• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
4  *
5  * Interrupt architecture for the GIC:
6  *
7  * o There is one Interrupt Distributor, which receives interrupts
8  *   from system devices and sends them to the Interrupt Controllers.
9  *
10  * o There is one CPU Interface per CPU, which sends interrupts sent
11  *   by the Distributor, and interrupts generated locally, to the
12  *   associated CPU. The base address of the CPU interface is usually
13  *   aliased so that the same address points to different chips depending
14  *   on the CPU it is accessed from.
15  *
16  * Note that IRQs 0-31 are special - they are local to each CPU.
17  * As such, the enable set/clear, pending set/clear and active bit
18  * registers are banked per-cpu for these sources.
19  */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41 #include <trace/hooks/gic.h>
42 
43 #include <asm/cputype.h>
44 #include <asm/irq.h>
45 #include <asm/exception.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 
49 #include "irq-gic-common.h"
50 
51 #ifdef CONFIG_ARM64
52 #include <asm/cpufeature.h>
53 
gic_check_cpu_features(void)54 static void gic_check_cpu_features(void)
55 {
56 	WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
57 			TAINT_CPU_OUT_OF_SPEC,
58 			"GICv3 system registers enabled, broken firmware!\n");
59 }
60 #else
61 #define gic_check_cpu_features()	do { } while(0)
62 #endif
63 
64 union gic_base {
65 	void __iomem *common_base;
66 	void __percpu * __iomem *percpu_base;
67 };
68 
69 struct gic_chip_data {
70 	struct irq_chip chip;
71 	union gic_base dist_base;
72 	union gic_base cpu_base;
73 	void __iomem *raw_dist_base;
74 	void __iomem *raw_cpu_base;
75 	u32 percpu_offset;
76 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
77 	u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
78 	u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
79 	u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
80 	u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
81 	u32 __percpu *saved_ppi_enable;
82 	u32 __percpu *saved_ppi_active;
83 	u32 __percpu *saved_ppi_conf;
84 #endif
85 	struct irq_domain *domain;
86 	unsigned int gic_irqs;
87 };
88 
89 #ifdef CONFIG_BL_SWITCHER
90 
91 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
92 
93 #define gic_lock_irqsave(f)		\
94 	raw_spin_lock_irqsave(&cpu_map_lock, (f))
95 #define gic_unlock_irqrestore(f)	\
96 	raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
97 
98 #define gic_lock()			raw_spin_lock(&cpu_map_lock)
99 #define gic_unlock()			raw_spin_unlock(&cpu_map_lock)
100 
101 #else
102 
103 #define gic_lock_irqsave(f)		do { (void)(f); } while(0)
104 #define gic_unlock_irqrestore(f)	do { (void)(f); } while(0)
105 
106 #define gic_lock()			do { } while(0)
107 #define gic_unlock()			do { } while(0)
108 
109 #endif
110 
111 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
112 
113 /*
114  * The GIC mapping of CPU interfaces does not necessarily match
115  * the logical CPU numbering.  Let's use a mapping as returned
116  * by the GIC itself.
117  */
118 #define NR_GIC_CPU_IF 8
119 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
120 
121 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
122 
123 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
124 
125 static struct gic_kvm_info gic_v2_kvm_info __initdata;
126 
127 static DEFINE_PER_CPU(u32, sgi_intid);
128 
129 #ifdef CONFIG_GIC_NON_BANKED
130 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
131 
enable_frankengic(void)132 static void enable_frankengic(void)
133 {
134 	static_branch_enable(&frankengic_key);
135 }
136 
__get_base(union gic_base * base)137 static inline void __iomem *__get_base(union gic_base *base)
138 {
139 	if (static_branch_unlikely(&frankengic_key))
140 		return raw_cpu_read(*base->percpu_base);
141 
142 	return base->common_base;
143 }
144 
145 #define gic_data_dist_base(d)	__get_base(&(d)->dist_base)
146 #define gic_data_cpu_base(d)	__get_base(&(d)->cpu_base)
147 #else
148 #define gic_data_dist_base(d)	((d)->dist_base.common_base)
149 #define gic_data_cpu_base(d)	((d)->cpu_base.common_base)
150 #define enable_frankengic()	do { } while(0)
151 #endif
152 
gic_dist_base(struct irq_data * d)153 static inline void __iomem *gic_dist_base(struct irq_data *d)
154 {
155 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
156 	return gic_data_dist_base(gic_data);
157 }
158 
gic_cpu_base(struct irq_data * d)159 static inline void __iomem *gic_cpu_base(struct irq_data *d)
160 {
161 	struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
162 	return gic_data_cpu_base(gic_data);
163 }
164 
gic_irq(struct irq_data * d)165 static inline unsigned int gic_irq(struct irq_data *d)
166 {
167 	return d->hwirq;
168 }
169 
cascading_gic_irq(struct irq_data * d)170 static inline bool cascading_gic_irq(struct irq_data *d)
171 {
172 	void *data = irq_data_get_irq_handler_data(d);
173 
174 	/*
175 	 * If handler_data is set, this is a cascading interrupt, and
176 	 * it cannot possibly be forwarded.
177 	 */
178 	return data != NULL;
179 }
180 
181 /*
182  * Routines to acknowledge, disable and enable interrupts
183  */
gic_poke_irq(struct irq_data * d,u32 offset)184 static void gic_poke_irq(struct irq_data *d, u32 offset)
185 {
186 	u32 mask = 1 << (gic_irq(d) % 32);
187 	writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
188 }
189 
gic_peek_irq(struct irq_data * d,u32 offset)190 static int gic_peek_irq(struct irq_data *d, u32 offset)
191 {
192 	u32 mask = 1 << (gic_irq(d) % 32);
193 	return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
194 }
195 
gic_mask_irq(struct irq_data * d)196 static void gic_mask_irq(struct irq_data *d)
197 {
198 	gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
199 }
200 
gic_eoimode1_mask_irq(struct irq_data * d)201 static void gic_eoimode1_mask_irq(struct irq_data *d)
202 {
203 	gic_mask_irq(d);
204 	/*
205 	 * When masking a forwarded interrupt, make sure it is
206 	 * deactivated as well.
207 	 *
208 	 * This ensures that an interrupt that is getting
209 	 * disabled/masked will not get "stuck", because there is
210 	 * noone to deactivate it (guest is being terminated).
