• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 int
xfs_reflink_find_shared(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t aglen,xfs_agblock_t * fbno,xfs_extlen_t * flen,bool find_end_of_shared)129 xfs_reflink_find_shared(
130 	struct xfs_mount	*mp,
131 	struct xfs_trans	*tp,
132 	xfs_agnumber_t		agno,
133 	xfs_agblock_t		agbno,
134 	xfs_extlen_t		aglen,
135 	xfs_agblock_t		*fbno,
136 	xfs_extlen_t		*flen,
137 	bool			find_end_of_shared)
138 {
139 	struct xfs_buf		*agbp;
140 	struct xfs_btree_cur	*cur;
141 	int			error;
142 
143 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 	if (error)
145 		return error;
146 
147 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
148 
149 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 			find_end_of_shared);
151 
152 	xfs_btree_del_cursor(cur, error);
153 
154 	xfs_trans_brelse(tp, agbp);
155 	return error;
156 }
157 
158 /*
159  * Trim the mapping to the next block where there's a change in the
160  * shared/unshared status.  More specifically, this means that we
161  * find the lowest-numbered extent of shared blocks that coincides with
162  * the given block mapping.  If the shared extent overlaps the start of
163  * the mapping, trim the mapping to the end of the shared extent.  If
164  * the shared region intersects the mapping, trim the mapping to the
165  * start of the shared extent.  If there are no shared regions that
166  * overlap, just return the original extent.
167  */
168 int
xfs_reflink_trim_around_shared(struct xfs_inode * ip,struct xfs_bmbt_irec * irec,bool * shared)169 xfs_reflink_trim_around_shared(
170 	struct xfs_inode	*ip,
171 	struct xfs_bmbt_irec	*irec,
172 	bool			*shared)
173 {
174 	xfs_agnumber_t		agno;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 			aglen, &fbno, &flen, true);
195 	if (error)
196 		return error;
197 
198 	*shared = false;
199 	if (fbno == NULLAGBLOCK) {
200 		/* No shared blocks at all. */
201 		return 0;
202 	} else if (fbno == agbno) {
203 		/*
204 		 * The start of this extent is shared.  Truncate the
205 		 * mapping at the end of the shared region so that a
206 		 * subsequent iteration starts at the start of the
207 		 * unshared region.
208 		 */
209 		irec->br_blockcount = flen;
210 		*shared = true;
211 		return 0;
212 	} else {
213 		/*
214 		 * There's a shared extent midway through this extent.
215 		 * Truncate the mapping at the start of the shared
216 		 * extent so that a subsequent iteration starts at the
217 		 * start of the shared region.
218 		 */
219 		irec->br_blockcount = fbno - agbno;
220 		return 0;
221 	}
222 }
223 
224 int
xfs_bmap_trim_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared)225 xfs_bmap_trim_cow(
226 	struct xfs_inode	*ip,
227 	struct xfs_bmbt_irec	*imap,
228 	bool			*shared)
229 {
230 	/* We can't update any real extents in always COW mode. */
231 	if (xfs_is_always_cow_inode(ip) &&
232 	    !isnullstartblock(imap->br_startblock)) {
233 		*shared = true;
234 		return 0;
235 	}
236 
237 	/* Trim the mapping to the nearest shared extent boundary. */
238 	return xfs_reflink_trim_around_shared(ip, imap, shared);
239 }
240 
241 static int
xfs_reflink_convert_cow_locked(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_filblks_t count_fsb)242 xfs_reflink_convert_cow_locked(
243 	struct xfs_inode	*ip,
244 	xfs_fileoff_t		offset_fsb,
245 	xfs_filblks_t		count_fsb)
246 {
247 	struct xfs_iext_cursor	icur;
248 	struct xfs_bmbt_irec	got;
249 	struct xfs_btree_cur	*dummy_cur = NULL;
250 	int			dummy_logflags;
251 	int			error = 0;
252 
253 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 		return 0;
255 
256 	do {
257 		if (got.br_startoff >= offset_fsb + count_fsb)
258 			break;
259 		if (got.br_state == XFS_EXT_NORM)
260 			continue;
261 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 			return -EIO;
263 
264 		xfs_trim_extent(&got, offset_fsb, count_fsb);
265 		if (!got.br_blockcount)
266 			continue;
267 
268 		got.br_state = XFS_EXT_NORM;
269 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 				XFS_COW_FORK, &icur, &dummy_cur, &got,
271 				&dummy_logflags);
272 		if (error)
273 			return error;
274 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275 
276 	return error;
277 }
278 
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
280 int
xfs_reflink_convert_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)281 xfs_reflink_convert_cow(
282 	struct xfs_inode	*ip,
283 	xfs_off_t		offset,
284 	xfs_off_t		count)
285 {
286 	struct xfs_mount	*mp = ip->i_mount;
287 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
290 	int			error;
291 
292 	ASSERT(count != 0);
293 
294 	xfs_ilock(ip, XFS_ILOCK_EXCL);
295 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 	return error;
298 }
299 
300 /*
301  * Find the extent that maps the given range in the COW fork. Even if the extent
302  * is not shared we might have a preallocation for it in the COW fork. If so we
303  * use it that rather than trigger a new allocation.
304  */
305 static int
xfs_find_trim_cow_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,bool * found)306 xfs_find_trim_cow_extent(
307 	struct xfs_inode	*ip,
308 	struct xfs_bmbt_irec	*imap,
309 	struct xfs_bmbt_irec	*cmap,
310 	bool			*shared,
311 	bool			*found)
312 {
313 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
314 	xfs_filblks_t		count_fsb = imap->br_blockcount;
315 	struct xfs_iext_cursor	icur;
316 
317 	*found = false;
318 
319 	/*
320 	 * If we don't find an overlapping extent, trim the range we need to
321 	 * allocate to fit the hole we found.
