(struct address_space * mapping)873 void shmem_unlock_mapping(struct address_space *mapping)
874 {
875 struct pagevec pvec;
876 pgoff_t index = 0;
877
878 pagevec_init(&pvec);
879 /*
880 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
881 */
882 while (!mapping_unevictable(mapping)) {
883 if (!pagevec_lookup(&pvec, mapping, &index))
884 break;
885 check_move_unevictable_pages(&pvec);
886 pagevec_release(&pvec);
887 cond_resched();
888 }
889 }
890
891 /*
892 * Check whether a hole-punch or truncation needs to split a huge page,
893 * returning true if no split was required, or the split has been successful.
894 *
895 * Eviction (or truncation to 0 size) should never need to split a huge page;
896 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
897 * head, and then succeeded to trylock on tail.
898 *
899 * A split can only succeed when there are no additional references on the
900 * huge page: so the split below relies upon find_get_entries() having stopped
901 * when it found a subpage of the huge page, without getting further references.
902 */
shmem_punch_compound(struct page * page,pgoff_t start,pgoff_t end)903 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
904 {
905 if (!PageTransCompound(page))
906 return true;
907
908 /* Just proceed to delete a huge page wholly within the range punched */
909 if (PageHead(page) &&
910 page->index >= start && page->index + HPAGE_PMD_NR <= end)
911 return true;
912
913 /* Try to split huge page, so we can truly punch the hole or truncate */
914 return split_huge_page(page) >= 0;
915 }
916
917 /*
918 * Remove range of pages and swap entries from page cache, and free them.
919 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
920 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)921 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
922 bool unfalloc)
923 {
924 struct address_space *mapping = inode->i_mapping;
925 struct shmem_inode_info *info = SHMEM_I(inode);
926 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
927 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
928 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
929 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
930 struct pagevec pvec;
931 pgoff_t indices[PAGEVEC_SIZE];
932 long nr_swaps_freed = 0;
933 pgoff_t index;
934 int i;
935
936 if (lend == -1)
937 end = -1; /* unsigned, so actually very big */
938
939 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
940 info->fallocend = start;
941
942 pagevec_init(&pvec);
943 index = start;
944 while (index < end && find_lock_entries(mapping, index, end - 1,
945 &pvec, indices)) {
946 for (i = 0; i < pagevec_count(&pvec); i++) {
947 struct page *page = pvec.pages[i];
948
949 index = indices[i];
950
951 if (xa_is_value(page)) {
952 if (unfalloc)
953 continue;
954 nr_swaps_freed += !shmem_free_swap(mapping,
955 index, page);
956 continue;
957 }
958 index += thp_nr_pages(page) - 1;
959
960 if (!unfalloc || !PageUptodate(page))
961 truncate_inode_page(mapping, page);
962 unlock_page(page);
963 }
964 pagevec_remove_exceptionals(&pvec);
965 pagevec_release(&pvec);
966 cond_resched();
967 index++;
968 }
969
970 if (partial_start) {
971 struct page *page = NULL;
972 shmem_getpage(inode, start - 1, &page, SGP_READ);
973 if (page) {
974 unsigned int top = PAGE_SIZE;
975 if (start > end) {
976 top = partial_end;
977 partial_end = 0;
978 }
979 zero_user_segment(page, partial_start, top);
980 set_page_dirty(page);
981 unlock_page(page);
982 put_page(page);
983 }
984 }
985 if (partial_end) {
986 struct page *page = NULL;
987 shmem_getpage(inode, end, &page, SGP_READ);
988 if (page) {
989 zero_user_segment(page, 0, partial_end);
990 set_page_dirty(page);
991 unlock_page(page);
992 put_page(page);
993 }
994 }
995 if (start >= end)
996 return;
997
998 index = start;
999 while (index < end) {
1000 cond_resched();
1001
1002 if (!find_get_entries(mapping, index, end - 1, &pvec,
1003 indices)) {
1004 /* If all gone or hole-punch or unfalloc, we're done */
1005 if (index == start || end != -1)
1006 break;
1007 /* But if truncating, restart to make sure all gone */
1008 index = start;
1009 continue;
1010 }
1011 for (i = 0; i < pagevec_count(&pvec); i++) {
1012 struct page *page = pvec.pages[i];
1013
1014 index = indices[i];
1015 if (xa_is_value(page)) {
1016 if (unfalloc)
1017 continue;
1018 if (shmem_free_swap(mapping, index, page)) {
1019 /* Swap was replaced by page: retry */
1020 index--;
1021 break;
1022 }
1023 nr_swaps_freed++;
1024 continue;
1025 }
1026
1027 lock_page(page);
1028
1029 if (!unfalloc || !PageUptodate(page)) {
1030 if (page_mapping(page) != mapping) {
1031 /* Page was replaced by swap: retry */
1032 unlock_page(page);
1033 index--;
1034 break;
1035 }
1036 VM_BUG_ON_PAGE(PageWriteback(page), page);
1037 if (shmem_punch_compound(page, start, end))
1038 truncate_inode_page(mapping, page);
1039 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1040 /* Wipe the page and don't get stuck */
1041 clear_highpage(page);
1042 flush_dcache_page(page);
1043 set_page_dirty(page);
1044 if (index <
1045 round_up(start, HPAGE_PMD_NR))
1046 start = index + 1;
1047 }
1048 }
1049 unlock_page(page);
1050 }
1051 pagevec_remove_exceptionals(&pvec);
1052 pagevec_release(&pvec);
1053 index++;
1054 }
1055
1056 spin_lock_irq(&info->lock);
1057 info->swapped -= nr_swaps_freed;
1058 shmem_recalc_inode(inode);
1059 spin_unlock_irq(&info->lock);
1060 }
1061
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1062 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1063 {
1064 shmem_undo_range(inode, lstart, lend, false);
1065 inode->i_ctime = inode->i_mtime = current_time(inode);
1066 }
1067 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1068
shmem_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1069 static int shmem_getattr(struct user_namespace *mnt_userns,
1070 const struct path *path, struct kstat *stat,
1071 u32 request_mask, unsigned int query_flags)
1072 {
1073 struct inode *inode = path->dentry->d_inode;
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075
1076 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1077 spin_lock_irq(&info->lock);
1078 shmem_recalc_inode(inode);
1079 spin_unlock_irq(&info->lock);
1080 }
1081 generic_fillattr(&init_user_ns, inode, stat);
1082
1083 if (shmem_is_huge(NULL, inode, 0))
1084 stat->blksize = HPAGE_PMD_SIZE;
1085
1086 return 0;
1087 }
1088
shmem_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1089 static int shmem_setattr(struct user_namespace *mnt_userns,
1090 struct dentry *dentry, struct iattr *attr)
1091 {
1092 struct inode *inode = d_inode(dentry);
1093 struct shmem_inode_info *info = SHMEM_I(inode);
1094 int error;
1095
1096 error = setattr_prepare(&init_user_ns, dentry, attr);
1097 if (error)
1098 return error;
1099
1100 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1101 loff_t oldsize = inode->i_size;
1102 loff_t newsize = attr->ia_size;
1103
1104 /* protected by i_rwsem */
1105 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1106 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1107 return -EPERM;
1108
1109 if (newsize != oldsize) {
1110 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1111 oldsize, newsize);
1112 if (error)
1113 return error;
1114 i_size_write(inode, newsize);
1115 inode->i_ctime = inode->i_mtime = current_time(inode);
1116 }
1117 if (newsize <= oldsize) {
1118 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1119 if (oldsize > holebegin)
1120 unmap_mapping_range(inode->i_mapping,
1121 holebegin, 0, 1);
1122 if (info->alloced)
1123 shmem_truncate_range(inode,
1124 newsize, (loff_t)-1);
1125 /* unmap again to remove racily COWed private pages */
1126 if (oldsize > holebegin)
1127 unmap_mapping_range(inode->i_mapping,
1128 holebegin, 0, 1);
1129 }
1130 }
1131
1132 setattr_copy(&init_user_ns, inode, attr);
1133 if (attr->ia_valid & ATTR_MODE)
1134 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1135 return error;
1136 }
1137
shmem_evict_inode(struct inode * inode)1138 static void shmem_evict_inode(struct inode *inode)
1139 {
1140 struct shmem_inode_info *info = SHMEM_I(inode);
1141 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1142
1143 if (shmem_mapping(inode->i_mapping)) {
1144 shmem_unacct_size(info->flags, inode->i_size);
1145 inode->i_size = 0;
1146 shmem_truncate_range(inode, 0, (loff_t)-1);
1147 if (!list_empty(&info->shrinklist)) {
1148 spin_lock(&sbinfo->shrinklist_lock);
1149 if (!list_empty(&info->shrinklist)) {
1150 list_del_init(&info->shrinklist);
1151 sbinfo->shrinklist_len--;
1152 }
1153 spin_unlock(&sbinfo->shrinklist_lock);
1154 }
1155 while (!list_empty(&info->swaplist)) {
1156 /* Wait while shmem_unuse() is scanning this inode... */
1157 wait_var_event(&info->stop_eviction,
1158 !atomic_read(&info->stop_eviction));
1159 mutex_lock(&shmem_swaplist_mutex);
1160 /* ...but beware of the race if we peeked too early */
1161 if (!atomic_read(&info->stop_eviction))
1162 list_del_init(&info->swaplist);
1163 mutex_unlock(&shmem_swaplist_mutex);
1164 }
1165 }
1166
1167 simple_xattrs_free(&info->xattrs);
1168 WARN_ON(inode->i_blocks);
1169 shmem_free_inode(inode->i_sb);
1170 clear_inode(inode);
1171 }
1172
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,unsigned int nr_entries,struct page ** entries,pgoff_t * indices,unsigned int type,bool frontswap)1173 static int shmem_find_swap_entries(struct address_space *mapping,
1174 pgoff_t start, unsigned int nr_entries,
1175 struct page **entries, pgoff_t *indices,
1176 unsigned int type, bool frontswap)
1177 {
1178 XA_STATE(xas, &mapping->i_pages, start);
1179 struct page *page;
1180 swp_entry_t entry;
1181 unsigned int ret = 0;
1182
1183 if (!nr_entries)
1184 return 0;
1185
1186 rcu_read_lock();
1187 xas_for_each(&xas, page, ULONG_MAX) {
1188 if (xas_retry(&xas, page))
1189 continue;
1190
1191 if (!xa_is_value(page))
1192 continue;
1193
1194 entry = radix_to_swp_entry(page);
1195 if (swp_type(entry) != type)
1196 continue;
1197 if (frontswap &&
1198 !frontswap_test(swap_info[type], swp_offset(entry)))
1199 continue;
1200
1201 indices[ret] = xas.xa_index;
1202 entries[ret] = page;
1203
1204 if (need_resched()) {
1205 xas_pause(&xas);
1206 cond_resched_rcu();
1207 }
1208 if (++ret == nr_entries)
1209 break;
1210 }
1211 rcu_read_unlock();
1212
1213 return ret;
1214 }
1215
1216 /*
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1219 */
shmem_unuse_swap_entries(struct inode * inode,struct pagevec pvec,pgoff_t * indices)1220 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1221 pgoff_t *indices)
1222 {
1223 int i = 0;
1224 int ret = 0;
1225 int error = 0;
1226 struct address_space *mapping = inode->i_mapping;
1227
1228 for (i = 0; i < pvec.nr; i++) {
1229 struct page *page = pvec.pages[i];
1230
1231 if (!xa_is_value(page))
1232 continue;
1233 error = shmem_swapin_page(inode, indices[i],
1234 &page, SGP_CACHE,
1235 mapping_gfp_mask(mapping),
1236 NULL, NULL);
1237 if (error == 0) {
1238 unlock_page(page);
1239 put_page(page);
1240 ret++;
1241 }
1242 if (error == -ENOMEM)
1243 break;
1244 error = 0;
1245 }
1246 return error ? error : ret;
1247 }
1248
1249 /*
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1251 */
shmem_unuse_inode(struct inode * inode,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1252 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1253 bool frontswap, unsigned long *fs_pages_to_unuse)
1254 {
1255 struct address_space *mapping = inode->i_mapping;
1256 pgoff_t start = 0;
1257 struct pagevec pvec;
1258 pgoff_t indices[PAGEVEC_SIZE];
1259 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1260 int ret = 0;
1261
1262 pagevec_init(&pvec);
1263 do {
1264 unsigned int nr_entries = PAGEVEC_SIZE;
1265
1266 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1267 nr_entries = *fs_pages_to_unuse;
1268
1269 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1270 pvec.pages, indices,
1271 type, frontswap);
1272 if (pvec.nr == 0) {
1273 ret = 0;
1274 break;
1275 }
1276
1277 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1278 if (ret < 0)
1279 break;
1280
1281 if (frontswap_partial) {
1282 *fs_pages_to_unuse -= ret;
1283 if (*fs_pages_to_unuse == 0) {
1284 ret = FRONTSWAP_PAGES_UNUSED;
1285 break;
1286 }
1287 }
1288
1289 start = indices[pvec.nr - 1];
1290 } while (true);
1291
1292 return ret;
1293 }
1294
1295 /*
1296 * Read all the shared memory data that resides in the swap
1297 * device 'type' back into memory, so the swap device can be
1298 * unused.