211 	 */
212 	if (irqd_is_forwarded_to_vcpu(d))
213 		gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
214 }
215 
gic_unmask_irq(struct irq_data * d)216 static void gic_unmask_irq(struct irq_data *d)
217 {
218 	gic_poke_irq(d, GIC_DIST_ENABLE_SET);
219 }
220 
gic_eoi_irq(struct irq_data * d)221 static void gic_eoi_irq(struct irq_data *d)
222 {
223 	u32 hwirq = gic_irq(d);
224 
225 	if (hwirq < 16)
226 		hwirq = this_cpu_read(sgi_intid);
227 
228 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
229 }
230 
gic_eoimode1_eoi_irq(struct irq_data * d)231 static void gic_eoimode1_eoi_irq(struct irq_data *d)
232 {
233 	u32 hwirq = gic_irq(d);
234 
235 	/* Do not deactivate an IRQ forwarded to a vcpu. */
236 	if (irqd_is_forwarded_to_vcpu(d))
237 		return;
238 
239 	if (hwirq < 16)
240 		hwirq = this_cpu_read(sgi_intid);
241 
242 	writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
243 }
244 
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)245 static int gic_irq_set_irqchip_state(struct irq_data *d,
246 				     enum irqchip_irq_state which, bool val)
247 {
248 	u32 reg;
249 
250 	switch (which) {
251 	case IRQCHIP_STATE_PENDING:
252 		reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
253 		break;
254 
255 	case IRQCHIP_STATE_ACTIVE:
256 		reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
257 		break;
258 
259 	case IRQCHIP_STATE_MASKED:
260 		reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
261 		break;
262 
263 	default:
264 		return -EINVAL;
265 	}
266 
267 	gic_poke_irq(d, reg);
268 	return 0;
269 }
270 
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)271 static int gic_irq_get_irqchip_state(struct irq_data *d,
272 				      enum irqchip_irq_state which, bool *val)
273 {
274 	switch (which) {
275 	case IRQCHIP_STATE_PENDING:
276 		*val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
277 		break;
278 
279 	case IRQCHIP_STATE_ACTIVE:
280 		*val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
281 		break;
282 
283 	case IRQCHIP_STATE_MASKED:
284 		*val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
285 		break;
286 
287 	default:
288 		return -EINVAL;
289 	}
290 
291 	return 0;
292 }
293 
gic_set_type(struct irq_data * d,unsigned int type)294 static int gic_set_type(struct irq_data *d, unsigned int type)
295 {
296 	void __iomem *base = gic_dist_base(d);
297 	unsigned int gicirq = gic_irq(d);
298 	int ret;
299 
300 	/* Interrupt configuration for SGIs can't be changed */
301 	if (gicirq < 16)
302 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
303 
304 	/* SPIs have restrictions on the supported types */
305 	if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
306 			    type != IRQ_TYPE_EDGE_RISING)
307 		return -EINVAL;
308 
309 	ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
310 	if (ret && gicirq < 32) {
311 		/* Misconfigured PPIs are usually not fatal */
312 		pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
313 		ret = 0;
314 	}
315 
316 	return ret;
317 }
318 
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)319 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
320 {
321 	/* Only interrupts on the primary GIC can be forwarded to a vcpu. */
322 	if (cascading_gic_irq(d) || gic_irq(d) < 16)
323 		return -EINVAL;
324 
325 	if (vcpu)
326 		irqd_set_forwarded_to_vcpu(d);
327 	else
328 		irqd_clr_forwarded_to_vcpu(d);
329 	return 0;
330 }
331 
gic_retrigger(struct irq_data * data)332 static int gic_retrigger(struct irq_data *data)
333 {
334 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
335 }
336 
gic_handle_irq(struct pt_regs * regs)337 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
338 {
339 	u32 irqstat, irqnr;
340 	struct gic_chip_data *gic = &gic_data[0];
341 	void __iomem *cpu_base = gic_data_cpu_base(gic);
342 
343 	do {
344 		irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
345 		irqnr = irqstat & GICC_IAR_INT_ID_MASK;
346 
347 		if (unlikely(irqnr >= 1020))
348 			break;
349 
350 		if (static_branch_likely(&supports_deactivate_key))
351 			writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
352 		isb();
353 
354 		/*
355 		 * Ensure any shared data written by the CPU sending the IPI
356 		 * is read after we've read the ACK register on the GIC.
357 		 *
358 		 * Pairs with the write barrier in gic_ipi_send_mask
359 		 */
360 		if (irqnr <= 15) {
361 			smp_rmb();
362 
363 			/*
364 			 * The GIC encodes the source CPU in GICC_IAR,
365 			 * leading to the deactivation to fail if not
366 			 * written back as is to GICC_EOI.  Stash the INTID
367 			 * away for gic_eoi_irq() to write back.  This only
368 			 * works because we don't nest SGIs...
369 			 */
370 			this_cpu_write(sgi_intid, irqstat);
371 		}
372 
373 		handle_domain_irq(gic->domain, irqnr, regs);
374 	} while (1);
375 }
376 
gic_handle_cascade_irq(struct irq_desc * desc)377 static void gic_handle_cascade_irq(struct irq_desc *desc)
378 {
379 	struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
380 	struct irq_chip *chip = irq_desc_get_chip(desc);
381 	unsigned int gic_irq;
382 	unsigned long status;
383 	int ret;
384 
385 	chained_irq_enter(chip, desc);
386 
387 	status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
388 
389 	gic_irq = (status & GICC_IAR_INT_ID_MASK);
390 	if (gic_irq == GICC_INT_SPURIOUS)
391 		goto out;
392 
393 	isb();
394 	ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
395 	if (unlikely(ret))
396 		handle_bad_irq(desc);
397  out:
398 	chained_irq_exit(chip, desc);
399 }
400 
401 static const struct irq_chip gic_chip = {
402 	.irq_mask		= gic_mask_irq,
403 	.irq_unmask		= gic_unmask_irq,
404 	.irq_eoi		= gic_eoi_irq,
405 	.irq_set_type		= gic_set_type,
406 	.irq_retrigger          = gic_retrigger,
407 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
408 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
409 	.flags			= IRQCHIP_SET_TYPE_MASKED |
410 				  IRQCHIP_SKIP_SET_WAKE |
411 				  IRQCHIP_MASK_ON_SUSPEND,
412 };
413 
gic_cascade_irq(unsigned int gic_nr,unsigned int irq)414 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
415 {
416 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
417 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
418 					 &gic_data[gic_nr]);
419 }
420 
gic_get_cpumask(struct gic_chip_data * gic)421 static u8 gic_get_cpumask(struct gic_chip_data *gic)
422 {
423 	void __iomem *base = gic_data_dist_base(gic);
424 	u32 mask, i;
425 
426 	for (i = mask = 0; i < 32; i += 4) {
427 		mask = readl_relaxed(base + GIC_DIST_TARGET + i);
428 		mask |= mask >> 16;
429 		mask |= mask >> 8;
430 		if (mask)
431 			break;
432 	}
433 
434 	if (!mask && num_possible_cpus() > 1)
435 		pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
436 
437 	return mask;
438 }
439 
gic_check_gicv2(void __iomem * base)440 static bool gic_check_gicv2(void __iomem *base)
441 {
442 	u32 val = readl_relaxed(base + GIC_CPU_IDENT);
443 	return (val & 0xff0fff) == 0x02043B;
444 }
445 
gic_cpu_if_up(struct gic_chip_data * gic)446 static void gic_cpu_if_up(struct gic_chip_data *gic)
447 {
448 	void __iomem *cpu_base = gic_data_cpu_base(gic);
449 	u32 bypass = 0;
450 	u32 mode = 0;
451 	int i;
452 
453 	if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
454 		mode = GIC_CPU_CTRL_EOImodeNS;
455 
456 	if (gic_check_gicv2(cpu_base))
457 		for (i = 0; i < 4; i++)
458 			writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
459 
460 	/*
461 	* Preserve bypass disable bits to be written back later
462 	*/
463 	bypass = readl(cpu_base + GIC_CPU_CTRL);
464 	bypass &= GICC_DIS_BYPASS_MASK;
465 
466 	writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
467 }
468 
469 
gic_dist_init(struct gic_chip_data * gic)470 static void gic_dist_init(struct gic_chip_data *gic)
471 {
472 	unsigned int i;
473 	u32 cpumask;
474 	unsigned int gic_irqs = gic->gic_irqs;
475 	void __iomem *base = gic_data_dist_base(gic);
476 
477 	writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
478 
479 	/*
480 	 * Set all global interrupts to this CPU only.