322 	 */
323 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 		cmap->br_startoff = offset_fsb + count_fsb;
325 	if (cmap->br_startoff > offset_fsb) {
326 		xfs_trim_extent(imap, imap->br_startoff,
327 				cmap->br_startoff - imap->br_startoff);
328 		return xfs_bmap_trim_cow(ip, imap, shared);
329 	}
330 
331 	*shared = true;
332 	if (isnullstartblock(cmap->br_startblock)) {
333 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 		return 0;
335 	}
336 
337 	/* real extent found - no need to allocate */
338 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 	*found = true;
340 	return 0;
341 }
342 
343 static int
xfs_reflink_convert_unwritten(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool convert_now)344 xfs_reflink_convert_unwritten(
345 	struct xfs_inode	*ip,
346 	struct xfs_bmbt_irec	*imap,
347 	struct xfs_bmbt_irec	*cmap,
348 	bool			convert_now)
349 {
350 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
351 	xfs_filblks_t		count_fsb = imap->br_blockcount;
352 	int			error;
353 
354 	/*
355 	 * cmap might larger than imap due to cowextsize hint.
356 	 */
357 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
358 
359 	/*
360 	 * COW fork extents are supposed to remain unwritten until we're ready
361 	 * to initiate a disk write.  For direct I/O we are going to write the
362 	 * data and need the conversion, but for buffered writes we're done.
363 	 */
364 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
365 		return 0;
366 
367 	trace_xfs_reflink_convert_cow(ip, cmap);
368 
369 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
370 	if (!error)
371 		cmap->br_state = XFS_EXT_NORM;
372 
373 	return error;
374 }
375 
376 static int
xfs_reflink_fill_cow_hole(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)377 xfs_reflink_fill_cow_hole(
378 	struct xfs_inode	*ip,
379 	struct xfs_bmbt_irec	*imap,
380 	struct xfs_bmbt_irec	*cmap,
381 	bool			*shared,
382 	uint			*lockmode,
383 	bool			convert_now)
384 {
385 	struct xfs_mount	*mp = ip->i_mount;
386 	struct xfs_trans	*tp;
387 	xfs_filblks_t		resaligned;
388 	xfs_extlen_t		resblks;
389 	int			nimaps;
390 	int			error;
391 	bool			found;
392 
393 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
394 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
395 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
396 
397 	xfs_iunlock(ip, *lockmode);
398 	*lockmode = 0;
399 
400 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
401 			false, &tp);
402 	if (error)
403 		return error;
404 
405 	*lockmode = XFS_ILOCK_EXCL;
406 
407 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
408 	if (error || !*shared)
409 		goto out_trans_cancel;
410 
411 	if (found) {
412 		xfs_trans_cancel(tp);
413 		goto convert;
414 	}
415 
416 	ASSERT(cmap->br_startoff > imap->br_startoff);
417 
418 	/* Allocate the entire reservation as unwritten blocks. */
419 	nimaps = 1;
420 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
421 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
422 			&nimaps);
423 	if (error)
424 		goto out_trans_cancel;
425 
426 	xfs_inode_set_cowblocks_tag(ip);
427 	error = xfs_trans_commit(tp);
428 	if (error)
429 		return error;
430 
431 	/*
432 	 * Allocation succeeded but the requested range was not even partially
433 	 * satisfied?  Bail out!
434 	 */
435 	if (nimaps == 0)
436 		return -ENOSPC;
437 
438 convert:
439 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
440 
441 out_trans_cancel:
442 	xfs_trans_cancel(tp);
443 	return error;
444 }
445 
446 static int
xfs_reflink_fill_delalloc(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)447 xfs_reflink_fill_delalloc(
448 	struct xfs_inode	*ip,
449 	struct xfs_bmbt_irec	*imap,
450 	struct xfs_bmbt_irec	*cmap,
451 	bool			*shared,
452 	uint			*lockmode,
453 	bool			convert_now)
454 {
455 	struct xfs_mount	*mp = ip->i_mount;
456 	struct xfs_trans	*tp;
457 	int			nimaps;
458 	int			error;
459 	bool			found;
460 
461 	do {
462 		xfs_iunlock(ip, *lockmode);
463 		*lockmode = 0;
464 
465 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
466 				false, &tp);
467 		if (error)
468 			return error;
469 
470 		*lockmode = XFS_ILOCK_EXCL;
471 
472 		error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
473 				&found);
474 		if (error || !*shared)
475 			goto out_trans_cancel;
476 
477 		if (found) {
478 			xfs_trans_cancel(tp);
479 			break;
480 		}
481 
482 		ASSERT(isnullstartblock(cmap->br_startblock) ||
483 		       cmap->br_startblock == DELAYSTARTBLOCK);
484 
485 		/*
486 		 * Replace delalloc reservation with an unwritten extent.
487 		 */
488 		nimaps = 1;
489 		error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
490 				cmap->br_blockcount,
491 				XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
492 				cmap, &nimaps);
493 		if (error)
494 			goto out_trans_cancel;
495 
496 		xfs_inode_set_cowblocks_tag(ip);
497 		error = xfs_trans_commit(tp);
498 		if (error)
499 			return error;
500 
501 		/*
502 		 * Allocation succeeded but the requested range was not even
503 		 * partially satisfied?  Bail out!
504 		 */
505 		if (nimaps == 0)
506 			return -ENOSPC;
507 	} while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
508 
509 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
510 
511 out_trans_cancel:
512 	xfs_trans_cancel(tp);
513 	return error;
514 }
515 
516 /* Allocate all CoW reservations covering a range of blocks in a file. */
517 int
xfs_reflink_allocate_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)518 xfs_reflink_allocate_cow(
519 	struct xfs_inode	*ip,
520 	struct xfs_bmbt_irec	*imap,
521 	struct xfs_bmbt_irec	*cmap,
522 	bool			*shared,
523 	uint			*lockmode,
524 	bool			convert_now)
525 {
526 	int			error;
527 	bool			found;
528 
529 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
530 	if (!ip->i_cowfp) {
531 		ASSERT(!xfs_is_reflink_inode(ip));
532 		xfs_ifork_init_cow(ip);
533 	}
534 
535 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
536 	if (error || !*shared)
537 		return error;
538 
539 	/* CoW fork has a real extent */
540 	if (found)
541 		return xfs_reflink_convert_unwritten(ip, imap, cmap,
542 				convert_now);
543 
544 	/*
545 	 * CoW fork does not have an extent and data extent is shared.
546 	 * Allocate a real extent in the CoW fork.
547 	 */
548 	if (cmap->br_startoff > imap->br_startoff)
549 		return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
550 				lockmode, convert_now);
551 
552 	/*
553 	 * CoW fork has a delalloc reservation. Replace it with a real extent.
