1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32
33 /*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121 /*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128 int
xfs_reflink_find_shared(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t aglen,xfs_agblock_t * fbno,xfs_extlen_t * flen,bool find_end_of_shared)129 xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
132 xfs_agnumber_t agno,
133 xfs_agblock_t agbno,
134 xfs_extlen_t aglen,
135 xfs_agblock_t *fbno,
136 xfs_extlen_t *flen,
137 bool find_end_of_shared)
138 {
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
141 int error;
142
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 if (error)
145 return error;
146
147 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
148
149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 find_end_of_shared);
151
152 xfs_btree_del_cursor(cur, error);
153
154 xfs_trans_brelse(tp, agbp);
155 return error;
156 }
157
158 /*
159 * Trim the mapping to the next block where there's a change in the
160 * shared/unshared status. More specifically, this means that we
161 * find the lowest-numbered extent of shared blocks that coincides with
162 * the given block mapping. If the shared extent overlaps the start of
163 * the mapping, trim the mapping to the end of the shared extent. If
164 * the shared region intersects the mapping, trim the mapping to the
165 * start of the shared extent. If there are no shared regions that
166 * overlap, just return the original extent.
167 */
168 int
xfs_reflink_trim_around_shared(struct xfs_inode * ip,struct xfs_bmbt_irec * irec,bool * shared)169 xfs_reflink_trim_around_shared(
170 struct xfs_inode *ip,
171 struct xfs_bmbt_irec *irec,
172 bool *shared)
173 {
174 xfs_agnumber_t agno;
175 xfs_agblock_t agbno;
176 xfs_extlen_t aglen;
177 xfs_agblock_t fbno;
178 xfs_extlen_t flen;
179 int error = 0;
180
181 /* Holes, unwritten, and delalloc extents cannot be shared */
182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 *shared = false;
184 return 0;
185 }
186
187 trace_xfs_reflink_trim_around_shared(ip, irec);
188
189 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 aglen = irec->br_blockcount;
192
193 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 aglen, &fbno, &flen, true);
195 if (error)
196 return error;
197
198 *shared = false;
199 if (fbno == NULLAGBLOCK) {
200 /* No shared blocks at all. */
201 return 0;
202 } else if (fbno == agbno) {
203 /*
204 * The start of this extent is shared. Truncate the
205 * mapping at the end of the shared region so that a
206 * subsequent iteration starts at the start of the
207 * unshared region.
208 */
209 irec->br_blockcount = flen;
210 *shared = true;
211 return 0;
212 } else {
213 /*
214 * There's a shared extent midway through this extent.
215 * Truncate the mapping at the start of the shared
216 * extent so that a subsequent iteration starts at the
217 * start of the shared region.
218 */
219 irec->br_blockcount = fbno - agbno;
220 return 0;
221 }
222 }
223
224 int
xfs_bmap_trim_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,bool * shared)225 xfs_bmap_trim_cow(
226 struct xfs_inode *ip,
227 struct xfs_bmbt_irec *imap,
228 bool *shared)
229 {
230 /* We can't update any real extents in always COW mode. */
231 if (xfs_is_always_cow_inode(ip) &&
232 !isnullstartblock(imap->br_startblock)) {
233 *shared = true;
234 return 0;
235 }
236
237 /* Trim the mapping to the nearest shared extent boundary. */
238 return xfs_reflink_trim_around_shared(ip, imap, shared);
239 }
240
241 static int
xfs_reflink_convert_cow_locked(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_filblks_t count_fsb)242 xfs_reflink_convert_cow_locked(
243 struct xfs_inode *ip,
244 xfs_fileoff_t offset_fsb,
245 xfs_filblks_t count_fsb)
246 {
247 struct xfs_iext_cursor icur;
248 struct xfs_bmbt_irec got;
249 struct xfs_btree_cur *dummy_cur = NULL;
250 int dummy_logflags;
251 int error = 0;
252
253 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 return 0;
255
256 do {
257 if (got.br_startoff >= offset_fsb + count_fsb)
258 break;
259 if (got.br_state == XFS_EXT_NORM)
260 continue;
261 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 return -EIO;
263
264 xfs_trim_extent(&got, offset_fsb, count_fsb);
265 if (!got.br_blockcount)
266 continue;
267
268 got.br_state = XFS_EXT_NORM;
269 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 XFS_COW_FORK, &icur, &dummy_cur, &got,
271 &dummy_logflags);
272 if (error)
273 return error;
274 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275
276 return error;
277 }
278
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
280 int
xfs_reflink_convert_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)281 xfs_reflink_convert_cow(
282 struct xfs_inode *ip,
283 xfs_off_t offset,
284 xfs_off_t count)
285 {
286 struct xfs_mount *mp = ip->i_mount;
287 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
290 int error;
291
292 ASSERT(count != 0);
293
294 xfs_ilock(ip, XFS_ILOCK_EXCL);
295 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 return error;
298 }
299
300 /*
301 * Find the extent that maps the given range in the COW fork. Even if the extent
302 * is not shared we might have a preallocation for it in the COW fork. If so we
303 * use it that rather than trigger a new allocation.
304 */
305 static int
xfs_find_trim_cow_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,bool * found)306 xfs_find_trim_cow_extent(
307 struct xfs_inode *ip,
308 struct xfs_bmbt_irec *imap,
309 struct xfs_bmbt_irec *cmap,
310 bool *shared,
311 bool *found)
312 {
313 xfs_fileoff_t offset_fsb = imap->br_startoff;
314 xfs_filblks_t count_fsb = imap->br_blockcount;
315 struct xfs_iext_cursor icur;
316
317 *found = false;
318
319 /*
320 * If we don't find an overlapping extent, trim the range we need to
321 * allocate to fit the hole we found.
