1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62
63 #define NFSDBG_FACILITY NFSDBG_VFS
64
65 static struct kmem_cache *nfs_direct_cachep;
66
67 struct nfs_direct_req {
68 struct kref kref; /* release manager */
69
70 /* I/O parameters */
71 struct nfs_open_context *ctx; /* file open context info */
72 struct nfs_lock_context *l_ctx; /* Lock context info */
73 struct kiocb * iocb; /* controlling i/o request */
74 struct inode * inode; /* target file of i/o */
75
76 /* completion state */
77 atomic_t io_count; /* i/os we're waiting for */
78 spinlock_t lock; /* protect completion state */
79
80 loff_t io_start; /* Start offset for I/O */
81 ssize_t count, /* bytes actually processed */
82 max_count, /* max expected count */
83 bytes_left, /* bytes left to be sent */
84 error; /* any reported error */
85 struct completion completion; /* wait for i/o completion */
86
87 /* commit state */
88 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
89 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
90 struct work_struct work;
91 int flags;
92 /* for write */
93 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
94 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
95 /* for read */
96 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
97 #define NFS_ODIRECT_DONE INT_MAX /* write verification failed */
98 };
99
100 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103 static void nfs_direct_write_schedule_work(struct work_struct *work);
104
get_dreq(struct nfs_direct_req * dreq)105 static inline void get_dreq(struct nfs_direct_req *dreq)
106 {
107 atomic_inc(&dreq->io_count);
108 }
109
put_dreq(struct nfs_direct_req * dreq)110 static inline int put_dreq(struct nfs_direct_req *dreq)
111 {
112 return atomic_dec_and_test(&dreq->io_count);
113 }
114
115 static void
nfs_direct_handle_truncated(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr,ssize_t dreq_len)116 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117 const struct nfs_pgio_header *hdr,
118 ssize_t dreq_len)
119 {
120 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122 return;
123 if (dreq->max_count >= dreq_len) {
124 dreq->max_count = dreq_len;
125 if (dreq->count > dreq_len)
126 dreq->count = dreq_len;
127
128 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129 dreq->error = hdr->error;
130 else /* Clear outstanding error if this is EOF */
131 dreq->error = 0;
132 }
133 }
134
135 static void
nfs_direct_count_bytes(struct nfs_direct_req * dreq,const struct nfs_pgio_header * hdr)136 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137 const struct nfs_pgio_header *hdr)
138 {
139 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140 ssize_t dreq_len = 0;
141
142 if (hdr_end > dreq->io_start)
143 dreq_len = hdr_end - dreq->io_start;
144
145 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146
147 if (dreq_len > dreq->max_count)
148 dreq_len = dreq->max_count;
149
150 if (dreq->count < dreq_len)
151 dreq->count = dreq_len;
152 }
153
154 /**
155 * nfs_direct_IO - NFS address space operation for direct I/O
156 * @iocb: target I/O control block
157 * @iter: I/O buffer
158 *
159 * The presence of this routine in the address space ops vector means
160 * the NFS client supports direct I/O. However, for most direct IO, we
161 * shunt off direct read and write requests before the VFS gets them,
162 * so this method is only ever called for swap.