554 	 * There may or may not be a data fork mapping.
555 	 */
556 	if (isnullstartblock(cmap->br_startblock) ||
557 	    cmap->br_startblock == DELAYSTARTBLOCK)
558 		return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
559 				lockmode, convert_now);
560 
561 	/* Shouldn't get here. */
562 	ASSERT(0);
563 	return -EFSCORRUPTED;
564 }
565 
566 /*
567  * Cancel CoW reservations for some block range of an inode.
568  *
569  * If cancel_real is true this function cancels all COW fork extents for the
570  * inode; if cancel_real is false, real extents are not cleared.
571  *
572  * Caller must have already joined the inode to the current transaction. The
573  * inode will be joined to the transaction returned to the caller.
574  */
575 int
xfs_reflink_cancel_cow_blocks(struct xfs_inode * ip,struct xfs_trans ** tpp,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb,bool cancel_real)576 xfs_reflink_cancel_cow_blocks(
577 	struct xfs_inode		*ip,
578 	struct xfs_trans		**tpp,
579 	xfs_fileoff_t			offset_fsb,
580 	xfs_fileoff_t			end_fsb,
581 	bool				cancel_real)
582 {
583 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
584 	struct xfs_bmbt_irec		got, del;
585 	struct xfs_iext_cursor		icur;
586 	int				error = 0;
587 
588 	if (!xfs_inode_has_cow_data(ip))
589 		return 0;
590 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
591 		return 0;
592 
593 	/* Walk backwards until we're out of the I/O range... */
594 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
595 		del = got;
596 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
597 
598 		/* Extent delete may have bumped ext forward */
599 		if (!del.br_blockcount) {
600 			xfs_iext_prev(ifp, &icur);
601 			goto next_extent;
602 		}
603 
604 		trace_xfs_reflink_cancel_cow(ip, &del);
605 
606 		if (isnullstartblock(del.br_startblock)) {
607 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
608 					&icur, &got, &del);
609 			if (error)
610 				break;
611 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
612 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
613 
614 			/* Free the CoW orphan record. */
615 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
616 					del.br_blockcount);
617 
618 			xfs_bmap_add_free(*tpp, del.br_startblock,
619 					  del.br_blockcount, NULL);
620 
621 			/* Roll the transaction */
622 			error = xfs_defer_finish(tpp);
623 			if (error)
624 				break;
625 
626 			/* Remove the mapping from the CoW fork. */
627 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
628 
629 			/* Remove the quota reservation */
630 			error = xfs_quota_unreserve_blkres(ip,
631 					del.br_blockcount);
632 			if (error)
633 				break;
634 		} else {
635 			/* Didn't do anything, push cursor back. */
636 			xfs_iext_prev(ifp, &icur);
637 		}
638 next_extent:
639 		if (!xfs_iext_get_extent(ifp, &icur, &got))
640 			break;
641 	}
642 
643 	/* clear tag if cow fork is emptied */
644 	if (!ifp->if_bytes)
645 		xfs_inode_clear_cowblocks_tag(ip);
646 	return error;
647 }
648 
649 /*
650  * Cancel CoW reservations for some byte range of an inode.
651  *
652  * If cancel_real is true this function cancels all COW fork extents for the
653  * inode; if cancel_real is false, real extents are not cleared.
654  */
655 int
xfs_reflink_cancel_cow_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,bool cancel_real)656 xfs_reflink_cancel_cow_range(
657 	struct xfs_inode	*ip,
658 	xfs_off_t		offset,
659 	xfs_off_t		count,
660 	bool			cancel_real)
661 {
662 	struct xfs_trans	*tp;
663 	xfs_fileoff_t		offset_fsb;
664 	xfs_fileoff_t		end_fsb;
665 	int			error;
666 
667 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
668 	ASSERT(ip->i_cowfp);
669 
670 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
671 	if (count == NULLFILEOFF)
672 		end_fsb = NULLFILEOFF;
673 	else
674 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
675 
676 	/* Start a rolling transaction to remove the mappings */
677 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
678 			0, 0, 0, &tp);
679 	if (error)
680 		goto out;
681 
682 	xfs_ilock(ip, XFS_ILOCK_EXCL);
683 	xfs_trans_ijoin(tp, ip, 0);
684 
685 	/* Scrape out the old CoW reservations */
686 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
687 			cancel_real);
688 	if (error)
689 		goto out_cancel;
690 
691 	error = xfs_trans_commit(tp);
692 
693 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
694 	return error;
695 
696 out_cancel:
697 	xfs_trans_cancel(tp);
698 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
699 out:
700 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
701 	return error;
702 }
703 
704 /*
705  * Remap part of the CoW fork into the data fork.
706  *
707  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
708  * into the data fork; this function will remap what it can (at the end of the
709  * range) and update @end_fsb appropriately.  Each remap gets its own
710  * transaction because we can end up merging and splitting bmbt blocks for
711  * every remap operation and we'd like to keep the block reservation
712  * requirements as low as possible.
713  */
714 STATIC int
xfs_reflink_end_cow_extent(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t * end_fsb)715 xfs_reflink_end_cow_extent(
716 	struct xfs_inode	*ip,
717 	xfs_fileoff_t		offset_fsb,
718 	xfs_fileoff_t		*end_fsb)
719 {
720 	struct xfs_bmbt_irec	got, del;
721 	struct xfs_iext_cursor	icur;
722 	struct xfs_mount	*mp = ip->i_mount;
723 	struct xfs_trans	*tp;
724 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
725 	xfs_filblks_t		rlen;
726 	unsigned int		resblks;
727 	int			error;
728 
729 	/* No COW extents?  That's easy! */
730 	if (ifp->if_bytes == 0) {
731 		*end_fsb = offset_fsb;
732 		return 0;
733 	}
734 
735 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
736 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
737 			XFS_TRANS_RESERVE, &tp);
738 	if (error)
739 		return error;
740 
741 	/*
742 	 * Lock the inode.  We have to ijoin without automatic unlock because
743 	 * the lead transaction is the refcountbt record deletion; the data
744 	 * fork update follows as a deferred log item.
