1 /*
2 * Kernel Debugger Architecture Independent Support Functions
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
10 * 03/02/13 added new 2.5 kallsyms <xavier.bru@bull.net>
11 */
12
13 #include <linux/types.h>
14 #include <linux/sched.h>
15 #include <linux/mm.h>
16 #include <linux/kallsyms.h>
17 #include <linux/stddef.h>
18 #include <linux/vmalloc.h>
19 #include <linux/ptrace.h>
20 #include <linux/module.h>
21 #include <linux/highmem.h>
22 #include <linux/hardirq.h>
23 #include <linux/delay.h>
24 #include <linux/uaccess.h>
25 #include <linux/kdb.h>
26 #include <linux/slab.h>
27 #include <linux/ctype.h>
28 #include "kdb_private.h"
29
30 /*
31 * kdbgetsymval - Return the address of the given symbol.
32 *
33 * Parameters:
34 * symname Character string containing symbol name
35 * symtab Structure to receive results
36 * Returns:
37 * 0 Symbol not found, symtab zero filled
38 * 1 Symbol mapped to module/symbol/section, data in symtab
39 */
kdbgetsymval(const char * symname,kdb_symtab_t * symtab)40 int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
41 {
42 kdb_dbg_printf(AR, "symname=%s, symtab=%px\n", symname, symtab);
43 memset(symtab, 0, sizeof(*symtab));
44 symtab->sym_start = kallsyms_lookup_name(symname);
45 if (symtab->sym_start) {
46 kdb_dbg_printf(AR, "returns 1, symtab->sym_start=0x%lx\n",
47 symtab->sym_start);
48 return 1;
49 }
50 kdb_dbg_printf(AR, "returns 0\n");
51 return 0;
52 }
53 EXPORT_SYMBOL(kdbgetsymval);
54
55 /**
56 * kdbnearsym() - Return the name of the symbol with the nearest address
57 * less than @addr.
58 * @addr: Address to check for near symbol
59 * @symtab: Structure to receive results
60 *
61 * WARNING: This function may return a pointer to a single statically
62 * allocated buffer (namebuf). kdb's unusual calling context (single
63 * threaded, all other CPUs halted) provides us sufficient locking for
64 * this to be safe. The only constraint imposed by the static buffer is
65 * that the caller must consume any previous reply prior to another call
66 * to lookup a new symbol.
67 *
68 * Note that, strictly speaking, some architectures may re-enter the kdb
69 * trap if the system turns out to be very badly damaged and this breaks
70 * the single-threaded assumption above. In these circumstances successful
71 * continuation and exit from the inner trap is unlikely to work and any
72 * user attempting this receives a prominent warning before being allowed
73 * to progress. In these circumstances we remain memory safe because
74 * namebuf[KSYM_NAME_LEN-1] will never change from '\0' although we do
75 * tolerate the possibility of garbled symbol display from the outer kdb
76 * trap.
77 *
78 * Return:
79 * * 0 - No sections contain this address, symtab zero filled
80 * * 1 - Address mapped to module/symbol/section, data in symtab
81 */
kdbnearsym(unsigned long addr,kdb_symtab_t * symtab)82 int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
83 {
84 int ret = 0;
85 unsigned long symbolsize = 0;
86 unsigned long offset = 0;
87 static char namebuf[KSYM_NAME_LEN];
88
89 kdb_dbg_printf(AR, "addr=0x%lx, symtab=%px\n", addr, symtab);
90 memset(symtab, 0, sizeof(*symtab));
91
92 if (addr < 4096)
93 goto out;
94
95 symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
96 (char **)(&symtab->mod_name), namebuf);
97 if (offset > 8*1024*1024) {
98 symtab->sym_name = NULL;
99 addr = offset = symbolsize = 0;
100 }
101 symtab->sym_start = addr - offset;
102 symtab->sym_end = symtab->sym_start + symbolsize;
103 ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
104
105 if (symtab->mod_name == NULL)
106 symtab->mod_name = "kernel";
107 kdb_dbg_printf(AR, "returns %d symtab->sym_start=0x%lx, symtab->mod_name=%px, symtab->sym_name=%px (%s)\n",
108 ret, symtab->sym_start, symtab->mod_name, symtab->sym_name, symtab->sym_name);
109 out:
110 return ret;
111 }
112
113 static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
114
115 /*
116 * kallsyms_symbol_complete
117 *
118 * Parameters:
119 * prefix_name prefix of a symbol name to lookup
120 * max_len maximum length that can be returned
121 * Returns:
122 * Number of symbols which match the given prefix.
123 * Notes:
124 * prefix_name is changed to contain the longest unique prefix that
125 * starts with this prefix (tab completion).