163 */
nfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)164 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
165 {
166 struct inode *inode = iocb->ki_filp->f_mapping->host;
167
168 /* we only support swap file calling nfs_direct_IO */
169 if (!IS_SWAPFILE(inode))
170 return 0;
171
172 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
173
174 if (iov_iter_rw(iter) == READ)
175 return nfs_file_direct_read(iocb, iter, true);
176 return nfs_file_direct_write(iocb, iter, true);
177 }
178
nfs_direct_release_pages(struct page ** pages,unsigned int npages)179 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
180 {
181 unsigned int i;
182 for (i = 0; i < npages; i++)
183 put_page(pages[i]);
184 }
185
nfs_init_cinfo_from_dreq(struct nfs_commit_info * cinfo,struct nfs_direct_req * dreq)186 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
187 struct nfs_direct_req *dreq)
188 {
189 cinfo->inode = dreq->inode;
190 cinfo->mds = &dreq->mds_cinfo;
191 cinfo->ds = &dreq->ds_cinfo;
192 cinfo->dreq = dreq;
193 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
194 }
195
nfs_direct_req_alloc(void)196 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
197 {
198 struct nfs_direct_req *dreq;
199
200 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
201 if (!dreq)
202 return NULL;
203
204 kref_init(&dreq->kref);
205 kref_get(&dreq->kref);
206 init_completion(&dreq->completion);
207 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
208 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
209 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
210 spin_lock_init(&dreq->lock);
211
212 return dreq;
213 }
214
nfs_direct_req_free(struct kref * kref)215 static void nfs_direct_req_free(struct kref *kref)
216 {
217 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
218
219 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
220 if (dreq->l_ctx != NULL)
221 nfs_put_lock_context(dreq->l_ctx);
222 if (dreq->ctx != NULL)
223 put_nfs_open_context(dreq->ctx);
224 kmem_cache_free(nfs_direct_cachep, dreq);
225 }
226
nfs_direct_req_release(struct nfs_direct_req * dreq)227 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
228 {
229 kref_put(&dreq->kref, nfs_direct_req_free);
230 }
231
nfs_dreq_bytes_left(struct nfs_direct_req * dreq)232 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
233 {
234 return dreq->bytes_left;
235 }
236 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
237
238 /*
239 * Collects and returns the final error value/byte-count.
240 */
nfs_direct_wait(struct nfs_direct_req * dreq)241 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
242 {
243 ssize_t result = -EIOCBQUEUED;
244
245 /* Async requests don't wait here */
246 if (dreq->iocb)
247 goto out;
248
249 result = wait_for_completion_killable(&dreq->completion);
250
251 if (!result) {
252 result = dreq->count;
253 WARN_ON_ONCE(dreq->count < 0);
254 }
255 if (!result)
256 result = dreq->error;
257
258 out:
259 return (ssize_t) result;
260 }
261
262 /*
263 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
264 * the iocb is still valid here if this is a synchronous request.
265 */
nfs_direct_complete(struct nfs_direct_req * dreq)266 static void nfs_direct_complete(struct nfs_direct_req *dreq)
267 {
268 struct inode *inode = dreq->inode;
269
270 inode_dio_end(inode);
271
272 if (dreq->iocb) {
273 long res = (long) dreq->error;
274 if (dreq->count != 0) {
275 res = (long) dreq->count;
276 WARN_ON_ONCE(dreq->count < 0);
277 }
278 dreq->iocb->ki_complete(dreq->iocb, res, 0);
279 }
280
281 complete(&dreq->completion);
282
283 nfs_direct_req_release(dreq);
284 }
285
nfs_direct_read_completion(struct nfs_pgio_header * hdr)286 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
287 {
288 unsigned long bytes = 0;
289 struct nfs_direct_req *dreq = hdr->dreq;
290
291 spin_lock(&dreq->lock);
292 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
293 spin_unlock(&dreq->lock);
294 goto out_put;
295 }
296
297 nfs_direct_count_bytes(dreq, hdr);
298 spin_unlock(&dreq->lock);
299
300 while (!list_empty(&hdr->pages)) {
301 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
302 struct page *page = req->wb_page;
303
304 if (!PageCompound(page) && bytes < hdr->good_bytes &&
305 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
306 set_page_dirty(page);
307 bytes += req->wb_bytes;
308 nfs_list_remove_request(req);
309 nfs_release_request(req);
310 }
311 out_put:
312 if (put_dreq(dreq))
313 nfs_direct_complete(dreq);
314 hdr->release(hdr);
315 }
316
nfs_read_sync_pgio_error(struct list_head * head,int error)317 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
318 {
319 struct nfs_page *req;
320
321 while (!list_empty(head)) {
322 req = nfs_list_entry(head->next);
323 nfs_list_remove_request(req);
324 nfs_release_request(req);
325 }
326 }
327
nfs_direct_pgio_init(struct nfs_pgio_header * hdr)328 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
329 {
330 get_dreq(hdr->dreq);
331 }
332
333 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
334 .error_cleanup = nfs_read_sync_pgio_error,
335 .init_hdr = nfs_direct_pgio_init,
336 .completion = nfs_direct_read_completion,
337 };
338
339 /*
340 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
341 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
342 * bail and stop sending more reads. Read length accounting is
343 * handled automatically by nfs_direct_read_result(). Otherwise, if
344 * no requests have been sent, just return an error.