745 	 */
746 	xfs_ilock(ip, XFS_ILOCK_EXCL);
747 	xfs_trans_ijoin(tp, ip, 0);
748 
749 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
750 			XFS_IEXT_REFLINK_END_COW_CNT);
751 	if (error)
752 		goto out_cancel;
753 
754 	/*
755 	 * In case of racing, overlapping AIO writes no COW extents might be
756 	 * left by the time I/O completes for the loser of the race.  In that
757 	 * case we are done.
758 	 */
759 	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
760 	    got.br_startoff + got.br_blockcount <= offset_fsb) {
761 		*end_fsb = offset_fsb;
762 		goto out_cancel;
763 	}
764 
765 	/*
766 	 * Structure copy @got into @del, then trim @del to the range that we
767 	 * were asked to remap.  We preserve @got for the eventual CoW fork
768 	 * deletion; from now on @del represents the mapping that we're
769 	 * actually remapping.
770 	 */
771 	del = got;
772 	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
773 
774 	ASSERT(del.br_blockcount > 0);
775 
776 	/*
777 	 * Only remap real extents that contain data.  With AIO, speculative
778 	 * preallocations can leak into the range we are called upon, and we
779 	 * need to skip them.
780 	 */
781 	if (!xfs_bmap_is_written_extent(&got)) {
782 		*end_fsb = del.br_startoff;
783 		goto out_cancel;
784 	}
785 
786 	/* Unmap the old blocks in the data fork. */
787 	rlen = del.br_blockcount;
788 	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
789 	if (error)
790 		goto out_cancel;
791 
792 	/* Trim the extent to whatever got unmapped. */
793 	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
794 	trace_xfs_reflink_cow_remap(ip, &del);
795 
796 	/* Free the CoW orphan record. */
797 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
798 
799 	/* Map the new blocks into the data fork. */
800 	xfs_bmap_map_extent(tp, ip, &del);
801 
802 	/* Charge this new data fork mapping to the on-disk quota. */
803 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
804 			(long)del.br_blockcount);
805 
806 	/* Remove the mapping from the CoW fork. */
807 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
808 
809 	error = xfs_trans_commit(tp);
810 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
811 	if (error)
812 		return error;
813 
814 	/* Update the caller about how much progress we made. */
815 	*end_fsb = del.br_startoff;
816 	return 0;
817 
818 out_cancel:
819 	xfs_trans_cancel(tp);
820 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
821 	return error;
822 }
823 
824 /*
825  * Remap parts of a file's data fork after a successful CoW.
826  */
827 int
xfs_reflink_end_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)828 xfs_reflink_end_cow(
829 	struct xfs_inode		*ip,
830 	xfs_off_t			offset,
831 	xfs_off_t			count)
832 {
833 	xfs_fileoff_t			offset_fsb;
834 	xfs_fileoff_t			end_fsb;
835 	int				error = 0;
836 
837 	trace_xfs_reflink_end_cow(ip, offset, count);
838 
839 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
840 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
841 
842 	/*
843 	 * Walk backwards until we're out of the I/O range.  The loop function
844 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
845 	 * extent.
846 	 *
847 	 * If we're being called by writeback then the pages will still
848 	 * have PageWriteback set, which prevents races with reflink remapping
849 	 * and truncate.  Reflink remapping prevents races with writeback by
850 	 * taking the iolock and mmaplock before flushing the pages and
851 	 * remapping, which means there won't be any further writeback or page
852 	 * cache dirtying until the reflink completes.
853 	 *
854 	 * We should never have two threads issuing writeback for the same file
855 	 * region.  There are also have post-eof checks in the writeback
856 	 * preparation code so that we don't bother writing out pages that are
857 	 * about to be truncated.
858 	 *
859 	 * If we're being called as part of directio write completion, the dio
860 	 * count is still elevated, which reflink and truncate will wait for.
861 	 * Reflink remapping takes the iolock and mmaplock and waits for
862 	 * pending dio to finish, which should prevent any directio until the
863 	 * remap completes.  Multiple concurrent directio writes to the same
864 	 * region are handled by end_cow processing only occurring for the
865 	 * threads which succeed; the outcome of multiple overlapping direct
866 	 * writes is not well defined anyway.
867 	 *
868 	 * It's possible that a buffered write and a direct write could collide
869 	 * here (the buffered write stumbles in after the dio flushes and
870 	 * invalidates the page cache and immediately queues writeback), but we
871 	 * have never supported this 100%.  If either disk write succeeds the
872 	 * blocks will be remapped.
873 	 */
874 	while (end_fsb > offset_fsb && !error)
875 		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
876 
877 	if (error)
878 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
879 	return error;
880 }
881 
882 /*
883  * Free all CoW staging blocks that are still referenced by the ondisk refcount
884  * metadata.  The ondisk metadata does not track which inode created the
885  * staging extent, so callers must ensure that there are no cached inodes with
886  * live CoW staging extents.
887  */
888 int
xfs_reflink_recover_cow(struct xfs_mount * mp)889 xfs_reflink_recover_cow(
890 	struct xfs_mount	*mp)
891 {
892 	struct xfs_perag	*pag;
893 	xfs_agnumber_t		agno;
894 	int			error = 0;
895 
896 	if (!xfs_has_reflink(mp))
897 		return 0;
898 
899 	for_each_perag(mp, agno, pag) {
900 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
901 		if (error) {
902 			xfs_perag_put(pag);
903 			break;
904 		}
905 	}
906 
907 	return error;
908 }
909 
910 /*
911  * Reflinking (Block) Ranges of Two Files Together
912  *
913  * First, ensure that the reflink flag is set on both inodes.  The flag is an
914  * optimization to avoid unnecessary refcount btree lookups in the write path.
915  *
916  * Now we can iteratively remap the range of extents (and holes) in src to the
917  * corresponding ranges in dest.  Let drange and srange denote the ranges of
918  * logical blocks in dest and src touched by the reflink operation.
919  *
920  * While the length of drange is greater than zero,
921  *    - Read src's bmbt at the start of srange ("imap")
922  *    - If imap doesn't exist, make imap appear to start at the end of srange
923  *      with zero length.
924  *    - If imap starts before srange, advance imap to start at srange.
925  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
926  *    - Punch (imap start - srange start + imap len) blocks from dest at
927  *      offset (drange start).