322 */
323 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 cmap->br_startoff = offset_fsb + count_fsb;
325 if (cmap->br_startoff > offset_fsb) {
326 xfs_trim_extent(imap, imap->br_startoff,
327 cmap->br_startoff - imap->br_startoff);
328 return xfs_bmap_trim_cow(ip, imap, shared);
329 }
330
331 *shared = true;
332 if (isnullstartblock(cmap->br_startblock)) {
333 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 return 0;
335 }
336
337 /* real extent found - no need to allocate */
338 xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 *found = true;
340 return 0;
341 }
342
343 static int
xfs_reflink_convert_unwritten(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool convert_now)344 xfs_reflink_convert_unwritten(
345 struct xfs_inode *ip,
346 struct xfs_bmbt_irec *imap,
347 struct xfs_bmbt_irec *cmap,
348 bool convert_now)
349 {
350 xfs_fileoff_t offset_fsb = imap->br_startoff;
351 xfs_filblks_t count_fsb = imap->br_blockcount;
352 int error;
353
354 /*
355 * cmap might larger than imap due to cowextsize hint.
356 */
357 xfs_trim_extent(cmap, offset_fsb, count_fsb);
358
359 /*
360 * COW fork extents are supposed to remain unwritten until we're ready
361 * to initiate a disk write. For direct I/O we are going to write the
362 * data and need the conversion, but for buffered writes we're done.
363 */
364 if (!convert_now || cmap->br_state == XFS_EXT_NORM)
365 return 0;
366
367 trace_xfs_reflink_convert_cow(ip, cmap);
368
369 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
370 if (!error)
371 cmap->br_state = XFS_EXT_NORM;
372
373 return error;
374 }
375
376 static int
xfs_reflink_fill_cow_hole(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)377 xfs_reflink_fill_cow_hole(
378 struct xfs_inode *ip,
379 struct xfs_bmbt_irec *imap,
380 struct xfs_bmbt_irec *cmap,
381 bool *shared,
382 uint *lockmode,
383 bool convert_now)
384 {
385 struct xfs_mount *mp = ip->i_mount;
386 struct xfs_trans *tp;
387 xfs_filblks_t resaligned;
388 xfs_extlen_t resblks;
389 int nimaps;
390 int error;
391 bool found;
392
393 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
394 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
395 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
396
397 xfs_iunlock(ip, *lockmode);
398 *lockmode = 0;
399
400 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
401 false, &tp);
402 if (error)
403 return error;
404
405 *lockmode = XFS_ILOCK_EXCL;
406
407 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
408 if (error || !*shared)
409 goto out_trans_cancel;
410
411 if (found) {
412 xfs_trans_cancel(tp);
413 goto convert;
414 }
415
416 ASSERT(cmap->br_startoff > imap->br_startoff);
417
418 /* Allocate the entire reservation as unwritten blocks. */
419 nimaps = 1;
420 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
421 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
422 &nimaps);
423 if (error)
424 goto out_trans_cancel;
425
426 xfs_inode_set_cowblocks_tag(ip);
427 error = xfs_trans_commit(tp);
428 if (error)
429 return error;
430
431 /*
432 * Allocation succeeded but the requested range was not even partially
433 * satisfied? Bail out!
434 */
435 if (nimaps == 0)
436 return -ENOSPC;
437
438 convert:
439 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
440
441 out_trans_cancel:
442 xfs_trans_cancel(tp);
443 return error;
444 }
445
446 static int
xfs_reflink_fill_delalloc(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)447 xfs_reflink_fill_delalloc(
448 struct xfs_inode *ip,
449 struct xfs_bmbt_irec *imap,
450 struct xfs_bmbt_irec *cmap,
451 bool *shared,
452 uint *lockmode,
453 bool convert_now)
454 {
455 struct xfs_mount *mp = ip->i_mount;
456 struct xfs_trans *tp;
457 int nimaps;
458 int error;
459 bool found;
460
461 do {
462 xfs_iunlock(ip, *lockmode);
463 *lockmode = 0;
464
465 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
466 false, &tp);
467 if (error)
468 return error;
469
470 *lockmode = XFS_ILOCK_EXCL;
471
472 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
473 &found);
474 if (error || !*shared)
475 goto out_trans_cancel;
476
477 if (found) {
478 xfs_trans_cancel(tp);
479 break;
480 }
481
482 ASSERT(isnullstartblock(cmap->br_startblock) ||
483 cmap->br_startblock == DELAYSTARTBLOCK);
484
485 /*
486 * Replace delalloc reservation with an unwritten extent.
487 */
488 nimaps = 1;
489 error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
490 cmap->br_blockcount,
491 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
492 cmap, &nimaps);
493 if (error)
494 goto out_trans_cancel;
495
496 xfs_inode_set_cowblocks_tag(ip);
497 error = xfs_trans_commit(tp);
498 if (error)
499 return error;
500
501 /*
502 * Allocation succeeded but the requested range was not even
503 * partially satisfied? Bail out!
504 */
505 if (nimaps == 0)
506 return -ENOSPC;
507 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
508
509 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
510
511 out_trans_cancel:
512 xfs_trans_cancel(tp);
513 return error;
514 }
515
516 /* Allocate all CoW reservations covering a range of blocks in a file. */
517 int
xfs_reflink_allocate_cow(struct xfs_inode * ip,struct xfs_bmbt_irec * imap,struct xfs_bmbt_irec * cmap,bool * shared,uint * lockmode,bool convert_now)518 xfs_reflink_allocate_cow(
519 struct xfs_inode *ip,
520 struct xfs_bmbt_irec *imap,
521 struct xfs_bmbt_irec *cmap,
522 bool *shared,
523 uint *lockmode,
524 bool convert_now)
525 {
526 int error;
527 bool found;
528
529 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
530 if (!ip->i_cowfp) {
531 ASSERT(!xfs_is_reflink_inode(ip));
532 xfs_ifork_init_cow(ip);
533 }
534
535 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
536 if (error || !*shared)
537 return error;
538
539 /* CoW fork has a real extent */
540 if (found)
541 return xfs_reflink_convert_unwritten(ip, imap, cmap,
542 convert_now);
543
544 /*
545 * CoW fork does not have an extent and data extent is shared.
546 * Allocate a real extent in the CoW fork.
547 */
548 if (cmap->br_startoff > imap->br_startoff)
549 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
550 lockmode, convert_now);
551
552 /*
553 * CoW fork has a delalloc reservation. Replace it with a real extent.
554 * There may or may not be a data fork mapping.
