1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73
74 /*
75 * The default value should be high enough to not crash a system that randomly
76 * crashes its kernel from time to time, but low enough to at least not permit
77 * overflowing 32-bit refcounts or the ldsem writer count.
78 */
79 static unsigned int oops_limit = 10000;
80
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_exit_table[] = {
83 {
84 .procname = "oops_limit",
85 .data = &oops_limit,
86 .maxlen = sizeof(oops_limit),
87 .mode = 0644,
88 .proc_handler = proc_douintvec,
89 },
90 { }
91 };
92
kernel_exit_sysctls_init(void)93 static __init int kernel_exit_sysctls_init(void)
94 {
95 register_sysctl_init("kernel", kern_exit_table);
96 return 0;
97 }
98 late_initcall(kernel_exit_sysctls_init);
99 #endif
100
101 static atomic_t oops_count = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)104 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
105 char *page)
106 {
107 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
108 }
109
110 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
111
kernel_exit_sysfs_init(void)112 static __init int kernel_exit_sysfs_init(void)
113 {
114 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
115 return 0;
116 }
117 late_initcall(kernel_exit_sysfs_init);
118 #endif
119
__unhash_process(struct task_struct * p,bool group_dead)120 static void __unhash_process(struct task_struct *p, bool group_dead)
121 {
122 nr_threads--;
123 detach_pid(p, PIDTYPE_PID);
124 if (group_dead) {
125 detach_pid(p, PIDTYPE_TGID);
126 detach_pid(p, PIDTYPE_PGID);
127 detach_pid(p, PIDTYPE_SID);
128
129 list_del_rcu(&p->tasks);
130 list_del_init(&p->sibling);
131 __this_cpu_dec(process_counts);
132 }
133 list_del_rcu(&p->thread_group);
134 list_del_rcu(&p->thread_node);
135 }
136
137 /*
138 * This function expects the tasklist_lock write-locked.
139 */
__exit_signal(struct task_struct * tsk)140 static void __exit_signal(struct task_struct *tsk)
141 {
142 struct signal_struct *sig = tsk->signal;
143 bool group_dead = thread_group_leader(tsk);
144 struct sighand_struct *sighand;
145 struct tty_struct *tty;
146 u64 utime, stime;
147
148 sighand = rcu_dereference_check(tsk->sighand,
149 lockdep_tasklist_lock_is_held());
150 spin_lock(&sighand->siglock);
151
152 #ifdef CONFIG_POSIX_TIMERS
153 posix_cpu_timers_exit(tsk);
154 if (group_dead)
155 posix_cpu_timers_exit_group(tsk);
156 #endif
157
158 if (group_dead) {
159 tty = sig->tty;
160 sig->tty = NULL;
161 } else {
162 /*
163 * If there is any task waiting for the group exit
164 * then notify it:
165 */
166 if (sig->notify_count > 0 && !--sig->notify_count)
167 wake_up_process(sig->group_exit_task);
168
169 if (tsk == sig->curr_target)
170 sig->curr_target = next_thread(tsk);
171 }
172
173 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
174 sizeof(unsigned long long));
175
176 /*
177 * Accumulate here the counters for all threads as they die. We could
178 * skip the group leader because it is the last user of signal_struct,
179 * but we want to avoid the race with thread_group_cputime() which can
180 * see the empty ->thread_head list.
181 */
182 task_cputime(tsk, &utime, &stime);
183 write_seqlock(&sig->stats_lock);
184 sig->utime += utime;
185 sig->stime += stime;
186 sig->gtime += task_gtime(tsk);
187 sig->min_flt += tsk->min_flt;
188 sig->maj_flt += tsk->maj_flt;
189 sig->nvcsw += tsk->nvcsw;
190 sig->nivcsw += tsk->nivcsw;
191 sig->inblock += task_io_get_inblock(tsk);
192 sig->oublock += task_io_get_oublock(tsk);
193 task_io_accounting_add(&sig->ioac, &tsk->ioac);
194 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
195 sig->nr_threads--;
196 __unhash_process(tsk, group_dead);
197 write_sequnlock(&sig->stats_lock);
198
199 /*
200 * Do this under ->siglock, we can race with another thread
201 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
202 */
203 flush_sigqueue(&tsk->pending);
204 tsk->sighand = NULL;
205 spin_unlock(&sighand->siglock);
206
207 __cleanup_sighand(sighand);
208 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
209 if (group_dead) {
210 flush_sigqueue(&sig->shared_pending);
211 tty_kref_put(tty);
212 }
213 }
214
delayed_put_task_struct(struct rcu_head * rhp)215 static void delayed_put_task_struct(struct rcu_head *rhp)
216 {
217 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
218
219 perf_event_delayed_put(tsk);
220 trace_sched_process_free(tsk);
221 put_task_struct(tsk);
222 }
223
put_task_struct_rcu_user(struct task_struct * task)224 void put_task_struct_rcu_user(struct task_struct *task)
225 {
226 if (refcount_dec_and_test(&task->rcu_users))
227 call_rcu(&task->rcu, delayed_put_task_struct);
228 }
229
release_task(struct task_struct * p)230 void release_task(struct task_struct *p)
231 {
232 struct task_struct *leader;
233 struct pid *thread_pid;
234 int zap_leader;
235 repeat:
236 /* don't need to get the RCU readlock here - the process is dead and
237 * can't be modifying its own credentials. But shut RCU-lockdep up */
238 rcu_read_lock();
239 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
240 rcu_read_unlock();
241
242 cgroup_release(p);
243
244 write_lock_irq(&tasklist_lock);
245 ptrace_release_task(p);
246 thread_pid = get_pid(p->thread_pid);
247 __exit_signal(p);
248
249 /*
250 * If we are the last non-leader member of the thread
251 * group, and the leader is zombie, then notify the
252 * group leader's parent process. (if it wants notification.)
253 */
254 zap_leader = 0;
255 leader = p->group_leader;
256 if (leader != p && thread_group_empty(leader)
257 && leader->exit_state == EXIT_ZOMBIE) {
258 /*
259 * If we were the last child thread and the leader has
260 * exited already, and the leader's parent ignores SIGCHLD,
261 * then we are the one who should release the leader.
262 */
263 zap_leader = do_notify_parent(leader, leader->exit_signal);
264 if (zap_leader)
265 leader->exit_state = EXIT_DEAD;
266 }
267
268 write_unlock_irq(&tasklist_lock);
269 seccomp_filter_release(p);
270 proc_flush_pid(thread_pid);
271 put_pid(thread_pid);
272 release_thread(p);
273 put_task_struct_rcu_user(p);
274
275 p = leader;
276 if (unlikely(zap_leader))
277 goto repeat;
278 }
279
rcuwait_wake_up(struct rcuwait * w)280 int rcuwait_wake_up(struct rcuwait *w)
281 {
282 int ret = 0;
283 struct task_struct *task;
284
285 rcu_read_lock();
286
287 /*
288 * Order condition vs @task, such that everything prior to the load
289 * of @task is visible. This is the condition as to why the user called
290 * rcuwait_wake() in the first place. Pairs with set_current_state()
291 * barrier (A) in rcuwait_wait_event().