928  *    - If imap points to a real range of pblks,
929  *         > Increase the refcount of the imap's pblks
930  *         > Map imap's pblks into dest at the offset
931  *           (drange start + imap start - srange start)
932  *    - Advance drange and srange by (imap start - srange start + imap len)
933  *
934  * Finally, if the reflink made dest longer, update both the in-core and
935  * on-disk file sizes.
936  *
937  * ASCII Art Demonstration:
938  *
939  * Let's say we want to reflink this source file:
940  *
941  * ----SSSSSSS-SSSSS----SSSSSS (src file)
942  *   <-------------------->
943  *
944  * into this destination file:
945  *
946  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
947  *        <-------------------->
948  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
949  * Observe that the range has different logical offsets in either file.
950  *
951  * Consider that the first extent in the source file doesn't line up with our
952  * reflink range.  Unmapping  and remapping are separate operations, so we can
953  * unmap more blocks from the destination file than we remap.
954  *
955  * ----SSSSSSS-SSSSS----SSSSSS
956  *   <------->
957  * --DDDDD---------DDDDD--DDD
958  *        <------->
959  *
960  * Now remap the source extent into the destination file:
961  *
962  * ----SSSSSSS-SSSSS----SSSSSS
963  *   <------->
964  * --DDDDD--SSSSSSSDDDDD--DDD
965  *        <------->
966  *
967  * Do likewise with the second hole and extent in our range.  Holes in the
968  * unmap range don't affect our operation.
969  *
970  * ----SSSSSSS-SSSSS----SSSSSS
971  *            <---->
972  * --DDDDD--SSSSSSS-SSSSS-DDD
973  *                 <---->
974  *
975  * Finally, unmap and remap part of the third extent.  This will increase the
976  * size of the destination file.
977  *
978  * ----SSSSSSS-SSSSS----SSSSSS
979  *                  <----->
980  * --DDDDD--SSSSSSS-SSSSS----SSS
981  *                       <----->
982  *
983  * Once we update the destination file's i_size, we're done.
984  */
985 
986 /*
987  * Ensure the reflink bit is set in both inodes.
988  */
989 STATIC int
xfs_reflink_set_inode_flag(struct xfs_inode * src,struct xfs_inode * dest)990 xfs_reflink_set_inode_flag(
991 	struct xfs_inode	*src,
992 	struct xfs_inode	*dest)
993 {
994 	struct xfs_mount	*mp = src->i_mount;
995 	int			error;
996 	struct xfs_trans	*tp;
997 
998 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
999 		return 0;
1000 
1001 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1002 	if (error)
1003 		goto out_error;
1004 
1005 	/* Lock both files against IO */
1006 	if (src->i_ino == dest->i_ino)
1007 		xfs_ilock(src, XFS_ILOCK_EXCL);
1008 	else
1009 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1010 
1011 	if (!xfs_is_reflink_inode(src)) {
1012 		trace_xfs_reflink_set_inode_flag(src);
1013 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1014 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1015 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1016 		xfs_ifork_init_cow(src);
1017 	} else
1018 		xfs_iunlock(src, XFS_ILOCK_EXCL);
1019 
1020 	if (src->i_ino == dest->i_ino)
1021 		goto commit_flags;
1022 
1023 	if (!xfs_is_reflink_inode(dest)) {
1024 		trace_xfs_reflink_set_inode_flag(dest);
1025 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1026 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1027 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1028 		xfs_ifork_init_cow(dest);
1029 	} else
1030 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
1031 
1032 commit_flags:
1033 	error = xfs_trans_commit(tp);
1034 	if (error)
1035 		goto out_error;
1036 	return error;
1037 
1038 out_error:
1039 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1040 	return error;
1041 }
1042 
1043 /*
1044  * Update destination inode size & cowextsize hint, if necessary.
1045  */
1046 int
xfs_reflink_update_dest(struct xfs_inode * dest,xfs_off_t newlen,xfs_extlen_t cowextsize,unsigned int remap_flags)1047 xfs_reflink_update_dest(
1048 	struct xfs_inode	*dest,
1049 	xfs_off_t		newlen,
1050 	xfs_extlen_t		cowextsize,
1051 	unsigned int		remap_flags)
1052 {
1053 	struct xfs_mount	*mp = dest->i_mount;
1054 	struct xfs_trans	*tp;
1055 	int			error;
1056 
1057 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1058 		return 0;
1059 
1060 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1061 	if (error)
1062 		goto out_error;
1063 
1064 	xfs_ilock(dest, XFS_ILOCK_EXCL);
1065 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1066 
1067 	if (newlen > i_size_read(VFS_I(dest))) {
1068 		trace_xfs_reflink_update_inode_size(dest, newlen);
1069 		i_size_write(VFS_I(dest), newlen);
1070 		dest->i_disk_size = newlen;
1071 	}
1072 
1073 	if (cowextsize) {
1074 		dest->i_cowextsize = cowextsize;
1075 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1076 	}
1077 
1078 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1079 
1080 	error = xfs_trans_commit(tp);
1081 	if (error)
1082 		goto out_error;
1083 	return error;
1084 
1085 out_error:
1086 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1087 	return error;
1088 }
1089 
1090 /*
1091  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1092  * btree already reserved all the space it needs, but the rmap btree can grow
1093  * infinitely, so we won't allow more reflinks when the AG is down to the
1094  * btree reserves.
1095  */
1096 static int
xfs_reflink_ag_has_free_space(struct xfs_mount * mp,xfs_agnumber_t agno)1097 xfs_reflink_ag_has_free_space(
1098 	struct xfs_mount	*mp,
1099 	xfs_agnumber_t		agno)
1100 {
1101 	struct xfs_perag	*pag;
1102 	int			error = 0;
1103 
1104 	if (!xfs_has_rmapbt(mp))
1105 		return 0;
1106 
1107 	pag = xfs_perag_get(mp, agno);
1108 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1109 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1110 		error = -ENOSPC;
1111 	xfs_perag_put(pag);
1112 	return error;
1113 }
1114 
1115 /*
1116  * Remap the given extent into the file.  The dmap blockcount will be set to
1117  * the number of blocks that were actually remapped.