555 */
556 if (isnullstartblock(cmap->br_startblock) ||
557 cmap->br_startblock == DELAYSTARTBLOCK)
558 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
559 lockmode, convert_now);
560
561 /* Shouldn't get here. */
562 ASSERT(0);
563 return -EFSCORRUPTED;
564 }
565
566 /*
567 * Cancel CoW reservations for some block range of an inode.
568 *
569 * If cancel_real is true this function cancels all COW fork extents for the
570 * inode; if cancel_real is false, real extents are not cleared.
571 *
572 * Caller must have already joined the inode to the current transaction. The
573 * inode will be joined to the transaction returned to the caller.
574 */
575 int
xfs_reflink_cancel_cow_blocks(struct xfs_inode * ip,struct xfs_trans ** tpp,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb,bool cancel_real)576 xfs_reflink_cancel_cow_blocks(
577 struct xfs_inode *ip,
578 struct xfs_trans **tpp,
579 xfs_fileoff_t offset_fsb,
580 xfs_fileoff_t end_fsb,
581 bool cancel_real)
582 {
583 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
584 struct xfs_bmbt_irec got, del;
585 struct xfs_iext_cursor icur;
586 int error = 0;
587
588 if (!xfs_inode_has_cow_data(ip))
589 return 0;
590 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
591 return 0;
592
593 /* Walk backwards until we're out of the I/O range... */
594 while (got.br_startoff + got.br_blockcount > offset_fsb) {
595 del = got;
596 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
597
598 /* Extent delete may have bumped ext forward */
599 if (!del.br_blockcount) {
600 xfs_iext_prev(ifp, &icur);
601 goto next_extent;
602 }
603
604 trace_xfs_reflink_cancel_cow(ip, &del);
605
606 if (isnullstartblock(del.br_startblock)) {
607 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
608 &icur, &got, &del);
609 if (error)
610 break;
611 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
612 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
613
614 /* Free the CoW orphan record. */
615 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
616 del.br_blockcount);
617
618 xfs_bmap_add_free(*tpp, del.br_startblock,
619 del.br_blockcount, NULL);
620
621 /* Roll the transaction */
622 error = xfs_defer_finish(tpp);
623 if (error)
624 break;
625
626 /* Remove the mapping from the CoW fork. */
627 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
628
629 /* Remove the quota reservation */
630 error = xfs_quota_unreserve_blkres(ip,
631 del.br_blockcount);
632 if (error)
633 break;
634 } else {
635 /* Didn't do anything, push cursor back. */
636 xfs_iext_prev(ifp, &icur);
637 }
638 next_extent:
639 if (!xfs_iext_get_extent(ifp, &icur, &got))
640 break;
641 }
642
643 /* clear tag if cow fork is emptied */
644 if (!ifp->if_bytes)
645 xfs_inode_clear_cowblocks_tag(ip);
646 return error;
647 }
648
649 /*
650 * Cancel CoW reservations for some byte range of an inode.
651 *
652 * If cancel_real is true this function cancels all COW fork extents for the
653 * inode; if cancel_real is false, real extents are not cleared.
654 */
655 int
xfs_reflink_cancel_cow_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count,bool cancel_real)656 xfs_reflink_cancel_cow_range(
657 struct xfs_inode *ip,
658 xfs_off_t offset,
659 xfs_off_t count,
660 bool cancel_real)
661 {
662 struct xfs_trans *tp;
663 xfs_fileoff_t offset_fsb;
664 xfs_fileoff_t end_fsb;
665 int error;
666
667 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
668 ASSERT(ip->i_cowfp);
669
670 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
671 if (count == NULLFILEOFF)
672 end_fsb = NULLFILEOFF;
673 else
674 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
675
676 /* Start a rolling transaction to remove the mappings */
677 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
678 0, 0, 0, &tp);
679 if (error)
680 goto out;
681
682 xfs_ilock(ip, XFS_ILOCK_EXCL);
683 xfs_trans_ijoin(tp, ip, 0);
684
685 /* Scrape out the old CoW reservations */
686 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
687 cancel_real);
688 if (error)
689 goto out_cancel;
690
691 error = xfs_trans_commit(tp);
692
693 xfs_iunlock(ip, XFS_ILOCK_EXCL);
694 return error;
695
696 out_cancel:
697 xfs_trans_cancel(tp);
698 xfs_iunlock(ip, XFS_ILOCK_EXCL);
699 out:
700 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
701 return error;
702 }
703
704 /*
705 * Remap part of the CoW fork into the data fork.
706 *
707 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
708 * into the data fork; this function will remap what it can (at the end of the
709 * range) and update @end_fsb appropriately. Each remap gets its own
710 * transaction because we can end up merging and splitting bmbt blocks for
711 * every remap operation and we'd like to keep the block reservation
712 * requirements as low as possible.
713 */
714 STATIC int
xfs_reflink_end_cow_extent(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t * end_fsb)715 xfs_reflink_end_cow_extent(
716 struct xfs_inode *ip,
717 xfs_fileoff_t offset_fsb,
718 xfs_fileoff_t *end_fsb)
719 {
720 struct xfs_bmbt_irec got, del;
721 struct xfs_iext_cursor icur;
722 struct xfs_mount *mp = ip->i_mount;
723 struct xfs_trans *tp;
724 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
725 xfs_filblks_t rlen;
726 unsigned int resblks;
727 int error;
728
729 /* No COW extents? That's easy! */
730 if (ifp->if_bytes == 0) {
731 *end_fsb = offset_fsb;
732 return 0;
733 }
734
735 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
736 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
737 XFS_TRANS_RESERVE, &tp);
738 if (error)
739 return error;
740
741 /*
742 * Lock the inode. We have to ijoin without automatic unlock because
743 * the lead transaction is the refcountbt record deletion; the data
744 * fork update follows as a deferred log item.
745 */
746 xfs_ilock(ip, XFS_ILOCK_EXCL);
747 xfs_trans_ijoin(tp, ip, 0);
748
749 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
750 XFS_IEXT_REFLINK_END_COW_CNT);
751 if (error)
752 goto out_cancel;
753
754 /*
755 * In case of racing, overlapping AIO writes no COW extents might be
756 * left by the time I/O completes for the loser of the race. In that
757 * case we are done.