292 *
293 * WAIT WAKE
294 * [S] tsk = current [S] cond = true
295 * MB (A) MB (B)
296 * [L] cond [L] tsk
297 */
298 smp_mb(); /* (B) */
299
300 task = rcu_dereference(w->task);
301 if (task)
302 ret = wake_up_process(task);
303 rcu_read_unlock();
304
305 return ret;
306 }
307 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
308
309 /*
310 * Determine if a process group is "orphaned", according to the POSIX
311 * definition in 2.2.2.52. Orphaned process groups are not to be affected
312 * by terminal-generated stop signals. Newly orphaned process groups are
313 * to receive a SIGHUP and a SIGCONT.
314 *
315 * "I ask you, have you ever known what it is to be an orphan?"
316 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)317 static int will_become_orphaned_pgrp(struct pid *pgrp,
318 struct task_struct *ignored_task)
319 {
320 struct task_struct *p;
321
322 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
323 if ((p == ignored_task) ||
324 (p->exit_state && thread_group_empty(p)) ||
325 is_global_init(p->real_parent))
326 continue;
327
328 if (task_pgrp(p->real_parent) != pgrp &&
329 task_session(p->real_parent) == task_session(p))
330 return 0;
331 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
332
333 return 1;
334 }
335
is_current_pgrp_orphaned(void)336 int is_current_pgrp_orphaned(void)
337 {
338 int retval;
339
340 read_lock(&tasklist_lock);
341 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
342 read_unlock(&tasklist_lock);
343
344 return retval;
345 }
346
has_stopped_jobs(struct pid * pgrp)347 static bool has_stopped_jobs(struct pid *pgrp)
348 {
349 struct task_struct *p;
350
351 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
352 if (p->signal->flags & SIGNAL_STOP_STOPPED)
353 return true;
354 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
355
356 return false;
357 }
358
359 /*
360 * Check to see if any process groups have become orphaned as
361 * a result of our exiting, and if they have any stopped jobs,
362 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
363 */
364 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)365 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
366 {
367 struct pid *pgrp = task_pgrp(tsk);
368 struct task_struct *ignored_task = tsk;
369
370 if (!parent)
371 /* exit: our father is in a different pgrp than
372 * we are and we were the only connection outside.
373 */
374 parent = tsk->real_parent;
375 else
376 /* reparent: our child is in a different pgrp than
377 * we are, and it was the only connection outside.
378 */
379 ignored_task = NULL;
380
381 if (task_pgrp(parent) != pgrp &&
382 task_session(parent) == task_session(tsk) &&
383 will_become_orphaned_pgrp(pgrp, ignored_task) &&
384 has_stopped_jobs(pgrp)) {
385 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
386 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
387 }
388 }
389
390 #ifdef CONFIG_MEMCG
391 /*
392 * A task is exiting. If it owned this mm, find a new owner for the mm.
393 */
mm_update_next_owner(struct mm_struct * mm)394 void mm_update_next_owner(struct mm_struct *mm)
395 {
396 struct task_struct *c, *g, *p = current;
397
398 retry:
399 /*
400 * If the exiting or execing task is not the owner, it's
401 * someone else's problem.
402 */
403 if (mm->owner != p)
404 return;
405 /*
406 * The current owner is exiting/execing and there are no other
407 * candidates. Do not leave the mm pointing to a possibly
408 * freed task structure.
409 */
410 if (atomic_read(&mm->mm_users) <= 1) {
411 WRITE_ONCE(mm->owner, NULL);
412 return;
413 }
414
415 read_lock(&tasklist_lock);
416 /*
417 * Search in the children
418 */
419 list_for_each_entry(c, &p->children, sibling) {
420 if (c->mm == mm)
421 goto assign_new_owner;
422 }
423
424 /*
425 * Search in the siblings
426 */
427 list_for_each_entry(c, &p->real_parent->children, sibling) {
428 if (c->mm == mm)
429 goto assign_new_owner;
430 }
431
432 /*
433 * Search through everything else, we should not get here often.
434 */
435 for_each_process(g) {
436 if (g->flags & PF_KTHREAD)
437 continue;
438 for_each_thread(g, c) {
439 if (c->mm == mm)
440 goto assign_new_owner;
441 if (c->mm)
442 break;
443 }
444 }
445 read_unlock(&tasklist_lock);
446 /*
447 * We found no owner yet mm_users > 1: this implies that we are
448 * most likely racing with swapoff (try_to_unuse()) or /proc or
449 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
450 */
451 WRITE_ONCE(mm->owner, NULL);
452 return;
453
454 assign_new_owner:
455 BUG_ON(c == p);
456 get_task_struct(c);
457 /*
458 * The task_lock protects c->mm from changing.
459 * We always want mm->owner->mm == mm
460 */
461 task_lock(c);
462 /*
463 * Delay read_unlock() till we have the task_lock()
464 * to ensure that c does not slip away underneath us
465 */
466 read_unlock(&tasklist_lock);
467 if (c->mm != mm) {
468 task_unlock(c);
469 put_task_struct(c);
470 goto retry;
471 }
472 WRITE_ONCE(mm->owner, c);
473 lru_gen_migrate_mm(mm);
474 task_unlock(c);
475 put_task_struct(c);
476 }
477 #endif /* CONFIG_MEMCG */
478
479 /*
480 * Turn us into a lazy TLB process if we
481 * aren't already..
482 */
exit_mm(void)483 static void exit_mm(void)
484 {
485 struct mm_struct *mm = current->mm;
486 struct core_state *core_state;
487
488 exit_mm_release(current, mm);
489 if (!mm)
490 return;
491 sync_mm_rss(mm);
492 /*
493 * Serialize with any possible pending coredump.
494 * We must hold mmap_lock around checking core_state
495 * and clearing tsk->mm. The core-inducing thread
496 * will increment ->nr_threads for each thread in the
497 * group with ->mm != NULL.
498 */
499 mmap_read_lock(mm);
500 core_state = mm->core_state;
501 if (core_state) {
502 struct core_thread self;
503
504 mmap_read_unlock(mm);
505
506 self.task = current;
507 if (self.task->flags & PF_SIGNALED)
508 self.next = xchg(&core_state->dumper.next, &self);
509 else
510 self.task = NULL;
511 /*
512 * Implies mb(), the result of xchg() must be visible
513 * to core_state->dumper.
514 */
515 if (atomic_dec_and_test(&core_state->nr_threads))
516 complete(&core_state->startup);
517
518 for (;;) {
519 set_current_state(TASK_UNINTERRUPTIBLE);
520 if (!self.task) /* see coredump_finish() */
521 break;
522 freezable_schedule();
523 }
524 __set_current_state(TASK_RUNNING);
525 mmap_read_lock(mm);
526 }
527 mmgrab(mm);
528 BUG_ON(mm != current->active_mm);
529 /* more a memory barrier than a real lock */
530 task_lock(current);
531 /*
532 * When a thread stops operating on an address space, the loop
533 * in membarrier_private_expedited() may not observe that
534 * tsk->mm, and the loop in membarrier_global_expedited() may
535 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
536 * rq->membarrier_state, so those would not issue an IPI.
