1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net-sysfs.c - network device class and attributes
4 *
5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6 */
7
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26
27 #include "net-sysfs.h"
28
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34
35 /* Caller holds RTNL or dev_base_lock */
dev_isalive(const struct net_device * dev)36 static inline int dev_isalive(const struct net_device *dev)
37 {
38 return dev->reg_state <= NETREG_REGISTERED;
39 }
40
41 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))42 static ssize_t netdev_show(const struct device *dev,
43 struct device_attribute *attr, char *buf,
44 ssize_t (*format)(const struct net_device *, char *))
45 {
46 struct net_device *ndev = to_net_dev(dev);
47 ssize_t ret = -EINVAL;
48
49 read_lock(&dev_base_lock);
50 if (dev_isalive(ndev))
51 ret = (*format)(ndev, buf);
52 read_unlock(&dev_base_lock);
53
54 return ret;
55 }
56
57 /* generate a show function for simple field */
58 #define NETDEVICE_SHOW(field, format_string) \
59 static ssize_t format_##field(const struct net_device *dev, char *buf) \
60 { \
61 return sprintf(buf, format_string, dev->field); \
62 } \
63 static ssize_t field##_show(struct device *dev, \
64 struct device_attribute *attr, char *buf) \
65 { \
66 return netdev_show(dev, attr, buf, format_##field); \
67 } \
68
69 #define NETDEVICE_SHOW_RO(field, format_string) \
70 NETDEVICE_SHOW(field, format_string); \
71 static DEVICE_ATTR_RO(field)
72
73 #define NETDEVICE_SHOW_RW(field, format_string) \
74 NETDEVICE_SHOW(field, format_string); \
75 static DEVICE_ATTR_RW(field)
76
77 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))78 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
79 const char *buf, size_t len,
80 int (*set)(struct net_device *, unsigned long))
81 {
82 struct net_device *netdev = to_net_dev(dev);
83 struct net *net = dev_net(netdev);
84 unsigned long new;
85 int ret;
86
87 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
88 return -EPERM;
89
90 ret = kstrtoul(buf, 0, &new);
91 if (ret)
92 goto err;
93
94 if (!rtnl_trylock())
95 return restart_syscall();
96
97 if (dev_isalive(netdev)) {
98 ret = (*set)(netdev, new);
99 if (ret == 0)
100 ret = len;
101 }
102 rtnl_unlock();
103 err:
104 return ret;
105 }
106
107 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
108 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
110 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
111 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
112 NETDEVICE_SHOW_RO(type, fmt_dec);
113 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
114
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)115 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
116 char *buf)
117 {
118 struct net_device *ndev = to_net_dev(dev);
119
120 return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
121 }
122 static DEVICE_ATTR_RO(iflink);
123
format_name_assign_type(const struct net_device * dev,char * buf)124 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
125 {
126 return sprintf(buf, fmt_dec, dev->name_assign_type);
127 }
128
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)129 static ssize_t name_assign_type_show(struct device *dev,
130 struct device_attribute *attr,
131 char *buf)
132 {
133 struct net_device *ndev = to_net_dev(dev);
134 ssize_t ret = -EINVAL;
135
136 if (ndev->name_assign_type != NET_NAME_UNKNOWN)
137 ret = netdev_show(dev, attr, buf, format_name_assign_type);
138
139 return ret;
140 }
141 static DEVICE_ATTR_RO(name_assign_type);
142
143 /* use same locking rules as GIFHWADDR ioctl's */
address_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
145 char *buf)
146 {
147 struct net_device *ndev = to_net_dev(dev);
148 ssize_t ret = -EINVAL;
149
150 read_lock(&dev_base_lock);
151 if (dev_isalive(ndev))
152 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
153 read_unlock(&dev_base_lock);
154 return ret;
155 }
156 static DEVICE_ATTR_RO(address);
157
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)158 static ssize_t broadcast_show(struct device *dev,
159 struct device_attribute *attr, char *buf)
160 {
161 struct net_device *ndev = to_net_dev(dev);
162
163 if (dev_isalive(ndev))
164 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
165 return -EINVAL;
166 }
167 static DEVICE_ATTR_RO(broadcast);
168
change_carrier(struct net_device * dev,unsigned long new_carrier)169 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
170 {
171 if (!netif_running(dev))
172 return -EINVAL;
173 return dev_change_carrier(dev, (bool)new_carrier);
174 }
175
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)176 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
177 const char *buf, size_t len)
178 {
179 struct net_device *netdev = to_net_dev(dev);
180
181 /* The check is also done in change_carrier; this helps returning early
182 * without hitting the trylock/restart in netdev_store.
183 */
184 if (!netdev->netdev_ops->ndo_change_carrier)
185 return -EOPNOTSUPP;
186
187 return netdev_store(dev, attr, buf, len, change_carrier);
188 }
189
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t carrier_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct net_device *netdev = to_net_dev(dev);
194
195 if (netif_running(netdev))
196 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
197
198 return -EINVAL;
199 }
200 static DEVICE_ATTR_RW(carrier);
201
speed_show(struct device * dev,struct device_attribute * attr,char * buf)202 static ssize_t speed_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204 {
205 struct net_device *netdev = to_net_dev(dev);
206 int ret = -EINVAL;
207
208 /* The check is also done in __ethtool_get_link_ksettings; this helps
209 * returning early without hitting the trylock/restart below.
210 */
211 if (!netdev->ethtool_ops->get_link_ksettings)
212 return ret;
213
214 if (!rtnl_trylock())
215 return restart_syscall();
216
217 if (netif_running(netdev) && netif_device_present(netdev)) {
218 struct ethtool_link_ksettings cmd;
219
220 if (!__ethtool_get_link_ksettings(netdev, &cmd))
221 ret = sprintf(buf, fmt_dec, cmd.base.speed);
222 }
223 rtnl_unlock();
224 return ret;
225 }
226 static DEVICE_ATTR_RO(speed);
227
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)228 static ssize_t duplex_show(struct device *dev,
229 struct device_attribute *attr, char *buf)
230 {
231 struct net_device *netdev = to_net_dev(dev);
232 int ret = -EINVAL;
233
234 /* The check is also done in __ethtool_get_link_ksettings; this helps
235 * returning early without hitting the trylock/restart below.
