1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59 /* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108
109 #include "internal.h"
110
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
114
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117
118 /* Highest zone. An specific allocation for a zone below that is not
119 policied. */
120 enum zone_type policy_zone = 0;
121
122 /*
123 * run-time system-wide default policy => local allocation
124 */
125 static struct mempolicy default_policy = {
126 .refcnt = ATOMIC_INIT(1), /* never free it */
127 .mode = MPOL_LOCAL,
128 };
129
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131
132 /**
133 * numa_map_to_online_node - Find closest online node
134 * @node: Node id to start the search
135 *
136 * Lookup the next closest node by distance if @nid is not online.
137 */
numa_map_to_online_node(int node)138 int numa_map_to_online_node(int node)
139 {
140 int min_dist = INT_MAX, dist, n, min_node;
141
142 if (node == NUMA_NO_NODE || node_online(node))
143 return node;
144
145 min_node = node;
146 for_each_online_node(n) {
147 dist = node_distance(node, n);
148 if (dist < min_dist) {
149 min_dist = dist;
150 min_node = n;
151 }
152 }
153
154 return min_node;
155 }
156 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
157
get_task_policy(struct task_struct * p)158 struct mempolicy *get_task_policy(struct task_struct *p)
159 {
160 struct mempolicy *pol = p->mempolicy;
161 int node;
162
163 if (pol)
164 return pol;
165
166 node = numa_node_id();
167 if (node != NUMA_NO_NODE) {
168 pol = &preferred_node_policy[node];
169 /* preferred_node_policy is not initialised early in boot */
170 if (pol->mode)
171 return pol;
172 }
173
174 return &default_policy;
175 }
176
177 static const struct mempolicy_operations {
178 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
179 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
180 } mpol_ops[MPOL_MAX];
181
mpol_store_user_nodemask(const struct mempolicy * pol)182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
183 {
184 return pol->flags & MPOL_MODE_FLAGS;
185 }
186
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
188 const nodemask_t *rel)
189 {
190 nodemask_t tmp;
191 nodes_fold(tmp, *orig, nodes_weight(*rel));
192 nodes_onto(*ret, tmp, *rel);
193 }
194
mpol_new_nodemask(struct mempolicy * pol,const nodemask_t * nodes)195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
196 {
197 if (nodes_empty(*nodes))
198 return -EINVAL;
199 pol->nodes = *nodes;
200 return 0;
201 }
202
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (nodes_empty(*nodes))
206 return -EINVAL;
207
208 nodes_clear(pol->nodes);
209 node_set(first_node(*nodes), pol->nodes);
210 return 0;
211 }
212
213 /*
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags.
217 *
218 * Must be called holding task's alloc_lock to protect task's mems_allowed
219 * and mempolicy. May also be called holding the mmap_lock for write.
220 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)221 static int mpol_set_nodemask(struct mempolicy *pol,
222 const nodemask_t *nodes, struct nodemask_scratch *nsc)
223 {
224 int ret;
225
226 /*
227 * Default (pol==NULL) resp. local memory policies are not a
228 * subject of any remapping. They also do not need any special
229 * constructor.
230 */
231 if (!pol || pol->mode == MPOL_LOCAL)
232 return 0;
233
234 /* Check N_MEMORY */
235 nodes_and(nsc->mask1,
236 cpuset_current_mems_allowed, node_states[N_MEMORY]);
237
238 VM_BUG_ON(!nodes);
239
240 if (pol->flags & MPOL_F_RELATIVE_NODES)
241 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
242 else
243 nodes_and(nsc->mask2, *nodes, nsc->mask1);
244
245 if (mpol_store_user_nodemask(pol))
246 pol->w.user_nodemask = *nodes;
247 else
248 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
249
250 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283
284 mode = MPOL_LOCAL;
285 }
286 } else if (mode == MPOL_LOCAL) {
287 if (!nodes_empty(*nodes) ||
288 (flags & MPOL_F_STATIC_NODES) ||
289 (flags & MPOL_F_RELATIVE_NODES))
290 return ERR_PTR(-EINVAL);
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
299
300 return policy;
301 }
302
303 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)304 void __mpol_put(struct mempolicy *p)
305 {
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
309 }
310
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
312 {
313 }
314
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
325 *nodes);
326 pol->w.cpuset_mems_allowed = *nodes;
327 }
328
329 if (nodes_empty(tmp))
330 tmp = *nodes;
331
332 pol->nodes = tmp;
333 }
334
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)335 static void mpol_rebind_preferred(struct mempolicy *pol,
336 const nodemask_t *nodes)
337 {
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340
341 /*
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 *
344 * Per-vma policies are protected by mmap_lock. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
347 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 if (!pol || pol->mode == MPOL_LOCAL)
351 return;
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
355
356 mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358
359 /*
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
362 *
363 * Called with task's alloc_lock held.
364 */
365
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 mpol_rebind_policy(tsk->mempolicy, new);
369 }
370
371 /*
372 * Rebind each vma in mm to new nodemask.
373 *
374 * Call holding a reference to mm. Takes mm->mmap_lock during call.
375 */
376
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 struct vm_area_struct *vma;
380
381 mmap_write_lock(mm);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 mmap_write_unlock(mm);
385 }
386
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
390 },
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_nodemask,
393 .rebind = mpol_rebind_nodemask,
394 },
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
398 },
399 [MPOL_BIND] = {
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
402 },
403 [MPOL_LOCAL] = {
404 .rebind = mpol_rebind_default,
405 },
406 [MPOL_PREFERRED_MANY] = {
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_preferred,
409 },
410 };
411
412 static int migrate_page_add(struct page *page, struct list_head *pagelist,
413 unsigned long flags);
414
415 struct queue_pages {
416 struct list_head *pagelist;
417 unsigned long flags;
418 nodemask_t *nmask;
419 unsigned long start;
420 unsigned long end;
421 struct vm_area_struct *first;
422 };
423
424 /*
425 * Check if the page's nid is in qp->nmask.
426 *
427 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
428 * in the invert of qp->nmask.
429 */
queue_pages_required(struct page * page,struct queue_pages * qp)430 static inline bool queue_pages_required(struct page *page,
431 struct queue_pages *qp)
432 {
433 int nid = page_to_nid(page);
434 unsigned long flags = qp->flags;
435
436 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
437 }
438
439 /*
440 * queue_pages_pmd() has four possible return values:
441 * 0 - pages are placed on the right node or queued successfully, or
442 * special page is met, i.e. huge zero page.
443 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
444 * specified.
445 * 2 - THP was split.
446 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
447 * existing page was already on a node that does not follow the
448 * policy.
449 */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
451 unsigned long end, struct mm_walk *walk)
452 __releases(ptl)
453 {
454 int ret = 0;
455 struct page *page;
456 struct queue_pages *qp = walk->private;
457 unsigned long flags;
458
459 if (unlikely(is_pmd_migration_entry(*pmd))) {
460 ret = -EIO;
461 goto unlock;
462 }
463 page = pmd_page(*pmd);
464 if (is_huge_zero_page(page)) {
465 spin_unlock(ptl);
466 walk->action = ACTION_CONTINUE;
467 goto out;
468 }
469 if (!queue_pages_required(page, qp))
470 goto unlock;
471
472 flags = qp->flags;
473 /* go to thp migration */
474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 if (!vma_migratable(walk->vma) ||
476 migrate_page_add(page, qp->pagelist, flags)) {
477 ret = 1;
478 goto unlock;
479 }
480 } else
481 ret = -EIO;
482 unlock:
483 spin_unlock(ptl);
484 out:
485 return ret;
486 }
487
488 /*
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
491 *
492 * queue_pages_pte_range() has three possible return values:
493 * 0 - pages are placed on the right node or queued successfully, or
494 * special page is met, i.e. zero page.
495 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
496 * specified.
497 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
498 * on a node that does not follow the policy.
499 */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
501 unsigned long end, struct mm_walk *walk)
502 {
503 struct vm_area_struct *vma = walk->vma;
504 struct page *page;
505 struct queue_pages *qp = walk->private;
506 unsigned long flags = qp->flags;
507 int ret;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
510 spinlock_t *ptl;
511
512 ptl = pmd_trans_huge_lock(pmd, vma);
513 if (ptl) {
514 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
515 if (ret != 2)
516 return ret;
517 }
518 /* THP was split, fall through to pte walk */
519
520 if (pmd_trans_unstable(pmd))
521 return 0;
522
523 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
526 continue;
527 page = vm_normal_page(vma, addr, *pte);
528 if (!page)
529 continue;
530 /*
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
533 */
534 if (PageReserved(page))
535 continue;
536 if (!queue_pages_required(page, qp))
537 continue;
538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 /* MPOL_MF_STRICT must be specified if we get here */
540 if (!vma_migratable(vma)) {
541 has_unmovable = true;
542 break;
543 }
544
545 /*
546 * Do not abort immediately since there may be
547 * temporary off LRU pages in the range. Still
548 * need migrate other LRU pages.
549 */
550 if (migrate_page_add(page, qp->pagelist, flags))
551 has_unmovable = true;
552 } else
553 break;
554 }
555 pte_unmap_unlock(mapped_pte, ptl);
556 cond_resched();
557
558 if (has_unmovable)
559 return 1;
560
561 return addr != end ? -EIO : 0;
562 }
563
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
565 unsigned long addr, unsigned long end,
566 struct mm_walk *walk)
567 {
568 int ret = 0;
569 #ifdef CONFIG_HUGETLB_PAGE
570 struct queue_pages *qp = walk->private;
571 unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 struct page *page;
573 spinlock_t *ptl;
574 pte_t entry;
575
576 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 entry = huge_ptep_get(pte);
578 if (!pte_present(entry))
579 goto unlock;
580 page = pte_page(entry);
581 if (!queue_pages_required(page, qp))
582 goto unlock;
583
584 if (flags == MPOL_MF_STRICT) {
585 /*
586 * STRICT alone means only detecting misplaced page and no
587 * need to further check other vma.
588 */
589 ret = -EIO;
590 goto unlock;
591 }
592
593 if (!vma_migratable(walk->vma)) {
594 /*
595 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 * stopped walking current vma.