537 * Membarrier requires a memory barrier after accessing
538 * user-space memory, before clearing tsk->mm or the
539 * rq->membarrier_state.
540 */
541 smp_mb__after_spinlock();
542 local_irq_disable();
543 current->mm = NULL;
544 membarrier_update_current_mm(NULL);
545 enter_lazy_tlb(mm, current);
546 local_irq_enable();
547 task_unlock(current);
548 mmap_read_unlock(mm);
549 mm_update_next_owner(mm);
550 trace_android_vh_exit_mm(mm);
551 mmput(mm);
552 if (test_thread_flag(TIF_MEMDIE))
553 exit_oom_victim();
554 }
555
find_alive_thread(struct task_struct * p)556 static struct task_struct *find_alive_thread(struct task_struct *p)
557 {
558 struct task_struct *t;
559
560 for_each_thread(p, t) {
561 if (!(t->flags & PF_EXITING))
562 return t;
563 }
564 return NULL;
565 }
566
find_child_reaper(struct task_struct * father,struct list_head * dead)567 static struct task_struct *find_child_reaper(struct task_struct *father,
568 struct list_head *dead)
569 __releases(&tasklist_lock)
570 __acquires(&tasklist_lock)
571 {
572 struct pid_namespace *pid_ns = task_active_pid_ns(father);
573 struct task_struct *reaper = pid_ns->child_reaper;
574 struct task_struct *p, *n;
575
576 if (likely(reaper != father))
577 return reaper;
578
579 reaper = find_alive_thread(father);
580 if (reaper) {
581 pid_ns->child_reaper = reaper;
582 return reaper;
583 }
584
585 write_unlock_irq(&tasklist_lock);
586
587 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
588 list_del_init(&p->ptrace_entry);
589 release_task(p);
590 }
591
592 zap_pid_ns_processes(pid_ns);
593 write_lock_irq(&tasklist_lock);
594
595 return father;
596 }
597
598 /*
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
604 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)605 static struct task_struct *find_new_reaper(struct task_struct *father,
606 struct task_struct *child_reaper)
607 {
608 struct task_struct *thread, *reaper;
609
610 thread = find_alive_thread(father);
611 if (thread)
612 return thread;
613
614 if (father->signal->has_child_subreaper) {
615 unsigned int ns_level = task_pid(father)->level;
616 /*
617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
623 */
624 for (reaper = father->real_parent;
625 task_pid(reaper)->level == ns_level;
626 reaper = reaper->real_parent) {
627 if (reaper == &init_task)
628 break;
629 if (!reaper->signal->is_child_subreaper)
630 continue;
631 thread = find_alive_thread(reaper);
632 if (thread)
633 return thread;
634 }
635 }
636
637 return child_reaper;
638 }
639
640 /*
641 * Any that need to be release_task'd are put on the @dead list.
642 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)643 static void reparent_leader(struct task_struct *father, struct task_struct *p,
644 struct list_head *dead)
645 {
646 if (unlikely(p->exit_state == EXIT_DEAD))
647 return;
648
649 /* We don't want people slaying init. */
650 p->exit_signal = SIGCHLD;
651
652 /* If it has exited notify the new parent about this child's death. */
653 if (!p->ptrace &&
654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
655 if (do_notify_parent(p, p->exit_signal)) {
656 p->exit_state = EXIT_DEAD;
657 list_add(&p->ptrace_entry, dead);
658 }
659 }
660
661 kill_orphaned_pgrp(p, father);
662 }
663
664 /*
665 * This does two things:
666 *
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
671 */
forget_original_parent(struct task_struct * father,struct list_head * dead)672 static void forget_original_parent(struct task_struct *father,
673 struct list_head *dead)
674 {
675 struct task_struct *p, *t, *reaper;
676
677 if (unlikely(!list_empty(&father->ptraced)))
678 exit_ptrace(father, dead);
679
680 /* Can drop and reacquire tasklist_lock */
681 reaper = find_child_reaper(father, dead);
682 if (list_empty(&father->children))
683 return;
684
685 reaper = find_new_reaper(father, reaper);
686 list_for_each_entry(p, &father->children, sibling) {
687 for_each_thread(p, t) {
688 RCU_INIT_POINTER(t->real_parent, reaper);
689 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
690 if (likely(!t->ptrace))
691 t->parent = t->real_parent;
692 if (t->pdeath_signal)
693 group_send_sig_info(t->pdeath_signal,
694 SEND_SIG_NOINFO, t,
695 PIDTYPE_TGID);
696 }
697 /*
698 * If this is a threaded reparent there is no need to
699 * notify anyone anything has happened.
700 */
701 if (!same_thread_group(reaper, father))
702 reparent_leader(father, p, dead);
703 }
704 list_splice_tail_init(&father->children, &reaper->children);
705 }
706
707 /*
708 * Send signals to all our closest relatives so that they know
709 * to properly mourn us..
710 */
exit_notify(struct task_struct * tsk,int group_dead)711 static void exit_notify(struct task_struct *tsk, int group_dead)
712 {
713 bool autoreap;
714 struct task_struct *p, *n;
715 LIST_HEAD(dead);
716
717 write_lock_irq(&tasklist_lock);
718 forget_original_parent(tsk, &dead);
719
720 if (group_dead)
721 kill_orphaned_pgrp(tsk->group_leader, NULL);
722
723 tsk->exit_state = EXIT_ZOMBIE;
724 if (unlikely(tsk->ptrace)) {
725 int sig = thread_group_leader(tsk) &&
726 thread_group_empty(tsk) &&
727 !ptrace_reparented(tsk) ?
728 tsk->exit_signal : SIGCHLD;
729 autoreap = do_notify_parent(tsk, sig);
730 } else if (thread_group_leader(tsk)) {
731 autoreap = thread_group_empty(tsk) &&
732 do_notify_parent(tsk, tsk->exit_signal);
733 } else {
734 autoreap = true;
735 }
736
737 if (autoreap) {
738 tsk->exit_state = EXIT_DEAD;
739 list_add(&tsk->ptrace_entry, &dead);
740 }
741
742 /* mt-exec, de_thread() is waiting for group leader */
743 if (unlikely(tsk->signal->notify_count < 0))
744 wake_up_process(tsk->signal->group_exit_task);
745 write_unlock_irq(&tasklist_lock);
746
747 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
748 list_del_init(&p->ptrace_entry);
749 release_task(p);
750 }
751 }
752
753 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)754 static void check_stack_usage(void)
755 {
756 static DEFINE_SPINLOCK(low_water_lock);
757 static int lowest_to_date = THREAD_SIZE;
758 unsigned long free;
759
760 free = stack_not_used(current);
761
762 if (free >= lowest_to_date)
763 return;
764
765 spin_lock(&low_water_lock);
766 if (free < lowest_to_date) {
767 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
768 current->comm, task_pid_nr(current), free);
769 lowest_to_date = free;
770 }
771 spin_unlock(&low_water_lock);
772 }
773 #else
check_stack_usage(void)774 static inline void check_stack_usage(void) {}
775 #endif
776
do_exit(long code)777 void __noreturn do_exit(long code)
778 {
779 struct task_struct *tsk = current;
780 int group_dead;
781
782 /*
783 * We can get here from a kernel oops, sometimes with preemption off.