1299 */
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1300 int shmem_unuse(unsigned int type, bool frontswap,
1301 unsigned long *fs_pages_to_unuse)
1302 {
1303 struct shmem_inode_info *info, *next;
1304 int error = 0;
1305
1306 if (list_empty(&shmem_swaplist))
1307 return 0;
1308
1309 mutex_lock(&shmem_swaplist_mutex);
1310 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1311 if (!info->swapped) {
1312 list_del_init(&info->swaplist);
1313 continue;
1314 }
1315 /*
1316 * Drop the swaplist mutex while searching the inode for swap;
1317 * but before doing so, make sure shmem_evict_inode() will not
1318 * remove placeholder inode from swaplist, nor let it be freed
1319 * (igrab() would protect from unlink, but not from unmount).
1320 */
1321 atomic_inc(&info->stop_eviction);
1322 mutex_unlock(&shmem_swaplist_mutex);
1323
1324 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1325 fs_pages_to_unuse);
1326 cond_resched();
1327
1328 mutex_lock(&shmem_swaplist_mutex);
1329 next = list_next_entry(info, swaplist);
1330 if (!info->swapped)
1331 list_del_init(&info->swaplist);
1332 if (atomic_dec_and_test(&info->stop_eviction))
1333 wake_up_var(&info->stop_eviction);
1334 if (error)
1335 break;
1336 }
1337 mutex_unlock(&shmem_swaplist_mutex);
1338
1339 return error;
1340 }
1341
1342 /*
1343 * Move the page from the page cache to the swap cache.
1344 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1345 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1346 {
1347 struct shmem_inode_info *info;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 swp_entry_t swap;
1351 pgoff_t index;
1352
1353 /*
1354 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1355 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1356 * and its shmem_writeback() needs them to be split when swapping.
1357 */
1358 if (PageTransCompound(page)) {
1359 /* Ensure the subpages are still dirty */
1360 SetPageDirty(page);
1361 if (split_huge_page(page) < 0)
1362 goto redirty;
1363 ClearPageDirty(page);
1364 }
1365
1366 BUG_ON(!PageLocked(page));
1367 mapping = page->mapping;
1368 index = page->index;
1369 inode = mapping->host;
1370 info = SHMEM_I(inode);
1371 if (info->flags & VM_LOCKED)
1372 goto redirty;
1373 if (!total_swap_pages)
1374 goto redirty;
1375
1376 /*
1377 * Our capabilities prevent regular writeback or sync from ever calling
1378 * shmem_writepage; but a stacking filesystem might use ->writepage of
1379 * its underlying filesystem, in which case tmpfs should write out to
1380 * swap only in response to memory pressure, and not for the writeback
1381 * threads or sync.
1382 */
1383 if (!wbc->for_reclaim) {
1384 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1385 goto redirty;
1386 }
1387
1388 /*
1389 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390 * value into swapfile.c, the only way we can correctly account for a
1391 * fallocated page arriving here is now to initialize it and write it.
1392 *
1393 * That's okay for a page already fallocated earlier, but if we have
1394 * not yet completed the fallocation, then (a) we want to keep track
1395 * of this page in case we have to undo it, and (b) it may not be a
1396 * good idea to continue anyway, once we're pushing into swap. So
1397 * reactivate the page, and let shmem_fallocate() quit when too many.
1398 */
1399 if (!PageUptodate(page)) {
1400 if (inode->i_private) {
1401 struct shmem_falloc *shmem_falloc;
1402 spin_lock(&inode->i_lock);
1403 shmem_falloc = inode->i_private;
1404 if (shmem_falloc &&
1405 !shmem_falloc->waitq &&
1406 index >= shmem_falloc->start &&
1407 index < shmem_falloc->next)
1408 shmem_falloc->nr_unswapped++;
1409 else
1410 shmem_falloc = NULL;
1411 spin_unlock(&inode->i_lock);
1412 if (shmem_falloc)
1413 goto redirty;
1414 }
1415 clear_highpage(page);
1416 flush_dcache_page(page);
1417 SetPageUptodate(page);
1418 }
1419
1420 swap = get_swap_page(page);
1421 if (!swap.val)
1422 goto redirty;
1423
1424 /*
1425 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426 * if it's not already there. Do it now before the page is
1427 * moved to swap cache, when its pagelock no longer protects
1428 * the inode from eviction. But don't unlock the mutex until
1429 * we've incremented swapped, because shmem_unuse_inode() will
1430 * prune a !swapped inode from the swaplist under this mutex.
1431 */
1432 mutex_lock(&shmem_swaplist_mutex);
1433 if (list_empty(&info->swaplist))
1434 list_add(&info->swaplist, &shmem_swaplist);
1435
1436 if (add_to_swap_cache(page, swap,
1437 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1438 NULL) == 0) {
1439 spin_lock_irq(&info->lock);
1440 shmem_recalc_inode(inode);
1441 info->swapped++;
1442 spin_unlock_irq(&info->lock);
1443
1444 swap_shmem_alloc(swap);
1445 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1446
1447 mutex_unlock(&shmem_swaplist_mutex);
1448 BUG_ON(page_mapped(page));
1449 swap_writepage(page, wbc);
1450 return 0;
1451 }
1452
1453 mutex_unlock(&shmem_swaplist_mutex);
1454 put_swap_page(page, swap);
1455 redirty:
1456 set_page_dirty(page);
1457 if (wbc->for_reclaim)
1458 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1459 unlock_page(page);
1460 return 0;
1461 }
1462
1463 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1464 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 char buffer[64];
1467
1468 if (!mpol || mpol->mode == MPOL_DEFAULT)
1469 return; /* show nothing */
1470
1471 mpol_to_str(buffer, sizeof(buffer), mpol);
1472
1473 seq_printf(seq, ",mpol=%s", buffer);
1474 }
1475
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1476 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1477 {
1478 struct mempolicy *mpol = NULL;
1479 if (sbinfo->mpol) {
1480 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1481 mpol = sbinfo->mpol;
1482 mpol_get(mpol);
1483 raw_spin_unlock(&sbinfo->stat_lock);
1484 }
1485 return mpol;
1486 }
1487 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1488 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1489 {
1490 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1491 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1492 {
1493 return NULL;
1494 }
1495 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1496 #ifndef CONFIG_NUMA
1497 #define vm_policy vm_private_data
1498 #endif
1499
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1500 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1501 struct shmem_inode_info *info, pgoff_t index)
1502 {
1503 /* Create a pseudo vma that just contains the policy */
1504 vma_init(vma, NULL);
1505 /* Bias interleave by inode number to distribute better across nodes */
1506 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1507 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1508 }
1509
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1510 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1511 {
1512 /* Drop reference taken by mpol_shared_policy_lookup() */
1513 mpol_cond_put(vma->vm_policy);
1514 }
1515
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1516 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1517 struct shmem_inode_info *info, pgoff_t index)
1518 {
1519 struct vm_area_struct pvma;
1520 struct page *page;
1521 struct vm_fault vmf = {
1522 .vma = &pvma,
1523 };
1524
1525 shmem_pseudo_vma_init(&pvma, info, index);
1526 page = swap_cluster_readahead(swap, gfp, &vmf);
1527 shmem_pseudo_vma_destroy(&pvma);
1528
1529 return page;
1530 }
1531
1532 /*
1533 * Make sure huge_gfp is always more limited than limit_gfp.
1534 * Some of the flags set permissions, while others set limitations.
1535 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1536 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1537 {
1538 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1539 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1540 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1541 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1542
1543 /* Allow allocations only from the originally specified zones. */
1544 result |= zoneflags;
1545
1546 /*
1547 * Minimize the result gfp by taking the union with the deny flags,
1548 * and the intersection of the allow flags.
1549 */
1550 result |= (limit_gfp & denyflags);
1551 result |= (huge_gfp & limit_gfp) & allowflags;
1552
1553 return result;
1554 }
1555
shmem_alloc_hugepage(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1556 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 struct vm_area_struct pvma;
1560 struct address_space *mapping = info->vfs_inode.i_mapping;
1561 pgoff_t hindex;
1562 struct page *page;
1563
1564 hindex = round_down(index, HPAGE_PMD_NR);
1565 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1566 XA_PRESENT))
1567 return NULL;
1568
1569 shmem_pseudo_vma_init(&pvma, info, hindex);
1570 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1571 true);
1572 shmem_pseudo_vma_destroy(&pvma);
1573 if (page)
1574 prep_transhuge_page(page);
1575 else
1576 count_vm_event(THP_FILE_FALLBACK);
1577 return page;
1578 }
1579
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1580 static struct page *shmem_alloc_page(gfp_t gfp,
1581 struct shmem_inode_info *info, pgoff_t index)
1582 {
1583 struct vm_area_struct pvma;
1584 struct page *page;
1585
1586 shmem_pseudo_vma_init(&pvma, info, index);
1587 page = alloc_page_vma(gfp, &pvma, 0);
1588 shmem_pseudo_vma_destroy(&pvma);
1589
1590 return page;
1591 }
1592
shmem_alloc_and_acct_page(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1593 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1594 struct inode *inode,
1595 pgoff_t index, bool huge)
1596 {
1597 struct shmem_inode_info *info = SHMEM_I(inode);
1598 struct page *page;
1599 int nr;
1600 int err = -ENOSPC;
1601
1602 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1603 huge = false;
1604 nr = huge ? HPAGE_PMD_NR : 1;
1605
1606 if (!shmem_inode_acct_block(inode, nr))
1607 goto failed;
1608
1609 if (huge)
1610 page = shmem_alloc_hugepage(gfp, info, index);
1611 else
1612 page = shmem_alloc_page(gfp, info, index);
1613 if (page) {
1614 __SetPageLocked(page);
1615 __SetPageSwapBacked(page);
1616 return page;
1617 }
1618
1619 err = -ENOMEM;
1620 shmem_inode_unacct_blocks(inode, nr);
1621 failed:
1622 return ERR_PTR(err);
1623 }
1624
1625 /*
1626 * When a page is moved from swapcache to shmem filecache (either by the
1627 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1628 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1629 * ignorance of the mapping it belongs to. If that mapping has special
1630 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1631 * we may need to copy to a suitable page before moving to filecache.
1632 *
1633 * In a future release, this may well be extended to respect cpuset and
1634 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1635 * but for now it is a simple matter of zone.
1636 */
shmem_should_replace_page(struct page * page,gfp_t gfp)1637 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1638 {
1639 return page_zonenum(page) > gfp_zone(gfp);
1640 }
1641
shmem_replace_page(struct page ** pagep,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1642 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1643 struct shmem_inode_info *info, pgoff_t index)
1644 {
1645 struct page *oldpage, *newpage;
1646 struct address_space *swap_mapping;
1647 swp_entry_t entry;
1648 pgoff_t swap_index;
1649 int error;
1650
1651 oldpage = *pagep;
1652 entry.val = page_private(oldpage);
1653 swap_index = swp_offset(entry);
1654 swap_mapping = page_mapping(oldpage);
1655
1656 /*
1657 * We have arrived here because our zones are constrained, so don't
1658 * limit chance of success by further cpuset and node constraints.
1659 */
1660 gfp &= ~GFP_CONSTRAINT_MASK;
1661 newpage = shmem_alloc_page(gfp, info, index);
1662 if (!newpage)
1663 return -ENOMEM;
1664
1665 get_page(newpage);
1666 copy_highpage(newpage, oldpage);
1667 flush_dcache_page(newpage);
1668
1669 __SetPageLocked(newpage);
1670 __SetPageSwapBacked(newpage);
1671 SetPageUptodate(newpage);
1672 set_page_private(newpage, entry.val);
1673 SetPageSwapCache(newpage);
1674
1675 /*
1676 * Our caller will very soon move newpage out of swapcache, but it's
1677 * a nice clean interface for us to replace oldpage by newpage there.
1678 */
1679 xa_lock_irq(&swap_mapping->i_pages);
1680 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1681 if (!error) {
1682 mem_cgroup_migrate(oldpage, newpage);
1683 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1684 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1685 }
1686 xa_unlock_irq(&swap_mapping->i_pages);
1687
1688 if (unlikely(error)) {
1689 /*
1690 * Is this possible? I think not, now that our callers check
1691 * both PageSwapCache and page_private after getting page lock;
1692 * but be defensive. Reverse old to newpage for clear and free.
1693 */
1694 oldpage = newpage;
1695 } else {
1696 lru_cache_add(newpage);
1697 *pagep = newpage;
1698 }
1699
1700 ClearPageSwapCache(oldpage);
1701 set_page_private(oldpage, 0);
1702
1703 unlock_page(oldpage);
1704 put_page(oldpage);
1705 put_page(oldpage);
1706 return error;
1707 }
1708
1709 /*
1710 * Swap in the page pointed to by *pagep.
1711 * Caller has to make sure that *pagep contains a valid swapped page.
1712 * Returns 0 and the page in pagep if success. On failure, returns the
1713 * error code and NULL in *pagep.
1714 */
shmem_swapin_page(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1715 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1716 struct page **pagep, enum sgp_type sgp,
1717 gfp_t gfp, struct vm_area_struct *vma,
1718 vm_fault_t *fault_type)
1719 {
1720 struct address_space *mapping = inode->i_mapping;
1721 struct shmem_inode_info *info = SHMEM_I(inode);
1722 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1723 struct page *page;
1724 swp_entry_t swap;
1725 int error;
1726
1727 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1728 swap = radix_to_swp_entry(*pagep);
1729 *pagep = NULL;
1730
1731 /* Look it up and read it in.. */
1732 page = lookup_swap_cache(swap, NULL, 0);
1733 if (!page) {
1734 /* Or update major stats only when swapin succeeds?? */
1735 if (fault_type) {
1736 *fault_type |= VM_FAULT_MAJOR;
1737 count_vm_event(PGMAJFAULT);
1738 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1739 }
1740 /* Here we actually start the io */
1741 page = shmem_swapin(swap, gfp, info, index);
1742 if (!page) {
1743 error = -ENOMEM;
1744 goto failed;
1745 }
1746 }
1747
1748 /* We have to do this with page locked to prevent races */
1749 lock_page(page);
1750 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1751 !shmem_confirm_swap(mapping, index, swap)) {
1752 error = -EEXIST;
1753 goto unlock;
1754 }
1755 if (!PageUptodate(page)) {
1756 error = -EIO;
1757 goto failed;
1758 }
1759 wait_on_page_writeback(page);
1760
1761 /*
1762 * Some architectures may have to restore extra metadata to the
1763 * physical page after reading from swap.