597 * Detecting misplaced page but allow migrating pages which
598 * have been queued.
599 */
600 ret = 1;
601 goto unlock;
602 }
603
604 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
605 if (flags & (MPOL_MF_MOVE_ALL) ||
606 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
607 !hugetlb_pmd_shared(pte))) {
608 if (isolate_hugetlb(page, qp->pagelist) &&
609 (flags & MPOL_MF_STRICT))
610 /*
611 * Failed to isolate page but allow migrating pages
612 * which have been queued.
613 */
614 ret = 1;
615 }
616 unlock:
617 spin_unlock(ptl);
618 #else
619 BUG();
620 #endif
621 return ret;
622 }
623
624 #ifdef CONFIG_NUMA_BALANCING
625 /*
626 * This is used to mark a range of virtual addresses to be inaccessible.
627 * These are later cleared by a NUMA hinting fault. Depending on these
628 * faults, pages may be migrated for better NUMA placement.
629 *
630 * This is assuming that NUMA faults are handled using PROT_NONE. If
631 * an architecture makes a different choice, it will need further
632 * changes to the core.
633 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)634 unsigned long change_prot_numa(struct vm_area_struct *vma,
635 unsigned long addr, unsigned long end)
636 {
637 int nr_updated;
638
639 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
640 if (nr_updated)
641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642
643 return nr_updated;
644 }
645 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)646 static unsigned long change_prot_numa(struct vm_area_struct *vma,
647 unsigned long addr, unsigned long end)
648 {
649 return 0;
650 }
651 #endif /* CONFIG_NUMA_BALANCING */
652
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)653 static int queue_pages_test_walk(unsigned long start, unsigned long end,
654 struct mm_walk *walk)
655 {
656 struct vm_area_struct *vma = walk->vma;
657 struct queue_pages *qp = walk->private;
658 unsigned long endvma = vma->vm_end;
659 unsigned long flags = qp->flags;
660
661 /* range check first */
662 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
663
664 if (!qp->first) {
665 qp->first = vma;
666 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
667 (qp->start < vma->vm_start))
668 /* hole at head side of range */
669 return -EFAULT;
670 }
671 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
672 ((vma->vm_end < qp->end) &&
673 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
674 /* hole at middle or tail of range */
675 return -EFAULT;
676
677 /*
678 * Need check MPOL_MF_STRICT to return -EIO if possible
679 * regardless of vma_migratable
680 */
681 if (!vma_migratable(vma) &&
682 !(flags & MPOL_MF_STRICT))
683 return 1;
684
685 if (endvma > end)
686 endvma = end;
687
688 if (flags & MPOL_MF_LAZY) {
689 /* Similar to task_numa_work, skip inaccessible VMAs */
690 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
691 !(vma->vm_flags & VM_MIXEDMAP))
692 change_prot_numa(vma, start, endvma);
693 return 1;
694 }
695
696 /* queue pages from current vma */
697 if (flags & MPOL_MF_VALID)
698 return 0;
699 return 1;
700 }
701
702 static const struct mm_walk_ops queue_pages_walk_ops = {
703 .hugetlb_entry = queue_pages_hugetlb,
704 .pmd_entry = queue_pages_pte_range,
705 .test_walk = queue_pages_test_walk,
706 };
707
708 /*
709 * Walk through page tables and collect pages to be migrated.
710 *
711 * If pages found in a given range are on a set of nodes (determined by
712 * @nodes and @flags,) it's isolated and queued to the pagelist which is
713 * passed via @private.
714 *
715 * queue_pages_range() has three possible return values:
716 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
717 * specified.
718 * 0 - queue pages successfully or no misplaced page.
719 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
720 * memory range specified by nodemask and maxnode points outside
721 * your accessible address space (-EFAULT)
722 */
723 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)724 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
725 nodemask_t *nodes, unsigned long flags,
726 struct list_head *pagelist)
727 {
728 int err;
729 struct queue_pages qp = {
730 .pagelist = pagelist,
731 .flags = flags,
732 .nmask = nodes,
733 .start = start,
734 .end = end,
735 .first = NULL,
736 };
737
738 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
739
740 if (!qp.first)
741 /* whole range in hole */
742 err = -EFAULT;
743
744 return err;
745 }
746
747 /*
748 * Apply policy to a single VMA
749 * This must be called with the mmap_lock held for writing.
750 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)751 static int vma_replace_policy(struct vm_area_struct *vma,
752 struct mempolicy *pol)
753 {
754 int err;
755 struct mempolicy *old;
756 struct mempolicy *new;
757
758 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
759 vma->vm_start, vma->vm_end, vma->vm_pgoff,
760 vma->vm_ops, vma->vm_file,
761 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
762
763 new = mpol_dup(pol);
764 if (IS_ERR(new))
765 return PTR_ERR(new);
766
767 if (vma->vm_ops && vma->vm_ops->set_policy) {
768 err = vma->vm_ops->set_policy(vma, new);
769 if (err)
770 goto err_out;
771 }
772
773 old = vma->vm_policy;
774 vma->vm_policy = new; /* protected by mmap_lock */
775 mpol_put(old);
776
777 return 0;
778 err_out:
779 mpol_put(new);
780 return err;
781 }
782
783 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)784 static int mbind_range(struct mm_struct *mm, unsigned long start,
785 unsigned long end, struct mempolicy *new_pol)
786 {
787 struct vm_area_struct *prev;
788 struct vm_area_struct *vma;
789 int err = 0;
790 pgoff_t pgoff;
791 unsigned long vmstart;
792 unsigned long vmend;
793
794 vma = find_vma(mm, start);
795 VM_BUG_ON(!vma);
796
797 prev = vma->vm_prev;
798 if (start > vma->vm_start)
799 prev = vma;
800
801 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
802 vmstart = max(start, vma->vm_start);
803 vmend = min(end, vma->vm_end);
804
805 if (mpol_equal(vma_policy(vma), new_pol))
806 continue;
807
808 pgoff = vma->vm_pgoff +
809 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
810 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
811 vma->anon_vma, vma->vm_file, pgoff,
812 new_pol, vma->vm_userfaultfd_ctx,
813 anon_vma_name(vma));
814 if (prev) {
815 vma = prev;
816 goto replace;
817 }
818 if (vma->vm_start != vmstart) {
819 err = split_vma(vma->vm_mm, vma, vmstart, 1);
820 if (err)
821 goto out;
822 }
823 if (vma->vm_end != vmend) {
824 err = split_vma(vma->vm_mm, vma, vmend, 0);
825 if (err)
826 goto out;
827 }
828 replace:
829 err = vma_replace_policy(vma, new_pol);
830 if (err)
831 goto out;
832 }
833
834 out:
835 return err;
836 }
837
838 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)839 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
840 nodemask_t *nodes)
841 {
842 struct mempolicy *new, *old;
843 NODEMASK_SCRATCH(scratch);
844 int ret;
845
846 if (!scratch)
847 return -ENOMEM;
848
849 new = mpol_new(mode, flags, nodes);
850 if (IS_ERR(new)) {
851 ret = PTR_ERR(new);
852 goto out;
853 }
854
855 ret = mpol_set_nodemask(new, nodes, scratch);
856 if (ret) {
857 mpol_put(new);
858 goto out;
859 }
860 task_lock(current);
861 old = current->mempolicy;
862 current->mempolicy = new;
863 if (new && new->mode == MPOL_INTERLEAVE)
864 current->il_prev = MAX_NUMNODES-1;
865 task_unlock(current);
866 mpol_put(old);
867 ret = 0;
868 out:
869 NODEMASK_SCRATCH_FREE(scratch);
870 return ret;
871 }
872
873 /*
874 * Return nodemask for policy for get_mempolicy() query
875 *
876 * Called with task's alloc_lock held
877 */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)878 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
879 {
880 nodes_clear(*nodes);
881 if (p == &default_policy)
882 return;
883
884 switch (p->mode) {
885 case MPOL_BIND:
886 case MPOL_INTERLEAVE:
887 case MPOL_PREFERRED:
888 case MPOL_PREFERRED_MANY:
889 *nodes = p->nodes;
890 break;
891 case MPOL_LOCAL:
892 /* return empty node mask for local allocation */
893 break;
894 default:
895 BUG();
896 }
897 }
898
lookup_node(struct mm_struct * mm,unsigned long addr)899 static int lookup_node(struct mm_struct *mm, unsigned long addr)
900 {
901 struct page *p = NULL;
902 int err;
903
904 int locked = 1;
905 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
906 if (err > 0) {
907 err = page_to_nid(p);
908 put_page(p);
909 }
910 if (locked)
911 mmap_read_unlock(mm);
912 return err;
913 }
914
915 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)916 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
917 unsigned long addr, unsigned long flags)
918 {
919 int err;
920 struct mm_struct *mm = current->mm;
921 struct vm_area_struct *vma = NULL;
922 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
923
924 if (flags &
925 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
926 return -EINVAL;
927
928 if (flags & MPOL_F_MEMS_ALLOWED) {
929 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
930 return -EINVAL;
931 *policy = 0; /* just so it's initialized */
932 task_lock(current);
933 *nmask = cpuset_current_mems_allowed;
934 task_unlock(current);
935 return 0;
936 }
937
938 if (flags & MPOL_F_ADDR) {
939 /*
940 * Do NOT fall back to task policy if the
941 * vma/shared policy at addr is NULL. We
942 * want to return MPOL_DEFAULT in this case.
943 */
944 mmap_read_lock(mm);
945 vma = vma_lookup(mm, addr);
946 if (!vma) {
947 mmap_read_unlock(mm);
948 return -EFAULT;
949 }
950 if (vma->vm_ops && vma->vm_ops->get_policy)
951 pol = vma->vm_ops->get_policy(vma, addr);
952 else
953 pol = vma->vm_policy;
954 } else if (addr)
955 return -EINVAL;
956
957 if (!pol)
958 pol = &default_policy; /* indicates default behavior */
959
960 if (flags & MPOL_F_NODE) {
961 if (flags & MPOL_F_ADDR) {
962 /*
963 * Take a refcount on the mpol, lookup_node()
964 * will drop the mmap_lock, so after calling
965 * lookup_node() only "pol" remains valid, "vma"
966 * is stale.