758 */
759 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
760 got.br_startoff + got.br_blockcount <= offset_fsb) {
761 *end_fsb = offset_fsb;
762 goto out_cancel;
763 }
764
765 /*
766 * Structure copy @got into @del, then trim @del to the range that we
767 * were asked to remap. We preserve @got for the eventual CoW fork
768 * deletion; from now on @del represents the mapping that we're
769 * actually remapping.
770 */
771 del = got;
772 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
773
774 ASSERT(del.br_blockcount > 0);
775
776 /*
777 * Only remap real extents that contain data. With AIO, speculative
778 * preallocations can leak into the range we are called upon, and we
779 * need to skip them.
780 */
781 if (!xfs_bmap_is_written_extent(&got)) {
782 *end_fsb = del.br_startoff;
783 goto out_cancel;
784 }
785
786 /* Unmap the old blocks in the data fork. */
787 rlen = del.br_blockcount;
788 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
789 if (error)
790 goto out_cancel;
791
792 /* Trim the extent to whatever got unmapped. */
793 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
794 trace_xfs_reflink_cow_remap(ip, &del);
795
796 /* Free the CoW orphan record. */
797 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
798
799 /* Map the new blocks into the data fork. */
800 xfs_bmap_map_extent(tp, ip, &del);
801
802 /* Charge this new data fork mapping to the on-disk quota. */
803 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
804 (long)del.br_blockcount);
805
806 /* Remove the mapping from the CoW fork. */
807 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
808
809 error = xfs_trans_commit(tp);
810 xfs_iunlock(ip, XFS_ILOCK_EXCL);
811 if (error)
812 return error;
813
814 /* Update the caller about how much progress we made. */
815 *end_fsb = del.br_startoff;
816 return 0;
817
818 out_cancel:
819 xfs_trans_cancel(tp);
820 xfs_iunlock(ip, XFS_ILOCK_EXCL);
821 return error;
822 }
823
824 /*
825 * Remap parts of a file's data fork after a successful CoW.
826 */
827 int
xfs_reflink_end_cow(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t count)828 xfs_reflink_end_cow(
829 struct xfs_inode *ip,
830 xfs_off_t offset,
831 xfs_off_t count)
832 {
833 xfs_fileoff_t offset_fsb;
834 xfs_fileoff_t end_fsb;
835 int error = 0;
836
837 trace_xfs_reflink_end_cow(ip, offset, count);
838
839 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
840 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
841
842 /*
843 * Walk backwards until we're out of the I/O range. The loop function
844 * repeatedly cycles the ILOCK to allocate one transaction per remapped
845 * extent.
846 *
847 * If we're being called by writeback then the pages will still
848 * have PageWriteback set, which prevents races with reflink remapping
849 * and truncate. Reflink remapping prevents races with writeback by
850 * taking the iolock and mmaplock before flushing the pages and
851 * remapping, which means there won't be any further writeback or page
852 * cache dirtying until the reflink completes.
853 *
854 * We should never have two threads issuing writeback for the same file
855 * region. There are also have post-eof checks in the writeback
856 * preparation code so that we don't bother writing out pages that are
857 * about to be truncated.
858 *
859 * If we're being called as part of directio write completion, the dio
860 * count is still elevated, which reflink and truncate will wait for.
861 * Reflink remapping takes the iolock and mmaplock and waits for
862 * pending dio to finish, which should prevent any directio until the
863 * remap completes. Multiple concurrent directio writes to the same
864 * region are handled by end_cow processing only occurring for the
865 * threads which succeed; the outcome of multiple overlapping direct
866 * writes is not well defined anyway.
867 *
868 * It's possible that a buffered write and a direct write could collide
869 * here (the buffered write stumbles in after the dio flushes and
870 * invalidates the page cache and immediately queues writeback), but we
871 * have never supported this 100%. If either disk write succeeds the
872 * blocks will be remapped.
873 */
874 while (end_fsb > offset_fsb && !error)
875 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
876
877 if (error)
878 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
879 return error;
880 }
881
882 /*
883 * Free all CoW staging blocks that are still referenced by the ondisk refcount
884 * metadata. The ondisk metadata does not track which inode created the
885 * staging extent, so callers must ensure that there are no cached inodes with
886 * live CoW staging extents.
887 */
888 int
xfs_reflink_recover_cow(struct xfs_mount * mp)889 xfs_reflink_recover_cow(
890 struct xfs_mount *mp)
891 {
892 struct xfs_perag *pag;
893 xfs_agnumber_t agno;
894 int error = 0;
895
896 if (!xfs_has_reflink(mp))
897 return 0;
898
899 for_each_perag(mp, agno, pag) {
900 error = xfs_refcount_recover_cow_leftovers(mp, pag);
901 if (error) {
902 xfs_perag_put(pag);
903 break;
904 }
905 }
906
907 return error;
908 }
909
910 /*
911 * Reflinking (Block) Ranges of Two Files Together
912 *
913 * First, ensure that the reflink flag is set on both inodes. The flag is an
914 * optimization to avoid unnecessary refcount btree lookups in the write path.
915 *
916 * Now we can iteratively remap the range of extents (and holes) in src to the
917 * corresponding ranges in dest. Let drange and srange denote the ranges of
918 * logical blocks in dest and src touched by the reflink operation.
919 *
920 * While the length of drange is greater than zero,
921 * - Read src's bmbt at the start of srange ("imap")
922 * - If imap doesn't exist, make imap appear to start at the end of srange
923 * with zero length.
924 * - If imap starts before srange, advance imap to start at srange.
925 * - If imap goes beyond srange, truncate imap to end at the end of srange.
926 * - Punch (imap start - srange start + imap len) blocks from dest at
927 * offset (drange start).
928 * - If imap points to a real range of pblks,
929 * > Increase the refcount of the imap's pblks
930 * > Map imap's pblks into dest at the offset
931 * (drange start + imap start - srange start)
932 * - Advance drange and srange by (imap start - srange start + imap len)
933 *
934 * Finally, if the reflink made dest longer, update both the in-core and
935 * on-disk file sizes.