784 * Start by checking for critical errors.
785 * Then fix up important state like USER_DS and preemption.
786 * Then do everything else.
787 */
788
789 WARN_ON(blk_needs_flush_plug(tsk));
790
791 if (unlikely(in_interrupt()))
792 panic("Aiee, killing interrupt handler!");
793 if (unlikely(!tsk->pid))
794 panic("Attempted to kill the idle task!");
795
796 /*
797 * If do_exit is called because this processes oopsed, it's possible
798 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
799 * continuing. Amongst other possible reasons, this is to prevent
800 * mm_release()->clear_child_tid() from writing to a user-controlled
801 * kernel address.
802 */
803 force_uaccess_begin();
804
805 if (unlikely(in_atomic())) {
806 pr_info("note: %s[%d] exited with preempt_count %d\n",
807 current->comm, task_pid_nr(current),
808 preempt_count());
809 preempt_count_set(PREEMPT_ENABLED);
810 }
811
812 profile_task_exit(tsk);
813 kcov_task_exit(tsk);
814
815 ptrace_event(PTRACE_EVENT_EXIT, code);
816
817 validate_creds_for_do_exit(tsk);
818
819 /*
820 * We're taking recursive faults here in do_exit. Safest is to just
821 * leave this task alone and wait for reboot.
822 */
823 if (unlikely(tsk->flags & PF_EXITING)) {
824 pr_alert("Fixing recursive fault but reboot is needed!\n");
825 futex_exit_recursive(tsk);
826 set_current_state(TASK_UNINTERRUPTIBLE);
827 schedule();
828 }
829
830 io_uring_files_cancel();
831 exit_signals(tsk); /* sets PF_EXITING */
832
833 /* sync mm's RSS info before statistics gathering */
834 if (tsk->mm)
835 sync_mm_rss(tsk->mm);
836 acct_update_integrals(tsk);
837 group_dead = atomic_dec_and_test(&tsk->signal->live);
838 if (group_dead) {
839 /*
840 * If the last thread of global init has exited, panic
841 * immediately to get a useable coredump.
842 */
843 if (unlikely(is_global_init(tsk)))
844 panic("Attempted to kill init! exitcode=0x%08x\n",
845 tsk->signal->group_exit_code ?: (int)code);
846
847 #ifdef CONFIG_POSIX_TIMERS
848 hrtimer_cancel(&tsk->signal->real_timer);
849 exit_itimers(tsk);
850 #endif
851 if (tsk->mm)
852 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
853 }
854 acct_collect(code, group_dead);
855 if (group_dead)
856 tty_audit_exit();
857 audit_free(tsk);
858
859 tsk->exit_code = code;
860 taskstats_exit(tsk, group_dead);
861
862 exit_mm();
863
864 if (group_dead)
865 acct_process();
866 trace_sched_process_exit(tsk);
867
868 exit_sem(tsk);
869 exit_shm(tsk);
870 exit_files(tsk);
871 exit_fs(tsk);
872 if (group_dead)
873 disassociate_ctty(1);
874 exit_task_namespaces(tsk);
875 exit_task_work(tsk);
876 exit_thread(tsk);
877
878 /*
879 * Flush inherited counters to the parent - before the parent
880 * gets woken up by child-exit notifications.
881 *
882 * because of cgroup mode, must be called before cgroup_exit()
883 */
884 perf_event_exit_task(tsk);
885
886 sched_autogroup_exit_task(tsk);
887 cgroup_exit(tsk);
888
889 /*
890 * FIXME: do that only when needed, using sched_exit tracepoint
891 */
892 flush_ptrace_hw_breakpoint(tsk);
893
894 exit_tasks_rcu_start();
895 exit_notify(tsk, group_dead);
896 proc_exit_connector(tsk);
897 mpol_put_task_policy(tsk);
898 #ifdef CONFIG_FUTEX
899 if (unlikely(current->pi_state_cache))
900 kfree(current->pi_state_cache);
901 #endif
902 /*
903 * Make sure we are holding no locks:
904 */
905 debug_check_no_locks_held();
906
907 if (tsk->io_context)
908 exit_io_context(tsk);
909
910 if (tsk->splice_pipe)
911 free_pipe_info(tsk->splice_pipe);
912
913 if (tsk->task_frag.page)
914 put_page(tsk->task_frag.page);
915
916 validate_creds_for_do_exit(tsk);
917
918 check_stack_usage();
919 preempt_disable();
920 if (tsk->nr_dirtied)
921 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922 exit_rcu();
923 exit_tasks_rcu_finish();
924
925 lockdep_free_task(tsk);
926 do_task_dead();
927 }
928 EXPORT_SYMBOL_GPL(do_exit);
929
make_task_dead(int signr)930 void __noreturn make_task_dead(int signr)
931 {
932 /*
933 * Take the task off the cpu after something catastrophic has
934 * happened.
935 */
936 unsigned int limit;
937
938 /*
939 * Every time the system oopses, if the oops happens while a reference
940 * to an object was held, the reference leaks.
941 * If the oops doesn't also leak memory, repeated oopsing can cause
942 * reference counters to wrap around (if they're not using refcount_t).
943 * This means that repeated oopsing can make unexploitable-looking bugs
944 * exploitable through repeated oopsing.
945 * To make sure this can't happen, place an upper bound on how often the
946 * kernel may oops without panic().
947 */
948 limit = READ_ONCE(oops_limit);
949 if (atomic_inc_return(&oops_count) >= limit && limit)
950 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
951
952 do_exit(signr);
953 }
954
complete_and_exit(struct completion * comp,long code)955 void complete_and_exit(struct completion *comp, long code)
956 {
957 if (comp)
958 complete(comp);
959
960 do_exit(code);
961 }
962 EXPORT_SYMBOL(complete_and_exit);
963
SYSCALL_DEFINE1(exit,int,error_code)964 SYSCALL_DEFINE1(exit, int, error_code)
965 {
966 do_exit((error_code&0xff)<<8);
967 }
968
969 /*
970 * Take down every thread in the group. This is called by fatal signals
971 * as well as by sys_exit_group (below).