345 */
346
nfs_direct_read_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos)347 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
348 struct iov_iter *iter,
349 loff_t pos)
350 {
351 struct nfs_pageio_descriptor desc;
352 struct inode *inode = dreq->inode;
353 ssize_t result = -EINVAL;
354 size_t requested_bytes = 0;
355 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
356
357 nfs_pageio_init_read(&desc, dreq->inode, false,
358 &nfs_direct_read_completion_ops);
359 get_dreq(dreq);
360 desc.pg_dreq = dreq;
361 inode_dio_begin(inode);
362
363 while (iov_iter_count(iter)) {
364 struct page **pagevec;
365 size_t bytes;
366 size_t pgbase;
367 unsigned npages, i;
368
369 result = iov_iter_get_pages_alloc(iter, &pagevec,
370 rsize, &pgbase);
371 if (result < 0)
372 break;
373
374 bytes = result;
375 iov_iter_advance(iter, bytes);
376 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
377 for (i = 0; i < npages; i++) {
378 struct nfs_page *req;
379 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380 /* XXX do we need to do the eof zeroing found in async_filler? */
381 req = nfs_create_request(dreq->ctx, pagevec[i],
382 pgbase, req_len);
383 if (IS_ERR(req)) {
384 result = PTR_ERR(req);
385 break;
386 }
387 req->wb_index = pos >> PAGE_SHIFT;
388 req->wb_offset = pos & ~PAGE_MASK;
389 if (!nfs_pageio_add_request(&desc, req)) {
390 result = desc.pg_error;
391 nfs_release_request(req);
392 break;
393 }
394 pgbase = 0;
395 bytes -= req_len;
396 requested_bytes += req_len;
397 pos += req_len;
398 dreq->bytes_left -= req_len;
399 }
400 nfs_direct_release_pages(pagevec, npages);
401 kvfree(pagevec);
402 if (result < 0)
403 break;
404 }
405
406 nfs_pageio_complete(&desc);
407
408 /*
409 * If no bytes were started, return the error, and let the
410 * generic layer handle the completion.
411 */
412 if (requested_bytes == 0) {
413 inode_dio_end(inode);
414 nfs_direct_req_release(dreq);
415 return result < 0 ? result : -EIO;
416 }
417
418 if (put_dreq(dreq))
419 nfs_direct_complete(dreq);
420 return requested_bytes;
421 }
422
423 /**
424 * nfs_file_direct_read - file direct read operation for NFS files
425 * @iocb: target I/O control block
426 * @iter: vector of user buffers into which to read data
427 * @swap: flag indicating this is swap IO, not O_DIRECT IO
428 *
429 * We use this function for direct reads instead of calling
430 * generic_file_aio_read() in order to avoid gfar's check to see if
431 * the request starts before the end of the file. For that check
432 * to work, we must generate a GETATTR before each direct read, and
433 * even then there is a window between the GETATTR and the subsequent
434 * READ where the file size could change. Our preference is simply
435 * to do all reads the application wants, and the server will take
436 * care of managing the end of file boundary.