236 */
237 if (!netdev->ethtool_ops->get_link_ksettings)
238 return ret;
239
240 if (!rtnl_trylock())
241 return restart_syscall();
242
243 if (netif_running(netdev)) {
244 struct ethtool_link_ksettings cmd;
245
246 if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
247 const char *duplex;
248
249 switch (cmd.base.duplex) {
250 case DUPLEX_HALF:
251 duplex = "half";
252 break;
253 case DUPLEX_FULL:
254 duplex = "full";
255 break;
256 default:
257 duplex = "unknown";
258 break;
259 }
260 ret = sprintf(buf, "%s\n", duplex);
261 }
262 }
263 rtnl_unlock();
264 return ret;
265 }
266 static DEVICE_ATTR_RO(duplex);
267
testing_show(struct device * dev,struct device_attribute * attr,char * buf)268 static ssize_t testing_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
270 {
271 struct net_device *netdev = to_net_dev(dev);
272
273 if (netif_running(netdev))
274 return sprintf(buf, fmt_dec, !!netif_testing(netdev));
275
276 return -EINVAL;
277 }
278 static DEVICE_ATTR_RO(testing);
279
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)280 static ssize_t dormant_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282 {
283 struct net_device *netdev = to_net_dev(dev);
284
285 if (netif_running(netdev))
286 return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
287
288 return -EINVAL;
289 }
290 static DEVICE_ATTR_RO(dormant);
291
292 static const char *const operstates[] = {
293 "unknown",
294 "notpresent", /* currently unused */
295 "down",
296 "lowerlayerdown",
297 "testing",
298 "dormant",
299 "up"
300 };
301
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)302 static ssize_t operstate_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 const struct net_device *netdev = to_net_dev(dev);
306 unsigned char operstate;
307
308 read_lock(&dev_base_lock);
309 operstate = netdev->operstate;
310 if (!netif_running(netdev))
311 operstate = IF_OPER_DOWN;
312 read_unlock(&dev_base_lock);
313
314 if (operstate >= ARRAY_SIZE(operstates))
315 return -EINVAL; /* should not happen */
316
317 return sprintf(buf, "%s\n", operstates[operstate]);
318 }
319 static DEVICE_ATTR_RO(operstate);
320
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)321 static ssize_t carrier_changes_show(struct device *dev,
322 struct device_attribute *attr,
323 char *buf)
324 {
325 struct net_device *netdev = to_net_dev(dev);
326
327 return sprintf(buf, fmt_dec,
328 atomic_read(&netdev->carrier_up_count) +
329 atomic_read(&netdev->carrier_down_count));
330 }
331 static DEVICE_ATTR_RO(carrier_changes);
332
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)333 static ssize_t carrier_up_count_show(struct device *dev,
334 struct device_attribute *attr,
335 char *buf)
336 {
337 struct net_device *netdev = to_net_dev(dev);
338
339 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
340 }
341 static DEVICE_ATTR_RO(carrier_up_count);
342
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)343 static ssize_t carrier_down_count_show(struct device *dev,
344 struct device_attribute *attr,
345 char *buf)
346 {
347 struct net_device *netdev = to_net_dev(dev);
348
349 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
350 }
351 static DEVICE_ATTR_RO(carrier_down_count);
352
353 /* read-write attributes */
354
change_mtu(struct net_device * dev,unsigned long new_mtu)355 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
356 {
357 return dev_set_mtu(dev, (int)new_mtu);
358 }
359
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)360 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
361 const char *buf, size_t len)
362 {
363 return netdev_store(dev, attr, buf, len, change_mtu);
364 }
365 NETDEVICE_SHOW_RW(mtu, fmt_dec);
366
change_flags(struct net_device * dev,unsigned long new_flags)367 static int change_flags(struct net_device *dev, unsigned long new_flags)
368 {
369 return dev_change_flags(dev, (unsigned int)new_flags, NULL);
370 }
371
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)372 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
373 const char *buf, size_t len)
374 {
375 return netdev_store(dev, attr, buf, len, change_flags);
376 }
377 NETDEVICE_SHOW_RW(flags, fmt_hex);
378
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)379 static ssize_t tx_queue_len_store(struct device *dev,
380 struct device_attribute *attr,
381 const char *buf, size_t len)
382 {
383 if (!capable(CAP_NET_ADMIN))
384 return -EPERM;
385
386 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
387 }
388 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
389
change_gro_flush_timeout(struct net_device * dev,unsigned long val)390 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
391 {
392 WRITE_ONCE(dev->gro_flush_timeout, val);
393 return 0;
394 }
395
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)396 static ssize_t gro_flush_timeout_store(struct device *dev,
397 struct device_attribute *attr,
398 const char *buf, size_t len)
399 {
400 if (!capable(CAP_NET_ADMIN))
401 return -EPERM;
402
403 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
404 }
405 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
406
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)407 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
408 {
409 WRITE_ONCE(dev->napi_defer_hard_irqs, val);
410 return 0;
411 }
412
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)413 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
414 struct device_attribute *attr,
415 const char *buf, size_t len)
416 {
417 if (!capable(CAP_NET_ADMIN))
418 return -EPERM;
419
420 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
421 }
422 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
423
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)424 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
425 const char *buf, size_t len)
426 {
427 struct net_device *netdev = to_net_dev(dev);
428 struct net *net = dev_net(netdev);
429 size_t count = len;
430 ssize_t ret = 0;
431
432 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
433 return -EPERM;
434
435 /* ignore trailing newline */
436 if (len > 0 && buf[len - 1] == '\n')
437 --count;
438
439 if (!rtnl_trylock())
440 return restart_syscall();
441
442 if (dev_isalive(netdev)) {
443 ret = dev_set_alias(netdev, buf, count);
444 if (ret < 0)
445 goto err;
446 ret = len;
447 netdev_state_change(netdev);
448 }
449 err:
450 rtnl_unlock();
451
452 return ret;
453 }
454
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)455 static ssize_t ifalias_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 const struct net_device *netdev = to_net_dev(dev);
459 char tmp[IFALIASZ];
460 ssize_t ret = 0;
461
462 ret = dev_get_alias(netdev, tmp, sizeof(tmp));
463 if (ret > 0)
464 ret = sprintf(buf, "%s\n", tmp);
465 return ret;
466 }
467 static DEVICE_ATTR_RW(ifalias);
468
change_group(struct net_device * dev,unsigned long new_group)469 static int change_group(struct net_device *dev, unsigned long new_group)
470 {
471 dev_set_group(dev, (int)new_group);
472 return 0;
473 }
474
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)475 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
476 const char *buf, size_t len)
477 {
478 return netdev_store(dev, attr, buf, len, change_group);
479 }
480 NETDEVICE_SHOW(group, fmt_dec);
481 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
482
change_proto_down(struct net_device * dev,unsigned long proto_down)483 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
484 {
485 return dev_change_proto_down(dev, (bool)proto_down);
486 }
487
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)488 static ssize_t proto_down_store(struct device *dev,
489 struct device_attribute *attr,
490 const char *buf, size_t len)
491 {
492 struct net_device *netdev = to_net_dev(dev);
493
494 /* The check is also done in change_proto_down; this helps returning
495 * early without hitting the trylock/restart in netdev_store.
496 */
497 if (!netdev->netdev_ops->ndo_change_proto_down)
498 return -EOPNOTSUPP;
499
500 return netdev_store(dev, attr, buf, len, change_proto_down);
501 }
502 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
503
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)504 static ssize_t phys_port_id_show(struct device *dev,
505 struct device_attribute *attr, char *buf)
506 {
507 struct net_device *netdev = to_net_dev(dev);
508 ssize_t ret = -EINVAL;
509
510 /* The check is also done in dev_get_phys_port_id; this helps returning
511 * early without hitting the trylock/restart below.
512 */
513 if (!netdev->netdev_ops->ndo_get_phys_port_id)
514 return -EOPNOTSUPP;
515
516 if (!rtnl_trylock())
517 return restart_syscall();
518
519 if (dev_isalive(netdev)) {
520 struct netdev_phys_item_id ppid;
521
522 ret = dev_get_phys_port_id(netdev, &ppid);
523 if (!ret)
524 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
525 }
526 rtnl_unlock();
527
528 return ret;
529 }
530 static DEVICE_ATTR_RO(phys_port_id);
531
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t phys_port_name_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct net_device *netdev = to_net_dev(dev);
536 ssize_t ret = -EINVAL;
537
538 /* The checks are also done in dev_get_phys_port_name; this helps
539 * returning early without hitting the trylock/restart below.
540 */
541 if (!netdev->netdev_ops->ndo_get_phys_port_name &&
542 !netdev->netdev_ops->ndo_get_devlink_port)
543 return -EOPNOTSUPP;
544
545 if (!rtnl_trylock())
546 return restart_syscall();
547
548 if (dev_isalive(netdev)) {
549 char name[IFNAMSIZ];
550
551 ret = dev_get_phys_port_name(netdev, name, sizeof(name));
552 if (!ret)
553 ret = sprintf(buf, "%s\n", name);
554 }
555 rtnl_unlock();
556
557 return ret;
558 }
559 static DEVICE_ATTR_RO(phys_port_name);
560
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)561 static ssize_t phys_switch_id_show(struct device *dev,
562 struct device_attribute *attr, char *buf)
563 {
564 struct net_device *netdev = to_net_dev(dev);
565 ssize_t ret = -EINVAL;
566
567 /* The checks are also done in dev_get_phys_port_name; this helps
568 * returning early without hitting the trylock/restart below. This works
569 * because recurse is false when calling dev_get_port_parent_id.