481 	 */
482 	cpumask = gic_get_cpumask(gic);
483 	cpumask |= cpumask << 8;
484 	cpumask |= cpumask << 16;
485 	for (i = 32; i < gic_irqs; i += 4)
486 		writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
487 
488 	gic_dist_config(base, gic_irqs, NULL);
489 
490 	writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
491 }
492 
gic_cpu_init(struct gic_chip_data * gic)493 static int gic_cpu_init(struct gic_chip_data *gic)
494 {
495 	void __iomem *dist_base = gic_data_dist_base(gic);
496 	void __iomem *base = gic_data_cpu_base(gic);
497 	unsigned int cpu_mask, cpu = smp_processor_id();
498 	int i;
499 
500 	/*
501 	 * Setting up the CPU map is only relevant for the primary GIC
502 	 * because any nested/secondary GICs do not directly interface
503 	 * with the CPU(s).
504 	 */
505 	if (gic == &gic_data[0]) {
506 		/*
507 		 * Get what the GIC says our CPU mask is.
508 		 */
509 		if (WARN_ON(cpu >= NR_GIC_CPU_IF))
510 			return -EINVAL;
511 
512 		gic_check_cpu_features();
513 		cpu_mask = gic_get_cpumask(gic);
514 		gic_cpu_map[cpu] = cpu_mask;
515 
516 		/*
517 		 * Clear our mask from the other map entries in case they're
518 		 * still undefined.
519 		 */
520 		for (i = 0; i < NR_GIC_CPU_IF; i++)
521 			if (i != cpu)
522 				gic_cpu_map[i] &= ~cpu_mask;
523 	}
524 
525 	gic_cpu_config(dist_base, 32, NULL);
526 
527 	writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
528 	gic_cpu_if_up(gic);
529 
530 	return 0;
531 }
532 
gic_cpu_if_down(unsigned int gic_nr)533 int gic_cpu_if_down(unsigned int gic_nr)
534 {
535 	void __iomem *cpu_base;
536 	u32 val = 0;
537 
538 	if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
539 		return -EINVAL;
540 
541 	cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
542 	val = readl(cpu_base + GIC_CPU_CTRL);
543 	val &= ~GICC_ENABLE;
544 	writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
545 
546 	return 0;
547 }
548 
549 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
550 /*
551  * Saves the GIC distributor registers during suspend or idle.  Must be called
552  * with interrupts disabled but before powering down the GIC.  After calling
553  * this function, no interrupts will be delivered by the GIC, and another
554  * platform-specific wakeup source must be enabled.
555  */
gic_dist_save(struct gic_chip_data * gic)556 void gic_dist_save(struct gic_chip_data *gic)
557 {
558 	unsigned int gic_irqs;
559 	void __iomem *dist_base;
560 	int i;
561 
562 	if (WARN_ON(!gic))
563 		return;
564 
565 	gic_irqs = gic->gic_irqs;
566 	dist_base = gic_data_dist_base(gic);
567 
568 	if (!dist_base)
569 		return;
570 
571 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
572 		gic->saved_spi_conf[i] =
573 			readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
574 
575 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
576 		gic->saved_spi_target[i] =
577 			readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
578 
579 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
580 		gic->saved_spi_enable[i] =
581 			readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
582 
583 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
584 		gic->saved_spi_active[i] =
585 			readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
586 }
587 
588 /*
589  * Restores the GIC distributor registers during resume or when coming out of
590  * idle.  Must be called before enabling interrupts.  If a level interrupt
591  * that occurred while the GIC was suspended is still present, it will be
592  * handled normally, but any edge interrupts that occurred will not be seen by
593  * the GIC and need to be handled by the platform-specific wakeup source.
594  */
gic_dist_restore(struct gic_chip_data * gic)595 void gic_dist_restore(struct gic_chip_data *gic)
596 {
597 	unsigned int gic_irqs;
598 	unsigned int i;
599 	void __iomem *dist_base;
600 
601 	if (WARN_ON(!gic))
602 		return;
603 
604 	gic_irqs = gic->gic_irqs;
605 	dist_base = gic_data_dist_base(gic);
606 
607 	if (!dist_base)
608 		return;
609 
610 	writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
611 
612 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
613 		writel_relaxed(gic->saved_spi_conf[i],
614 			dist_base + GIC_DIST_CONFIG + i * 4);
615 
616 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
617 		writel_relaxed(GICD_INT_DEF_PRI_X4,
618 			dist_base + GIC_DIST_PRI + i * 4);
619 
620 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
621 		writel_relaxed(gic->saved_spi_target[i],
622 			dist_base + GIC_DIST_TARGET + i * 4);
623 
624 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
625 		writel_relaxed(GICD_INT_EN_CLR_X32,
626 			dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
627 		writel_relaxed(gic->saved_spi_enable[i],
628 			dist_base + GIC_DIST_ENABLE_SET + i * 4);
629 	}
630 
631 	for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
632 		writel_relaxed(GICD_INT_EN_CLR_X32,
633 			dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
634 		writel_relaxed(gic->saved_spi_active[i],
635 			dist_base + GIC_DIST_ACTIVE_SET + i * 4);
636 	}
637 
638 	writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
639 }
640 
gic_cpu_save(struct gic_chip_data * gic)641 void gic_cpu_save(struct gic_chip_data *gic)
642 {
643 	int i;
644 	u32 *ptr;
645 	void __iomem *dist_base;
646 	void __iomem *cpu_base;
647 
648 	if (WARN_ON(!gic))
649 		return;
650 
651 	dist_base = gic_data_dist_base(gic);
652 	cpu_base = gic_data_cpu_base(gic);
653 
654 	if (!dist_base || !cpu_base)
655 		return;
656 
657 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
658 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
659 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
660 
661 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
662 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
663 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
664 
665 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
666 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
667 		ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
668 
669 }
670 
gic_cpu_restore(struct gic_chip_data * gic)671 void gic_cpu_restore(struct gic_chip_data *gic)
672 {
673 	int i;
674 	u32 *ptr;
675 	void __iomem *dist_base;
676 	void __iomem *cpu_base;
677 
678 	if (WARN_ON(!gic))
679 		return;
680 
681 	dist_base = gic_data_dist_base(gic);
682 	cpu_base = gic_data_cpu_base(gic);
683 
684 	if (!dist_base || !cpu_base)
685 		return;
686 
687 	ptr = raw_cpu_ptr(gic->saved_ppi_enable);