1118  */
1119 STATIC int
xfs_reflink_remap_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * dmap,xfs_off_t new_isize)1120 xfs_reflink_remap_extent(
1121 	struct xfs_inode	*ip,
1122 	struct xfs_bmbt_irec	*dmap,
1123 	xfs_off_t		new_isize)
1124 {
1125 	struct xfs_bmbt_irec	smap;
1126 	struct xfs_mount	*mp = ip->i_mount;
1127 	struct xfs_trans	*tp;
1128 	xfs_off_t		newlen;
1129 	int64_t			qdelta = 0;
1130 	unsigned int		resblks;
1131 	bool			quota_reserved = true;
1132 	bool			smap_real;
1133 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1134 	int			iext_delta = 0;
1135 	int			nimaps;
1136 	int			error;
1137 
1138 	/*
1139 	 * Start a rolling transaction to switch the mappings.
1140 	 *
1141 	 * Adding a written extent to the extent map can cause a bmbt split,
1142 	 * and removing a mapped extent from the extent can cause a bmbt split.
1143 	 * The two operations cannot both cause a split since they operate on
1144 	 * the same index in the bmap btree, so we only need a reservation for
1145 	 * one bmbt split if either thing is happening.  However, we haven't
1146 	 * locked the inode yet, so we reserve assuming this is the case.
1147 	 *
1148 	 * The first allocation call tries to reserve enough space to handle
1149 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1150 	 * haven't locked the inode or read the existing mapping yet, so we do
1151 	 * not know for sure that we need the space.  This should succeed most
1152 	 * of the time.
1153 	 *
1154 	 * If the first attempt fails, try again but reserving only enough
1155 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1156 	 * and we revisit quota reservations later when we know more about what
1157 	 * we're remapping.
1158 	 */
1159 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1160 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1161 			resblks + dmap->br_blockcount, 0, false, &tp);
1162 	if (error == -EDQUOT || error == -ENOSPC) {
1163 		quota_reserved = false;
1164 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1165 				resblks, 0, false, &tp);
1166 	}
1167 	if (error)
1168 		goto out;
1169 
1170 	/*
1171 	 * Read what's currently mapped in the destination file into smap.
1172 	 * If smap isn't a hole, we will have to remove it before we can add
1173 	 * dmap to the destination file.
1174 	 */
1175 	nimaps = 1;
1176 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1177 			&smap, &nimaps, 0);
1178 	if (error)
1179 		goto out_cancel;
1180 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1181 	smap_real = xfs_bmap_is_real_extent(&smap);
1182 
1183 	/*
1184 	 * We can only remap as many blocks as the smaller of the two extent
1185 	 * maps, because we can only remap one extent at a time.
1186 	 */
1187 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1188 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1189 
1190 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1191 
1192 	/*
1193 	 * Two extents mapped to the same physical block must not have
1194 	 * different states; that's filesystem corruption.  Move on to the next
1195 	 * extent if they're both holes or both the same physical extent.
1196 	 */
1197 	if (dmap->br_startblock == smap.br_startblock) {
1198 		if (dmap->br_state != smap.br_state)
1199 			error = -EFSCORRUPTED;
1200 		goto out_cancel;
1201 	}
1202 
1203 	/* If both extents are unwritten, leave them alone. */
1204 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1205 	    smap.br_state == XFS_EXT_UNWRITTEN)
1206 		goto out_cancel;
1207 
1208 	/* No reflinking if the AG of the dest mapping is low on space. */
1209 	if (dmap_written) {
1210 		error = xfs_reflink_ag_has_free_space(mp,
1211 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1212 		if (error)
1213 			goto out_cancel;
1214 	}
1215 
1216 	/*
1217 	 * Increase quota reservation if we think the quota block counter for
1218 	 * this file could increase.
1219 	 *
1220 	 * If we are mapping a written extent into the file, we need to have
1221 	 * enough quota block count reservation to handle the blocks in that
1222 	 * extent.  We log only the delta to the quota block counts, so if the
1223 	 * extent we're unmapping also has blocks allocated to it, we don't
1224 	 * need a quota reservation for the extent itself.
1225 	 *
1226 	 * Note that if we're replacing a delalloc reservation with a written
1227 	 * extent, we have to take the full quota reservation because removing
1228 	 * the delalloc reservation gives the block count back to the quota
1229 	 * count.  This is suboptimal, but the VFS flushed the dest range
1230 	 * before we started.  That should have removed all the delalloc
1231 	 * reservations, but we code defensively.
1232 	 *
1233 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1234 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1235 	 * If we can't get a potentially smaller quota reservation now, we're
1236 	 * done.
1237 	 */
1238 	if (!quota_reserved && !smap_real && dmap_written) {
1239 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1240 				dmap->br_blockcount, 0, false);
1241 		if (error)
1242 			goto out_cancel;
1243 	}
1244 
1245 	if (smap_real)
1246 		++iext_delta;
1247 
1248 	if (dmap_written)
1249 		++iext_delta;
1250 
1251 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1252 	if (error)
1253 		goto out_cancel;
1254 
1255 	if (smap_real) {
1256 		/*
1257 		 * If the extent we're unmapping is backed by storage (written
1258 		 * or not), unmap the extent and drop its refcount.
1259 		 */
1260 		xfs_bmap_unmap_extent(tp, ip, &smap);
1261 		xfs_refcount_decrease_extent(tp, &smap);
1262 		qdelta -= smap.br_blockcount;
1263 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1264 		xfs_filblks_t	len = smap.br_blockcount;
1265 
1266 		/*
1267 		 * If the extent we're unmapping is a delalloc reservation,
1268 		 * we can use the regular bunmapi function to release the
1269 		 * incore state.  Dropping the delalloc reservation takes care
1270 		 * of the quota reservation for us.
1271 		 */
1272 		error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1273 		if (error)
1274 			goto out_cancel;
1275 		ASSERT(len == 0);
1276 	}
1277 
1278 	/*
1279 	 * If the extent we're sharing is backed by written storage, increase
1280 	 * its refcount and map it into the file.