570 */
571 if (!netdev->netdev_ops->ndo_get_port_parent_id &&
572 !netdev->netdev_ops->ndo_get_devlink_port)
573 return -EOPNOTSUPP;
574
575 if (!rtnl_trylock())
576 return restart_syscall();
577
578 if (dev_isalive(netdev)) {
579 struct netdev_phys_item_id ppid = { };
580
581 ret = dev_get_port_parent_id(netdev, &ppid, false);
582 if (!ret)
583 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
584 }
585 rtnl_unlock();
586
587 return ret;
588 }
589 static DEVICE_ATTR_RO(phys_switch_id);
590
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)591 static ssize_t threaded_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct net_device *netdev = to_net_dev(dev);
595 ssize_t ret = -EINVAL;
596
597 if (!rtnl_trylock())
598 return restart_syscall();
599
600 if (dev_isalive(netdev))
601 ret = sprintf(buf, fmt_dec, netdev->threaded);
602
603 rtnl_unlock();
604 return ret;
605 }
606
modify_napi_threaded(struct net_device * dev,unsigned long val)607 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
608 {
609 int ret;
610
611 if (list_empty(&dev->napi_list))
612 return -EOPNOTSUPP;
613
614 if (val != 0 && val != 1)
615 return -EOPNOTSUPP;
616
617 ret = dev_set_threaded(dev, val);
618
619 return ret;
620 }
621
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)622 static ssize_t threaded_store(struct device *dev,
623 struct device_attribute *attr,
624 const char *buf, size_t len)
625 {
626 return netdev_store(dev, attr, buf, len, modify_napi_threaded);
627 }
628 static DEVICE_ATTR_RW(threaded);
629
630 static struct attribute *net_class_attrs[] __ro_after_init = {
631 &dev_attr_netdev_group.attr,
632 &dev_attr_type.attr,
633 &dev_attr_dev_id.attr,
634 &dev_attr_dev_port.attr,
635 &dev_attr_iflink.attr,
636 &dev_attr_ifindex.attr,
637 &dev_attr_name_assign_type.attr,
638 &dev_attr_addr_assign_type.attr,
639 &dev_attr_addr_len.attr,
640 &dev_attr_link_mode.attr,
641 &dev_attr_address.attr,
642 &dev_attr_broadcast.attr,
643 &dev_attr_speed.attr,
644 &dev_attr_duplex.attr,
645 &dev_attr_dormant.attr,
646 &dev_attr_testing.attr,
647 &dev_attr_operstate.attr,
648 &dev_attr_carrier_changes.attr,
649 &dev_attr_ifalias.attr,
650 &dev_attr_carrier.attr,
651 &dev_attr_mtu.attr,
652 &dev_attr_flags.attr,
653 &dev_attr_tx_queue_len.attr,
654 &dev_attr_gro_flush_timeout.attr,
655 &dev_attr_napi_defer_hard_irqs.attr,
656 &dev_attr_phys_port_id.attr,
657 &dev_attr_phys_port_name.attr,
658 &dev_attr_phys_switch_id.attr,
659 &dev_attr_proto_down.attr,
660 &dev_attr_carrier_up_count.attr,
661 &dev_attr_carrier_down_count.attr,
662 &dev_attr_threaded.attr,
663 NULL,
664 };
665 ATTRIBUTE_GROUPS(net_class);
666
667 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)668 static ssize_t netstat_show(const struct device *d,
669 struct device_attribute *attr, char *buf,
670 unsigned long offset)
671 {
672 struct net_device *dev = to_net_dev(d);
673 ssize_t ret = -EINVAL;
674
675 WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
676 offset % sizeof(u64) != 0);
677
678 read_lock(&dev_base_lock);
679 if (dev_isalive(dev)) {
680 struct rtnl_link_stats64 temp;
681 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
682
683 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
684 }
685 read_unlock(&dev_base_lock);
686 return ret;
687 }
688
689 /* generate a read-only statistics attribute */
690 #define NETSTAT_ENTRY(name) \
691 static ssize_t name##_show(struct device *d, \
692 struct device_attribute *attr, char *buf) \
693 { \
694 return netstat_show(d, attr, buf, \
695 offsetof(struct rtnl_link_stats64, name)); \
696 } \
697 static DEVICE_ATTR_RO(name)
698
699 NETSTAT_ENTRY(rx_packets);
700 NETSTAT_ENTRY(tx_packets);
701 NETSTAT_ENTRY(rx_bytes);
702 NETSTAT_ENTRY(tx_bytes);
703 NETSTAT_ENTRY(rx_errors);
704 NETSTAT_ENTRY(tx_errors);
705 NETSTAT_ENTRY(rx_dropped);
706 NETSTAT_ENTRY(tx_dropped);
707 NETSTAT_ENTRY(multicast);
708 NETSTAT_ENTRY(collisions);
709 NETSTAT_ENTRY(rx_length_errors);
710 NETSTAT_ENTRY(rx_over_errors);
711 NETSTAT_ENTRY(rx_crc_errors);
712 NETSTAT_ENTRY(rx_frame_errors);
713 NETSTAT_ENTRY(rx_fifo_errors);
714 NETSTAT_ENTRY(rx_missed_errors);
715 NETSTAT_ENTRY(tx_aborted_errors);
716 NETSTAT_ENTRY(tx_carrier_errors);
717 NETSTAT_ENTRY(tx_fifo_errors);
718 NETSTAT_ENTRY(tx_heartbeat_errors);
719 NETSTAT_ENTRY(tx_window_errors);
720 NETSTAT_ENTRY(rx_compressed);
721 NETSTAT_ENTRY(tx_compressed);
722 NETSTAT_ENTRY(rx_nohandler);
723
724 static struct attribute *netstat_attrs[] __ro_after_init = {
725 &dev_attr_rx_packets.attr,
726 &dev_attr_tx_packets.attr,
727 &dev_attr_rx_bytes.attr,
728 &dev_attr_tx_bytes.attr,
729 &dev_attr_rx_errors.attr,
730 &dev_attr_tx_errors.attr,
731 &dev_attr_rx_dropped.attr,
732 &dev_attr_tx_dropped.attr,
733 &dev_attr_multicast.attr,
734 &dev_attr_collisions.attr,
735 &dev_attr_rx_length_errors.attr,
736 &dev_attr_rx_over_errors.attr,
737 &dev_attr_rx_crc_errors.attr,
738 &dev_attr_rx_frame_errors.attr,
739 &dev_attr_rx_fifo_errors.attr,
740 &dev_attr_rx_missed_errors.attr,
741 &dev_attr_tx_aborted_errors.attr,
742 &dev_attr_tx_carrier_errors.attr,
743 &dev_attr_tx_fifo_errors.attr,
744 &dev_attr_tx_heartbeat_errors.attr,
745 &dev_attr_tx_window_errors.attr,
746 &dev_attr_rx_compressed.attr,
747 &dev_attr_tx_compressed.attr,
748 &dev_attr_rx_nohandler.attr,
749 NULL
750 };
751
752 static const struct attribute_group netstat_group = {
753 .name = "statistics",
754 .attrs = netstat_attrs,
755 };
756
757 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
758 static struct attribute *wireless_attrs[] = {
759 NULL
760 };
761
762 static const struct attribute_group wireless_group = {
763 .name = "wireless",
764 .attrs = wireless_attrs,
765 };
766 #endif
767
768 #else /* CONFIG_SYSFS */
769 #define net_class_groups NULL
770 #endif /* CONFIG_SYSFS */
771
772 #ifdef CONFIG_SYSFS
773 #define to_rx_queue_attr(_attr) \
774 container_of(_attr, struct rx_queue_attribute, attr)
775
776 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
777
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)778 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
779 char *buf)
780 {
781 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
782 struct netdev_rx_queue *queue = to_rx_queue(kobj);
783
784 if (!attribute->show)
785 return -EIO;
786
787 return attribute->show(queue, buf);
788 }
789
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)790 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
791 const char *buf, size_t count)
792 {
793 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
794 struct netdev_rx_queue *queue = to_rx_queue(kobj);
795
796 if (!attribute->store)
797 return -EIO;
798
799 return attribute->store(queue, buf, count);
800 }
801