126 */
kallsyms_symbol_complete(char * prefix_name,int max_len)127 int kallsyms_symbol_complete(char *prefix_name, int max_len)
128 {
129 loff_t pos = 0;
130 int prefix_len = strlen(prefix_name), prev_len = 0;
131 int i, number = 0;
132 const char *name;
133
134 while ((name = kdb_walk_kallsyms(&pos))) {
135 if (strncmp(name, prefix_name, prefix_len) == 0) {
136 strscpy(ks_namebuf, name, sizeof(ks_namebuf));
137 /* Work out the longest name that matches the prefix */
138 if (++number == 1) {
139 prev_len = min_t(int, max_len-1,
140 strlen(ks_namebuf));
141 memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
142 ks_namebuf_prev[prev_len] = '\0';
143 continue;
144 }
145 for (i = 0; i < prev_len; i++) {
146 if (ks_namebuf[i] != ks_namebuf_prev[i]) {
147 prev_len = i;
148 ks_namebuf_prev[i] = '\0';
149 break;
150 }
151 }
152 }
153 }
154 if (prev_len > prefix_len)
155 memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
156 return number;
157 }
158
159 /*
160 * kallsyms_symbol_next
161 *
162 * Parameters:
163 * prefix_name prefix of a symbol name to lookup
164 * flag 0 means search from the head, 1 means continue search.
165 * buf_size maximum length that can be written to prefix_name
166 * buffer
167 * Returns:
168 * 1 if a symbol matches the given prefix.
169 * 0 if no string found
170 */
kallsyms_symbol_next(char * prefix_name,int flag,int buf_size)171 int kallsyms_symbol_next(char *prefix_name, int flag, int buf_size)
172 {
173 int prefix_len = strlen(prefix_name);
174 static loff_t pos;
175 const char *name;
176
177 if (!flag)
178 pos = 0;
179
180 while ((name = kdb_walk_kallsyms(&pos))) {
181 if (!strncmp(name, prefix_name, prefix_len))
182 return strscpy(prefix_name, name, buf_size);
183 }
184 return 0;
185 }
186
187 /*
188 * kdb_symbol_print - Standard method for printing a symbol name and offset.
189 * Inputs:
190 * addr Address to be printed.
191 * symtab Address of symbol data, if NULL this routine does its
192 * own lookup.
193 * punc Punctuation for string, bit field.
194 * Remarks:
195 * The string and its punctuation is only printed if the address
196 * is inside the kernel, except that the value is always printed
197 * when requested.
198 */
kdb_symbol_print(unsigned long addr,const kdb_symtab_t * symtab_p,unsigned int punc)199 void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
200 unsigned int punc)
201 {
202 kdb_symtab_t symtab, *symtab_p2;
203 if (symtab_p) {
204 symtab_p2 = (kdb_symtab_t *)symtab_p;
205 } else {
206 symtab_p2 = &symtab;
207 kdbnearsym(addr, symtab_p2);
208 }
209 if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
210 return;
211 if (punc & KDB_SP_SPACEB)
212 kdb_printf(" ");
213 if (punc & KDB_SP_VALUE)
214 kdb_printf(kdb_machreg_fmt0, addr);
215 if (symtab_p2->sym_name) {
216 if (punc & KDB_SP_VALUE)
217 kdb_printf(" ");
218 if (punc & KDB_SP_PAREN)
219 kdb_printf("(");
220 if (strcmp(symtab_p2->mod_name, "kernel"))
221 kdb_printf("[%s]", symtab_p2->mod_name);
222 kdb_printf("%s", symtab_p2->sym_name);
223 if (addr != symtab_p2->sym_start)
224 kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
225 if (punc & KDB_SP_SYMSIZE)
226 kdb_printf("/0x%lx",
227 symtab_p2->sym_end - symtab_p2->sym_start);
228 if (punc & KDB_SP_PAREN)
229 kdb_printf(")");
230 }
231 if (punc & KDB_SP_SPACEA)
232 kdb_printf(" ");
233 if (punc & KDB_SP_NEWLINE)
234 kdb_printf("\n");
235 }
236
237 /*
238 * kdb_strdup - kdb equivalent of strdup, for disasm code.
239 * Inputs:
240 * str The string to duplicate.
241 * type Flags to kmalloc for the new string.
242 * Returns:
243 * Address of the new string, NULL if storage could not be allocated.
244 * Remarks:
245 * This is not in lib/string.c because it uses kmalloc which is not
246 * available when string.o is used in boot loaders.
247 */
kdb_strdup(const char * str,gfp_t type)248 char *kdb_strdup(const char *str, gfp_t type)
249 {
250 int n = strlen(str)+1;
251 char *s = kmalloc(n, type);
252 if (!s)
253 return NULL;
254 return strcpy(s, str);
255 }
256
257 /*
258 * kdb_getarea_size - Read an area of data. The kdb equivalent of
259 * copy_from_user, with kdb messages for invalid addresses.