967 */
968 pol_refcount = pol;
969 vma = NULL;
970 mpol_get(pol);
971 err = lookup_node(mm, addr);
972 if (err < 0)
973 goto out;
974 *policy = err;
975 } else if (pol == current->mempolicy &&
976 pol->mode == MPOL_INTERLEAVE) {
977 *policy = next_node_in(current->il_prev, pol->nodes);
978 } else {
979 err = -EINVAL;
980 goto out;
981 }
982 } else {
983 *policy = pol == &default_policy ? MPOL_DEFAULT :
984 pol->mode;
985 /*
986 * Internal mempolicy flags must be masked off before exposing
987 * the policy to userspace.
988 */
989 *policy |= (pol->flags & MPOL_MODE_FLAGS);
990 }
991
992 err = 0;
993 if (nmask) {
994 if (mpol_store_user_nodemask(pol)) {
995 *nmask = pol->w.user_nodemask;
996 } else {
997 task_lock(current);
998 get_policy_nodemask(pol, nmask);
999 task_unlock(current);
1000 }
1001 }
1002
1003 out:
1004 mpol_cond_put(pol);
1005 if (vma)
1006 mmap_read_unlock(mm);
1007 if (pol_refcount)
1008 mpol_put(pol_refcount);
1009 return err;
1010 }
1011
1012 #ifdef CONFIG_MIGRATION
1013 /*
1014 * page migration, thp tail pages can be passed.
1015 */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1016 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1017 unsigned long flags)
1018 {
1019 struct page *head = compound_head(page);
1020 /*
1021 * Avoid migrating a page that is shared with others.
1022 */
1023 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1024 if (!isolate_lru_page(head)) {
1025 list_add_tail(&head->lru, pagelist);
1026 mod_node_page_state(page_pgdat(head),
1027 NR_ISOLATED_ANON + page_is_file_lru(head),
1028 thp_nr_pages(head));
1029 } else if (flags & MPOL_MF_STRICT) {
1030 /*
1031 * Non-movable page may reach here. And, there may be
1032 * temporary off LRU pages or non-LRU movable pages.
1033 * Treat them as unmovable pages since they can't be
1034 * isolated, so they can't be moved at the moment. It
1035 * should return -EIO for this case too.
1036 */
1037 return -EIO;
1038 }
1039 }
1040
1041 return 0;
1042 }
1043
1044 /*
1045 * Migrate pages from one node to a target node.
1046 * Returns error or the number of pages not migrated.
1047 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1048 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1049 int flags)
1050 {
1051 nodemask_t nmask;
1052 LIST_HEAD(pagelist);
1053 int err = 0;
1054 struct migration_target_control mtc = {
1055 .nid = dest,
1056 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1057 };
1058
1059 nodes_clear(nmask);
1060 node_set(source, nmask);
1061
1062 /*
1063 * This does not "check" the range but isolates all pages that
1064 * need migration. Between passing in the full user address
1065 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1066 */
1067 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1068 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1069 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1070
1071 if (!list_empty(&pagelist)) {
1072 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1073 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1074 if (err)
1075 putback_movable_pages(&pagelist);
1076 }
1077
1078 return err;
1079 }
1080
1081 /*
1082 * Move pages between the two nodesets so as to preserve the physical
1083 * layout as much as possible.
1084 *
1085 * Returns the number of page that could not be moved.
1086 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1087 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1088 const nodemask_t *to, int flags)
1089 {
1090 int busy = 0;
1091 int err = 0;
1092 nodemask_t tmp;
1093
1094 lru_cache_disable();
1095
1096 mmap_read_lock(mm);
1097
1098 /*
1099 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1100 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1101 * bit in 'tmp', and return that <source, dest> pair for migration.
1102 * The pair of nodemasks 'to' and 'from' define the map.
1103 *
1104 * If no pair of bits is found that way, fallback to picking some
1105 * pair of 'source' and 'dest' bits that are not the same. If the
1106 * 'source' and 'dest' bits are the same, this represents a node
1107 * that will be migrating to itself, so no pages need move.
1108 *
1109 * If no bits are left in 'tmp', or if all remaining bits left
1110 * in 'tmp' correspond to the same bit in 'to', return false
1111 * (nothing left to migrate).
1112 *
1113 * This lets us pick a pair of nodes to migrate between, such that
1114 * if possible the dest node is not already occupied by some other
1115 * source node, minimizing the risk of overloading the memory on a
1116 * node that would happen if we migrated incoming memory to a node
1117 * before migrating outgoing memory source that same node.
1118 *
1119 * A single scan of tmp is sufficient. As we go, we remember the
1120 * most recent <s, d> pair that moved (s != d). If we find a pair
1121 * that not only moved, but what's better, moved to an empty slot
1122 * (d is not set in tmp), then we break out then, with that pair.
1123 * Otherwise when we finish scanning from_tmp, we at least have the
1124 * most recent <s, d> pair that moved. If we get all the way through
1125 * the scan of tmp without finding any node that moved, much less
1126 * moved to an empty node, then there is nothing left worth migrating.
1127 */
1128
1129 tmp = *from;
1130 while (!nodes_empty(tmp)) {
1131 int s, d;
1132 int source = NUMA_NO_NODE;
1133 int dest = 0;
1134
1135 for_each_node_mask(s, tmp) {
1136
1137 /*
1138 * do_migrate_pages() tries to maintain the relative
1139 * node relationship of the pages established between
1140 * threads and memory areas.
1141 *
1142 * However if the number of source nodes is not equal to
1143 * the number of destination nodes we can not preserve
1144 * this node relative relationship. In that case, skip
1145 * copying memory from a node that is in the destination
1146 * mask.
1147 *
1148 * Example: [2,3,4] -> [3,4,5] moves everything.
1149 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1150 */
1151
1152 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1153 (node_isset(s, *to)))
1154 continue;
1155
1156 d = node_remap(s, *from, *to);
1157 if (s == d)
1158 continue;
1159
1160 source = s; /* Node moved. Memorize */
1161 dest = d;
1162
1163 /* dest not in remaining from nodes? */
1164 if (!node_isset(dest, tmp))
1165 break;
1166 }
1167 if (source == NUMA_NO_NODE)
1168 break;
1169
1170 node_clear(source, tmp);
1171 err = migrate_to_node(mm, source, dest, flags);
1172 if (err > 0)
1173 busy += err;
1174 if (err < 0)
1175 break;
1176 }
1177 mmap_read_unlock(mm);
1178
1179 lru_cache_enable();
1180 if (err < 0)
1181 return err;
1182 return busy;
1183
1184 }
1185
1186 /*
1187 * Allocate a new page for page migration based on vma policy.
1188 * Start by assuming the page is mapped by the same vma as contains @start.
1189 * Search forward from there, if not. N.B., this assumes that the
1190 * list of pages handed to migrate_pages()--which is how we get here--
1191 * is in virtual address order.
1192 */
new_page(struct page * page,unsigned long start)1193 static struct page *new_page(struct page *page, unsigned long start)
1194 {
1195 struct vm_area_struct *vma;
1196 unsigned long address;
1197
1198 vma = find_vma(current->mm, start);
1199 while (vma) {
1200 address = page_address_in_vma(page, vma);
1201 if (address != -EFAULT)
1202 break;
1203 vma = vma->vm_next;
1204 }
1205
1206 if (PageHuge(page)) {
1207 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1208 vma, address);
1209 } else if (PageTransHuge(page)) {
1210 struct page *thp;
1211
1212 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1213 HPAGE_PMD_ORDER);
1214 if (!thp)
1215 return NULL;
1216 prep_transhuge_page(thp);
1217 return thp;
1218 }
1219 /*
1220 * if !vma, alloc_page_vma() will use task or system default policy
1221 */
1222 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1223 vma, address);
1224 }
1225 #else
1226
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1227 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1228 unsigned long flags)
1229 {
1230 return -EIO;
1231 }
1232
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1233 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1234 const nodemask_t *to, int flags)
1235 {
1236 return -ENOSYS;
1237 }
1238
new_page(struct page * page,unsigned long start)1239 static struct page *new_page(struct page *page, unsigned long start)
1240 {
1241 return NULL;
1242 }
1243 #endif
1244
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1245 static long do_mbind(unsigned long start, unsigned long len,
1246 unsigned short mode, unsigned short mode_flags,
1247 nodemask_t *nmask, unsigned long flags)
1248 {
1249 struct mm_struct *mm = current->mm;
1250 struct mempolicy *new;
1251 unsigned long end;
1252 int err;
1253 int ret;
1254 LIST_HEAD(pagelist);
1255
1256 if (flags & ~(unsigned long)MPOL_MF_VALID)
1257 return -EINVAL;
1258 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1259 return -EPERM;
1260
1261 if (start & ~PAGE_MASK)
1262 return -EINVAL;
1263
1264 if (mode == MPOL_DEFAULT)
1265 flags &= ~MPOL_MF_STRICT;
1266
1267 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1268 end = start + len;
1269
1270 if (end < start)
1271 return -EINVAL;
1272 if (end == start)
1273 return 0;
1274
1275 new = mpol_new(mode, mode_flags, nmask);
1276 if (IS_ERR(new))
1277 return PTR_ERR(new);
1278
1279 if (flags & MPOL_MF_LAZY)
1280 new->flags |= MPOL_F_MOF;
1281
1282 /*
1283 * If we are using the default policy then operation
1284 * on discontinuous address spaces is okay after all
1285 */
1286 if (!new)
1287 flags |= MPOL_MF_DISCONTIG_OK;
1288
1289 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1290 start, start + len, mode, mode_flags,
1291 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1292
1293 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1294
1295 lru_cache_disable();
1296 }
1297 {
1298 NODEMASK_SCRATCH(scratch);
1299 if (scratch) {
1300 mmap_write_lock(mm);
1301 err = mpol_set_nodemask(new, nmask, scratch);
1302 if (err)
1303 mmap_write_unlock(mm);
1304 } else
1305 err = -ENOMEM;
1306 NODEMASK_SCRATCH_FREE(scratch);
1307 }
1308 if (err)
1309 goto mpol_out;
1310
1311 ret = queue_pages_range(mm, start, end, nmask,
1312 flags | MPOL_MF_INVERT, &pagelist);
1313
1314 if (ret < 0) {
1315 err = ret;
1316 goto up_out;
1317 }
1318
1319 err = mbind_range(mm, start, end, new);
1320
1321 if (!err) {
1322 int nr_failed = 0;
1323
1324 if (!list_empty(&pagelist)) {
1325 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1326 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1327 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1328 if (nr_failed)
1329 putback_movable_pages(&pagelist);
1330 }
1331
1332 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1333 err = -EIO;
1334 } else {
1335 up_out:
1336 if (!list_empty(&pagelist))
1337 putback_movable_pages(&pagelist);
1338 }
1339
1340 mmap_write_unlock(mm);
1341 mpol_out:
1342 mpol_put(new);
1343 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1344 lru_cache_enable();
1345 return err;
1346 }
1347
1348 /*
1349 * User space interface with variable sized bitmaps for nodelists.