802 static const struct sysfs_ops rx_queue_sysfs_ops = {
803 .show = rx_queue_attr_show,
804 .store = rx_queue_attr_store,
805 };
806
807 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)808 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
809 {
810 struct rps_map *map;
811 cpumask_var_t mask;
812 int i, len;
813
814 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
815 return -ENOMEM;
816
817 rcu_read_lock();
818 map = rcu_dereference(queue->rps_map);
819 if (map)
820 for (i = 0; i < map->len; i++)
821 cpumask_set_cpu(map->cpus[i], mask);
822
823 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
824 rcu_read_unlock();
825 free_cpumask_var(mask);
826
827 return len < PAGE_SIZE ? len : -EINVAL;
828 }
829
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)830 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
831 const char *buf, size_t len)
832 {
833 struct rps_map *old_map, *map;
834 cpumask_var_t mask;
835 int err, cpu, i, hk_flags;
836 static DEFINE_MUTEX(rps_map_mutex);
837
838 if (!capable(CAP_NET_ADMIN))
839 return -EPERM;
840
841 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
842 return -ENOMEM;
843
844 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
845 if (err) {
846 free_cpumask_var(mask);
847 return err;
848 }
849
850 if (!cpumask_empty(mask)) {
851 hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
852 cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
853 if (cpumask_empty(mask)) {
854 free_cpumask_var(mask);
855 return -EINVAL;
856 }
857 }
858
859 map = kzalloc(max_t(unsigned int,
860 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
861 GFP_KERNEL);
862 if (!map) {
863 free_cpumask_var(mask);
864 return -ENOMEM;
865 }
866
867 i = 0;
868 for_each_cpu_and(cpu, mask, cpu_online_mask)
869 map->cpus[i++] = cpu;
870
871 if (i) {
872 map->len = i;
873 } else {
874 kfree(map);
875 map = NULL;
876 }
877
878 mutex_lock(&rps_map_mutex);
879 old_map = rcu_dereference_protected(queue->rps_map,
880 mutex_is_locked(&rps_map_mutex));
881 rcu_assign_pointer(queue->rps_map, map);
882
883 if (map)
884 static_branch_inc(&rps_needed);
885 if (old_map)
886 static_branch_dec(&rps_needed);
887
888 mutex_unlock(&rps_map_mutex);
889
890 if (old_map)
891 kfree_rcu(old_map, rcu);
892
893 free_cpumask_var(mask);
894 return len;
895 }
896
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)897 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
898 char *buf)
899 {
900 struct rps_dev_flow_table *flow_table;
901 unsigned long val = 0;
902
903 rcu_read_lock();
904 flow_table = rcu_dereference(queue->rps_flow_table);
905 if (flow_table)
906 val = (unsigned long)flow_table->mask + 1;
907 rcu_read_unlock();
908
909 return sprintf(buf, "%lu\n", val);
910 }
911
rps_dev_flow_table_release(struct rcu_head * rcu)912 static void rps_dev_flow_table_release(struct rcu_head *rcu)
913 {
914 struct rps_dev_flow_table *table = container_of(rcu,
915 struct rps_dev_flow_table, rcu);
916 vfree(table);
917 }
918
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)919 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
920 const char *buf, size_t len)
921 {
922 unsigned long mask, count;
923 struct rps_dev_flow_table *table, *old_table;
924 static DEFINE_SPINLOCK(rps_dev_flow_lock);
925 int rc;
926
927 if (!capable(CAP_NET_ADMIN))
928 return -EPERM;
929
930 rc = kstrtoul(buf, 0, &count);
931 if (rc < 0)
932 return rc;
933
934 if (count) {
935 mask = count - 1;
936 /* mask = roundup_pow_of_two(count) - 1;
937 * without overflows...
938 */
939 while ((mask | (mask >> 1)) != mask)
940 mask |= (mask >> 1);
941 /* On 64 bit arches, must check mask fits in table->mask (u32),
942 * and on 32bit arches, must check
943 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
944 */
945 #if BITS_PER_LONG > 32
946 if (mask > (unsigned long)(u32)mask)
947 return -EINVAL;
948 #else
949 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
950 / sizeof(struct rps_dev_flow)) {
951 /* Enforce a limit to prevent overflow */
952 return -EINVAL;
953 }
954 #endif
955 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
956 if (!table)
957 return -ENOMEM;
958
959 table->mask = mask;
960 for (count = 0; count <= mask; count++)
961 table->flows[count].cpu = RPS_NO_CPU;
962 } else {
963 table = NULL;
964 }
965
966 spin_lock(&rps_dev_flow_lock);
967 old_table = rcu_dereference_protected(queue->rps_flow_table,
968 lockdep_is_held(&rps_dev_flow_lock));
969 rcu_assign_pointer(queue->rps_flow_table, table);
970 spin_unlock(&rps_dev_flow_lock);
971
972 if (old_table)
973 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
974
975 return len;
976 }
977
978 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
979 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
980
981 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
982 = __ATTR(rps_flow_cnt, 0644,
983 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
984 #endif /* CONFIG_RPS */
985
986 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
987 #ifdef CONFIG_RPS
988 &rps_cpus_attribute.attr,
989 &rps_dev_flow_table_cnt_attribute.attr,
990 #endif
991 NULL
992 };
993 ATTRIBUTE_GROUPS(rx_queue_default);
994
rx_queue_release(struct kobject * kobj)995 static void rx_queue_release(struct kobject *kobj)
996 {
997 struct netdev_rx_queue *queue = to_rx_queue(kobj);
998 #ifdef CONFIG_RPS
999 struct rps_map *map;
1000 struct rps_dev_flow_table *flow_table;
1001
1002 map = rcu_dereference_protected(queue->rps_map, 1);
1003 if (map) {
1004 RCU_INIT_POINTER(queue->rps_map, NULL);
1005 kfree_rcu(map, rcu);
1006 }
1007
1008 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1009 if (flow_table) {
1010 RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1011 call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1012 }
1013 #endif
1014
1015 memset(kobj, 0, sizeof(*kobj));
1016 dev_put(queue->dev);
1017 }
1018
rx_queue_namespace(struct kobject * kobj)1019 static const void *rx_queue_namespace(struct kobject *kobj)
1020 {
1021 struct netdev_rx_queue *queue = to_rx_queue(kobj);
1022 struct device *dev = &queue->dev->dev;
1023 const void *ns = NULL;
1024
1025 if (dev->class && dev->class->ns_type)
1026 ns = dev->class->namespace(dev);
1027
1028 return ns;
1029 }
1030
rx_queue_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1031 static void rx_queue_get_ownership(struct kobject *kobj,
1032 kuid_t *uid, kgid_t *gid)
1033 {
1034 const struct net *net = rx_queue_namespace(kobj);
1035
1036 net_ns_get_ownership(net, uid, gid);
1037 }
1038
1039 static struct kobj_type rx_queue_ktype __ro_after_init = {
1040 .sysfs_ops = &rx_queue_sysfs_ops,
1041 .release = rx_queue_release,
1042 .default_groups = rx_queue_default_groups,
1043 .namespace = rx_queue_namespace,