688 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
689 		writel_relaxed(GICD_INT_EN_CLR_X32,
690 			       dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
691 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
692 	}
693 
694 	ptr = raw_cpu_ptr(gic->saved_ppi_active);
695 	for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
696 		writel_relaxed(GICD_INT_EN_CLR_X32,
697 			       dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
698 		writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
699 	}
700 
701 	ptr = raw_cpu_ptr(gic->saved_ppi_conf);
702 	for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
703 		writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
704 
705 	for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
706 		writel_relaxed(GICD_INT_DEF_PRI_X4,
707 					dist_base + GIC_DIST_PRI + i * 4);
708 
709 	writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
710 	gic_cpu_if_up(gic);
711 }
712 
gic_notifier(struct notifier_block * self,unsigned long cmd,void * v)713 static int gic_notifier(struct notifier_block *self, unsigned long cmd,	void *v)
714 {
715 	int i;
716 
717 	for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
718 		switch (cmd) {
719 		case CPU_PM_ENTER:
720 			gic_cpu_save(&gic_data[i]);
721 			break;
722 		case CPU_PM_ENTER_FAILED:
723 		case CPU_PM_EXIT:
724 			gic_cpu_restore(&gic_data[i]);
725 			break;
726 		case CPU_CLUSTER_PM_ENTER:
727 			gic_dist_save(&gic_data[i]);
728 			break;
729 		case CPU_CLUSTER_PM_ENTER_FAILED:
730 		case CPU_CLUSTER_PM_EXIT:
731 			gic_dist_restore(&gic_data[i]);
732 			break;
733 		}
734 	}
735 
736 	return NOTIFY_OK;
737 }
738 
739 static struct notifier_block gic_notifier_block = {
740 	.notifier_call = gic_notifier,
741 };
742 
gic_pm_init(struct gic_chip_data * gic)743 static int gic_pm_init(struct gic_chip_data *gic)
744 {
745 	gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
746 		sizeof(u32));
747 	if (WARN_ON(!gic->saved_ppi_enable))
748 		return -ENOMEM;
749 
750 	gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
751 		sizeof(u32));
752 	if (WARN_ON(!gic->saved_ppi_active))
753 		goto free_ppi_enable;
754 
755 	gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
756 		sizeof(u32));
757 	if (WARN_ON(!gic->saved_ppi_conf))
758 		goto free_ppi_active;
759 
760 	if (gic == &gic_data[0])
761 		cpu_pm_register_notifier(&gic_notifier_block);
762 
763 	return 0;
764 
765 free_ppi_active:
766 	free_percpu(gic->saved_ppi_active);
767 free_ppi_enable:
768 	free_percpu(gic->saved_ppi_enable);
769 
770 	return -ENOMEM;
771 }
772 #else
gic_pm_init(struct gic_chip_data * gic)773 static int gic_pm_init(struct gic_chip_data *gic)
774 {
775 	return 0;
776 }
777 #endif
778 
779 #ifdef CONFIG_SMP
rmw_writeb(u8 bval,void __iomem * addr)780 static void rmw_writeb(u8 bval, void __iomem *addr)
781 {
782 	static DEFINE_RAW_SPINLOCK(rmw_lock);
783 	unsigned long offset = (unsigned long)addr & 3UL;
784 	unsigned long shift = offset * 8;
785 	unsigned long flags;
786 	u32 val;
787 
788 	raw_spin_lock_irqsave(&rmw_lock, flags);
789 
790 	addr -= offset;
791 	val = readl_relaxed(addr);
792 	val &= ~GENMASK(shift + 7, shift);
793 	val |= bval << shift;
794 	writel_relaxed(val, addr);
795 
796 	raw_spin_unlock_irqrestore(&rmw_lock, flags);
797 }
798 
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)799 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
800 			    bool force)
801 {
802 	void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
803 	unsigned int cpu;
804 
805 	if (!force)
806 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
807 	else
808 		cpu = cpumask_first(mask_val);
809 
810 	if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
811 		return -EINVAL;
812 
813 	if (static_branch_unlikely(&needs_rmw_access))
814 		rmw_writeb(gic_cpu_map[cpu], reg);
815 	else
816 		writeb_relaxed(gic_cpu_map[cpu], reg);
817 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
818 
819 	trace_android_vh_gic_set_affinity(d, mask_val, force, gic_cpu_map, reg);
820 
821 	return IRQ_SET_MASK_OK_DONE;
822 }
823 
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)824 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
825 {
826 	int cpu;
827 	unsigned long flags, map = 0;
828 
829 	if (unlikely(nr_cpu_ids == 1)) {
830 		/* Only one CPU? let's do a self-IPI... */
831 		writel_relaxed(2 << 24 | d->hwirq,
832 			       gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
833 		return;
834 	}
835 
836 	gic_lock_irqsave(flags);
837 
838 	/* Convert our logical CPU mask into a physical one. */
839 	for_each_cpu(cpu, mask)
840 		map |= gic_cpu_map[cpu];
841 
842 	/*
843 	 * Ensure that stores to Normal memory are visible to the
844 	 * other CPUs before they observe us issuing the IPI.
845 	 */
846 	dmb(ishst);
847 
848 	/* this always happens on GIC0 */
849 	writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
850 
851 	gic_unlock_irqrestore(flags);
852 }
853 
gic_starting_cpu(unsigned int cpu)854 static int gic_starting_cpu(unsigned int cpu)
855 {
856 	gic_cpu_init(&gic_data[0]);
857 	return 0;
858 }
859 
gic_smp_init(void)860 static __init void gic_smp_init(void)
861 {
862 	struct irq_fwspec sgi_fwspec = {
863 		.fwnode		= gic_data[0].domain->fwnode,
864 		.param_count	= 1,
865 	};
866 	int base_sgi;
867 
868 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
869 				  "irqchip/arm/gic:starting",
870 				  gic_starting_cpu, NULL);
871 
872 	base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
873 					   NUMA_NO_NODE, &sgi_fwspec,
874 					   false, NULL);
875 	if (WARN_ON(base_sgi <= 0))
876 		return;
877 
878 	set_smp_ipi_range(base_sgi, 8);
879 }
880 #else
881 #define gic_smp_init()		do { } while(0)
882 #define gic_set_affinity	NULL
883 #define gic_ipi_send_mask	NULL
884 #endif
885 
886 #ifdef CONFIG_BL_SWITCHER
887 /*
888  * gic_send_sgi - send a SGI directly to given CPU interface number
889  *
890  * cpu_id: the ID for the destination CPU interface
891  * irq: the IPI number to send a SGI for
892  */
gic_send_sgi(unsigned int cpu_id,unsigned int irq)893 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
894 {
895 	BUG_ON(cpu_id >= NR_GIC_CPU_IF);
896 	cpu_id = 1 << cpu_id;
897 	/* this always happens on GIC0 */
898 	writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
899 }
900 
901 /*
902  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
903  *
904  * @cpu: the logical CPU number to get the GIC ID for.