1350 */
get_bitmap(unsigned long * mask,const unsigned long __user * nmask,unsigned long maxnode)1351 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1352 unsigned long maxnode)
1353 {
1354 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1355 int ret;
1356
1357 if (in_compat_syscall())
1358 ret = compat_get_bitmap(mask,
1359 (const compat_ulong_t __user *)nmask,
1360 maxnode);
1361 else
1362 ret = copy_from_user(mask, nmask,
1363 nlongs * sizeof(unsigned long));
1364
1365 if (ret)
1366 return -EFAULT;
1367
1368 if (maxnode % BITS_PER_LONG)
1369 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1370
1371 return 0;
1372 }
1373
1374 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1375 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1376 unsigned long maxnode)
1377 {
1378 --maxnode;
1379 nodes_clear(*nodes);
1380 if (maxnode == 0 || !nmask)
1381 return 0;
1382 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1383 return -EINVAL;
1384
1385 /*
1386 * When the user specified more nodes than supported just check
1387 * if the non supported part is all zero, one word at a time,
1388 * starting at the end.
1389 */
1390 while (maxnode > MAX_NUMNODES) {
1391 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1392 unsigned long t;
1393
1394 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1395 return -EFAULT;
1396
1397 if (maxnode - bits >= MAX_NUMNODES) {
1398 maxnode -= bits;
1399 } else {
1400 maxnode = MAX_NUMNODES;
1401 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1402 }
1403 if (t)
1404 return -EINVAL;
1405 }
1406
1407 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1408 }
1409
1410 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1411 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1412 nodemask_t *nodes)
1413 {
1414 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1415 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1416 bool compat = in_compat_syscall();
1417
1418 if (compat)
1419 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1420
1421 if (copy > nbytes) {
1422 if (copy > PAGE_SIZE)
1423 return -EINVAL;
1424 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1425 return -EFAULT;
1426 copy = nbytes;
1427 maxnode = nr_node_ids;
1428 }
1429
1430 if (compat)
1431 return compat_put_bitmap((compat_ulong_t __user *)mask,
1432 nodes_addr(*nodes), maxnode);
1433
1434 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1435 }
1436
1437 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
sanitize_mpol_flags(int * mode,unsigned short * flags)1438 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1439 {
1440 *flags = *mode & MPOL_MODE_FLAGS;
1441 *mode &= ~MPOL_MODE_FLAGS;
1442
1443 if ((unsigned int)(*mode) >= MPOL_MAX)
1444 return -EINVAL;
1445 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1446 return -EINVAL;
1447 if (*flags & MPOL_F_NUMA_BALANCING) {
1448 if (*mode != MPOL_BIND)
1449 return -EINVAL;
1450 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1451 }
1452 return 0;
1453 }
1454
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1455 static long kernel_mbind(unsigned long start, unsigned long len,
1456 unsigned long mode, const unsigned long __user *nmask,
1457 unsigned long maxnode, unsigned int flags)
1458 {
1459 unsigned short mode_flags;
1460 nodemask_t nodes;
1461 int lmode = mode;
1462 int err;
1463
1464 start = untagged_addr(start);
1465 err = sanitize_mpol_flags(&lmode, &mode_flags);
1466 if (err)
1467 return err;
1468
1469 err = get_nodes(&nodes, nmask, maxnode);
1470 if (err)
1471 return err;
1472
1473 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1474 }
1475
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1476 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1477 unsigned long, mode, const unsigned long __user *, nmask,
1478 unsigned long, maxnode, unsigned int, flags)
1479 {
1480 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1481 }
1482
1483 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1484 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1485 unsigned long maxnode)
1486 {
1487 unsigned short mode_flags;
1488 nodemask_t nodes;
1489 int lmode = mode;
1490 int err;
1491
1492 err = sanitize_mpol_flags(&lmode, &mode_flags);
1493 if (err)
1494 return err;
1495
1496 err = get_nodes(&nodes, nmask, maxnode);
1497 if (err)
1498 return err;
1499
1500 return do_set_mempolicy(lmode, mode_flags, &nodes);
1501 }
1502
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1503 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1504 unsigned long, maxnode)
1505 {
1506 return kernel_set_mempolicy(mode, nmask, maxnode);
1507 }
1508
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1509 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1510 const unsigned long __user *old_nodes,
1511 const unsigned long __user *new_nodes)
1512 {
1513 struct mm_struct *mm = NULL;
1514 struct task_struct *task;
1515 nodemask_t task_nodes;
1516 int err;
1517 nodemask_t *old;
1518 nodemask_t *new;
1519 NODEMASK_SCRATCH(scratch);
1520
1521 if (!scratch)
1522 return -ENOMEM;
1523
1524 old = &scratch->mask1;
1525 new = &scratch->mask2;
1526
1527 err = get_nodes(old, old_nodes, maxnode);
1528 if (err)
1529 goto out;
1530
1531 err = get_nodes(new, new_nodes, maxnode);
1532 if (err)
1533 goto out;
1534
1535 /* Find the mm_struct */
1536 rcu_read_lock();
1537 task = pid ? find_task_by_vpid(pid) : current;
1538 if (!task) {
1539 rcu_read_unlock();
1540 err = -ESRCH;
1541 goto out;
1542 }
1543 get_task_struct(task);
1544
1545 err = -EINVAL;
1546
1547 /*
1548 * Check if this process has the right to modify the specified process.
1549 * Use the regular "ptrace_may_access()" checks.
1550 */
1551 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1552 rcu_read_unlock();
1553 err = -EPERM;
1554 goto out_put;
1555 }
1556 rcu_read_unlock();
1557
1558 task_nodes = cpuset_mems_allowed(task);
1559 /* Is the user allowed to access the target nodes? */
1560 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1561 err = -EPERM;
1562 goto out_put;
1563 }
1564
1565 task_nodes = cpuset_mems_allowed(current);
1566 nodes_and(*new, *new, task_nodes);
1567 if (nodes_empty(*new))
1568 goto out_put;
1569
1570 err = security_task_movememory(task);
1571 if (err)
1572 goto out_put;
1573
1574 mm = get_task_mm(task);
1575 put_task_struct(task);
1576
1577 if (!mm) {
1578 err = -EINVAL;
1579 goto out;
1580 }
1581
1582 err = do_migrate_pages(mm, old, new,
1583 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1584
1585 mmput(mm);
1586 out:
1587 NODEMASK_SCRATCH_FREE(scratch);
1588
1589 return err;
1590
1591 out_put:
1592 put_task_struct(task);
1593 goto out;
1594
1595 }
1596
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1597 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1598 const unsigned long __user *, old_nodes,
1599 const unsigned long __user *, new_nodes)
1600 {
1601 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1602 }
1603
1604
1605 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1606 static int kernel_get_mempolicy(int __user *policy,
1607 unsigned long __user *nmask,
1608 unsigned long maxnode,
1609 unsigned long addr,
1610 unsigned long flags)
1611 {
1612 int err;
1613 int pval;
1614 nodemask_t nodes;
1615
1616 if (nmask != NULL && maxnode < nr_node_ids)
1617 return -EINVAL;
1618
1619 addr = untagged_addr(addr);
1620
1621 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1622
1623 if (err)
1624 return err;
1625
1626 if (policy && put_user(pval, policy))
1627 return -EFAULT;
1628
1629 if (nmask)
1630 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1631
1632 return err;
1633 }
1634
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1635 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1636 unsigned long __user *, nmask, unsigned long, maxnode,
1637 unsigned long, addr, unsigned long, flags)
1638 {
1639 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1640 }
1641
vma_migratable(struct vm_area_struct * vma)1642 bool vma_migratable(struct vm_area_struct *vma)
1643 {
1644 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1645 return false;
1646
1647 /*
1648 * DAX device mappings require predictable access latency, so avoid
1649 * incurring periodic faults.
1650 */
1651 if (vma_is_dax(vma))
1652 return false;
1653
1654 if (is_vm_hugetlb_page(vma) &&
1655 !hugepage_migration_supported(hstate_vma(vma)))
1656 return false;
1657
1658 /*
1659 * Migration allocates pages in the highest zone. If we cannot
1660 * do so then migration (at least from node to node) is not
1661 * possible.
1662 */
1663 if (vma->vm_file &&
1664 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1665 < policy_zone)
1666 return false;
1667 return true;
1668 }
1669
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1670 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1671 unsigned long addr)
1672 {
1673 struct mempolicy *pol = NULL;
1674
1675 if (vma) {
1676 if (vma->vm_ops && vma->vm_ops->get_policy) {
1677 pol = vma->vm_ops->get_policy(vma, addr);
1678 } else if (vma->vm_policy) {
1679 pol = vma->vm_policy;
1680
1681 /*
1682 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1683 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1684 * count on these policies which will be dropped by
1685 * mpol_cond_put() later
1686 */
1687 if (mpol_needs_cond_ref(pol))
1688 mpol_get(pol);
1689 }
1690 }
1691
1692 return pol;
1693 }
1694
1695 /*
1696 * get_vma_policy(@vma, @addr)
1697 * @vma: virtual memory area whose policy is sought
1698 * @addr: address in @vma for shared policy lookup
1699 *
1700 * Returns effective policy for a VMA at specified address.