936 *
937 * ASCII Art Demonstration:
938 *
939 * Let's say we want to reflink this source file:
940 *
941 * ----SSSSSSS-SSSSS----SSSSSS (src file)
942 * <-------------------->
943 *
944 * into this destination file:
945 *
946 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
947 * <-------------------->
948 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
949 * Observe that the range has different logical offsets in either file.
950 *
951 * Consider that the first extent in the source file doesn't line up with our
952 * reflink range. Unmapping and remapping are separate operations, so we can
953 * unmap more blocks from the destination file than we remap.
954 *
955 * ----SSSSSSS-SSSSS----SSSSSS
956 * <------->
957 * --DDDDD---------DDDDD--DDD
958 * <------->
959 *
960 * Now remap the source extent into the destination file:
961 *
962 * ----SSSSSSS-SSSSS----SSSSSS
963 * <------->
964 * --DDDDD--SSSSSSSDDDDD--DDD
965 * <------->
966 *
967 * Do likewise with the second hole and extent in our range. Holes in the
968 * unmap range don't affect our operation.
969 *
970 * ----SSSSSSS-SSSSS----SSSSSS
971 * <---->
972 * --DDDDD--SSSSSSS-SSSSS-DDD
973 * <---->
974 *
975 * Finally, unmap and remap part of the third extent. This will increase the
976 * size of the destination file.
977 *
978 * ----SSSSSSS-SSSSS----SSSSSS
979 * <----->
980 * --DDDDD--SSSSSSS-SSSSS----SSS
981 * <----->
982 *
983 * Once we update the destination file's i_size, we're done.
984 */
985
986 /*
987 * Ensure the reflink bit is set in both inodes.
988 */
989 STATIC int
xfs_reflink_set_inode_flag(struct xfs_inode * src,struct xfs_inode * dest)990 xfs_reflink_set_inode_flag(
991 struct xfs_inode *src,
992 struct xfs_inode *dest)
993 {
994 struct xfs_mount *mp = src->i_mount;
995 int error;
996 struct xfs_trans *tp;
997
998 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
999 return 0;
1000
1001 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1002 if (error)
1003 goto out_error;
1004
1005 /* Lock both files against IO */
1006 if (src->i_ino == dest->i_ino)
1007 xfs_ilock(src, XFS_ILOCK_EXCL);
1008 else
1009 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1010
1011 if (!xfs_is_reflink_inode(src)) {
1012 trace_xfs_reflink_set_inode_flag(src);
1013 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1014 src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1015 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1016 xfs_ifork_init_cow(src);
1017 } else
1018 xfs_iunlock(src, XFS_ILOCK_EXCL);
1019
1020 if (src->i_ino == dest->i_ino)
1021 goto commit_flags;
1022
1023 if (!xfs_is_reflink_inode(dest)) {
1024 trace_xfs_reflink_set_inode_flag(dest);
1025 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1026 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1027 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1028 xfs_ifork_init_cow(dest);
1029 } else
1030 xfs_iunlock(dest, XFS_ILOCK_EXCL);
1031
1032 commit_flags:
1033 error = xfs_trans_commit(tp);
1034 if (error)
1035 goto out_error;
1036 return error;
1037
1038 out_error:
1039 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1040 return error;
1041 }
1042
1043 /*
1044 * Update destination inode size & cowextsize hint, if necessary.
1045 */
1046 int
xfs_reflink_update_dest(struct xfs_inode * dest,xfs_off_t newlen,xfs_extlen_t cowextsize,unsigned int remap_flags)1047 xfs_reflink_update_dest(
1048 struct xfs_inode *dest,
1049 xfs_off_t newlen,
1050 xfs_extlen_t cowextsize,
1051 unsigned int remap_flags)
1052 {
1053 struct xfs_mount *mp = dest->i_mount;
1054 struct xfs_trans *tp;
1055 int error;
1056
1057 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1058 return 0;
1059
1060 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1061 if (error)
1062 goto out_error;
1063
1064 xfs_ilock(dest, XFS_ILOCK_EXCL);
1065 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1066
1067 if (newlen > i_size_read(VFS_I(dest))) {
1068 trace_xfs_reflink_update_inode_size(dest, newlen);
1069 i_size_write(VFS_I(dest), newlen);
1070 dest->i_disk_size = newlen;
1071 }
1072
1073 if (cowextsize) {
1074 dest->i_cowextsize = cowextsize;
1075 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1076 }
1077
1078 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1079
1080 error = xfs_trans_commit(tp);
1081 if (error)
1082 goto out_error;
1083 return error;
1084
1085 out_error:
1086 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1087 return error;
1088 }
1089
1090 /*
1091 * Do we have enough reserve in this AG to handle a reflink? The refcount
1092 * btree already reserved all the space it needs, but the rmap btree can grow
1093 * infinitely, so we won't allow more reflinks when the AG is down to the
1094 * btree reserves.
1095 */
1096 static int
xfs_reflink_ag_has_free_space(struct xfs_mount * mp,xfs_agnumber_t agno)1097 xfs_reflink_ag_has_free_space(
1098 struct xfs_mount *mp,
1099 xfs_agnumber_t agno)
1100 {
1101 struct xfs_perag *pag;
1102 int error = 0;
1103
1104 if (!xfs_has_rmapbt(mp))
1105 return 0;
1106
1107 pag = xfs_perag_get(mp, agno);
1108 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1109 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1110 error = -ENOSPC;
1111 xfs_perag_put(pag);
1112 return error;
1113 }
1114
1115 /*
1116 * Remap the given extent into the file. The dmap blockcount will be set to
1117 * the number of blocks that were actually remapped.
1118 */
1119 STATIC int
xfs_reflink_remap_extent(struct xfs_inode * ip,struct xfs_bmbt_irec * dmap,xfs_off_t new_isize)1120 xfs_reflink_remap_extent(
1121 struct xfs_inode *ip,
1122 struct xfs_bmbt_irec *dmap,
1123 xfs_off_t new_isize)
1124 {
1125 struct xfs_bmbt_irec smap;
1126 struct xfs_mount *mp = ip->i_mount;
1127 struct xfs_trans *tp;
1128 xfs_off_t newlen;
1129 int64_t qdelta = 0;
1130 unsigned int resblks;
1131 bool quota_reserved = true;
1132 bool smap_real;
1133 bool dmap_written = xfs_bmap_is_written_extent(dmap);
1134 int iext_delta = 0;
1135 int nimaps;
1136 int error;
1137
1138 /*
1139 * Start a rolling transaction to switch the mappings.