1764 */
1765 arch_swap_restore(swap, page);
1766
1767 if (shmem_should_replace_page(page, gfp)) {
1768 error = shmem_replace_page(&page, gfp, info, index);
1769 if (error)
1770 goto failed;
1771 }
1772
1773 error = shmem_add_to_page_cache(page, mapping, index,
1774 swp_to_radix_entry(swap), gfp,
1775 charge_mm);
1776 if (error)
1777 goto failed;
1778
1779 spin_lock_irq(&info->lock);
1780 info->swapped--;
1781 shmem_recalc_inode(inode);
1782 spin_unlock_irq(&info->lock);
1783
1784 if (sgp == SGP_WRITE)
1785 mark_page_accessed(page);
1786
1787 delete_from_swap_cache(page);
1788 set_page_dirty(page);
1789 swap_free(swap);
1790
1791 *pagep = page;
1792 return 0;
1793 failed:
1794 if (!shmem_confirm_swap(mapping, index, swap))
1795 error = -EEXIST;
1796 unlock:
1797 if (page) {
1798 unlock_page(page);
1799 put_page(page);
1800 }
1801
1802 return error;
1803 }
1804
1805 /*
1806 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1807 *
1808 * If we allocate a new one we do not mark it dirty. That's up to the
1809 * vm. If we swap it in we mark it dirty since we also free the swap
1810 * entry since a page cannot live in both the swap and page cache.
1811 *
1812 * vma, vmf, and fault_type are only supplied by shmem_fault:
1813 * otherwise they are NULL.
1814 */
shmem_getpage_gfp(struct inode * inode,pgoff_t index,struct page ** pagep,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1815 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1816 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1817 struct vm_area_struct *vma, struct vm_fault *vmf,
1818 vm_fault_t *fault_type)
1819 {
1820 struct address_space *mapping = inode->i_mapping;
1821 struct shmem_inode_info *info = SHMEM_I(inode);
1822 struct shmem_sb_info *sbinfo;
1823 struct mm_struct *charge_mm;
1824 struct page *page;
1825 pgoff_t hindex = index;
1826 gfp_t huge_gfp;
1827 int error;
1828 int once = 0;
1829 int alloced = 0;
1830
1831 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1832 return -EFBIG;
1833 repeat:
1834 if (sgp <= SGP_CACHE &&
1835 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1836 return -EINVAL;
1837 }
1838
1839 sbinfo = SHMEM_SB(inode->i_sb);
1840 charge_mm = vma ? vma->vm_mm : NULL;
1841
1842 page = pagecache_get_page(mapping, index,
1843 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1844
1845 if (page && vma && userfaultfd_minor(vma)) {
1846 if (!xa_is_value(page)) {
1847 unlock_page(page);
1848 put_page(page);
1849 }
1850 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1851 return 0;
1852 }
1853
1854 if (xa_is_value(page)) {
1855 error = shmem_swapin_page(inode, index, &page,
1856 sgp, gfp, vma, fault_type);
1857 if (error == -EEXIST)
1858 goto repeat;
1859
1860 *pagep = page;
1861 return error;
1862 }
1863
1864 if (page) {
1865 hindex = page->index;
1866 if (sgp == SGP_WRITE)
1867 mark_page_accessed(page);
1868 if (PageUptodate(page))
1869 goto out;
1870 /* fallocated page */
1871 if (sgp != SGP_READ)
1872 goto clear;
1873 unlock_page(page);
1874 put_page(page);
1875 }
1876
1877 /*
1878 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1879 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1880 */
1881 *pagep = NULL;
1882 if (sgp == SGP_READ)
1883 return 0;
1884 if (sgp == SGP_NOALLOC)
1885 return -ENOENT;
1886
1887 /*
1888 * Fast cache lookup and swap lookup did not find it: allocate.
1889 */
1890
1891 if (vma && userfaultfd_missing(vma)) {
1892 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1893 return 0;
1894 }
1895
1896 /* Never use a huge page for shmem_symlink() */
1897 if (S_ISLNK(inode->i_mode))
1898 goto alloc_nohuge;
1899 if (!shmem_is_huge(vma, inode, index))
1900 goto alloc_nohuge;
1901
1902 huge_gfp = vma_thp_gfp_mask(vma);
1903 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1904 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1905 if (IS_ERR(page)) {
1906 alloc_nohuge:
1907 page = shmem_alloc_and_acct_page(gfp, inode,
1908 index, false);
1909 }
1910 if (IS_ERR(page)) {
1911 int retry = 5;
1912
1913 error = PTR_ERR(page);
1914 page = NULL;
1915 if (error != -ENOSPC)
1916 goto unlock;
1917 /*
1918 * Try to reclaim some space by splitting a huge page
1919 * beyond i_size on the filesystem.
1920 */
1921 while (retry--) {
1922 int ret;
1923
1924 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1925 if (ret == SHRINK_STOP)
1926 break;
1927 if (ret)
1928 goto alloc_nohuge;
1929 }
1930 goto unlock;
1931 }
1932
1933 if (PageTransHuge(page))
1934 hindex = round_down(index, HPAGE_PMD_NR);
1935 else
1936 hindex = index;
1937
1938 if (sgp == SGP_WRITE)
1939 __SetPageReferenced(page);
1940
1941 error = shmem_add_to_page_cache(page, mapping, hindex,
1942 NULL, gfp & GFP_RECLAIM_MASK,
1943 charge_mm);
1944 if (error)
1945 goto unacct;
1946 lru_cache_add(page);
1947
1948 spin_lock_irq(&info->lock);
1949 info->alloced += compound_nr(page);
1950 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1951 shmem_recalc_inode(inode);
1952 spin_unlock_irq(&info->lock);
1953 alloced = true;
1954
1955 if (PageTransHuge(page) &&
1956 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1957 hindex + HPAGE_PMD_NR - 1) {
1958 /*
1959 * Part of the huge page is beyond i_size: subject
1960 * to shrink under memory pressure.
1961 */
1962 spin_lock(&sbinfo->shrinklist_lock);
1963 /*
1964 * _careful to defend against unlocked access to
1965 * ->shrink_list in shmem_unused_huge_shrink()
1966 */
1967 if (list_empty_careful(&info->shrinklist)) {
1968 list_add_tail(&info->shrinklist,
1969 &sbinfo->shrinklist);
1970 sbinfo->shrinklist_len++;
1971 }
1972 spin_unlock(&sbinfo->shrinklist_lock);
1973 }
1974
1975 /*
1976 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1977 */
1978 if (sgp == SGP_FALLOC)
1979 sgp = SGP_WRITE;
1980 clear:
1981 /*
1982 * Let SGP_WRITE caller clear ends if write does not fill page;
1983 * but SGP_FALLOC on a page fallocated earlier must initialize
1984 * it now, lest undo on failure cancel our earlier guarantee.
1985 */
1986 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1987 int i;
1988
1989 for (i = 0; i < compound_nr(page); i++) {
1990 clear_highpage(page + i);
1991 flush_dcache_page(page + i);
1992 }
1993 SetPageUptodate(page);
1994 }
1995
1996 /* Perhaps the file has been truncated since we checked */
1997 if (sgp <= SGP_CACHE &&
1998 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1999 if (alloced) {
2000 ClearPageDirty(page);
2001 delete_from_page_cache(page);
2002 spin_lock_irq(&info->lock);
2003 shmem_recalc_inode(inode);
2004 spin_unlock_irq(&info->lock);
2005 }
2006 error = -EINVAL;
2007 goto unlock;
2008 }
2009 out:
2010 *pagep = page + index - hindex;
2011 return 0;
2012
2013 /*
2014 * Error recovery.
2015 */
2016 unacct:
2017 shmem_inode_unacct_blocks(inode, compound_nr(page));
2018
2019 if (PageTransHuge(page)) {
2020 unlock_page(page);
2021 put_page(page);
2022 goto alloc_nohuge;
2023 }
2024 unlock:
2025 if (page) {
2026 unlock_page(page);
2027 put_page(page);
2028 }
2029 if (error == -ENOSPC && !once++) {
2030 spin_lock_irq(&info->lock);
2031 shmem_recalc_inode(inode);
2032 spin_unlock_irq(&info->lock);
2033 goto repeat;
2034 }
2035 if (error == -EEXIST)
2036 goto repeat;
2037 return error;
2038 }
2039
2040 /*
2041 * This is like autoremove_wake_function, but it removes the wait queue
2042 * entry unconditionally - even if something else had already woken the
2043 * target.
2044 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2045 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2046 {
2047 int ret = default_wake_function(wait, mode, sync, key);
2048 list_del_init(&wait->entry);
2049 return ret;
2050 }
2051
shmem_fault(struct vm_fault * vmf)2052 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2053 {
2054 struct vm_area_struct *vma = vmf->vma;
2055 struct inode *inode = file_inode(vma->vm_file);
2056 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2057 int err;
2058 vm_fault_t ret = VM_FAULT_LOCKED;
2059
2060 /*
2061 * Trinity finds that probing a hole which tmpfs is punching can
2062 * prevent the hole-punch from ever completing: which in turn
2063 * locks writers out with its hold on i_rwsem. So refrain from
2064 * faulting pages into the hole while it's being punched. Although
2065 * shmem_undo_range() does remove the additions, it may be unable to
2066 * keep up, as each new page needs its own unmap_mapping_range() call,
2067 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2068 *
2069 * It does not matter if we sometimes reach this check just before the
2070 * hole-punch begins, so that one fault then races with the punch:
2071 * we just need to make racing faults a rare case.
2072 *
2073 * The implementation below would be much simpler if we just used a
2074 * standard mutex or completion: but we cannot take i_rwsem in fault,
2075 * and bloating every shmem inode for this unlikely case would be sad.
2076 */
2077 if (unlikely(inode->i_private)) {
2078 struct shmem_falloc *shmem_falloc;
2079
2080 spin_lock(&inode->i_lock);
2081 shmem_falloc = inode->i_private;
2082 if (shmem_falloc &&
2083 shmem_falloc->waitq &&
2084 vmf->pgoff >= shmem_falloc->start &&
2085 vmf->pgoff < shmem_falloc->next) {
2086 struct file *fpin;
2087 wait_queue_head_t *shmem_falloc_waitq;
2088 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2089
2090 ret = VM_FAULT_NOPAGE;
2091 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2092 if (fpin)
2093 ret = VM_FAULT_RETRY;
2094
2095 shmem_falloc_waitq = shmem_falloc->waitq;
2096 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2097 TASK_UNINTERRUPTIBLE);
2098 spin_unlock(&inode->i_lock);
2099 schedule();
2100
2101 /*
2102 * shmem_falloc_waitq points into the shmem_fallocate()
2103 * stack of the hole-punching task: shmem_falloc_waitq
2104 * is usually invalid by the time we reach here, but
2105 * finish_wait() does not dereference it in that case;
2106 * though i_lock needed lest racing with wake_up_all().
2107 */
2108 spin_lock(&inode->i_lock);
2109 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2110 spin_unlock(&inode->i_lock);
2111
2112 if (fpin)
2113 fput(fpin);
2114 return ret;
2115 }
2116 spin_unlock(&inode->i_lock);
2117 }
2118
2119 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2120 gfp, vma, vmf, &ret);
2121 if (err)
2122 return vmf_error(err);
2123 return ret;
2124 }
2125
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2126 unsigned long shmem_get_unmapped_area(struct file *file,
2127 unsigned long uaddr, unsigned long len,
2128 unsigned long pgoff, unsigned long flags)
2129 {
2130 unsigned long (*get_area)(struct file *,
2131 unsigned long, unsigned long, unsigned long, unsigned long);
2132 unsigned long addr;
2133 unsigned long offset;
2134 unsigned long inflated_len;
2135 unsigned long inflated_addr;
2136 unsigned long inflated_offset;
2137
2138 if (len > TASK_SIZE)
2139 return -ENOMEM;
2140
2141 get_area = current->mm->get_unmapped_area;
2142 addr = get_area(file, uaddr, len, pgoff, flags);
2143
2144 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2145 return addr;
2146 if (IS_ERR_VALUE(addr))
2147 return addr;
2148 if (addr & ~PAGE_MASK)
2149 return addr;
2150 if (addr > TASK_SIZE - len)
2151 return addr;
2152
2153 if (shmem_huge == SHMEM_HUGE_DENY)
2154 return addr;
2155 if (len < HPAGE_PMD_SIZE)
2156 return addr;
2157 if (flags & MAP_FIXED)
2158 return addr;
2159 /*
2160 * Our priority is to support MAP_SHARED mapped hugely;
2161 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2162 * But if caller specified an address hint and we allocated area there
2163 * successfully, respect that as before.
2164 */
2165 if (uaddr == addr)
2166 return addr;
2167
2168 if (shmem_huge != SHMEM_HUGE_FORCE) {
2169 struct super_block *sb;
2170
2171 if (file) {
2172 VM_BUG_ON(file->f_op != &shmem_file_operations);
2173 sb = file_inode(file)->i_sb;
2174 } else {
2175 /*
2176 * Called directly from mm/mmap.c, or drivers/char/mem.c
2177 * for "/dev/zero", to create a shared anonymous object.