1701 * Falls back to current->mempolicy or system default policy, as necessary.
1702 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1703 * count--added by the get_policy() vm_op, as appropriate--to protect against
1704 * freeing by another task. It is the caller's responsibility to free the
1705 * extra reference for shared policies.
1706 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1707 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1708 unsigned long addr)
1709 {
1710 struct mempolicy *pol = __get_vma_policy(vma, addr);
1711
1712 if (!pol)
1713 pol = get_task_policy(current);
1714
1715 return pol;
1716 }
1717
vma_policy_mof(struct vm_area_struct * vma)1718 bool vma_policy_mof(struct vm_area_struct *vma)
1719 {
1720 struct mempolicy *pol;
1721
1722 if (vma->vm_ops && vma->vm_ops->get_policy) {
1723 bool ret = false;
1724
1725 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1726 if (pol && (pol->flags & MPOL_F_MOF))
1727 ret = true;
1728 mpol_cond_put(pol);
1729
1730 return ret;
1731 }
1732
1733 pol = vma->vm_policy;
1734 if (!pol)
1735 pol = get_task_policy(current);
1736
1737 return pol->flags & MPOL_F_MOF;
1738 }
1739
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1740 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1741 {
1742 enum zone_type dynamic_policy_zone = policy_zone;
1743
1744 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1745
1746 /*
1747 * if policy->nodes has movable memory only,
1748 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1749 *
1750 * policy->nodes is intersect with node_states[N_MEMORY].
1751 * so if the following test fails, it implies
1752 * policy->nodes has movable memory only.
1753 */
1754 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1755 dynamic_policy_zone = ZONE_MOVABLE;
1756
1757 return zone >= dynamic_policy_zone;
1758 }
1759
1760 /*
1761 * Return a nodemask representing a mempolicy for filtering nodes for
1762 * page allocation
1763 */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1764 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1765 {
1766 int mode = policy->mode;
1767
1768 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1769 if (unlikely(mode == MPOL_BIND) &&
1770 apply_policy_zone(policy, gfp_zone(gfp)) &&
1771 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1772 return &policy->nodes;
1773
1774 if (mode == MPOL_PREFERRED_MANY)
1775 return &policy->nodes;
1776
1777 return NULL;
1778 }
1779
1780 /*
1781 * Return the preferred node id for 'prefer' mempolicy, and return
1782 * the given id for all other policies.
1783 *
1784 * policy_node() is always coupled with policy_nodemask(), which
1785 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1786 */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1787 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1788 {
1789 if (policy->mode == MPOL_PREFERRED) {
1790 nd = first_node(policy->nodes);
1791 } else {
1792 /*
1793 * __GFP_THISNODE shouldn't even be used with the bind policy
1794 * because we might easily break the expectation to stay on the
1795 * requested node and not break the policy.
1796 */
1797 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1798 }
1799
1800 return nd;
1801 }
1802
1803 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1804 static unsigned interleave_nodes(struct mempolicy *policy)
1805 {
1806 unsigned next;
1807 struct task_struct *me = current;
1808
1809 next = next_node_in(me->il_prev, policy->nodes);
1810 if (next < MAX_NUMNODES)
1811 me->il_prev = next;
1812 return next;
1813 }
1814
1815 /*
1816 * Depending on the memory policy provide a node from which to allocate the
1817 * next slab entry.
1818 */
mempolicy_slab_node(void)1819 unsigned int mempolicy_slab_node(void)
1820 {
1821 struct mempolicy *policy;
1822 int node = numa_mem_id();
1823
1824 if (!in_task())
1825 return node;
1826
1827 policy = current->mempolicy;
1828 if (!policy)
1829 return node;
1830
1831 switch (policy->mode) {
1832 case MPOL_PREFERRED:
1833 return first_node(policy->nodes);
1834
1835 case MPOL_INTERLEAVE:
1836 return interleave_nodes(policy);
1837
1838 case MPOL_BIND:
1839 case MPOL_PREFERRED_MANY:
1840 {
1841 struct zoneref *z;
1842
1843 /*
1844 * Follow bind policy behavior and start allocation at the
1845 * first node.
1846 */
1847 struct zonelist *zonelist;
1848 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1849 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1850 z = first_zones_zonelist(zonelist, highest_zoneidx,
1851 &policy->nodes);
1852 return z->zone ? zone_to_nid(z->zone) : node;
1853 }
1854 case MPOL_LOCAL:
1855 return node;
1856
1857 default:
1858 BUG();
1859 }
1860 }
1861
1862 /*
1863 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1864 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1865 * number of present nodes.
1866 */
offset_il_node(struct mempolicy * pol,unsigned long n)1867 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1868 {
1869 nodemask_t nodemask = pol->nodes;
1870 unsigned int target, nnodes;
1871 int i;
1872 int nid;
1873 /*
1874 * The barrier will stabilize the nodemask in a register or on
1875 * the stack so that it will stop changing under the code.
1876 *
1877 * Between first_node() and next_node(), pol->nodes could be changed
1878 * by other threads. So we put pol->nodes in a local stack.
1879 */
1880 barrier();
1881
1882 nnodes = nodes_weight(nodemask);
1883 if (!nnodes)
1884 return numa_node_id();
1885 target = (unsigned int)n % nnodes;
1886 nid = first_node(nodemask);
1887 for (i = 0; i < target; i++)
1888 nid = next_node(nid, nodemask);
1889 return nid;
1890 }
1891
1892 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1893 static inline unsigned interleave_nid(struct mempolicy *pol,
1894 struct vm_area_struct *vma, unsigned long addr, int shift)
1895 {
1896 if (vma) {
1897 unsigned long off;
1898
1899 /*
1900 * for small pages, there is no difference between
1901 * shift and PAGE_SHIFT, so the bit-shift is safe.
1902 * for huge pages, since vm_pgoff is in units of small
1903 * pages, we need to shift off the always 0 bits to get
1904 * a useful offset.
1905 */
1906 BUG_ON(shift < PAGE_SHIFT);
1907 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1908 off += (addr - vma->vm_start) >> shift;
1909 return offset_il_node(pol, off);
1910 } else
1911 return interleave_nodes(pol);
1912 }
1913
1914 #ifdef CONFIG_HUGETLBFS
1915 /*
1916 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1917 * @vma: virtual memory area whose policy is sought
1918 * @addr: address in @vma for shared policy lookup and interleave policy
1919 * @gfp_flags: for requested zone
1920 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1921 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1922 *
1923 * Returns a nid suitable for a huge page allocation and a pointer
1924 * to the struct mempolicy for conditional unref after allocation.
1925 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1926 * to the mempolicy's @nodemask for filtering the zonelist.
1927 *
1928 * Must be protected by read_mems_allowed_begin()
1929 */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1930 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1931 struct mempolicy **mpol, nodemask_t **nodemask)
1932 {
1933 int nid;
1934 int mode;
1935
1936 *mpol = get_vma_policy(vma, addr);
1937 *nodemask = NULL;
1938 mode = (*mpol)->mode;
1939
1940 if (unlikely(mode == MPOL_INTERLEAVE)) {
1941 nid = interleave_nid(*mpol, vma, addr,
1942 huge_page_shift(hstate_vma(vma)));
1943 } else {
1944 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1945 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
1946 *nodemask = &(*mpol)->nodes;
1947 }
1948 return nid;
1949 }
1950
1951 /*
1952 * init_nodemask_of_mempolicy
1953 *
1954 * If the current task's mempolicy is "default" [NULL], return 'false'
1955 * to indicate default policy. Otherwise, extract the policy nodemask
1956 * for 'bind' or 'interleave' policy into the argument nodemask, or
1957 * initialize the argument nodemask to contain the single node for
1958 * 'preferred' or 'local' policy and return 'true' to indicate presence
1959 * of non-default mempolicy.
1960 *
1961 * We don't bother with reference counting the mempolicy [mpol_get/put]
1962 * because the current task is examining it's own mempolicy and a task's
1963 * mempolicy is only ever changed by the task itself.
1964 *
1965 * N.B., it is the caller's responsibility to free a returned nodemask.
1966 */
init_nodemask_of_mempolicy(nodemask_t * mask)1967 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1968 {
1969 struct mempolicy *mempolicy;
1970
1971 if (!(mask && current->mempolicy))
1972 return false;
1973
1974 task_lock(current);
1975 mempolicy = current->mempolicy;
1976 switch (mempolicy->mode) {
1977 case MPOL_PREFERRED:
1978 case MPOL_PREFERRED_MANY:
1979 case MPOL_BIND:
1980 case MPOL_INTERLEAVE:
1981 *mask = mempolicy->nodes;
1982 break;
1983
1984 case MPOL_LOCAL:
1985 init_nodemask_of_node(mask, numa_node_id());
1986 break;
1987
1988 default:
1989 BUG();
1990 }
1991 task_unlock(current);
1992
1993 return true;
1994 }
1995 #endif
1996
1997 /*
1998 * mempolicy_in_oom_domain
1999 *
2000 * If tsk's mempolicy is "bind", check for intersection between mask and
2001 * the policy nodemask. Otherwise, return true for all other policies
2002 * including "interleave", as a tsk with "interleave" policy may have
2003 * memory allocated from all nodes in system.
2004 *
2005 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2006 */
mempolicy_in_oom_domain(struct task_struct * tsk,const nodemask_t * mask)2007 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2008 const nodemask_t *mask)
2009 {
2010 struct mempolicy *mempolicy;
2011 bool ret = true;
2012
2013 if (!mask)
2014 return ret;
2015
2016 task_lock(tsk);
2017 mempolicy = tsk->mempolicy;
2018 if (mempolicy && mempolicy->mode == MPOL_BIND)
2019 ret = nodes_intersects(mempolicy->nodes, *mask);
2020 task_unlock(tsk);
2021
2022 return ret;
2023 }
2024
2025 /* Allocate a page in interleaved policy.