972 */
973 void
do_group_exit(int exit_code)974 do_group_exit(int exit_code)
975 {
976 struct signal_struct *sig = current->signal;
977
978 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
979
980 if (signal_group_exit(sig))
981 exit_code = sig->group_exit_code;
982 else if (!thread_group_empty(current)) {
983 struct sighand_struct *const sighand = current->sighand;
984
985 spin_lock_irq(&sighand->siglock);
986 if (signal_group_exit(sig))
987 /* Another thread got here before we took the lock. */
988 exit_code = sig->group_exit_code;
989 else {
990 sig->group_exit_code = exit_code;
991 sig->flags = SIGNAL_GROUP_EXIT;
992 zap_other_threads(current);
993 }
994 spin_unlock_irq(&sighand->siglock);
995 }
996
997 do_exit(exit_code);
998 /* NOTREACHED */
999 }
1000
1001 /*
1002 * this kills every thread in the thread group. Note that any externally
1003 * wait4()-ing process will get the correct exit code - even if this
1004 * thread is not the thread group leader.
1005 */
SYSCALL_DEFINE1(exit_group,int,error_code)1006 SYSCALL_DEFINE1(exit_group, int, error_code)
1007 {
1008 do_group_exit((error_code & 0xff) << 8);
1009 /* NOTREACHED */
1010 return 0;
1011 }
1012
1013 struct waitid_info {
1014 pid_t pid;
1015 uid_t uid;
1016 int status;
1017 int cause;
1018 };
1019
1020 struct wait_opts {
1021 enum pid_type wo_type;
1022 int wo_flags;
1023 struct pid *wo_pid;
1024
1025 struct waitid_info *wo_info;
1026 int wo_stat;
1027 struct rusage *wo_rusage;
1028
1029 wait_queue_entry_t child_wait;
1030 int notask_error;
1031 };
1032
eligible_pid(struct wait_opts * wo,struct task_struct * p)1033 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1034 {
1035 return wo->wo_type == PIDTYPE_MAX ||
1036 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1037 }
1038
1039 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1040 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1041 {
1042 if (!eligible_pid(wo, p))
1043 return 0;
1044
1045 /*
1046 * Wait for all children (clone and not) if __WALL is set or
1047 * if it is traced by us.
1048 */
1049 if (ptrace || (wo->wo_flags & __WALL))
1050 return 1;
1051
1052 /*
1053 * Otherwise, wait for clone children *only* if __WCLONE is set;
1054 * otherwise, wait for non-clone children *only*.
1055 *
1056 * Note: a "clone" child here is one that reports to its parent
1057 * using a signal other than SIGCHLD, or a non-leader thread which
1058 * we can only see if it is traced by us.
1059 */
1060 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1061 return 0;
1062
1063 return 1;
1064 }
1065
1066 /*
1067 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1068 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1069 * the lock and this task is uninteresting. If we return nonzero, we have
1070 * released the lock and the system call should return.
1071 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1072 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1073 {
1074 int state, status;
1075 pid_t pid = task_pid_vnr(p);
1076 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1077 struct waitid_info *infop;
1078
1079 if (!likely(wo->wo_flags & WEXITED))
1080 return 0;
1081
1082 if (unlikely(wo->wo_flags & WNOWAIT)) {
1083 status = p->exit_code;
1084 get_task_struct(p);
1085 read_unlock(&tasklist_lock);
1086 sched_annotate_sleep();
1087 if (wo->wo_rusage)
1088 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1089 put_task_struct(p);
1090 goto out_info;
1091 }
1092 /*
1093 * Move the task's state to DEAD/TRACE, only one thread can do this.
1094 */
1095 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1096 EXIT_TRACE : EXIT_DEAD;
1097 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1098 return 0;
1099 /*
1100 * We own this thread, nobody else can reap it.
1101 */
1102 read_unlock(&tasklist_lock);
1103 sched_annotate_sleep();
1104
1105 /*
1106 * Check thread_group_leader() to exclude the traced sub-threads.
1107 */
1108 if (state == EXIT_DEAD && thread_group_leader(p)) {
1109 struct signal_struct *sig = p->signal;
1110 struct signal_struct *psig = current->signal;
1111 unsigned long maxrss;
1112 u64 tgutime, tgstime;
1113
1114 /*
1115 * The resource counters for the group leader are in its
1116 * own task_struct. Those for dead threads in the group
1117 * are in its signal_struct, as are those for the child
1118 * processes it has previously reaped. All these
1119 * accumulate in the parent's signal_struct c* fields.
1120 *
1121 * We don't bother to take a lock here to protect these
1122 * p->signal fields because the whole thread group is dead
1123 * and nobody can change them.
1124 *
1125 * psig->stats_lock also protects us from our sub-theads
1126 * which can reap other children at the same time. Until
1127 * we change k_getrusage()-like users to rely on this lock
1128 * we have to take ->siglock as well.
1129 *
1130 * We use thread_group_cputime_adjusted() to get times for
1131 * the thread group, which consolidates times for all threads
1132 * in the group including the group leader.
1133 */
1134 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1135 spin_lock_irq(¤t->sighand->siglock);
1136 write_seqlock(&psig->stats_lock);
1137 psig->cutime += tgutime + sig->cutime;
1138 psig->cstime += tgstime + sig->cstime;
1139 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1140 psig->cmin_flt +=
1141 p->min_flt + sig->min_flt + sig->cmin_flt;
1142 psig->cmaj_flt +=
1143 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1144 psig->cnvcsw +=
1145 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1146 psig->cnivcsw +=
1147 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1148 psig->cinblock +=
1149 task_io_get_inblock(p) +
1150 sig->inblock + sig->cinblock;
1151 psig->coublock +=
1152 task_io_get_oublock(p) +
1153 sig->oublock + sig->coublock;
1154 maxrss = max(sig->maxrss, sig->cmaxrss);
1155 if (psig->cmaxrss < maxrss)
1156 psig->cmaxrss = maxrss;
1157 task_io_accounting_add(&psig->ioac, &p->ioac);
1158 task_io_accounting_add(&psig->ioac, &sig->ioac);
1159 write_sequnlock(&psig->stats_lock);
1160 spin_unlock_irq(¤t->sighand->siglock);
1161 }
1162
1163 if (wo->wo_rusage)
1164 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1165 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1166 ? p->signal->group_exit_code : p->exit_code;
1167 wo->wo_stat = status;
1168
1169 if (state == EXIT_TRACE) {
1170 write_lock_irq(&tasklist_lock);
1171 /* We dropped tasklist, ptracer could die and untrace */
1172 ptrace_unlink(p);
1173
1174 /* If parent wants a zombie, don't release it now */
1175 state = EXIT_ZOMBIE;
1176 if (do_notify_parent(p, p->exit_signal))
1177 state = EXIT_DEAD;
1178 p->exit_state = state;
1179 write_unlock_irq(&tasklist_lock);
1180 }
1181 if (state == EXIT_DEAD)
1182 release_task(p);
1183
1184 out_info:
1185 infop = wo->wo_info;
1186 if (infop) {
1187 if ((status & 0x7f) == 0) {
1188 infop->cause = CLD_EXITED;
1189 infop->status = status >> 8;
1190 } else {
1191 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1192 infop->status = status & 0x7f;
1193 }
1194 infop->pid = pid;
1195 infop->uid = uid;
1196 }
1197
1198 return pid;
1199 }
1200
task_stopped_code(struct task_struct * p,bool ptrace)1201 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1202 {
1203 if (ptrace) {
1204 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1205 return &p->exit_code;
1206 } else {
1207 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1208 return &p->signal->group_exit_code;
1209 }
1210 return NULL;
1211 }
1212
1213 /**
1214 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1215 * @wo: wait options
1216 * @ptrace: is the wait for ptrace
1217 * @p: task to wait for
1218 *
1219 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1220 *
1221 * CONTEXT:
1222 * read_lock(&tasklist_lock), which is released if return value is
1223 * non-zero. Also, grabs and releases @p->sighand->siglock.