1044 .get_ownership = rx_queue_get_ownership,
1045 };
1046
rx_queue_add_kobject(struct net_device * dev,int index)1047 static int rx_queue_add_kobject(struct net_device *dev, int index)
1048 {
1049 struct netdev_rx_queue *queue = dev->_rx + index;
1050 struct kobject *kobj = &queue->kobj;
1051 int error = 0;
1052
1053 /* Kobject_put later will trigger rx_queue_release call which
1054 * decreases dev refcount: Take that reference here
1055 */
1056 dev_hold(queue->dev);
1057
1058 kobj->kset = dev->queues_kset;
1059 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1060 "rx-%u", index);
1061 if (error)
1062 goto err;
1063
1064 if (dev->sysfs_rx_queue_group) {
1065 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1066 if (error)
1067 goto err;
1068 }
1069
1070 kobject_uevent(kobj, KOBJ_ADD);
1071
1072 return error;
1073
1074 err:
1075 kobject_put(kobj);
1076 return error;
1077 }
1078
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1079 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1080 kgid_t kgid)
1081 {
1082 struct netdev_rx_queue *queue = dev->_rx + index;
1083 struct kobject *kobj = &queue->kobj;
1084 int error;
1085
1086 error = sysfs_change_owner(kobj, kuid, kgid);
1087 if (error)
1088 return error;
1089
1090 if (dev->sysfs_rx_queue_group)
1091 error = sysfs_group_change_owner(
1092 kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1093
1094 return error;
1095 }
1096 #endif /* CONFIG_SYSFS */
1097
1098 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1099 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1100 {
1101 #ifdef CONFIG_SYSFS
1102 int i;
1103 int error = 0;
1104
1105 #ifndef CONFIG_RPS
1106 if (!dev->sysfs_rx_queue_group)
1107 return 0;
1108 #endif
1109 for (i = old_num; i < new_num; i++) {
1110 error = rx_queue_add_kobject(dev, i);
1111 if (error) {
1112 new_num = old_num;
1113 break;
1114 }
1115 }
1116
1117 while (--i >= new_num) {
1118 struct kobject *kobj = &dev->_rx[i].kobj;
1119
1120 if (!refcount_read(&dev_net(dev)->ns.count))
1121 kobj->uevent_suppress = 1;
1122 if (dev->sysfs_rx_queue_group)
1123 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1124 kobject_put(kobj);
1125 }
1126
1127 return error;
1128 #else
1129 return 0;
1130 #endif
1131 }
1132
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1133 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1134 kuid_t kuid, kgid_t kgid)
1135 {
1136 #ifdef CONFIG_SYSFS
1137 int error = 0;
1138 int i;
1139
1140 #ifndef CONFIG_RPS
1141 if (!dev->sysfs_rx_queue_group)
1142 return 0;
1143 #endif
1144 for (i = 0; i < num; i++) {
1145 error = rx_queue_change_owner(dev, i, kuid, kgid);
1146 if (error)
1147 break;
1148 }
1149
1150 return error;
1151 #else
1152 return 0;
1153 #endif
1154 }
1155
1156 #ifdef CONFIG_SYSFS
1157 /*
1158 * netdev_queue sysfs structures and functions.
1159 */
1160 struct netdev_queue_attribute {
1161 struct attribute attr;
1162 ssize_t (*show)(struct netdev_queue *queue, char *buf);
1163 ssize_t (*store)(struct netdev_queue *queue,
1164 const char *buf, size_t len);
1165 };
1166 #define to_netdev_queue_attr(_attr) \
1167 container_of(_attr, struct netdev_queue_attribute, attr)
1168
1169 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1170
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1171 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1172 struct attribute *attr, char *buf)
1173 {
1174 const struct netdev_queue_attribute *attribute
1175 = to_netdev_queue_attr(attr);
1176 struct netdev_queue *queue = to_netdev_queue(kobj);
1177
1178 if (!attribute->show)
1179 return -EIO;
1180
1181 return attribute->show(queue, buf);
1182 }
1183
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1184 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1185 struct attribute *attr,
1186 const char *buf, size_t count)
1187 {
1188 const struct netdev_queue_attribute *attribute
1189 = to_netdev_queue_attr(attr);
1190 struct netdev_queue *queue = to_netdev_queue(kobj);
1191
1192 if (!attribute->store)
1193 return -EIO;
1194
1195 return attribute->store(queue, buf, count);
1196 }
1197
1198 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1199 .show = netdev_queue_attr_show,
1200 .store = netdev_queue_attr_store,
1201 };
1202
tx_timeout_show(struct netdev_queue * queue,char * buf)1203 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1204 {
1205 unsigned long trans_timeout;
1206
1207 spin_lock_irq(&queue->_xmit_lock);
1208 trans_timeout = queue->trans_timeout;
1209 spin_unlock_irq(&queue->_xmit_lock);
1210
1211 return sprintf(buf, fmt_ulong, trans_timeout);
1212 }
1213
get_netdev_queue_index(struct netdev_queue * queue)1214 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1215 {
1216 struct net_device *dev = queue->dev;
1217 unsigned int i;
1218
1219 i = queue - dev->_tx;
1220 BUG_ON(i >= dev->num_tx_queues);
1221
1222 return i;
1223 }
1224
traffic_class_show(struct netdev_queue * queue,char * buf)1225 static ssize_t traffic_class_show(struct netdev_queue *queue,
1226 char *buf)
1227 {
1228 struct net_device *dev = queue->dev;
1229 int num_tc, tc;
1230 int index;
1231
1232 if (!netif_is_multiqueue(dev))
1233 return -ENOENT;
1234
1235 if (!rtnl_trylock())
1236 return restart_syscall();
1237
1238 index = get_netdev_queue_index(queue);
1239
1240 /* If queue belongs to subordinate dev use its TC mapping */
1241 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1242
1243 num_tc = dev->num_tc;
1244 tc = netdev_txq_to_tc(dev, index);
1245
1246 rtnl_unlock();
1247
1248 if (tc < 0)
1249 return -EINVAL;
1250
1251 /* We can report the traffic class one of two ways:
1252 * Subordinate device traffic classes are reported with the traffic
1253 * class first, and then the subordinate class so for example TC0 on
1254 * subordinate device 2 will be reported as "0-2". If the queue
1255 * belongs to the root device it will be reported with just the
1256 * traffic class, so just "0" for TC 0 for example.
1257 */
1258 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1259 sprintf(buf, "%d\n", tc);
1260 }
1261
1262 #ifdef CONFIG_XPS
tx_maxrate_show(struct netdev_queue * queue,char * buf)1263 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1264 char *buf)
1265 {
1266 return sprintf(buf, "%lu\n", queue->tx_maxrate);
1267 }
1268
tx_maxrate_store(struct netdev_queue * queue,const char * buf,size_t len)1269 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1270 const char *buf, size_t len)
1271 {
1272 struct net_device *dev = queue->dev;
1273 int err, index = get_netdev_queue_index(queue);
1274 u32 rate = 0;
1275
1276 if (!capable(CAP_NET_ADMIN))
1277 return -EPERM;
1278
1279 /* The check is also done later; this helps returning early without
1280 * hitting the trylock/restart below.