2026 Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2027 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2028 unsigned nid)
2029 {
2030 struct page *page;
2031
2032 page = __alloc_pages(gfp, order, nid, NULL);
2033 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2034 if (!static_branch_likely(&vm_numa_stat_key))
2035 return page;
2036 if (page && page_to_nid(page) == nid) {
2037 preempt_disable();
2038 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2039 preempt_enable();
2040 }
2041 return page;
2042 }
2043
alloc_pages_preferred_many(gfp_t gfp,unsigned int order,int nid,struct mempolicy * pol)2044 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2045 int nid, struct mempolicy *pol)
2046 {
2047 struct page *page;
2048 gfp_t preferred_gfp;
2049
2050 /*
2051 * This is a two pass approach. The first pass will only try the
2052 * preferred nodes but skip the direct reclaim and allow the
2053 * allocation to fail, while the second pass will try all the
2054 * nodes in system.
2055 */
2056 preferred_gfp = gfp | __GFP_NOWARN;
2057 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2058 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2059 if (!page)
2060 page = __alloc_pages(gfp, order, numa_node_id(), NULL);
2061
2062 return page;
2063 }
2064
2065 /**
2066 * alloc_pages_vma - Allocate a page for a VMA.
2067 * @gfp: GFP flags.
2068 * @order: Order of the GFP allocation.
2069 * @vma: Pointer to VMA or NULL if not available.
2070 * @addr: Virtual address of the allocation. Must be inside @vma.
2071 * @node: Which node to prefer for allocation (modulo policy).
2072 * @hugepage: For hugepages try only the preferred node if possible.
2073 *
2074 * Allocate a page for a specific address in @vma, using the appropriate
2075 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2076 * of the mm_struct of the VMA to prevent it from going away. Should be
2077 * used for all allocations for pages that will be mapped into user space.
2078 *
2079 * Return: The page on success or NULL if allocation fails.
2080 */
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2081 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2082 unsigned long addr, int node, bool hugepage)
2083 {
2084 struct mempolicy *pol;
2085 struct page *page;
2086 int preferred_nid;
2087 nodemask_t *nmask;
2088
2089 pol = get_vma_policy(vma, addr);
2090
2091 if (pol->mode == MPOL_INTERLEAVE) {
2092 unsigned nid;
2093
2094 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2095 mpol_cond_put(pol);
2096 page = alloc_page_interleave(gfp, order, nid);
2097 goto out;
2098 }
2099
2100 if (pol->mode == MPOL_PREFERRED_MANY) {
2101 page = alloc_pages_preferred_many(gfp, order, node, pol);
2102 mpol_cond_put(pol);
2103 goto out;
2104 }
2105
2106 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2107 int hpage_node = node;
2108
2109 /*
2110 * For hugepage allocation and non-interleave policy which
2111 * allows the current node (or other explicitly preferred
2112 * node) we only try to allocate from the current/preferred
2113 * node and don't fall back to other nodes, as the cost of
2114 * remote accesses would likely offset THP benefits.
2115 *
2116 * If the policy is interleave or does not allow the current
2117 * node in its nodemask, we allocate the standard way.
2118 */
2119 if (pol->mode == MPOL_PREFERRED)
2120 hpage_node = first_node(pol->nodes);
2121
2122 nmask = policy_nodemask(gfp, pol);
2123 if (!nmask || node_isset(hpage_node, *nmask)) {
2124 mpol_cond_put(pol);
2125 /*
2126 * First, try to allocate THP only on local node, but
2127 * don't reclaim unnecessarily, just compact.
2128 */
2129 page = __alloc_pages_node(hpage_node,
2130 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2131
2132 /*
2133 * If hugepage allocations are configured to always
2134 * synchronous compact or the vma has been madvised
2135 * to prefer hugepage backing, retry allowing remote
2136 * memory with both reclaim and compact as well.
2137 */
2138 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2139 page = __alloc_pages(gfp, order, hpage_node, nmask);
2140
2141 goto out;
2142 }
2143 }
2144
2145 nmask = policy_nodemask(gfp, pol);
2146 preferred_nid = policy_node(gfp, pol, node);
2147 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2148 mpol_cond_put(pol);
2149 out:
2150 return page;
2151 }
2152 EXPORT_SYMBOL(alloc_pages_vma);
2153
2154 /**
2155 * alloc_pages - Allocate pages.
2156 * @gfp: GFP flags.
2157 * @order: Power of two of number of pages to allocate.
2158 *
2159 * Allocate 1 << @order contiguous pages. The physical address of the
2160 * first page is naturally aligned (eg an order-3 allocation will be aligned
2161 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2162 * process is honoured when in process context.
2163 *
2164 * Context: Can be called from any context, providing the appropriate GFP
2165 * flags are used.
2166 * Return: The page on success or NULL if allocation fails.
2167 */
alloc_pages(gfp_t gfp,unsigned order)2168 struct page *alloc_pages(gfp_t gfp, unsigned order)
2169 {
2170 struct mempolicy *pol = &default_policy;
2171 struct page *page;
2172
2173 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2174 pol = get_task_policy(current);
2175
2176 /*
2177 * No reference counting needed for current->mempolicy
2178 * nor system default_policy
2179 */
2180 if (pol->mode == MPOL_INTERLEAVE)
2181 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2182 else if (pol->mode == MPOL_PREFERRED_MANY)
2183 page = alloc_pages_preferred_many(gfp, order,
2184 numa_node_id(), pol);
2185 else
2186 page = __alloc_pages(gfp, order,
2187 policy_node(gfp, pol, numa_node_id()),
2188 policy_nodemask(gfp, pol));
2189
2190 return page;
2191 }
2192 EXPORT_SYMBOL(alloc_pages);
2193
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2194 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2195 {
2196 struct mempolicy *pol = mpol_dup(vma_policy(src));
2197
2198 if (IS_ERR(pol))
2199 return PTR_ERR(pol);
2200 dst->vm_policy = pol;
2201 return 0;
2202 }
2203
2204 /*
2205 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2206 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2207 * with the mems_allowed returned by cpuset_mems_allowed(). This
2208 * keeps mempolicies cpuset relative after its cpuset moves. See
2209 * further kernel/cpuset.c update_nodemask().
2210 *
2211 * current's mempolicy may be rebinded by the other task(the task that changes
2212 * cpuset's mems), so we needn't do rebind work for current task.
2213 */
2214
2215 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2216 struct mempolicy *__mpol_dup(struct mempolicy *old)
2217 {
2218 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2219
2220 if (!new)
2221 return ERR_PTR(-ENOMEM);
2222
2223 /* task's mempolicy is protected by alloc_lock */
2224 if (old == current->mempolicy) {
2225 task_lock(current);
2226 *new = *old;
2227 task_unlock(current);
2228 } else
2229 *new = *old;
2230
2231 if (current_cpuset_is_being_rebound()) {
2232 nodemask_t mems = cpuset_mems_allowed(current);
2233 mpol_rebind_policy(new, &mems);
2234 }
2235 atomic_set(&new->refcnt, 1);
2236 return new;
2237 }
2238
2239 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2240 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2241 {
2242 if (!a || !b)
2243 return false;
2244 if (a->mode != b->mode)
2245 return false;
2246 if (a->flags != b->flags)
2247 return false;
2248 if (mpol_store_user_nodemask(a))
2249 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2250 return false;
2251
2252 switch (a->mode) {
2253 case MPOL_BIND:
2254 case MPOL_INTERLEAVE:
2255 case MPOL_PREFERRED:
2256 case MPOL_PREFERRED_MANY:
2257 return !!nodes_equal(a->nodes, b->nodes);
2258 case MPOL_LOCAL:
2259 return true;
2260 default:
2261 BUG();
2262 return false;
2263 }
2264 }
2265
2266 /*
2267 * Shared memory backing store policy support.
2268 *
2269 * Remember policies even when nobody has shared memory mapped.
2270 * The policies are kept in Red-Black tree linked from the inode.
2271 * They are protected by the sp->lock rwlock, which should be held
2272 * for any accesses to the tree.
2273 */
2274
2275 /*
2276 * lookup first element intersecting start-end. Caller holds sp->lock for
2277 * reading or for writing
2278 */
2279 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2280 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2281 {
2282 struct rb_node *n = sp->root.rb_node;
2283
2284 while (n) {
2285 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2286
2287 if (start >= p->end)
2288 n = n->rb_right;
2289 else if (end <= p->start)
2290 n = n->rb_left;
2291 else
2292 break;
2293 }
2294 if (!n)
2295 return NULL;
2296 for (;;) {
2297 struct sp_node *w = NULL;
2298 struct rb_node *prev = rb_prev(n);
2299 if (!prev)
2300 break;
2301 w = rb_entry(prev, struct sp_node, nd);
2302 if (w->end <= start)
2303 break;
2304 n = prev;
2305 }
2306 return rb_entry(n, struct sp_node, nd);
2307 }
2308
2309 /*
2310 * Insert a new shared policy into the list. Caller holds sp->lock for
2311 * writing.
2312 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2313 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2314 {
2315 struct rb_node **p = &sp->root.rb_node;
2316 struct rb_node *parent = NULL;
2317 struct sp_node *nd;
2318
2319 while (*p) {
2320 parent = *p;
2321 nd = rb_entry(parent, struct sp_node, nd);
2322 if (new->start < nd->start)
2323 p = &(*p)->rb_left;
2324 else if (new->end > nd->end)
2325 p = &(*p)->rb_right;
2326 else
2327 BUG();
2328 }
2329 rb_link_node(&new->nd, parent, p);
2330 rb_insert_color(&new->nd, &sp->root);
2331 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2332 new->policy ? new->policy->mode : 0);
2333 }
2334
2335 /* Find shared policy intersecting idx */
2336 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2337 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2338 {
2339 struct mempolicy *pol = NULL;
2340 struct sp_node *sn;
2341
2342 if (!sp->root.rb_node)
2343 return NULL;
2344 read_lock(&sp->lock);
2345 sn = sp_lookup(sp, idx, idx+1);
2346 if (sn) {
2347 mpol_get(sn->policy);
2348 pol = sn->policy;
2349 }
2350 read_unlock(&sp->lock);
2351 return pol;
2352 }
2353
sp_free(struct sp_node * n)2354 static void sp_free(struct sp_node *n)
2355 {
2356 mpol_put(n->policy);
2357 kmem_cache_free(sn_cache, n);
2358 }
2359
2360 /**
2361 * mpol_misplaced - check whether current page node is valid in policy
2362 *
2363 * @page: page to be checked
2364 * @vma: vm area where page mapped
2365 * @addr: virtual address where page mapped
2366 *
2367 * Lookup current policy node id for vma,addr and "compare to" page's
2368 * node id. Policy determination "mimics" alloc_page_vma().