437 *
438 * This function also eliminates unnecessarily updating the file's
439 * atime locally, as the NFS server sets the file's atime, and this
440 * client must read the updated atime from the server back into its
441 * cache.
442 */
nfs_file_direct_read(struct kiocb * iocb,struct iov_iter * iter,bool swap)443 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
444 bool swap)
445 {
446 struct file *file = iocb->ki_filp;
447 struct address_space *mapping = file->f_mapping;
448 struct inode *inode = mapping->host;
449 struct nfs_direct_req *dreq;
450 struct nfs_lock_context *l_ctx;
451 ssize_t result, requested;
452 size_t count = iov_iter_count(iter);
453 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
454
455 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
456 file, count, (long long) iocb->ki_pos);
457
458 result = 0;
459 if (!count)
460 goto out;
461
462 task_io_account_read(count);
463
464 result = -ENOMEM;
465 dreq = nfs_direct_req_alloc();
466 if (dreq == NULL)
467 goto out;
468
469 dreq->inode = inode;
470 dreq->bytes_left = dreq->max_count = count;
471 dreq->io_start = iocb->ki_pos;
472 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
473 l_ctx = nfs_get_lock_context(dreq->ctx);
474 if (IS_ERR(l_ctx)) {
475 result = PTR_ERR(l_ctx);
476 nfs_direct_req_release(dreq);
477 goto out_release;
478 }
479 dreq->l_ctx = l_ctx;
480 if (!is_sync_kiocb(iocb))
481 dreq->iocb = iocb;
482
483 if (iter_is_iovec(iter))
484 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
485
486 if (!swap)
487 nfs_start_io_direct(inode);
488
489 NFS_I(inode)->read_io += count;
490 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
491
492 if (!swap)
493 nfs_end_io_direct(inode);
494
495 if (requested > 0) {
496 result = nfs_direct_wait(dreq);
497 if (result > 0) {
498 requested -= result;
499 iocb->ki_pos += result;
500 }
501 iov_iter_revert(iter, requested);
502 } else {
503 result = requested;
504 }
505
506 out_release:
507 nfs_direct_req_release(dreq);
508 out:
509 return result;
510 }
511
nfs_direct_add_page_head(struct list_head * list,struct nfs_page * req)512 static void nfs_direct_add_page_head(struct list_head *list,
513 struct nfs_page *req)
514 {
515 struct nfs_page *head = req->wb_head;
516
517 if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
518 return;
519 if (!list_empty(&head->wb_list)) {
520 nfs_unlock_request(head);
521 return;
522 }
523 list_add(&head->wb_list, list);
524 kref_get(&head->wb_kref);
525 kref_get(&head->wb_kref);
526 }
527
nfs_direct_join_group(struct list_head * list,struct nfs_commit_info * cinfo,struct inode * inode)528 static void nfs_direct_join_group(struct list_head *list,
529 struct nfs_commit_info *cinfo,
530 struct inode *inode)
531 {
532 struct nfs_page *req, *subreq;
533
534 list_for_each_entry(req, list, wb_list) {
535 if (req->wb_head != req) {
536 nfs_direct_add_page_head(&req->wb_list, req);
537 continue;
538 }
539 subreq = req->wb_this_page;
540 if (subreq == req)
541 continue;
542 do {
543 /*
544 * Remove subrequests from this list before freeing
545 * them in the call to nfs_join_page_group().