2178 */
2179 if (IS_ERR(shm_mnt))
2180 return addr;
2181 sb = shm_mnt->mnt_sb;
2182 }
2183 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2184 return addr;
2185 }
2186
2187 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2188 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2189 return addr;
2190 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2191 return addr;
2192
2193 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2194 if (inflated_len > TASK_SIZE)
2195 return addr;
2196 if (inflated_len < len)
2197 return addr;
2198
2199 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2200 if (IS_ERR_VALUE(inflated_addr))
2201 return addr;
2202 if (inflated_addr & ~PAGE_MASK)
2203 return addr;
2204
2205 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2206 inflated_addr += offset - inflated_offset;
2207 if (inflated_offset > offset)
2208 inflated_addr += HPAGE_PMD_SIZE;
2209
2210 if (inflated_addr > TASK_SIZE - len)
2211 return addr;
2212 return inflated_addr;
2213 }
2214
2215 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2216 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2217 {
2218 struct inode *inode = file_inode(vma->vm_file);
2219 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2220 }
2221
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2222 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2223 unsigned long addr)
2224 {
2225 struct inode *inode = file_inode(vma->vm_file);
2226 pgoff_t index;
2227
2228 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2229 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2230 }
2231 #endif
2232
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2233 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2234 {
2235 struct inode *inode = file_inode(file);
2236 struct shmem_inode_info *info = SHMEM_I(inode);
2237 int retval = -ENOMEM;
2238
2239 /*
2240 * What serializes the accesses to info->flags?
2241 * ipc_lock_object() when called from shmctl_do_lock(),
2242 * no serialization needed when called from shm_destroy().
2243 */
2244 if (lock && !(info->flags & VM_LOCKED)) {
2245 if (!user_shm_lock(inode->i_size, ucounts))
2246 goto out_nomem;
2247 info->flags |= VM_LOCKED;
2248 mapping_set_unevictable(file->f_mapping);
2249 }
2250 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2251 user_shm_unlock(inode->i_size, ucounts);
2252 info->flags &= ~VM_LOCKED;
2253 mapping_clear_unevictable(file->f_mapping);
2254 }
2255 retval = 0;
2256
2257 out_nomem:
2258 return retval;
2259 }
2260
shmem_mmap(struct file * file,struct vm_area_struct * vma)2261 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2262 {
2263 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2264 int ret;
2265
2266 ret = seal_check_future_write(info->seals, vma);
2267 if (ret)
2268 return ret;
2269
2270 /* arm64 - allow memory tagging on RAM-based files */
2271 vma->vm_flags |= VM_MTE_ALLOWED;
2272
2273 file_accessed(file);
2274 vma->vm_ops = &shmem_vm_ops;
2275 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2276 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2277 (vma->vm_end & HPAGE_PMD_MASK)) {
2278 khugepaged_enter(vma, vma->vm_flags);
2279 }
2280 return 0;
2281 }
2282
shmem_get_inode(struct super_block * sb,const struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2283 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2284 umode_t mode, dev_t dev, unsigned long flags)
2285 {
2286 struct inode *inode;
2287 struct shmem_inode_info *info;
2288 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2289 ino_t ino;
2290
2291 if (shmem_reserve_inode(sb, &ino))
2292 return NULL;
2293
2294 inode = new_inode(sb);
2295 if (inode) {
2296 inode->i_ino = ino;
2297 inode_init_owner(&init_user_ns, inode, dir, mode);
2298 inode->i_blocks = 0;
2299 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2300 inode->i_generation = prandom_u32();
2301 info = SHMEM_I(inode);
2302 memset(info, 0, (char *)inode - (char *)info);
2303 spin_lock_init(&info->lock);
2304 atomic_set(&info->stop_eviction, 0);
2305 info->seals = F_SEAL_SEAL;
2306 info->flags = flags & VM_NORESERVE;
2307 INIT_LIST_HEAD(&info->shrinklist);
2308 INIT_LIST_HEAD(&info->swaplist);
2309 simple_xattrs_init(&info->xattrs);
2310 cache_no_acl(inode);
2311
2312 switch (mode & S_IFMT) {
2313 default:
2314 inode->i_op = &shmem_special_inode_operations;
2315 init_special_inode(inode, mode, dev);
2316 break;
2317 case S_IFREG:
2318 inode->i_mapping->a_ops = &shmem_aops;
2319 inode->i_op = &shmem_inode_operations;
2320 inode->i_fop = &shmem_file_operations;
2321 mpol_shared_policy_init(&info->policy,
2322 shmem_get_sbmpol(sbinfo));
2323 break;
2324 case S_IFDIR:
2325 inc_nlink(inode);
2326 /* Some things misbehave if size == 0 on a directory */
2327 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2328 inode->i_op = &shmem_dir_inode_operations;
2329 inode->i_fop = &simple_dir_operations;
2330 break;
2331 case S_IFLNK:
2332 /*
2333 * Must not load anything in the rbtree,
2334 * mpol_free_shared_policy will not be called.
2335 */
2336 mpol_shared_policy_init(&info->policy, NULL);
2337 break;
2338 }
2339
2340 lockdep_annotate_inode_mutex_key(inode);
2341 } else
2342 shmem_free_inode(sb);
2343 return inode;
2344 }
2345
2346 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(struct mm_struct * dst_mm,pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,bool zeropage,struct page ** pagep)2347 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2348 pmd_t *dst_pmd,
2349 struct vm_area_struct *dst_vma,
2350 unsigned long dst_addr,
2351 unsigned long src_addr,
2352 bool zeropage,
2353 struct page **pagep)
2354 {
2355 struct inode *inode = file_inode(dst_vma->vm_file);
2356 struct shmem_inode_info *info = SHMEM_I(inode);
2357 struct address_space *mapping = inode->i_mapping;
2358 gfp_t gfp = mapping_gfp_mask(mapping);
2359 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2360 void *page_kaddr;
2361 struct page *page;
2362 int ret;
2363 pgoff_t max_off;
2364
2365 if (!shmem_inode_acct_block(inode, 1)) {
2366 /*
2367 * We may have got a page, returned -ENOENT triggering a retry,
2368 * and now we find ourselves with -ENOMEM. Release the page, to
2369 * avoid a BUG_ON in our caller.
2370 */
2371 if (unlikely(*pagep)) {
2372 put_page(*pagep);
2373 *pagep = NULL;
2374 }
2375 return -ENOMEM;
2376 }
2377
2378 if (!*pagep) {
2379 ret = -ENOMEM;
2380 page = shmem_alloc_page(gfp, info, pgoff);
2381 if (!page)
2382 goto out_unacct_blocks;
2383
2384 if (!zeropage) { /* COPY */
2385 page_kaddr = kmap_atomic(page);
2386 ret = copy_from_user(page_kaddr,
2387 (const void __user *)src_addr,
2388 PAGE_SIZE);
2389 kunmap_atomic(page_kaddr);
2390
2391 /* fallback to copy_from_user outside mmap_lock */
2392 if (unlikely(ret)) {
2393 *pagep = page;
2394 ret = -ENOENT;
2395 /* don't free the page */
2396 goto out_unacct_blocks;
2397 }
2398
2399 flush_dcache_page(page);
2400 } else { /* ZEROPAGE */
2401 clear_user_highpage(page, dst_addr);
2402 }
2403 } else {
2404 page = *pagep;
2405 *pagep = NULL;
2406 }
2407
2408 VM_BUG_ON(PageLocked(page));
2409 VM_BUG_ON(PageSwapBacked(page));
2410 __SetPageLocked(page);
2411 __SetPageSwapBacked(page);
2412 __SetPageUptodate(page);
2413
2414 ret = -EFAULT;
2415 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2416 if (unlikely(pgoff >= max_off))
2417 goto out_release;
2418
2419 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2420 gfp & GFP_RECLAIM_MASK, dst_mm);
2421 if (ret)
2422 goto out_release;
2423
2424 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2425 page, true, false);
2426 if (ret)
2427 goto out_delete_from_cache;
2428
2429 spin_lock_irq(&info->lock);
2430 info->alloced++;
2431 inode->i_blocks += BLOCKS_PER_PAGE;
2432 shmem_recalc_inode(inode);
2433 spin_unlock_irq(&info->lock);
2434
2435 SetPageDirty(page);
2436 unlock_page(page);
2437 return 0;
2438 out_delete_from_cache:
2439 delete_from_page_cache(page);
2440 out_release:
2441 unlock_page(page);
2442 put_page(page);
2443 out_unacct_blocks:
2444 shmem_inode_unacct_blocks(inode, 1);
2445 return ret;
2446 }
2447 #endif /* CONFIG_USERFAULTFD */
2448
2449 #ifdef CONFIG_TMPFS
2450 static const struct inode_operations shmem_symlink_inode_operations;
2451 static const struct inode_operations shmem_short_symlink_operations;
2452
2453 #ifdef CONFIG_TMPFS_XATTR
2454 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2455 #else
2456 #define shmem_initxattrs NULL
2457 #endif
2458
2459 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2460 shmem_write_begin(struct file *file, struct address_space *mapping,
2461 loff_t pos, unsigned len, unsigned flags,
2462 struct page **pagep, void **fsdata)
2463 {
2464 struct inode *inode = mapping->host;
2465 struct shmem_inode_info *info = SHMEM_I(inode);
2466 pgoff_t index = pos >> PAGE_SHIFT;
2467 int ret = 0;
2468
2469 /* i_rwsem is held by caller */
2470 if (unlikely(info->seals & (F_SEAL_GROW |
2471 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2472 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2473 return -EPERM;
2474 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2475 return -EPERM;
2476 }
2477
2478 ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2479
2480 if (ret)
2481 return ret;
2482
2483 if (PageHWPoison(*pagep)) {
2484 unlock_page(*pagep);
2485 put_page(*pagep);
2486 *pagep = NULL;
2487 return -EIO;
2488 }
2489
2490 return 0;
2491 }
2492
2493 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2494 shmem_write_end(struct file *file, struct address_space *mapping,
2495 loff_t pos, unsigned len, unsigned copied,
2496 struct page *page, void *fsdata)
2497 {
2498 struct inode *inode = mapping->host;
2499
2500 if (pos + copied > inode->i_size)
2501 i_size_write(inode, pos + copied);
2502
2503 if (!PageUptodate(page)) {
2504 struct page *head = compound_head(page);
2505 if (PageTransCompound(page)) {
2506 int i;
2507
2508 for (i = 0; i < HPAGE_PMD_NR; i++) {
2509 if (head + i == page)
2510 continue;
2511 clear_highpage(head + i);
2512 flush_dcache_page(head + i);
2513 }
2514 }
2515 if (copied < PAGE_SIZE) {
2516 unsigned from = pos & (PAGE_SIZE - 1);
2517 zero_user_segments(page, 0, from,
2518 from + copied, PAGE_SIZE);
2519 }
2520 SetPageUptodate(head);
2521 }
2522 set_page_dirty(page);
2523 unlock_page(page);
2524 put_page(page);
2525
2526 return copied;
2527 }
2528
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2529 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2530 {
2531 struct file *file = iocb->ki_filp;
2532 struct inode *inode = file_inode(file);
2533 struct address_space *mapping = inode->i_mapping;
2534 pgoff_t index;
2535 unsigned long offset;
2536 enum sgp_type sgp = SGP_READ;
2537 int error = 0;
2538 ssize_t retval = 0;
2539 loff_t *ppos = &iocb->ki_pos;
2540
2541 /*
2542 * Might this read be for a stacking filesystem? Then when reading
2543 * holes of a sparse file, we actually need to allocate those pages,
2544 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2545 */
2546 if (!iter_is_iovec(to))
2547 sgp = SGP_CACHE;
2548
2549 index = *ppos >> PAGE_SHIFT;
2550 offset = *ppos & ~PAGE_MASK;
2551
2552 for (;;) {
2553 struct page *page = NULL;
2554 pgoff_t end_index;
2555 unsigned long nr, ret;
2556 loff_t i_size = i_size_read(inode);
2557
2558 end_index = i_size >> PAGE_SHIFT;
2559 if (index > end_index)
2560 break;
2561 if (index == end_index) {
2562 nr = i_size & ~PAGE_MASK;
2563 if (nr <= offset)
2564 break;
2565 }
2566
2567 error = shmem_getpage(inode, index, &page, sgp);
2568 if (error) {
2569 if (error == -EINVAL)
2570 error = 0;
2571 break;
2572 }
2573 if (page) {
2574 if (sgp == SGP_CACHE)
2575 set_page_dirty(page);
2576 unlock_page(page);
2577
2578 if (PageHWPoison(page)) {
2579 put_page(page);
2580 error = -EIO;
2581 break;
2582 }
2583 }
2584
2585 /*
2586 * We must evaluate after, since reads (unlike writes)
2587 * are called without i_rwsem protection against truncate
2588 */
2589 nr = PAGE_SIZE;
2590 i_size = i_size_read(inode);
2591 end_index = i_size >> PAGE_SHIFT;
2592 if (index == end_index) {
2593 nr = i_size & ~PAGE_MASK;
2594 if (nr <= offset) {
2595 if (page)
2596 put_page(page);
2597 break;
2598 }
2599 }
2600 nr -= offset;
2601
2602 if (page) {
2603 /*
2604 * If users can be writing to this page using arbitrary
2605 * virtual addresses, take care about potential aliasing
2606 * before reading the page on the kernel side.