1281 */
1282 if (!dev->netdev_ops->ndo_set_tx_maxrate)
1283 return -EOPNOTSUPP;
1284
1285 err = kstrtou32(buf, 10, &rate);
1286 if (err < 0)
1287 return err;
1288
1289 if (!rtnl_trylock())
1290 return restart_syscall();
1291
1292 err = -EOPNOTSUPP;
1293 if (dev->netdev_ops->ndo_set_tx_maxrate)
1294 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1295
1296 rtnl_unlock();
1297 if (!err) {
1298 queue->tx_maxrate = rate;
1299 return len;
1300 }
1301 return err;
1302 }
1303
1304 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1305 = __ATTR_RW(tx_maxrate);
1306 #endif
1307
1308 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1309 = __ATTR_RO(tx_timeout);
1310
1311 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1312 = __ATTR_RO(traffic_class);
1313
1314 #ifdef CONFIG_BQL
1315 /*
1316 * Byte queue limits sysfs structures and functions.
1317 */
bql_show(char * buf,unsigned int value)1318 static ssize_t bql_show(char *buf, unsigned int value)
1319 {
1320 return sprintf(buf, "%u\n", value);
1321 }
1322
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1323 static ssize_t bql_set(const char *buf, const size_t count,
1324 unsigned int *pvalue)
1325 {
1326 unsigned int value;
1327 int err;
1328
1329 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1330 value = DQL_MAX_LIMIT;
1331 } else {
1332 err = kstrtouint(buf, 10, &value);
1333 if (err < 0)
1334 return err;
1335 if (value > DQL_MAX_LIMIT)
1336 return -EINVAL;
1337 }
1338
1339 *pvalue = value;
1340
1341 return count;
1342 }
1343
bql_show_hold_time(struct netdev_queue * queue,char * buf)1344 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1345 char *buf)
1346 {
1347 struct dql *dql = &queue->dql;
1348
1349 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1350 }
1351
bql_set_hold_time(struct netdev_queue * queue,const char * buf,size_t len)1352 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1353 const char *buf, size_t len)
1354 {
1355 struct dql *dql = &queue->dql;
1356 unsigned int value;
1357 int err;
1358
1359 err = kstrtouint(buf, 10, &value);
1360 if (err < 0)
1361 return err;
1362
1363 dql->slack_hold_time = msecs_to_jiffies(value);
1364
1365 return len;
1366 }
1367
1368 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1369 = __ATTR(hold_time, 0644,
1370 bql_show_hold_time, bql_set_hold_time);
1371
bql_show_inflight(struct netdev_queue * queue,char * buf)1372 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1373 char *buf)
1374 {
1375 struct dql *dql = &queue->dql;
1376
1377 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1378 }
1379
1380 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1381 __ATTR(inflight, 0444, bql_show_inflight, NULL);
1382
1383 #define BQL_ATTR(NAME, FIELD) \
1384 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \
1385 char *buf) \
1386 { \
1387 return bql_show(buf, queue->dql.FIELD); \
1388 } \
1389 \
1390 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \
1391 const char *buf, size_t len) \
1392 { \
1393 return bql_set(buf, len, &queue->dql.FIELD); \
1394 } \
1395 \
1396 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1397 = __ATTR(NAME, 0644, \
1398 bql_show_ ## NAME, bql_set_ ## NAME)
1399
1400 BQL_ATTR(limit, limit);
1401 BQL_ATTR(limit_max, max_limit);
1402 BQL_ATTR(limit_min, min_limit);
1403
1404 static struct attribute *dql_attrs[] __ro_after_init = {
1405 &bql_limit_attribute.attr,
1406 &bql_limit_max_attribute.attr,
1407 &bql_limit_min_attribute.attr,
1408 &bql_hold_time_attribute.attr,
1409 &bql_inflight_attribute.attr,
1410 NULL
1411 };
1412
1413 static const struct attribute_group dql_group = {
1414 .name = "byte_queue_limits",
1415 .attrs = dql_attrs,
1416 };
1417 #endif /* CONFIG_BQL */
1418
1419 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1420 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1421 int tc, char *buf, enum xps_map_type type)
1422 {
1423 struct xps_dev_maps *dev_maps;
1424 unsigned long *mask;
1425 unsigned int nr_ids;
1426 int j, len;
1427
1428 rcu_read_lock();
1429 dev_maps = rcu_dereference(dev->xps_maps[type]);
1430
1431 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1432 * when dev_maps hasn't been allocated yet, to be backward compatible.
1433 */
1434 nr_ids = dev_maps ? dev_maps->nr_ids :
1435 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1436
1437 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1438 if (!mask) {
1439 rcu_read_unlock();
1440 return -ENOMEM;
1441 }
1442
1443 if (!dev_maps || tc >= dev_maps->num_tc)
1444 goto out_no_maps;
1445
1446 for (j = 0; j < nr_ids; j++) {
1447 int i, tci = j * dev_maps->num_tc + tc;
1448 struct xps_map *map;
1449
1450 map = rcu_dereference(dev_maps->attr_map[tci]);
1451 if (!map)
1452 continue;
1453
1454 for (i = map->len; i--;) {
1455 if (map->queues[i] == index) {
1456 set_bit(j, mask);
1457 break;
1458 }
1459 }
1460 }
1461 out_no_maps:
1462 rcu_read_unlock();
1463
1464 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1465 bitmap_free(mask);
1466
1467 return len < PAGE_SIZE ? len : -EINVAL;
1468 }
1469
xps_cpus_show(struct netdev_queue * queue,char * buf)1470 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1471 {
1472 struct net_device *dev = queue->dev;
1473 unsigned int index;
1474 int len, tc;
1475
1476 if (!netif_is_multiqueue(dev))
1477 return -ENOENT;
1478
1479 index = get_netdev_queue_index(queue);
1480
1481 if (!rtnl_trylock())
1482 return restart_syscall();
1483
1484 /* If queue belongs to subordinate dev use its map */
1485 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1486
1487 tc = netdev_txq_to_tc(dev, index);
1488 if (tc < 0) {
1489 rtnl_unlock();
1490 return -EINVAL;
1491 }
1492
1493 /* Make sure the subordinate device can't be freed */
1494 get_device(&dev->dev);
1495 rtnl_unlock();
1496
1497 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1498
1499 put_device(&dev->dev);
1500 return len;
1501 }
1502
xps_cpus_store(struct netdev_queue * queue,const char * buf,size_t len)1503 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1504 const char *buf, size_t len)
1505 {
1506 struct net_device *dev = queue->dev;
1507 unsigned int index;
1508 cpumask_var_t mask;
1509 int err;
1510
1511 if (!netif_is_multiqueue(dev))
1512 return -ENOENT;
1513
1514 if (!capable(CAP_NET_ADMIN))
1515 return -EPERM;
1516
1517 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1518 return -ENOMEM;
1519
1520 index = get_netdev_queue_index(queue);
1521
1522 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1523 if (err) {
1524 free_cpumask_var(mask);
1525 return err;
1526 }
1527
1528 if (!rtnl_trylock()) {
1529 free_cpumask_var(mask);
1530 return restart_syscall();
1531 }
1532
1533 err = netif_set_xps_queue(dev, mask, index);
1534 rtnl_unlock();
1535
1536 free_cpumask_var(mask);
1537
1538 return err ? : len;
1539 }
1540
1541 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1542 = __ATTR_RW(xps_cpus);
1543
xps_rxqs_show(struct netdev_queue * queue,char * buf)1544 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1545 {
1546 struct net_device *dev = queue->dev;
1547 unsigned int index;
1548 int tc;
1549
1550 index = get_netdev_queue_index(queue);
1551
1552 if (!rtnl_trylock())
1553 return restart_syscall();
1554
1555 tc = netdev_txq_to_tc(dev, index);
1556 rtnl_unlock();
1557 if (tc < 0)
1558 return -EINVAL;
1559
1560 return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1561 }
1562
xps_rxqs_store(struct netdev_queue * queue,const char * buf,size_t len)1563 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1564 size_t len)
1565 {
1566 struct net_device *dev = queue->dev;
1567 struct net *net = dev_net(dev);
1568 unsigned long *mask;
1569 unsigned int index;
1570 int err;
1571
1572 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1573 return -EPERM;
1574
1575 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1576 if (!mask)
1577 return -ENOMEM;
1578
1579 index = get_netdev_queue_index(queue);
1580
1581 err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1582 if (err) {