546 */
547 if (!list_empty(&subreq->wb_list)) {
548 nfs_list_remove_request(subreq);
549 nfs_release_request(subreq);
550 }
551 } while ((subreq = subreq->wb_this_page) != req);
552 nfs_join_page_group(req, cinfo, inode);
553 }
554 }
555
556 static void
nfs_direct_write_scan_commit_list(struct inode * inode,struct list_head * list,struct nfs_commit_info * cinfo)557 nfs_direct_write_scan_commit_list(struct inode *inode,
558 struct list_head *list,
559 struct nfs_commit_info *cinfo)
560 {
561 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
562 pnfs_recover_commit_reqs(list, cinfo);
563 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
564 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
565 }
566
nfs_direct_write_reschedule(struct nfs_direct_req * dreq)567 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
568 {
569 struct nfs_pageio_descriptor desc;
570 struct nfs_page *req, *tmp;
571 LIST_HEAD(reqs);
572 struct nfs_commit_info cinfo;
573 LIST_HEAD(failed);
574
575 nfs_init_cinfo_from_dreq(&cinfo, dreq);
576 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
577
578 nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
579
580 dreq->count = 0;
581 dreq->max_count = 0;
582 list_for_each_entry(req, &reqs, wb_list)
583 dreq->max_count += req->wb_bytes;
584 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
585 get_dreq(dreq);
586
587 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
588 &nfs_direct_write_completion_ops);
589 desc.pg_dreq = dreq;
590
591 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
592 /* Bump the transmission count */
593 req->wb_nio++;
594 if (!nfs_pageio_add_request(&desc, req)) {
595 nfs_list_move_request(req, &failed);
596 spin_lock(&cinfo.inode->i_lock);
597 dreq->flags = 0;
598 if (desc.pg_error < 0)
599 dreq->error = desc.pg_error;
600 else
601 dreq->error = -EIO;
602 spin_unlock(&cinfo.inode->i_lock);
603 }
604 nfs_release_request(req);
605 }
606 nfs_pageio_complete(&desc);
607
608 while (!list_empty(&failed)) {
609 req = nfs_list_entry(failed.next);
610 nfs_list_remove_request(req);
611 nfs_unlock_and_release_request(req);
612 }
613
614 if (put_dreq(dreq))
615 nfs_direct_write_complete(dreq);
616 }
617
nfs_direct_commit_complete(struct nfs_commit_data * data)618 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
619 {
620 const struct nfs_writeverf *verf = data->res.verf;
621 struct nfs_direct_req *dreq = data->dreq;
622 struct nfs_commit_info cinfo;
623 struct nfs_page *req;
624 int status = data->task.tk_status;
625
626 if (status < 0) {
627 /* Errors in commit are fatal */
628 dreq->error = status;
629 dreq->max_count = 0;
630 dreq->count = 0;
631 dreq->flags = NFS_ODIRECT_DONE;
632 } else if (dreq->flags == NFS_ODIRECT_DONE)
633 status = dreq->error;
634
635 nfs_init_cinfo_from_dreq(&cinfo, dreq);
636
637 while (!list_empty(&data->pages)) {
638 req = nfs_list_entry(data->pages.next);
639 nfs_list_remove_request(req);
640 if (status >= 0 && !nfs_write_match_verf(verf, req)) {
641 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
642 /*
643 * Despite the reboot, the write was successful,
644 * so reset wb_nio.