2607 */
2608 if (mapping_writably_mapped(mapping))
2609 flush_dcache_page(page);
2610 /*
2611 * Mark the page accessed if we read the beginning.
2612 */
2613 if (!offset)
2614 mark_page_accessed(page);
2615 } else {
2616 page = ZERO_PAGE(0);
2617 get_page(page);
2618 }
2619
2620 /*
2621 * Ok, we have the page, and it's up-to-date, so
2622 * now we can copy it to user space...
2623 */
2624 ret = copy_page_to_iter(page, offset, nr, to);
2625 retval += ret;
2626 offset += ret;
2627 index += offset >> PAGE_SHIFT;
2628 offset &= ~PAGE_MASK;
2629
2630 put_page(page);
2631 if (!iov_iter_count(to))
2632 break;
2633 if (ret < nr) {
2634 error = -EFAULT;
2635 break;
2636 }
2637 cond_resched();
2638 }
2639
2640 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2641 file_accessed(file);
2642 return retval ? retval : error;
2643 }
2644
shmem_file_llseek(struct file * file,loff_t offset,int whence)2645 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2646 {
2647 struct address_space *mapping = file->f_mapping;
2648 struct inode *inode = mapping->host;
2649
2650 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2651 return generic_file_llseek_size(file, offset, whence,
2652 MAX_LFS_FILESIZE, i_size_read(inode));
2653 if (offset < 0)
2654 return -ENXIO;
2655
2656 inode_lock(inode);
2657 /* We're holding i_rwsem so we can access i_size directly */
2658 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2659 if (offset >= 0)
2660 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2661 inode_unlock(inode);
2662 return offset;
2663 }
2664
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2665 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2666 loff_t len)
2667 {
2668 struct inode *inode = file_inode(file);
2669 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2670 struct shmem_inode_info *info = SHMEM_I(inode);
2671 struct shmem_falloc shmem_falloc;
2672 pgoff_t start, index, end, undo_fallocend;
2673 int error;
2674
2675 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2676 return -EOPNOTSUPP;
2677
2678 inode_lock(inode);
2679
2680 if (mode & FALLOC_FL_PUNCH_HOLE) {
2681 struct address_space *mapping = file->f_mapping;
2682 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2683 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2684 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2685
2686 /* protected by i_rwsem */
2687 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2688 error = -EPERM;
2689 goto out;
2690 }
2691
2692 shmem_falloc.waitq = &shmem_falloc_waitq;
2693 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2694 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2695 spin_lock(&inode->i_lock);
2696 inode->i_private = &shmem_falloc;
2697 spin_unlock(&inode->i_lock);
2698
2699 if ((u64)unmap_end > (u64)unmap_start)
2700 unmap_mapping_range(mapping, unmap_start,
2701 1 + unmap_end - unmap_start, 0);
2702 shmem_truncate_range(inode, offset, offset + len - 1);
2703 /* No need to unmap again: hole-punching leaves COWed pages */
2704
2705 spin_lock(&inode->i_lock);
2706 inode->i_private = NULL;
2707 wake_up_all(&shmem_falloc_waitq);
2708 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2709 spin_unlock(&inode->i_lock);
2710 error = 0;
2711 goto out;
2712 }
2713
2714 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2715 error = inode_newsize_ok(inode, offset + len);
2716 if (error)
2717 goto out;
2718
2719 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2720 error = -EPERM;
2721 goto out;
2722 }
2723
2724 start = offset >> PAGE_SHIFT;
2725 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2726 /* Try to avoid a swapstorm if len is impossible to satisfy */
2727 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2728 error = -ENOSPC;
2729 goto out;
2730 }
2731
2732 shmem_falloc.waitq = NULL;
2733 shmem_falloc.start = start;
2734 shmem_falloc.next = start;
2735 shmem_falloc.nr_falloced = 0;
2736 shmem_falloc.nr_unswapped = 0;
2737 spin_lock(&inode->i_lock);
2738 inode->i_private = &shmem_falloc;
2739 spin_unlock(&inode->i_lock);
2740
2741 /*
2742 * info->fallocend is only relevant when huge pages might be
2743 * involved: to prevent split_huge_page() freeing fallocated
2744 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2745 */
2746 undo_fallocend = info->fallocend;
2747 if (info->fallocend < end)
2748 info->fallocend = end;
2749
2750 for (index = start; index < end; ) {
2751 struct page *page;
2752
2753 /*
2754 * Good, the fallocate(2) manpage permits EINTR: we may have
2755 * been interrupted because we are using up too much memory.
2756 */
2757 if (signal_pending(current))
2758 error = -EINTR;
2759 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2760 error = -ENOMEM;
2761 else
2762 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2763 if (error) {
2764 info->fallocend = undo_fallocend;
2765 /* Remove the !PageUptodate pages we added */
2766 if (index > start) {
2767 shmem_undo_range(inode,
2768 (loff_t)start << PAGE_SHIFT,
2769 ((loff_t)index << PAGE_SHIFT) - 1, true);
2770 }
2771 goto undone;
2772 }
2773
2774 index++;
2775 /*
2776 * Here is a more important optimization than it appears:
2777 * a second SGP_FALLOC on the same huge page will clear it,
2778 * making it PageUptodate and un-undoable if we fail later.
2779 */
2780 if (PageTransCompound(page)) {
2781 index = round_up(index, HPAGE_PMD_NR);
2782 /* Beware 32-bit wraparound */
2783 if (!index)
2784 index--;
2785 }
2786
2787 /*
2788 * Inform shmem_writepage() how far we have reached.
2789 * No need for lock or barrier: we have the page lock.
2790 */
2791 if (!PageUptodate(page))
2792 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2793 shmem_falloc.next = index;
2794
2795 /*
2796 * If !PageUptodate, leave it that way so that freeable pages
2797 * can be recognized if we need to rollback on error later.
2798 * But set_page_dirty so that memory pressure will swap rather
2799 * than free the pages we are allocating (and SGP_CACHE pages
2800 * might still be clean: we now need to mark those dirty too).
2801 */
2802 set_page_dirty(page);
2803 unlock_page(page);
2804 put_page(page);
2805 cond_resched();
2806 }
2807
2808 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2809 i_size_write(inode, offset + len);
2810 inode->i_ctime = current_time(inode);
2811 undone:
2812 spin_lock(&inode->i_lock);
2813 inode->i_private = NULL;
2814 spin_unlock(&inode->i_lock);
2815 out:
2816 inode_unlock(inode);
2817 return error;
2818 }
2819
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)2820 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2821 {
2822 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2823
2824 buf->f_type = TMPFS_MAGIC;
2825 buf->f_bsize = PAGE_SIZE;
2826 buf->f_namelen = NAME_MAX;
2827 if (sbinfo->max_blocks) {
2828 buf->f_blocks = sbinfo->max_blocks;
2829 buf->f_bavail =
2830 buf->f_bfree = sbinfo->max_blocks -
2831 percpu_counter_sum(&sbinfo->used_blocks);
2832 }
2833 if (sbinfo->max_inodes) {
2834 buf->f_files = sbinfo->max_inodes;
2835 buf->f_ffree = sbinfo->free_inodes;
2836 }
2837 /* else leave those fields 0 like simple_statfs */
2838
2839 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2840
2841 return 0;
2842 }
2843
2844 /*
2845 * File creation. Allocate an inode, and we're done..
2846 */
2847 static int
shmem_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2848 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2849 struct dentry *dentry, umode_t mode, dev_t dev)
2850 {
2851 struct inode *inode;
2852 int error = -ENOSPC;
2853
2854 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2855 if (inode) {
2856 error = simple_acl_create(dir, inode);
2857 if (error)
2858 goto out_iput;
2859 error = security_inode_init_security(inode, dir,
2860 &dentry->d_name,
2861 shmem_initxattrs, NULL);
2862 if (error && error != -EOPNOTSUPP)
2863 goto out_iput;
2864
2865 error = 0;
2866 dir->i_size += BOGO_DIRENT_SIZE;
2867 dir->i_ctime = dir->i_mtime = current_time(dir);
2868 d_instantiate(dentry, inode);
2869 dget(dentry); /* Extra count - pin the dentry in core */
2870 }
2871 return error;
2872 out_iput:
2873 iput(inode);
2874 return error;
2875 }
2876
2877 static int
shmem_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2878 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2879 struct dentry *dentry, umode_t mode)
2880 {
2881 struct inode *inode;
2882 int error = -ENOSPC;
2883
2884 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2885 if (inode) {
2886 error = security_inode_init_security(inode, dir,
2887 NULL,
2888 shmem_initxattrs, NULL);
2889 if (error && error != -EOPNOTSUPP)
2890 goto out_iput;
2891 error = simple_acl_create(dir, inode);
2892 if (error)
2893 goto out_iput;
2894 d_tmpfile(dentry, inode);
2895 }
2896 return error;
2897 out_iput:
2898 iput(inode);
2899 return error;
2900 }
2901
shmem_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2902 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2903 struct dentry *dentry, umode_t mode)
2904 {
2905 int error;
2906
2907 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2908 mode | S_IFDIR, 0)))
2909 return error;
2910 inc_nlink(dir);
2911 return 0;
2912 }
2913
shmem_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2914 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2915 struct dentry *dentry, umode_t mode, bool excl)
2916 {
2917 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2918 }
2919
2920 /*
2921 * Link a file..
2922 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2923 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2924 {
2925 struct inode *inode = d_inode(old_dentry);
2926 int ret = 0;
2927
2928 /*
2929 * No ordinary (disk based) filesystem counts links as inodes;
2930 * but each new link needs a new dentry, pinning lowmem, and
2931 * tmpfs dentries cannot be pruned until they are unlinked.
2932 * But if an O_TMPFILE file is linked into the tmpfs, the
2933 * first link must skip that, to get the accounting right.
2934 */
2935 if (inode->i_nlink) {
2936 ret = shmem_reserve_inode(inode->i_sb, NULL);
2937 if (ret)
2938 goto out;
2939 }
2940
2941 dir->i_size += BOGO_DIRENT_SIZE;
2942 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2943 inc_nlink(inode);
2944 ihold(inode); /* New dentry reference */
2945 dget(dentry); /* Extra pinning count for the created dentry */
2946 d_instantiate(dentry, inode);
2947 out:
2948 return ret;
2949 }
2950
shmem_unlink(struct inode * dir,struct dentry * dentry)2951 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2952 {
2953 struct inode *inode = d_inode(dentry);
2954
2955 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2956 shmem_free_inode(inode->i_sb);
2957
2958 dir->i_size -= BOGO_DIRENT_SIZE;
2959 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2960 drop_nlink(inode);
2961 dput(dentry); /* Undo the count from "create" - this does all the work */
2962 return 0;
2963 }
2964
shmem_rmdir(struct inode * dir,struct dentry * dentry)2965 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2966 {
2967 if (!simple_empty(dentry))
2968 return -ENOTEMPTY;
2969
2970 drop_nlink(d_inode(dentry));
2971 drop_nlink(dir);
2972 return shmem_unlink(dir, dentry);
2973 }
2974
shmem_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2975 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2976 {
2977 bool old_is_dir = d_is_dir(old_dentry);
2978 bool new_is_dir = d_is_dir(new_dentry);
2979
2980 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2981 if (old_is_dir) {
2982 drop_nlink(old_dir);
2983 inc_nlink(new_dir);
2984 } else {
2985 drop_nlink(new_dir);
2986 inc_nlink(old_dir);
2987 }
2988 }
2989 old_dir->i_ctime = old_dir->i_mtime =
2990 new_dir->i_ctime = new_dir->i_mtime =
2991 d_inode(old_dentry)->i_ctime =
2992 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2993
2994 return 0;
2995 }
2996
shmem_whiteout(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry)2997 static int shmem_whiteout(struct user_namespace *mnt_userns,
2998 struct inode *old_dir, struct dentry *old_dentry)
2999 {
3000 struct dentry *whiteout;
3001 int error;
3002
3003 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3004 if (!whiteout)
3005 return -ENOMEM;
3006
3007 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3008 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3009 dput(whiteout);
3010 if (error)
3011 return error;
3012
3013 /*
3014 * Cheat and hash the whiteout while the old dentry is still in
3015 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3016 *
3017 * d_lookup() will consistently find one of them at this point,
3018 * not sure which one, but that isn't even important.
3019 */
3020 d_rehash(whiteout);
3021 return 0;
3022 }
3023
3024 /*
3025 * The VFS layer already does all the dentry stuff for rename,
3026 * we just have to decrement the usage count for the target if
3027 * it exists so that the VFS layer correctly free's it when it
3028 * gets overwritten.