260 * Inputs:
261 * res Pointer to the area to receive the result.
262 * addr Address of the area to copy.
263 * size Size of the area.
264 * Returns:
265 * 0 for success, < 0 for error.
266 */
kdb_getarea_size(void * res,unsigned long addr,size_t size)267 int kdb_getarea_size(void *res, unsigned long addr, size_t size)
268 {
269 int ret = copy_from_kernel_nofault((char *)res, (char *)addr, size);
270 if (ret) {
271 if (!KDB_STATE(SUPPRESS)) {
272 kdb_func_printf("Bad address 0x%lx\n", addr);
273 KDB_STATE_SET(SUPPRESS);
274 }
275 ret = KDB_BADADDR;
276 } else {
277 KDB_STATE_CLEAR(SUPPRESS);
278 }
279 return ret;
280 }
281
282 /*
283 * kdb_putarea_size - Write an area of data. The kdb equivalent of
284 * copy_to_user, with kdb messages for invalid addresses.
285 * Inputs:
286 * addr Address of the area to write to.
287 * res Pointer to the area holding the data.
288 * size Size of the area.
289 * Returns:
290 * 0 for success, < 0 for error.
291 */
kdb_putarea_size(unsigned long addr,void * res,size_t size)292 int kdb_putarea_size(unsigned long addr, void *res, size_t size)
293 {
294 int ret = copy_to_kernel_nofault((char *)addr, (char *)res, size);
295 if (ret) {
296 if (!KDB_STATE(SUPPRESS)) {
297 kdb_func_printf("Bad address 0x%lx\n", addr);
298 KDB_STATE_SET(SUPPRESS);
299 }
300 ret = KDB_BADADDR;
301 } else {
302 KDB_STATE_CLEAR(SUPPRESS);
303 }
304 return ret;
305 }
306
307 /*
308 * kdb_getphys - Read data from a physical address. Validate the
309 * address is in range, use kmap_atomic() to get data
310 * similar to kdb_getarea() - but for phys addresses
311 * Inputs:
312 * res Pointer to the word to receive the result
313 * addr Physical address of the area to copy
314 * size Size of the area
315 * Returns:
316 * 0 for success, < 0 for error.
317 */
kdb_getphys(void * res,unsigned long addr,size_t size)318 static int kdb_getphys(void *res, unsigned long addr, size_t size)
319 {
320 unsigned long pfn;
321 void *vaddr;
322 struct page *page;
323
324 pfn = (addr >> PAGE_SHIFT);
325 if (!pfn_valid(pfn))
326 return 1;
327 page = pfn_to_page(pfn);
328 vaddr = kmap_atomic(page);
329 memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
330 kunmap_atomic(vaddr);
331
332 return 0;
333 }
334
335 /*
336 * kdb_getphysword
337 * Inputs:
338 * word Pointer to the word to receive the result.
339 * addr Address of the area to copy.
340 * size Size of the area.
341 * Returns:
342 * 0 for success, < 0 for error.
343 */
kdb_getphysword(unsigned long * word,unsigned long addr,size_t size)344 int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
345 {
346 int diag;
347 __u8 w1;
348 __u16 w2;
349 __u32 w4;
350 __u64 w8;
351 *word = 0; /* Default value if addr or size is invalid */
352
353 switch (size) {
354 case 1:
355 diag = kdb_getphys(&w1, addr, sizeof(w1));
356 if (!diag)
357 *word = w1;
358 break;
359 case 2:
360 diag = kdb_getphys(&w2, addr, sizeof(w2));
361 if (!diag)
362 *word = w2;
363 break;
364 case 4:
365 diag = kdb_getphys(&w4, addr, sizeof(w4));
366 if (!diag)
367 *word = w4;
368 break;
369 case 8:
370 if (size <= sizeof(*word)) {
371 diag = kdb_getphys(&w8, addr, sizeof(w8));
372 if (!diag)
373 *word = w8;
374 break;
375 }
376 fallthrough;
377 default:
378 diag = KDB_BADWIDTH;
379 kdb_func_printf("bad width %zu\n", size);
380 }
381 return diag;
382 }
383
384 /*
385 * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats
386 * data as numbers.
387 * Inputs:
388 * word Pointer to the word to receive the result.
389 * addr Address of the area to copy.
390 * size Size of the area.
391 * Returns:
392 * 0 for success, < 0 for error.