1224 *
1225 * RETURNS:
1226 * 0 if wait condition didn't exist and search for other wait conditions
1227 * should continue. Non-zero return, -errno on failure and @p's pid on
1228 * success, implies that tasklist_lock is released and wait condition
1229 * search should terminate.
1230 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1231 static int wait_task_stopped(struct wait_opts *wo,
1232 int ptrace, struct task_struct *p)
1233 {
1234 struct waitid_info *infop;
1235 int exit_code, *p_code, why;
1236 uid_t uid = 0; /* unneeded, required by compiler */
1237 pid_t pid;
1238
1239 /*
1240 * Traditionally we see ptrace'd stopped tasks regardless of options.
1241 */
1242 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1243 return 0;
1244
1245 if (!task_stopped_code(p, ptrace))
1246 return 0;
1247
1248 exit_code = 0;
1249 spin_lock_irq(&p->sighand->siglock);
1250
1251 p_code = task_stopped_code(p, ptrace);
1252 if (unlikely(!p_code))
1253 goto unlock_sig;
1254
1255 exit_code = *p_code;
1256 if (!exit_code)
1257 goto unlock_sig;
1258
1259 if (!unlikely(wo->wo_flags & WNOWAIT))
1260 *p_code = 0;
1261
1262 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1263 unlock_sig:
1264 spin_unlock_irq(&p->sighand->siglock);
1265 if (!exit_code)
1266 return 0;
1267
1268 /*
1269 * Now we are pretty sure this task is interesting.
1270 * Make sure it doesn't get reaped out from under us while we
1271 * give up the lock and then examine it below. We don't want to
1272 * keep holding onto the tasklist_lock while we call getrusage and
1273 * possibly take page faults for user memory.
1274 */
1275 get_task_struct(p);
1276 pid = task_pid_vnr(p);
1277 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1278 read_unlock(&tasklist_lock);
1279 sched_annotate_sleep();
1280 if (wo->wo_rusage)
1281 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1282 put_task_struct(p);
1283
1284 if (likely(!(wo->wo_flags & WNOWAIT)))
1285 wo->wo_stat = (exit_code << 8) | 0x7f;
1286
1287 infop = wo->wo_info;
1288 if (infop) {
1289 infop->cause = why;
1290 infop->status = exit_code;
1291 infop->pid = pid;
1292 infop->uid = uid;
1293 }
1294 return pid;
1295 }
1296
1297 /*
1298 * Handle do_wait work for one task in a live, non-stopped state.
1299 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1300 * the lock and this task is uninteresting. If we return nonzero, we have
1301 * released the lock and the system call should return.
1302 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1303 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1304 {
1305 struct waitid_info *infop;
1306 pid_t pid;
1307 uid_t uid;
1308
1309 if (!unlikely(wo->wo_flags & WCONTINUED))
1310 return 0;
1311
1312 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1313 return 0;
1314
1315 spin_lock_irq(&p->sighand->siglock);
1316 /* Re-check with the lock held. */
1317 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1318 spin_unlock_irq(&p->sighand->siglock);
1319 return 0;
1320 }
1321 if (!unlikely(wo->wo_flags & WNOWAIT))
1322 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1323 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1324 spin_unlock_irq(&p->sighand->siglock);
1325
1326 pid = task_pid_vnr(p);
1327 get_task_struct(p);
1328 read_unlock(&tasklist_lock);
1329 sched_annotate_sleep();
1330 if (wo->wo_rusage)
1331 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1332 put_task_struct(p);
1333
1334 infop = wo->wo_info;
1335 if (!infop) {
1336 wo->wo_stat = 0xffff;
1337 } else {
1338 infop->cause = CLD_CONTINUED;
1339 infop->pid = pid;
1340 infop->uid = uid;
1341 infop->status = SIGCONT;
1342 }
1343 return pid;
1344 }
1345
1346 /*
1347 * Consider @p for a wait by @parent.
1348 *
1349 * -ECHILD should be in ->notask_error before the first call.
1350 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1351 * Returns zero if the search for a child should continue;
1352 * then ->notask_error is 0 if @p is an eligible child,
1353 * or still -ECHILD.
1354 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1355 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1356 struct task_struct *p)
1357 {
1358 /*
1359 * We can race with wait_task_zombie() from another thread.
1360 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1361 * can't confuse the checks below.
1362 */
1363 int exit_state = READ_ONCE(p->exit_state);
1364 int ret;
1365
1366 if (unlikely(exit_state == EXIT_DEAD))
1367 return 0;
1368
1369 ret = eligible_child(wo, ptrace, p);
1370 if (!ret)
1371 return ret;
1372
1373 if (unlikely(exit_state == EXIT_TRACE)) {
1374 /*
1375 * ptrace == 0 means we are the natural parent. In this case
1376 * we should clear notask_error, debugger will notify us.
1377 */
1378 if (likely(!ptrace))
1379 wo->notask_error = 0;
1380 return 0;
1381 }
1382
1383 if (likely(!ptrace) && unlikely(p->ptrace)) {
1384 /*
1385 * If it is traced by its real parent's group, just pretend
1386 * the caller is ptrace_do_wait() and reap this child if it
1387 * is zombie.
1388 *
1389 * This also hides group stop state from real parent; otherwise
1390 * a single stop can be reported twice as group and ptrace stop.
1391 * If a ptracer wants to distinguish these two events for its
1392 * own children it should create a separate process which takes
1393 * the role of real parent.
1394 */
1395 if (!ptrace_reparented(p))
1396 ptrace = 1;
1397 }
1398
1399 /* slay zombie? */
1400 if (exit_state == EXIT_ZOMBIE) {
1401 /* we don't reap group leaders with subthreads */
1402 if (!delay_group_leader(p)) {
1403 /*
1404 * A zombie ptracee is only visible to its ptracer.
1405 * Notification and reaping will be cascaded to the
1406 * real parent when the ptracer detaches.
1407 */
1408 if (unlikely(ptrace) || likely(!p->ptrace))
1409 return wait_task_zombie(wo, p);
1410 }
1411
1412 /*
1413 * Allow access to stopped/continued state via zombie by
1414 * falling through. Clearing of notask_error is complex.