3029 */
shmem_rename2(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3030 static int shmem_rename2(struct user_namespace *mnt_userns,
3031 struct inode *old_dir, struct dentry *old_dentry,
3032 struct inode *new_dir, struct dentry *new_dentry,
3033 unsigned int flags)
3034 {
3035 struct inode *inode = d_inode(old_dentry);
3036 int they_are_dirs = S_ISDIR(inode->i_mode);
3037
3038 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3039 return -EINVAL;
3040
3041 if (flags & RENAME_EXCHANGE)
3042 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3043
3044 if (!simple_empty(new_dentry))
3045 return -ENOTEMPTY;
3046
3047 if (flags & RENAME_WHITEOUT) {
3048 int error;
3049
3050 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3051 if (error)
3052 return error;
3053 }
3054
3055 if (d_really_is_positive(new_dentry)) {
3056 (void) shmem_unlink(new_dir, new_dentry);
3057 if (they_are_dirs) {
3058 drop_nlink(d_inode(new_dentry));
3059 drop_nlink(old_dir);
3060 }
3061 } else if (they_are_dirs) {
3062 drop_nlink(old_dir);
3063 inc_nlink(new_dir);
3064 }
3065
3066 old_dir->i_size -= BOGO_DIRENT_SIZE;
3067 new_dir->i_size += BOGO_DIRENT_SIZE;
3068 old_dir->i_ctime = old_dir->i_mtime =
3069 new_dir->i_ctime = new_dir->i_mtime =
3070 inode->i_ctime = current_time(old_dir);
3071 return 0;
3072 }
3073
shmem_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)3074 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3075 struct dentry *dentry, const char *symname)
3076 {
3077 int error;
3078 int len;
3079 struct inode *inode;
3080 struct page *page;
3081
3082 len = strlen(symname) + 1;
3083 if (len > PAGE_SIZE)
3084 return -ENAMETOOLONG;
3085
3086 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3087 VM_NORESERVE);
3088 if (!inode)
3089 return -ENOSPC;
3090
3091 error = security_inode_init_security(inode, dir, &dentry->d_name,
3092 shmem_initxattrs, NULL);
3093 if (error && error != -EOPNOTSUPP) {
3094 iput(inode);
3095 return error;
3096 }
3097
3098 inode->i_size = len-1;
3099 if (len <= SHORT_SYMLINK_LEN) {
3100 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3101 if (!inode->i_link) {
3102 iput(inode);
3103 return -ENOMEM;
3104 }
3105 inode->i_op = &shmem_short_symlink_operations;
3106 } else {
3107 inode_nohighmem(inode);
3108 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3109 if (error) {
3110 iput(inode);
3111 return error;
3112 }
3113 inode->i_mapping->a_ops = &shmem_aops;
3114 inode->i_op = &shmem_symlink_inode_operations;
3115 memcpy(page_address(page), symname, len);
3116 SetPageUptodate(page);
3117 set_page_dirty(page);
3118 unlock_page(page);
3119 put_page(page);
3120 }
3121 dir->i_size += BOGO_DIRENT_SIZE;
3122 dir->i_ctime = dir->i_mtime = current_time(dir);
3123 d_instantiate(dentry, inode);
3124 dget(dentry);
3125 return 0;
3126 }
3127
shmem_put_link(void * arg)3128 static void shmem_put_link(void *arg)
3129 {
3130 mark_page_accessed(arg);
3131 put_page(arg);
3132 }
3133
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3134 static const char *shmem_get_link(struct dentry *dentry,
3135 struct inode *inode,
3136 struct delayed_call *done)
3137 {
3138 struct page *page = NULL;
3139 int error;
3140 if (!dentry) {
3141 page = find_get_page(inode->i_mapping, 0);
3142 if (!page)
3143 return ERR_PTR(-ECHILD);
3144 if (PageHWPoison(page) ||
3145 !PageUptodate(page)) {
3146 put_page(page);
3147 return ERR_PTR(-ECHILD);
3148 }
3149 } else {
3150 error = shmem_getpage(inode, 0, &page, SGP_READ);
3151 if (error)
3152 return ERR_PTR(error);
3153 if (!page)
3154 return ERR_PTR(-ECHILD);
3155 if (PageHWPoison(page)) {
3156 unlock_page(page);
3157 put_page(page);
3158 return ERR_PTR(-ECHILD);
3159 }
3160 unlock_page(page);
3161 }
3162 set_delayed_call(done, shmem_put_link, page);
3163 return page_address(page);
3164 }
3165
3166 #ifdef CONFIG_TMPFS_XATTR
3167 /*
3168 * Superblocks without xattr inode operations may get some security.* xattr
3169 * support from the LSM "for free". As soon as we have any other xattrs
3170 * like ACLs, we also need to implement the security.* handlers at
3171 * filesystem level, though.
3172 */
3173
3174 /*
3175 * Callback for security_inode_init_security() for acquiring xattrs.
3176 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3177 static int shmem_initxattrs(struct inode *inode,
3178 const struct xattr *xattr_array,
3179 void *fs_info)
3180 {
3181 struct shmem_inode_info *info = SHMEM_I(inode);
3182 const struct xattr *xattr;
3183 struct simple_xattr *new_xattr;
3184 size_t len;
3185
3186 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3187 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3188 if (!new_xattr)
3189 return -ENOMEM;
3190
3191 len = strlen(xattr->name) + 1;
3192 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3193 GFP_KERNEL);
3194 if (!new_xattr->name) {
3195 kvfree(new_xattr);
3196 return -ENOMEM;
3197 }
3198
3199 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3200 XATTR_SECURITY_PREFIX_LEN);
3201 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3202 xattr->name, len);
3203
3204 simple_xattr_list_add(&info->xattrs, new_xattr);
3205 }
3206
3207 return 0;
3208 }
3209
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3210 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3211 struct dentry *unused, struct inode *inode,
3212 const char *name, void *buffer, size_t size)
3213 {
3214 struct shmem_inode_info *info = SHMEM_I(inode);
3215
3216 name = xattr_full_name(handler, name);
3217 return simple_xattr_get(&info->xattrs, name, buffer, size);
3218 }
3219
shmem_xattr_handler_set(const struct xattr_handler * handler,struct user_namespace * mnt_userns,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3220 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3221 struct user_namespace *mnt_userns,
3222 struct dentry *unused, struct inode *inode,
3223 const char *name, const void *value,
3224 size_t size, int flags)
3225 {
3226 struct shmem_inode_info *info = SHMEM_I(inode);
3227
3228 name = xattr_full_name(handler, name);
3229 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3230 }
3231
3232 static const struct xattr_handler shmem_security_xattr_handler = {
3233 .prefix = XATTR_SECURITY_PREFIX,
3234 .get = shmem_xattr_handler_get,
3235 .set = shmem_xattr_handler_set,
3236 };
3237
3238 static const struct xattr_handler shmem_trusted_xattr_handler = {
3239 .prefix = XATTR_TRUSTED_PREFIX,
3240 .get = shmem_xattr_handler_get,
3241 .set = shmem_xattr_handler_set,
3242 };
3243
3244 static const struct xattr_handler *shmem_xattr_handlers[] = {
3245 #ifdef CONFIG_TMPFS_POSIX_ACL
3246 &posix_acl_access_xattr_handler,
3247 &posix_acl_default_xattr_handler,
3248 #endif
3249 &shmem_security_xattr_handler,
3250 &shmem_trusted_xattr_handler,
3251 NULL
3252 };
3253
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3254 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3255 {
3256 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3257 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3258 }
3259 #endif /* CONFIG_TMPFS_XATTR */
3260
3261 static const struct inode_operations shmem_short_symlink_operations = {
3262 .get_link = simple_get_link,
3263 #ifdef CONFIG_TMPFS_XATTR
3264 .listxattr = shmem_listxattr,
3265 #endif
3266 };
3267
3268 static const struct inode_operations shmem_symlink_inode_operations = {
3269 .get_link = shmem_get_link,
3270 #ifdef CONFIG_TMPFS_XATTR
3271 .listxattr = shmem_listxattr,
3272 #endif
3273 };
3274
shmem_get_parent(struct dentry * child)3275 static struct dentry *shmem_get_parent(struct dentry *child)
3276 {
3277 return ERR_PTR(-ESTALE);
3278 }
3279
shmem_match(struct inode * ino,void * vfh)3280 static int shmem_match(struct inode *ino, void *vfh)
3281 {
3282 __u32 *fh = vfh;
3283 __u64 inum = fh[2];
3284 inum = (inum << 32) | fh[1];
3285 return ino->i_ino == inum && fh[0] == ino->i_generation;
3286 }
3287
3288 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3289 static struct dentry *shmem_find_alias(struct inode *inode)
3290 {
3291 struct dentry *alias = d_find_alias(inode);
3292
3293 return alias ?: d_find_any_alias(inode);
3294 }
3295
3296
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3297 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3298 struct fid *fid, int fh_len, int fh_type)
3299 {
3300 struct inode *inode;
3301 struct dentry *dentry = NULL;
3302 u64 inum;
3303
3304 if (fh_len < 3)
3305 return NULL;
3306
3307 inum = fid->raw[2];
3308 inum = (inum << 32) | fid->raw[1];
3309
3310 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3311 shmem_match, fid->raw);
3312 if (inode) {
3313 dentry = shmem_find_alias(inode);
3314 iput(inode);
3315 }
3316
3317 return dentry;
3318 }
3319
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3320 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3321 struct inode *parent)
3322 {
3323 if (*len < 3) {
3324 *len = 3;
3325 return FILEID_INVALID;
3326 }
3327
3328 if (inode_unhashed(inode)) {
3329 /* Unfortunately insert_inode_hash is not idempotent,
3330 * so as we hash inodes here rather than at creation
3331 * time, we need a lock to ensure we only try
3332 * to do it once
3333 */
3334 static DEFINE_SPINLOCK(lock);
3335 spin_lock(&lock);
3336 if (inode_unhashed(inode))
3337 __insert_inode_hash(inode,
3338 inode->i_ino + inode->i_generation);
3339 spin_unlock(&lock);
3340 }
3341
3342 fh[0] = inode->i_generation;
3343 fh[1] = inode->i_ino;
3344 fh[2] = ((__u64)inode->i_ino) >> 32;
3345
3346 *len = 3;
3347 return 1;
3348 }
3349
3350 static const struct export_operations shmem_export_ops = {
3351 .get_parent = shmem_get_parent,
3352 .encode_fh = shmem_encode_fh,
3353 .fh_to_dentry = shmem_fh_to_dentry,
3354 };
3355
3356 enum shmem_param {
3357 Opt_gid,
3358 Opt_huge,
3359 Opt_mode,
3360 Opt_mpol,
3361 Opt_nr_blocks,
3362 Opt_nr_inodes,
3363 Opt_size,
3364 Opt_uid,
3365 Opt_inode32,
3366 Opt_inode64,
3367 };
3368
3369 static const struct constant_table shmem_param_enums_huge[] = {
3370 {"never", SHMEM_HUGE_NEVER },
3371 {"always", SHMEM_HUGE_ALWAYS },
3372 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3373 {"advise", SHMEM_HUGE_ADVISE },
3374 {}
3375 };
3376
3377 const struct fs_parameter_spec shmem_fs_parameters[] = {
3378 fsparam_u32 ("gid", Opt_gid),
3379 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3380 fsparam_u32oct("mode", Opt_mode),
3381 fsparam_string("mpol", Opt_mpol),
3382 fsparam_string("nr_blocks", Opt_nr_blocks),
3383 fsparam_string("nr_inodes", Opt_nr_inodes),
3384 fsparam_string("size", Opt_size),
3385 fsparam_u32 ("uid", Opt_uid),
3386 fsparam_flag ("inode32", Opt_inode32),
3387 fsparam_flag ("inode64", Opt_inode64),
3388 {}
3389 };
3390
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3391 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3392 {
3393 struct shmem_options *ctx = fc->fs_private;
3394 struct fs_parse_result result;
3395 unsigned long long size;
3396 char *rest;
3397 int opt;
3398 kuid_t kuid;
3399 kgid_t kgid;
3400
3401 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3402 if (opt < 0)
3403 return opt;
3404
3405 switch (opt) {
3406 case Opt_size:
3407 size = memparse(param->string, &rest);
3408 if (*rest == '%') {
3409 size <<= PAGE_SHIFT;
3410 size *= totalram_pages();
3411 do_div(size, 100);
3412 rest++;
3413 }
3414 if (*rest)
3415 goto bad_value;
3416 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3417 ctx->seen |= SHMEM_SEEN_BLOCKS;
3418 break;
3419 case Opt_nr_blocks:
3420 ctx->blocks = memparse(param->string, &rest);
3421 if (*rest)
3422 goto bad_value;
3423 ctx->seen |= SHMEM_SEEN_BLOCKS;
3424 break;
3425 case Opt_nr_inodes:
3426 ctx->inodes = memparse(param->string, &rest);
3427 if (*rest)
3428 goto bad_value;
3429 ctx->seen |= SHMEM_SEEN_INODES;
3430 break;
3431 case Opt_mode:
3432 ctx->mode = result.uint_32 & 07777;
3433 break;
3434 case Opt_uid:
3435 kuid = make_kuid(current_user_ns(), result.uint_32);
3436 if (!uid_valid(kuid))
3437 goto bad_value;
3438
3439 /*
3440 * The requested uid must be representable in the
3441 * filesystem's idmapping.
3442 */
3443 if (!kuid_has_mapping(fc->user_ns, kuid))
3444 goto bad_value;
3445
3446 ctx->uid = kuid;
3447 break;
3448 case Opt_gid:
3449 kgid = make_kgid(current_user_ns(), result.uint_32);
3450 if (!gid_valid(kgid))
3451 goto bad_value;
3452
3453 /*
3454 * The requested gid must be representable in the
3455 * filesystem's idmapping.