645 */
646 req->wb_nio = 0;
647 nfs_mark_request_commit(req, NULL, &cinfo, 0);
648 } else /* Error or match */
649 nfs_release_request(req);
650 nfs_unlock_and_release_request(req);
651 }
652
653 if (nfs_commit_end(cinfo.mds))
654 nfs_direct_write_complete(dreq);
655 }
656
nfs_direct_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)657 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
658 struct nfs_page *req)
659 {
660 struct nfs_direct_req *dreq = cinfo->dreq;
661
662 spin_lock(&dreq->lock);
663 if (dreq->flags != NFS_ODIRECT_DONE)
664 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
665 spin_unlock(&dreq->lock);
666 nfs_mark_request_commit(req, NULL, cinfo, 0);
667 }
668
669 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
670 .completion = nfs_direct_commit_complete,
671 .resched_write = nfs_direct_resched_write,
672 };
673
nfs_direct_commit_schedule(struct nfs_direct_req * dreq)674 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
675 {
676 int res;
677 struct nfs_commit_info cinfo;
678 LIST_HEAD(mds_list);
679
680 nfs_init_cinfo_from_dreq(&cinfo, dreq);
681 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
682 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
683 if (res < 0) /* res == -ENOMEM */
684 nfs_direct_write_reschedule(dreq);
685 }
686
nfs_direct_write_clear_reqs(struct nfs_direct_req * dreq)687 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
688 {
689 struct nfs_commit_info cinfo;
690 struct nfs_page *req;
691 LIST_HEAD(reqs);
692
693 nfs_init_cinfo_from_dreq(&cinfo, dreq);
694 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
695
696 while (!list_empty(&reqs)) {
697 req = nfs_list_entry(reqs.next);
698 nfs_list_remove_request(req);
699 nfs_release_request(req);
700 nfs_unlock_and_release_request(req);
701 }
702 }
703
nfs_direct_write_schedule_work(struct work_struct * work)704 static void nfs_direct_write_schedule_work(struct work_struct *work)
705 {
706 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
707 int flags = dreq->flags;
708
709 dreq->flags = 0;
710 switch (flags) {
711 case NFS_ODIRECT_DO_COMMIT:
712 nfs_direct_commit_schedule(dreq);
713 break;
714 case NFS_ODIRECT_RESCHED_WRITES:
715 nfs_direct_write_reschedule(dreq);
716 break;
717 default:
718 nfs_direct_write_clear_reqs(dreq);
719 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
720 nfs_direct_complete(dreq);
721 }
722 }
723
nfs_direct_write_complete(struct nfs_direct_req * dreq)724 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
725 {
726 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
727 }
728
nfs_direct_write_completion(struct nfs_pgio_header * hdr)729 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
730 {
731 struct nfs_direct_req *dreq = hdr->dreq;
732 struct nfs_commit_info cinfo;
733 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
734 int flags = NFS_ODIRECT_DONE;
735
736 nfs_init_cinfo_from_dreq(&cinfo, dreq);
737
738 spin_lock(&dreq->lock);
739 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
740 spin_unlock(&dreq->lock);
741 goto out_put;
742 }
743
744 nfs_direct_count_bytes(dreq, hdr);
745 if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
746 if (!dreq->flags)
747 dreq->flags = NFS_ODIRECT_DO_COMMIT;
748 flags = dreq->flags;
749 }
750 spin_unlock(&dreq->lock);
751
752 while (!list_empty(&hdr->pages)) {
753
754 req = nfs_list_entry(hdr->pages.next);
755 nfs_list_remove_request(req);
756 if (flags == NFS_ODIRECT_DO_COMMIT) {
757 kref_get(&req->wb_kref);
758 memcpy(&req->wb_verf, &hdr->verf.verifier,
759 sizeof(req->wb_verf));
760 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
761 hdr->ds_commit_idx);
762 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
763 kref_get(&req->wb_kref);
764 nfs_mark_request_commit(req, NULL, &cinfo, 0);
765 }
766 nfs_unlock_and_release_request(req);
767 }
768
769 out_put:
770 if (put_dreq(dreq))
771 nfs_direct_write_complete(dreq);
772 hdr->release(hdr);
773 }
774
nfs_write_sync_pgio_error(struct list_head * head,int error)775 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
776 {
777 struct nfs_page *req;
778
779 while (!list_empty(head)) {
780 req = nfs_list_entry(head->next);
781 nfs_list_remove_request(req);
782 nfs_unlock_and_release_request(req);
783 }
784 }
785
nfs_direct_write_reschedule_io(struct nfs_pgio_header * hdr)786 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
787 {
788 struct nfs_direct_req *dreq = hdr->dreq;
789 struct nfs_page *req;
790 struct nfs_commit_info cinfo;
791
792 nfs_init_cinfo_from_dreq(&cinfo, dreq);
793 spin_lock(&dreq->lock);
794 if (dreq->error == 0)
795 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
796 set_bit(NFS_IOHDR_REDO, &hdr->flags);
797 spin_unlock(&dreq->lock);
798 while (!list_empty(&hdr->pages)) {
799 req = nfs_list_entry(hdr->pages.next);
800 nfs_list_remove_request(req);
801 nfs_unlock_request(req);
802 nfs_mark_request_commit(req, NULL, &cinfo, 0);
803 }
804 }
805
806 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
807 .error_cleanup = nfs_write_sync_pgio_error,
808 .init_hdr = nfs_direct_pgio_init,
809 .completion = nfs_direct_write_completion,
810 .reschedule_io = nfs_direct_write_reschedule_io,
811 };
812
813
814 /*
815 * NB: Return the value of the first error return code. Subsequent
816 * errors after the first one are ignored.