1140 *
1141 * Adding a written extent to the extent map can cause a bmbt split,
1142 * and removing a mapped extent from the extent can cause a bmbt split.
1143 * The two operations cannot both cause a split since they operate on
1144 * the same index in the bmap btree, so we only need a reservation for
1145 * one bmbt split if either thing is happening. However, we haven't
1146 * locked the inode yet, so we reserve assuming this is the case.
1147 *
1148 * The first allocation call tries to reserve enough space to handle
1149 * mapping dmap into a sparse part of the file plus the bmbt split. We
1150 * haven't locked the inode or read the existing mapping yet, so we do
1151 * not know for sure that we need the space. This should succeed most
1152 * of the time.
1153 *
1154 * If the first attempt fails, try again but reserving only enough
1155 * space to handle a bmbt split. This is the hard minimum requirement,
1156 * and we revisit quota reservations later when we know more about what
1157 * we're remapping.
1158 */
1159 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1160 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1161 resblks + dmap->br_blockcount, 0, false, &tp);
1162 if (error == -EDQUOT || error == -ENOSPC) {
1163 quota_reserved = false;
1164 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1165 resblks, 0, false, &tp);
1166 }
1167 if (error)
1168 goto out;
1169
1170 /*
1171 * Read what's currently mapped in the destination file into smap.
1172 * If smap isn't a hole, we will have to remove it before we can add
1173 * dmap to the destination file.
1174 */
1175 nimaps = 1;
1176 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1177 &smap, &nimaps, 0);
1178 if (error)
1179 goto out_cancel;
1180 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1181 smap_real = xfs_bmap_is_real_extent(&smap);
1182
1183 /*
1184 * We can only remap as many blocks as the smaller of the two extent
1185 * maps, because we can only remap one extent at a time.
1186 */
1187 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1188 ASSERT(dmap->br_blockcount == smap.br_blockcount);
1189
1190 trace_xfs_reflink_remap_extent_dest(ip, &smap);
1191
1192 /*
1193 * Two extents mapped to the same physical block must not have
1194 * different states; that's filesystem corruption. Move on to the next
1195 * extent if they're both holes or both the same physical extent.
1196 */
1197 if (dmap->br_startblock == smap.br_startblock) {
1198 if (dmap->br_state != smap.br_state)
1199 error = -EFSCORRUPTED;
1200 goto out_cancel;
1201 }
1202
1203 /* If both extents are unwritten, leave them alone. */
1204 if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1205 smap.br_state == XFS_EXT_UNWRITTEN)
1206 goto out_cancel;
1207
1208 /* No reflinking if the AG of the dest mapping is low on space. */
1209 if (dmap_written) {
1210 error = xfs_reflink_ag_has_free_space(mp,
1211 XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1212 if (error)
1213 goto out_cancel;
1214 }
1215
1216 /*
1217 * Increase quota reservation if we think the quota block counter for
1218 * this file could increase.
1219 *
1220 * If we are mapping a written extent into the file, we need to have
1221 * enough quota block count reservation to handle the blocks in that
1222 * extent. We log only the delta to the quota block counts, so if the
1223 * extent we're unmapping also has blocks allocated to it, we don't
1224 * need a quota reservation for the extent itself.
1225 *
1226 * Note that if we're replacing a delalloc reservation with a written
1227 * extent, we have to take the full quota reservation because removing
1228 * the delalloc reservation gives the block count back to the quota
1229 * count. This is suboptimal, but the VFS flushed the dest range
1230 * before we started. That should have removed all the delalloc
1231 * reservations, but we code defensively.
1232 *
1233 * xfs_trans_alloc_inode above already tried to grab an even larger
1234 * quota reservation, and kicked off a blockgc scan if it couldn't.
1235 * If we can't get a potentially smaller quota reservation now, we're
1236 * done.
1237 */
1238 if (!quota_reserved && !smap_real && dmap_written) {
1239 error = xfs_trans_reserve_quota_nblks(tp, ip,
1240 dmap->br_blockcount, 0, false);
1241 if (error)
1242 goto out_cancel;
1243 }
1244
1245 if (smap_real)
1246 ++iext_delta;
1247
1248 if (dmap_written)
1249 ++iext_delta;
1250
1251 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1252 if (error)
1253 goto out_cancel;
1254
1255 if (smap_real) {
1256 /*
1257 * If the extent we're unmapping is backed by storage (written
1258 * or not), unmap the extent and drop its refcount.
1259 */
1260 xfs_bmap_unmap_extent(tp, ip, &smap);
1261 xfs_refcount_decrease_extent(tp, &smap);
1262 qdelta -= smap.br_blockcount;
1263 } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1264 xfs_filblks_t len = smap.br_blockcount;
1265
1266 /*
1267 * If the extent we're unmapping is a delalloc reservation,
1268 * we can use the regular bunmapi function to release the
1269 * incore state. Dropping the delalloc reservation takes care
1270 * of the quota reservation for us.
1271 */
1272 error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1273 if (error)
1274 goto out_cancel;
1275 ASSERT(len == 0);
1276 }
1277
1278 /*
1279 * If the extent we're sharing is backed by written storage, increase
1280 * its refcount and map it into the file.