1583 bitmap_free(mask);
1584 return err;
1585 }
1586
1587 if (!rtnl_trylock()) {
1588 bitmap_free(mask);
1589 return restart_syscall();
1590 }
1591
1592 cpus_read_lock();
1593 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1594 cpus_read_unlock();
1595
1596 rtnl_unlock();
1597
1598 bitmap_free(mask);
1599 return err ? : len;
1600 }
1601
1602 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1603 = __ATTR_RW(xps_rxqs);
1604 #endif /* CONFIG_XPS */
1605
1606 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1607 &queue_trans_timeout.attr,
1608 &queue_traffic_class.attr,
1609 #ifdef CONFIG_XPS
1610 &xps_cpus_attribute.attr,
1611 &xps_rxqs_attribute.attr,
1612 &queue_tx_maxrate.attr,
1613 #endif
1614 NULL
1615 };
1616 ATTRIBUTE_GROUPS(netdev_queue_default);
1617
netdev_queue_release(struct kobject * kobj)1618 static void netdev_queue_release(struct kobject *kobj)
1619 {
1620 struct netdev_queue *queue = to_netdev_queue(kobj);
1621
1622 memset(kobj, 0, sizeof(*kobj));
1623 dev_put(queue->dev);
1624 }
1625
netdev_queue_namespace(struct kobject * kobj)1626 static const void *netdev_queue_namespace(struct kobject *kobj)
1627 {
1628 struct netdev_queue *queue = to_netdev_queue(kobj);
1629 struct device *dev = &queue->dev->dev;
1630 const void *ns = NULL;
1631
1632 if (dev->class && dev->class->ns_type)
1633 ns = dev->class->namespace(dev);
1634
1635 return ns;
1636 }
1637
netdev_queue_get_ownership(struct kobject * kobj,kuid_t * uid,kgid_t * gid)1638 static void netdev_queue_get_ownership(struct kobject *kobj,
1639 kuid_t *uid, kgid_t *gid)
1640 {
1641 const struct net *net = netdev_queue_namespace(kobj);
1642
1643 net_ns_get_ownership(net, uid, gid);
1644 }
1645
1646 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1647 .sysfs_ops = &netdev_queue_sysfs_ops,
1648 .release = netdev_queue_release,
1649 .default_groups = netdev_queue_default_groups,
1650 .namespace = netdev_queue_namespace,
1651 .get_ownership = netdev_queue_get_ownership,
1652 };
1653
netdev_queue_add_kobject(struct net_device * dev,int index)1654 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1655 {
1656 struct netdev_queue *queue = dev->_tx + index;
1657 struct kobject *kobj = &queue->kobj;
1658 int error = 0;
1659
1660 /* Kobject_put later will trigger netdev_queue_release call
1661 * which decreases dev refcount: Take that reference here
1662 */
1663 dev_hold(queue->dev);
1664
1665 kobj->kset = dev->queues_kset;
1666 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1667 "tx-%u", index);
1668 if (error)
1669 goto err;
1670
1671 #ifdef CONFIG_BQL
1672 error = sysfs_create_group(kobj, &dql_group);
1673 if (error)
1674 goto err;
1675 #endif
1676
1677 kobject_uevent(kobj, KOBJ_ADD);
1678 return 0;
1679
1680 err:
1681 kobject_put(kobj);
1682 return error;
1683 }
1684
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)1685 static int tx_queue_change_owner(struct net_device *ndev, int index,
1686 kuid_t kuid, kgid_t kgid)
1687 {
1688 struct netdev_queue *queue = ndev->_tx + index;
1689 struct kobject *kobj = &queue->kobj;
1690 int error;
1691
1692 error = sysfs_change_owner(kobj, kuid, kgid);
1693 if (error)
1694 return error;
1695
1696 #ifdef CONFIG_BQL
1697 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1698 #endif
1699 return error;
1700 }
1701 #endif /* CONFIG_SYSFS */
1702
1703 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1704 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1705 {
1706 #ifdef CONFIG_SYSFS
1707 int i;
1708 int error = 0;
1709
1710 for (i = old_num; i < new_num; i++) {
1711 error = netdev_queue_add_kobject(dev, i);
1712 if (error) {
1713 new_num = old_num;
1714 break;
1715 }
1716 }
1717
1718 while (--i >= new_num) {
1719 struct netdev_queue *queue = dev->_tx + i;
1720
1721 if (!refcount_read(&dev_net(dev)->ns.count))
1722 queue->kobj.uevent_suppress = 1;
1723 #ifdef CONFIG_BQL
1724 sysfs_remove_group(&queue->kobj, &dql_group);
1725 #endif
1726 kobject_put(&queue->kobj);
1727 }
1728
1729 return error;
1730 #else
1731 return 0;
1732 #endif /* CONFIG_SYSFS */
1733 }
1734
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1735 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1736 kuid_t kuid, kgid_t kgid)
1737 {
1738 #ifdef CONFIG_SYSFS
1739 int error = 0;
1740 int i;
1741
1742 for (i = 0; i < num; i++) {
1743 error = tx_queue_change_owner(dev, i, kuid, kgid);
1744 if (error)
1745 break;
1746 }
1747
1748 return error;
1749 #else
1750 return 0;
1751 #endif /* CONFIG_SYSFS */
1752 }
1753
register_queue_kobjects(struct net_device * dev)1754 static int register_queue_kobjects(struct net_device *dev)
1755 {
1756 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1757
1758 #ifdef CONFIG_SYSFS
1759 dev->queues_kset = kset_create_and_add("queues",
1760 NULL, &dev->dev.kobj);
1761 if (!dev->queues_kset)
1762 return -ENOMEM;
1763 real_rx = dev->real_num_rx_queues;
1764 #endif
1765 real_tx = dev->real_num_tx_queues;
1766
1767 error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1768 if (error)
1769 goto error;
1770 rxq = real_rx;
1771
1772 error = netdev_queue_update_kobjects(dev, 0, real_tx);
1773 if (error)
1774 goto error;
1775 txq = real_tx;
1776
1777 return 0;
1778
1779 error:
1780 netdev_queue_update_kobjects(dev, txq, 0);
1781 net_rx_queue_update_kobjects(dev, rxq, 0);
1782 #ifdef CONFIG_SYSFS
1783 kset_unregister(dev->queues_kset);
1784 #endif
1785 return error;
1786 }
1787
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)1788 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1789 {
1790 int error = 0, real_rx = 0, real_tx = 0;
1791
1792 #ifdef CONFIG_SYSFS
1793 if (ndev->queues_kset) {
1794 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1795 if (error)
1796 return error;
1797 }
1798 real_rx = ndev->real_num_rx_queues;
1799 #endif
1800 real_tx = ndev->real_num_tx_queues;
1801
1802 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1803 if (error)
1804 return error;
1805
1806 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1807 if (error)
1808 return error;
1809
1810 return 0;
1811 }
1812
remove_queue_kobjects(struct net_device * dev)1813 static void remove_queue_kobjects(struct net_device *dev)
1814 {
1815 int real_rx = 0, real_tx = 0;
1816
1817 #ifdef CONFIG_SYSFS
1818 real_rx = dev->real_num_rx_queues;
1819 #endif
1820 real_tx = dev->real_num_tx_queues;
1821
1822 net_rx_queue_update_kobjects(dev, real_rx, 0);
1823 netdev_queue_update_kobjects(dev, real_tx, 0);
1824
1825 dev->real_num_rx_queues = 0;
1826 dev->real_num_tx_queues = 0;
1827 #ifdef CONFIG_SYSFS
1828 kset_unregister(dev->queues_kset);
1829 #endif
1830 }
1831
net_current_may_mount(void)1832 static bool net_current_may_mount(void)
1833 {
1834 struct net *net = current->nsproxy->net_ns;
1835
1836 return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1837 }
1838
net_grab_current_ns(void)1839 static void *net_grab_current_ns(void)
1840 {
1841 struct net *ns = current->nsproxy->net_ns;
1842 #ifdef CONFIG_NET_NS
1843 if (ns)
1844 refcount_inc(&ns->passive);
1845 #endif
1846 return ns;
1847 }
1848
net_initial_ns(void)1849 static const void *net_initial_ns(void)
1850 {
1851 return &init_net;
1852 }
1853
net_netlink_ns(struct sock * sk)1854 static const void *net_netlink_ns(struct sock *sk)
1855 {
1856 return sock_net(sk);
1857 }
1858
1859 const struct kobj_ns_type_operations net_ns_type_operations = {
1860 .type = KOBJ_NS_TYPE_NET,
1861 .current_may_mount = net_current_may_mount,
1862 .grab_current_ns = net_grab_current_ns,
1863 .netlink_ns = net_netlink_ns,
1864 .initial_ns = net_initial_ns,
1865 .drop_ns = net_drop_ns,
1866 };
1867 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1868
netdev_uevent(struct device * d,struct kobj_uevent_env * env)1869 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1870 {
1871 struct net_device *dev = to_net_dev(d);
1872 int retval;
1873
1874 /* pass interface to uevent. */
1875 retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1876 if (retval)
1877 goto exit;
1878
1879 /* pass ifindex to uevent.