2369 * Called from fault path where we know the vma and faulting address.
2370 *
2371 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2372 * policy, or a suitable node ID to allocate a replacement page from.
2373 */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2374 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2375 {
2376 struct mempolicy *pol;
2377 struct zoneref *z;
2378 int curnid = page_to_nid(page);
2379 unsigned long pgoff;
2380 int thiscpu = raw_smp_processor_id();
2381 int thisnid = cpu_to_node(thiscpu);
2382 int polnid = NUMA_NO_NODE;
2383 int ret = NUMA_NO_NODE;
2384
2385 pol = get_vma_policy(vma, addr);
2386 if (!(pol->flags & MPOL_F_MOF))
2387 goto out;
2388
2389 switch (pol->mode) {
2390 case MPOL_INTERLEAVE:
2391 pgoff = vma->vm_pgoff;
2392 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2393 polnid = offset_il_node(pol, pgoff);
2394 break;
2395
2396 case MPOL_PREFERRED:
2397 if (node_isset(curnid, pol->nodes))
2398 goto out;
2399 polnid = first_node(pol->nodes);
2400 break;
2401
2402 case MPOL_LOCAL:
2403 polnid = numa_node_id();
2404 break;
2405
2406 case MPOL_BIND:
2407 /* Optimize placement among multiple nodes via NUMA balancing */
2408 if (pol->flags & MPOL_F_MORON) {
2409 if (node_isset(thisnid, pol->nodes))
2410 break;
2411 goto out;
2412 }
2413 fallthrough;
2414
2415 case MPOL_PREFERRED_MANY:
2416 /*
2417 * use current page if in policy nodemask,
2418 * else select nearest allowed node, if any.
2419 * If no allowed nodes, use current [!misplaced].
2420 */
2421 if (node_isset(curnid, pol->nodes))
2422 goto out;
2423 z = first_zones_zonelist(
2424 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2425 gfp_zone(GFP_HIGHUSER),
2426 &pol->nodes);
2427 polnid = zone_to_nid(z->zone);
2428 break;
2429
2430 default:
2431 BUG();
2432 }
2433
2434 /* Migrate the page towards the node whose CPU is referencing it */
2435 if (pol->flags & MPOL_F_MORON) {
2436 polnid = thisnid;
2437
2438 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2439 goto out;
2440 }
2441
2442 if (curnid != polnid)
2443 ret = polnid;
2444 out:
2445 mpol_cond_put(pol);
2446
2447 return ret;
2448 }
2449
2450 /*
2451 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2452 * dropped after task->mempolicy is set to NULL so that any allocation done as
2453 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2454 * policy.
2455 */
mpol_put_task_policy(struct task_struct * task)2456 void mpol_put_task_policy(struct task_struct *task)
2457 {
2458 struct mempolicy *pol;
2459
2460 task_lock(task);
2461 pol = task->mempolicy;
2462 task->mempolicy = NULL;
2463 task_unlock(task);
2464 mpol_put(pol);
2465 }
2466
sp_delete(struct shared_policy * sp,struct sp_node * n)2467 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2468 {
2469 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2470 rb_erase(&n->nd, &sp->root);
2471 sp_free(n);
2472 }
2473
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2474 static void sp_node_init(struct sp_node *node, unsigned long start,
2475 unsigned long end, struct mempolicy *pol)
2476 {
2477 node->start = start;
2478 node->end = end;
2479 node->policy = pol;
2480 }
2481
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2482 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2483 struct mempolicy *pol)
2484 {
2485 struct sp_node *n;
2486 struct mempolicy *newpol;
2487
2488 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2489 if (!n)
2490 return NULL;
2491
2492 newpol = mpol_dup(pol);
2493 if (IS_ERR(newpol)) {
2494 kmem_cache_free(sn_cache, n);
2495 return NULL;
2496 }
2497 newpol->flags |= MPOL_F_SHARED;
2498 sp_node_init(n, start, end, newpol);
2499
2500 return n;
2501 }
2502
2503 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2504 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2505 unsigned long end, struct sp_node *new)
2506 {
2507 struct sp_node *n;
2508 struct sp_node *n_new = NULL;
2509 struct mempolicy *mpol_new = NULL;
2510 int ret = 0;
2511
2512 restart:
2513 write_lock(&sp->lock);
2514 n = sp_lookup(sp, start, end);
2515 /* Take care of old policies in the same range. */
2516 while (n && n->start < end) {
2517 struct rb_node *next = rb_next(&n->nd);
2518 if (n->start >= start) {
2519 if (n->end <= end)
2520 sp_delete(sp, n);
2521 else
2522 n->start = end;
2523 } else {
2524 /* Old policy spanning whole new range. */
2525 if (n->end > end) {
2526 if (!n_new)
2527 goto alloc_new;
2528
2529 *mpol_new = *n->policy;
2530 atomic_set(&mpol_new->refcnt, 1);
2531 sp_node_init(n_new, end, n->end, mpol_new);
2532 n->end = start;
2533 sp_insert(sp, n_new);
2534 n_new = NULL;
2535 mpol_new = NULL;
2536 break;
2537 } else
2538 n->end = start;
2539 }
2540 if (!next)
2541 break;
2542 n = rb_entry(next, struct sp_node, nd);
2543 }
2544 if (new)
2545 sp_insert(sp, new);
2546 write_unlock(&sp->lock);
2547 ret = 0;
2548
2549 err_out:
2550 if (mpol_new)
2551 mpol_put(mpol_new);
2552 if (n_new)
2553 kmem_cache_free(sn_cache, n_new);
2554
2555 return ret;
2556
2557 alloc_new:
2558 write_unlock(&sp->lock);
2559 ret = -ENOMEM;
2560 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2561 if (!n_new)
2562 goto err_out;
2563 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2564 if (!mpol_new)
2565 goto err_out;
2566 atomic_set(&mpol_new->refcnt, 1);
2567 goto restart;
2568 }
2569
2570 /**
2571 * mpol_shared_policy_init - initialize shared policy for inode
2572 * @sp: pointer to inode shared policy
2573 * @mpol: struct mempolicy to install
2574 *
2575 * Install non-NULL @mpol in inode's shared policy rb-tree.
2576 * On entry, the current task has a reference on a non-NULL @mpol.
2577 * This must be released on exit.
2578 * This is called at get_inode() calls and we can use GFP_KERNEL.
2579 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2580 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2581 {
2582 int ret;
2583
2584 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2585 rwlock_init(&sp->lock);
2586
2587 if (mpol) {
2588 struct vm_area_struct pvma;
2589 struct mempolicy *new;
2590 NODEMASK_SCRATCH(scratch);
2591
2592 if (!scratch)
2593 goto put_mpol;
2594 /* contextualize the tmpfs mount point mempolicy */
2595 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2596 if (IS_ERR(new))
2597 goto free_scratch; /* no valid nodemask intersection */
2598
2599 task_lock(current);
2600 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2601 task_unlock(current);
2602 if (ret)
2603 goto put_new;
2604
2605 /* Create pseudo-vma that contains just the policy */
2606 vma_init(&pvma, NULL);
2607 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2608 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2609
2610 put_new:
2611 mpol_put(new); /* drop initial ref */
2612 free_scratch:
2613 NODEMASK_SCRATCH_FREE(scratch);
2614 put_mpol:
2615 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2616 }
2617 }
2618
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2619 int mpol_set_shared_policy(struct shared_policy *info,
2620 struct vm_area_struct *vma, struct mempolicy *npol)
2621 {
2622 int err;
2623 struct sp_node *new = NULL;
2624 unsigned long sz = vma_pages(vma);
2625
2626 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2627 vma->vm_pgoff,
2628 sz, npol ? npol->mode : -1,
2629 npol ? npol->flags : -1,
2630 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2631
2632 if (npol) {
2633 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2634 if (!new)
2635 return -ENOMEM;
2636 }
2637 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2638 if (err && new)
2639 sp_free(new);
2640 return err;
2641 }
2642
2643 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2644 void mpol_free_shared_policy(struct shared_policy *p)
2645 {
2646 struct sp_node *n;
2647 struct rb_node *next;
2648
2649 if (!p->root.rb_node)
2650 return;
2651 write_lock(&p->lock);
2652 next = rb_first(&p->root);
2653 while (next) {
2654 n = rb_entry(next, struct sp_node, nd);
2655 next = rb_next(&n->nd);
2656 sp_delete(p, n);
2657 }
2658 write_unlock(&p->lock);
2659 }
2660
2661 #ifdef CONFIG_NUMA_BALANCING
2662 static int __initdata numabalancing_override;
2663
check_numabalancing_enable(void)2664 static void __init check_numabalancing_enable(void)
2665 {
2666 bool numabalancing_default = false;
2667
2668 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2669 numabalancing_default = true;
2670
2671 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2672 if (numabalancing_override)
2673 set_numabalancing_state(numabalancing_override == 1);
2674
2675 if (num_online_nodes() > 1 && !numabalancing_override) {
2676 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2677 numabalancing_default ? "Enabling" : "Disabling");
2678 set_numabalancing_state(numabalancing_default);
2679 }
2680 }
2681
setup_numabalancing(char * str)2682 static int __init setup_numabalancing(char *str)
2683 {
2684 int ret = 0;
2685 if (!str)
2686 goto out;
2687
2688 if (!strcmp(str, "enable")) {
2689 numabalancing_override = 1;
2690 ret = 1;
2691 } else if (!strcmp(str, "disable")) {
2692 numabalancing_override = -1;
2693 ret = 1;
2694 }
2695 out:
2696 if (!ret)
2697 pr_warn("Unable to parse numa_balancing=\n");
2698
2699 return ret;
2700 }
2701 __setup("numa_balancing=", setup_numabalancing);
2702 #else
check_numabalancing_enable(void)2703 static inline void __init check_numabalancing_enable(void)
2704 {
2705 }
2706 #endif /* CONFIG_NUMA_BALANCING */
2707
2708 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2709 void __init numa_policy_init(void)
2710 {
2711 nodemask_t interleave_nodes;
2712 unsigned long largest = 0;
2713 int nid, prefer = 0;
2714
2715 policy_cache = kmem_cache_create("numa_policy",
2716 sizeof(struct mempolicy),
2717 0, SLAB_PANIC, NULL);
2718
2719 sn_cache = kmem_cache_create("shared_policy_node",
2720 sizeof(struct sp_node),
2721 0, SLAB_PANIC, NULL);
2722
2723 for_each_node(nid) {
2724 preferred_node_policy[nid] = (struct mempolicy) {
2725 .refcnt = ATOMIC_INIT(1),
2726 .mode = MPOL_PREFERRED,
2727 .flags = MPOL_F_MOF | MPOL_F_MORON,
2728 .nodes = nodemask_of_node(nid),
2729 };
2730 }
2731
2732 /*
2733 * Set interleaving policy for system init. Interleaving is only
2734 * enabled across suitably sized nodes (default is >= 16MB), or
2735 * fall back to the largest node if they're all smaller.