817 */
818 /*
819 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
820 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
821 * bail and stop sending more writes. Write length accounting is
822 * handled automatically by nfs_direct_write_result(). Otherwise, if
823 * no requests have been sent, just return an error.
824 */
nfs_direct_write_schedule_iovec(struct nfs_direct_req * dreq,struct iov_iter * iter,loff_t pos,int ioflags)825 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
826 struct iov_iter *iter,
827 loff_t pos, int ioflags)
828 {
829 struct nfs_pageio_descriptor desc;
830 struct inode *inode = dreq->inode;
831 ssize_t result = 0;
832 size_t requested_bytes = 0;
833 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
834
835 nfs_pageio_init_write(&desc, inode, ioflags, false,
836 &nfs_direct_write_completion_ops);
837 desc.pg_dreq = dreq;
838 get_dreq(dreq);
839 inode_dio_begin(inode);
840
841 NFS_I(inode)->write_io += iov_iter_count(iter);
842 while (iov_iter_count(iter)) {
843 struct page **pagevec;
844 size_t bytes;
845 size_t pgbase;
846 unsigned npages, i;
847
848 result = iov_iter_get_pages_alloc(iter, &pagevec,
849 wsize, &pgbase);
850 if (result < 0)
851 break;
852
853 bytes = result;
854 iov_iter_advance(iter, bytes);
855 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
856 for (i = 0; i < npages; i++) {
857 struct nfs_page *req;
858 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
859
860 req = nfs_create_request(dreq->ctx, pagevec[i],
861 pgbase, req_len);
862 if (IS_ERR(req)) {
863 result = PTR_ERR(req);
864 break;
865 }
866
867 if (desc.pg_error < 0) {
868 nfs_free_request(req);
869 result = desc.pg_error;
870 break;
871 }
872
873 nfs_lock_request(req);
874 req->wb_index = pos >> PAGE_SHIFT;
875 req->wb_offset = pos & ~PAGE_MASK;
876 if (!nfs_pageio_add_request(&desc, req)) {
877 result = desc.pg_error;
878 nfs_unlock_and_release_request(req);
879 break;
880 }
881 pgbase = 0;
882 bytes -= req_len;
883 requested_bytes += req_len;
884 pos += req_len;
885 dreq->bytes_left -= req_len;
886 }
887 nfs_direct_release_pages(pagevec, npages);
888 kvfree(pagevec);
889 if (result < 0)
890 break;
891 }
892 nfs_pageio_complete(&desc);
893
894 /*
895 * If no bytes were started, return the error, and let the
896 * generic layer handle the completion.
897 */
898 if (requested_bytes == 0) {
899 inode_dio_end(inode);
900 nfs_direct_req_release(dreq);
901 return result < 0 ? result : -EIO;
902 }
903
904 if (put_dreq(dreq))
905 nfs_direct_write_complete(dreq);
906 return requested_bytes;
907 }
908
909 /**
910 * nfs_file_direct_write - file direct write operation for NFS files
911 * @iocb: target I/O control block
912 * @iter: vector of user buffers from which to write data
913 * @swap: flag indicating this is swap IO, not O_DIRECT IO
914 *
915 * We use this function for direct writes instead of calling
916 * generic_file_aio_write() in order to avoid taking the inode
917 * semaphore and updating the i_size. The NFS server will set
918 * the new i_size and this client must read the updated size
919 * back into its cache. We let the server do generic write
920 * parameter checking and report problems.