1880 * ifindex is useful as it won't change (interface name may change)
1881 * and is what RtNetlink uses natively.
1882 */
1883 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1884
1885 exit:
1886 return retval;
1887 }
1888
1889 /*
1890 * netdev_release -- destroy and free a dead device.
1891 * Called when last reference to device kobject is gone.
1892 */
netdev_release(struct device * d)1893 static void netdev_release(struct device *d)
1894 {
1895 struct net_device *dev = to_net_dev(d);
1896
1897 BUG_ON(dev->reg_state != NETREG_RELEASED);
1898
1899 /* no need to wait for rcu grace period:
1900 * device is dead and about to be freed.
1901 */
1902 kfree(rcu_access_pointer(dev->ifalias));
1903 netdev_freemem(dev);
1904 }
1905
net_namespace(struct device * d)1906 static const void *net_namespace(struct device *d)
1907 {
1908 struct net_device *dev = to_net_dev(d);
1909
1910 return dev_net(dev);
1911 }
1912
net_get_ownership(struct device * d,kuid_t * uid,kgid_t * gid)1913 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1914 {
1915 struct net_device *dev = to_net_dev(d);
1916 const struct net *net = dev_net(dev);
1917
1918 net_ns_get_ownership(net, uid, gid);
1919 }
1920
1921 static struct class net_class __ro_after_init = {
1922 .name = "net",
1923 .dev_release = netdev_release,
1924 .dev_groups = net_class_groups,
1925 .dev_uevent = netdev_uevent,
1926 .ns_type = &net_ns_type_operations,
1927 .namespace = net_namespace,
1928 .get_ownership = net_get_ownership,
1929 };
1930
1931 #ifdef CONFIG_OF
of_dev_node_match(struct device * dev,const void * data)1932 static int of_dev_node_match(struct device *dev, const void *data)
1933 {
1934 for (; dev; dev = dev->parent) {
1935 if (dev->of_node == data)
1936 return 1;
1937 }
1938
1939 return 0;
1940 }
1941
1942 /*
1943 * of_find_net_device_by_node - lookup the net device for the device node
1944 * @np: OF device node
1945 *
1946 * Looks up the net_device structure corresponding with the device node.
1947 * If successful, returns a pointer to the net_device with the embedded
1948 * struct device refcount incremented by one, or NULL on failure. The
1949 * refcount must be dropped when done with the net_device.
1950 */
of_find_net_device_by_node(struct device_node * np)1951 struct net_device *of_find_net_device_by_node(struct device_node *np)
1952 {
1953 struct device *dev;
1954
1955 dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1956 if (!dev)
1957 return NULL;
1958
1959 return to_net_dev(dev);
1960 }
1961 EXPORT_SYMBOL(of_find_net_device_by_node);
1962 #endif
1963
1964 /* Delete sysfs entries but hold kobject reference until after all
1965 * netdev references are gone.
1966 */
netdev_unregister_kobject(struct net_device * ndev)1967 void netdev_unregister_kobject(struct net_device *ndev)
1968 {
1969 struct device *dev = &ndev->dev;
1970
1971 if (!refcount_read(&dev_net(ndev)->ns.count))
1972 dev_set_uevent_suppress(dev, 1);
1973
1974 kobject_get(&dev->kobj);
1975
1976 remove_queue_kobjects(ndev);
1977
1978 pm_runtime_set_memalloc_noio(dev, false);
1979
1980 device_del(dev);
1981 }
1982
1983 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)1984 int netdev_register_kobject(struct net_device *ndev)
1985 {
1986 struct device *dev = &ndev->dev;
1987 const struct attribute_group **groups = ndev->sysfs_groups;
1988 int error = 0;
1989
1990 device_initialize(dev);
1991 dev->class = &net_class;
1992 dev->platform_data = ndev;
1993 dev->groups = groups;
1994
1995 dev_set_name(dev, "%s", ndev->name);
1996
1997 #ifdef CONFIG_SYSFS
1998 /* Allow for a device specific group */
1999 if (*groups)
2000 groups++;
2001
2002 *groups++ = &netstat_group;
2003
2004 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
2005 if (ndev->ieee80211_ptr)
2006 *groups++ = &wireless_group;
2007 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
2008 else if (ndev->wireless_handlers)
2009 *groups++ = &wireless_group;
2010 #endif
2011 #endif
2012 #endif /* CONFIG_SYSFS */
2013
2014 error = device_add(dev);
2015 if (error)
2016 return error;
2017
2018 error = register_queue_kobjects(ndev);
2019 if (error) {
2020 device_del(dev);
2021 return error;
2022 }
2023
2024 pm_runtime_set_memalloc_noio(dev, true);
2025
2026 return error;
2027 }
2028
2029 /* Change owner for sysfs entries when moving network devices across network
2030 * namespaces owned by different user namespaces.
2031 */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)2032 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2033 const struct net *net_new)
2034 {
2035 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2036 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2037 struct device *dev = &ndev->dev;
2038 int error;
2039
2040 net_ns_get_ownership(net_old, &old_uid, &old_gid);
2041 net_ns_get_ownership(net_new, &new_uid, &new_gid);
2042
2043 /* The network namespace was changed but the owning user namespace is
2044 * identical so there's no need to change the owner of sysfs entries.
2045 */
2046 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2047 return 0;
2048
2049 error = device_change_owner(dev, new_uid, new_gid);
2050 if (error)
2051 return error;
2052
2053 error = queue_change_owner(ndev, new_uid, new_gid);
2054 if (error)
2055 return error;
2056
2057 return 0;
2058 }
2059
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2060 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2061 const void *ns)
2062 {
2063 return class_create_file_ns(&net_class, class_attr, ns);
2064 }
2065 EXPORT_SYMBOL(netdev_class_create_file_ns);
2066
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2067 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2068 const void *ns)
2069 {
2070 class_remove_file_ns(&net_class, class_attr, ns);
2071 }
2072 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2073
netdev_kobject_init(void)2074 int __init netdev_kobject_init(void)
2075 {
2076 kobj_ns_type_register(&net_ns_type_operations);
2077 return class_register(&net_class);
2078 }
2079