1281 	 */
1282 	if (dmap_written) {
1283 		xfs_refcount_increase_extent(tp, dmap);
1284 		xfs_bmap_map_extent(tp, ip, dmap);
1285 		qdelta += dmap->br_blockcount;
1286 	}
1287 
1288 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1289 
1290 	/* Update dest isize if needed. */
1291 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1292 	newlen = min_t(xfs_off_t, newlen, new_isize);
1293 	if (newlen > i_size_read(VFS_I(ip))) {
1294 		trace_xfs_reflink_update_inode_size(ip, newlen);
1295 		i_size_write(VFS_I(ip), newlen);
1296 		ip->i_disk_size = newlen;
1297 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1298 	}
1299 
1300 	/* Commit everything and unlock. */
1301 	error = xfs_trans_commit(tp);
1302 	goto out_unlock;
1303 
1304 out_cancel:
1305 	xfs_trans_cancel(tp);
1306 out_unlock:
1307 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1308 out:
1309 	if (error)
1310 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1311 	return error;
1312 }
1313 
1314 /* Remap a range of one file to the other. */
1315 int
xfs_reflink_remap_blocks(struct xfs_inode * src,loff_t pos_in,struct xfs_inode * dest,loff_t pos_out,loff_t remap_len,loff_t * remapped)1316 xfs_reflink_remap_blocks(
1317 	struct xfs_inode	*src,
1318 	loff_t			pos_in,
1319 	struct xfs_inode	*dest,
1320 	loff_t			pos_out,
1321 	loff_t			remap_len,
1322 	loff_t			*remapped)
1323 {
1324 	struct xfs_bmbt_irec	imap;
1325 	struct xfs_mount	*mp = src->i_mount;
1326 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1327 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1328 	xfs_filblks_t		len;
1329 	xfs_filblks_t		remapped_len = 0;
1330 	xfs_off_t		new_isize = pos_out + remap_len;
1331 	int			nimaps;
1332 	int			error = 0;
1333 
1334 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1335 			XFS_MAX_FILEOFF);
1336 
1337 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1338 
1339 	while (len > 0) {
1340 		unsigned int	lock_mode;
1341 
1342 		/* Read extent from the source file */
1343 		nimaps = 1;
1344 		lock_mode = xfs_ilock_data_map_shared(src);
1345 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1346 		xfs_iunlock(src, lock_mode);
1347 		if (error)
1348 			break;
1349 		/*
1350 		 * The caller supposedly flushed all dirty pages in the source
1351 		 * file range, which means that writeback should have allocated
1352 		 * or deleted all delalloc reservations in that range.  If we
1353 		 * find one, that's a good sign that something is seriously
1354 		 * wrong here.
1355 		 */
1356 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1357 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1358 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1359 			error = -EFSCORRUPTED;
1360 			break;
1361 		}
1362 
1363 		trace_xfs_reflink_remap_extent_src(src, &imap);
1364 
1365 		/* Remap into the destination file at the given offset. */
1366 		imap.br_startoff = destoff;
1367 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1368 		if (error)
1369 			break;
1370 
1371 		if (fatal_signal_pending(current)) {
1372 			error = -EINTR;
1373 			break;
1374 		}
1375 
1376 		/* Advance drange/srange */
1377 		srcoff += imap.br_blockcount;
1378 		destoff += imap.br_blockcount;
1379 		len -= imap.br_blockcount;
1380 		remapped_len += imap.br_blockcount;
1381 	}
1382 
1383 	if (error)
1384 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1385 	*remapped = min_t(loff_t, remap_len,
1386 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1387 	return error;
1388 }
1389 
1390 /*
1391  * If we're reflinking to a point past the destination file's EOF, we must
1392  * zero any speculative post-EOF preallocations that sit between the old EOF
1393  * and the destination file offset.
1394  */
1395 static int
xfs_reflink_zero_posteof(struct xfs_inode * ip,loff_t pos)1396 xfs_reflink_zero_posteof(
1397 	struct xfs_inode	*ip,
1398 	loff_t			pos)
1399 {
1400 	loff_t			isize = i_size_read(VFS_I(ip));
1401 
1402 	if (pos <= isize)
1403 		return 0;
1404 
1405 	trace_xfs_zero_eof(ip, isize, pos - isize);
1406 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1407 			&xfs_buffered_write_iomap_ops);
1408 }
1409 
1410 /*
1411  * Prepare two files for range cloning.  Upon a successful return both inodes
1412  * will have the iolock and mmaplock held, the page cache of the out file will
1413  * be truncated, and any leases on the out file will have been broken.  This
1414  * function borrows heavily from xfs_file_aio_write_checks.
1415  *
1416  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1417  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1418  * EOF block in the source dedupe range because it's not a complete block match,
1419  * hence can introduce a corruption into the file that has it's block replaced.
1420  *
1421  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1422  * "block aligned" for the purposes of cloning entire files.  However, if the
1423  * source file range includes the EOF block and it lands within the existing EOF
1424  * of the destination file, then we can expose stale data from beyond the source
1425  * file EOF in the destination file.
1426  *
1427  * XFS doesn't support partial block sharing, so in both cases we have check
1428  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1429  * down to the previous whole block and ignore the partial EOF block. While this
1430  * means we can't dedupe the last block of a file, this is an acceptible
1431  * tradeoff for simplicity on implementation.
1432  *
1433  * For cloning, we want to share the partial EOF block if it is also the new EOF
1434  * block of the destination file. If the partial EOF block lies inside the
1435  * existing destination EOF, then we have to abort the clone to avoid exposing
1436  * stale data in the destination file. Hence we reject these clone attempts with
1437  * -EINVAL in this case.
1438  */
1439 int
xfs_reflink_remap_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)1440 xfs_reflink_remap_prep(
1441 	struct file		*file_in,
1442 	loff_t			pos_in,
1443 	struct file		*file_out,
1444 	loff_t			pos_out,
1445 	loff_t			*len,
1446 	unsigned int		remap_flags)
1447 {
1448 	struct inode		*inode_in = file_inode(file_in);
1449 	struct xfs_inode	*src = XFS_I(inode_in);
1450 	struct inode		*inode_out = file_inode(file_out);
1451 	struct xfs_inode	*dest = XFS_I(inode_out);
1452 	int			ret;
1453 
1454 	/* Lock both files against IO */
1455 	ret = xfs_ilock2_io_mmap(src, dest);
1456 	if (ret)
1457 		return ret;
1458 
1459 	/* Check file eligibility and prepare for block sharing. */
1460 	ret = -EINVAL;
1461 	/* Don't reflink realtime inodes */
1462 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1463 		goto out_unlock;
1464 
1465 	/* Don't share DAX file data for now. */
1466 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1467 		goto out_unlock;
1468 
1469 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1470 			len, remap_flags);
1471 	if (ret || *len == 0)
1472 		goto out_unlock;
1473 
1474 	/* Attach dquots to dest inode before changing block map */
1475 	ret = xfs_qm_dqattach(dest);
1476 	if (ret)
1477 		goto out_unlock;
1478 
1479 	/*
1480 	 * Zero existing post-eof speculative preallocations in the destination
1481 	 * file.