1281 */
1282 if (dmap_written) {
1283 xfs_refcount_increase_extent(tp, dmap);
1284 xfs_bmap_map_extent(tp, ip, dmap);
1285 qdelta += dmap->br_blockcount;
1286 }
1287
1288 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1289
1290 /* Update dest isize if needed. */
1291 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1292 newlen = min_t(xfs_off_t, newlen, new_isize);
1293 if (newlen > i_size_read(VFS_I(ip))) {
1294 trace_xfs_reflink_update_inode_size(ip, newlen);
1295 i_size_write(VFS_I(ip), newlen);
1296 ip->i_disk_size = newlen;
1297 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1298 }
1299
1300 /* Commit everything and unlock. */
1301 error = xfs_trans_commit(tp);
1302 goto out_unlock;
1303
1304 out_cancel:
1305 xfs_trans_cancel(tp);
1306 out_unlock:
1307 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1308 out:
1309 if (error)
1310 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1311 return error;
1312 }
1313
1314 /* Remap a range of one file to the other. */
1315 int
xfs_reflink_remap_blocks(struct xfs_inode * src,loff_t pos_in,struct xfs_inode * dest,loff_t pos_out,loff_t remap_len,loff_t * remapped)1316 xfs_reflink_remap_blocks(
1317 struct xfs_inode *src,
1318 loff_t pos_in,
1319 struct xfs_inode *dest,
1320 loff_t pos_out,
1321 loff_t remap_len,
1322 loff_t *remapped)
1323 {
1324 struct xfs_bmbt_irec imap;
1325 struct xfs_mount *mp = src->i_mount;
1326 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in);
1327 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out);
1328 xfs_filblks_t len;
1329 xfs_filblks_t remapped_len = 0;
1330 xfs_off_t new_isize = pos_out + remap_len;
1331 int nimaps;
1332 int error = 0;
1333
1334 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1335 XFS_MAX_FILEOFF);
1336
1337 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1338
1339 while (len > 0) {
1340 unsigned int lock_mode;
1341
1342 /* Read extent from the source file */
1343 nimaps = 1;
1344 lock_mode = xfs_ilock_data_map_shared(src);
1345 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1346 xfs_iunlock(src, lock_mode);
1347 if (error)
1348 break;
1349 /*
1350 * The caller supposedly flushed all dirty pages in the source
1351 * file range, which means that writeback should have allocated
1352 * or deleted all delalloc reservations in that range. If we
1353 * find one, that's a good sign that something is seriously
1354 * wrong here.
1355 */
1356 ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1357 if (imap.br_startblock == DELAYSTARTBLOCK) {
1358 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1359 error = -EFSCORRUPTED;
1360 break;
1361 }
1362
1363 trace_xfs_reflink_remap_extent_src(src, &imap);
1364
1365 /* Remap into the destination file at the given offset. */
1366 imap.br_startoff = destoff;
1367 error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1368 if (error)
1369 break;
1370
1371 if (fatal_signal_pending(current)) {
1372 error = -EINTR;
1373 break;
1374 }
1375
1376 /* Advance drange/srange */
1377 srcoff += imap.br_blockcount;
1378 destoff += imap.br_blockcount;
1379 len -= imap.br_blockcount;
1380 remapped_len += imap.br_blockcount;
1381 }
1382
1383 if (error)
1384 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1385 *remapped = min_t(loff_t, remap_len,
1386 XFS_FSB_TO_B(src->i_mount, remapped_len));
1387 return error;
1388 }
1389
1390 /*
1391 * If we're reflinking to a point past the destination file's EOF, we must
1392 * zero any speculative post-EOF preallocations that sit between the old EOF
1393 * and the destination file offset.
1394 */
1395 static int
xfs_reflink_zero_posteof(struct xfs_inode * ip,loff_t pos)1396 xfs_reflink_zero_posteof(
1397 struct xfs_inode *ip,
1398 loff_t pos)
1399 {
1400 loff_t isize = i_size_read(VFS_I(ip));
1401
1402 if (pos <= isize)
1403 return 0;
1404
1405 trace_xfs_zero_eof(ip, isize, pos - isize);
1406 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1407 &xfs_buffered_write_iomap_ops);
1408 }
1409
1410 /*
1411 * Prepare two files for range cloning. Upon a successful return both inodes
1412 * will have the iolock and mmaplock held, the page cache of the out file will
1413 * be truncated, and any leases on the out file will have been broken. This
1414 * function borrows heavily from xfs_file_aio_write_checks.
1415 *
1416 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1417 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1418 * EOF block in the source dedupe range because it's not a complete block match,
1419 * hence can introduce a corruption into the file that has it's block replaced.
1420 *
1421 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1422 * "block aligned" for the purposes of cloning entire files. However, if the
1423 * source file range includes the EOF block and it lands within the existing EOF
1424 * of the destination file, then we can expose stale data from beyond the source
1425 * file EOF in the destination file.
1426 *
1427 * XFS doesn't support partial block sharing, so in both cases we have check
1428 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1429 * down to the previous whole block and ignore the partial EOF block. While this
1430 * means we can't dedupe the last block of a file, this is an acceptible
1431 * tradeoff for simplicity on implementation.
1432 *
1433 * For cloning, we want to share the partial EOF block if it is also the new EOF
1434 * block of the destination file. If the partial EOF block lies inside the
1435 * existing destination EOF, then we have to abort the clone to avoid exposing
1436 * stale data in the destination file. Hence we reject these clone attempts with
1437 * -EINVAL in this case.
1438 */
1439 int
xfs_reflink_remap_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)1440 xfs_reflink_remap_prep(
1441 struct file *file_in,
1442 loff_t pos_in,
1443 struct file *file_out,
1444 loff_t pos_out,
1445 loff_t *len,
1446 unsigned int remap_flags)
1447 {
1448 struct inode *inode_in = file_inode(file_in);
1449 struct xfs_inode *src = XFS_I(inode_in);
1450 struct inode *inode_out = file_inode(file_out);
1451 struct xfs_inode *dest = XFS_I(inode_out);
1452 int ret;
1453
1454 /* Lock both files against IO */
1455 ret = xfs_ilock2_io_mmap(src, dest);
1456 if (ret)
1457 return ret;
1458
1459 /* Check file eligibility and prepare for block sharing. */
1460 ret = -EINVAL;
1461 /* Don't reflink realtime inodes */
1462 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1463 goto out_unlock;
1464
1465 /* Don't share DAX file data for now. */
1466 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1467 goto out_unlock;
1468
1469 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1470 len, remap_flags);
1471 if (ret || *len == 0)
1472 goto out_unlock;
1473
1474 /* Attach dquots to dest inode before changing block map */
1475 ret = xfs_qm_dqattach(dest);
1476 if (ret)
1477 goto out_unlock;
1478
1479 /*
1480 * Zero existing post-eof speculative preallocations in the destination
1481 * file.