921 *
922 * We eliminate local atime updates, see direct read above.
923 *
924 * We avoid unnecessary page cache invalidations for normal cached
925 * readers of this file.
926 *
927 * Note that O_APPEND is not supported for NFS direct writes, as there
928 * is no atomic O_APPEND write facility in the NFS protocol.
929 */
nfs_file_direct_write(struct kiocb * iocb,struct iov_iter * iter,bool swap)930 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
931 bool swap)
932 {
933 ssize_t result, requested;
934 size_t count;
935 struct file *file = iocb->ki_filp;
936 struct address_space *mapping = file->f_mapping;
937 struct inode *inode = mapping->host;
938 struct nfs_direct_req *dreq;
939 struct nfs_lock_context *l_ctx;
940 loff_t pos, end;
941
942 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
943 file, iov_iter_count(iter), (long long) iocb->ki_pos);
944
945 if (swap)
946 /* bypass generic checks */
947 result = iov_iter_count(iter);
948 else
949 result = generic_write_checks(iocb, iter);
950 if (result <= 0)
951 return result;
952 count = result;
953 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
954
955 pos = iocb->ki_pos;
956 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
957
958 task_io_account_write(count);
959
960 result = -ENOMEM;
961 dreq = nfs_direct_req_alloc();
962 if (!dreq)
963 goto out;
964
965 dreq->inode = inode;
966 dreq->bytes_left = dreq->max_count = count;
967 dreq->io_start = pos;
968 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
969 l_ctx = nfs_get_lock_context(dreq->ctx);
970 if (IS_ERR(l_ctx)) {
971 result = PTR_ERR(l_ctx);
972 nfs_direct_req_release(dreq);
973 goto out_release;
974 }
975 dreq->l_ctx = l_ctx;
976 if (!is_sync_kiocb(iocb))
977 dreq->iocb = iocb;
978 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
979
980 if (swap) {
981 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
982 FLUSH_STABLE);
983 } else {
984 nfs_start_io_direct(inode);
985
986 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
987 FLUSH_COND_STABLE);
988
989 if (mapping->nrpages) {
990 invalidate_inode_pages2_range(mapping,
991 pos >> PAGE_SHIFT, end);
992 }
993
994 nfs_end_io_direct(inode);
995 }
996
997 if (requested > 0) {
998 result = nfs_direct_wait(dreq);
999 if (result > 0) {
1000 requested -= result;
1001 iocb->ki_pos = pos + result;
1002 /* XXX: should check the generic_write_sync retval */
1003 generic_write_sync(iocb, result);
1004 }
1005 iov_iter_revert(iter, requested);
1006 } else {
1007 result = requested;
1008 }
1009 out_release:
1010 nfs_direct_req_release(dreq);
1011 out:
1012 return result;
1013 }
1014
1015 /**
1016 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1017 *
1018 */
nfs_init_directcache(void)1019 int __init nfs_init_directcache(void)
1020 {
1021 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1022 sizeof(struct nfs_direct_req),
1023 0, (SLAB_RECLAIM_ACCOUNT|
1024 SLAB_MEM_SPREAD),
1025 NULL);
1026 if (nfs_direct_cachep == NULL)
1027 return -ENOMEM;
1028
1029 return 0;
1030 }
1031
1032 /**
1033 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1034 *
1035 */
nfs_destroy_directcache(void)1036 void nfs_destroy_directcache(void)
1037 {
1038 kmem_cache_destroy(nfs_direct_cachep);
1039 }
1040