905  *
906  * Return the CPU interface ID for the given logical CPU number,
907  * or -1 if the CPU number is too large or the interface ID is
908  * unknown (more than one bit set).
909  */
gic_get_cpu_id(unsigned int cpu)910 int gic_get_cpu_id(unsigned int cpu)
911 {
912 	unsigned int cpu_bit;
913 
914 	if (cpu >= NR_GIC_CPU_IF)
915 		return -1;
916 	cpu_bit = gic_cpu_map[cpu];
917 	if (cpu_bit & (cpu_bit - 1))
918 		return -1;
919 	return __ffs(cpu_bit);
920 }
921 
922 /*
923  * gic_migrate_target - migrate IRQs to another CPU interface
924  *
925  * @new_cpu_id: the CPU target ID to migrate IRQs to
926  *
927  * Migrate all peripheral interrupts with a target matching the current CPU
928  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
929  * is also updated.  Targets to other CPU interfaces are unchanged.
930  * This must be called with IRQs locally disabled.
931  */
gic_migrate_target(unsigned int new_cpu_id)932 void gic_migrate_target(unsigned int new_cpu_id)
933 {
934 	unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
935 	void __iomem *dist_base;
936 	int i, ror_val, cpu = smp_processor_id();
937 	u32 val, cur_target_mask, active_mask;
938 
939 	BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
940 
941 	dist_base = gic_data_dist_base(&gic_data[gic_nr]);
942 	if (!dist_base)
943 		return;
944 	gic_irqs = gic_data[gic_nr].gic_irqs;
945 
946 	cur_cpu_id = __ffs(gic_cpu_map[cpu]);
947 	cur_target_mask = 0x01010101 << cur_cpu_id;
948 	ror_val = (cur_cpu_id - new_cpu_id) & 31;
949 
950 	gic_lock();
951 
952 	/* Update the target interface for this logical CPU */
953 	gic_cpu_map[cpu] = 1 << new_cpu_id;
954 
955 	/*
956 	 * Find all the peripheral interrupts targeting the current
957 	 * CPU interface and migrate them to the new CPU interface.
958 	 * We skip DIST_TARGET 0 to 7 as they are read-only.
959 	 */
960 	for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
961 		val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
962 		active_mask = val & cur_target_mask;
963 		if (active_mask) {
964 			val &= ~active_mask;
965 			val |= ror32(active_mask, ror_val);
966 			writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
967 		}
968 	}
969 
970 	gic_unlock();
971 
972 	/*
973 	 * Now let's migrate and clear any potential SGIs that might be
974 	 * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
975 	 * is a banked register, we can only forward the SGI using
976 	 * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
977 	 * doesn't use that information anyway.
978 	 *
979 	 * For the same reason we do not adjust SGI source information
980 	 * for previously sent SGIs by us to other CPUs either.
981 	 */
982 	for (i = 0; i < 16; i += 4) {
983 		int j;
984 		val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
985 		if (!val)
986 			continue;
987 		writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
988 		for (j = i; j < i + 4; j++) {
989 			if (val & 0xff)
990 				writel_relaxed((1 << (new_cpu_id + 16)) | j,
991 						dist_base + GIC_DIST_SOFTINT);
992 			val >>= 8;
993 		}
994 	}
995 }
996 
997 /*
998  * gic_get_sgir_physaddr - get the physical address for the SGI register
999  *
1000  * Return the physical address of the SGI register to be used
1001  * by some early assembly code when the kernel is not yet available.
1002  */
1003 static unsigned long gic_dist_physaddr;
1004 
gic_get_sgir_physaddr(void)1005 unsigned long gic_get_sgir_physaddr(void)
1006 {
1007 	if (!gic_dist_physaddr)
1008 		return 0;
1009 	return gic_dist_physaddr + GIC_DIST_SOFTINT;
1010 }
1011 
gic_init_physaddr(struct device_node * node)1012 static void __init gic_init_physaddr(struct device_node *node)
1013 {
1014 	struct resource res;
1015 	if (of_address_to_resource(node, 0, &res) == 0) {
1016 		gic_dist_physaddr = res.start;
1017 		pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1018 	}
1019 }
1020 
1021 #else
1022 #define gic_init_physaddr(node)  do { } while (0)
1023 #endif
1024 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1025 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1026 				irq_hw_number_t hw)
1027 {
1028 	struct gic_chip_data *gic = d->host_data;
1029 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1030 
1031 	switch (hw) {
1032 	case 0 ... 31:
1033 		irq_set_percpu_devid(irq);
1034 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1035 				    handle_percpu_devid_irq, NULL, NULL);
1036 		break;
1037 	default:
1038 		irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1039 				    handle_fasteoi_irq, NULL, NULL);
1040 		irq_set_probe(irq);
1041 		irqd_set_single_target(irqd);
1042 		break;
1043 	}
1044 
1045 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1046 	irqd_set_handle_enforce_irqctx(irqd);
1047 	return 0;
1048 }
1049 
gic_irq_domain_unmap(struct irq_domain * d,unsigned int irq)1050 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1051 {
1052 }
1053 
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1054 static int gic_irq_domain_translate(struct irq_domain *d,
1055 				    struct irq_fwspec *fwspec,
1056 				    unsigned long *hwirq,
1057 				    unsigned int *type)
1058 {
1059 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1060 		*hwirq = fwspec->param[0];
1061 		*type = IRQ_TYPE_EDGE_RISING;
1062 		return 0;
1063 	}
1064 
1065 	if (is_of_node(fwspec->fwnode)) {
1066 		if (fwspec->param_count < 3)
1067 			return -EINVAL;
1068 
1069 		switch (fwspec->param[0]) {
1070 		case 0:			/* SPI */
1071 			*hwirq = fwspec->param[1] + 32;
1072 			break;
1073 		case 1:			/* PPI */
1074 			*hwirq = fwspec->param[1] + 16;
1075 			break;
1076 		default:
1077 			return -EINVAL;
1078 		}
1079 
1080 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1081 
1082 		/* Make it clear that broken DTs are... broken */
1083 		WARN_ON(*type == IRQ_TYPE_NONE);
1084 		return 0;
1085 	}
1086 
1087 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1088 		if(fwspec->param_count != 2)
1089 			return -EINVAL;
1090 
1091 		if (fwspec->param[0] < 16) {
1092 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1093 			       fwspec->param[0]);
1094 			return -EINVAL;
1095 		}