1482 */
1483 ret = xfs_reflink_zero_posteof(dest, pos_out);
1484 if (ret)
1485 goto out_unlock;
1486
1487 /* Set flags and remap blocks. */
1488 ret = xfs_reflink_set_inode_flag(src, dest);
1489 if (ret)
1490 goto out_unlock;
1491
1492 /*
1493 * If pos_out > EOF, we may have dirtied blocks between EOF and
1494 * pos_out. In that case, we need to extend the flush and unmap to cover
1495 * from EOF to the end of the copy length.
1496 */
1497 if (pos_out > XFS_ISIZE(dest)) {
1498 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1499 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1500 } else {
1501 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1502 }
1503 if (ret)
1504 goto out_unlock;
1505
1506 return 0;
1507 out_unlock:
1508 xfs_iunlock2_io_mmap(src, dest);
1509 return ret;
1510 }
1511
1512 /* Does this inode need the reflink flag? */
1513 int
xfs_reflink_inode_has_shared_extents(struct xfs_trans * tp,struct xfs_inode * ip,bool * has_shared)1514 xfs_reflink_inode_has_shared_extents(
1515 struct xfs_trans *tp,
1516 struct xfs_inode *ip,
1517 bool *has_shared)
1518 {
1519 struct xfs_bmbt_irec got;
1520 struct xfs_mount *mp = ip->i_mount;
1521 struct xfs_ifork *ifp;
1522 xfs_agnumber_t agno;
1523 xfs_agblock_t agbno;
1524 xfs_extlen_t aglen;
1525 xfs_agblock_t rbno;
1526 xfs_extlen_t rlen;
1527 struct xfs_iext_cursor icur;
1528 bool found;
1529 int error;
1530
1531 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1532 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1533 if (error)
1534 return error;
1535
1536 *has_shared = false;
1537 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1538 while (found) {
1539 if (isnullstartblock(got.br_startblock) ||
1540 got.br_state != XFS_EXT_NORM)
1541 goto next;
1542 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1543 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1544 aglen = got.br_blockcount;
1545
1546 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1547 &rbno, &rlen, false);
1548 if (error)
1549 return error;
1550 /* Is there still a shared block here? */
1551 if (rbno != NULLAGBLOCK) {
1552 *has_shared = true;
1553 return 0;
1554 }
1555 next:
1556 found = xfs_iext_next_extent(ifp, &icur, &got);
1557 }
1558
1559 return 0;
1560 }
1561
1562 /*
1563 * Clear the inode reflink flag if there are no shared extents.
1564 *
1565 * The caller is responsible for joining the inode to the transaction passed in.
1566 * The inode will be joined to the transaction that is returned to the caller.
1567 */
1568 int
xfs_reflink_clear_inode_flag(struct xfs_inode * ip,struct xfs_trans ** tpp)1569 xfs_reflink_clear_inode_flag(
1570 struct xfs_inode *ip,
1571 struct xfs_trans **tpp)
1572 {
1573 bool needs_flag;
1574 int error = 0;
1575
1576 ASSERT(xfs_is_reflink_inode(ip));
1577
1578 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1579 if (error || needs_flag)
1580 return error;
1581
1582 /*
1583 * We didn't find any shared blocks so turn off the reflink flag.
1584 * First, get rid of any leftover CoW mappings.
1585 */
1586 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1587 true);
1588 if (error)
1589 return error;
1590
1591 /* Clear the inode flag. */
1592 trace_xfs_reflink_unset_inode_flag(ip);
1593 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1594 xfs_inode_clear_cowblocks_tag(ip);
1595 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1596
1597 return error;
1598 }
1599
1600 /*
1601 * Clear the inode reflink flag if there are no shared extents and the size
1602 * hasn't changed.
1603 */
1604 STATIC int
xfs_reflink_try_clear_inode_flag(struct xfs_inode * ip)1605 xfs_reflink_try_clear_inode_flag(
1606 struct xfs_inode *ip)
1607 {
1608 struct xfs_mount *mp = ip->i_mount;
1609 struct xfs_trans *tp;
1610 int error = 0;
1611
1612 /* Start a rolling transaction to remove the mappings */
1613 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1614 if (error)
1615 return error;
1616
1617 xfs_ilock(ip, XFS_ILOCK_EXCL);
1618 xfs_trans_ijoin(tp, ip, 0);
1619
1620 error = xfs_reflink_clear_inode_flag(ip, &tp);
1621 if (error)
1622 goto cancel;
1623
1624 error = xfs_trans_commit(tp);
1625 if (error)
1626 goto out;
1627
1628 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1629 return 0;
1630 cancel:
1631 xfs_trans_cancel(tp);
1632 out:
1633 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1634 return error;
1635 }
1636
1637 /*
1638 * Pre-COW all shared blocks within a given byte range of a file and turn off
1639 * the reflink flag if we unshare all of the file's blocks.
1640 */
1641 int
xfs_reflink_unshare(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1642 xfs_reflink_unshare(
1643 struct xfs_inode *ip,
1644 xfs_off_t offset,
1645 xfs_off_t len)
1646 {
1647 struct inode *inode = VFS_I(ip);
1648 int error;
1649
1650 if (!xfs_is_reflink_inode(ip))
1651 return 0;
1652
1653 trace_xfs_reflink_unshare(ip, offset, len);
1654
1655 inode_dio_wait(inode);
1656
1657 error = iomap_file_unshare(inode, offset, len,
1658 &xfs_buffered_write_iomap_ops);
1659 if (error)
1660 goto out;
1661
1662 error = filemap_write_and_wait_range(inode->i_mapping, offset,
1663 offset + len - 1);
1664 if (error)
1665 goto out;
1666
1667 /* Turn off the reflink flag if possible. */
1668 error = xfs_reflink_try_clear_inode_flag(ip);
1669 if (error)
1670 goto out;
1671 return 0;
1672
1673 out:
1674 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1675 return error;
1676 }
1677