1415 *
1416 * When !@ptrace:
1417 *
1418 * If WEXITED is set, notask_error should naturally be
1419 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1420 * so, if there are live subthreads, there are events to
1421 * wait for. If all subthreads are dead, it's still safe
1422 * to clear - this function will be called again in finite
1423 * amount time once all the subthreads are released and
1424 * will then return without clearing.
1425 *
1426 * When @ptrace:
1427 *
1428 * Stopped state is per-task and thus can't change once the
1429 * target task dies. Only continued and exited can happen.
1430 * Clear notask_error if WCONTINUED | WEXITED.
1431 */
1432 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1433 wo->notask_error = 0;
1434 } else {
1435 /*
1436 * @p is alive and it's gonna stop, continue or exit, so
1437 * there always is something to wait for.
1438 */
1439 wo->notask_error = 0;
1440 }
1441
1442 /*
1443 * Wait for stopped. Depending on @ptrace, different stopped state
1444 * is used and the two don't interact with each other.
1445 */
1446 ret = wait_task_stopped(wo, ptrace, p);
1447 if (ret)
1448 return ret;
1449
1450 /*
1451 * Wait for continued. There's only one continued state and the
1452 * ptracer can consume it which can confuse the real parent. Don't
1453 * use WCONTINUED from ptracer. You don't need or want it.
1454 */
1455 return wait_task_continued(wo, p);
1456 }
1457
1458 /*
1459 * Do the work of do_wait() for one thread in the group, @tsk.
1460 *
1461 * -ECHILD should be in ->notask_error before the first call.
1462 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1463 * Returns zero if the search for a child should continue; then
1464 * ->notask_error is 0 if there were any eligible children,
1465 * or still -ECHILD.
1466 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1467 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1468 {
1469 struct task_struct *p;
1470
1471 list_for_each_entry(p, &tsk->children, sibling) {
1472 int ret = wait_consider_task(wo, 0, p);
1473
1474 if (ret)
1475 return ret;
1476 }
1477
1478 return 0;
1479 }
1480
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1481 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1482 {
1483 struct task_struct *p;
1484
1485 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1486 int ret = wait_consider_task(wo, 1, p);
1487
1488 if (ret)
1489 return ret;
1490 }
1491
1492 return 0;
1493 }
1494
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1495 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1496 int sync, void *key)
1497 {
1498 struct wait_opts *wo = container_of(wait, struct wait_opts,
1499 child_wait);
1500 struct task_struct *p = key;
1501
1502 if (!eligible_pid(wo, p))
1503 return 0;
1504
1505 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1506 return 0;
1507
1508 return default_wake_function(wait, mode, sync, key);
1509 }
1510
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1511 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1512 {
1513 __wake_up_sync_key(&parent->signal->wait_chldexit,
1514 TASK_INTERRUPTIBLE, p);
1515 }
1516
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1517 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1518 struct task_struct *target)
1519 {
1520 struct task_struct *parent =
1521 !ptrace ? target->real_parent : target->parent;
1522
1523 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1524 same_thread_group(current, parent));
1525 }
1526
1527 /*
1528 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1529 * and tracee lists to find the target task.
1530 */
do_wait_pid(struct wait_opts * wo)1531 static int do_wait_pid(struct wait_opts *wo)
1532 {
1533 bool ptrace;
1534 struct task_struct *target;
1535 int retval;
1536
1537 ptrace = false;
1538 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1539 if (target && is_effectively_child(wo, ptrace, target)) {
1540 retval = wait_consider_task(wo, ptrace, target);
1541 if (retval)
1542 return retval;
1543 }
1544
1545 ptrace = true;
1546 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1547 if (target && target->ptrace &&
1548 is_effectively_child(wo, ptrace, target)) {
1549 retval = wait_consider_task(wo, ptrace, target);
1550 if (retval)
1551 return retval;
1552 }
1553
1554 return 0;
1555 }
1556
do_wait(struct wait_opts * wo)1557 static long do_wait(struct wait_opts *wo)
1558 {
1559 int retval;
1560
1561 trace_sched_process_wait(wo->wo_pid);
1562
1563 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1564 wo->child_wait.private = current;
1565 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1566 repeat:
1567 /*
1568 * If there is nothing that can match our criteria, just get out.
1569 * We will clear ->notask_error to zero if we see any child that
1570 * might later match our criteria, even if we are not able to reap
1571 * it yet.
1572 */
1573 wo->notask_error = -ECHILD;
1574 if ((wo->wo_type < PIDTYPE_MAX) &&
1575 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1576 goto notask;
1577
1578 set_current_state(TASK_INTERRUPTIBLE);
1579 read_lock(&tasklist_lock);
1580
1581 if (wo->wo_type == PIDTYPE_PID) {
1582 retval = do_wait_pid(wo);
1583 if (retval)
1584 goto end;
1585 } else {
1586 struct task_struct *tsk = current;
1587
1588 do {
1589 retval = do_wait_thread(wo, tsk);
1590 if (retval)
1591 goto end;
1592
1593 retval = ptrace_do_wait(wo, tsk);
1594 if (retval)
1595 goto end;
1596
1597 if (wo->wo_flags & __WNOTHREAD)
1598 break;
1599 } while_each_thread(current, tsk);
1600 }
1601 read_unlock(&tasklist_lock);
1602
1603 notask:
1604 retval = wo->notask_error;
1605 if (!retval && !(wo->wo_flags & WNOHANG)) {
1606 retval = -ERESTARTSYS;
1607 if (!signal_pending(current)) {
1608 schedule();
1609 goto repeat;
1610 }
1611 }
1612 end:
1613 __set_current_state(TASK_RUNNING);
1614 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1615 return retval;
1616 }
1617
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1618 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1619 int options, struct rusage *ru)
1620 {
1621 struct wait_opts wo;
1622 struct pid *pid = NULL;
1623 enum pid_type type;
1624 long ret;
1625 unsigned int f_flags = 0;
1626
1627 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1628 __WNOTHREAD|__WCLONE|__WALL))
1629 return -EINVAL;
1630 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1631 return -EINVAL;
1632
1633 switch (which) {
1634 case P_ALL:
1635 type = PIDTYPE_MAX;
1636 break;
1637 case P_PID:
1638 type = PIDTYPE_PID;
1639 if (upid <= 0)
1640 return -EINVAL;
1641
1642 pid = find_get_pid(upid);
1643 break;
1644 case P_PGID:
1645 type = PIDTYPE_PGID;