2736 */
2737 nodes_clear(interleave_nodes);
2738 for_each_node_state(nid, N_MEMORY) {
2739 unsigned long total_pages = node_present_pages(nid);
2740
2741 /* Preserve the largest node */
2742 if (largest < total_pages) {
2743 largest = total_pages;
2744 prefer = nid;
2745 }
2746
2747 /* Interleave this node? */
2748 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2749 node_set(nid, interleave_nodes);
2750 }
2751
2752 /* All too small, use the largest */
2753 if (unlikely(nodes_empty(interleave_nodes)))
2754 node_set(prefer, interleave_nodes);
2755
2756 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2757 pr_err("%s: interleaving failed\n", __func__);
2758
2759 check_numabalancing_enable();
2760 }
2761
2762 /* Reset policy of current process to default */
numa_default_policy(void)2763 void numa_default_policy(void)
2764 {
2765 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2766 }
2767
2768 /*
2769 * Parse and format mempolicy from/to strings
2770 */
2771
2772 static const char * const policy_modes[] =
2773 {
2774 [MPOL_DEFAULT] = "default",
2775 [MPOL_PREFERRED] = "prefer",
2776 [MPOL_BIND] = "bind",
2777 [MPOL_INTERLEAVE] = "interleave",
2778 [MPOL_LOCAL] = "local",
2779 [MPOL_PREFERRED_MANY] = "prefer (many)",
2780 };
2781
2782
2783 #ifdef CONFIG_TMPFS
2784 /**
2785 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2786 * @str: string containing mempolicy to parse
2787 * @mpol: pointer to struct mempolicy pointer, returned on success.
2788 *
2789 * Format of input:
2790 * <mode>[=<flags>][:<nodelist>]
2791 *
2792 * On success, returns 0, else 1
2793 */
mpol_parse_str(char * str,struct mempolicy ** mpol)2794 int mpol_parse_str(char *str, struct mempolicy **mpol)
2795 {
2796 struct mempolicy *new = NULL;
2797 unsigned short mode_flags;
2798 nodemask_t nodes;
2799 char *nodelist = strchr(str, ':');
2800 char *flags = strchr(str, '=');
2801 int err = 1, mode;
2802
2803 if (flags)
2804 *flags++ = '\0'; /* terminate mode string */
2805
2806 if (nodelist) {
2807 /* NUL-terminate mode or flags string */
2808 *nodelist++ = '\0';
2809 if (nodelist_parse(nodelist, nodes))
2810 goto out;
2811 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2812 goto out;
2813 } else
2814 nodes_clear(nodes);
2815
2816 mode = match_string(policy_modes, MPOL_MAX, str);
2817 if (mode < 0)
2818 goto out;
2819
2820 switch (mode) {
2821 case MPOL_PREFERRED:
2822 /*
2823 * Insist on a nodelist of one node only, although later
2824 * we use first_node(nodes) to grab a single node, so here
2825 * nodelist (or nodes) cannot be empty.
2826 */
2827 if (nodelist) {
2828 char *rest = nodelist;
2829 while (isdigit(*rest))
2830 rest++;
2831 if (*rest)
2832 goto out;
2833 if (nodes_empty(nodes))
2834 goto out;
2835 }
2836 break;
2837 case MPOL_INTERLEAVE:
2838 /*
2839 * Default to online nodes with memory if no nodelist
2840 */
2841 if (!nodelist)
2842 nodes = node_states[N_MEMORY];
2843 break;
2844 case MPOL_LOCAL:
2845 /*
2846 * Don't allow a nodelist; mpol_new() checks flags
2847 */
2848 if (nodelist)
2849 goto out;
2850 break;
2851 case MPOL_DEFAULT:
2852 /*
2853 * Insist on a empty nodelist
2854 */
2855 if (!nodelist)
2856 err = 0;
2857 goto out;
2858 case MPOL_PREFERRED_MANY:
2859 case MPOL_BIND:
2860 /*
2861 * Insist on a nodelist
2862 */
2863 if (!nodelist)
2864 goto out;
2865 }
2866
2867 mode_flags = 0;
2868 if (flags) {
2869 /*
2870 * Currently, we only support two mutually exclusive
2871 * mode flags.
2872 */
2873 if (!strcmp(flags, "static"))
2874 mode_flags |= MPOL_F_STATIC_NODES;
2875 else if (!strcmp(flags, "relative"))
2876 mode_flags |= MPOL_F_RELATIVE_NODES;
2877 else
2878 goto out;
2879 }
2880
2881 new = mpol_new(mode, mode_flags, &nodes);
2882 if (IS_ERR(new))
2883 goto out;
2884
2885 /*
2886 * Save nodes for mpol_to_str() to show the tmpfs mount options
2887 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2888 */
2889 if (mode != MPOL_PREFERRED) {
2890 new->nodes = nodes;
2891 } else if (nodelist) {
2892 nodes_clear(new->nodes);
2893 node_set(first_node(nodes), new->nodes);
2894 } else {
2895 new->mode = MPOL_LOCAL;
2896 }
2897
2898 /*
2899 * Save nodes for contextualization: this will be used to "clone"
2900 * the mempolicy in a specific context [cpuset] at a later time.
2901 */
2902 new->w.user_nodemask = nodes;
2903
2904 err = 0;
2905
2906 out:
2907 /* Restore string for error message */
2908 if (nodelist)
2909 *--nodelist = ':';
2910 if (flags)
2911 *--flags = '=';
2912 if (!err)
2913 *mpol = new;
2914 return err;
2915 }
2916 #endif /* CONFIG_TMPFS */
2917
2918 /**
2919 * mpol_to_str - format a mempolicy structure for printing
2920 * @buffer: to contain formatted mempolicy string
2921 * @maxlen: length of @buffer
2922 * @pol: pointer to mempolicy to be formatted
2923 *
2924 * Convert @pol into a string. If @buffer is too short, truncate the string.
2925 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2926 * longest flag, "relative", and to display at least a few node ids.
2927 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2928 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2929 {
2930 char *p = buffer;
2931 nodemask_t nodes = NODE_MASK_NONE;
2932 unsigned short mode = MPOL_DEFAULT;
2933 unsigned short flags = 0;
2934
2935 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2936 mode = pol->mode;
2937 flags = pol->flags;
2938 }
2939
2940 switch (mode) {
2941 case MPOL_DEFAULT:
2942 case MPOL_LOCAL:
2943 break;
2944 case MPOL_PREFERRED:
2945 case MPOL_PREFERRED_MANY:
2946 case MPOL_BIND:
2947 case MPOL_INTERLEAVE:
2948 nodes = pol->nodes;
2949 break;
2950 default:
2951 WARN_ON_ONCE(1);
2952 snprintf(p, maxlen, "unknown");
2953 return;
2954 }
2955
2956 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2957
2958 if (flags & MPOL_MODE_FLAGS) {
2959 p += snprintf(p, buffer + maxlen - p, "=");
2960
2961 /*
2962 * Currently, the only defined flags are mutually exclusive
2963 */
2964 if (flags & MPOL_F_STATIC_NODES)
2965 p += snprintf(p, buffer + maxlen - p, "static");
2966 else if (flags & MPOL_F_RELATIVE_NODES)
2967 p += snprintf(p, buffer + maxlen - p, "relative");
2968 }
2969
2970 if (!nodes_empty(nodes))
2971 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2972 nodemask_pr_args(&nodes));
2973 }
2974
2975 bool numa_demotion_enabled = false;
2976
2977 #ifdef CONFIG_SYSFS
numa_demotion_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2978 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2979 struct kobj_attribute *attr, char *buf)
2980 {
2981 return sysfs_emit(buf, "%s\n",
2982 numa_demotion_enabled? "true" : "false");
2983 }
2984
numa_demotion_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2985 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2986 struct kobj_attribute *attr,
2987 const char *buf, size_t count)
2988 {
2989 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2990 numa_demotion_enabled = true;
2991 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2992 numa_demotion_enabled = false;
2993 else
2994 return -EINVAL;
2995
2996 return count;
2997 }
2998
2999 static struct kobj_attribute numa_demotion_enabled_attr =
3000 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3001 numa_demotion_enabled_store);
3002
3003 static struct attribute *numa_attrs[] = {
3004 &numa_demotion_enabled_attr.attr,
3005 NULL,
3006 };
3007
3008 static const struct attribute_group numa_attr_group = {
3009 .attrs = numa_attrs,
3010 };
3011
numa_init_sysfs(void)3012 static int __init numa_init_sysfs(void)
3013 {
3014 int err;
3015 struct kobject *numa_kobj;
3016
3017 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3018 if (!numa_kobj) {
3019 pr_err("failed to create numa kobject\n");
3020 return -ENOMEM;
3021 }
3022 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3023 if (err) {
3024 pr_err("failed to register numa group\n");
3025 goto delete_obj;
3026 }
3027 return 0;
3028
3029 delete_obj:
3030 kobject_put(numa_kobj);
3031 return err;
3032 }
3033 subsys_initcall(numa_init_sysfs);
3034 #endif
3035