1096 
1097 		*hwirq = fwspec->param[0];
1098 		*type = fwspec->param[1];
1099 
1100 		WARN_ON(*type == IRQ_TYPE_NONE);
1101 		return 0;
1102 	}
1103 
1104 	return -EINVAL;
1105 }
1106 
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1107 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1108 				unsigned int nr_irqs, void *arg)
1109 {
1110 	int i, ret;
1111 	irq_hw_number_t hwirq;
1112 	unsigned int type = IRQ_TYPE_NONE;
1113 	struct irq_fwspec *fwspec = arg;
1114 
1115 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1116 	if (ret)
1117 		return ret;
1118 
1119 	for (i = 0; i < nr_irqs; i++) {
1120 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1121 		if (ret)
1122 			return ret;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1129 	.translate = gic_irq_domain_translate,
1130 	.alloc = gic_irq_domain_alloc,
1131 	.free = irq_domain_free_irqs_top,
1132 };
1133 
1134 static const struct irq_domain_ops gic_irq_domain_ops = {
1135 	.map = gic_irq_domain_map,
1136 	.unmap = gic_irq_domain_unmap,
1137 };
1138 
gic_init_chip(struct gic_chip_data * gic,struct device * dev,const char * name,bool use_eoimode1)1139 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1140 			  const char *name, bool use_eoimode1)
1141 {
1142 	/* Initialize irq_chip */
1143 	gic->chip = gic_chip;
1144 	gic->chip.name = name;
1145 	gic->chip.parent_device = dev;
1146 
1147 	if (use_eoimode1) {
1148 		gic->chip.irq_mask = gic_eoimode1_mask_irq;
1149 		gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1150 		gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1151 	}
1152 
1153 	if (gic == &gic_data[0]) {
1154 		gic->chip.irq_set_affinity = gic_set_affinity;
1155 		gic->chip.ipi_send_mask = gic_ipi_send_mask;
1156 	}
1157 }
1158 
gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1159 static int gic_init_bases(struct gic_chip_data *gic,
1160 			  struct fwnode_handle *handle)
1161 {
1162 	int gic_irqs, ret;
1163 
1164 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1165 		/* Frankein-GIC without banked registers... */
1166 		unsigned int cpu;
1167 
1168 		gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1169 		gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1170 		if (WARN_ON(!gic->dist_base.percpu_base ||
1171 			    !gic->cpu_base.percpu_base)) {
1172 			ret = -ENOMEM;
1173 			goto error;
1174 		}
1175 
1176 		for_each_possible_cpu(cpu) {
1177 			u32 mpidr = cpu_logical_map(cpu);
1178 			u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1179 			unsigned long offset = gic->percpu_offset * core_id;
1180 			*per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1181 				gic->raw_dist_base + offset;
1182 			*per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1183 				gic->raw_cpu_base + offset;
1184 		}
1185 
1186 		enable_frankengic();
1187 	} else {
1188 		/* Normal, sane GIC... */
1189 		WARN(gic->percpu_offset,
1190 		     "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1191 		     gic->percpu_offset);
1192 		gic->dist_base.common_base = gic->raw_dist_base;
1193 		gic->cpu_base.common_base = gic->raw_cpu_base;
1194 	}
1195 
1196 	/*
1197 	 * Find out how many interrupts are supported.
1198 	 * The GIC only supports up to 1020 interrupt sources.
1199 	 */
1200 	gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1201 	gic_irqs = (gic_irqs + 1) * 32;
1202 	if (gic_irqs > 1020)
1203 		gic_irqs = 1020;
1204 	gic->gic_irqs = gic_irqs;
1205 
1206 	if (handle) {		/* DT/ACPI */
1207 		gic->domain = irq_domain_create_linear(handle, gic_irqs,
1208 						       &gic_irq_domain_hierarchy_ops,
1209 						       gic);
1210 	} else {		/* Legacy support */
1211 		/*
1212 		 * For primary GICs, skip over SGIs.
1213 		 * No secondary GIC support whatsoever.
1214 		 */
1215 		int irq_base;
1216 
1217 		gic_irqs -= 16; /* calculate # of irqs to allocate */
1218 
1219 		irq_base = irq_alloc_descs(16, 16, gic_irqs,
1220 					   numa_node_id());
1221 		if (irq_base < 0) {
1222 			WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1223 			irq_base = 16;
1224 		}
1225 
1226 		gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1227 						    16, &gic_irq_domain_ops, gic);
1228 	}
1229 
1230 	if (WARN_ON(!gic->domain)) {
1231 		ret = -ENODEV;
1232 		goto error;
1233 	}
1234 
1235 	gic_dist_init(gic);
1236 	ret = gic_cpu_init(gic);
1237 	if (ret)
1238 		goto error;
1239 
1240 	ret = gic_pm_init(gic);
1241 	if (ret)
1242 		goto error;
1243 
1244 	return 0;
1245 
1246 error:
1247 	if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1248 		free_percpu(gic->dist_base.percpu_base);
1249 		free_percpu(gic->cpu_base.percpu_base);
1250 	}
1251 
1252 	return ret;
1253 }
1254 
__gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1255 static int __init __gic_init_bases(struct gic_chip_data *gic,
1256 				   struct fwnode_handle *handle)
1257 {
1258 	char *name;
1259 	int i, ret;
1260 
1261 	if (WARN_ON(!gic || gic->domain))
1262 		return -EINVAL;
1263 
1264 	if (gic == &gic_data[0]) {
1265 		/*
1266 		 * Initialize the CPU interface map to all CPUs.
1267 		 * It will be refined as each CPU probes its ID.
1268 		 * This is only necessary for the primary GIC.
1269 		 */
1270 		for (i = 0; i < NR_GIC_CPU_IF; i++)
1271 			gic_cpu_map[i] = 0xff;
1272 
1273 		set_handle_irq(gic_handle_irq);
1274 		if (static_branch_likely(&supports_deactivate_key))
1275 			pr_info("GIC: Using split EOI/Deactivate mode\n");
1276 	}
1277 
1278 	if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1279 		name = kasprintf(GFP_KERNEL, "GICv2");
1280 		gic_init_chip(gic, NULL, name, true);
1281 	} else {
1282 		name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1283 		gic_init_chip(gic, NULL, name, false);
1284 	}
1285 
1286 	ret = gic_init_bases(gic, handle);
1287 	if (ret)
1288 		kfree(name);
1289 	else if (gic == &gic_data[0])
1290 		gic_smp_init();
1291 
1292 	return ret;
1293 }
1294 
gic_init(void __iomem * dist_base,void __iomem * cpu_base)1295 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1296 {
1297 	struct gic_chip_data *gic;
1298 
1299 	/*
1300 	 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1301 	 * bother with these...