3456 */
3457 if (!kgid_has_mapping(fc->user_ns, kgid))
3458 goto bad_value;
3459
3460 ctx->gid = kgid;
3461 break;
3462 case Opt_huge:
3463 ctx->huge = result.uint_32;
3464 if (ctx->huge != SHMEM_HUGE_NEVER &&
3465 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3466 has_transparent_hugepage()))
3467 goto unsupported_parameter;
3468 ctx->seen |= SHMEM_SEEN_HUGE;
3469 break;
3470 case Opt_mpol:
3471 if (IS_ENABLED(CONFIG_NUMA)) {
3472 mpol_put(ctx->mpol);
3473 ctx->mpol = NULL;
3474 if (mpol_parse_str(param->string, &ctx->mpol))
3475 goto bad_value;
3476 break;
3477 }
3478 goto unsupported_parameter;
3479 case Opt_inode32:
3480 ctx->full_inums = false;
3481 ctx->seen |= SHMEM_SEEN_INUMS;
3482 break;
3483 case Opt_inode64:
3484 if (sizeof(ino_t) < 8) {
3485 return invalfc(fc,
3486 "Cannot use inode64 with <64bit inums in kernel\n");
3487 }
3488 ctx->full_inums = true;
3489 ctx->seen |= SHMEM_SEEN_INUMS;
3490 break;
3491 }
3492 return 0;
3493
3494 unsupported_parameter:
3495 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3496 bad_value:
3497 return invalfc(fc, "Bad value for '%s'", param->key);
3498 }
3499
shmem_parse_options(struct fs_context * fc,void * data)3500 static int shmem_parse_options(struct fs_context *fc, void *data)
3501 {
3502 char *options = data;
3503
3504 if (options) {
3505 int err = security_sb_eat_lsm_opts(options, &fc->security);
3506 if (err)
3507 return err;
3508 }
3509
3510 while (options != NULL) {
3511 char *this_char = options;
3512 for (;;) {
3513 /*
3514 * NUL-terminate this option: unfortunately,
3515 * mount options form a comma-separated list,
3516 * but mpol's nodelist may also contain commas.
3517 */
3518 options = strchr(options, ',');
3519 if (options == NULL)
3520 break;
3521 options++;
3522 if (!isdigit(*options)) {
3523 options[-1] = '\0';
3524 break;
3525 }
3526 }
3527 if (*this_char) {
3528 char *value = strchr(this_char, '=');
3529 size_t len = 0;
3530 int err;
3531
3532 if (value) {
3533 *value++ = '\0';
3534 len = strlen(value);
3535 }
3536 err = vfs_parse_fs_string(fc, this_char, value, len);
3537 if (err < 0)
3538 return err;
3539 }
3540 }
3541 return 0;
3542 }
3543
3544 /*
3545 * Reconfigure a shmem filesystem.
3546 *
3547 * Note that we disallow change from limited->unlimited blocks/inodes while any
3548 * are in use; but we must separately disallow unlimited->limited, because in
3549 * that case we have no record of how much is already in use.
3550 */
shmem_reconfigure(struct fs_context * fc)3551 static int shmem_reconfigure(struct fs_context *fc)
3552 {
3553 struct shmem_options *ctx = fc->fs_private;
3554 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3555 unsigned long inodes;
3556 struct mempolicy *mpol = NULL;
3557 const char *err;
3558
3559 raw_spin_lock(&sbinfo->stat_lock);
3560 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3561 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3562 if (!sbinfo->max_blocks) {
3563 err = "Cannot retroactively limit size";
3564 goto out;
3565 }
3566 if (percpu_counter_compare(&sbinfo->used_blocks,
3567 ctx->blocks) > 0) {
3568 err = "Too small a size for current use";
3569 goto out;
3570 }
3571 }
3572 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3573 if (!sbinfo->max_inodes) {
3574 err = "Cannot retroactively limit inodes";
3575 goto out;
3576 }
3577 if (ctx->inodes < inodes) {
3578 err = "Too few inodes for current use";
3579 goto out;
3580 }
3581 }
3582
3583 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3584 sbinfo->next_ino > UINT_MAX) {
3585 err = "Current inum too high to switch to 32-bit inums";
3586 goto out;
3587 }
3588
3589 if (ctx->seen & SHMEM_SEEN_HUGE)
3590 sbinfo->huge = ctx->huge;
3591 if (ctx->seen & SHMEM_SEEN_INUMS)
3592 sbinfo->full_inums = ctx->full_inums;
3593 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3594 sbinfo->max_blocks = ctx->blocks;
3595 if (ctx->seen & SHMEM_SEEN_INODES) {
3596 sbinfo->max_inodes = ctx->inodes;
3597 sbinfo->free_inodes = ctx->inodes - inodes;
3598 }
3599
3600 /*
3601 * Preserve previous mempolicy unless mpol remount option was specified.
3602 */
3603 if (ctx->mpol) {
3604 mpol = sbinfo->mpol;
3605 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3606 ctx->mpol = NULL;
3607 }
3608 raw_spin_unlock(&sbinfo->stat_lock);
3609 mpol_put(mpol);
3610 return 0;
3611 out:
3612 raw_spin_unlock(&sbinfo->stat_lock);
3613 return invalfc(fc, "%s", err);
3614 }
3615
shmem_show_options(struct seq_file * seq,struct dentry * root)3616 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3617 {
3618 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3619
3620 if (sbinfo->max_blocks != shmem_default_max_blocks())
3621 seq_printf(seq, ",size=%luk",
3622 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3623 if (sbinfo->max_inodes != shmem_default_max_inodes())
3624 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3625 if (sbinfo->mode != (0777 | S_ISVTX))
3626 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3627 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3628 seq_printf(seq, ",uid=%u",
3629 from_kuid_munged(&init_user_ns, sbinfo->uid));
3630 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3631 seq_printf(seq, ",gid=%u",
3632 from_kgid_munged(&init_user_ns, sbinfo->gid));
3633
3634 /*
3635 * Showing inode{64,32} might be useful even if it's the system default,
3636 * since then people don't have to resort to checking both here and
3637 * /proc/config.gz to confirm 64-bit inums were successfully applied
3638 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3639 *
3640 * We hide it when inode64 isn't the default and we are using 32-bit
3641 * inodes, since that probably just means the feature isn't even under
3642 * consideration.
3643 *
3644 * As such:
3645 *
3646 * +-----------------+-----------------+
3647 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3648 * +------------------+-----------------+-----------------+
3649 * | full_inums=true | show | show |
3650 * | full_inums=false | show | hide |
3651 * +------------------+-----------------+-----------------+
3652 *
3653 */
3654 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3655 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3657 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3658 if (sbinfo->huge)
3659 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3660 #endif
3661 shmem_show_mpol(seq, sbinfo->mpol);
3662 return 0;
3663 }
3664
3665 #endif /* CONFIG_TMPFS */
3666
shmem_put_super(struct super_block * sb)3667 static void shmem_put_super(struct super_block *sb)
3668 {
3669 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3670
3671 free_percpu(sbinfo->ino_batch);
3672 percpu_counter_destroy(&sbinfo->used_blocks);
3673 mpol_put(sbinfo->mpol);
3674 kfree(sbinfo);
3675 sb->s_fs_info = NULL;
3676 }
3677
shmem_fill_super(struct super_block * sb,struct fs_context * fc)3678 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3679 {
3680 struct shmem_options *ctx = fc->fs_private;
3681 struct inode *inode;
3682 struct shmem_sb_info *sbinfo;
3683
3684 /* Round up to L1_CACHE_BYTES to resist false sharing */
3685 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3686 L1_CACHE_BYTES), GFP_KERNEL);
3687 if (!sbinfo)
3688 return -ENOMEM;
3689
3690 sb->s_fs_info = sbinfo;
3691
3692 #ifdef CONFIG_TMPFS
3693 /*
3694 * Per default we only allow half of the physical ram per
3695 * tmpfs instance, limiting inodes to one per page of lowmem;
3696 * but the internal instance is left unlimited.
3697 */
3698 if (!(sb->s_flags & SB_KERNMOUNT)) {
3699 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3700 ctx->blocks = shmem_default_max_blocks();
3701 if (!(ctx->seen & SHMEM_SEEN_INODES))
3702 ctx->inodes = shmem_default_max_inodes();
3703 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3704 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3705 } else {
3706 sb->s_flags |= SB_NOUSER;
3707 }
3708 sb->s_export_op = &shmem_export_ops;
3709 sb->s_flags |= SB_NOSEC;
3710 #else
3711 sb->s_flags |= SB_NOUSER;
3712 #endif
3713 sbinfo->max_blocks = ctx->blocks;
3714 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3715 if (sb->s_flags & SB_KERNMOUNT) {
3716 sbinfo->ino_batch = alloc_percpu(ino_t);
3717 if (!sbinfo->ino_batch)
3718 goto failed;
3719 }
3720 sbinfo->uid = ctx->uid;
3721 sbinfo->gid = ctx->gid;
3722 sbinfo->full_inums = ctx->full_inums;
3723 sbinfo->mode = ctx->mode;
3724 sbinfo->huge = ctx->huge;
3725 sbinfo->mpol = ctx->mpol;
3726 ctx->mpol = NULL;
3727
3728 raw_spin_lock_init(&sbinfo->stat_lock);
3729 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3730 goto failed;
3731 spin_lock_init(&sbinfo->shrinklist_lock);
3732 INIT_LIST_HEAD(&sbinfo->shrinklist);
3733
3734 sb->s_maxbytes = MAX_LFS_FILESIZE;
3735 sb->s_blocksize = PAGE_SIZE;
3736 sb->s_blocksize_bits = PAGE_SHIFT;
3737 sb->s_magic = TMPFS_MAGIC;
3738 sb->s_op = &shmem_ops;
3739 sb->s_time_gran = 1;
3740 #ifdef CONFIG_TMPFS_XATTR
3741 sb->s_xattr = shmem_xattr_handlers;
3742 #endif
3743 #ifdef CONFIG_TMPFS_POSIX_ACL
3744 sb->s_flags |= SB_POSIXACL;
3745 #endif
3746 uuid_gen(&sb->s_uuid);
3747
3748 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3749 if (!inode)
3750 goto failed;
3751 inode->i_uid = sbinfo->uid;
3752 inode->i_gid = sbinfo->gid;
3753 sb->s_root = d_make_root(inode);
3754 if (!sb->s_root)
3755 goto failed;
3756 return 0;
3757
3758 failed:
3759 shmem_put_super(sb);
3760 return -ENOMEM;
3761 }
3762
shmem_get_tree(struct fs_context * fc)3763 static int shmem_get_tree(struct fs_context *fc)
3764 {
3765 return get_tree_nodev(fc, shmem_fill_super);
3766 }
3767
shmem_free_fc(struct fs_context * fc)3768 static void shmem_free_fc(struct fs_context *fc)
3769 {
3770 struct shmem_options *ctx = fc->fs_private;
3771
3772 if (ctx) {
3773 mpol_put(ctx->mpol);
3774 kfree(ctx);
3775 }
3776 }
3777
3778 static const struct fs_context_operations shmem_fs_context_ops = {
3779 .free = shmem_free_fc,
3780 .get_tree = shmem_get_tree,
3781 #ifdef CONFIG_TMPFS
3782 .parse_monolithic = shmem_parse_options,
3783 .parse_param = shmem_parse_one,
3784 .reconfigure = shmem_reconfigure,
3785 #endif
3786 };
3787
3788 static struct kmem_cache *shmem_inode_cachep;
3789
shmem_alloc_inode(struct super_block * sb)3790 static struct inode *shmem_alloc_inode(struct super_block *sb)
3791 {
3792 struct shmem_inode_info *info;
3793 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3794 if (!info)
3795 return NULL;
3796 return &info->vfs_inode;
3797 }
3798
shmem_free_in_core_inode(struct inode * inode)3799 static void shmem_free_in_core_inode(struct inode *inode)
3800 {
3801 if (S_ISLNK(inode->i_mode))
3802 kfree(inode->i_link);
3803 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3804 }
3805
shmem_destroy_inode(struct inode * inode)3806 static void shmem_destroy_inode(struct inode *inode)
3807 {
3808 if (S_ISREG(inode->i_mode))
3809 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3810 }
3811
shmem_init_inode(void * foo)3812 static void shmem_init_inode(void *foo)
3813 {
3814 struct shmem_inode_info *info = foo;
3815 inode_init_once(&info->vfs_inode);
3816 }
3817
shmem_init_inodecache(void)3818 static void shmem_init_inodecache(void)
3819 {
3820 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3821 sizeof(struct shmem_inode_info),
3822 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3823 }
3824
shmem_destroy_inodecache(void)3825 static void shmem_destroy_inodecache(void)
3826 {
3827 kmem_cache_destroy(shmem_inode_cachep);
3828 }
3829
3830 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)3831 static int shmem_error_remove_page(struct address_space *mapping,
3832 struct page *page)
3833 {
3834 return 0;
3835 }
3836
3837 const struct address_space_operations shmem_aops = {
3838 .writepage = shmem_writepage,
3839 .set_page_dirty = __set_page_dirty_no_writeback,
3840 #ifdef CONFIG_TMPFS
3841 .write_begin = shmem_write_begin,
3842 .write_end = shmem_write_end,
3843 #endif
3844 #ifdef CONFIG_MIGRATION
3845 .migratepage = migrate_page,
3846 #endif
3847 .error_remove_page = shmem_error_remove_page,
3848 };
3849 EXPORT_SYMBOL(shmem_aops);
3850
3851 static const struct file_operations shmem_file_operations = {
3852 .mmap = shmem_mmap,
3853 .get_unmapped_area = shmem_get_unmapped_area,
3854 #ifdef CONFIG_TMPFS
3855 .llseek = shmem_file_llseek,
3856 .read_iter = shmem_file_read_iter,
3857 .write_iter = generic_file_write_iter,
3858 .fsync = noop_fsync,
3859 .splice_read = generic_file_splice_read,
3860 .splice_write = iter_file_splice_write,
3861 .fallocate = shmem_fallocate,
3862 #endif
3863 };
3864
3865 static const struct inode_operations shmem_inode_operations = {
3866 .getattr = shmem_getattr,
3867 .setattr = shmem_setattr,
3868 #ifdef CONFIG_TMPFS_XATTR
3869 .listxattr = shmem_listxattr,
3870 .set_acl = simple_set_acl,
3871 #endif
3872 };
3873
3874 static const struct inode_operations shmem_dir_inode_operations = {
3875 #ifdef CONFIG_TMPFS
3876 .create = shmem_create,
3877 .lookup = simple_lookup,
3878 .link = shmem_link,
3879 .unlink = shmem_unlink,