393 */
kdb_getword(unsigned long * word,unsigned long addr,size_t size)394 int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
395 {
396 int diag;
397 __u8 w1;
398 __u16 w2;
399 __u32 w4;
400 __u64 w8;
401 *word = 0; /* Default value if addr or size is invalid */
402 switch (size) {
403 case 1:
404 diag = kdb_getarea(w1, addr);
405 if (!diag)
406 *word = w1;
407 break;
408 case 2:
409 diag = kdb_getarea(w2, addr);
410 if (!diag)
411 *word = w2;
412 break;
413 case 4:
414 diag = kdb_getarea(w4, addr);
415 if (!diag)
416 *word = w4;
417 break;
418 case 8:
419 if (size <= sizeof(*word)) {
420 diag = kdb_getarea(w8, addr);
421 if (!diag)
422 *word = w8;
423 break;
424 }
425 fallthrough;
426 default:
427 diag = KDB_BADWIDTH;
428 kdb_func_printf("bad width %zu\n", size);
429 }
430 return diag;
431 }
432
433 /*
434 * kdb_putword - Write a binary value. Unlike kdb_putarea, this
435 * treats data as numbers.
436 * Inputs:
437 * addr Address of the area to write to..
438 * word The value to set.
439 * size Size of the area.
440 * Returns:
441 * 0 for success, < 0 for error.
442 */
kdb_putword(unsigned long addr,unsigned long word,size_t size)443 int kdb_putword(unsigned long addr, unsigned long word, size_t size)
444 {
445 int diag;
446 __u8 w1;
447 __u16 w2;
448 __u32 w4;
449 __u64 w8;
450 switch (size) {
451 case 1:
452 w1 = word;
453 diag = kdb_putarea(addr, w1);
454 break;
455 case 2:
456 w2 = word;
457 diag = kdb_putarea(addr, w2);
458 break;
459 case 4:
460 w4 = word;
461 diag = kdb_putarea(addr, w4);
462 break;
463 case 8:
464 if (size <= sizeof(word)) {
465 w8 = word;
466 diag = kdb_putarea(addr, w8);
467 break;
468 }
469 fallthrough;
470 default:
471 diag = KDB_BADWIDTH;
472 kdb_func_printf("bad width %zu\n", size);
473 }
474 return diag;
475 }
476
477
478
479 /*
480 * kdb_task_state_char - Return the character that represents the task state.
481 * Inputs:
482 * p struct task for the process
483 * Returns:
484 * One character to represent the task state.
485 */
kdb_task_state_char(const struct task_struct * p)486 char kdb_task_state_char (const struct task_struct *p)
487 {
488 unsigned long tmp;
489 char state;
490 int cpu;
491
492 if (!p ||
493 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
494 return 'E';
495
496 state = task_state_to_char((struct task_struct *) p);
497
498 if (is_idle_task(p)) {
499 /* Idle task. Is it really idle, apart from the kdb
500 * interrupt? */
501 cpu = kdb_process_cpu(p);
502 if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
503 if (cpu != kdb_initial_cpu)
504 state = '-'; /* idle task */
505 }
506 } else if (!p->mm && strchr("IMS", state)) {
507 state = tolower(state); /* sleeping system daemon */
508 }
509 return state;
510 }
511
512 /*
513 * kdb_task_state - Return true if a process has the desired state
514 * given by the mask.
515 * Inputs:
516 * p struct task for the process
517 * mask set of characters used to select processes; both NULL
518 * and the empty string mean adopt a default filter, which
519 * is to suppress sleeping system daemons and the idle tasks
520 * Returns:
521 * True if the process matches at least one criteria defined by the mask.
522 */
kdb_task_state(const struct task_struct * p,const char * mask)523 bool kdb_task_state(const struct task_struct *p, const char *mask)
524 {
525 char state = kdb_task_state_char(p);
526
527 /* If there is no mask, then we will filter code that runs when the
528 * scheduler is idling and any system daemons that are currently
529 * sleeping.
530 */
531 if (!mask || mask[0] == '\0')
532 return !strchr("-ims", state);
533
534 /* A is a special case that matches all states */
535 if (strchr(mask, 'A'))
536 return true;
537
538 return strchr(mask, state);
539 }
540
541 /* Maintain a small stack of kdb_flags to allow recursion without disturbing
542 * the global kdb state.
543 */
544
545 static int kdb_flags_stack[4], kdb_flags_index;
546
kdb_save_flags(void)547 void kdb_save_flags(void)
548 {
549 BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack));
550 kdb_flags_stack[kdb_flags_index++] = kdb_flags;
551 }
552
kdb_restore_flags(void)553 void kdb_restore_flags(void)
554 {
555 BUG_ON(kdb_flags_index <= 0);
556 kdb_flags = kdb_flags_stack[--kdb_flags_index];
557 }
558