1302 	 */
1303 	static_branch_disable(&supports_deactivate_key);
1304 
1305 	gic = &gic_data[0];
1306 	gic->raw_dist_base = dist_base;
1307 	gic->raw_cpu_base = cpu_base;
1308 
1309 	__gic_init_bases(gic, NULL);
1310 }
1311 
gic_teardown(struct gic_chip_data * gic)1312 static void gic_teardown(struct gic_chip_data *gic)
1313 {
1314 	if (WARN_ON(!gic))
1315 		return;
1316 
1317 	if (gic->raw_dist_base)
1318 		iounmap(gic->raw_dist_base);
1319 	if (gic->raw_cpu_base)
1320 		iounmap(gic->raw_cpu_base);
1321 }
1322 
1323 #ifdef CONFIG_OF
1324 static int gic_cnt __initdata;
1325 static bool gicv2_force_probe;
1326 
gicv2_force_probe_cfg(char * buf)1327 static int __init gicv2_force_probe_cfg(char *buf)
1328 {
1329 	return strtobool(buf, &gicv2_force_probe);
1330 }
1331 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1332 
gic_check_eoimode(struct device_node * node,void __iomem ** base)1333 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1334 {
1335 	struct resource cpuif_res;
1336 
1337 	of_address_to_resource(node, 1, &cpuif_res);
1338 
1339 	if (!is_hyp_mode_available())
1340 		return false;
1341 	if (resource_size(&cpuif_res) < SZ_8K) {
1342 		void __iomem *alt;
1343 		/*
1344 		 * Check for a stupid firmware that only exposes the
1345 		 * first page of a GICv2.
1346 		 */
1347 		if (!gic_check_gicv2(*base))
1348 			return false;
1349 
1350 		if (!gicv2_force_probe) {
1351 			pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1352 			return false;
1353 		}
1354 
1355 		alt = ioremap(cpuif_res.start, SZ_8K);
1356 		if (!alt)
1357 			return false;
1358 		if (!gic_check_gicv2(alt + SZ_4K)) {
1359 			/*
1360 			 * The first page was that of a GICv2, and
1361 			 * the second was *something*. Let's trust it
1362 			 * to be a GICv2, and update the mapping.
1363 			 */
1364 			pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1365 				&cpuif_res.start);
1366 			iounmap(*base);
1367 			*base = alt;
1368 			return true;
1369 		}
1370 
1371 		/*
1372 		 * We detected *two* initial GICv2 pages in a
1373 		 * row. Could be a GICv2 aliased over two 64kB
1374 		 * pages. Update the resource, map the iospace, and
1375 		 * pray.
1376 		 */
1377 		iounmap(alt);
1378 		alt = ioremap(cpuif_res.start, SZ_128K);
1379 		if (!alt)
1380 			return false;
1381 		pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1382 			&cpuif_res.start);
1383 		cpuif_res.end = cpuif_res.start + SZ_128K -1;
1384 		iounmap(*base);
1385 		*base = alt;
1386 	}
1387 	if (resource_size(&cpuif_res) == SZ_128K) {
1388 		/*
1389 		 * Verify that we have the first 4kB of a GICv2
1390 		 * aliased over the first 64kB by checking the
1391 		 * GICC_IIDR register on both ends.
1392 		 */
1393 		if (!gic_check_gicv2(*base) ||
1394 		    !gic_check_gicv2(*base + 0xf000))
1395 			return false;
1396 
1397 		/*
1398 		 * Move the base up by 60kB, so that we have a 8kB
1399 		 * contiguous region, which allows us to use GICC_DIR
1400 		 * at its normal offset. Please pass me that bucket.
1401 		 */
1402 		*base += 0xf000;
1403 		cpuif_res.start += 0xf000;
1404 		pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1405 			&cpuif_res.start);
1406 	}
1407 
1408 	return true;
1409 }
1410 
gic_enable_rmw_access(void * data)1411 static bool gic_enable_rmw_access(void *data)
1412 {
1413 	/*
1414 	 * The EMEV2 class of machines has a broken interconnect, and
1415 	 * locks up on accesses that are less than 32bit. So far, only
1416 	 * the affinity setting requires it.
1417 	 */
1418 	if (of_machine_is_compatible("renesas,emev2")) {
1419 		static_branch_enable(&needs_rmw_access);
1420 		return true;
1421 	}
1422 
1423 	return false;
1424 }
1425 
1426 static const struct gic_quirk gic_quirks[] = {
1427 	{
1428 		.desc		= "broken byte access",
1429 		.compatible	= "arm,pl390",
1430 		.init		= gic_enable_rmw_access,
1431 	},
1432 	{ },
1433 };
1434 
gic_of_setup(struct gic_chip_data * gic,struct device_node * node)1435 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1436 {
1437 	if (!gic || !node)
1438 		return -EINVAL;
1439 
1440 	gic->raw_dist_base = of_iomap(node, 0);
1441 	if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1442 		goto error;
1443 
1444 	gic->raw_cpu_base = of_iomap(node, 1);
1445 	if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1446 		goto error;
1447 
1448 	if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1449 		gic->percpu_offset = 0;
1450 
1451 	gic_enable_of_quirks(node, gic_quirks, gic);
1452 
1453 	return 0;
1454 
1455 error:
1456 	gic_teardown(gic);
1457 
1458 	return -ENOMEM;
1459 }
1460 
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1461 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1462 {
1463 	int ret;
1464 
1465 	if (!dev || !dev->of_node || !gic || !irq)
1466 		return -EINVAL;
1467 
1468 	*gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1469 	if (!*gic)
1470 		return -ENOMEM;
1471 
1472 	gic_init_chip(*gic, dev, dev->of_node->name, false);
1473 
1474 	ret = gic_of_setup(*gic, dev->of_node);
1475 	if (ret)
1476 		return ret;
1477 
1478 	ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1479 	if (ret) {
1480 		gic_teardown(*gic);
1481 		return ret;
1482 	}
1483 
1484 	irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1485 
1486 	return 0;
1487 }
1488 
gic_of_setup_kvm_info(struct device_node * node)1489 static void __init gic_of_setup_kvm_info(struct device_node *node)
1490 {
1491 	int ret;
1492 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1493 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1494 
1495 	gic_v2_kvm_info.type = GIC_V2;
1496 
1497 	gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1498 	if (!gic_v2_kvm_info.maint_irq)
1499 		return;
1500 
1501 	ret = of_address_to_resource(node, 2, vctrl_res);
1502 	if (ret)
1503 		return;
1504 
1505 	ret = of_address_to_resource(node, 3, vcpu_res);
1506 	if (ret)
1507 		return;
1508 
1509 	if (static_branch_likely(&supports_deactivate_key))
1510 		vgic_set_kvm_info(&gic_v2_kvm_info);
1511 }
1512 
1513 int __init
gic_of_init(struct device_node * node,struct device_node * parent)1514 gic_of_init(struct device_node *node, struct device_node *parent)
1515 {
1516 	struct gic_chip_data *gic;
1517 	int irq, ret;
1518 
1519 	if (WARN_ON(!node))
1520 		return -ENODEV;
1521 
1522 	if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1523 		return -EINVAL;
1524 
1525 	gic = &gic_data[gic_cnt];
1526 
1527 	ret = gic_of_setup(gic, node);
1528 	if (ret)
1529 		return ret;
1530 
1531 	/*
1532 	 * Disable split EOI/Deactivate if either HYP is not available
1533 	 * or the CPU interface is too small.