3880 .symlink = shmem_symlink,
3881 .mkdir = shmem_mkdir,
3882 .rmdir = shmem_rmdir,
3883 .mknod = shmem_mknod,
3884 .rename = shmem_rename2,
3885 .tmpfile = shmem_tmpfile,
3886 #endif
3887 #ifdef CONFIG_TMPFS_XATTR
3888 .listxattr = shmem_listxattr,
3889 #endif
3890 #ifdef CONFIG_TMPFS_POSIX_ACL
3891 .setattr = shmem_setattr,
3892 .set_acl = simple_set_acl,
3893 #endif
3894 };
3895
3896 static const struct inode_operations shmem_special_inode_operations = {
3897 #ifdef CONFIG_TMPFS_XATTR
3898 .listxattr = shmem_listxattr,
3899 #endif
3900 #ifdef CONFIG_TMPFS_POSIX_ACL
3901 .setattr = shmem_setattr,
3902 .set_acl = simple_set_acl,
3903 #endif
3904 };
3905
3906 static const struct super_operations shmem_ops = {
3907 .alloc_inode = shmem_alloc_inode,
3908 .free_inode = shmem_free_in_core_inode,
3909 .destroy_inode = shmem_destroy_inode,
3910 #ifdef CONFIG_TMPFS
3911 .statfs = shmem_statfs,
3912 .show_options = shmem_show_options,
3913 #endif
3914 .evict_inode = shmem_evict_inode,
3915 .drop_inode = generic_delete_inode,
3916 .put_super = shmem_put_super,
3917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3918 .nr_cached_objects = shmem_unused_huge_count,
3919 .free_cached_objects = shmem_unused_huge_scan,
3920 #endif
3921 };
3922
3923 static const struct vm_operations_struct shmem_vm_ops = {
3924 .fault = shmem_fault,
3925 .map_pages = filemap_map_pages,
3926 #ifdef CONFIG_NUMA
3927 .set_policy = shmem_set_policy,
3928 .get_policy = shmem_get_policy,
3929 #endif
3930 };
3931
shmem_init_fs_context(struct fs_context * fc)3932 int shmem_init_fs_context(struct fs_context *fc)
3933 {
3934 struct shmem_options *ctx;
3935
3936 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3937 if (!ctx)
3938 return -ENOMEM;
3939
3940 ctx->mode = 0777 | S_ISVTX;
3941 ctx->uid = current_fsuid();
3942 ctx->gid = current_fsgid();
3943
3944 fc->fs_private = ctx;
3945 fc->ops = &shmem_fs_context_ops;
3946 return 0;
3947 }
3948
3949 static struct file_system_type shmem_fs_type = {
3950 .owner = THIS_MODULE,
3951 .name = "tmpfs",
3952 .init_fs_context = shmem_init_fs_context,
3953 #ifdef CONFIG_TMPFS
3954 .parameters = shmem_fs_parameters,
3955 #endif
3956 .kill_sb = kill_litter_super,
3957 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3958 };
3959
shmem_init(void)3960 int __init shmem_init(void)
3961 {
3962 int error;
3963
3964 shmem_init_inodecache();
3965
3966 error = register_filesystem(&shmem_fs_type);
3967 if (error) {
3968 pr_err("Could not register tmpfs\n");
3969 goto out2;
3970 }
3971
3972 shm_mnt = kern_mount(&shmem_fs_type);
3973 if (IS_ERR(shm_mnt)) {
3974 error = PTR_ERR(shm_mnt);
3975 pr_err("Could not kern_mount tmpfs\n");
3976 goto out1;
3977 }
3978
3979 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3981 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3982 else
3983 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3984 #endif
3985 return 0;
3986
3987 out1:
3988 unregister_filesystem(&shmem_fs_type);
3989 out2:
3990 shmem_destroy_inodecache();
3991 shm_mnt = ERR_PTR(error);
3992 return error;
3993 }
3994
3995 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3996 static ssize_t shmem_enabled_show(struct kobject *kobj,
3997 struct kobj_attribute *attr, char *buf)
3998 {
3999 static const int values[] = {
4000 SHMEM_HUGE_ALWAYS,
4001 SHMEM_HUGE_WITHIN_SIZE,
4002 SHMEM_HUGE_ADVISE,
4003 SHMEM_HUGE_NEVER,
4004 SHMEM_HUGE_DENY,
4005 SHMEM_HUGE_FORCE,
4006 };
4007 int len = 0;
4008 int i;
4009
4010 for (i = 0; i < ARRAY_SIZE(values); i++) {
4011 len += sysfs_emit_at(buf, len,
4012 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4013 i ? " " : "",
4014 shmem_format_huge(values[i]));
4015 }
4016
4017 len += sysfs_emit_at(buf, len, "\n");
4018
4019 return len;
4020 }
4021
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4022 static ssize_t shmem_enabled_store(struct kobject *kobj,
4023 struct kobj_attribute *attr, const char *buf, size_t count)
4024 {
4025 char tmp[16];
4026 int huge;
4027
4028 if (count + 1 > sizeof(tmp))
4029 return -EINVAL;
4030 memcpy(tmp, buf, count);
4031 tmp[count] = '\0';
4032 if (count && tmp[count - 1] == '\n')
4033 tmp[count - 1] = '\0';
4034
4035 huge = shmem_parse_huge(tmp);
4036 if (huge == -EINVAL)
4037 return -EINVAL;
4038 if (!has_transparent_hugepage() &&
4039 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4040 return -EINVAL;
4041
4042 shmem_huge = huge;
4043 if (shmem_huge > SHMEM_HUGE_DENY)
4044 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4045 return count;
4046 }
4047
4048 struct kobj_attribute shmem_enabled_attr =
4049 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4050 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4051
4052 #else /* !CONFIG_SHMEM */
4053
4054 /*
4055 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4056 *
4057 * This is intended for small system where the benefits of the full
4058 * shmem code (swap-backed and resource-limited) are outweighed by
4059 * their complexity. On systems without swap this code should be
4060 * effectively equivalent, but much lighter weight.
4061 */
4062
4063 static struct file_system_type shmem_fs_type = {
4064 .name = "tmpfs",
4065 .init_fs_context = ramfs_init_fs_context,
4066 .parameters = ramfs_fs_parameters,
4067 .kill_sb = ramfs_kill_sb,
4068 .fs_flags = FS_USERNS_MOUNT,
4069 };
4070
shmem_init(void)4071 int __init shmem_init(void)
4072 {
4073 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4074
4075 shm_mnt = kern_mount(&shmem_fs_type);
4076 BUG_ON(IS_ERR(shm_mnt));
4077
4078 return 0;
4079 }
4080
shmem_unuse(unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)4081 int shmem_unuse(unsigned int type, bool frontswap,
4082 unsigned long *fs_pages_to_unuse)
4083 {
4084 return 0;
4085 }
4086
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4087 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4088 {
4089 return 0;
4090 }
4091
shmem_unlock_mapping(struct address_space * mapping)4092 void shmem_unlock_mapping(struct address_space *mapping)
4093 {
4094 }
4095
4096 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4097 unsigned long shmem_get_unmapped_area(struct file *file,
4098 unsigned long addr, unsigned long len,
4099 unsigned long pgoff, unsigned long flags)
4100 {
4101 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4102 }
4103 #endif
4104
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4105 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4106 {
4107 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4108 }
4109 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4110
4111 #define shmem_vm_ops generic_file_vm_ops
4112 #define shmem_file_operations ramfs_file_operations
4113 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4114 #define shmem_acct_size(flags, size) 0
4115 #define shmem_unacct_size(flags, size) do {} while (0)
4116
4117 #endif /* CONFIG_SHMEM */
4118
4119 /* common code */
4120
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4121 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4122 unsigned long flags, unsigned int i_flags)
4123 {
4124 struct inode *inode;
4125 struct file *res;
4126
4127 if (IS_ERR(mnt))
4128 return ERR_CAST(mnt);
4129
4130 if (size < 0 || size > MAX_LFS_FILESIZE)
4131 return ERR_PTR(-EINVAL);
4132
4133 if (shmem_acct_size(flags, size))
4134 return ERR_PTR(-ENOMEM);
4135
4136 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4137 flags);
4138 if (unlikely(!inode)) {
4139 shmem_unacct_size(flags, size);
4140 return ERR_PTR(-ENOSPC);
4141 }
4142 inode->i_flags |= i_flags;
4143 inode->i_size = size;
4144 clear_nlink(inode); /* It is unlinked */
4145 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4146 if (!IS_ERR(res))
4147 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4148 &shmem_file_operations);
4149 if (IS_ERR(res))
4150 iput(inode);
4151 return res;
4152 }
4153
4154 /**
4155 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4156 * kernel internal. There will be NO LSM permission checks against the
4157 * underlying inode. So users of this interface must do LSM checks at a
4158 * higher layer. The users are the big_key and shm implementations. LSM
4159 * checks are provided at the key or shm level rather than the inode.
4160 * @name: name for dentry (to be seen in /proc/<pid>/maps
4161 * @size: size to be set for the file
4162 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4163 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4164 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4165 {
4166 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4167 }
4168
4169 /**
4170 * shmem_file_setup - get an unlinked file living in tmpfs
4171 * @name: name for dentry (to be seen in /proc/<pid>/maps
4172 * @size: size to be set for the file
4173 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4174 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4175 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4176 {
4177 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4178 }
4179 EXPORT_SYMBOL_GPL(shmem_file_setup);
4180
4181 /**
4182 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4183 * @mnt: the tmpfs mount where the file will be created
4184 * @name: name for dentry (to be seen in /proc/<pid>/maps
4185 * @size: size to be set for the file
4186 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4187 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4188 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4189 loff_t size, unsigned long flags)
4190 {
4191 return __shmem_file_setup(mnt, name, size, flags, 0);
4192 }
4193 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4194
4195 /**
4196 * shmem_zero_setup - setup a shared anonymous mapping
4197 * @vma: the vma to be mmapped is prepared by do_mmap
4198 */
shmem_zero_setup(struct vm_area_struct * vma)4199 int shmem_zero_setup(struct vm_area_struct *vma)
4200 {
4201 struct file *file;
4202 loff_t size = vma->vm_end - vma->vm_start;
4203
4204 /*
4205 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4206 * between XFS directory reading and selinux: since this file is only
4207 * accessible to the user through its mapping, use S_PRIVATE flag to
4208 * bypass file security, in the same way as shmem_kernel_file_setup().
4209 */
4210 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4211 if (IS_ERR(file))
4212 return PTR_ERR(file);
4213
4214 if (vma->vm_file)
4215 fput(vma->vm_file);
4216 vma->vm_file = file;
4217 vma->vm_ops = &shmem_vm_ops;
4218
4219 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4220 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4221 (vma->vm_end & HPAGE_PMD_MASK)) {
4222 khugepaged_enter(vma, vma->vm_flags);
4223 }
4224
4225 return 0;
4226 }
4227
4228 /**
4229 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4230 * @mapping: the page's address_space
4231 * @index: the page index
4232 * @gfp: the page allocator flags to use if allocating
4233 *
4234 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4235 * with any new page allocations done using the specified allocation flags.
4236 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4237 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4238 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4239 *
4240 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4241 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4242 */
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4243 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4244 pgoff_t index, gfp_t gfp)
4245 {
4246 #ifdef CONFIG_SHMEM
4247 struct inode *inode = mapping->host;
4248 struct page *page;
4249 int error;
4250
4251 BUG_ON(!shmem_mapping(mapping));
4252 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4253 gfp, NULL, NULL, NULL);
4254 if (error)
4255 return ERR_PTR(error);
4256
4257 unlock_page(page);
4258 if (PageHWPoison(page)) {
4259 put_page(page);
4260 return ERR_PTR(-EIO);
4261 }
4262
4263 return page;
4264 #else
4265 /*
4266 * The tiny !SHMEM case uses ramfs without swap
4267 */
4268 return read_cache_page_gfp(mapping, index, gfp);
4269 #endif
4270 }
4271 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4272
reclaim_shmem_address_space(struct address_space * mapping)4273 int reclaim_shmem_address_space(struct address_space *mapping)
4274 {
4275 #ifdef CONFIG_SHMEM
4276 pgoff_t start = 0;
4277 struct page *page;
4278 LIST_HEAD(page_list);
4279 XA_STATE(xas, &mapping->i_pages, start);
4280
4281 if (!shmem_mapping(mapping))
4282 return -EINVAL;
4283
4284 lru_add_drain();
4285
4286 rcu_read_lock();
4287 xas_for_each(&xas, page, ULONG_MAX) {
4288 if (xas_retry(&xas, page))
4289 continue;
4290 if (xa_is_value(page))
4291 continue;
4292 if (isolate_lru_page(page))
4293 continue;
4294
4295 list_add(&page->lru, &page_list);
4296
4297 if (need_resched()) {
4298 xas_pause(&xas);
4299 cond_resched_rcu();
4300 }
4301 }
4302 rcu_read_unlock();
4303
4304 return reclaim_pages(&page_list);
4305 #else
4306 return 0;
4307 #endif
4308 }
4309 EXPORT_SYMBOL_GPL(reclaim_shmem_address_space);
4310