1646 if (upid < 0)
1647 return -EINVAL;
1648
1649 if (upid)
1650 pid = find_get_pid(upid);
1651 else
1652 pid = get_task_pid(current, PIDTYPE_PGID);
1653 break;
1654 case P_PIDFD:
1655 type = PIDTYPE_PID;
1656 if (upid < 0)
1657 return -EINVAL;
1658
1659 pid = pidfd_get_pid(upid, &f_flags);
1660 if (IS_ERR(pid))
1661 return PTR_ERR(pid);
1662
1663 break;
1664 default:
1665 return -EINVAL;
1666 }
1667
1668 wo.wo_type = type;
1669 wo.wo_pid = pid;
1670 wo.wo_flags = options;
1671 wo.wo_info = infop;
1672 wo.wo_rusage = ru;
1673 if (f_flags & O_NONBLOCK)
1674 wo.wo_flags |= WNOHANG;
1675
1676 ret = do_wait(&wo);
1677 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1678 ret = -EAGAIN;
1679
1680 put_pid(pid);
1681 return ret;
1682 }
1683
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1684 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1685 infop, int, options, struct rusage __user *, ru)
1686 {
1687 struct rusage r;
1688 struct waitid_info info = {.status = 0};
1689 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1690 int signo = 0;
1691
1692 if (err > 0) {
1693 signo = SIGCHLD;
1694 err = 0;
1695 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1696 return -EFAULT;
1697 }
1698 if (!infop)
1699 return err;
1700
1701 if (!user_write_access_begin(infop, sizeof(*infop)))
1702 return -EFAULT;
1703
1704 unsafe_put_user(signo, &infop->si_signo, Efault);
1705 unsafe_put_user(0, &infop->si_errno, Efault);
1706 unsafe_put_user(info.cause, &infop->si_code, Efault);
1707 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1708 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1709 unsafe_put_user(info.status, &infop->si_status, Efault);
1710 user_write_access_end();
1711 return err;
1712 Efault:
1713 user_write_access_end();
1714 return -EFAULT;
1715 }
1716
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1717 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1718 struct rusage *ru)
1719 {
1720 struct wait_opts wo;
1721 struct pid *pid = NULL;
1722 enum pid_type type;
1723 long ret;
1724
1725 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1726 __WNOTHREAD|__WCLONE|__WALL))
1727 return -EINVAL;
1728
1729 /* -INT_MIN is not defined */
1730 if (upid == INT_MIN)
1731 return -ESRCH;
1732
1733 if (upid == -1)
1734 type = PIDTYPE_MAX;
1735 else if (upid < 0) {
1736 type = PIDTYPE_PGID;
1737 pid = find_get_pid(-upid);
1738 } else if (upid == 0) {
1739 type = PIDTYPE_PGID;
1740 pid = get_task_pid(current, PIDTYPE_PGID);
1741 } else /* upid > 0 */ {
1742 type = PIDTYPE_PID;
1743 pid = find_get_pid(upid);
1744 }
1745
1746 wo.wo_type = type;
1747 wo.wo_pid = pid;
1748 wo.wo_flags = options | WEXITED;
1749 wo.wo_info = NULL;
1750 wo.wo_stat = 0;
1751 wo.wo_rusage = ru;
1752 ret = do_wait(&wo);
1753 put_pid(pid);
1754 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1755 ret = -EFAULT;
1756
1757 return ret;
1758 }
1759
kernel_wait(pid_t pid,int * stat)1760 int kernel_wait(pid_t pid, int *stat)
1761 {
1762 struct wait_opts wo = {
1763 .wo_type = PIDTYPE_PID,
1764 .wo_pid = find_get_pid(pid),
1765 .wo_flags = WEXITED,
1766 };
1767 int ret;
1768
1769 ret = do_wait(&wo);
1770 if (ret > 0 && wo.wo_stat)
1771 *stat = wo.wo_stat;
1772 put_pid(wo.wo_pid);
1773 return ret;
1774 }
1775
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1776 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1777 int, options, struct rusage __user *, ru)
1778 {
1779 struct rusage r;
1780 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1781
1782 if (err > 0) {
1783 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1784 return -EFAULT;
1785 }
1786 return err;
1787 }
1788
1789 #ifdef __ARCH_WANT_SYS_WAITPID
1790
1791 /*
1792 * sys_waitpid() remains for compatibility. waitpid() should be
1793 * implemented by calling sys_wait4() from libc.a.
1794 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1795 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1796 {
1797 return kernel_wait4(pid, stat_addr, options, NULL);
1798 }
1799
1800 #endif
1801
1802 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1803 COMPAT_SYSCALL_DEFINE4(wait4,
1804 compat_pid_t, pid,
1805 compat_uint_t __user *, stat_addr,
1806 int, options,
1807 struct compat_rusage __user *, ru)
1808 {
1809 struct rusage r;
1810 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1811 if (err > 0) {
1812 if (ru && put_compat_rusage(&r, ru))
1813 return -EFAULT;
1814 }
1815 return err;
1816 }
1817
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1818 COMPAT_SYSCALL_DEFINE5(waitid,
1819 int, which, compat_pid_t, pid,
1820 struct compat_siginfo __user *, infop, int, options,
1821 struct compat_rusage __user *, uru)
1822 {
1823 struct rusage ru;
1824 struct waitid_info info = {.status = 0};
1825 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1826 int signo = 0;
1827 if (err > 0) {
1828 signo = SIGCHLD;
1829 err = 0;
1830 if (uru) {
1831 /* kernel_waitid() overwrites everything in ru */
1832 if (COMPAT_USE_64BIT_TIME)
1833 err = copy_to_user(uru, &ru, sizeof(ru));
1834 else
1835 err = put_compat_rusage(&ru, uru);
1836 if (err)
1837 return -EFAULT;
1838 }
1839 }
1840
1841 if (!infop)
1842 return err;
1843
1844 if (!user_write_access_begin(infop, sizeof(*infop)))
1845 return -EFAULT;
1846
1847 unsafe_put_user(signo, &infop->si_signo, Efault);
1848 unsafe_put_user(0, &infop->si_errno, Efault);
1849 unsafe_put_user(info.cause, &infop->si_code, Efault);
1850 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1851 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1852 unsafe_put_user(info.status, &infop->si_status, Efault);
1853 user_write_access_end();
1854 return err;
1855 Efault:
1856 user_write_access_end();
1857 return -EFAULT;
1858 }
1859 #endif
1860
1861 /**
1862 * thread_group_exited - check that a thread group has exited
1863 * @pid: tgid of thread group to be checked.
1864 *
1865 * Test if the thread group represented by tgid has exited (all
1866 * threads are zombies, dead or completely gone).
1867 *
1868 * Return: true if the thread group has exited. false otherwise.
1869 */
thread_group_exited(struct pid * pid)1870 bool thread_group_exited(struct pid *pid)
1871 {
1872 struct task_struct *task;
1873 bool exited;
1874
1875 rcu_read_lock();
1876 task = pid_task(pid, PIDTYPE_PID);
1877 exited = !task ||
1878 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1879 rcu_read_unlock();
1880
1881 return exited;
1882 }
1883 EXPORT_SYMBOL(thread_group_exited);
1884
abort(void)1885 __weak void abort(void)
1886 {
1887 BUG();
1888
1889 /* if that doesn't kill us, halt */
1890 panic("Oops failed to kill thread");
1891 }
1892 EXPORT_SYMBOL(abort);
1893