1534 	 */
1535 	if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1536 		static_branch_disable(&supports_deactivate_key);
1537 
1538 	ret = __gic_init_bases(gic, &node->fwnode);
1539 	if (ret) {
1540 		gic_teardown(gic);
1541 		return ret;
1542 	}
1543 
1544 	if (!gic_cnt) {
1545 		gic_init_physaddr(node);
1546 		gic_of_setup_kvm_info(node);
1547 	}
1548 
1549 	if (parent) {
1550 		irq = irq_of_parse_and_map(node, 0);
1551 		gic_cascade_irq(gic_cnt, irq);
1552 	}
1553 
1554 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1555 		gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1556 
1557 	gic_cnt++;
1558 	return 0;
1559 }
1560 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1561 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1562 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1563 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1564 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1565 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1566 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1567 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1568 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1569 #else
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1570 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1571 {
1572 	return -ENOTSUPP;
1573 }
1574 #endif
1575 
1576 #ifdef CONFIG_ACPI
1577 static struct
1578 {
1579 	phys_addr_t cpu_phys_base;
1580 	u32 maint_irq;
1581 	int maint_irq_mode;
1582 	phys_addr_t vctrl_base;
1583 	phys_addr_t vcpu_base;
1584 } acpi_data __initdata;
1585 
1586 static int __init
gic_acpi_parse_madt_cpu(union acpi_subtable_headers * header,const unsigned long end)1587 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1588 			const unsigned long end)
1589 {
1590 	struct acpi_madt_generic_interrupt *processor;
1591 	phys_addr_t gic_cpu_base;
1592 	static int cpu_base_assigned;
1593 
1594 	processor = (struct acpi_madt_generic_interrupt *)header;
1595 
1596 	if (BAD_MADT_GICC_ENTRY(processor, end))
1597 		return -EINVAL;
1598 
1599 	/*
1600 	 * There is no support for non-banked GICv1/2 register in ACPI spec.
1601 	 * All CPU interface addresses have to be the same.
1602 	 */
1603 	gic_cpu_base = processor->base_address;
1604 	if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1605 		return -EINVAL;
1606 
1607 	acpi_data.cpu_phys_base = gic_cpu_base;
1608 	acpi_data.maint_irq = processor->vgic_interrupt;
1609 	acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1610 				    ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1611 	acpi_data.vctrl_base = processor->gich_base_address;
1612 	acpi_data.vcpu_base = processor->gicv_base_address;
1613 
1614 	cpu_base_assigned = 1;
1615 	return 0;
1616 }
1617 
1618 /* The things you have to do to just *count* something... */
acpi_dummy_func(union acpi_subtable_headers * header,const unsigned long end)1619 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1620 				  const unsigned long end)
1621 {
1622 	return 0;
1623 }
1624 
acpi_gic_redist_is_present(void)1625 static bool __init acpi_gic_redist_is_present(void)
1626 {
1627 	return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1628 				     acpi_dummy_func, 0) > 0;
1629 }
1630 
gic_validate_dist(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)1631 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1632 				     struct acpi_probe_entry *ape)
1633 {
1634 	struct acpi_madt_generic_distributor *dist;
1635 	dist = (struct acpi_madt_generic_distributor *)header;
1636 
1637 	return (dist->version == ape->driver_data &&
1638 		(dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1639 		 !acpi_gic_redist_is_present()));
1640 }
1641 
1642 #define ACPI_GICV2_DIST_MEM_SIZE	(SZ_4K)
1643 #define ACPI_GIC_CPU_IF_MEM_SIZE	(SZ_8K)
1644 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
1645 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
1646 
gic_acpi_setup_kvm_info(void)1647 static void __init gic_acpi_setup_kvm_info(void)
1648 {
1649 	int irq;
1650 	struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1651 	struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1652 
1653 	gic_v2_kvm_info.type = GIC_V2;
1654 
1655 	if (!acpi_data.vctrl_base)
1656 		return;
1657 
1658 	vctrl_res->flags = IORESOURCE_MEM;
1659 	vctrl_res->start = acpi_data.vctrl_base;
1660 	vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1661 
1662 	if (!acpi_data.vcpu_base)
1663 		return;
1664 
1665 	vcpu_res->flags = IORESOURCE_MEM;
1666 	vcpu_res->start = acpi_data.vcpu_base;
1667 	vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1668 
1669 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1670 				acpi_data.maint_irq_mode,
1671 				ACPI_ACTIVE_HIGH);
1672 	if (irq <= 0)
1673 		return;
1674 
1675 	gic_v2_kvm_info.maint_irq = irq;
1676 
1677 	vgic_set_kvm_info(&gic_v2_kvm_info);
1678 }
1679 
gic_v2_acpi_init(union acpi_subtable_headers * header,const unsigned long end)1680 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1681 				   const unsigned long end)
1682 {
1683 	struct acpi_madt_generic_distributor *dist;
1684 	struct fwnode_handle *domain_handle;
1685 	struct gic_chip_data *gic = &gic_data[0];
1686 	int count, ret;
1687 
1688 	/* Collect CPU base addresses */
1689 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1690 				      gic_acpi_parse_madt_cpu, 0);
1691 	if (count <= 0) {
1692 		pr_err("No valid GICC entries exist\n");
1693 		return -EINVAL;
1694 	}
1695 
1696 	gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1697 	if (!gic->raw_cpu_base) {
1698 		pr_err("Unable to map GICC registers\n");
1699 		return -ENOMEM;
1700 	}
1701 
1702 	dist = (struct acpi_madt_generic_distributor *)header;
1703 	gic->raw_dist_base = ioremap(dist->base_address,
1704 				     ACPI_GICV2_DIST_MEM_SIZE);
1705 	if (!gic->raw_dist_base) {
1706 		pr_err("Unable to map GICD registers\n");
1707 		gic_teardown(gic);
1708 		return -ENOMEM;
1709 	}
1710 
1711 	/*
1712 	 * Disable split EOI/Deactivate if HYP is not available. ACPI
1713 	 * guarantees that we'll always have a GICv2, so the CPU
1714 	 * interface will always be the right size.
1715 	 */
1716 	if (!is_hyp_mode_available())
1717 		static_branch_disable(&supports_deactivate_key);
1718 
1719 	/*
1720 	 * Initialize GIC instance zero (no multi-GIC support).
1721 	 */
1722 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1723 	if (!domain_handle) {
1724 		pr_err("Unable to allocate domain handle\n");
1725 		gic_teardown(gic);
1726 		return -ENOMEM;
1727 	}
1728 
1729 	ret = __gic_init_bases(gic, domain_handle);
1730 	if (ret) {
1731 		pr_err("Failed to initialise GIC\n");
1732 		irq_domain_free_fwnode(domain_handle);
1733 		gic_teardown(gic);
1734 		return ret;
1735 	}
1736 
1737 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1738 
1739 	if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1740 		gicv2m_init(NULL, gic_data[0].domain);
1741 
1742 	if (static_branch_likely(&supports_deactivate_key))
1743 		gic_acpi_setup_kvm_info();
1744 
1745 	return 0;
1746 }
1747 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1748 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1749 		     gic_v2_acpi_init);
1750 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1751 		     gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1752 		     gic_v2_acpi_init);
1753 #endif
1754