1482 	 */
1483 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1484 	if (ret)
1485 		goto out_unlock;
1486 
1487 	/* Set flags and remap blocks. */
1488 	ret = xfs_reflink_set_inode_flag(src, dest);
1489 	if (ret)
1490 		goto out_unlock;
1491 
1492 	/*
1493 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1494 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1495 	 * from EOF to the end of the copy length.
1496 	 */
1497 	if (pos_out > XFS_ISIZE(dest)) {
1498 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1499 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1500 	} else {
1501 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1502 	}
1503 	if (ret)
1504 		goto out_unlock;
1505 
1506 	return 0;
1507 out_unlock:
1508 	xfs_iunlock2_io_mmap(src, dest);
1509 	return ret;
1510 }
1511 
1512 /* Does this inode need the reflink flag? */
1513 int
xfs_reflink_inode_has_shared_extents(struct xfs_trans * tp,struct xfs_inode * ip,bool * has_shared)1514 xfs_reflink_inode_has_shared_extents(
1515 	struct xfs_trans		*tp,
1516 	struct xfs_inode		*ip,
1517 	bool				*has_shared)
1518 {
1519 	struct xfs_bmbt_irec		got;
1520 	struct xfs_mount		*mp = ip->i_mount;
1521 	struct xfs_ifork		*ifp;
1522 	xfs_agnumber_t			agno;
1523 	xfs_agblock_t			agbno;
1524 	xfs_extlen_t			aglen;
1525 	xfs_agblock_t			rbno;
1526 	xfs_extlen_t			rlen;
1527 	struct xfs_iext_cursor		icur;
1528 	bool				found;
1529 	int				error;
1530 
1531 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1532 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1533 	if (error)
1534 		return error;
1535 
1536 	*has_shared = false;
1537 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1538 	while (found) {
1539 		if (isnullstartblock(got.br_startblock) ||
1540 		    got.br_state != XFS_EXT_NORM)
1541 			goto next;
1542 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1543 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1544 		aglen = got.br_blockcount;
1545 
1546 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1547 				&rbno, &rlen, false);
1548 		if (error)
1549 			return error;
1550 		/* Is there still a shared block here? */
1551 		if (rbno != NULLAGBLOCK) {
1552 			*has_shared = true;
1553 			return 0;
1554 		}
1555 next:
1556 		found = xfs_iext_next_extent(ifp, &icur, &got);
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * Clear the inode reflink flag if there are no shared extents.
1564  *
1565  * The caller is responsible for joining the inode to the transaction passed in.
1566  * The inode will be joined to the transaction that is returned to the caller.
1567  */
1568 int
xfs_reflink_clear_inode_flag(struct xfs_inode * ip,struct xfs_trans ** tpp)1569 xfs_reflink_clear_inode_flag(
1570 	struct xfs_inode	*ip,
1571 	struct xfs_trans	**tpp)
1572 {
1573 	bool			needs_flag;
1574 	int			error = 0;
1575 
1576 	ASSERT(xfs_is_reflink_inode(ip));
1577 
1578 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1579 	if (error || needs_flag)
1580 		return error;
1581 
1582 	/*
1583 	 * We didn't find any shared blocks so turn off the reflink flag.
1584 	 * First, get rid of any leftover CoW mappings.
1585 	 */
1586 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1587 			true);
1588 	if (error)
1589 		return error;
1590 
1591 	/* Clear the inode flag. */
1592 	trace_xfs_reflink_unset_inode_flag(ip);
1593 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1594 	xfs_inode_clear_cowblocks_tag(ip);
1595 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1596 
1597 	return error;
1598 }
1599 
1600 /*
1601  * Clear the inode reflink flag if there are no shared extents and the size
1602  * hasn't changed.
1603  */
1604 STATIC int
xfs_reflink_try_clear_inode_flag(struct xfs_inode * ip)1605 xfs_reflink_try_clear_inode_flag(
1606 	struct xfs_inode	*ip)
1607 {
1608 	struct xfs_mount	*mp = ip->i_mount;
1609 	struct xfs_trans	*tp;
1610 	int			error = 0;
1611 
1612 	/* Start a rolling transaction to remove the mappings */
1613 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1614 	if (error)
1615 		return error;
1616 
1617 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1618 	xfs_trans_ijoin(tp, ip, 0);
1619 
1620 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1621 	if (error)
1622 		goto cancel;
1623 
1624 	error = xfs_trans_commit(tp);
1625 	if (error)
1626 		goto out;
1627 
1628 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1629 	return 0;
1630 cancel:
1631 	xfs_trans_cancel(tp);
1632 out:
1633 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1634 	return error;
1635 }
1636 
1637 /*
1638  * Pre-COW all shared blocks within a given byte range of a file and turn off
1639  * the reflink flag if we unshare all of the file's blocks.
1640  */
1641 int
xfs_reflink_unshare(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1642 xfs_reflink_unshare(
1643 	struct xfs_inode	*ip,
1644 	xfs_off_t		offset,
1645 	xfs_off_t		len)
1646 {
1647 	struct inode		*inode = VFS_I(ip);
1648 	int			error;
1649 
1650 	if (!xfs_is_reflink_inode(ip))
1651 		return 0;
1652 
1653 	trace_xfs_reflink_unshare(ip, offset, len);
1654 
1655 	inode_dio_wait(inode);
1656 
1657 	error = iomap_file_unshare(inode, offset, len,
1658 			&xfs_buffered_write_iomap_ops);
1659 	if (error)
1660 		goto out;
1661 
1662 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1663 			offset + len - 1);
1664 	if (error)
1665 		goto out;
1666 
1667 	/* Turn off the reflink flag if possible. */
1668 	error = xfs_reflink_try_clear_inode_flag(ip);
1669 	if (error)
1670 		goto out;
1671 	return 0;
1672 
1673 out:
1674 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1675 	return error;
1676 }
1677